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CHAPTER I 

GENERATION OF FAR-INFRARED RADIATION BY OPTICAL RECTIFICATION OF 
PICOSECOND LIGHT PULSES ~~D BY MIXING OF TWO TUNABLE DYE LASERS 

Kei-Hsiung Yang 

Inorganic Materials Research Division, Lawrence Berkeley Laboratory 
and Department of Physics; University of California 

Berkeley, California 

ABSTRACT 

We have observed far-infrared radiation generated in a LiNb0
3 

crystal by picosecond light pulses from a mode-locked Nd: glass laser. 

The output spectra were analyzed by a Michelson interferometer and a 

Fabry-Perot interferometer. In one experiment a 0.77 rom thick LiNb03 

crystal was used to rectify the laser pulses. The resulting spectrum 

-1 shrnved peaks of descending power at 2, 6.5, and 10.5 cm • This shape 

can be roughly understood as the product of an w2 radiation efficiency, 

a phase-matching curve centered at zero frequency, and a Gaussian 

envelope corresponding to a 1.8 picosecond laser pulsewidth. In a 

second experiment the LiNb03 was oriented to obtain forward phase-

-1 -1 matching at 13.5 cm and backward phase-matching at 6.5 cm • Both 

peaks were observed and were in agreement with the theoretical calcula-

tion. The far-infrared power observed in the rectification case was 

about 200W for a peak laser power density of 0.2GW/cm2 and a train of 

30 pulses. We also used dual-frequency dye laser systems to generate 

-1 continuously tunable far-infrared radiation from 20 to 190 cm • We 

have investigated both the collinear (forward and backward) and non-

collinear phase-matching in LiNb0
3 

over most of this frequency range 
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and the forward collinear phase-matching in ZnO, ZnS, CdS, and CdSe 

at selected frequencies. We measured the generated far-infrared power 

versus frequency in LiNb0
3 

as well as the far-infrared linewidth of 

-1 3 cm . We also obtained the'absorption constant of the far-infrared 

o-ray in LiNb03 from the phase-matching curves. We deduced the dis­

(2) 
persion of X24 in LiNb0

3 
from the experiment which agreed well with 

the theoretical calculation. A plane wave theory using the Green's 

function method was developed to explain the spectra obtained in the 

picosecond pulse experiments. This plane-wave approximation was 

then modified to calculate the far-infrared power produced by mixing 

two dye lasers in LiNb0
3 

in both collinear and non-collinear phase­

matching schemes. 

CHAPTER II 

THEORETICAL STUDY OF COHERENT 
PHONON GENERATION BY OPTICAL MEANS IN A 

ONE-DIMENSIONAL SUPERLATTICE 

ABSTRACT 

With the help of the lattice momentum, phase-matched optical genera-

tion of coherent phonons with frequencies higher than 50 GHz appears 

feasible. We have calculated two cases: (i) Direct conversion of 

millimeter or submillimeter photons in a piezoelectric superlattice, 

(ii) Optical mixing of two laser beams in a non-piezoelectric super-

lattice. -4 In the first case, an efficiency of 10 for photon-to-phonon 

power conversion can be achieved using an epitaxial GaAs:GaP superlattice 

of 100 unit cells. The piezoelectric superlatticescan be constructed 
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from multilayer epitaxially grown crystals, partially oriented sputtered 

films, and naturally grown polytypic crystals. In the second case, 

longitudinal phonon power of 1 mW can be generated by the mixing of two 

10 MW/cm2-laser beams ina KC1:CdS superlattice of 100 vacuum deposited 

layers. We have also calculated the first-order effect on the generated 

phonon power due to ±2% random errors in the periodicity of the super­

lattice. In both cases, the high-order unklapp processes which involve 

shorter phonon wavelengths are most sensitive to such imperfection. In 

both cases, the acoustic power generated under phase-matching conditions 

is proportional to the square of the total number of unit cells in the 

superlattice. 
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CHAPTER I 

I. INTRODUCTION 

Since Zernike and Berman1 observed radiation near 100 cm-1 resulting 

from the ~xing of unknown number of modes from a single pulsed neo-

dymium glass laser in crystal quartz, many groups have been trying to 

achieve tunable far-infrared (FIR) radiation by mixing two lasers in 

different non-linear crystals. We can classify all of this work into 

three categories according to the type of lasers. used for the experiments. 

In the first category, two CO2 gas lasers were used to mix in various 

semiconductors. 2 Tran and 3 reported the Zernike and Van Patel genera-

tion of radiation in -1 the 100 cm range by mixing the 9.6)1 and 10.6)1 

CO
2 

laser transition in InSb. Recently, quite a few experiments belonging 

4-9 to this category have been conducted.· One interesting experiment 

8 was done by Van Tran Nguyen and Bridges who used the n-type InSb 

at 15°K in a strong magnetic field as a mixing crystal. The enhance-

ment of the second-order resonant optical nonlinearity due to conduction-

electron spins was observed. 7 Boyd, Bridges, Patel, and Buehler used 

ZnGeP 2 as a mixing crystal to produce phase-matched step-wise tunable 

. -1 9 
radiation from 70 to 110 cm • Recently, Aggarwal, Lax, and Favrot 

reported the noncollinear phase-matching in GaAs to produce step-wise 

-1 (0.1 cm ) tunable far-infrared radiation. In the second category of 

experiments, two solid state lasers were used. The first observation 

of the continuously tunable FIR radiation was reported by Faries, 

. 10 
Gehring, Richards, and Shen. In this experiment, two Rl ruby lasers 

with one of the laser rods cooled were mixed in LiNb03 to produce 

-1 
radiation in the frequency range from 1.2 to 8.1 cm • Later, 
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by mixing a ~ ruby laser with a R2 ruby laser (temperature 

cooling in either of the laser rods), a continuously 

-1 
tunable radiation from 20 to 38 cm was achieved. The third category 

was the experiments of mixing two dye lasers. Yang, Morris, Richards, 

and Shenll reported the generation of the continuously tunable radiation 

-1 
from 20 to 190 cm by mixing two dye lasers in LiNb03 and ZnO. Auston, 

Gl d L F 12 1 b d bl di i f 2 to 50 cm-l 
ass, an e ur a S9 0 serve tuna e ra at on rom 

using a reduced (black) LiNb03 as a mixing crystal. 

There are two main reasons for attempting to generate tunable 

far-infrared radiation by mixing two laser beams. First, it offers the 

possibility of providing a useful source to do spectroscopy in the far-

infrared region. Second, it provides understanding of the nonlinear 

interaction of the electromagnetic radiation with matter. 

Exploratory spectroscopic studies in the region between 3 and 

-1 
200 cm began more than 50 years ago, but the development has lagged 

well behind that in other parts of the spectrum by the lack of suitable 

b . h 13 rl.g t source. Electron beam devices such as klystrons, back wave 

oscillators,14 etc., can generate coherent narrow line-width radiation 

with limited tunability which is useful for the high resolution 

-1 spectroscopy below 25 cm 
I. 14 

By using harmonic generation, this 

radiation source can be extended to higher frequencies with a great loss 

of efficiency. On the other hand, the grating spectrometer and the 

Michelson interferometer,15 both with a hot black body as a radiation 

source, are used for higher frequencies. 

The most widely-used far-infrared source in the Michelson inter-

ferometer is the Rayleigh-Jeans region of the black body spectrum 
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emitted by a high pressure mercury arc lamp. The intensity of the 

radiation emitted by the lamp varies approximately by two, and the 

total power radiated by the lamp used in our laboratory into the 1: 1. 5 

-1 optics of the Michelson interferometer, in the region 0-100 cm , is 

5 -1 8 2xlO- W, while in the'region 0-30 cm is of the order 10- W. The 

16 17 newly invented polarization interferometer ' has improved the 

-1 
0-100 cm region because the grid beam splitters of high efficiency 

are used. The lack of energy of the source limits the resolution or 

lengthens the measuring time for a reasonable signal-to-noise ratio. 

For comparison, the far-infrared peak power per unit frequency over the 

-1 
region 0-100 cm generated by mixing two dye lasers is three to four 

orders of magnitude larger than that produced by a mercury arc lamp. 

High peak powers are necessary in order to investigate transient and 

nonlinear phenomena in the far-infrared region, and also possibly, in 

using room temperature detectors. 

In choosing a spectroscopic technique for a particular application, 

several major considerations must be weighted against each other, in-

cluding in particul~r, the spectral resolution required, the range of 

frequency to be scanned, the time available for recording, the ease 

of operation, and the expense or availability of the components. The 

recent development of small compact digital computers, which can be 

interfaced to compute the spectrum from the interferogram has increased 

the usefulness of the Michelson interferometer and the polarization 

interferometer. They have the advant~ges of a reasonably good resolu-

tion, a broad range of frequency scanning, and a fast speed of measure-

15 
ments. They have become the most frequently used tool for the 
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• 
spectroscopical investigation in the far-infrared region. At the<~ ,'I 

present stage, tunable far-infrared radiation by mixing two laser beams 

in nonlinear crystals can not compete with the Fourier transform 

spectroscopy as a spectroscopic tool. Much engineering effort is 

needed before it can be put into practical usage. However, in the long 

run, with further engineering development, it might become cheaper in 

construction, easier in operation, and better in resolution than the 

Michelson interferometer. 

In this thesis, we will describe two experiments related to the 

tunable far-infrared generation by mixing two lasers in nonlinear 

crystals. In the first experiment,l8 mode-locked picosecond pulses 

which have broad spectral contents were mixed in LiNb03 (a birefringent 

crystal). We first derive a theoretical description using a Green's 

function method in the plane-wave approximation. We calculate the far-

infrared power spectrum produced for two different crystal orientations. 

When the picosecond optical field is parallel to the c-axis and the 

two surfaces of a crystal slab, the resulting spectrum can be under-

I 2 
stood as the product of an w radiation efficiency, a phase-matching 

factor centered at zero frequency, and a Gaussian pulse frequency 

envelope. When the c-axis of the crystal tilts at an angle away from 

the normal of the crystal slab, and the optical field propagates along 

that normal with equal components in the ordinary and extraordinary 

rays, the resulting spectrum shows two different phase-matching peaks, 

one forward and the other backward, multiplied by w2 and Gaussian pulse 

envelope. We then describe the experimental arrangements. The far-

..,1 

·1 
i 
i 
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infrared signals was separated into two beams, one for normalization, 

20 
the other passing through a ~~chelson interferometer for spectral 

analysis. Interferograms were Fourier transformed to obtain the far-

infrared spectra. We then discuss the agreement between the experi-

mental results and the simple theoretical calculations in general shapes 

of the spectra, the exact locations of peaks 'and valleys, and the phase-

matching frequencies. We fit our experimental results with Gaussian 

laser pulse length of 1.8 or 2.3 picoseconds, which differs from the 

two-photon fluorescence measurement of 5 picoseconds. We explain this 

discrepancy and compare with other picosecond optical pulse experiments 

in the discussion. 

21 
In the second experiment, a dual-frequency dye laser system was 

used to generate continuously tunable radiation over the frequency 

-1 
range from 20 to 160 cm in LiNb03 and at selected frequencies in 

ZnO, ZnS, CdS, and CdSe. Phase-matching was ach~eved by using the bire-

fringent crystals in the collinear scheme and by forming a closed 

triangle with three wavevectors in the noncollinear scheme. Although 

many experiments have been done in mixing two laser beams to generate 

difference frequency radiation, a complete detailed theoretical 

description of the physical process, including the use of focusing 

lenses, is still not available. In principle, such a description should 

be possible if not too tedious and time consuming, given the temporal 

and spatial behavior of the two input laser beams, the frequency 

dependent dielectric constants, and the nonlinear coefficients of the 

mixing crystal. Unfortunately, in our experiments of mixing two dye 
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lasers, the transverse modes of the laser beams ~re not known, making 

the exact theoretical description almost impossible. Hence, in this 

thesis, we try to calculate the far-infrared power generated under 

collinear and non collinear phase-matched schemes using the Green's 

function method in the plane wave approximation. We then discuss the 

effects on the far-infrared power of the following factors which are 

relevant to our experimental conditions: the double refraction, 

boundary conditions, finite beam cross-section, laser divergence, far-

infrared diffraction, finite far-infrared linewidth, and the dispersions 

of the dielectric constant and the second order nonlinear susceptibility. 

The derivations of the formulas showing the dispersion of the second-

order nonlinear susceptibility are included in Appendix B. We then 

describe our experimental techniques, one-dye cell dual-frequency 

scheme, two-dye cell schemes, far-infrared detection, the crystal prepara-

tions, and phase-matching methods in detail. After summarizing the 

experimental results, we show the comparisons between theoretical and 

experimental results for the far-infrared power generated by collinear 

and noncollinear phase-matching schemes, in the far-infrared O-ray 

absorption constants, and in the dispersion of X(2} 
24. 

for LiNb0
3

• We 

also ,show that the formulas used to calculate the dispersion of X~!} 

in LiNb03 can be generalized to calculate the dispersion of the non­

linear susceptibility in InSb (free electrons in magnetic field) and 

CoF2 (magnon mode). 

, 
IJ t 

! 
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II. GENERATION OF FAR-INFRARED RADIATION BY PICOSECOND 
LIGHT PULSES IN LiNb0

3 

A. Theory 

From the uncertainty principle 6VT - 1, a one picosecond mode­

locked optical pulse should contain a bandwidth of 33 cm-l • Because 

of its broad spectral content, a picosecond laser pulse can generate 

far-infrared radiation in a nonlinear crystal as a result of beating 

between its various frequency components. Theoretically, Gustafson 

22 
et a1. have investigated the interaction of intense picosecond pulses 

with electro-optical material. They have calculated the rectified 

field for an infinite plane wave, in the limit that the optical and 

far-infrared phase velocities differ negligibly. The difference in 

phase velocities is important in explaining the power spectrum of the 

generated far-infrared, as later verified bY,the experimental results. 

In their calculations, the reflection and refraction at the crystal 

boundaries was also neglected. 23 Later, Morris and Shen carried out a 

more realistic calculation which included the various effect due to a 

finite beam cross section, crystal boundaries, and the significantly 

different optical and far-infrared phase velocities. In order to 

compare with the experimental results, they calculated numerically the 

results of rectification of the mode-locked Nd:glass laser pulses in 

LiNb03• Two different phase-matching conditions were investigated. 

In the first case, when the optical field was an extraordinary ray 

(e-ray), the generated far-infrared radiation propagated also as an 

e-ray. In this case, the nonlinear coefficient X~;) was responsible 
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for the far-infrared generation (phase-matched at zero frequency). In 

the second case, the optical field had equal components in the e-ray 

and the ordinary ray (o-ray). The generated far-infrared was in the 

o-ray and the nonlinear coeffici~nt X~~) was mainly responsible for this 

process (phase-matched at finite frequency). In this section, a very 

simple theoretical calculation plus some intuitive physical arguments 

which are believed to be adequate to explain the experimental results will 

be described. For the complete detailed theoretical calculations refer 

to reference 24. 

