
'. 

. 
• 

j 

Submitted to Physical Review LBL-1874 
Preprint c.... I 

SMALL ANGLE SCATTERING OF X-RAYS FROM 
GROUPS OF NON -RANDOMLY ORIENTED ELLIPSOIDS OF 

REVOLUTION OF LOW CONCENTRATION 

. ) ,. F. M. Hamzeh and R. H. Bragg 

August 1973 

Prepared for the U. S. Atomic Energy Commis sion 
under Contract W -7405-ENG-48 

For Reference 

Not to be taken from this room 



DISCLAIMER 

This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain correct information, neither the 
United States Government nor any agency thereof, nor the Regents of the University of 
California, nor any of their employees, makes any warranty, express or implied, or 
assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or the Regents of the University of 
California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof or the Regents of the 
University of California. 



• . 

J \ I, 
'1'0. •• ~ 

, , 
i.,J 

-iii-

",I 
I 

LBL-1874 

SMALL ANGLE SCATTERING,OF X-RAYS FROM GROUPS OF NON-RANDOMLY 
ORIENTED ELLIPSOIDS OF REVOLUTION OF LOW CONCENTRATION 

F. M. Harnzeh and R. H. Bragg 

Inorganic Materials Research Division, Lawrence Berkeley Laboratory and 
Department of Materials Science and Engineering, College of Engineering; 

University of California, Berkeley, California 94720 

ABSTRACT 

The small angle scattering from oriented ellipsoids of revolution 

is examined. We consider successively the different cases of a fixed 

ellipsOid" single ellipsoid with preferred orientation and of a group 

of widely separated ellipsOids of size distribution. Methods of 

, correction for beam height effects and of interpretation of experimental 

data are presented. 
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INTRODUCTION 

Since the original work of Guinierl and subsequently that of 

2 Porod, workers have paid little attention to the case of oriented 

inhomogeneities (particles) in matter. The experiment by Bragg, 

. et.al. 3 on pyrolitic graphite clearly showed the need for a theoretical 

basis for interpretation in such cases, and recent developments in 

materials containing oriented submicroscopic voids, e.g. carbon fibers, 

have reemphasized this need. This work is not intended to give a 

complete treatment of scatterings from oriented particles, but to 

provide a consistent theoretical ~asis for the interpretation of 

experiments involving ~riented particles in term of well defined 

geometrical shape parameters. For simplicity, the particle shapes 

are approximated by ellipsoids of revolution. Furthermore, their 

concentration is assumed to be low enough for the interparticle 

interference effect to be negligible. In Section 2 we treat the 

case of a single ellipsoid of revolution. In section 2.1 and 

appendix A the structure factor is derived. The Guinier and Porod 

approximations for a fixed ellipsoid and for an ellipsoid of preferred 

I . 
orientation are derived respectively in sections 2.2 and 2.3. In 

our notation by ellipsoid of preferred orientation we refer to an 

ellipsoid whose orientation distribution is described by a general 

ptobability function that mayor may not have one or several preferred 
I 

orientations. Thus the random orientation case is a special case 

where the probability function is a constant. Small angle scattering 
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, 
from groups of ellipsoids of revolution is the subject for section 3. 

Two basic assumptions are made: 

1) there is complete independence between the orientation of the 

particles and the distances between their centers 

• I 
2) the ellipsoids are widely separated so that interpart1c1e 

interferences are negligible. 

Equal ellipsoids, meaning ellipsoids of equal axes but of different 

orientations, are treated in section 3.1 whereas section 3.2 considers 

ellipsoids with a size distribution. Methods of correct'ion for beam 

height effects and of interpretation of experimental data are presented 

in sections 4 and 5. Ellipsoids of common orientations as for 

example voids in pyrolitic graphite are treated in section 6 and in 

more details in an application to this work to be published. 

2. Small Angle Scattering from a Single Ellipsoid of Revolution: 

Let us fix the particle in a system of three. mutually perpendicu-

1ar axes Oxyz, where 0 is the center of syrmnetry and Oz the axis of 

revolution. The space in which the particle is found is described 

by a second set of three mutually perpendicular axes OXYZ (Fig. 1). 

