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ABSTRACT

The small angle scattering from oriented eilipsoids of revolution
is examined. We consider successively the different cases of a fixed

ellipsoid, single ellipsoid with preferred orientation and of a group

of widely separated ellipsoids of size distribution. Methods of

correction for beam height effects and of interpretation of experimental

data are presented.
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INTRODUCTION

Since the original work of Guinier1 and subsequeﬁtly that of
Porod,2 workers have paid little attention to the case of oriented

inhomogeneities (particles) in matter. The experiment by Bragg,

et.al.3 on pyrolitic graphite clearly showed the need for a theoretical

basis for‘interpretation in such cases, and recent developments in
materizls containing oriented submicroscopic voilds, e.g; carbon fibers,
have reemphasized this need. This work is not infended to give a
complete treatment of scatterings from oriented particles, but to
provide avéonsistent theoretical basis for the interpretation of
experiménts involving oriented particles in term of well defined
geometricél shape parameters. For simplicity, the particle shapes
are approximated by ellipsoids of revolutibn. Furthermore, their
concentration is assumed to be ldw énqugh for thevinterparticle
interference effect to be negligible. 1In Section 2 we treat the
case of a single ellipsoid of revolution. In section 2.1 and
appendix A the structure factor is derived. The Cuinier‘and Porod
approximations for a_fixed ellipsoid and for an ellipsoid of preferred
o%ientatibﬁ'are derived respectively in sections 2.2 and 2.3. In
our notatibnA]§y ellipsoid of preferred orientatiéh we refer to an
ellipsoid whose orientation distribution is descriBed by a general
péobabiliﬁy function that may or may not have one or several preferred
| v

orientations. Thus the random orientation case is a special case

where the probability function is a constant. Smail angle scattering



from groupéﬂof ellipéoids of revolution is the'sgbject for sectioh 3.
Two basic assumptions are made:- J
1) there is complete independence-betweeq ﬁhevdrientation of the
~particles and the distances between théifvcénters !
2) tﬁe elliﬁsoids are widely separated so that interparticie
interferences are negligible.
Equal ellipsoids, meaning ellipsoids of equal axés'ﬁut of different

orientations, are treated in section 3.1 whereas section 3.2 considers

ellipsoids with a size distribution. Methods of correction for beam

height ef fects and of interpretation of experimental databare presented

in sections 4 and 5. Ellipsoids of common orientations as for
example voids in pyrolitic graphite are treated in section 6 and in

more details in an application to this work to be published.

2. Small‘Angle Scattering from a Single Ellipsoid - of Revolution:

Let us fix the particle in a system 6f three mutually perpendicu-

lar axes‘Oxyz, where O is the center of symmetfy.and 0z the axis of
revolution._ The space inbwhich the particle is found is described
by a second set of three mutually perpendiculaf axes 0XYZ (Fig. 1).
The_éenférs of these two systems of axes are méAeﬁto coincide wifhout
any loss of generality, since only.rélative oriéntétion are of
interest. Euler's angles ¥, Y and ¢ mgrk the érieﬁtafion of the
ellipsoid with respect to OXYZ. Let h‘be the scattering vector equal
to %g-(gf;o) where g and ;o are unit vectors along the scattered and

incident beams respectively and let 6 be the Bragg's angle, .

-> ' o
h = |h| = 47/X sin 6. We are interested in the distribution of
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scattered radiation along a givén line e.g. AB. The cérresponding
scattefing'vectors‘; are all contained in the plape-fixed'by ;; and AB.
The 1iﬁiting direction of h as the scattering éngle 20 tends to zero
is marked by the unit vector ﬁo perpendicular to gé. We arbitrary
oriept 62 along ﬁo' |

2.1 The Structure Factor:

From>the symmetry of revolution the dependénce of the structure
factor 6fvthe particle on the angle ¢ drops, the.étructu;e factor
is a function of the angle_bétween,ﬁ and az, In.sﬁéll angle scattering
this angle can be approximated by Y the angle betweenvﬁO and 0z
the errér introduced (of the order of %% ) is négiigible.