Assuming a monochromatic electromagnetic wave in an insulator, 

25 Maxwell's equations reduce to the wave equation 

= - 41T 2 1)N - w A, 

c: 2 
(1) 

++ N 
where £ is the dielectric constant tensor and ~ is the nonlinear 

polarization resulting from the nonlinear coefficient of the material. 

In the case of the picosecond optical pulses propagating in ,a LiNb03 

crystal, one can study most simply the collinear propagation of the 

rectified and optical fields neglecting the radial profiles of both. 

Assuming that the depletion of the input optical pulse is negligible, 

the rectified field produced in the case of phase-matching at zero 

frequency is governed by the equation 

[ 
a2 

az 2 -
I I ] -- -. - E (z,t) 

\)2 at2 3e 
3e 

P~ (z,t) (2) 

where \)3e = is the difference frequency phase velocity, n3e 

is the far-infrared e-ray index of refraction. No dispersion for n3e 
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is understood since the frequency of the rectified field is below 

-1 26 20 cm ,where, as in LiNb0
3

, the lowest frequency polariton mode 

-1 for e-ray is at 248 cm The propagation direction is along z-axis, 

as is the c-axis of the LiNb03 crystal. 

Furthermore, we can write 

pN (z,t) 
3 

(3) 

where E denotes the laser field in the e-ray. e The causal Green's 

function for Eq. (2) is 

G(z-z' ,t-t') = -
1 

Iz-z'l) (4) 

where H(~) is the heavyside function such that 

H(~) = 0 for ~ < 0 

= 1 for ~ > 0 

The solution for the rectified field can be written as 

R, 00 

~f dz'f dt' ~ pN(z' t')H(t-t, __ l-
c at' 2 3' \)3 o _00 e 

Iz-z'l) 

(5) 

In the formula (5), the crystal slab is assumed to lie betJeen z = ° 
and z = R" and the refraction and reflection from the crystal boundaries 

is neglected. For z ~ R" Eq. (5) becomes 

2n { d ' a N( , 
1 

E3e(z,t) 
= n3ec 0 

z -- P3 z ,t- (z-z'» (6) 
at \)3e 
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A formula for the frequency spectrum of the far-infrared electric field 

is easily obtained by the Fourier transformation df Eq. (6). 

1 100 

:iwt E3· (z,w) = - dte E3 (z,t) 
e I2iT e 

-CXl 

(7) 

Equations (3), (6), and (7) indicate that if the exact expression 

for X~;)(w) and the laser optical field Ee are known, one can calculate 

the power spectrum of the rectified field. We assume no dispersion for 

(2) -1 
X33 (w) and 03e for w < 20 cm 

polariton mode affects most of 

(this is true since the lowest frequency 

the dispersion of x~;)(w) is at 248 cm-l ) 

and that the laser optical pulse takes the Gaussian form 

nez 2 2 n~o 
E = E exp[ -(- -t) /20 ]exp[i(-- z -w t)] 

e e c c 0 
(8) 

where Ee denotes the complex amplitude, ne is the index of refraction 

for the e-ray laser field, 0 is a parameter related to the optical 

pulse-width and w is the laser pulse central frequency. Substituting 
o 

Eq. (8) into Eq. (3), then using Eqs. (6) and (7), we obtain the power 

spectrum of the rectified field by a single picosecond optical pulse 

as 

= 
(9) 

In derivirtg Eq. (9), we assume that the condition oJ/.« 1 is valid 

where £ is the thickness of crystal and a is the faT-infrared e-ray 

w(n3e-ne) 
absorption constant. Also, in Eq. (9), k equals , where 

c 
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W is the far-infrared frequency. It can be seen from Eq.· (9) that the 

far-infrared power spectrum depends on the square of both the input 

laser power and the nonlinear coefficient, on the dipole radiation 

efficiency w2 , on the coherent far-infrared phase~matching factor 

[(sin2 k£/2)/(k£/2)2] which is centered at zero frequency and on the 

_W20 2 /2 
optical pulse envelope e . 

Although the experimental observation was of the sum of a pico-

second pulse train instead of a single pulse, the general shape of 

this power spectrum was verified. 

In the case of phase matching at finite frequencies, the c axis 

of the crystal slab is tilted away from the z-axis with an angle e. 

If one neglects the so-called "walk-off" effect of the laser e-ray, 

Eqs. (2), (4), (5), (6), (7) are valid with the subscript e changed to 

o to indicate that it is the far-infrared o-ray which is generated. 

Equation (3) should then be replaced by 

(10) 

where E is expressed as in Eq. (8) and E , the laser o-ray, can be 
e 0 

written as 

noz 2 2 noWo 
E - Eexp[-(- - t) /20 ] exp[i(-- z - W t)] o 0 . c c 0 

(11) 

where E is the amplitude and n is the laser o-ray index of refraction. 
o 0 

Carrying out the calculation as in the first case (for simplicity, we 

substitute Eq. (6) into Eq. (7) and integrate with respect to dt first), 

we obtain for z ~ £ 
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i~z 
e v 30 

-n = 

(12) 

(13) 

If the difference in the optical path of the laser o~ray and e-ray 

after passing through the crystal slab is much less than the optical 
t(n -n ) o e 
--~2-a-c--- « 1 (as is true for a few mm LiNb03 pulse length, i.e. 

crystal slab), then Eq. (12) can be simplified as 

E30 (z ,w) (14) 

The power spectrum for z ~ t ~an be expressed as 

(15) 

Comparing Eq. (15) with (9), we can conclude that in the case of the 

laser o-ray beating with e-ray, the phase-matching factor centers at 

finite frequency instead at zero frequency. However, so far in both 

cases, we have only solved the forward propagating far-infrared 

radiation (z ~ t). The Green's function in Eq. (4) implies that there 

also exist the solutions for the backwar~ propagating far-infrared 

radiation (z ~ 0). We can easily follow the mathematical formulas and 

solve for the condition z ~ O. In the case of phase-matching at zero 

dz' 
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frequency, the calculated power spectrum has exactly the same formula 

as the Eq. (9). But in the case of phase-matching at finite frequency, 

6~ in Eq. (15) changes to 6k_, where 

w o -
6k_ = (no-ne ) ~ + (n30-n ) w/c 

Thus, the backward and forward phase-matching frequencies do not 

(16) 

coincide. Since in LiNb03 n30 = 6.6 yields far-infrared reflectivity 

of 54% at the crystal boundaries, this backward phase-matching wave 

is reflected from the back surface of the crystal and detected by the 

far-infrared detector. In LiNb03 crystal, the forward phase-matching 

frequency is about twice the backward phase-matching frequency in 

magnitude. Experimentally, both are observed and agree well with the 

theoretical calculation. 

B. Experiments and Results 

The experimental scheme is shown in Fig. 1. A Nd:glass laser 

simultaneously Q-swttched and mode-locked by a Kodak 9470 dye solution 

was used as an exciting source. A Brewster-angIe-cut laser rod 0.95 cm 

in diameter and 10 cm long was placed in a 85 cm long laser cavity. 

Two externally triggered linear lamps housed in a double ellipse 

reflector were used to achieve the population inversion for the laser 

action. The window of the dye cell made an angle of about 60° with 

respect to the optical axis of the cavity. An adjustable circular 

aperture was inserted into the cavity to maintain good laser transverse 

modes. The output was obtained through a 70% reflecting mirror and 

was monitored by a biplanar vacuum photo-diode combined with a 

Tektronix 519 oscilloscope which triggered a type 556 oscilloscope. 
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A Nichol-prism polarizer was used to purify the laser polarization. 

The mode-locked laser output cbnsisted of a train of about 30 pulses 

between the half-power points of the envolope with 6-nsec separation 

between pulses. The total energy contained in the pulse train was 

about 20mJ. The pulse width measured with two-photon fluorescence 

27 28 techniques ' was about 5 psec. A lense wi tha 30 cm focal length 

was used to focus the laser beam into the LiNb0
3 

crystal which was 

26 cm from the lense, and 1 mm of black polyethylene was used at the 

output to prevent laser light from reaching the far-infrared detector. 

The far-infrared output was then split into two beams by a Mylar beam 

splitter. One of the beams was used for spectral analysis in either 

a Michelson interferometerl5 ,19 (see Fig. 2) or a metal-mesh Fabry-

20 Perot interferometer (see Fig. 3). The other was used for normaliza-

tion. The entire far-infrared system was evacuated to avoid water-

vapor absorption. The two beams were separately detected by two n­

type lnSb (Putley) detectors 29 operated at 1.50±0.05°K30 in a magnetic 

field of 5.4 kG. These two detector sizes were 5x4x2 mm and 7x4x1.5 mm 

I respectively and were cut from the same boule, which had a carrier 

13 3· 5 2 density of about 7xlO /cm and a mobility of 7xl0 . cm /vsec measured 

at 7rK. The detector system is shown in Fig. 4. B.oth detectors were 

biased with a constant voltage of 0.2 V and the current of each 

detector was measured using an operational amplifier with a feedback 

resistor ~ = 205 kQ (see Fig. 5(b)]. The response time of this 

system was 2 llsec. The sensitivity of the detector was measured using 

a blackbody at 200°C and a filter passing 0-50 cm-l • This showed 

.. 
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5 the average noise equivalent power in a 5xlO Hz bandwidth to be 

lX10-6 W. However, since the sensitivity is certainly not uniform in 

. 29 31 this energy reg10n ' and since there are inevitable local system 

resonances at these long wavelengths, the absolute values of the far-

infrared power may be in error by as much as an order of magnitude. 

Measurements with the Michelson Interferometer 

The Michelson interferometer used in the experiments is shown in 

Fig. 2. It had a 5 mil mylar beam splitter. The chopped mercury arc 

lamp source which we assume to have a blackbody spectrum was used to 

15 19 measure the instrumental function of the system' (the spectral 

sensitivity of the spectrometer-detector combination). For this measure-

ment, the detector signal passing through a lock-in amplifier was 

19 recorded by a digital data recording system. Th · f 19 e 1nter erograms 

were measured. The instrumental function was obtained from the Fourier 

transform of the interferogram, corrected for the assumed blackbody 

spectrum of the mercury lamp source. The same source was also used to 

align the Michelson interferometer and locate the zero of path dif-

15 19 ference.' To measure the spectra of the laser mixing experiments, 

the arm containing the chopper and the mercury arc lamp was removed 

from the Michelson interferometer and replaced by a 9-inch collecting 

brass tube and the polyethylene lens similar to the output arm of 

the Michelson interferometer. After the laser was fired, the two 

far-infrared signals detected were displayed on a Tektronix 556 dual 

beam oscilloscope and photographed. The ratio of the two signals was 

then computed. To obtain the true spectrum from the Michelson 
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interferogram, the Fourier transformation of theinterferogram was 

divided point by point by the instrumental function with the same 

resolution. 

Two crystal orientations were studied. In the first, a 0. 775-mm 

thick LiNb0 3 crystal was oriented with the normally incident laser beam 

c-axis and propagating 
A 

polarized along the along h. In this configura-

tion, the nonlinear (2) -6 susceptibility X33 (= 3.l4xlO )32 0b esu contr~ utes 

to the generation of far-infrared polarized along c, and phase-

matching occurs at zero difference frequency as the simple theory shows. 

The Michelson interferometer was used to investigate the far-infrared 

spectrum. The interferogram was sampled at intervals of 0.2 mm out to 

15 19 -1 a maximum of 5 mm, which limited the resolution '. to 2 cm . Four 

laser shots were averaged for each sample. The final spectrum computed 

15 with linear apodization and corrected by the instrumental function 

is shown in Fig. 6(a). Because of the frequency-dependent reflection 

15 
coefficient of the 5-mil mylar beam splitter in the Michelson 

interferometer, the reliable range of the spectrum measured was from 

-1 3 to 22 cm • The resulting spectrum contains peaks at 2.5,,6.5, and 

-1 10.5 cm with descending amplitude. The general shape of th~ spectrum 

and the exact location of the peaks and valleys agreed well with the 

simple theoretical calculation using Eq. (9). In this calculation, 

the far-infrared index of refraction measured by Bosomworth33 and the 

, 34 optical refractive indices of Boyd, etc., were used. A more detailed 

23 theoretical calculatton including the effects of finite beam cross 

section and reflection and refraction from the crystal boundaries and 

.;..J 

,I 
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assuming a 1.8-psec Gaussian laser pulse is shown in Fig. 6(a) for 

comparison. The agreement is good. 

In the second case, a 1.524-mm-thick LiNb03 crystal was oriented 

with its c axis tilted at e = 16° away from the normal to the plane 

surfaces and the a axis at an angle ¢ from the plane containing the 

normal and the c axis. The normally incident laser beam was polarized 

to have equal components in the ordinary and extraordinary rays. In 

this configuration, the polarization responsible for the ordinary ray 

far-infrared generation can be written as 
(2) (2) 

(2) (2) X22 2. 2 X22 2 
PDo = [X24sine + x22sin3¢cose]EoEe + --z-cos ecos3¢Ee - -2- cos3¢Eo 

(2) -6· (2) -7 32 
where X24 = 3.08xlO esu, X22 = 4.4xlO esu, E o 

and E 
e 

(17) 

are laser 

o-ray and e-ray components respectively. The polarization responsible 

for the generation of the far-infrared takes the form 

(2) (2) (2) 

+ (X~~cos2esi~e _ X;2 sin3¢cos 3e + X~l cos2esine + X~3Sin3e)E! 

(2) (2) 
X22 X3l 2 

+ ( --2-- sin3¢cose + --2-- sine) Eo (18) 

Note that Eqs. (17) and (18) have three-fold symmetry with respect to 

the angle ¢ as required by the LiNb03 crystal symmetry. In order to 

isolate the far-infrared signal produced by the laser o-ray beating 

with e-ray from the laser rectifying signal, th.e angle ¢ was chosen to 

be 30° and a grid polarizer was used to filter out the far-infrared 
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e-ray generated by P
De 

in Eq. (18). In this case, the last two terms 

in Eq. (17) vanishes and PDo contains signals of phase-matching at 

finite frequency only. The experimental result measured with the 

Michelson interferometer is shown in Fig. 6(b). 

-1 
The backward phase-matched peak at 6.5 cm was observed, but the 

-1 forward phase-matched peak expected at 13.5 cm . was not distinguish-

able from the background noise. Again, the simple theoretical calcula-

tion using Eqs. (15) and (16) can predict location and linewidth of 

both backward and forward phase-matching frequencies and the general 

shape of the spectrum. Detailed theoretical curves calculated by 

23 24 Morris ' for 1.8 and 2.3-psec Gaussian laser pulses are sh~~ for 

-1 
comparison. It is seen that the relative strength of the 13.5 cm 

peak is very sensitive to the variation of the pulsewidth, which 

changes with laser operating condition. 

