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ABSTRACT
A‘calcu,lation of the .intrinsic stacking fault energy 'in 'sil_ic-;')n has be.eﬁ
carried out, to"s_eco_nd order perturbatio'n -'m_ the pseudopotential formalism;
The calculated r'e's\ult is 55 erg/cmz, which”'tsin-r.emarkably good a.g}reeme.nt
- with the experimental \}alue | |
| | §INTRODUCTION -
The numerlcal values of stackmg fault energles are 1mportant para-

meters in the theory of plastic deformation. The experimental determ;natlon

of those values has im proved enormously.in the last few y‘ear’s with the devel~

opment of the weak beam technique in electron microscopy (Coc‘kayne_e;t_a_l_,
1969). The metho.o has been used to determine the separation of partial dis—
loc-ations, from »v:vhic.hstacking fault energies can be obtained.‘ It has been
applied to var'ious"' systemS' Cu - ]O% Al (Cockayne et al, 1969), silicon -

(Ray and Cockayne, 9’70) copper and silver (C‘ockayne et al;, 1972), gold

(Jenk’ms 19’72) germanium (Haussermann and Schaumburg, 1973) and more

'recently boron- lmptanted silicon (Chen and Thomas ‘to be pubhshed)

The most 1mportant advantage of the weak beam techmque is the

narrowness of the image Wldth The Lmage peak defmes accuratety the .)OSLthfl of

the partlals Lt is poss1b1e therefore to resolve closely spaced partlal dislo-
cations for crystal with high stacking fault energy.v But the requirements br
 the 'resolution of dlslocation separation of the order of 40 A or so are ‘s';o

extremely stringent that it is very desu'able to have a theoretlcal estlmate of

stackmg fault energies on hand S0 as to save fruitless efforts to the experimen- |

talist in this field.

{
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Hodges (1967) 'd.evelop'ed a calculational__method to obtain stackihg fault

»energies in closed-packed simple metals. He used a pseudopotential (PP)

formulation (Harrison 1966, Heine 1970, Cohe_n and Heiné 1970, Heine a.nd
Weaire 1970) applied to second order in perturb‘atiion théory... His calcula-
tions', which made use of the quel potentials of Heine and Abarenkov (1964),
confirmed the experimenta_l trend (large value for Al, low }for Pb) but were
not very acéurate and even gave negative values for Pb and Zn.. Hodgesk |
attributed his discrepancies to (a) the uncertainty of the PP for large momen-
tum transfer Ef, (b)' the use of a local PP instead of a non-local angular;
momentum dependent ;Sne.

The use of PP is a natural one for this k‘md'of problérn: it is concep-
tually simple, easy to handle and known to be accuréte to about 1% in the

determination of one-electron properties and say 20% in s_tructural proper-

ties whenever volume effects do not play a role. Such is the case in our

- -

..s'ta:‘cking fault problem.

From the point of view of simplicity of the numerical procedures, a

. '_ | ‘local PP is undoubtedly a .v’exfy‘ de;é,irable feature. It is known however.that

local PP only work well for a small number of elements on the periodic

‘table, and usually very well only for Na, Mg, Al and Si.

_ _Wé have chdsen to determine the stacking fault energy m di-é.mond.
St;uctur‘ed silicoh for several reasons: |

‘ (i) The PP.is very ;/vell known and has been repeatedly tested (then
aﬁd Heine 1970, Au-Yarig add. Cohen, 1969) against fnany experirriental data.

(i) A local PP works extremely well for silicon.
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V(iii) Th‘e experimenta}_l value of the Stac_king fault en'_ergY (Ray 'alnd»

. Cockayrne, ]‘970) , 95 erg/cm2 is _w.ell known and rnore ac‘c\irat_e than most. |
(iv) . An intfinsic stscking fanlt in Si does not chan_ge thevlocal-tetvra- -

hedral coordinetlon of any atom and therefore chemical—bond arguments

(Phillips 1969) point out to the suitability of BP schemes and ordinary linear

screening vtheory.

g

(v) The stacking fault-prqpe.rtie_s canlbe used to supplement information
on the properties of the vario,tis polytypes and emcrpnous forms of silicon, -
which are presently the subj'ect‘ of intensive studies (Joanno_poulos and Cch_en,
1973). | L |

(vi) We would like to testv eVPP calculation of thi_s_sqrtv to' see whether
inan open structure (e.g. the diamond structure) it works better than ina |
closed-packed one.