‘The structure factor F(h,Y) is obtained from:

F2(h, ¥) = (V)2 £(h,Y) £*(h,7) (1a)
i§
- f(h,y) = [9 pdv S (1b)
_ i, |

where pdv isvthg probability of finding an electfon of phase ¢ in 4V
and the.intégration is taken over the volume of:thevparticle. The
spructuré factor for an ellipsoid of revolution was derived By
Gluinier1 in 1939. The method he used éould only be applied to an
eilipsoid of revolution. We integrate (1b) in the reference frame
O&YZ. Our.method can be generalized to other shapes and has the

advantage of giving a simple geometrical interpretation of .the final

results. For uniform electron density pdV =-%¥ = s(Z,Y) %%-. Here

|



s(Z,Y) 1s the surface area of the intersectionvpfjthe ellipsdid with
the plane at Z parallel to XOY. The determination of s(Z,Y) is
complicated and is done in Appendix A. For an ellipsoid of axes 2a,

2a, 2b, we get: .
. 2 : . |

sZ,y) = m@b) -5 | (a9p)
where
2 2 2.41/2

H = [a2 sin“y + b cos Y] “(A9¢)

Note that at Z = H, s(H,Y) = 0, thus H represents the maximum variation

in Z._'In the system OXYZ, § is approximately equal to hZ, therefore:

. +H .
L 2 i h7 :
f(h,y) = / -431T (1 - —zz ) el,hz_ dz = ¢(hH)  (2a)

v

where

sin hH-hH cos hH

_ (2b)
(ha) 3

ICORE:

The lines of constant intensity are the lines of constant hH; these

are contours similar to the ellipsoid projection on the observation plane

-and are rotated relative to it 90° about the incident beam direction.

!
1

2.2 The Coherent Scattering Intensity:

The coherent scattering intensity from a fixed ellipsoid of
revolution is given by

=1 (on? ¢Femy (3)

[
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where Ie is the scattering intensity by a single electron and is
essentiéily constant for the angles to be'éoﬁsi&efed, P the electron
density difference of the ellipsoid with respect to the matrix and
V is the'vblumé of the ellibsoid. |

In the small angle region (Guinier region)rwé'expand ¢ (hH) with
respect to h.- Following Cuinier, we approximate'the first two terms

in the series by an exponential to get:

2.2
Io = I, 07 exp [- 5] 4)

where R = V/3/5 H. Equation (4) is the law of Guinier for a fixed
ellipsoid where R pléys the role of a radius of gyration. It is

straight.forward to show that the average of R2'over all, equally

| 2 2a% + b2
probable nrientation is equal to,R0 = B — where RO is the

radius of gyration of the randomly oriented ellipsoid 2a, 2a, 2b.
In general, the structure factor for a centrosymmetric particle

in the small angle region is given by m1exponeﬁtial law:5

F(h) = (V)2 exp[-h’D’] ; (5a)
_ where ’ 2k _
| s e 4 |
L -‘ Y
k Tk

k
of the point Mk on the plane XOY. D2, thus represents the square

f. 1s the scattering factor at the point and d, is the projection
, k

average of inertial distances of the particle with_reSpect to the

plane XOY. The generalization of Eq. (5b) to include particles with



continuous_distributions of scattering points is given by:

220 (M) dv

_ (5¢)
o] (M)'dv

2 ./;
J,
For an ellipsoid of revolution we get:

) , +H ) 2 2
p° = 5 2%s(2,Y)dz = 5 =

':x:
ulw

[,

thus making the connection between Eqs.-(4) and (5a,b);

In the large angle region (Porod region) the.éxpression for the
structure factor can be approximated by 9(pV)2 cOSZhH/(hH)? The
cosine term oscillates rapidily and can be repiaced by its average

value 1/2; therefore:

;) ;", | (6)

Thg quantity in parenthesis has the dimension 6f'a_surface area with

no obvious connection to the surface area of the ellipsoid. We define

3

S, by 45, = 9VZ/4TH'. 1If we let V(H) = 47/3 B> then

If we let a = b, for a sphere of radius a, S = ﬂaz.which is the

projection of the surface area of the sphere on the plane XOY,

0y

e
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‘random orientations will give the surface area bf»the particle divided

:Unfortunately, this sort of simple interpretation of Sl is correct

only for the spherically symmetric case. In Appendix B we have shown
that the éverage over all, equally probable, orientation of 4 S, is
equal to the surface area of the ellipsoid. Actually, Sl may be

defined for a general particle as a surface whose average over all

ZTrp2

h4

by 4. With this definition of S, formula (6) becomes: Ip = Ie 4SL;
true for all particles.