Measurements with the Fabry-Perot Interferometer 

In a separate experiment, we used a Fabry-Perot interferometer 

with metal-mesh reflectors to analyze the spectrum. Since the spectrum 

is expected to conta.in only two narrow phase-matched peaks, a Fabry-

Perot interferometer, which has higher peak transmissivity than the 

Michelson interferometer, should be more suitable. The construction 

of the Fabry-Perot interferometer is shown in Fig. 3. For conciseness 

and simplicity, the two micrometers used to adjust the parallelism of 

the two metal-mesh reflectors are not shown in the figure. A He:Ne 

laser was used to align the parallelism of the two metal-mesh reflectors 

by observing the diffraction spots from the metal meshes. The ex-

perimental results are shown in Fig. 7. The first, third and fifth 
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peaks in the figure arise from the forward phase-matched peak at 

-1 13.5 cm ,while the second and the fourth peaks have contributions 

from both the forward and the backward phase-matched peaks. Since the 

20 
resolving power of the Fabry-Perot interferometer was limited to 

about 4 due to the 40° spreading angle of the far-infrared radiation 

from the crystal, the theoretical width (- 2 cm-l).of the phase-

matched peaks was not resolved. The solid curve in Fig. 7 is the 

detailed theoretical calculation of the interferometer fringes assuming 

Gaussian laser pulses of 1.8-psec pulse width. The details of this 

calculation are given in Appendix A. It appears to be in satisfactory 

agreement with the experimental results. As a separate check using 

the Fabry-Perot interferometer, we rotated the LiNb03 crystal to 

phase match at e = 14°. The result is shown in Fig. 8. The phase­

-1 matched peaks appear at 11 and 5.5 cm as expected from the simple 

theory. As was the case for Fig. 7, the detailed theoretical fit 

assumes 1.8-psec Gaussian laser pulses. The details of the calculation 

are given in Appendix A. 

The total far-infrared energy detected from X~;) in the first case 

(phase-matching at zero frequency) was of the order of 1 erg, which is 

about 20 times larger than that detected in the second case (phase-

matching at finite frequency). Both agree to within an order of 

magnitude with a theoretical estimate based on a mode-locked laser 

2 train of 30 pulses and a peak power density of 0.2 GW/cm. We also 

measured the relative far-infrared power generated by x~i) and x~;) . 
The measured ratio x~;) /x~i) ~ 4 was in satisfactory agreement with 

32 
the calculated value of 3.5. The peak power of the picosecond 

far-infrared pulses in the first case was of the order of 200 W. 
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c. Conclusions and Discussions 

We have observed far-infrared radiation generated in LiNb03 by 

picosecond light pulses from a mode-locked Nd:glass laser. The plane 

wave approximation with the Green's function method was adequate to 

explain the general shape of the spectra and the exact location of the 

peaks and valleys in the far-infrared power spectra for all of the 

experiments. Realistic numerical calculations which included various 

effects due to a finite beam cross section, crystal boundaries and 

the different optical and far-infrared phase velocities, were in agree-

ment with the experiment,al results. 

There is some discrepancy between the pulsewidths obtained from 

.. 27 28 
the two-photon absorption fluorescence measurements ' and from the 

far-infrared generation measurements. This is due to the different 

nature of the two methods. The two photon absorption fluorescence 

techniques measure the autocorrelation of the actual pulse shape. If 

the pulse has some rapidly varying ripples on its more slowly varying 

. 27 28 envelope, and 1.f the photographic technique ' does not have suf-

ficient resolution, then the two-photon absorption fluorescence 

technique tends to yield an autocorrelation function of only the more 

slowly varying part. The far-infrared generation measures the actual 

spectral content of the pulse and, consequently, would yield an ap-

35 parently shorter pulse. Yajima, et al. observed the far-infrared 

-1 
radiation as high as 20 cm in the rectifying case and yet they 

obtained laser pUlsewidth of 10 psec from the two-photon absorption 

fluorescence measurement. This result also indicated strongly the 

existence of the more rapidly varying ripples on its more slowly 

~ i 
i 

.. i 
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varying pulse envelope. In the case of phase-matching at finite 

-1 frequency, the forward phase-matching peak at 13.5 cm is very 

sensitive to the pulse width around the two picosecond region. This 

method can be generally applied to monitor small pulsewidth changes 

under different experimental conditions. For shorter pulsewidths, 

the Gaussian envelope for the far-infrared radiation cuts off at a 

higher frequency and a crystal with bigger angle e is needed to 

monitor this change. Similarly, for longer pulsewidths, the angle 

e should be smaller. 

The peak power of the picosecond far-infrared pulses produced in 

the rectifying case was of the order of 200 W, which could be increased 

to 5 kW by increasing the laser peak power density to 1 GW/cm2 . In 

the second case, the spectral width and the tunability of the generated 

radiation can not compete with the two CO
2 

laser systems or the two 

dye laser systems described later in this thesis. But if the laser 

pulsewidth could be as short as 0.5 psec, this system could be 

-1 
capable of producing tunable far-infrared pulses from 3 to 40 cm • 

Such pulses can be used to investigate transient and nonlinear 

phenomena in the far-infrared region. 

Furthermore, under the same laser operating condition, it is 

obvious that crystals with larger electro-optical coefficients can 

generate more far-infrared power. 36 The LiI03 crystal was tried with 

less satisfactory results than LiNb0
3

• Crystals with absorbing 

impurities which enhance the second-order nonlinearity may generate 

more powerful far-infrared radiation. This phenomenon has been 
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· d b 1 37,38 observe y Auston et a • using the copper doped LiTa0
3 

;J i 

.. 



I" 

I 

.... 

-23-

III. PHASE-MATCHED FAR-INFRARED GENERATION 
BY }UXING TWO DYE LASERS 

A. Theory 

Consider two plane wave laser beams with frequencies wI and w2 

propagating normal to a slab of the birefringent crystal with its 

optical c-axis tilted an angle e away from the normal. The non-

linear polarization responsible for the difference frequency generation 

can be wri tten as 

(20) 

where Xeff is the effective nonlinear coefficient and E
l ,E

2 
are laser 

fields propagating along z-axis 

j = 1,2 (21) 

win i 
and k

j 
= ~ j n

j
, u

j 
and E

j 
are the refractive index, the absorption 

constant, and the field amplitude, respectively. 

If we assume no dep~etion of the input laser beams due to the 

difference frequency generation, then the Green's function method 

developed for section IIA can be used to calculate the far-infrared 

power. When the far-infrared absorption is included in (2), n3e 

should be changed to n3 + iu3 /2. Using Eqs. (4), (5), (6), (7), (20), 

and (21), we solve the forward collinear case (z > ~) and obtain 

u3 
I21f ik3z - 2"" z 

= + iW
3 

e 
n 3c 

(22) 
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In the expression (22), the crystal slab is situated from 0 to R, 

along the z-axis. We assume that the detector is buried in the di-, 

ellectric medium which has no far-infrared absorption but matches the 

refractive index of the mixing crystal. We then obtain the far-infrared 

output power per unit area as 

where 

lIk = k -k -k 1 2 3 

(23) 

(24) 

Similarly, if we solve for the backward propagation far-infrared 

radiation (Le., z < 0), we obtain the same formula (23) for the power 

except that 

(25) 

The factor inside the bracket in formula(23) is the well-known phase-

matching factor. Its importance can be seen from the following argu-

ments. In the low absorption limit a3 ~ 0 (al = a2 = 0), this phase 

matching factor is equal to 

sin2(lIkR,2) 
2 

(lIk R,)2 
2 

• R, , 

2 which becomes R, as k approaches zero. The far-infrared power is then 

proportional to the square of the crystal thickness. In the high 

absorption limit a
3 

R, » I (al = a2 = 0), the phase-matching factor 

4 
approaches -2- as lIk goes to zero. The far-infrared power is optimized 

a
3 when lIk = O. This is called the phase-matching condition. In an 

.. 
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optically isotropic crystal, this condition cannot be satified for the 

collinear case. Being far away from the anomalous dispersion region, 

the far-infrared index of refraction is always larger than the optical 

index of refraction. Collinear phase-matching is PQssible by using a 

birefringent crystal. One of the two laser fields is in the ordinary 

ray, the other is in the extraordinary ray. The far-infrared radiation 

generated can be in the o-ray or in the e-ray. The e-ray index of 

refraction is a function of the crystal orientation. At a certain 

crystal orientation, k l -k2 can be arranged to be equal to k3 • !liis is 

the case of forward collinear phase-matching. For the same crystal 

orientation, the backward phase-matching condition can be satisfied for 

a different far-infrared frequency. For instance, LiNb03 is a negative 

birefringent crystal (n >n). In this experiment, the optical input 
o e 

wavelengths are around 8330 A. At 8 = 45°, the forward collinear' phase­

-1 
matching (FCPM) frequency happens at w3 = 95 cm while the backward 

-1 
collinear phase-matching (BCPM) frequency is at 36 cm • The generated 

far-infrared is in the' o-ray. -

To be commensurate with the real experimental situations, the 

plane-wave approximation should be modified. 39 In the following, each 

experimental condition and the corresponding modification of formula (23) 

will be discussed. 

1. Double Refraction 

In the collinear phase-matched scheme, since a birefringent crystal 

is used, one of the input fields is in the e-ray whose energy flow 

direction differs from that of the wavevector inside the crystal. The 

angle between those two directions is called "walk-off" angle.
40 

Due 
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to this effect, the overlap of the two input beams walks off after a 

certain distance within the crystal. The maximum "waIf-off" angle 

occurs near e =45 0
• 41 In the case of LiNb0

3
, this angle is 2.14 0

• In 

all the experiments, the crystal thickness is less than 2 nun. The 

"walk-off" distance of the two beams at the end of the crystal is less 

than 74~ which is negligible as the diameter of input beam cross section 

is around 3 mm. However, when the crystal thickness is larger than 

1 cm, the effect becomes important. 

2. Boundary Conditions 

The refractive index of the mixing crystal differs from that of 

the vacuum. Boundary conditions should be imposed in solving for the 

electric fields inside and outside the crystal. The parallel surf~ces 

of the crystal serve like a Fabry-Perot interferometer for both the 

input beams and the far-infrared. The LiNb0
3 

has an optical index of 

refraction around 2.2 which results in a finesse of only 1.16. In 

addition, the input beams have around - 2 A bandwidth which tends to 

wash out the Fabry-Perot fringes further. Therefore the effect of the 

crystal boundaries on the input beams is adequately described by the 

transmission coefficients, 

and (26) 

where PI 2 and Tl 2 are the power per unit area and the transmission , , 
coefficients for the frequencies WI and w2 respectively. The boundary 

conditions affecting the far-infrared radiation are more complicated. 

The LiNb0 3 crystal has far-infrared refractive index of 6.6 for the 

~) 
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o-ray and 5.4 for the e-ray. Both rays have high absorption constants. 

An o-ray can convert part of its energy into the e-ray when it is 

reflected from the crystal boundary at e:; O. In order to see the 

Fabry-Perot pattern in the far-infrared, the transmission of a O.S-mm 

thick LiNb03 crystal was measured by conventional Fourier Transfor 

Spectroscopy. -1 
The results showed that as w3 > 40 cm ,the Fabry-Perot 

transmission pattern f1atened out for both o-ray and e-ray because of 

-1 
high absorption. Around 20 cm ,this pattern showed a large modu1a-

-1 
tion. But our generated far-infrared has about a bandwidth of 3 cm , 

which is wide enough to span a peak and valley of that modulation. In 

this case, the averaged values of the transmission and absorption co-

efficients are therefore valid. In the dye laser mixing experiment, 

the crystal thickness is greater than 0.5 mm. We include these ef-

fects in an effective transmission. Therefore a transmission coeffici-

ent representing the crystal boundary effects on the far-infrared 

radiation, T
3

, is used to modify the expression for the power P3 in 

formula (23). In summing up, we obtain 

2 12 * W3 1Xeff P1P2 (phase-matching factor) 

(27) 
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3. Effects of Finite Beam Cross Section, Divergence, 

and Diffraction 

In reality, the finite laser beam cross section and the associated 

divergence effect should be taken into consideration in the calculation 

instead of infinite plane waves. The laser beam in our experiment was 

focused and had 2mi1iradian divergence. The mixing crystal was situa-

ted at about 26 Raleigh range (estimated from a TEMoo laser beam) away 

from the minimum beam width (detailed information is given in Section 

lIB). Therefore the ray-optics approximation is valid for the input 

beams. The divergence of the multi-mode input beams will cause the 

far-infrared radiation to spread through an angle y as shown in Fig.9(a), 

where 0 is the divergence angle. Under the forward collinear phase-

matching condition, ~k is not zero because of this divergence and of 

the multi-mode laser beams, 

To demonstrate the significance of this effect, if w3 generated is at 

-1 -1 
20 cm , we have ~k = 13.5 cm and y = 11°. The far-infrared total 

-1 
reflection angle inside the LiNb03 at w3 = 20 cm is 8.7°. We can 

see that part of the far-infrared generated is totally reflected back 

to the LiNb03 crystal and never reaches the detector •. The experi­

mental far-infrared power should be less at low frequencies than that 

calculated from the plane wave approximation. In addition, the radius 
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R of the beam was 1.5 mm at the crystal. The total far-infrared power 

should be 
P3 

P3(total) = ---2 ' 
7TR 

2 
= -~--=-

R 2+R 2 
1 2 

. (30) 

where P3 is expressed as in formula (27), and Rl and R2 are the Gaussian 

-2 
beam radius at e intensity for wI and w2 ' respectively. The expres-

sion for R in formula (30) guarentees that the actual area of the beam 

overlap is less than the minimum of the two input beams. For the far-

infrared field, the wavelength A3 is long, and the diffraction angle 

Yn satisfies roughly the following equation inside the crystal 

At w3 = 20 
-1 

cm 

1. 22 A3 

2 n3 R 

Yn equals to 1. 75° which is much less than y. The 

spreading angle outside the crystal due to Yn is 11.73° which is not 

important compared to the 45° collecting angle of the detection system. 

However, the far-infrared diffraction effect will shorten the crystal 

coherence length from the value derived from the plane-wave approxima-

tion. This effect is even more complicated when multi-mode laser beams 

are included. This point can not be clarified without going to a more 

detailed theoretical treatment. 

4:" Finite Far-Infrared Linewidth 

The bandwidth of the input laser beams results in a far-infrared 

-1 
bandwidth of 3 cm in the mixing experiment. This finite bandwidth 

causes the ph~se-mismatch ~k to deviate from zero even when the central 

far-infrared frequency is phase-matched. For the FCPM case, from 

Eq. (24), we obtain 
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d(bok) (n
o
-n

3
) 

6w3 
+ 

bow 3 
(n -n (8» = 

c c o e 

(no-n3) 
bow3 

-82.9 -1 
:::! --= cm c 

-and for the BCPM case, using Eq. (25), we get 

bow3 bow2 d(bok) = (n
o
+o

3
) - .. - (n -n (8» 

c c 0 e 

l1w3 -1 
- = 165.8 cm 

c 

(32) 

(33) 

where bow3 is the far-infrared bandwidth and the numberica1 values are 

calculated for the LiNb03 crystal. In calculating the far-infrared 

power from Eqs. (27). and (28), we should integrate over the far-infrared 

bandwidth. However, aside from the phase-matching factor, the ex-

pression is not a sensitive function of w3 within this bandwidth, as 

w3 is reasonably far away from the polariton mode frequency. We carry 

out the integration which only includes the phase-matching factor. It 

can be seen from Eqs. (32) and (33) that the integration averaged over 

bok is different in the FCPM case from the BCPM case,even.though the 

far-infrared bandwidth is the same. 