In section Zwe pfesent the details..o_f the calculation., Secticn .3vlcontz.3.ins__a
‘-brlef dlscusswn o . AT | ._ | _. l .‘ - ._
- §2. FOR’\/IU LATLON OF THE PROBLEM AI\(D CALCULATIO\I

As discussed by Hodges (]967)_ and m,the mtz_'oduc_tvlon,_second or.d.erf '
perturbaticn theory should give adequate results for evaluat'mg'stacking
fault energles this is pmmarlly so because such a fault isa rearrangement Vo
of atoms at constant dens1ty ThlS ehmmates volume dependent effects | |
which are so sensitive to electron—electron correlatlons and make the |
Hartree (mean field) approx1metlon a feasonab,le one to treat many—elect'ron

effects. In addition, since the tetrahedral coordination of each atom is

preserved, the so-called bond cha.rge (Phillips 1969) does not get appreciably
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disturbed and therefore the non-linear screening properties remain
unchanged throughout the calculation. Under these:conditions the energy of
formation of a stacking fault, neglecting correlation and exchange contribu-

tions, is given by (Hodges 1967)

2 2 ' ' - :
Hor 7 ?zj)‘zf 0@ - s@)®- @1 %dE (e
q .
where |
" 2, 4

:vb(q) is the screened PP form factor, eo(q) is the Lindhard-Hartree dielec-

tric function (Harrison 1988), Z is the valence of the ions (Z = 4 for silicon),

SO(E) is the structure factor for the perfect lattice and S(-.) is the structure

factor for the lattice with the siacking fault. We must now:

“(a) Choose a good PP form factor v, (q) and express it ina 'cohven"ient

form so as to be. able to integrate (2. '1);

L -',,(b).. C‘,alcx_i,la.t,.e the structure factors S‘O_.ang_l S;

" (¢) Evaluate (2.1).

2.1 The PP Form Factors

‘The experimentally fitted values of the screened PP form factors, as.

given by Au-Yang and Cohen (1969) are given in table I. For our purposes,

. since we need vb(q) as a continuous function of q, it is necessary to use

an accurate interpolation formula. Wefind it convenient to use (Falicov and

Golin, 1965)



W@ = aa?+BlcepoB 1t @y

for q >.1.612 a.u. with
A=0.1449 B =-0.3767 C=0.0061 D=1.3568 .  (2.4)

For smaller values of q (0. 885 fq <1.612) we use a quadratic form

v (@) =-1.6545+2.0399 q - 0.6288¢° . (25

- In all these formulae q is in at'omic units (inverse Bohr radii) and vy, is
expressed in Rydbérgs. Values of R forq < 01.865 are not needed in the
~ calculation.

2.2 The Structure rFactors

We may thmk of a perfe\.t sﬂh,on crystal as bcmg made by the propor

vstackmg of (]11) type of atomlc planﬁs Each of these planes contams a.

hexa~on:11 (closed pack d) arrangemc,nt Of,SthOﬂ atomsv. ‘I‘he nearesb

L n.elghbor separation of atom_s in. each»of.thése planes is R

The two bas"icv (period) vectors in these planes are

"t’l = ayy |
FZ = a,[0.5 7+ (N3/2)2] |

There are thx_‘ee kinds bf'planes,' labelled A, B and C andlisuch that

- a/N2 = (10.26/ND)a.u. = T.26au. - (2.6)
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A'hasénatomat -{‘Azo -
: . —-]_-0 -0'=-o
R hasanatomat t'B— 3(.1+t2) =t
C has an atom at -EC = -T

in their respective planes. We build now the perfect lattice by folloWing

the stacking prescription:

+++ AAERCCAAEERCCAA- - -

such that two consecutive planes of the same kind are separated by a

distance (perpendicular to Fl " and E'Z')

6, = aN3/4 = 4.44 a.u.

and two consecutive planes of different kind are separatéd by

o, = an3/12 = 1.48 a.u. .
Since the planes come always in pairs (AA), or (BB), or (CC), we dan” ~~  °
~ denote each pair by its corresponding primed letter, and therefore the
silicon perfect crystal is given by

-;-A'B'CiA'E'_C'--- (2.9)

each double plane being separated from its nearest neighbors by a d‘;st'a‘n_ce
0 = 6,+6y = 5.92a.u.