2.3. Ellipsoid of Revolution with Preferred Orientation:

By'pérticle with preferred orientation we mean a particle with
a distribution in.orientation expressed by a probability density.
The structure factor for an ellipsoid of revolutiéﬁ is a function
of h ana the angle Y. Therefore, ; general form for the probability
density_functipn need only to depend on the angie Y with an implicit
dependénce on the particular choice of 0Z. Let P(ﬁé,y) be that
function nbrmalized‘to one. The average scattering intensity_is

therefore equal to:

~ ' 2 A : v
I(ho,h),_ Ie F (hO’h) ) | (8a)
where -
2.~ _ 1 2 ~ -, .
F‘(ho,h) = 3 F~ (hH) P(hb,Y)31nYdY (8b)
A .

In the Guinier region:

2 2 27~
I N R S S (%)



where
5 A Sl B _ -
) = LG 11 #2 p(h_,v) sinydy (9b) .
5 5 2 1 o v _ %
A |

we refer to D '(ho) as the average inertial distance. '

In the Porod reglon we get:

2 o
2 =~ _ 21mp~ = :
Fp (hom) = Z5- s ) (%)
. where . - . .
. 2 ‘ R
3 (h = ____9V _]:. P(hrnY) sinydy
4. S () = 7 3 j 4 — .o (9)
o

For randomly orienﬁed ellipsoid P(ﬁO,Y) 1 and therefore 451_ is

I

equal to_the surface area of the ellipsoid, see éppendix B. For the
sake of generality'let us introduce ﬁ(ﬁo) to be gﬁe observable
dimension of the ellipéoid, H is a function of>a, ﬁ and ﬁo' In the
Guinier region ﬁz is the average of H2 and is rélated to Dz(ﬁo) by:

ﬁ(ﬁo) - V5 D (ﬁo). In the Porod region (ﬁ)—ajis equa1 to the average

-4 . _4 9v?
of H * and is related to S  (h ) by ' = —=———— , In general
' - 16m 5, (h ) a

ﬁ(ﬁo) can be constructed, in different interval of 'h to satisfy
2, = 2o |
F°[h H(hoﬂ = F (ho,h) .

e

With this definition of H the average scattering intensity for an’

ellipsoid of revolution with preferred orientation is given By:
. i
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Thus for each ﬁo there corresponds a small angle scattering curve with

no explicit dependence on ﬁo' See also section 4.

3. Scattering from a Group of Ellipsoids of Revolﬁfion:

It is of practiéal importance to determine the inﬁepsity scattered
by a group of pafticles. We treat only the case of widely sepatated
ellipsoids of revolution. |

Tﬁe féference frame 0XYZ cén bé defined as in éection 2 except
for the center O which is chosen to be tﬁe centef of symmetry of_
the volume irradiated by the X-rays. Let us aésﬁme that thére.is
complete indépendence between the orientations of ;he particles.and |
the diétances between their centers. Since ohly-relative oriéntations
are of impprtance one can think of the center O to coincide with the

center of symmetry of each particle without anyilOss of generality.