5. The Dispersions of the Dielectric Constant and the Second 

Order Nonlinear Susceptibility 

There 26 are eight E polariton modes (with the lowest frequency are 

one at 152 cm-l ) which determine the dispersion of the dielectric 

constant of the far-infrared o-ray in LiNb0
3

• The refractive index 

n3, the absorption constant a 3 , and the transmission coefficient T3 

.' 

! 
j 

.. . I 
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can be calculated from the dielectric constant expressed as 

£ + o (34) 

where £ is the DC dielectric constant and wT ' Sj' and f. are the jth 
o j J 

polariton mode frequency, the oscillator strength, and the related 

damping constant, respectively. The derivation42- 44 of the dispersion 

of the second order nonlinear susceptibility is described in Appendix 

B. It can be summarized in the following by the assumption that the 

linear susceptibility of the mixing crystal does not have appreciable 

dispersion in the region of the input laser frequecies WI and w2 

1 (2) ( ) = d(w3) = d'+~ L 2" X w3 E 47T 2 
j wT. 

J 

[

87Tc
4
n (8 /Ldn) ]1/2 + . p ex, 

- 4-
8

j
hw

T 
W n (n

T 
+ 1) 

.. j s s j 

d(O) L 
j 

rn 
p 

8 2 
jWTj dej 

2 
- w3 +ifjW3 

4 *,44 

(35) 

(36) 

(37) 

In using the formula we first calculate d
ej 

from Eq. (36) and dE from 

Eq. (37), then Use ~ and d . in Eq. (35) to find out the dispersion 
~ eJ 

of X(2)(w
3
). The d . in Eq. (36) is directly related to the Raman eJ 

*this formula should be modified if tensor notation is used for X(2) , 
please see reference 44. 
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scattering experiment on the wT.-frequency polariton mode where np and 
J 

n are the refractive indices of the Raman pumping beam and the scat­
s 

tered beam, respectively; w is the frequency of the scattered beam. s 

The S ./Ldn denotes the Raman scattering extinction length per unit ex,J . 

solid angle on the jth polariton mode and 0T represents the average 
j 

thermal population number of polariton quanta at the sample temperature 

44 can be expressed as T. 

I 
= (38) 

In Eq. (37), r is the measured electro-optical constant when the 

measuring light frequency is the same as that of the Raman scattering 

input beam. 

In summing up, combining Eqs. (23), (27) and (30), we get the far-

infrared power (in watts) 

where 

-

I = 

-a. R, 
3 

e 

I (39) 

and I is the average of lover the different values of ~k caused by 

the laser beam divergence, the diffraction and finite bandwidth of the 

far-infrared radiation. 

It is worth mentioning the physical meaning expressed by Eqs. (35), 

(36), and (37) about the contribution of the polariton modes to the 

... i 

, 
.i 

.. 
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second order nonlinear susceptibility. We can think the difference 

frequency generation as an induced parametric process, or as an induced 

three photon process. A photon of wI is converted into two lower 

frequency photons of w2 and w3 • The laser beam at frequency w2 is used 

to enhance, or induce the conversion. The physical picture of this 

conversion can be illustrated when the far-infrared frequency w3 is the 

same as one of the polariton modes of the mixing crystal. In this 

case, a photon at frequency wI is scattered to become a photon at lower 

frequency w2 (like Raman scattering) and excites a polariton mode, 

which radiates far-infrared. The nonlinear coefficient responsible for 

the difference frequency generation is proportional to the product of 

the Raman scattering cross-section and the radiation efficiency of that 

polariton mode. The term included in the summation in Eq. (35) has 

this physical meaning. Note that d
Sj 

in Eq. (36) can be negative or 

positive. The contribution of the polariton modes to the second order 

nonlinear susceptibility can be constructive or destructive. Note also 

that the oscillator strength, Sj' of the polariton mode plays a co~ 

plicated role in its relation to the far-infrared generation from the 

mixing experiment. It is contained both in the nonlinear susceptibil­

ity and the far-infrared absorption constant. 

Noncollinear phase-matching is possible in any crystal which pos­

sesses anomalous dispersion between the incident laser radiation and 

the far-infrared difference frequency radiation. Optically isotropic 

crystals as well as crystals with birefringence can be used to achieve 

noncollinear phase-matching. All three waves involved are usually 

polarized in the same direction. The index of refraction of the far-
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infrared radiation is usually quite large sO,that a corner of the mixing 

crystal is chopped off in order to facilitate the far-infrared collection 

(see Fig. 12). The two input beams cross with an angle and the far-

infrared radiation comes out in a different direction making the exact 

detailed theoretical description even more difficult than the collinear 

phase-matched case. A heuristic theory which contains the major 

physical effects and is adequate to explain roughly the experimental 

results can be obtained from,a modification of the collinear phase-

matched case. 

We assume that Eq. (39) is true for the nonlinear phase-matched case 

except that ~ is replaced by i
eff 

which represents the effective crys­

tal length through which the three waves involved really interact. I A 

simple analysis will show that Eq. (39) is only valid at the phase~ 

matchin~ angle for the noncollinear case. The other physical conditions--

the double refraction, the boundary conditions, the dispersion of the 

dielectric constant and the second-order nonlinear susceptibility can 

be argued as in the collinear phase-matched case. But the effects of 

finite far-infrared linewidth and the divergence of input laser beams 

on ~k in Eq. (39) take different forms. Under nonlinear phase-

matching conditions, the divergence of the input laser beams causes 

a nonvanishing ~k in Eq. (39). From Fig. 9(b), we obtain 

(40) 

A 

where 0 isdi vergence angle and <P is the angle between Kl and k
3

• 

Equation (40) indicates the importance of the laser divergence under 

phase-matching conditions. In the dye laser experiment using LiNb0
3

, 
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-1 
we obtain ~k = 137 cm which is much larger than that due to finite 

far-infrared linewidth whose contribution to ~k in Eq. (39) can be 

expressed as 

(41) 

For the derivation of Eq. (41), see Fig. 9(b). 

B. Experimental Techniques 

1. Dual-Frequency One Dye Cell Scheme 

Figure 10 shows the detailed experimental arrangement using a 

dual-frequency dye laser. 45 A Glan Thomson polarizer (GTP) with anti-

reflection coatings was used inside the laser cavity to divide the 

beam into two orthogonally polarized components. Two 312 mm echelle 

gratings operated in the Littrow configuration in the 7th order were 

used for feedback and independent frequency tuning of the two polariza-

tion components. The gratings were aligned correctly to the output 

mirror using a He:Ne laser. The use of a single dye cell and an output 

mirror ensured that the two output laser beams were well overlapped 

spatially. Fine tuning for spatial overlap was achieved by observing 

the burn spots of each laser in the focal plane of a lens. Temporal 

overlap of the beams requires equalizing the net gain in the two arms 

of the cavity. A ruby laser beam circularly polarized or linearly 

polarized in a direction at 45° from the GTP axis was used to pump the 

dye cell (DTTC iodide in DMS046 as in Bradleys47 single frequency dye 

laser) • 
2 . . 

The dye cell was a I cm Bechman spectrophotometer cell. The 

dye concentration was not critical; however, it was adjusted to give 
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20% transmission for low level light at 6900 A. Temporal overlap 

could be optimized by modifying the relative gain of the two arms with 

a microscope slide inside the cavity. We estimated the grating re-

flectivity to be 40% based on the reflectivity in the 8th order auto-

collimation for a He:Ne laser. The output mirror had 70% reflectivity 

at dye laser frequencies. With a 30-mw, 30-ns ruby pumping beam the 

dye laser output had a peak power of 600 kW and its two wavelengths 

could be tuned independently from 8100 A to 8400 A as verified by 

an 1-1/2 meter Jarrel-Ash spectrometer. The linear polarization of the 

output beam was pure to within 10% and the two polariz~tions of the 

beams were not mutually orthogonal. A lens with 75 cm focal length 

was used to examine the focal spot size of the laser beams and yielded 

a spot radius of about 1.5 mm. This implied that the laser output had 

a half angle divergence of 2 milliradian. The nearly elongated spatial 

profile foreach beam indic~ted that the laser transverse mode was not a 
: 

single mode but multi-mode. The lens with 75 cm focal length was used 

to focus the beam on the crystal which was placed 70 cm from the lens. 

In order to reduce statistical noise due to laser fluctuations, 

the far-infrared signal was normalized against the sum-frequency signal 

generated by reflection from a (110) surface of an InAs crystal, which 

has a negligible dispersion in our frequency range. Discrimination 

against the second-harmonic signa148 was achieved by orienting one 

laser field parallel to [001] crystal axis which was perpendicular to 

the plane of incidence. The other laser field was arranged parallel 

to the plane of incidence and had no component along [001]. Since the 
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InAs crystal has a cubic symmetry (43m), the polarization of the sum 

frequency signal generated in this configuration by /2) and x(2)was 
14 25 

perpendicular to [001]. The second-harmonic signal generated by xj~) 

was polarized parallel to [001] and was rejected by a polarizer. Seven 

cm of a saturated solution of CUS04 was used to filter out the laser 

light. The sum frequency signal was detected by an S-5 photomultiplier. 

The intracavity microscope slide (Fig. 8) used to adjust the relative 

gain of the two arms of the cavity was used to couple out a fraction 

of the orthogonally polarized beams for sum-frequency generation. 

The dual-frequency one dye-cell scheme was very easy to operate 

for the forward and backward collinear far-infrared generation. It can 

be used for the noncollinear phase-matched experiment by plac~ng 

another Glan Thomson polarizer right after the laser output mirror 

to separate two beams spatially. After the polarization of the WI 

beam is rotated 90°, the two beams can be combined by a prism (see 

Fig. 12) • 

2. Two-dye-cell Scheme 

The far-infrared generation can of course be achieved by using 

two separate dye lasers. In fact, two-dye-cell scheme was used before 

the idea of the one-dye-cell scheme was well developed. Figures 11 

and 12 show experimental schemes which use two dye cells. The former 

was for the backward and forward collinear phase-matched experiment, 

the latter for the noncollinear phase-matched experiment. In Fig. 11, 

the ruby beam experimental set-up which was omitted in both Figs. 10 

and 12 was drawn for the purpose of completeness. It consisted of a 
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Q-switched ruby oscillator laser rod and the amplifier laser rod which 

were both 4-inches long and their diameters were 5/16 inch and 3/8 inch, 

respectively. Two sets of two linear lamps housed in a double ellipse 

reflector were used to excite the oscillator and the amplifier ruby 

rods respectively. The oscillator lamps discharged about 555 Joules 

and the amplifier lamp 750 Joules. The discharge of the amplifier 

lamps should precede that of the oscillator in order to have high gain. 

In our experiment, the lamps of the oscillator and the amplifier were 

fired at the ~ame time so that the ruby laser power was only doubled 

by the amplifier. The total ruby laser power was about 30 MW. Half 

of the vertically polarized ruby beam was used to pump a dye laser 

,(as C2 in Fig. 11) whose polarization was also vertical. The ruling 

grooves on the grating reflect more light with its polarization parallel 

to them rather than perpendicular. Hence the ruling grooves on the 

grating were always arranged to be parallel to the polarization of the 

pump beam. The other half of the ruby beam with its polarization ro­

tated 90° by a pair of Fresnel rhombs was used to pump another dye 

laser. The dye lasers with orthogonal polarizations were then combined 

by a G1an Thomson polarizer. Again a 1ense with 75 cm focal length 

was used to focus the beams on the crystal which was 70 cm from the 

1ense. About 8% of the focused beam was deflected by a microscop!i:c 

slide to generate su~frequency signal on the lnAs surface for normal­

ization. 

Figure 12 shows a two-dye-ce11 scheme used for the nonco11inear 

phase-matching experiments. The ruby beam was split to pump the two 

dye cells. The polarizations of the two output dye lasers were 
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parallel. The microscope slides were used to couple out part of the 

energy from each beam. Two prisms were used to deflect the coupled-

out WI beam whose polarization was rotated 90° by a pair of Fresnel 

rhombs. The coupled-out beams were combined by a Clan Thomson polarizer 

and focused to generate the sum-frequency signal for normalization. 

Two lenses with 80 cm focal length were used to independently focus the 

beam. The mixing crystals were 75 cm from each lens. A third· prism 

was used to deflect the focused W2 beam which beat with the focused 

WI beam in the crystal to generate far-infrared radiation. Non-

collinear phase-matching was achieved by the coupled rotation and . 

transition of the prism. Only one piece of LiNb0
3 

(a 4 mm cube with 

a corner cut off) was used for the noncollinear phase-matching experi-

ment. 

3. Far-infrared Detection 

-1 
Far-infrared signals in the 20 to 95 cm range were detected with 

29 an n-type lnSb detector (see Fig. 4) operated at 1.4°K in a 14.5 kG 

t · fi ld hi hIt peak49 around 95 cm-l . magne 1C e w c causes a cyc 0 ron resonance 

-1 -1 50 In the 95 cm to 200 cm range,.a Ge:Ga photoconductive detector 

[see Fig. 5 (a)] at 4.2°K was used. The detector bias and the current-

measuring operational amplifier is shown in Fig. 5(b). Black poly~ 

ethylene sheets with total thickness of 0.75 mm were used to prevent 

laser beams from reaching the far-infrared detectors. For the forward 

collinear and noncollinear phase-matching experiments, a l-cm diameter 

evacuated brass light pipe with a black polyethylene window which was 

0.5 cm away from the mixing crystal was used to guide the far-infrared 

radiation for detection. . The L-shaped brass l~gth pipe had a brass 



-40-

reflector at the elbow-bend. To observe the backward collinearly 

phase-matched signal, we added a right angle bend to the light pipe. 

The dye laser beams passed through a 1/8-in. hole in the right angle 

bend and hit the crystal mounted near the mouth of the light pipe. The 

far-infrared radiation was then collected from the back (laser beam 

entrance side) of the crystal. There was about 5 cm of air in the 

collection path. The electric signal from the amplifier and the 

signal from the photomultiplier (representing the sum-frequency signal) 

were displayed on a dual beam oscilloscope where we took the picture 

of the two signals simultaneously. The ratio of the two signals was 

then computed. 

