
J 

J 

ve. -'?J;;V 
LBL-18668 Rev. 
Preprint ~ r 

Lawrence Berkeley Laboratory 
UNIVERSITY OF CALIFORNIA 

Physics Division 

Submitted for publication 

LIGHT CONE FORMULATION ON N=2 YANG MILLS 

A. Smith 

March 1985 

Prepared for the U.S. Department of Energy under Contract DE-AC03-76SF00098 

&; 
r 
{ 

0<;) 
~ 

~ 
(\ 
~ , -- (D 

.<::::.. 



DISCLAIMER 

This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain correct information, neither the 
United States Government nor any agency thereof, nor the Regents of the University of 
California, nor any of their employees, makes any warranty, express or implied, or 
assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or the Regents of the University of 
California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof or the Regents of the 
University of California. 



• • c· 

LBL-18668(revised) March 1985 

LIGHT CONE FORMULATION OF N=2 YANG 

MILLS 1 

Adlai Smith 

Lawrence Berkeley Laboratory 

University of California 

Berkeley, California 94720; U.S.A. 

'This work was supported by the Director, O"-,ce of Energy Research, Office of High Ene!"gy 

Physics and Nuclear Physics, Division of High Energy Physics of the U.S. Department of 

Energy under Contract DE·AC03·76SF00098. 

,. 

1 Abstract 

We write N=2 Yang Mills in Mandelstam's form of superspace. All the 

one loop counter terms are computed and the result is proportional to the 

lagrangian. Some subtleties associated with power counting for light cone 

integrals are noted. 

1 



2 Introduction 

It has been known for some time [1] that N=4 supersymmetric Yang 

Mills has a vanishing beta function. This is most directly seen if the theory 

is written so as to be perturbatively finite, i.e. it requires no ultraviolet 

counterterms whatsoever. Mandelstam [2] and Brink et.al. [3] accomplished 

this by first using null plane quantization and then constructing superspace 

for the light cone field theory. N=2 theories are generally thought [4] to be 

finite above one loop and proofs based on a covariant superspace have been 

offered [5]. 

The finiteness properties of N =4 light cone theories are immediately ap­

parent from their superspace Feynman rules. It is the manifest supersym­

metry and not the (rather complicated) Lorentz properties of the Feynman 

rules that are responsible for the graph by graph finiteness in these theories. 

Since N =2 theories in general have infinities at one loop a light. cone 

superspace formulation cannot exhibit finiteness through power counting. 

However N=2 light cone superspace is worth investigating to see which, if 

any, .finiteness properties of the N=4 theory remain. Tollsten [6] has already 

investigated this problem in a supers pace formulation diffp':ent from the one 

given here. 

In sectivfi 1 we discuss the N=2 component lagrangian and it's expression 

in terms of light cone fields. Next, we discuss Mandelstam's [2] form of 

2 

~ 

superspace. 

Section 3 conntains the superspace lagrangian and the corresponding 

Feynman rules. We also point out a subtlety associated with power counting 

in the light cone formalism. In section 4 we calculate all the one loop coun­

terterms and find their contribution is proportional to the Lagranngian. An 

appendix contains notation and some more details on loop integrals. 
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3 Component Lagrangian these fields can be integrated out and we are left with an expression in which 

we only integrate over the fields v = VI + iV2, , V· = VI - iV2 Xt. ).1, li/, 1/;1, 
The starting point is the N=2 Yang Mills lagrangian of Fayet [71 and 

A, and A * .. These are the light cone fields and through them we can linearly 
Brink et.al. [81. It contains a gluon field vP' two Weyl spinors >. and 

realize supersymmetry. We will not display the rather lengthy expression for 
.p, and a complex scalar A. All the fields are massless and in the adjoint 

the light cone lagrangian since it's superspace form is so compact. 
representation of the gauge group. The lagrangian is 

e = _!F2 - i r tTl1 D ).a - i ;;;G tTl! D .I.a - D A* DP A 4 ,." GO P 'I' ao p'l' P 

+ igV2>'o (.po X A) + igV2'¢" (Xci XA*) + ~ (A* X A)2 

(3.1) 

F,." = apvv - avvp - g(vp x vv) (3.2) 

Dpt/> = apt/> - g(vp x t/» (3.3) 

(A x Bt = r fJ'1AfJB'1 (3.4) 

l'~fJ'1 are the group structure constants while the spinor indices a, a run over 

1,2. This lagrangian is just an N=1 Yang Mills theory interacting with N=1 

matter in the adjoint representation. C has a global SU (2) invariance with 

)., .p . transforming as a doublet. This is the origin of the two supercurrents 

in the model. 