3.1 Equal Ellipsoids:

I For'simplicity we aésume at first thatjali fhe gllipsoids are equal.
That is, tﬂé same a andsame b buf of different:drientations. .Let N |
‘be the tétal number of scatterers and NP(ﬁO,Y)»be their disfributioﬁ
as a function of orientation. P(ﬁO,Y), (nbrmaligéd tk one) can be
.thought of as a probability density function fér a single particle

with preferred orientations. Let Lo represent an average dimension

of the irradiated volume, for all scattering angleS'satisfying'the



criterion h > 2m/Lo, the coherent scattering inténsity for widely
separated particles is idential, on a relativeJSCale, to the mean
intensity scattered by one isolated particle with pfeferred orientation

where the probability dehsity functiqn is equél to P(ﬁd,Y). Call

I(ﬁo,h) the total coherent scattering intensity then:
A - 2 A .“'- B )
I(ho,h) = NIeF (bo,h) o : (10)

It.was;Guiniérl who first noticed that the'sthCturé factor of
a fixed e11ipsoid of revolution is the same as Lhat of a sphere of
radius H. Actually this is true only if the sphere has an average
électronic density difference with respect to the ﬁatrix equal to

ps = V?%Y p. Physically speaking, the X-ray beam sees the total

electronic charge difference of the ellipsoid and*fhe matrix, therefore
when a correspondence principle is invoked it muSt'conserve this total
charge difference, namely: péV(H) = pV. In tﬁe'foliowing_we call the
Guinier sphere a sphere of radius H and é¢harge deﬁsity difference

equal to ps. Because of the spherical symmetry,tﬁe.scattering from
.fixed or a'randomlyvqriented sphere mﬁst be thé:same. This suggests
that formula 6 should take on theform of a Porod formula with a

sufface quantity'eqﬁal #o the surface area of tHe Guinier sphere.
,In.fact 9V2p2/41rH4 = psz AWHZ = ps2 SS, where‘SS = 4HH2 is the

surface area of the Guinier sphere, and:

2
ZTTOS S

_ s %
IP - ?e h4 ? . ' (66)

Q.E.D.




From this equivalence principle we will demonstrate that the small

angle écattering from a group of equal ellipsoids of revolution of

.orientation distribution NP(ﬁO,Y) and low concentration is equivalent to

the small angle scattering from a group of widely‘separated Guinier spheres

-of size distribution P'(ﬁO,H) where H varies between a and b. (See Fig. 2)

In fact consider the total scattering intensity‘from formulae (10) and (8b):

~ NI T 2 A"
I(h ,h) = — j F(hH) P(h_,Y) sinydy (11a)
. Y0 ’
2 2 2 2 2 . - , _

where H™ = a” sin’y + b~ cos”y. In Equation (11a) we divide the interval
between. 0 and T into two intervals from O to 7/2 and T/2 to n. The
contribution. from 0 to m/2 is the first'integrél on the right hand side
of Equatioh (11b) below. For the contribution from /2 to ™ we make a
change of variable to Y' = Y-T/2 and obtain the second integral on the

2 sinzy':

right‘hand.side of Eq. (11b) where H'2 = azcoszy':+ b

NI {j‘a Fz(hH)P[l:o,Y'(H)]HdH {a f?(hHIF)P[ﬁo,(y'+n/2) (H)]H'dH'}
b

o} 2 ‘[(aZ_bZ)(aZ_HZ)]l/Z [(aZ_bZ)(aZ_H,Z)]l/Z
: (11b)
Let
~ 1 - ’ ~ o -
p(hg ) = 3 PIALYGD] + PIh e/ ()] - (12a)
Since ,v,. 
H(Y) = H(y'+1/2) = H'(v"),
then: ‘,

~ a : A I' '
I(h ,h) = NI_ [b Fi(hE) B (R ;H)aH (12b)
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"where

P (hO,H)

p (R H) (120)

H
\/(az—bz) (a%-1)
| .

In Equatidns (12b and ¢) a is taken to be larger than b. These
equations can be easily modified to the case of elongated ellipsoid

a(or Y=ﬂ/2)

(a <b). For distributions.p(ﬁo,H) that are not null at H

the corfeépbnding distributions P'(ﬁo,H) are sihgular at H=a. In
fact this singularity is only apparent because_dHAis null at H = a

and therefore it is helpful to make a change of variable

d = - HdH/ Vaz—H2 or £=V a2~-H2 .