The instrumental function (the sensitivity of the filter-detector 

15 19 system) was measured by conventional Fourier transform spectroscopy , 

51 using, as a reference, a Golay cell with a diamond window having a 

flat response. The far-infrared power detected from the mixing ex-

periment versus frequency was then divided point by point by the instru-

mental function to obtain the true relative power spectrum. In the 

measurement of the instrumental function, the mercury arc source, the 

interferometer, and light pipe system were the same as for the Golay 

cell and the far-infrared detectors. The only difference was the 

value of An, (where A is the detector area and n is the detecting 

solid angle) which was 0.026 for the Golay cell and 0.079 for the 

Fe:Fa detector. We assumed the difference An value did not affect 

the frequency response. 

The absolute far-infrared power at 125 cm- l from the forward col-

linear phase-matching experiment was measured to be 4.85 mW using the 

.~ , 
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Ge:Ga detector. The discussion of the calibration of this detector 

is as follows. The responsi~ity50 curve of the Ge:Ga versus frequency 

starts at around 80 cm-l has a peak at 95 cm-l , then decreases 

steadily to a negligible value at about 200 cm-l • This curve could 

be simplified by assuming that the detector's true responsivity 

-1 1 at 125 cm was constant over the frequency range from 85 cm-to 

-1 190 cm The Michelson interferometer (with 1/2 mil mylar beam 

splitter combined with Yoshinaga filter), which had output radiation 

from 50 to 200 cm-l was used as the source for the Ge:Ga detector 

and the Golay cell. At the zero path of the Michelson interferometer, 

the Ge :Ga detector had 0.96 mV output, while the Golay cell had 0.2 V 

output. The Golay cell has a flat response and the responsivity is 

known from the manual to be 8.3 x 105 v/watt. 5l From this result and 

the fact that the Ge:Ga detector had three times larger An value but 

detected one-third less radiation because of sensitivity cut-off, we 

calculated that the responsivity of the Ge:Ga detector including the 

0.75 cm black polyethylene filter was 2 xl0 3 V/watt. The electrical 

noise of the Ge:Ga detector which was biased at 1.35 V (the same as 

used in the laser mixing experiment) was measured to be 1.2 x 10-7 v/IHZ 

by a lock-in amplifier at a chopping frequency of 280 Hz. The PAR 

type D preamplifier used in the lock-in amplifier did not contribute 

to the dominant noise at this chopping frequency and the Ge:Ga 

resistance of 240 kn. The noise figure of the preamplifier under 

this condition was less than 0.1 dB. 
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From these results we concluded that the electrical noise equivalent 

power of the Ge:Ga detector was 6 X10-
11 w/v1iZ. If we assumed that the 

Ge:Ga detector absorbs 50% of the incident radiation and reflects about 

50% with its two surfaces (n=4) , then its noise equivalent power in­

-8 cluding the 500 kHz detection bandwidth would be 8.48 x 10 watts. In 

the mixing experiment, the 2 ~s response time of the detection 

system tended to average out the 30 os far-infrared pulse. The minimum 

detectable far-infrared peak power generated should be equal to 

8.48x10-8 watts X2 ~s/30 ns = 5.86 ~watts. This value had to be corrected 

52 due to the 0.75 cm black polyethylene filter which attenuated the 

-1 125 cm radiation a factor of 8.65 and the light pipe attenuated 

a factor of 3 by observation. The real minimum detectable far-infrared 

. -1 
peak power generated at 125 cm by the mixing experiments was 0.147 mW. 

We observed that the far-infrared signal to noise ratio geQ.erated in 

-1 
LiNb03 at 125 cm was 33. 

-1 The above absolute power calibration at 125 cm would be invalid 

if in the laser mixing experiment, the operational amplifier shown in 

Fig. 5(b) induced more noise than the Ge:Ga detector. We biased the 

detector at 1.35 V for the best measured signal to noise ratio. The 

peak-to-peak noise voltage V at the amplifier output was 2 mV. We pp 

replaced the detector by an equivalent room temperature resistor and 

observed V = 0.3 mV. Hence, we concluded that the detector-system pp 

(Ge:Ga) was detector-noise limited. 

However, in using·the InSb (Put ley) detector we observed 

V = 0.3 mV, the same for both the detector and the equivalent room pp 
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temperature resistor. Hence, for the system the noise was limited by 

the amplifier. -1 
As a check, the 95 cm signal generated by the non-

collinear phase-matching experiment was detected by two detector 

systems. The InSb detector system yielded a signal to noise ratio 

three times higher than that of the Ge:Ga detector system whose 

-1 -1 
responsivity at 95 cm was about twice higher than at 125 cm • This 

implies that the Ge:Ga detector is very noisy. This excess noise 

might also come from the electric contacts which were made by using 

indium solder. 

4. Crystal Preparation 

Table I describes the LiNb03 crystals used for the experiment. 

Table II shows the other crystals used in the experiment. In order 

to measure the resistivity (Q/cm) of the semiconductor samples, we 

used GaIn alloy to wet the crystal edges for making the electrical 

contacts .. The ZnS crystal was a long strip 1 mm wide which would not 

accept all the input beams. This factor was included in the correc-

tion of the far-infrared power measurement shown in Table III. Two 

CdSe crystals with different resistivities were used for theexperi-

mente No signal greater than noise was observed in either case. Note 

that the resistivity of the semiconductors is important in the mixing 

experiments because it is related to the free electron plasma 

oscillation which limits the lowest far-infrared frequency which can 

be generated. It is also related to the far-infrared refractive index 

which affects the phase-matching. 
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5. Phase~Matching Methods 

Since LiNb0
3 

is a negative birefringent crystal (n > n , where 
o e 

n are the indices of refraction of the ordinary and extraordinary 
o,e 

rays respectively), the forward collinear phase-matching achieved by 

arranging the WI beam along the o-ray and the W2 beam along the e-ray 

(WI >W2 , Ikll > Ik 2 1) generated the far-infrared o-ray. Backward col­

linear phase-matching obtained by positioning the WI beam in the e-ray 

and the W
2 

beam in the o-ray (Wl >W2 but Ikll<lk21) also generated a 

far-infrared o-ray. The other four mixing crystals shown in Table II 

are positive birefringent crystals (n <n ). The WI beam in e-ray 
o e 

and the W
2 

beam in o-ray was used for the forward collinear phase­

matching which generated the far-infrared o-ray. In all the collinear 

phase-matching experiments using the five crystals, the 

, (2) 
second order nonlinear susceptibility Xeff was equal to 

effective 

(2) 
X24 sine, where 

e is the phase-matching angle. In doing the noncollinear phase­

matching experiment in LiNb0 3, X~~~ = X~;) was used which generated 

the far-infrared e-ray. The 'two dye laser beams were required to 

cross at an angle ~ as shown in Fig. 12. The e-ray far-infrared came 

out another direction as shown in Fig. 12. 

C. Results of Experiments and Comparison with Theory 

For quick reference, a summary of experimental results is presented 

in Table III which shows the frequency tuning range and the power of 

the far-infrared radiation generated in five different crystals. 

Typical far-infrared wavelength measurement by a Fabry-Perot inter-

feromet~r with metal mesh reflectors is shown in Fig. 13. This 
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measurement was the earliest taken of the experiments with the 

experimental scheme shown in Fig. 11. But the two gratings were not 

the same, one echelle grating with 3l2/mm rulings operated on the 

7th order, and the other with l200/mm rulings operated on the first 

order. The far-infrared line width produced in this case was different 

from that with two 3l2/mm gratings which were used for the rest of 

the experiment. Hence, no theoretical calculation for the Fabry-Perot 

fringes was attempted because we did not know the linewidth. The 

purpose of this experiment was to calibrate the difference in wave-

length of input laser beams measured by a Jarrell-Ash 1.5 m 

24 spectrometer. A photographic plate was taken inside the spectrometer 

to register the two laser wavelengths, one fixed and the other changed 

with the tuning of the laser grating. Hence, the difference frequency 

W3 versus the grating tuning was established. The value of W3 

calibrated in this way had the estimated error of less than ± 2 -1 cm 

The LiNb03 crystals used in the collinear phase~matched exp~riments 

(see Table I) were cut with <P = 0° (<P is the angle between the a-axis 

and the plane containing the c-axis and k-wavevector). In this con-

figuration, the nonlinear polarizations for far-infrared o-ray and for 

far-infrared e-ray have the following forms from Eqs. (17) and (18), 

respectively 

* The rectifying term represents the contributions from ElEl 

which are centered at zero frequency. In the experiment, only the 

(41) 

(42) 
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phase-matched o-ray generation was explored. The polarization of 

far-infrared output was checked by a grid polarizer. Note that be-

cause the far-infrared o-ray index of refraction is different from 

that of e-ray, the phase-matching condition can be satisfied for one 

of them but not for both simultaneously. The equations indicate that 

the phase-matched o-ray power is greater than the phase-matched e-ray 

power (X~~) ~ 7 X~~» with the exception of the small e case. Also 

the e-ray is difficult to distinguish from the laser rectifying 

signals. 

The theoretical calculations for the phase-matching angle versus 

the phase~matching frequency is shown in Fig. 14 for LiNb0
3

33 ,34 

(both FCPM and BCPM), ZnO,53,54 ZnS,55,56 and CdS53 ,57 (FCPM only). 

Experimentally, under the condition that no precise angle determination 

was attempted for LiNb0
3 

and the uncertainty in the measurement of W
3

, 

we observed that the results were quite well described by this 

theoretical calculation from 20 to 127 cm-l In ZnO, the observed 

phase-matching frequency of 190 cm-l at e = 900 agreed well with the 

theoretical calculation. However, in CdS the observed phase-matching 

-1 frequency of 180 cm at e = 90 0 was lower than that of the predicted 

value. This discrepancy might be due to the fact that our CdS crystal 

has a low resistivity of 1.5 Q/cm so that the far-infrared index of 

refraction was changed due to the free electron plasma oscillation in 

the crystal. 

2 x ib4 Q/cm. 

Note that the ZnO crystal has high resistivity of 

-1 The observed phase-matching frequency of 91 cm at 

e = 90 0 for ZnS was also lower than the predicted value of 120 cm-l 

However, in calculation of ZnS, the dispersion of the far-infrared 
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refraction index was not included (E = 8.6)56 due to nonavailability 
o 

58 of the experimental results. 

Figure 15 shows two phase-matching curves. The inner curve was 

obtained in a 1.6-mm thick LiNb03 with 8 = 16°. The forward phase­

-1 matching frequency was at 21 cm . Another piece of 0.5 mm thick 

LiNb0
3 

crystal was cut from the same boule at 8 = 90° for the far­

infrared transmission measurement by a Michelson interferometer. From 

the Fabry-Perot transmission pattern of this crystal and the known 

far-infrared o-ray index of refraction (n = 6.6), we deduced that the 

-1 -1 o-ray far-infrared absorption constant a 3 was 14 cm at w3 = 21 cm • 

The outer curve in Fig. 15 shows the backward phase-matching curve 

-1 
at 56 cm in LiNb03• Another two forward phase-matching curves in 

LiNb0
3 

are shown in Fig. 16. Both Figs. 15 and 16 were obtained by 

fixing the wavelengths of the input beams and rotating the mixing 

crystal. The abscissa ~enoted the angle of rotation inside the crystal. 

From Eq. (39), we obtained the following formula for the far-infrared 

power (in watts) 

-a ~ -a /2 .~ 
3 3 [1 + e -2cos(6k(8)~)e ]d(6w3) 

(43) 

where A is a constant and the integration is over the far-infrared line-

width. The 6k(8) in Eq. (43) can be expressed as 

~k(8) (44) 
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The equations (43) and (44) indicate that in an ideal case either the 

far-infrared linewidth or the absorption constant a 3 can be deduced 

from the phase-matching curves if the other value is given. Computer 

calculations 24 fitting the forward collinear phase-matching curve 

obtained by a 1.6-mm thick LiNb03 crystal at e = 16° (phase-matched 

-1 -1, 
at 21 cm ) and a 3 = 14 cm (measured) yielded the far-infrared line-

-1 
width of 3 cm • Both the experimental result and the theoretical 

calculation is shown in Fig. 15. When a3~ »1 and a 3 » (n
3

±nO)6w3/c 

(+ for BCPM, - for FCPM) , P
3

(e) in Eq. (43) reduces to 

A sin2e 
(45) 

where B is a constant related to the center of the phase-matching 

curve. This situation represents the experimental results shown by 

the outer curve of Fig. 15 and the curves of Fig. 16. In order to 

obtain the absorption constant a
3 

and its standard deviation from 

the phase-matching curve, the quantity 

"" [P
j 

2 _ P 2 ( 8 . ) 
£J 3 J A,B,a3]/(m-3) 
j 

(46) 

was minimized
24 

with respect to the parameters A, B, and a
3

, where 

P. was the experimentally observed far-infrared power and P 3 (8.) A B 
J J "a3 

was the calculated value at 8=8. respectively and m was the number 
J 

summed over j. The Q represented the power standard deviation A,B,a3 
which was inverted to give the standard deviation24 ,59 of the absorp-

tion coefficient. Figure 17 summarizes the absorption constants and 

-- i , 
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their standard devistions from the forward collinear phase-matching 

experiments in LiNb0
3

• The solid curve in that figure shows the ex­

perimental results obtained by the far-infrared transmission measure-

33 -1 ment of Bosomworth for w3 ~ 70 cm and the infrared refaection 

26 -1 measurement of Barker and Landon for w3 > 70 cm . The deviation 

of the absorption constant from the different samples with different 

60 ways of measurements has been reported by Ushioda et a1. in the 

crystals of GaP, ZnO and Litfu03 (A1 mode). We he1ive the deviation 

as shown in Fig. 17 is real in our sample. The sharp rising around 

-1 
w3 = 65 cm might be directly associated with two phonon density of 

states. 60:Note that, from Eq. (43), when ltok(erl evaiuated at the 

phase-matching angle does not vanish and is greater than due 

to the laser beam divergence and/or the finite bandwidth of w3,the 

phase-matching curve is no longer a sensitive way to measure the far-

infrared absorption constant. We were not able to deduce the absorp-

tion constant 0.
3 

for the e-ray from the mixing experiment. The FIR 

(2) 
e-ray signal generated with FCPM via X22 was too weak '[see Eq. (42)] 

and the values of 0.
3 

deduced from the NCPM results were rather in­

accurate because of the 4-m rad laser divergence (see Section IIA). 

