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ABSTRACT 

LBL-18644 

SOLITON MATTER AND THE ONSET OF COLOR CONDUCTIVITY 

B. Banerjee,l N. K. Glendenning and V. Soni 2 

Nuclear Science Division 
Lawrence Berkeley Laboratory 

University of California 
Berkeley, CA 94720 

We employ the hybrid soliton model of the nucleon consisting of a topological 

meson field and deeply bound quarks to investigate the behavior of the quarks 

in soliton matter as a function of density. We investigate a particular 

possible ground state by placing the solitons on a spatial lattice. The model 

suggests the transition of matter from a color insulator to a color conductor 

above a critical density of a few times normal nuclear density. 
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A great deal of interest has focused recently on solitons as representing 

non-perturbative solutions of QCD for baryons.[l] A number of authors have 

shown that at the 30% level, solitons resemble nucleons.[2] What we find 

particularly appealing in this development is that, having a Lagrangian that 

describes the internal structure of the nucleon (soliton), one can investigate 

interesting questions concerning how the internal structure changes when 

solitons are assembled to form dense matter, and how the properties of matter 

correspondingly change. 

Several of the more interesting questions concern the quark behavior in 

normal and in dense matter, such as the anomalous muon scattering on nuclei as 

compared to nucleons (EMC effect)[3], and the onset of deconfinement. For 

these purposes the skyrmion[4], which has no quarks, is not interesting. 

Rather, we would like to have a soliton with quarks that are confined, but not 

through the mechanism of an impervious bag. In the absence of a known soliton 

solution possessing true confinement, we opt for a model in which the quarks 

are deeply bound. The hybrid soliton model fills this requirement.[5,6] 

In this note we focus on the behavior of the quark eigenvalues in 

compressed matter. At the densities that we have in mind, it is not 

unreasonable to organize the solitons into a crystal lattice because of the 
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short range repulsion. In fact the problem would be exceedingly difficult to 

solve otherwise. For the soliton, we employ a hybrid model consisting of 

quarks that are coupled to a topological configuration of scalar and pi meson 

fields.[5,6] Each soliton has a full Dirac sea of quarks and three which fill 

a deeply bound color degenerate valence orbital. As the density of matter is 

increased, we find that the quark eigenvalues shift in response to their 

neighbors. The valence orbital of each soliton in the crystal contributes to 

a band of triply degenerate levels, and the band is therefore fully occupied. 

For low to moderate densities we may say that soliton matter is a color 

insulator. However, above a certain density, the valence level rises in 

energy, and the top of the band intersects the lowest eigenvalue of the 

continuum. At this density, matter ceases to be a color insulator, and 

becomes a color and electric semi-conductor or conductor. 

We now fill in the details of how this result is arrived at. 

The Lagrangian of the chiral sigma model[7] is, 

( 1 ) 
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where q(r) is the quark spinor and <1(r) and .,..(r) are the 'scalar and pion 

fields, which are treated in the mean field approximation. For simplicity, we 

take A to be large (large sigma mass), which confines <12 + .,..2 to the chiral 

circle. For our purpose, this is an inconsequential restriction. In addition 

to the usual uniform field solution, the Euler-Lagrange equations of (1) have 

a lower energy solution for a range of coupling constants which is a static 

hedgehog soliton possessing a conserved topological quantum number. 

This solution has the form, 

<1( r) 

.,..( r) 

= f cos e(r) .,.. 

= r f sin e(r) _ .,.. 

In the presence of this meson field configuration, the Dirac equation, 

[iy~a~ - m(cos e(r) + iys Tor sin e(r»] q(r) = 0 

( 2) 

(3) 

with m=gf , the constituent quark mass, has a lowest energy solution of the .,.. 

form, 

q(r) _ (F(r) ) Iv> 
i~o~ G(r) 

(4) 
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where I v> is a spinor satisfying 

(a+T) I v> o (5 ) 

Following the usual convention, we call the state described by (4) a positive 

parity state, after the transformation of the large component. 

The differential equations for F and G are, 

-F' + mF sin e(r) = (E + m cos e(r» G 

G' + ~ + m sin 6(r»)G " (E - m cos 6(r» F 

«(, ) 

In addition there is the opposite parity state whose equations can be obtained 

from the above by setting m -) -m, where m=gf1f is the constituent quark mass. 