An intrinsic stacking fault is now obtained by eliminating one double

plane (two atomic planes), i.e..
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--’-A'B-'C'E'C'A'-'_-_- Lo (2‘,-10_):

' -Thls is the lowest energy fault smce 1t preserves the tetrahedral env1ron- |

ment of each smcon atom It has however a small sequence _

[B'CERC]

‘ Which corresponds to a wurtzite (rather than diamond) type st'ructure.

s )

We ma'y remark now that v‘sinc_e'the‘ diamond structure in the £, c.c. |
structure with"a’ basis (t‘wo atoms per unit celi) ‘ and smce the (2.9) and (2 10)
sequences are 1dent1cal to those dlscussed by Hodges (1987) for the f.c.c.
mtrmsm fault, our structure factors can only differ from his by a correction -

factor which takes the basis into account

sdiamond(q) f tl +exp\ 1q 0. )JSfC" q) (B

where

iy =erE = 4cBaiu i e (2012

, ‘Thisl relatio'nship' ('2 11) apvpliesvvboth to the perfect and the stacking fault'
 structures. We therefore obtam our structure factors easxly by applymg
(2.11) and extractmg Sfcc and SO dlrectly from IIodges s results.-

fce

. 2.3 Evaluatlonof the Inteqrals -

- The evaluation of (2. 1) follows the _standard' procedure (‘Harrison 1966,
Hodges ]967)vof.separat‘1ng the 'Lntegral'_into singular and‘non-singular parts.
" The ,singu.tar cOntributlon is obtained analytically_'and're'duc"ed to the summa-

tion of a finite series.
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The non-singular par"-t is integrated numerically using the values of
vb(q) given by (2. 3) and (2. 5) and the analytic expression of Lindhard's

dielectric function eo(q) (Harrison 1966). The results are

MEg, = WxT.04x107° Ryd (2.193)

" where W is the area of the stacking fault. Reduction to cgs units yields

']

JAYS = 55 ergs/cm2 . , (2.14)

SE

93 DISCUSSION
The quoted experimental values for the intrins_icv étacking fault energy
i>n_ siliéon range from 50 _erg/cm-2 (Aerts et.al, 1962) to 5‘5erg/cm2 (Ray
and Cockayne;. 1970). 'l’ﬁe latest value is considered more accurate and

reliable. Our results are in remsrkably and probably fortuitously good

agreement with experiment. The approximations involved in our calculation

" are:

- Those mhwam in the DT formalism;
(2) Second order perturbation theory;
(3) Empirical PP forrﬁ factors;
_(4) Local PP approkimatién;

(5) Hartree approximation (no exchange and correlation co‘rrec'ti«'ms)};'
(6) Lack of inc lusion of non-linear scréening (influénce of bbnﬂ’"éﬁarges) ;
(7) Numerical and rounding off errors. | |
Of these we have tried to keep () to a reasonablg: valuev SO as to ensure

two significant figures of the final result; (1) is probably negligible if taken



in conjuhctlon with (3) (C‘ohen end Heihe 1970); (4) is very small for slhcon
}'but may be mora significant for heav1er or lighter sem1conductors |
Since the sta('kmq fault calculation involves no volume change, (2) -
is a.very good apprommatlon (Harrlson 1966), and so is (5). |
In the evaluation of the integral (2.1) the difference {IS q)l

[ O —» l } vanishes for values ofq smaller than G =(0.865 a.u. (thlS is the

T *

smallest non-vamshmg proj ectlon of a reciprocal lattxce vector onto the
stam«.mg fault plauo) ' 'l"‘herefore the dlel,t.trlo function ¢ (q) 1s needed
only for q > G , l.e. a region outside the range where the semiconducting -
character of the crystal and the bond charge make a sizeable difference
(Phillips ]969); hence (6) should be also a good approximation.

In summary, (])—‘(7) are all justifiable and the errors should be
small. It is however very surprising that our agreement with experiment is
so good, and this can be only fortuitous. ~We are nonetheless 'encoura(*ed
by the results and feel that s1mllar calculatlons should be extended to other .
sem 1conductors to test' further the valldlty of the th~ory | . |
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. Tablel
- Screened Pseu'dopbtential Form Factors

, | - q o , ' Vy
F I | | ~atomic units - Rydbergs

O L o ‘_ 0.898 0,33

. | 1.037 8 fo;zr5f"
1.467  -0.015
0 - 0.0%®

ot 0.079
2.262 ‘_-";;0;056

2.319 0.04
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