The préblem of widely separated spheres witﬁ size distribution
have Been‘extenéively studied in tﬁe litérature.' To mention a few
refereﬁéeé} Schull and Ross6 studied the cases of gaussian, maxwellian
and rectangular distributions; Rothwell’ studied ﬁhe gaussian and
lambdamshéped distributions and Paul Schmidt8 thé:Rn exp (-OR) type
of disttibutions for polydispersed-soluﬁions of ellipsoidal particles
(in particular spheres). The purpose of our de;ivation of Eqs. (12a,b
and ¢) 1is to utilizé the results in the literafére without having to

embark on new unnecessary computations.

3.2 Ellipsoids with Size Distributions:

Let us now consider a group of widely separated ellipsoids of
revolution with size distribution. For ellipsoids of revolution there

is the possibility of distribution functions for the equatorial radius
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a and the semi-axes of revolution b. To be more specific we write:

Fi(h ) = o™VCIH(h),b] olhfi(h )] (13)

where we have taken the same uniform charge denéity'for all the
particles (e.g. average density). ﬁ, being the observable dimension
"of the'ellipsoid defined in section 2.3. In the Guinier approximation
ﬁz is the éverage of H2 and is related to the radius of gyration, Ro’
only in,thevcase>§f,random oriehtation where ﬁ'=f/§7§ RO. In the Porod
approximation (ITI)_4 is equal to the average of Hfé'where in the case
of random orientation Vz(ﬁ,b)/ﬁ4_is related to thé surface areé of
the parficle. -

Equation (13) makesvit mathematically more cénVenient to consider
distribution fuﬁctions of H and b instead of a and S. One exception
is wheﬁ ﬁo is chosen such that H = b,_fqr example, in the case of
totally oriented eliipsoids of revolution with y = 0, in which case
. one must consider distribution functions of a aﬁd b. Let N(ﬁ)dH be the
tétal number of particles having sizes in the rangé ﬁ, H+ dH and’
g(b)db be the probability function for a barticle to ﬁave its semi-axes
of revolution in the range b, b + db. 'Thevquaﬁfity‘N(ﬁ)g(b)dﬁdb
:répresénts'the totai numBer of particles having sizes in the range
f, H+ ai and b, b + db, thus:

00

IR, = 1 p? f dfi N (i) V() o(hil) (14a2)
- X Y
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where . P RS U

=1]

' Equatibh (14a) can be put into a somewhét'more'ﬁéable form by

‘introduction of a mass distribution function M(H)dH representlng the

total mass. of the particles in the range H, H + dH therefore:-

I(h ,h) = KIepz ;’..dﬁ M@ Vi) o) (15)

where 'Vzkﬁ),shphldbbe expressed explicity in {éfms of ﬁ and K heing_”
a conStaht’pfoportiOnal.to the tdtal.mass. e

'Ih'oraer to>avoid confusion, we attrihufe the inertial dietance
D(h ) to the Guinier region where H(h ), g1ven from the relation _
H (h )-— 9V /16ﬂsl(h ), is attrlbuted to the Porod region This
qotatioh_will also be adopted throughout sectlehs-S»and 6.

o If Qe{introduce the normalized distribution_fﬁnctioni

M®) v2 (D)

g®) = e
M) viB) ab -

S

o)

in the Gﬁiﬁief region the observable dimensionfie ?

[o}

(D) (h = ¥ s =2 —1/12._'.‘:' " ‘ "
p)(h) = g® DB -, - .an

) = _{.'db g(b) vz(ﬁ,b)‘f;jﬁ” : - (14b)

Y r
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which féybrs values of D that failé ﬁétween theilaréest 5'and the value
of 5 mé#imizihg g(ﬁ). :
The observable dimension in the Porod regiqh‘is
. 00 - - - , .
(H)R) = [j &(H___Zﬂ] 1/,4__ (18)
' o) H .
»thich favors values that fall between the smallest H and the value of
H maximiéing g(H). From the experimental point'bfﬁyiew, by changing
ﬁo and mégsuring (D) or (H) one stould be abié:fo tell about thé
shape of the inhbmogenéitieé while measuring <B ) and () Between
the Guinier:and Pofod'approximatiénsshmﬂd give_ihformétion about thé
size distfibution of the inhomogeneities. In the £émaining of this

paper the effect of size distribution will be ignored for simplicity.