(This peculiar transformation follows by observing that Y5q(x) generates a 

quark spinor of opposite parity to q(x), while Y5 changes the relative sign 

of the momentum term in (3) with respect to the other terms, which is 

equivalent to changing the sign of m.) 

The topological charge of the skyrmion[4], and of the meson field 

configuration of the hybrid model is given, within a sign by, 

r = (XI 

B = {e(r) ~ t sin 2e(r)} 
r = 0 

(7) 
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The baryon number and its sign for the hybrid model including the quarks can 

be established unambiguously by examining the limit in which the soliton 

radius R -+ 00 In this case the method of Goldstone and Wilczek can be 

employed to calculate the baryon charge.[B] For meson fields satisfying 

boundary conditions e(O) = -ff , and e(oo) = 0, one of the quark levels, which 

for small R lies at positive energy, migrates to the negative energy sea as R 

-+ oo.[5b] This configuration, with a fully occupied negative energy sea, has 

a topological quantum number which will be used to fix the sign of B as 

+1.[9] So long as these levels are occupied for any finite R, the baryon 

charge remains unchanged. The topmost such level is referred to in [5] and 

below as a valence level, and the baryon charge of the hybrid soliton is 

therefore +1. 

For soliton matter arranged as a crystal, the hedgehog meson 

configurations are centered at lattice points thus generating a periodic field 

in which the quarks move. The Bloch theorem requires that the quark spinor 

obey. 

ik·r 
qk(r) = e - - uk(r) ( B) -
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where k is the crystal momentum, and uk(r) is a periodic function whose -
period is that of the lattice. We employ the Wigner-Seitz approximation, 

which replaces the actual problem by a spherically symmetric one and solves 

f~r qk(r), (k=O), the ground state of the band. For convenience we shall'~ake 

an ansatz for the behavior of the chiral angle, similar in spirit to Kahana et 

al.[5] Denote by Rs the equilibrium radius of the isolated soliton. When the 

lattice spacing, 2R, between solitons exceeds the diameter of a soliton, 

e( r) 

Otherwise, 

e(r) 1f(r/R-l), 

r < Rs 
, R > Rs 

R < r < R s - -

,R < R - s 

(9a) 

(9b) 

For the ground state of the band, the periodicity of the Schroedinger wave 

function required by the Bloch theorem imposes the condition that it have zero 

slope at the Wigner-Seitz boundary. This requirement translates in the case 

of the Dirac equation to 

F'(R) = 0, G( R) 0 (10) 

\J 
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i.e., the large component has zero slope and the small component, zero value 

at the boundary, as follows from (6) and (9). At the origin, it is evident 

from (6) that G(O)=O. This in turn requires that F'(O)=O. Therefor the 

boundary conditions 

G(O) = G(R) = 0 (11 ) 

insure that the Bloch theorem is satisfied, i.e., that both F and G are 

periodic. 

We solve the coupled Dirac equations (6) with the boundary condition in 

the Wigner-Seitz cell (11), by numerical integration. The eigenvalues for the 
+ -0' states are shown in fig. 1. The lower of these two belongs to the filled 

sea of quarks, and the other is the valence orbital. This orbital as would be 

expected from the Schroedinger theory, is lowered in energy from the isolated 

soliton eigenvalue over a certain range of crystal spacings, and then it rises 

due to the compression of the solitons by their neighbors. The lower 

eigenvalue is increased for all crystal spacings, which behavior can be traced 

to the small component of the Dirac spinor when the eigenvalue is close to -m. 

The Wigner-Seitz approximation allows us to calculate the eigenvalue of 

the ground state of each band (k=O). Denote such an eigenvalue for a 

particular band by £0' We need to estimate the band width. In the 

Schroedinger theory this is done by calculating the energy expectation value 

of the state, k, which is £0 + k2/2m. One could do the same in the Dirac 

case. Alternately we are motivated by the tight binding approximation of 

solid state Physics.[10] We calculate the eigenvalue for isolated 
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solitons, i.e., with exponentially decaying boundary condition, but with 

chiral field given by (9). The band width is then estimated as twice the 

difference between this energy and that computed with the crystal boundary 

condition, because the band should be spread symmetrically about the 

unperturbed case. For the valence levels the Wigner-Seitz approximation 

locates the bottom of the band. However, for the levels belonging to the sea, 

it locates the top of the band, just as the sea eigenvalues in the free case 

are - ~k 2 
+ m2. 