The centers of these two systems of axes are made to coincide without 

any loss of generality, since only relative orientation are of 

interest. Euler's angles ~, y and ~ mark the orientation of the . ; 

ellipsoid with respect to OxyZ. Let h be the scattering vector equal 

21T -+-+ -+-+ 
to ,- (s-s ) where sand s are unit vectors along the scattered and 

1\ 0 0 

incident beams respectively and let 8 be the Bragg's angle, 

h = Ihl = 41T/)... sin 8. We are interested in the distribution of 
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scattered radiation along a given line e.g. AB. The corresponding 
~ ~ 

scattering vectors h are all contained in the plane fixed by s arid AB. 
o 

The limiting direction of h as the scattering angle 28 tends to zero 

A ~ 

is marked by the unit vector h perpendicular to s. We arbitrary 
o 0 

~ A 

orient 02 along h . 
o 

2.1 The Structure Factor: 

From the symmetry of revolution the dependence of the structure 

factor of the particle on the angle ¢ drops, the structure factor 

~ ~ 

is a function of the angle betweenh and Oz. In small angle scattering 

this 

the 

angle can be approximated by y the angle between h 
o 

. h.\ 
error introduced (of the order of 4n ) is negligible. 

The structure factor F(h,y) is obtained from: 

22· F (h, y) = .(pV) f (h, y) f* (h, y) 

f(h,Y) 

~ 

and Oz 

(la) 

(lb) 

where pdV is the probability of finding an electron of phase 0 in dV 

a~d the integration is taken over the volume of the partic]:e. The 

s~ructure factor for an ellipsoid of revolution. was deriveq. by 

I 1 
Guinier in 1939. The method he used could only be applied to an 

ellipsoid of revolution. We integrate (lb) in the reference frame 

i 
OXYZ. Our method can be generalized to other shapes and has the 

advantage of giving a simple geometrical interpretation of the final 

results. For uniform electron density pdV 
dV dZ 

= V ~ s (Z , y) V . Here 



-4-

I 

s(Z,y) is the surface area of the intersection of the ellipsoid with • ! .. ; 

the plane at Z parallel to XOY. The determination of s(Z,y) is 

complicated and is done in Appendix A. For an ellipsoid of axes 2a, 

2a, 2b, we get: 

s(Z,y) 
a Z2 

n(ab) H (1 - H2 ) (A9b) 

where 

H 
2 . 2 2 2 1/2 [a S1n y + b cosy] (A9c) 

Note that at Z = H, s(H,y) 0, thus H represents the maximum variation 

in Z. In the system OXYZ, <5 is approximately equal to hZ, therefore: 

f(h,y) = [" 
-H 

3 'Z2 ihZ 
4n (1 - H2 ) e dZ- <P(hH) (2a) 

where 

<P(hH) 
sin hH-hH cos hH = 3 ----.,-----

(hH) 3 
(2b) 

The lines of constant intensity are the lines of constant hH; these 

are contours similar to the ellipsoid projection on the observation plane 

and are rotated relative to it 90 0 about the incident beam direction. 

2.2 The COheredt Scattering Int~nsity: 

The coherent scattering intensity from a fixed ellipsoid of 

revolution is given by 

I (3) 
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where I is the s~attering intensity by a single electron and is 
e 

essentially constant for the angles to be considered, p tHe electron 

density difference of the ellipsoid with respect to the matrix and 

V 1s the volume of the ellipsoid. 

In the small angle region (Guinier region) we expand ¢(hH) with 

respect to h.' Following Guinier, we approximate the first two terms 

in the series by an exponential to get: 

2 h2R2 
IC = Ie (pV) exp [- -3-'-

where R = 1375 H. Equation (4) is the law of Cuinier for a fixed 

ellipsoid where R plays the role of a radius of gyration. It is 

straight forward to show that the average of R2 over all, equally 

2 2a 2 + b 2 . 
Probable orientation is equal to R - = ------- where R is the 05' 0 

radius of gyration of the randomly oriented ellipsoid 2a, 2a, 2b. 