4.  Correction for the Effect of Beam Height:

The methods of correction for beam height éffects are valid only
if the inténSity of scattered radiations depends sélely‘on the scatter-
ing_angleIZG. Thus in the general éaéevof oriented.particles, Guinier
and Fournef9 suggested the use of a beam with.vefy small height at

" the pricé_of‘ver& great loss in intensity. ‘For Sfiénted:éilipsoids.
of revolution the theofetical plane (I(ﬁo,h)—vs—h) wiil céntain a

- family of small angle_scatteriﬁg curves each'corresponding to a given
direct#oﬁ»of ﬁo with no explicit dependence on.ﬁd.._For each of these
curves the ;scattered radiations depends only on the scéttering‘ang1e

|
J is a parameter that takes us from one curve to the other.

26 where ﬁ.

s
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Thus for each experimental set up ﬁo is given apd.fherefore the ﬁethods
of correction for beam height are applicable withoht any limitatibn
on the beam heighf. This result for a group of widely separated
ellipsoids of revolution is true for all particlg»'éhapes.

For randomly oriented particles the methods of cprrection for

beam height are well treated in the 1iterature£- Guinier and Fournet10

summarized these methods for the case of uniform iﬁtensity distribution

along the slit height. Recently P. W. Schmidtllitfeéted the case where

the distribﬁtion of intensity along the slit héight is approximated
by a Gaussian and W. S. R.othwell12 did some'uséful calculations for
slité of small but noﬁ zero widths and/bf finite heights; As stéted
above these methods apply also for particles of_preferréd orienfation.
However, for the random orientation case there'ié only one scattering
curve in'thé theoretical plane (I?vs—h) that is corrected to one curve
in the exﬁérimental plane (J;vs—h) where I and Jchrrespond to .the
point collimation and slit collimation céseé respectively. For
oriented particles we mentioned above that the‘plane a—vs-h)contains

a family of small angle scattering curves each corresponding to a

o all these curves will come to a

NIepzv2 Z I(o) iﬁdepéndent of ﬁo).

given direction of ﬁo' At h

common interséction (i(go,o)
In the exﬁefimental plane (J-vs-h) by varying ﬁo>alsimilar faﬁily of
curves as in the theoretical plane is generated.'iAt h = o these

curves do not come to a common intersection but are dispersed between
the two values c¢/57/b 1I(o), corresponding to ﬁé along the direction

of the polar axis of the ellipsofd and cv57 a'vT(d) corresponding to
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A

horalqng the direction of the equatorial axis of the ellipsoid-:of

revolution.-

(]

ST o1y
(h ) )

o i o

@ .0 =

(=]

dependent of ho). Note that all paftiéles are assumed to

v
-

belequafkl Here as in previoué sections the axes _ T
of the ellipsoid of revolution are taken equal toubé, 2a,'2b, and
¢ i8 a constant equal to the intensity of the beam along the slit

height.

5.> Methods 6f-Interpretatidn of Experimental Résulfs
In this section we discuss the use of the Guiﬁiervand Porod
approximations strictly for widely separated.particlés. Moré on the
use of thé Porod épproximation will be discussed eléewhere.
For‘lbﬁ enough céncentratibns,_interfergnge;effects which are
generally,pronounqed at low angles are negliéiﬁlé;".One way of
obtaining'ﬁ(ﬁo) from the Guinief approximation ié-ﬁy plotting 1nI—vs—h2.

From Eqs.'(9a) and (10) it is apparent that:
dinl _ 52 . a9

-

‘where the dependence on h -is understood. ‘

For equal ellipsoids another method is to'plot hoI-vs-h. This
will give a maximum at d(hBI)/dh = 0 which occurs when
2

. 5‘;.37""(2112) : (20).



From our model of Gdinier sphetes discussed in section 3.1, it is im-

portant to note that this peak represents a continuous size distribution.

of spheres of radii between a and b, and therefore, is ekpected to be
dispersed,betweeh values of h corresponding to a and b and in some ex-

 treme cases it may become too dispersed to be observabie. From the Y

shape of the peak information about the distributiqh P'(ho,ﬁ)’and there-

fore the preferred orientation distribution can be:obtaiqed.