Next we impose the v+= 0 gauge condition through a delta function in 

the functional integral. With v+= 0 the v_= Vo - Vs integral is gaussian and 

the fermion determinants for :r, ).2, Iil, 1/J2 are field independent. So all 
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4 Light Cone Superspace 

By integrating out some of the fields we have not lost supersymmetry 

because it 'is really the constraint equations which allow this, and they are 

themselves supersymmetric. Half of the supersymmetry algebra closes on 

the light cone fields [91 (e.g. the remaining fields in the functional integral). 

If we look at the N =2 supercharge algebra, 

{Q~, Qr} = {QUIl QMd = 0 (4.1) 

{Q~,QMil = -::2S/20tPa6 (4.2) 

Paa = ( -p-

p. -:.) (4.3) 

it is the a =a= 2 transformations we can realize with light cone fields 

alone. The supersymmetry transformations are effected by Eaa aaQ! + 

,8aQ: + aU Qla +1 Q2a where the a's and ,8's are Grassmann parameters. 

Here L,M are internal indices running over 1,2. In particular, the known 

N=2 transformations specialize for at = al = /3 1 = t = 0 to 

oA = _23/ 4a 2 'IjJ1 _ 23/ 4132,\1 (4.4) 

o'IjJl = 23/'a2p+A - i21/ 4f32 p+v (4.5) 
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0,\1 = 23/4fj2p+A _ i21/4a 2p+v (4.6) 

ov = 25/ 4ia2,\1 + 25/4ifj2'IjJ1 (4.7) 

It can be checked that the commutator of two supersymmetry transfor-

mations (3.3) is consistent with the algebra (3.1) at a =a= 2. In fact only the 

light cone fields close part of the supersymmetry algebra without auxiliary 

fields. 

At this point we would like to represent the charge algebra 

{ L M {- - } Q2,Q2 } = QL2,QM2 =0 (4.8) 

{QL Q } _ 23/2 ~L 2' M2 - P+UM (4.9) 

in terms of linear differential operators. We do this by formulating the 

lagrangian in a superspace whose coordinates are space-time coordinates 

and two Grassmann parameters 81 and 82 • This is Mandelstam's form 121 

of superspace. The absence of 8's makes it analogous to the description of 

N=1 superspace in terms of the variables gil = Zll + j8qll9 , tJi. So with the 

correspondences 

Q~ -+ DL = ;:L - i2
1

/
2p+8L (4.10) 

-L - {J 1/2 
-Q2 -+ DL = iJ8

L 
+ 2 p+8L (4.11) 
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, (L = 1,2), we can construct superfields cJ>, cJ>* which respond to super-

symmetry transformations as 

2 

DcJ> = L: (oLDL + .8LDL) cJ> 
L=I 

2 

c51b. = L: (-oLDL + .8LDL) lb· 
L=I 

The explicit superfields can be constructed as 

1 01 I O2 I " 
Ib = 2"v+ 21/ 4A + 21/ 4 t/J +0102P+A 

" 1" 01 -I O2 -1 
Ib = 2"V + 21/ 4 A + 21/ 4 t/J +0102P+A 

(4.12) 

(4.13) 

(4.14) 

(4.15) 

and with a little guesswork the lagrangian written in terms of the super-

fields is 

C = Ib". P; Dib + 2igD lb. (E..Ib" x Ib") 
P+ P+ P+ 

+ 2igD lb·. (p. Ib x Ib) + 2g2 (D Ib x lb.) • ~ (D lb· x Ib) 
P+ P+ I P+ P+ P+ 

(4.16) 

. D is defined by D = DID,_ 

The action is S = J d02dO I C. A better form for Feynman rules is got by 

replacing the present fields with 

,po = ..!...Ib\ 
P+ 

Then we have 

,p= Dib 
p! 
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-D Ib = -4>. 
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iC = -;4>" • p!p+4> - 2gp+4> • (P4>* x P+4>*) 

- ~D4>·. P-D4> x D4> - ig' (P+4> x P+4>·). 2" (D4>· x D4» - ( ") D 
2 P+ P+ 

( 4.11) 

In this form C depends on 0 only through 4> and 4>.. This is seen by 

writing out (3.9) using the definition of the D's. There results 

iC = 4>: (-ip!P+c5a6) 4>6 -2gr6cp+4>aP4>;P+ 4>. 