(4) 

In general, the structure factor for a centrosymmetric particle 

in the small angle region is given by an exponential law: 5 

where 

= 

222 (pV) exp[-:-h D J (Sa) 

(5b) 

fk is the scattering factor at the point ~ and dk is the projection 

of the point ~ on the plane XOY. D2, thus represents the square 

average of inertial distances of the particle with respect to the 

plane XOY. The generalization of Eq. (5b) to include particles with 
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continuous distributions of scattering points is,given by: 

= 

Iv Z2p (M)dV 

( p(M)dV Jv 

For an ellipsoid of revolution we get: 

= L 
Vp 

+H f Z2s (Z. y)dZ 

-H 

thus making the connection between Eqs. (4) and (5a,b). 

(5c) 

In the large angle region (Porod region) the expression for the 

structure factor can be approximated by 9(PV)2 cos2hH/(hH)~ The 

cosine term oscillates rapidily and can be replaced by its average 

value 1/2, therefore: 

I 
P 

(6) 

The quantity in parenthesis has the dimension of a surface area with 

no obvious connection to the surface area of the ellipsoid. We define 

S1 by 4S1 9V2/4TIH4. If we let V(H) = 4TI/3 H3 then 

= 
v ' 

V(H) s(o,y) 

If we let a = b, for a sphere of radius a, S1 ='na 2 which is the 

projection of the surface area of the sphere on the plane XOY. 

I 
- ! 
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Unfortunately, this sort of simple interpretation of S1 is correct 

only for the spherically symmetric case. In Appendix B we have shown 

that the average over all, equally probable, orientation of 4 S1 is 

equal to the surface area of the ellipsoid. Actually, S1 may be 

defined for a general particle as a surface whose average over all 

random orientations will give the surface area of· the particle divided 
2 

2rrp 4S . by 4. With this definition of S1 formula (6) becomes: 

true for all particles. 

I = I 
P e 

2.3. Ellipsoid of Revolution with Preferred Orie~tation: 

h 
4 1 ' 

By particle with preferred orientation we mean a particle with 

a distribution in orientation expressed by a probability density. 

The structure factor for an ellipsoid of revolution is a function 

of h and the angle y. Therefore, a general form for the probability 

density function need only to depend on the angle y with an implicit 
A 

dependence on the particular choice of OZ. Let P(h ,Y) be that 
·0 

function normalized to one. The average scattering intensity is 

therefore equal to: 
A 

F2 <i~ ,h) I(h ,h) I 
0 e 0 

where 

F2(h ,h) 1 [" F2 (hH) 
A 

= P(h ,y)sinydy 
0 2 0 

0 

In the Cuinier region: 

2 A (pv)2 22"-
FC (ho,h) = exp[- h D (h )] 

0 

(8a) 

(8b) 

(9a) 
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[ 
o 

we refer to n2 (h ) as the average inertial distance. 
o 

In the Porod region we get: 

F2 d~ ,h) 
p 0 

where 

[ 
o 

A 

P(ho,Y) sinydy 
H4 

A 

For randomly oriented ellipsoid P(ho'y) = 1 and therefore 4S1 is 

(9b) 

(9c) 

(9d) 

equal to the surface area of the ellipsoid, see appendix B. For the 
_ A 

sake of generality 'let us introduce H(h ) to be the observable 
o 

A 

dimension of the ellipsoid, H is a function of a, b and h. lu the 
o 

-2 2 '. 2 A . 

Guinier region H is the average of H and is related to n (h ) by: 
o 

H(h) = "5 n2(h). In the Porod region (H)-4 is equal to the average 
o 0 

9V2 
= In general 

l6'1T $1 (h
o

) 

H(h) can. be constructed, in different interval of h to satisfy 
o 

With this definition of H the average scattering intensity for an' 

ellipsoid of revolution with preferred orientation is given by: 

: I 
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A 

I(h ,h) 
o 

= I (h ii(h )] 
o 

(Bc) 

Thus for each h there corresponds a small angle scattering curve with 
o 

r-

no explicit dependence on h. See also section 4. 
o 

3. Scattering from a Group of Ellipsoids of Revolution: 

It is of practical importance to determine the inte,nsity scattered 

by a group of particles. We treat only the case of widely separated 

ellipsoids of revolution. 