N

__Im the Porod region the geometrical interptetation of the quantity

wl

l(ﬁo) is not 'clear to us. We, thetefo:e, choose a re;ated quantity
ﬁ(ho) defined by ﬁ4(ho) = 9V2/16ﬂ§l(ho)‘andhof.geometrical significance
closely related to that pf'H. For large values_bf‘h the fundamental

equation is obtained from Eqs.'(9c,d) and (10):

R Can? 2 : : g
- : h H (h )

Equation-(Zi) shews fhat for large values of h, hé,I[hﬁ(ho)] remains
conetantiover a reasoheble interval which defines.the Pofed'region.*
If the cfoss eection of the beam is not pointlikeIBUt'rather haslav
large height, then it is the product h- J[h H(h )] which should be
consteht at large wvalue of h.

The determination of H(hd)'from (21)vrequires ehsolute intensity

measurement. A method that avoids the measurement of the direct beam

intensity by making use of normalization relation will be discussed

*If the electronic density in the interior of the particles is not rig-
orously constant, high-angle scattering pgttern such as that for amorph-
ous body will occur. The product h“I[hH(h ) thus will begin to increase
when h becomes too large. This is also due to compton scattering,
thermal scattering by crystals and various Bara81tic scatterings.

‘&»
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elsewhere. ‘However, much information about size and preferred

|
¢

orientation distribution are obtained by taking_fatids of H for
differeﬁt ﬁo from the Porod region and comparing them to ratios of

D from the Guinier region.

6. Equal Ellipsoids of Common Orientations:

An important case is when all the particles have a difinite
common orientation. In this case the direction of the axis of.

revolution can be determined experimentally by Verification of the

symmetry of revolution. If photographic plates are used when the

direction of the incident X-ray beam'is oriented along the axis of
revolution the small anglg spot will be circu}ar; 'If photographic
plates are not used, it is possible to check thé symmetry 6f revolution
by plotting, for given h, the intensity versus_aﬁ angle of rotation

of the»éample in a élane normal to the beam direc;ion. The symmgtry
of revolUﬁiQn is obtained if -the observed intenéify is independent of
the angle of rotation. Due to experimental erroré’the experimental
points actually will oscillate about a constant 3verage. When this

is obtained the incident beam direction defineéfthefdifection of the
axis of réfolu:ion. Good intuitive guesses to the direction of the

axis of revolution can enormously simplify the experimental procedure.

vSuch'gﬁesses are guided by the structure of thevmaterial, the nature

of its bonds and its method of preparatiqn.' For example, in pyrolitic

s

graphite'the axis of revolution is normal to the;deposition plané.
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Iﬁ_thé common orientation case it is advaﬁtégeous to.direct the
incident beam normal to the axis of revolution;  The small angle spot
will then,have the form of an ellipse.. For eqdél particles and slit
collimatioﬁ the varia;ion of intensity witb anglévin the Guinier

region is proportional to

in the direction parallel to the axis of revolution and

Y (ha
a *P 5

in the pérpendicular direction. Two e#perimentalvmeasurements thus
determined the parameters a and b which define'fhg ellipsoid; true
on1y~if,size variation of the ellipsoids are negiigible.

In the Porod.region,_from Eq. (21), the variétion of the intensity
with angle‘is proportional to | |

, ‘ h3b4

in the direction parallel to the axis of revolution and

in the perpendicular direction. By using Eq. (21); b and a can be
determined from absolute intensity measurement.'fﬂqwéver, it is
possible to determine the ratio a/b without.having to méasure the
intensity of the direct beam. This ratio measuféd from the Porod

i i : ] .
region should be compared to the same ratio evaluated in the Guinier

)

LR

>



[ X2

i
ol

-21-

region. If all the particles are equal the two ratios must be the

same. .
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APPENDIX A

Evaluation of s(Z,Y): .