The far-infrared power as a function of w3 generated in LiNb0
3 

for the collinear phase-matched (both forward and backward) and the 

nonco11inear phase-matched schemes after the correction of instrumental 

functions is shown in Fig. 18. The solid curves represent the cor-

responding theoretical calculations using the Eq. (39) whose validity 

was discussed in detail in Section IlIA. In using Eq. (39), we 
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carried out the avera~e only over the phase-matching factor I 

(a
l
= a

2 
~ 0), since the rest of the equation varies slowly as a function 

-1 
of w3 within the bandwidth of 3 cm Note that the main contribution 

to ~k in I is due to the finite far-infrared bandwidth for FCPM and 

BCPM and due to the divergence of the input laser beams for NCPM (see 

Section InA). For the calculation of the dispersions of X(2)(X(2)(O)= 
24 24 

3.2 X 10-6 (2) (2» 3 -6 e.s.u. for CPM) and X33' (X33 (0 = 3. x 10 e.s.u. for 

NCPM) , we used Eqs. (35), (36) and (37) and the oscillator strengths 

26 of Barker and Loudon and the Raman cross section of Kaminow and 

Johnston, Jr. 6l In calculating the dispersions of n3(0-ray for CPM 

and e-ray for NCPM) we used the data of Bosomworth33 and Barker and 

26 Loudon. For the o-ray, we used the observed values of a 3 shown in 

Fig. 17. Those dispersions were included in the calculation for the 

far-infrared power. 

The theoretical calculation for the FCPM case (see Fig. 18) 

describes the experimental result quite well except on the low fre-

quency side. Now let us take the divergence of the laser beam into 

consideration. From Section IlIA (3) or Fig. 9 (a) , the far-infrared 

radiation spreads a half angle of 11° at 20 -1 w = cm inside the 3 

crystal due to the laser beam divergence effect. If the detector has 

a collection half angle of 45°, this means that only the radiation 

within a cone with a half angle of 6.7° inside the crystal goes to 

the-detector. The generated far-infrared power at w3 = 20 cm-l 

should be 3 times higher than detected. For the same reason,the 

-1 
generated far-infrared power at w3 = 30 cm should be 1.4 times higher 
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than monitored. -1 
For w3 ~ 40 cm ,the far-infrared spreading angle 

is less than the collection angle so that all the radiation is collected. 

The collection angle of 45° is reasonable for the InSb detector (see 

Fig. 4) since no focusing cone was used in front of the detector. 

From the above arguments, we conclude that for the FCPM case, the 

experimental results agree quite well with the theoretical calculations. 

The dip at 65 cm-l is mainly caused by the dispersion of a
3 

which 

h b i ak d 65 cm-l i d h 1 f h as a sorpt on pe s aroun super mpose on t e s ope 0 t e 

-1 26 strong infrared mode at 152 cm 

In the BCPM case, because of the frequency dependent far-infrared 

loss through the hole on the collecting brass light pipe (see Section 

IIIB(3» and 5 cm of air in the collection path, the data were dif-

ficu1t to calibrate precisely. The experimental results did not agree 

well with the theoretical calculation. However, we still see the 

severe drop in power at low frequency side and this might be due 

to the laser divergence effect as in the FCPM case. The theoretical 

calculation curve in the BCPM case, which predicts a factor of two 

times that of the FCPM case, comes close to the FCPM curve on the 

low frequency side. This is caused by the average over different ~k 

values in I (~k from 0 to 82.9 cm-1 for FCPM and from 0 to 165.8 cm~l 

for BCPM including the linewidth effect) in the region where a 3 is 

small. 

In the NCPM case, a 4-nun cube of LiNb0
3 

was used with one corner 

cut off at 68° to let the generated far-infrared out (see Fig. 12). 

Nonco11inear phase-matching of far-infrared generation was achieved 

by varying angles ~ (outside the crystal) and ¢ (inside the crystal) 
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. 33 34 from 0.81° to 4.60° and from 65.11° to 73.08° respectively. ' 

The far-infrared output in this case should be strongly affected by 

the divergence of the input beams. The theoretical curve for NCPM 

-1 in Fig. 18 was therefore the average over f1k from 0 to 137 em , 

which was appropriate for our 4 m rad beam divergence at the crystal. 

With teff = 0.5 mm, it fits the experimental data very well except 

at the point w3 
-1 = 160 em where the signal-to-noise was the poorest 

and where we were near the maximum translation range of the prism 

(see Fig. 12). The steady decrease in the far-infrared signal with 

-1 
w3 above 55 em (where a 3t eff » 1 and teff is not an important 

. 26 
parameter) is due to the increasing e-ray absorption. The decrease 

on the low frequency side is caused by the laser divergence and the 

w32 radiation efficiency factor. Note that far-infrared spreading 

angle (y' as defined in Fig. 9(b» caused by the laser beam divergence 

-1 
is only 5.0° at w3=20 em in this case. The generated far-infrared 

radiation should be the same as detected. 

The NCPM scheme generates more far-infrared power than the FCPM 

scheme for two basic reasons. (2)_ (2) 32 (2) 
First, since X33 = X24 , Xeff for 

FCPM is reduced by a factor of sine, which decreases at low frequencies. 

Second, the FIR e-ray generated with NCPM has a lower absorption co-

efficient than the FIR o-ray generated with FCPM. 

(2) 
Finally, the dispersion of X24 as a func,tion. of w 3 is shown in 

Fig. 19. The experimental values were obtained from the FCPM results 

shown in Fig. 18. The standard error bars were deduced from the 

observed power deviation and the standard deviation of a
3 

shown in 
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Fig. 17. For the theoretical calculation, we used Eqs. (35), (36), and 

(37) and the data as listed in Table IV. The agreement between the 

experiment -and the theoretical calculation is reasonable. The dis­

(2) 
persion of X33 was not plotted because we could not deduce the values 

of 03 for the e-ray in the mixing experiment. 

D. Conclusions and Discussions 

1. Conclusions 

We have. investigated the phase-matched far-infrared generation 

by optical mixing of two dye laser beams under three different experi-

mental schemes in five different crystals. We used sum frequency 

generation by reflection from an lnAs surface for normalization. Using 

LiNb0
3 

as a mixing crystal, we have observed the tunable far-infrared 

-1 -1 
radiation from 20 to 127 cm in the FCPM scheme, from 20 to 95 cm 

in the BCPM scheme, and from 40 to 160 cm -1 in the NCPM scheme. The 

observed far-infrared power as a function of w3 in both the FCPM and 

NCPM schemes agreed quite well with theoretical calculations derived 

from the plane-wave approximation with several modifications which 

were relevant to our experimental conditions. The observed far-

infrared power as a function of w3 in the FCPM scheme did not agree 

with the theoretical calculation because of the uncertainty and 

difficulty in our far-infrared collection system. We conclude that 

the finite laser beam divergence has detrimental effects on the far-

infrared generation in the NCPM scheme and in both the FCPM and BCPM 

schemes at low frequencies. We have also investigated forward col-

linear phase-matching in ZnO, ZnS, CdS and CdSe at selected frequencies, 
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among which ZnO is the best crystal. 

We have demo~strated a way of measuring the FIR absorption con­

-1 stant as high as 845 cm using the phase-matching curves in the FCPM 

and BCPMexperiments. Our measured FIR absorption constants with FCPM 

deviated from the FIR transmission measurement of Bosomworth and the 

infrared reflection measurement of Bark"er and Loudon. We also observed 

-1 the FIR bandwidth of 3 cm from the phase-matching curve with FCPM. 

We have deduced the dispersion of X~~) of LiNb03 from the FCPM experi­

ment. It was consistent with the theoretical calculation. 

Compared with the FCPM scheme, the NCPM scheme requires only one 

crystal for operation over a wide frequency range but needs two 

angular adjustments to orient the crystal for phase-matching. It 

generates more FIR power than the FCPM scheme in LiNb03 • The single­

dye-cell experimental scheme (see Fig. 10) which could be used for 

both the collinear and noncollinear phase-matching was rather single 

and very convenient to operate in comparison with two-dye-cell schemes. 

Compared with the other FIR generation experiments using ~02 lasers, 

our dual-frequency one-dye-cell scheme is attractive because of the 

ease with which temporal and spatial overlap of the two input beams 

is obtained. It also has the advantage of a large continuous tun-

ability and the use of room temperature mixing crystals. 

2. Discussion 

60 Ushioda, et al. has reported the observation of the structure 

of the FIR absorption constant in GaP, using small angle Raman scatter-

ing. He associated this structure with the two phonon density of 
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states. In this thesis, we lack the identification of the sources 

-1 
which caused the strong FIR o-ray absorption around w3 = 65 cm • It 

was either due to the local phonon modes of certain impurities or 

incurred by the multi-phonon processes. We could not identify its 

relation with two phonon density of states since, to the best of my 

knowledge, no neutron scattering experiments or other experiments have 

been done to find out the phonon dispersion curves of LiNb0
3

• Further 

research is needed to see if using the difference frequency generation 

experiment one can extract the information of the two phonon density 

of states for the mixing crystals. 

In this thesis, we have not answered the question of whether the 

FIR diffraction might shorten the crystal coherence length as derived 

from the plane-wave approximation. Another experiment, focusing 

two TE~ Gaussian laser beams with narrow linewidth, is worth per-

forming. The observation of the FIR output as a function of how hard 

we focus the beams should help to resolve this mystery. 

There are opportunities for further research along the following 

lines: 

a. As a device to do FIR spectroscopy 

The FIR bandwidth of 3 cm-l can be narrowed by applying intra-

cavity beam expanding telescopes to effectively use larger areas of 

the gratings. About a 0.1 A bandwidth62 of the dye laser beam can 

be achieved by using a diffraction grating and a telescope inside the 

cavity. For further narrowing, in addition, a tilted Fabry-Perot 

etalon should be placed inside the cavity with a sacrifice of laser 
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output power. The use of better far-infrared detector is possible and 

rewarding. A ~osephson junction bolometer, which has an NEP (noise-

-15 r.- .. 63 
equivalent-power) as low as 5xlO W/YHZ reported by Clarke, et al., 

appears very promising. A germanium bolometer with an electrical NEP 

of 2xlO-14 w/IHZ 64 will improve the far-infrared detection about three 

orders of magnitude provided that the amplifier noise can be improved 

to that degree also. 

Since the.laser technology is developing rapidly, there always 

exists the opportunities of using better laser sources for the mixing 

experiment. We have verified that the dual-frequency dye laser system' 

shown in Fig. 10 can be operated with flashlamp-pumped rhodamine 6 G 

dye laser, although the dye laser output of our system was still in-

sufficient to generate detectable FIR in the mixing experiment. How-

ever, a flashlamp-pumped dye laser system of 100 kWpeak power and 

1 llS pulseWlfliftibf;'-could yield the same FIR signal for each pulse as our 

laser pumped system with 600-kW peak power and 30 ns pulsewidth. 

Because a repetition rate greater than 1 pulse/sec is possible with 

such a dye laser, the dual-frequency single dye cell scheme described 
I . 

here should ~ke a very useful source for FIR spectroscopy. 

It is also a matter of time and effort to develop mixing crystals 

with better properties. An ideal crystal would be transparent to the 

lasers, have very sma.!l absorption for the far-infrared, have large 

nonlinear susceptibilities (or large electro-optical constants), be 

easily obtainable in good quality large crystals, and be highly 

resistent to optical damage. It has been reported that the ammonium 

65 
oxalate crystal [(NH4)2C202·H20] has electro-optical coefficients 
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-8 
r 41 = 680, r 52 = 980, and r63 = 750 (x10 e.s.u.) and the strontium 

66 
barium niobate crystal (srO.7BaO.25Nb206) has electro-optical co-

-8 
efficient r33 = 4020X10 e.s.u. Compared to LiNb03 with 

-8 r33 = 92.8x10 e.s.u., these two crystals should improve the far~ 

infrared output two to three orders of magnitude if their FIR absorption 

constants are less than that of LiNb03• A piece of ammonium oxalate 

crystal was grown and, though it was not good enough in optical quality , 

for the mixing experiment, it was used for a 'rough FIR absorptiori 

measurement. Its FIR absorption constant was much lower than that of 

-1 -1 
LiNb03 at low frequencies (e.g., a 3 = 10 cm at w3 = 42 cm ). Another 

advantage of using crystals of large nonlinear susceptibility is that 

the far-infrared radiation can be generated with reasonable power output 

I 
without phase-matching in the collinear scheme. Thus, the angular 

rotation of the mixing crystal for phase-matching can be avoided and 

only the tuning of the laser grating is needed to achieve the tunable 

far~infrared radiation. Auston et a1.l2 have used the reduced 

LiNb03 (by N2 and H2 mixture) to generate tunable FIR radiation from 

2 to 50 cm-1 in the collinear scheme without phase-matching. The 

second-order nonlinear susceptibility of the reduced LiNb0
3 

is 

enhanced by the strong absorption of the laser beams due to the dipole 

moment of the absorbing centers upon excitation and the pyroelectric 

polarization which accompanies the subsequent therma1ization of the 

excitation. Looking for better crystals is an area of further research. 
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b. The investigation of the nonlinear optical properties of materials. 

8 Van Tran Nguyen and T. J. Bridges have observed an enhancement of 

second-order nonlinearity when the far-infrared difference frequency 

w3 was tuned to that of the spin-flip (magnetic dipole) mode caused 

by the conduction-electron spin in the magnetic field. In the experi-

ment, they mixed two CO2 lasers in an n-type InSb in a strong magnetic 

field. Terrence L. Brown and P. A. Wolff have specifically explained 

this nonlinear spin-resonance effect caused by the spin-flip mechanism. 

Note that our calculation of the dispersion of X(2) using Eqs. (34), 

(35), and (36) fo~ the polariton modes can be generalized for this 

case and for the anti-ferromagnetic resonance case. As pointed out 

67 by Shen, the effective dielectric constant for the spin-flip case 

(InSb in magnetic field) can be 

(£) = £ (1+4.1T )(1» ~ £ 
3 eff 3 "m 3 

where £3 is the complex dielectric constant without magnetic field 

-1 (1) 
including a polariton mode at wT = 183 cm , ~ is the magnetic 

. 0 

susceptibility, N is the number of condution-electron per unit 

(47) 

volume, g is the Laudon g-factor, ~ is the Bohr magneton and wol is 

the spin-flip frequency. In evaluating the corresponding oscillator 

strength for the spin-flip mode, we set (£3)eff in Eq. (47) equal to 

Sw 
o 

(w-w )+H 
o 

(48) 
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The equations (47) and (48) imply that 

Note that S includes E3 in Eq. (49). Using Eqs. (35), (36) and (49), 

we obtain the second-order nonlinear susceptibility on the spin-flip 

resonance in the form 

1 
2 

Sd e w 
= -- ~+ d 

41T r ~.M. 
(50) 

where ~.M. denotes the nonlinearity when there is no magnetic field 

present. The spin-flip resonance nonlinearity denoted by ,the first 

-6 term on the right hand side of Eq. (50) is equal to 4.3xlO e.s.u. 

-1 -1 -1 taking g = 40, r = 0.1 cm ,w = 90 cm ,w= 1000 cm ,n ~ n , 
o s p s 

n
T

. = 0 (at l5°K) , N = 2.2xl015 cm-3 , and Sex'j /LdQ = 0.2xlO-23 cm-lsr-l~8,69 
J 

This value is in good ~greement 

-6 

-6 with Brown's result of 4.lxlO e.s.u. 

and Shen's result of 4.5xlO e.s.u. while ~.M. is 
-7 equal to 5)(10 

Another interesting case is the enhancement of second-order non-

e.s.u. 