The reference frame OXYZ can be defined as in section 2 except 

for the center 0 which is chosen to be the center of synunetry of 

the volume irradiated by the X-rays. Let us assume that there is 

complete independence between the orientations of the particles and 

the distan~es between their centers. Since only relative orientations 

are of importance one can think of the center 0 to coincide with the 

center of synunetry of each particle without any loss of generality. 

3.1 Equal Ellipsoids: 

I 

For simplicity we assume at first that all the ellipsoids are equal. 

That is, the same a and same b but of dif ferent orientations. Let N 

be the total number of scatterers and NP(h ,Y) be their distribution 
o 

as a function of orientation. P(h ,Y), (normalized t6 one) can be o . 

thought of as a probability density function for a single particle 

with preferred orientations. Let L represent an average dimension 
o 

of the irradiated volume, for all scattering angles satisfying the 
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criterionh > 27T/Lo, the coherent scattering intensity for widely 

separated particles is idential, on a relative scale, to the mean 

intensity scattered by one isolated particle with preferred orientation 

where the probability density functio1n is equal to P(ho'Y). Call 
A 

I(h ,h) the total coherent scattering intensity then: o . 

I (h ,h) 
o 

(10) 

It was Guinierl who first noticed that the structure factor of 

a fixed' ellipsoid of revolution is the same as that of a sphere of 

ra,dius H. Actually this is true only if the sphere has an average 

electronic density difference with respect to the matrix equal to 

v 
ps = V(H) p. Physically speaking, the X-ray beam sees the total 

electronic charge differ~nce of the ellipsoid and the matrix, therefore 

when a correspondence principle is invoked it must conserve this total 

charge difference, namely:' p V(H) = pV. 
s 

In the following we call the 

Guinier sphere a sphere of radius H and charge density difference 

equal to p. Because of the spherical synnnetrY,the scattering from 
s 

fixed or a randomly oriented sphere must be the same. This suggests 

that formula 6 should take on the form of a Porod' formula with a 

surface quantity equal to the surface area of the Guiiiier sphere. 

9v2p2/ 47TH4 2 47TH2 = P 2 2 In fact = p S s' where 'S = 47TH is the s s s 

surface area of the Guinier sphere, and: 

I = I 
P e 

(6a) 

Q.E.D. 

- , -

'"- , 



, l 
j, , -.-

-11-

From this equivalence principle we will demonstrate that the small 

angle scattering from a group of equal ellipsoids of revolution of 

orientation distribution NP(h ,Y) and low concentration is equivalent to 
o 

the small angle scattering from a group of widely separated Guinier spheres 
A 

of size distribution PI(h ,H) where H va~ies between a and b. (See Fig. 2) 
o 

In fact consider the total scattering intensity from formulae (10) and (8b): 

I(h ,h) = 
o 

NT 
e 

2 
(l1a) 

where H2 = a 2 sin~y + b 2 
COS

2y. In Equation (lla) we divide the interval 

between 0 and iT into two intervals from 0 to IT/2 and rr/2 to 11. The 

contribution from 0 to rr/2 is the first integral on the right hand side 

of Equation (lIb) below. For the contribution from iT/2 to iT we make a 

change of variable to y' = y-rr/2 and obtain the second integral on the 

2 22· 2 2 right hand side of Eq. (lIb) where H' = a cos y' + b sin y': 

{[ 

F2 (hH)P [ho ' Y(H) ]HdH ra 
F2(hH ')P rho' (y '+rr/2) (H)]H I dH '} 

b [(a2_b 2)(a2_H2)]1/2 +~ [(a2_b 2)(a 2_HI2)]1/2 

Let 

Since 

then: 

A 

p(h ,H) 
;0 

1 
2 

(lIb) 

(12a) 