+ 1""":[- (pd ... ) (a~, a~ •. ) -h~") ~, a~"") 

+ h~ ... ,) (p, a~ .. ,) - (a~, a~, :: ... ) (':"'1 
- .iu' r~ ,"" [~ Iv""";)l[(p! .:) (a~, a~"") 

+ (p! ... ) (:., a~":) - (p, a~"':) (p, a~ ... ) + (p, a~"':) (p, a~"")] 
(4.18) 

From the form (4.18) , which depends only on derivatives in superspace, 

we can easily write the Feynman rules in momentum space for the z's and 

the O's. Functional derivatives of superfields are just delta functions so de-

riving the Feynman rules is simple. These Feynman rules are given in figurr. 

1, with notation summarized in the appendix. The four point vertex is con-

veniently expressed as a sum of asymmetric four point vertices. With the 
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Feynman rules and some light cone integrals (appendix) we can compute the 

one loop counterterms of the theory. Since we are using the P+ -- P+ + itp_ 

or Mandelstam [2] prescription to treat the l/p+ singularities, conventional 

power counting is valid and we can eliminate many graphs from consideration 

on this basis. However some refinement of the usual power counting proce­

dure is needed for light cone integrals. In theories with manifest Lorentz 

covariance (Euclidean covariance in the Wick rotated integrals) all 4 compo­

nents of momentum in a given loop integration are on the same footing, e.g. 

the integrand transforms as some tensor representation of 0 (4) . For light 

cone integrals the transverse PI, P2 and longitudinal Po, Ps components ap­

pear on different footings and Euclidean light cone integrals transform under 

0(2) x 0 (2)2 not 0 (4). To check the convergence of any multiple integral 

Weinberg's [10] theorem states that every integration and subintegration 

must converge, and to ascertain the convergence/divergence of any integra­

tion we can use ordinary power counting. Because of the 0 (4) symmetry in 

covariant integrals we can use J d4p as the lowest subintegration in the nested 

hierarchy of integrations making up a multiloop integral. As is well known 

this gives rise to the usual prescription for determining which subtractions 

are required in a given graph. Due to the 0 (2) x 0 (2) symmetry, in light 

cone integrals we can no longer use J d4p as the lowest subintegration, in it's 

2In the plus·minus direction the 0 (2) transformation properties arise from the combination 

p+ -+ ipo + Pa which changes by a phase under rotations. 
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place we use J ~PT and J ~PL' So instead of one 4 dimensional momentum 

flow in each loop, we must consider two 2 dimensional flows in the application 

of Weinberg's theorem. 

The effect of this modification of power counting properties is mild. For 

a graph with nS/4 three/four point vertices power counting in the transverse 

dimensions yields a degree of divergence DT = 2 - 2n4 - ns. So the only 

graphs in the theory which diverge in the transverse dimensions are A,C,D,E 

in figure 2. Of these only A is actually divergent. Had we used the power 

counting customary to covariant integrals we would have found D = - 2 for 

graph A and concluded (wrongly) it's convergence. 

Application of this revised form of power counting to N=4 Yang Mills [21 

does not change the conclusion that the theory is finite. This is so since all 

of the potentially divergent graphs in J ~PT are topologically the same as 

A,C,D,E in figure 2. But since the finiteness of the 2 point function follows 

from the finiteness of 3 point graphs via the Ward identity these divergences 

in the propogator must cancel. 
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5 One Loop Counterterms 

First we compute the propagator counterterms. After doing the Grass-

mann monientu~ integrals we are left with ordinary four dimensional inte-

grals. In figure 2 the one loop propagator graphs and their corresponding 

momentum integrals are given. The momentum integral for graph 2A is: 

IA = P p* J 1 - pp+J2- p. p+J, + p!J4 (5.1) 

with 

-f ' "d4q ( q* q q q.)' 
J1,2,3,4 - ( )' 2 ( )2 1, -, -, -2-

PI' - q,.. q,.. p+ - q+ q+ q+ q+ 
(5.2) 

. By power counting only J4 is divergent and only in the transverse di-

mensions. Calculation of J4 is in the appendix and the infinite part of IA 

is: 

4 · 2 
fA = - 111" p-

f. p+ 

, For graph B the coresponding loop integral is: 

"I 2 1 2"1 'I p+pp 1 - p~p 2 - p+p ,+ p+ 4 

with 

f d4q (q* q qq") 
11,2,3,4 = q~ (PI' + q,..)2 1, q+ ' q+ ' q! 
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(5.3). 

(5.4) 

(5.5). 
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Of these integrals only II is actually infinite (see appendix) although they 

are all logarithmically divergent by power counting. So the infinite part of 

IB is, 

. . 2;11"2 * Ion/m.te = --p+p P 
B E (5.6) 

When we take account of the symmetry factors of graphs A and B their 

combined contribution is proportional to p+p!. 