. -1 
linearity due to the anti-ferromagnetic resonance of 37 cm in CoF

2
• 

70 -1 The absorption constant a
3 

of 150 cm on resonance was measured 

by far-infrared laser spectroscopy. From Eq. (48), we can relate a 3 

to the oscillator strength by 

1 

rc; 
w o 
c 

1 = --
w 

o 
c 

w 
o Sf (51) 

where Im(E/eff represe1ltls the imaginary part of (E 3) eff. We evaluate 

-1 -1 71 .' 72 
S = 0.085 by taking Wo = 37 cm ,r = 1.35 cm, and E3 = 6.1. 

8 
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In order to evaluate d ej in Eq. (36), we take the values np = ns ' 

4 -1 
= 1.58xIO em (He:Ne laser), and S , ./LdQ = 

ex J 
nT ~ 0 (T = 4°K) , w 

. s 
J -9 -1 -1 73 0.27xlO cmsr The second-order nonlinearity on resonance 

Sde Wo 
is equal to 5.l3xlO-8 

4n r e.s.u. Since CoF2 is ao,centro-

symmetric crystal, there is no electric-dipole-type polariton mode. 

73 74. . 
The spin-opitcal phonon mode (E) , wh1ch is simultaneously infrared g . 

. -1 
active and Raman active is at the frequency of 256 cm • The 

contribution of that mode to the second-order nonlinearity is estimated 

-8 -1 to be less than lxlO e.s.u. at low frequencies «< 256 cm ). The 

electronic state contribution (e.g. dE in Eq. (36» to the second­

order nonlinearity vanishes because of centro-symmetric crystal in 

CoF2 • Hence, the far-infrared output generated in CoF
2 

around 

w3 = 37 cm-l (near AFMR) will be at least three orders of magnitude 

less than that produced in LiNb03 with FCPM. 

In this thesis, we have demonstrated both in theory and in experi-

ment that we can investigate the second order nonlinearity of the 

crystals using two-laser mixing. Such investigation can be carried 

further and it provides an important guidance to choose better crystals 

to generate tunable far-infrared radiation for the purpose of doing 

spectroscopy. 



Source 

Crystal technology 
(0.5 xO.5x 3 cm) 

Crystal technology 
(4 mm cube) 

Hansen Microwave 
Lab. 

'Ie 

-61-

Table I 

L1Nb03 

e 
15°,25°,35°,45°, 
55°,65° 

with one corner 
cut off 

Thick- Experi-
ness ments 

0.65 mm FCPM & 
BCPM 

NCPM 

1.6 mm FIR line-
width meas-
urement 

Diamond abrasive of 1 ~ size was used for the final optical polishing. 

t ¢ is the angle between the a-axis and the plane containing the c-axis 
and k-wavevector. 



Crystal P(Q/cm) 

* ZXl0 4 ZnO 

* CdS 1.5 

* ZnS 

CdSet 0.1,10 Z 

* Already well polished 
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Table II 

Other Crystals 

e Thickness 

lmm 

lmm 

lmm 

lnnn 

Experiments 

FCPM 

FCPM 

FCPM 

FCPM 

t 
Cleaved from bulk samples and finally polished by Al

Z
0

3 
III abrasive. 
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Table III 

Summary of the mixing experiments on five different crystals 

Crystals 

* ZnO 

* CdS 

* ZnS 

* CdSe 

* 

Tunable range 

20 to 127 cm-1 (FCPM) 

20 to 95 cm-1 (BCPM) 

40 to 160 cm-1 (NCPM) 

~ 190 cm-1 (FCPM) 

~ 180 cm-1 (FCPM) 

~ 91 cm-1 (FCPM) 

~ 150 cm-1 (FCPM) 

Crystal thickness 1 mm 

t Less than the detector noise level 

\ 

" 

.Power (Frequency observed) 

see Fig. 18 

~ twice that of FCPM 

see Fig. 18 

-1 14 mW (190 cm ) 

3 mW (180 cm-1) 

0.74 mW (91 cm-1) 

< 0.15 mwt (150 em-I) 
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Table IV 

The data of infrared and Raman scattering measurements used to calculate 

the dispersion of x~!) in LiNb03• The polariton modes are E modes and 

X~!)(w3=0)=3.74xlO-6 e.s.u. is the value associated with the argon 

laser at 4885 A (not dye laser) which was the input beam for the measure-

ment of Raman scattering cross-sections. 

-1 -1 . 
S/Ddn.l06 

dej·SjXl06 wT. (em ) Sj Yj 
(em ) e.s.u. 

J -1 -1 (em sr ) 

152 22.0 14 3.8 11.0 

236 0.8 12 2.9 1.85 

265 5.5 12 0.54 1.83 

322 2.2 11 0.96 1.48 

363 2.3 33 0.94 1.46 

431 0.18 12 0.39 0.25 

586 3.3 35 2.2 2.2 

670 0.2 47 0.04 0.07 
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CHAPTER II 

I. INTRODUCTION 

The techniques of using piezoelectric transducers to generate 

coherent monochromatic phonons at microwave frequencies become very 

inefficient as the frequency approaches 50 GHz. Because of the can-

cellation of the sound energy produced from different parts of the 

crystal, the effective interaction volume between the electric field 

and the sound wave becomes very small at high frequencies. The small 

effective interaction volume results in a low conversion efficiency. 

The highest frequency of coherent phonon generated by driving a 

piezoelectric crystal in a microwave cavity was at 114 GHz, an experi-

75 ment done by J. Ilukor and E. H. Jacobson. The conversion efficiency, 

-8 however, was lower than 10 • Phonon experiments at frequencies in 

76 77 excess of 50 GHz have generally used incoherent heat pulse techniques ' 

. 78 
or, more recently, phonon fluorescence in superconductors which pro-

vides a relatively intense non coherent phonon source at the energy-gap 

frequency. 

In this chapter, we examine the feasibility of generating high 

frequency coherent phonons in periodic superlattices by optical means. 

Because of the periodicity of a superlattice, coherent phase-matched 

generation of phonons by umklapp processes can occur at frequencies 

which would be prohibited in a homogeneous material. Direct conversion 

of photons into phonon is possible through the first-order interaction 

if the superlatttice is piezoelectric, as suggested by Bloembergen 

79 and Sievers. This is the case in multi-layer epitaxially grown 
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crystals,80,8l in partially oriented sputtered films,82,83 or in 

84 
polytypic crystals as SiC in which a superlattice of periodicity as 

large as 1500 A has been observed. 

The second-order interaction between sound and light involves the 

electrostrictive constants of the medium. In a single crystal or uni-

form medium, the Brillouin and stimulated Brillouin scatterings using 

electrostrictive constants can generate phonons whose highest achievable 

frequency is restricted by the maximum momentum transfer of twice the 

photon momentum. Unless intense laser sources with wavelengths shorter 

than that of ultraviolet light are available, this frequency is usually 

less than 50 GHz. In addition, the phonon spectrum generated by 

Brillouin scattering has a broad bandwidth and a very low intensity. 

By constructing a superlattice, the electrostrictive interaction would 

permit coherent phonon generation by stimulated Brillouin scattering 

or by two laser mixing. Stimulated Brillouin scattering is not 

favorable for high-frequency phonon generation in a superlattice. High-

order umklapp precesses have larger phonon attenuation constants and 

so larger thresholds for stimulated Brillouin scattering than, the 

zero-order process. Unless specially designed cavities are used to 

discriminate against the zero-order umklapp process, stimulated 

Brillouin scattering in a superlattice would thus produce only the 

same low-frequency phonons as in a uniform medium. The only attractive 

way to generate high frequency coherent phonons by the second-order 

process in a superlattice appears to be the electrostrictive beating 

of the two laser beams at their difference frequency. Single crystals 
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are not required for this process, so that superlattices constructed 

b . 82 d i i 83,85 b d y sputter1ng or vacuum epos t on can e use . 

In this chapter, we present the detailed calculations of phonon 

power generated by both first and second order processes. In Section 

II, we discuss the direct conversion of millimeter or submillimeter 

wave photons into phonons at the same frequency in a piezoelectric 

superlattice. Conversion efficiency as high as 10-4 in a lOa-layer 

GaAs:GaP superlattice is achievable. The effect of the random errors 

in the periodicity of the superlattice on the generated phonon power 

was estimated with the assumption that wave functions with Bloch's 

form for both sound and light were still valid. In Section III, we 

calculated the generation of high frequency coherent phonons by the 

second order electrostrictive process of mixing two laser beams. The 

calculated efficiency suggests that the 1 mW phonon power can be ob-

72· 
tained by the mixing of two 10 W/cm ruby laser beams in a one-

hundred layer superlattice 8.7 ~-thick. The effect of random errors 

in the periodicity of the superlattice is also discussed. In Section 

IV, the summary of the calculations, the experiments done in this 

field, the discussion of the material problems related to the con-

struction of a superlattice as well as the future experiments will be 

presented. 
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II. FIRST ORDER INTERACTION VIA PIEZOELECTRIC EFFECTS 

If the superlattice is composed of partially oriented alternating 

thin films, direct conversion of photons into phonons is possible via 

piezoelectric effects. Consider a superlattice with alternating 

crystal layers of thickn~ss dl and d2 , respectively. High-frequency 

transverse phonon waves propagating along the x axis perpendicular to 

the layers can be generated at discrete frequencies by a far-infrared 

field E which is governed by the equation 

(52) 

where i = 1 or 2 indicates the two different crystal layers, and Pi' 

Yi , Ti and e i are the density, the acoustic damping, the elastic 

stiffness, and the piezoelectric stress constants, respectively. The 

coupled far-infrared field satisfies the following equation 

(53) 

where £i (i = 1 and 2) are the dielectric constant of the two different 

crystal layers. Since we are interested in the sound frequency above 

100 GHz that corresponds to a super lattice with unit-cell thickness of 

500 A for the first order umklapp process, the number of atoms in such 

86 a unit cell is so large that the exact calculation of polariton modes 

is extremely difficult. However, we can estimate the polariton effect 

due to the superlattice by solving Eqs. (1) and (2) in the long-wave 

limit of the electric field. The dispersion of the dielectric constant 

can be easily obtained as 
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£(W) 

-2 2 - 2 
= £ + ~ _4_TI_e-:-G_/_p_W_T_n ___ _ 
~ 2 -

1 _ _ w_ + i-Y- _w_ 
2 - 2 

W Tn 2p ~ 

(54) 

n 

where G = 2TI . 
d +d ' the reciprocal unit vector of the superlattice, wTn 

1 2 
is the nth polariton mode which is roughly equal to nvG, and v is the 

averaged sound velocity of two crystal layers in a unit cell. The 

physical constant with a bar over it in Eq. (54) denotes the averaged 

value of corresponding constants in a unit cell (e.g. £ = (£1+£2)/2 

and so forth). From Eq. (54), we can obtain the oscillator strength 

-2 2 - 2 4TIe G /pWTn for nth polariton mode due to the superlattice in the 

order of 10-3/n2.87 H h di h d i owever, t e correspon ng p onon amp ng term 

v W -3 2t ---2- is in the order of 10 n for a superlattice below lOoK which 

wTn 
is the temperature we will assume for the rest of the calculations. 

Hence the ratio of the oscillator strength to the corresponding 

phonon attenuation term is small compared to the optical dielectric 

constant so that the polariton effects due to the superlattice can 

be neglected. 

We shall assume that the over-all thickness of the superlattice 

is small enough that the far-infrared power is not depleted appreciably 

in the conversion. The undepleted far-infrared field in a periodic 

medium should have the Bloch form E = E(x)exp(ikx-iwt) with 

E(x) = (x+nd) , where d = dl +d2 and n is an integer. This function E(x) 

and the reduced wave vector k can be obtained from the homogeneous 

wave equation with the boundary conditions for the given layer structure. 88 
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If the wavelength of the far-infrared field is much larger than d, 

then £(x)= constant. Similarly, without the driving field the acoustic 

wave should also have the Bloch form U = u(x)exp(iqx-iw t) where 
q 

u(x)=u(x+nd). With the driving field in Eq. (51), the acoustic wave 

can be written as U = A(x)u(x)exp(iqx-iw t), where the amplitude 
q 

function A(x) is a monotonically increasing function of x. If A(X) 

is slowly varying that 

(55) 

then Eq. (1) can be written as 

aA a(eE) exp(-iqx) [2T(iqu(x) + ~ux)] -1 == f(x) ax = -~ a 
, (56) 

The solution of the above equation is 

M = {l-exp[i{k-q)Nd]} /{l-exp [i (k-q) d]} 

.dl -£ 

Fl == j f(x)dx + 
£ 

Lim £ -+- 0 (57) 

where Fl is the contribution from the fulk and F2 is the contribution 

from the discontinuous boundaries between layers and N denotes total 

number of unit cells in a super lattice. 

i . 
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From Eq. (57), it is seen that if k = q, then M = n is a maximum. 

This phase-matching condition can be satisfied at many different phonon 

frequencies in a superlattice, whenever in the reduced zone scheme the 

photon dispersion curve crosses the phonon dispersion curve. Physical-

ly, the phase-matched generation of phonons at various frequencies with 

the same wave vector corresponds to different orders of Umklapp 

processes. With a small phase mismatch ~k = k-q, we have IMI= 
sin(~kNd)/sin(~kd). 

As an example, we consider a superlattice of 100 epitaxial 

GaAs:GaP layers normal to the [Ill] axis. The incoming em field 

propagating along [111] is polarized along [011]. We choose dl = 280 A 

and d2 = 354 A so that d/vl = d2/v2 , where VI and v2 are the sound 

velocities in GaAs and GaP respectively. In this configuration, we 

obtain the piezoelectric stress constant e = 'llJI3 c44d
14

, and d14 -is 

the piezoelectric strain constant. We also obtain for Eq. (1) 

1 
T = 3(cll+c44-c12) where cij are the elastic stiffness constants. The 

Bloch form solutions of the homogeneous far-infrared field equation 

take the forms 

e: (x) = i(a-k)x + b -(a+k)x 
ale Ie OE;;;:kE;;; d

l 

(58) 

= i(B-k)x + b -(B+kjx d E;;;xE;;; d a2e 2e 
1 

W ;-
where a = - ve: , 

c 1 
and aI' b l , a2 and b2 are constants which 

88 are related to each other through four homogeneous equations by im-

posing the conditions of conti~9ity and periodicity on e:(x) at x = dl 
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and d. Equating the determinant of these four equations to zero yields 

. the dispersion equation determining k 

(59) 

This ~quation determines the ill versus k dispersion relation and the 

forbidden gaps for light propagating in the supedattice. As the 

result of four homogeneous equations and the dispersion relation, only 

al in Eq. (58) is an independent variable whose value can be calculated 

by matching the boundary conditions at the input boundary of the super-

lattice. 