H(y) H(Y'+1r/2) _. H' (y'), 

A i a 
I(h ,h) = NI 

. 0 e (12b) 
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where 

P' (h ,H) = 
o 

H 
p (h ,H) 

o 
(12c) 

In Equations (12b and c) a is taken to be larger than b. These 

equations can be easily modified to the case of elongated ellipsoid 
A 

(a < b). For d~stributions P(ho,H) that are not null at H = a(or Y=TI/2) 

the corresponding distributions P'(h ,H) are singular at H = a. In 
o 

fact this singularity is only apparent because dH is null at H = a 

and therefore it is helpful to make a change of variable 

d~ HdH/ Va 2_H2 or 
.. I 2 2 

~ = "a-H 

The problem of widely separated spheres with size distribution 

have been extensively studied in the li,terature. To mention a few 

references: 6 Schull and Ross studied the cases of gaussian, maxwellian 
, , 7 

and rectangular distributions; Rothwell studied the gaussian and 

lambda~shaped distributions and Paul Schmidt8 theRn exp(-aR) type 

of distributions for polydispersed solutions of ellipsoidal particles 

(in particular spheres). The purpose of our derivation of Eqs. (12a, b 

and c) is to utilize the results in the literature without having to 

embark on new unnecessary computations. 

3.2 Ellipsoids with Size Distributions: 

Let us now consider a group of widely separated ellipsoids of 

revolution with size,distribution. For ellipsoids of revolution there 

is the possibility of distribution functions for the equatorial radius 

, ! 
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a and the semi-axes of revolution b. To be more specific we write: 

= 

where we have taken the same uniform charge density for all the 

(13) 

particles (e.g. average density). H, being the observable dimension 

of the ellipsoid defined in section 2.3. In the Guinier approximation 

H2 is the average of H2 and is related to the radius of gyration, R , 
o 

only in the case of random orientation where H = /5/3 R In the Porod 
o 

- -4 -4 approximation (H) is equal to the average of H where in the case 

of random orientation V
2 (H,b)/H

4 
is related to the surface area of 

the particle. 

Equation (13) makes it mathematically more convenient to consider 

distribution functions of Hand b instead of a and b. One exception 

A 

is when h is chosen such that H = b, for example, in the case of 
o 

totally oriented ellipsoids of revolution with y = 0, in which case 

one must consider distribution functions of a and b. Let N(H)dH be the 

total number of particles having sizes in the range H, H + dH and 

g(b)db be the probability function for a particle to have its semi-axes 

of revolution in the range b, b + db. 'The quantity N(H)g(b)dHdb 

,represents the total number of particles having sizes in the range 

H, H + dH and b, b + db, thus: 

I d~ ,h) = I p2 
o e 

(14a) 
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where 

(14b) 

Equation (14a) can be put into a somewhat more us.able form by 

introduction of a mass .. distribution function M(H)dH representing the 

total mass of the particles in the range H, H +dH, therefore: 

(15) 

where 2 -
V (H) should be expressed explicity in terms of Hand K being 

a constant proportional to the total mass. 

In order to avoid confusion, we attribute the inertial distance 

Dd~ ) to o 
~4· '" H (h )= 

o 

the Guinier region where H(h ), given from the relation 
o 

2 - '" . 9V /161TS1 (ho)' is attributed to the Porod region. This 

notation will also be adopted throughout sections Sand 6. 
I 

If we introduce the normalized distribution function: 

g(D) = 

in the Guinier region the observable dimension is 

. (D ) (h ) 
o = [£00 -2 _]112 

g(D) D dD .. 

(16) 

(17) 
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which favors values of D that falls between the largest D and the value 

of i5 maximizing g(D). 

The observable dimension in the Porod region is 

(18) 

which favors values that fall between the smallest H and the value of 

H maximizing g(H). From the experimental point of view, by changing 

h and measuring (i5) or (H) one should be able to tell about the 
o 

shape of the inhomogeneities while measuring (i5 > and (H) bet\"een 

the Gtiinier and Porod approximations should give information about the 

size distribution of the inhomogeneities. In the remaining of this 

paper the effect of size distribution will be ignored for simplicity. 