For the three and four point functions, only one graph contributes to the 

corresponding counterterms at one loop. The absence of infinite graphs at 

one loop with more than 2 propagators follows from a general power counting 

theorem [11]. Infinite parts for these graphs are proportional to the invariant 

integral II in (5.5). Figure 3 lists the infinite two, three and four point graphs 

and their associated counterterms. Notice that taken together the one loop 

counterterms are proportional to the lagrangian. 
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6 Conclusion 

We have written down the N=2 Yang Mills light cone lagrangian and 

calculated -the complete set of one loop counterterms using the Euclidean 

or Mandelstam prescription to treat 1/ p+ singularities. Use of Leibbrandt's 

l/p+ prescription [12] would produce identical integrals at one loop. As ex­

pected from the Lorentz Ward identities the one loop,counterterms taken 

together are Lorentz invariant and proportional to the original lagrangian. 

This is a nontrivial test of the 1/ p+ prescription. We must emphasize the the 

difference in power counting procedures for light cone and covariant theo­

ries. One cannot count all 4 components of momentum together to ascertain 

covergence, we must seperately consider the transverse and longitudinal in­

tegrations. Without these considerations we would conclude the two point 

counterterm was noncovariant. It would be interesting to apply this pre­

scription to ordinary light cone Yang Mills since we could be assured of it's 

consistency. The really interesting question is, how do we prove the finiteness 

properties ofN=2 Yang Mills above one loop? Only that power counting and 

Lorentz Ward identities will be important in the proof. 

14 

•.. .. 

7 Acknowledgements 

I wish to thank Stanley Mandelstam for suggesting this problem and 

for his assistance. I also acknowledge discussions with Neil Marcus, Jean 

Thierry-Mieg, Joe Carlson and am grateful to the referee who pointed out a 

grevious error in a previous version of this work. This work was supported by 

the Director, Office of High Energy Research, Office of High Energy Phyaics 

and Nuclear Physics, Division of High Energy Physics of the u.s. Department 

of Energy under contract DE-AC03-76SF00098. 

15 

., 



• ... • • 

8 Appendix We use dimensional regularization in the transverse dimensions. Rotating 

to euclidean space, q+ -.... iqo + q, so 
The notation used in the Feynman rules is 

P = PI + iP2 P+ = Po + Ps 
1 - . f tP-~dqodqs q (-iqo + qs) 
s-' z( 2 2' q~ (qp + PI') qo + q,) 

(a2) 

After combining denominators using Feynman parameters; do the qo and 

p. = PI - iP2 P- = Po - Ps qs integrals, do the transverse q integral then do the parametric integrals. 

The result is finite as f -.... 0 and is 

(p, q) = pq+ - qp+ ( ). . . 
p, q = P q+ - q P+ Is = -i1rzP: log ( -P~ ) . 

P P+P-
(a3) 

The procedure for calculating 14 is word for word the same as for 13• At 

(P;d=(p+ql - q+PI) (p+qz - q+pz) 
the end we cannot do the parametric integral in closed form and we must 

PI' P2' ql' qz are the Grassmann momenta. express the answer in terms of the Spence function 

For the purpose of computing the one loop counterterms we encounter 

five superficially divergent integrals. They are II. 12 , Is, 14, J4 and are given 

l "'dB F(z)= -log(l+B). 
o 8 

in eq.( 4.2) and (4.4). II is trivial to calculate, 12 can be gotten from 13 , so we 

only need Is , I. and J •. Because of q+ 's in the denominators of our integrals, 

when we Wick rotate the longitudinal and transverse components appear on L, = i1r2P- (lOg (-p~p-) - ~ (1r2 + F (-Pt))) 
P+ PI' p+p- 6 PI' 

(a4) 

a different footing. So calculating a one loop integral is mechanically similar 
We will not exhibit J1 , J2 or Js since they are finite by power counting 

to computing a two loop integral in 2 dimensions. 
but the author has computed them and they are convergent. The finite part 

f tP-fjdqodqs q 
1 - 2 

S - q~ (qp + PI') q+ 

of J4 is likewise uninteresting so we proceed to .directly extract it's infinite 

(al) 
part. After Wick rotating: 
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d4qq~ 
J4 (p) = i J (p _ q)2 q2q; (p+ q+)2 

Calculating the transverse integral first we get: 

'J fi2qL (211' .. ) J, = I 2 ( _ )2 - + finite 
q+ p+ q+ E 

II, 

-4ill" p_ 
= -f-P~ 

18 
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10 Figure Captions 

Figure 1 Feynman rules, momentum flows in arrow's direction. 

Figure 2 One loop graphs contributing to the two point function. 

Figure 3 The infinite one loop graphs and their corresponding counterterms. 
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