'
t

In the’foliowing we evaluate the expression of.s(Z,Y), the surface
;interséCtion of the ellipsoid and the plane Z %.Z;‘ We let M represent

Euler's matrix:
=M R (Al
(We don't-givevthe explicit expression of M. It.can be found in many

references, for example Ref. 13) The equation of the ellipsoidal

surface is:

: .—‘—"JL— + - =1 - - . ) © (A2)
2 2 P . : :
a - b
And in terms of X; Y, Z: :
' . X
&, v,2yaly] =1. (A3)
, .

where A is a 3 by 3 matrix:

Axxv= cos2 ] +'cos2 Y sin2 ] ; sin2Y éihzw (A4)a
2 2 '

sinzw + cos2Y coszw sinzy coszw

Ayy = 2 * 2 BRCLE

a . b
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2 2.
_siny cos Y ' ’ '
7 2 7 (Ad)c
a b
Agy = Ayg = sin’y cosy sind (& - L) (A4)d
p, 2 4 2
a  b 
= A = - siny cosy cos¥ (& -1 ) O aw
AXZ 7% sinyY cosY cos 5 75 e
a ‘b
= A__ = siny cosy cosy (J; —-1; ) (A4)f
Ayz = Ay S
. a b
If we make the following changes of variables:
X' cosy siny X v
= R (A5)a
Y' \-siny cosy Y T :
siny cosy (b2 - a2) o
n=Y'+ 3 7 5 5 z. . (A5)b
a“sin"y + bTcos”yY : ‘
Eq. (A3) becomes: : T
v _ . I |
W2 2 . ‘ 2
-+ 77 I : 32 (A6)
a a’b asin”yY + b cos”yY

azsinzy + bzcoszy

Equation (A6) represents the equation of the ellipse iﬁtersection of
the ellipsoidal surface and the plane Z = Z where Z (on the right hand

side)is a parameter. To clarify, we call:
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2
K = 1- Z . (A7)

azsinzY + b2c0s2Y :

thus thevéquation of the ellipse (intersection) becomes :

2 2 |
Ka Ka»b

azsinzy +vb2coszy

From Eq. (AS) we get s(Z,Y):

s(Z,Yy) = TK a » (A9)a

(azsinzy + bzcoszy)”'

or, from Eds, (A7):

sz = (mapyd -5y (49)b

H .

where,. . o
H = '(azsinzy + b2cos2Y)1/2 (A9)c

It is obvious that s(Z = H,y) = 0, thus H représanté the maximum
variation in Z. (As a verification of Eq. (A9)b"ione can evaluate
the expression of the volume of the ellipsoid by integrating s(Z,y)dZ

over [-H,4+H]).
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APPENDIX B

The Average of 4S, over all Equally Probable Orientations:

For randomly oriented ellipsoid of revolution

s - 9 2 04 |
45, = = VO 1/H o (B1)
consider: v
. m/2
et - f B Y
. o [a® sin“y + b“cos Y]

' 2 . .
Let cosY = x, sinzy'= 1 - x , then:

— ' 1
1/H4 - 1 : dx
2 2.2 .2 2
(b - a”) 2 . a
o x + 3 3
b® -:a
_ |
= 14 3 (2w 2 4 Zbe tanf1 B—e) (B2)
4ma’b C a

Where e %‘-V(bz—az)/b2 is the eccentricity of the el}1p501d 2a, 2a,

i

2b. By examlning Fig. 3 one can easily show that:

-1 -1b
a

sin "e = [ = tan e . i (B3)
' !
From Eqs. (Bl), (B2) and (B3) we get: |
= _ 9 .2 4 . t

45 = = VO 1M =5 (B4)

where S = 27Ta2 + 2m(a b/e) sin_le is the surface area of the ellipsoid.
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FIGURE CAPTIONS

Definition of é fixed reference fram23 62 parallel to KB,

\

ib parallel to incident x-ray beam. OK is the line of nodes.

revolution of orientation distribution and low concentration

bz-a2

b2

plane 7 is normal to"h° and tangent to E,.

Fig. 3. A geometrical demonstration of the relation sin—le = tan

-1

is equivalgnt to the small angle sgattering'f:om a group of

w o

The small angle scattering from a group of equal ellipsoids of

' widely separated Guinier spheres of radius distribution. The

e
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Fig. 2 -
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