4. Correction for the Effect of Beam Height: 

The methods of correction for beam height effects are valid only 

if the intensity of scattered radiations depend~ solely on the scatter-

tng angle 28. Thus in the general case of oriented particles, Guinier 

and Fournet9 suggested the use of a beam with very small height at 

the price of very great loss in intensity • For oriented e'llipsoids 
A 

of revolution the theoretical plane (I(h ,h)-vs-h) will contain a o . 

family of small angle scattering curves each corresponding to a given 
A 

direction of h with no explicit dependence on h. For each of these 
o 0 

curves the iscattered radiations depends only on the scattering angle 
I 

A\ 
28 where h ~ is a parameter that takes us from one· curve to the other. 

o 

/ 
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Thus for each experimental set up h is given and therefore the methods 
o 

of correction for beam height are applicable without any limitation 

on the beam height. This result for a group of widely separated 

ellipsoids of revolution is true for all particle shapes. 

For randomly oriented particles the methods of correction for 

beam height are well treated in the literature: 10 
Guinier and Fournet 

summarized these methods for the case of uniform intensity distribution 

along the slit height. 11 Recently P. W. Schmidt· treated the case where 

the distribution of intensity along the slit height is approximated 

12 by a Gaussian and W. S. Rothwell did some useful calculations for 

slits of small but non zero widths and, of finite heights. As stated 

above these methods apply also for particles of preferred orientation. 

However, for the random orientation case there is only one scattering 

curve in the theoretical plane (I-vs-h) that is corrected to one curve 

in the experimental plane (J-vs-h) where I and J correspond to the 

point collimation and slit collimation cases respectively. For 

oriented particles we mentioned above that the plane (I-vs-h) contains 

a family of small angle scattering curves each corresponding to a 

A 

given direction of h. At h = 0 all these curves will come to a 
o 

common intersection (I(h ,0) 
o 

NI p2v 2 = 1(0) independent of h ). e . 0 

A 

In the experimental plane (J-vs-h) by varying h a similar family of 
.0 

curves as in the theoretical plane is generated. At h = 0 these 

curv,es. do not come to a common intersection but are dispersed between 

the two values c/5-IT/b 1(0), corresponding to ho along the direction 

of the polar axis of the ellipsoid and clSTI/a 1 (0) corresponding to 

/ 

- ; 
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h along the direction of the equatorial axis of the e1lipsoid\of 
o 

revolution.' 

(J(h ,0) 
o 

c I51T 
= 1(0) 

Dd~ ) 
o I 

"-

dependent of h). Note that all particles are assumed to 
o ) 

< 

be equal. Here as in previous sections the axes 

of the ellipsoid of revolution are taken equal to2a, 2a, 2b, and 

c is a constant equal to the intensity of the beam along the slit 

height. 

5. Methods of Interpretation of Experimental Results 

In this section we discuss the use of the Guinierand Porod 

approximations strictly for widely separated particles. More on the 

use of the Porod approximation will be discussed elsewhere. 

For low enough concentrations, interference effects which are 

generallypronounsed at low angles are negligible. One way of 

obtaining i5d~ ) from the Guinier approximation is by plotting lnI-vs-h
2

. 
o 

From Eqs. (9a) and (10) it is apparent that: 

"-

d In I = .;.. i52 

dh2 

where the dependence on h is understood. 
o 

(19) 

, 
3 . 

For equal ellipsoids another method is to plot h,I-vs-h. This 

will give a,maximum at d(h3I)/dh = 0 which occurs when , 

(20) 
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From our model of Guinier spheres discussed in section 3.1, it is im-

portant to note that this peak represents a continuous' size distribution 

of spheres of radii between a and b, and therefore, is expected to be 

~ 

dispersed, between values" of h corresponding to a and b and in some ex-

I 

treme cases it ,may become too dispersed to be observable. From the 

shape of the peak information about the distribution pr(h ,'0), and there-
" 0 , 

fore the preferred orientation distributi'on can be ,obtained. 
, \ '.J) , 

, ,Irr the Porod region the geometrical interpretation of the quantity 

81 (ho
) is not 'clear to us. We, th~refore, choose a re~ated quantity 

- '" , -4 '" 2 -" 
R(h ) defined by H (h ) :: 9V /16rrS1 (h ) and of geometrical significance o 0 0 ' 

closely related to that of R. For large values of h the fundamental 

equation is obtained from Eqs. (9c,d) and {lO): 