The band structure is shown in fig. 1 by the shaded areas and the solid 

lines are the Wigner-Seitz eigenvalues (k=O). Severa 1 poi nts deserve 

comment. We see a lowering of the valence quark eigenvalue by about 16 MeV at 

a lattice spacing 2R = 2.45 fm. For smaller spacing the level rises steeply 

and the top of the band intersects the continuum at a spacing of about 1 fm, 

which corresponds to a density of 7 times normal nuclear density (.15/fm3). 

In this model at such a density matter ceases to be a color insulator and 

becomes increasingly color conducting as the density is further increased. 

The above behavior is suggestive of quark deconfinement, although in this 

model the quarks are not truly confined but only deeply bound in the isolated 

state. The wave functions of the sea and valence orbitals are shown for a 

typical lattice spacing in fig. 2, illustrating their periodcity in the 

crystal. In fig. 3, we compare the quark distribution in soliton matter of 

several densities, illustrating the increasing concentration at the cell 

boundary for increasing density. For the pion decay constant we employ the 

experimental value f = 93 MeV, and a coupling constant g = 7.55, which yields 
11' 

a soliton mass M = 966 MeV, and an equilibrium R ~ 1.22 fm. Only the valence 

quark level and meson fields are taken into account in calculating M and R, 

thus neglecting shifts in the negative energy sea. 

"., 
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During the course of this work another paper has been published which 

investigated Skyrmion matter in a crystal lattice approximation.[ll] This 

mode 1 however does not possess quarks. Nevertheless, as these authors poi nt 

out, the asymptotic behavior of the equation of state is such that the energy 

density behaves like n4/ 3, just as a relativistic gas of Fermions. This is 

also the behavior in the model studied here, since the quarks pass into the 

continuum states of dense matter. We point out however, that for the 

Skyrmion, this behavior is an artifact of the form chosen to stabilize the 

Skyrmion, namely a term of fourth order in derivatives and hence in k ~ 

n1/ 3. This is the lowest order stabilizing term, and can be viewed as the 

first in a series, the last of which will dominate the momentum dependance of 

the equation of state at high density. 

In summary, we have investigated the behavior of quarks in soliton 

matter, using the hybrid model consisting of a topological meson field and 

deeply bound quarks. To organize the calculation, we placed the solitons in a 

crystal lattice. At a certain critical density, the top of the valence quark 

band becomes degenerate with the Fermi sea, meaning that the quarks in those 

states are no longer bound to a lattice site. At still higher densities, 

additional levels of the band rise into the continuum, suggesting that color 

conductivity is a gradual function of compression. 
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FIGURE CAPTIONS 

Figure 1. Eigenvalues of the valance (0+) and sea (0-) orbitals of quarks in 

soliton matter as a function of Wigner-Seitz cell radius, R. The 

band of levels that develops as the spacing decreases is shown by 

the shaded region. In the upper right corner, an enlargement of 

the region indicated is shown. The eigenvalue of a free soliton is 

indicated by the arrow. 

Figure 2. Upper (F) and lower (G) components of the Dirac spinor are shown for 

the valence and sea orbitals for a cell radius of 0.6 fm. 

Figure 3. Probability distribution for the valence quarks for several cell 

radii, illustrating the increasing concentration of the quarks at 

the cell boundary as the compression of soliton matter increases. 
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Figure 1. Eigenvalues of the valance (0+) and sea (0-) orbitals of quarks in 

soliton matter as a function of Wigner-Seitz cell radius, R. The 

band of levels that develops as the spacing decreases is shown by 

the shaded region. In the upper right corner, an enlargement of 

the region indicated is shown. The eigenvalue of a free soliton is 

indicated by the arrow. 
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Figure 2. Upper (F) and lower (G) components of the Dirac spinor are shown for 

the valence and sea orbitals for a cell radius of 0.6 fm. 
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Figure 3. Probability distribution for the valence Quarks for several cell 

radii, illustrating the increasing concentration of the quarks at 

the cell boundary as the compression of soliton matter increases. 
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