I [hR(h, )] = Nt 9V
2 

2rrp2 
o e 4rr h4ii\h j 

o 

Equation (21) shows that for large values ofh, h4 I [hR(h )] 
o 

(21) 

remains 

, * constant over a reasonable interval which defines the Porod region. 

If the cross section of the beam is not point like btitrather has' a 

large height, then it is the product h 3J[h,ii(h )] which should be 
o 

constant at large value of h. 

" The determination of ii(h) from (21) require'S absolute intensity 
o 

measurement. A meth"d that avoids the measurement of the direct beam 

intensity by making use of normalization relation will be discussed 

* If the electronic density in the interior of the particles is not ~ig-
orous1y constant, high-angle scattering p*ttern such as that for'amorph­
ous body will occur. 'Pte product h4I [hii(ho ) thus will begin to increase 
when h becomes too large. This is also due to compton 'scattering, 
therma1scatte'ring by crystals and various ~arasitic scatterings. 

; 
'I 

i 
I 
i 
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elsewhere. However ,much infonnation about size and preferred 

orientation distribution are obtained by taking ratios of H for 

different ho from the Porod region and comparing them to ratios of 

fi from the Guinier region. 

6. Equal Ellipsoids of Common Orientations: 

An important case is when all the particles have a difinite 

common orientation. In this case the direction of the axis of 

revolution can be determined experimentally by verification of the 

SYIIDlletryof revolution. If photographic plates are used when the 

direction ·of the incident X-ray beam is oriented along the axis of 

revolution the small angle spot will be circular. If photographic 

plates are not used, it is possible to check the symmetry of revolution 

by plotting, for given h, the intensity versus an angle of rotation 

of the sample in a plane normal to the beam direction. The symmetry 

of revolution is obtained if -the observed intensity is independent of 

the angle of rotation. Due-to experimental errors the experimental 

points actually will oscillate about a constant average. When this 

is obtained the incident beam ditiection defines the direction of the 

axis of revolution. Good intuitive guesses to the direction of the 

axis of revolution can enormously simplify the experimental procedure. 

Such guesses are guided by the structure of the material, the nature 

of its bonds and its method of preparation. For example, in pyrolitic 
....-

graphite the axis of revolution is normal to thedE!position plane. 
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In the common orientation case it is advantageous to direct the 

incident beam normal to the axis of revolution. The small angle spot 

will then have the form of an ellipse. For equal particles and slit 

collimation the variation of intensity with angle in the Guinier 

region is proportional to 

exp 

in the direction parallel to the axis of revolution and 

exp 
2 2 

Ch a ) 
5 

in the perpendicular direction. Two experimental measurements thus 

determined the parameters a and b which define the ellipsoid; true 

only ~fsize variation of the ellipsoids are negligible. 

In the Porod region, from Eq. (21), the variation of the intensity 

with angle is proportional to 

in the direction parallel to the axis of revolution and 

in the perpendicular direction. By using Eq. (21). b and a can be 

determined from absolute intensity measurement •. However, it is 

pOSSible to determine the ratio alb without having to measure the 

intensity of the direct beam. This ratio measured from the Porod 

i 

region should be compared to the same ratio evaluated in the Guinier 
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region. If ali the particles are equal the two ratios must be the 

same. . I 
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APPENDIX A 

Evaluation of s(Z,Y): 

In the following we evaluate the expre,ssion of s'(Z, Y), the surface 

-intersection of the ellipsoid and the plane Z = Z ~ We let M represent 

Euler's matrix: 

(AI) 

( 

(We don'tgiye, the explicit expression of M. It can be found in many 

references," for example Ref. 13.) The equation' of the ellipsoidal 

surface is: 
,2 2 
x + Y 

2 
a 

And in terms of X, Y,Z: 

where A is a' 3 by 3 matrix: 

2 
+ z = 1 

b2 

1, 

2 22' = cos ~ + cos y sin ~ 
2 . 2 

sin y sin ~ 
2 

a 
+ 

b
2 

(A2) 

(A3) 

(A4)a 

(A4)b 

- ! 
i 

, / 
. 

, 
.. f 

; 

~- ' 
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2 
= sin y + 

2 
a 

2 
cos Y 

b
2 

. 2 1 1 = ~-~- = sin y cos~ sin~ (-- - --. ) 
--yx 2 ·b2 a . 

1 1 = AZX = - siny cosy cosljJ (2 - :'-2 ) 
a b 

A · ,I, (~-~) = Zy = s1ny cosy cos~ a 2 b2 

If we make the following changes of variables: 

11 = y' + 

Eq. (A3) becomes: 

( 
coslJ; SinlJ;) (x) 

-sin~ cos~ Y 

2 2 siny cosy (b - a ) 
2 2 2 2 Z. 

a sin y + b cos Y 

Z2 
+ --2-2-----2 -:--2- F 

a sin y + b cos Y 

(A4)c 

(A4)d 

(A4)e 

(A4)f 

(A5)a 

(A5)b 

1 (A6) 

Equation (A6) represents the equation of the ellipse iy;ttersection of 
! 

the ellipsoidal surface and the plane Z = Z whereZ ~n the right hand 

side> is a parameter. To clarify, we call: 

, I 

":" 
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K = 1 - 2 2 2 2 a sin y + b cos Y 

thus the equation of the ellipse (intersection) becomes: 

= 1 

2 2 2 2 a sin y + b cos Y 

From Eq. (A8) we get s(Z,y): 

s(z,y) 

or, from Eqs. (A7): 

s(z,y) 

where, 

H = 

= 7TK 
2 . 2 2 2 (a S1n y + b cos y) 

= (7Tab) : 

2 2 (a sin y + b2 2 )1/2 cos Y 

It is obvious that s(Z = H,y) = 0, thus H represents the maximum 

(A7) 

(A8) 

(A9)a 

(A9)b 

(A9)c 

variation in Z. (As a verification of Eq. (A9)b one can evaluate 

the expression of the volume of the ellipsoid by integrating s(Z,y)dZ 

over [-H, +H]). 

... .., ; 
; 
i 
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APPENDIX B 

The Average of 4S1 over all Equally Probable Orientations: 

For randomly oriented ellipsoid of revolution 

consider: 

l/H4 = 

2 Let cosy = x, sin y = 

l/H4 = 

= 

f/2 -d cosy 

[a2 2 222 
0 sin y + b cos y] 

1 -
2 

then: x , 

1 dx r (b2 _ a 2 )2 

t2 
2 T + a 

0 

I (2rra2 + 2rrab 
e 

b2 2 a 

-1 b tan -:- e) 
a 

(Bl) 

(B2) 

Where e = is the eccentricity of the eltipsoid 2a, 2a, 

2b. By examining Fig~ 3 one can easily show that: 

sin-Ie = z:; = 

From Eqs. (BI), (B2) and (B3) we get: 

= 
9 

4rr 

-1 b tan - e 
a 

(B3) 

(B4) 

where S = 2rra2 + 2rr(a b/e) sin-Ie is the surface area of the ellipsoid. 
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FIGURE CAPTIONS 

-+ -+ 
Fig. 1. Definition of a fixed -reference frame: OZ parallel to AB, 

-+ 
XO parallel to incident x-ray beam. OK is the line of nodes. 

,Fig. 2. The small angle scattering from a group of equal ellipsoids of 

revolution o·f orientation distributicinand low concentration 

is equivaient to the small angle scattering from a group of 

widely separated Guinier spheres of radius distribution. The 

plane 11" is normal to ho and tangent tOE)" 

Fig. 3. -1 -1 b 
A 'geometrical demonstration of the relation sin e = tan - e a ' 
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