The Bloch form solutions for the homogeneous sound wave u(x) have 

the same forms as in E(X) 

where 

u(X) 

k 2 
1 

k 2 
2 

OE;;xE;; d 
1 

iw 

(60) 

L2 and R2 are constants as in the far-infrared field case. The sound 

dispersion relation is determined by the equation 

(61) 
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where zl = Plvl and z2 = P2v2 are sound impedances for GaAs and GaP 

respectively. 

Substituting Eqs. (58) and (60) into (57), we can obtain A(Nd). 

The sound power generated can be expressed as 

(62) 

We have calculated the conversion efficiency .(generated sound 

power divided by the input far-infrared power) as a function of discrete 

phonon frequencies corresponding different order of umklapp processes. 

The physical constants and the computer program used for the calculation 

is shown in Appendix C. The result of this calculation is shown in 

Fig. 20. Here, unless d > 50 ~, Fl in Eq. (57) can be neglected in 

comparison with F2' From Fig. 21, it is seen that the odd-order 

-4 umklapp processes have large conversion efficiencies (_. 10 ). This 

is because the phonon waves generated at the successive boundaries 

between layers are in phase. For the even-order umklapp processes, 

they are out of phase. We have assumed in the calculation that the 

piezoelectric constant is independent of frequency and the discontin-

uities between layers are infinitely sharp. Therefore, the conversion 

efficiencies for the odd-order and the even-order Umklapp processes 

separately have no appreciable dependence on frequency. If the dis-

continuities between layers ,spread over a distance comparable to the 

phonon wavelength, then phase cancellation occurring within the 

boundaries will decrease the conversion efficiency. 

In reality it is very difficult to manufacture a perfect super-

lattice with an exact periodicity for 100 layers. It is important to 
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know the effect of the random errors in the periodicity on the phonon 

power produced. For simplicity, we assume an equal probability of 

making the thickness of each layer accurate to within certain percent-

ages. The imperfection of the periodicity will modify the homogeneous· 

sound wave function as described in Eq. (60) and the homogeneous far-

infrared wave function as expressed in Eq. (58). It will also change 

the integration limit for each layer in the processes of obtaining 

A(Nd) from Eq. (56). As a first-order approximation, we assume the 

imperfection of the periodicity does not effect the Bloch form wave 

function for sound as well as for light so that the constants a l 2' , 
bl 2 in Eq. (58) and LI 2' Rl 2 in Eq. (60) are fixed values. Inte-, , , 
grating f(x) in Eq. (56) through layers of certain randomness in thick-

ness, we easily obtain the following formula 

A (Nd) = (63) 

where y and z are dummy variables and represent the replacements for 

dl and d 

L\dl L\d 

~=d 

contained in M(F
I

+F2) respectively. Furthermore, assuming 

, the percentage random error in thickness is the same for 

each layer. When the phase-matching condition (i.e., q=k) is 

satisfied, M in Eq. (63) is equal to N (the number of unit cells in 

the superlattice) which can be taken out of integration. The computer 

L\d 
calculation of ~ = 2% for the numerical example of GaAs:GaP super-

lattice is listed in Appendix C. The results are shown in Fig. 20. 

The random variation tends to decrease the phonon power at points of 

~ i 

1 
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high conversion efficiency, and increases the phonon power at points 

where the effici~ncy is low due to cancellation. The high-order 

umklapp processes which involve shorter phonon wavelengths are more 

sensitive to such imperfection as one would expect. 



-76-

III. SECOND-ORDER INTERACTION VIA ELECTROSTRICTlVE COUPLINGS 

When a superlattice possesses inversion symmetry as in the alter-

nating thin films of vacuum deposition, all the piezoelectric constants 

are zero. The only attractive way to generate high-frequency coherent 

phonons in such a superlattice is through the electrostrictive mixing 

of two laser beams. Consider two laser beams at frequencies WI and w2 

mixing in a superlattice of alternating thin films to generate high-

frequency longitudinal phonons. We assume that the two beams propagating 

along x have the same polarization. Then the phonon generation is 

again described by Eq. (52) but with the driving term replaced by 

a 2 * (ax) (Eo PEl E2 /4TI) , where Eo is the optical dielectric constant, and P 

the stress-optical constant. A similar solution to Eq. (57) can also 

be obtained by assuming negligible depletion of laser power. 

As a numerical example, we consider a superlattice composed of 

100 vacuum-deposited KCl:CdS layers with dl = 420 A and d2 = 450 A 

so that again dl/vl = d2/v2 • The homogeneous wave functions for the 

two laser beams and the dispersion relation can be obtained from Eqs. 

(58) and (59) respectively. The homogeneous wave function and the 

dispersion relation for sound are described by Eqs. (60) and (61) 

respectively. The detailed computer calculation is included in 

Appendix D. The calculated phonon power is shown in Fig. 21 as a 

function of the discrete phonon frequencies corresponding to various 

umklapp processes. For odd-order umklapp processes, F2 inEq. (57) 

is the dominant effect as in the piezoelectric case. We note that 

even for high-order umklapp processes, the phonon power generated 

.~ I , 
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2 
by two 10 mW/cm laser beam can be as high as 5 row provided that the 

discontinuities between layers spread over a distance much smaller than 

the sound wavelength. For even-order umk1app processes, the dominant 

contribution to the sound power is from F1 in Eq. (57), since the two 

terms in F2 are out of phase. The effect of a ±2% random variation 

in the period of the super1attice is also shown in Fig. 21. The com-

puter calculation is listed in Appendix D. Again, the high-order 

umk1app processes are more sensitive to such imperfection. 
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IV. DISCUSSIONS AND CONCLUSIONS 

From our calculations, we see that the phonon pulse generated at 

the discontinuous boundary between layers is the dominant process for 

both the first and second order interactions. This is not surprising 

because the generation of phonon using the discontinuity between vacuum 

and a quartz crystal was observed first by Ilukor and Jacoksen. They 

employed a TM3 4 8 mode rectangular cavity which was completely filled , , 
with a big piece of crystal quartz to generate the coherent hypersonic 

wave of the highest frequency at 114 GHz. 

We did not treat the optical umklapp processes (resulting from the 

periodic index of refraction for light) and the acoustic umklapp 

processes (coming from the periodical acoustic properties of a super-

lattice) separately in our calculations. Note that our general formulas 

are valid for a superlattice which is either periodic in sound or 

periodic in light as well as periodic in both sound and light. How-

ever, in direct conversion of photons into phonons, the optical umklapp 

processes are negligible because the wavelength of the far-infrared 

field is much longer than the period of the superlattice. The acoustic 

umklapp processes are dominant in this case so that it is important to 

have a superlattice which is periodic in sound. In the second-order 

interaction case, the optical umklapp processes are as important as 

the acoustic umklapp processes since the wavelengths of the input 

laser beams are comparable to the period of the superlattice. A 

medium which has a spatial modulation of the refraction index can be 

used to generate high frequency phonons by the. mixing of two laser 
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beams. For example, a gelatin film
89 

(on a glass substrate) was exposed 

to the interference pattern produced by two coherent laser beams. After 

exposure the gelatin was developed using techniques which are well-known 

in holography90 and which result in a spatial modulation of the index 

refraction. This gelatin is a superlattice for the input laser beams 

and can be used to generate coherent phonons by optical umklapp processes 

only. 

To make a piezoelectric superlattice of about 100 layers by 

81 82 
molecular beam epitaxial vapor deposition ' is still a formidable 

job. 
91 Recently, Chang and Esaki et a1. reported the manufacture of 

a superlattice of 100 unit cells with each cell consisting of a GaAs 

layer about 60 A thick and a GaO.SAlO.SAs layer about 20 A thick. 

Time and effort will be required to make a superlattice of more than 

100 unit cells with periodicity within 1 or 2% accuracy. An easier 

83 way to make a piezoelectric superlattice is by alternating sputtering 

of thin films with materials like CdS, ZnS, ZnO, PZT (lead-zirconate-

titanate) and the niobates and tantalates of the alkali metals. Since 

most of those materials have hexagonal symmetry, a proper choice of 

the c-axis with respect to the superlattice axis can facilitate 

83 
the generation of both the longitudinal and transverse phonons 

84 
using one superlattice. Nature even provides uspolytypic crystals 

like SiC, CdIZ which are superlattices in crystal forms. Polytypic 

silicon carbide crystal is well-known being a superlattice with unit 

cell as large as lSOO A (type S94R).92 The phonon modes (corresponding 

. 93 94 9S to d1fferent orders of umklapp processes) of 4H, 6H, lSR, 2lR 

96 and 33R SiC have been studied by Patrick and Choyke et al. Those 

are good for very high frequency phonon generation (> 270 cm- l ) by 
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direct absorption o~ far-infrared photons. By choosing polytypic SiC 

with large unit cell as in the types 192R,84 400H97 and 594R,92 we 

might be able to generate coherent hypersonic waves with frequencies 

greater than 150 GHz. 

98 Another type of superlattice used by Martin, et al. are the 

crystalline long-chain paraffinic solids which are composed of the 

n-paraffin by replacing a specific CH2 group in the chain by a 

dipolar C=Ogroup. They reported the generation of phonons at 

-1 99 frequencies 28, 37, 58, 73, and 115 cm by direct absorption of 

far-infrared radiation in the long-chain molecular superlattice. They 

constructed a superlattice of this type with total thickness of 100 ~ 

and periodicity of 40 A. They estimated the photon-to-phonon power 

conversion efficiency which is an order of magnitude greater than the 

GaAs-GaP piezoelectric system (in our calculation) per superlattice 

layer. 

Note that a superlattice which is composed of isotropic alternating 

thin films by vacuum deposition can only be used to generate longitu-

dinal phonons by the mixing of two laser beams. No phonon can be 

generated by the first-order interaction because of inversion symmetry 

and no transverse phonons can be produced by two-laser mixing. 

From our calculation and discussion, it appears that a super-

lattice that can be constructed by many different ways can be used as 

a practical device to generate coherent hypersonic waves at very high 

frequencies. In both cases we have calculated, the acoustic power 

generated under phase-matching conditions is proportional to the square 
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of the total number of unit cells infue superlattice. The generation 

of hypersonic waves at frequencies higher than 50 GHz with a power 

larger than 1 mW should be possible in a superlattice about 10 ~ thick. 
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APPENDIX 

A. Calculation of Fabry-Perot Interference Fringes 

In this calculation, we mainly used the formulas obtained by 

Ulrich et al.
20 

Consider a 2-dimensional square 'grid with separation g 

between wires of rectangular cross section with breadth 2a. If a 

Fabry-Perot interferometer (FPI) is composed of two identical paralle 

plane grids (or metal meshes) of this type with separation d, the power 

transmission T(A) for a normally incident plane wave of wavelength A is 

(1 + 4R 20)-1 
2 sin 2 

(1 - R) 

where 

o = 4rrnd/A - 2(~ - rr) 

and where Rl/2ei~, A, and T are the amplitude reflection coefficient, 

the power absorption, and the power transmission of a single 2d grid 

respectively. There three parameters are related to one another 

through the following two equations 

T 
o 

where T is the peak power transmission of a FPI andw is defined as 
o 

The finesse F is defined as 

F ~ = 

w = lncsc(rra/g) 

rr 
·2 2 

4w g 

(Al) 

(A2) 

(A3) 

(A4) 

(A5) 

(A6) 
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In the above formula, the approximations are valid for R ~ 0.6 and 

A » g. 

In the experiment, however, Ulrich et al. obserVed both T and F 
o 

were only 80% of values calculated from Eq. (A4) and Eq. (A6) due to 

deviations 6d in spacing caused by the uneveness and poor parallelism 

of the two grids. 

In the picosecond laser experiments, we used the electroformed nickel 

metal-mashed FPI of 100 lines per inch with a = 0.00105 in. to measure a 

spectrum containing two narrow peaks--forward and backward phase-matched 

peaks respectively. The power tranmission took the form 

(A7) 

ii If (v) dvde ii Ib (v) dvde 
Td = -1-+-B-f-s....::i:....n-=2-(~2'Jr-c v-d-.-c-o-s-e-) + -1-+-· -B-b""::s'-i-n-=2-(-="2:-V-d-c-o-s-e) 

where 8 was angle between the incident far-infrared and the normal of 

FPI grids. The If(v) and ~(v), which denoted the theoretically calculated 

forward and backward phase-matched spectra (shown in Fig. 6(b» multiplied 

by the corresponding peak transmissivity of the FPI as expressed in 

-1 Eq. (A4), had true 6v
f 

(Fullwidth half maximum) of 1.2 cm and 

-1 
6vb of 0.6 cm respectively. The linewidths were calculated using 

Eqs. (15) and· (16). In our case, we assumed that T and F had 80% o 

values calculated from Eqs. (A4) and (A6). We obtained F = 2.9, 

-1 
Bf = 3.76 for v f = 13.5 cm and F 

-1 = 16.8, Bb = l14~7 for vb = 6.75 cm 

The numerators in Eq. (A7) are not sensitive function for v within their 

corresponding linewidths. Using the two-peak spectrum of Fig. 6(b), 

integrated with respect to v first and obtained the form 
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de 
(A8) 

+ c2f400 de 2(2'ITVb )' 
o 1 + l14.7sin ---c- dcose 

o 

2 (2'ITVf ) 
1 + 3.76 sin --c-- dcose 

where c l /c 2 = 1. 

In Eq. (A8), we assumed the far-infrared spreading angle of 40 0 and 

both Bf and Bb were independent of e within this range. The result of this 

calculation is shown as the solid curve of Fig. 7. The theoretical 

calculation in Fig. 8 was obtained by using the same formula (Eq. (A8» 

and cl /c2 = 1. 7, Bf = 7.16, Bb = 234, 
-1 -1 

vf = 11 cmand Vb = 5.5 cm . 

B. The Dispersion of X 
(2) 

In the following, we will derive Eqs. (35) and (36) in a simple 

way. Our derivations will differ only a factor from the detailed rigid 

derivations which come from Henry et al. 42 sussman,43 and Shen. 67 The 

derivation of Eq. (37) can be found in Appendix 3 of Quantum Electronics 

b Y . 44 y ar1V. For simpliCity, only single polariton mode will be treated 

while multi-polariton modes can be easily included by a summation. Tensor 

notations which complicate the derivations will be neglected. 

a. Spontaneous Raman Scattering and Raman Susceptibility. Suppose 

a material has a vibration mode, or a polariton mode, or a magnon mode, 

then the linear susceptibility of that material can be expanded as a 

function of a normal mode 

(1) (aX(l») 
X = Xo + aQ Q 

o 
(A9) 

where Q represents the specific mode mentioned. The energy density in 

the medium (or interacting Hamiltonian) has the following form when there 

is optical E field present inside the medium 
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(AlO) 

U
(o) + U(N) _ (1) (ax(l») 

= - -Xo E·E - aQ QEE 
o 

The second term on the right hand side of Eq. (AlO) is responsible 

for the Raman scatterings. The first term represents the linear 

interaction between the field and the medium. When a strong laser beam 

E (w ) shines on the medium, the normal mode Q(w ) can be excited due 
p p . v 

to the non-linear interaction which also produces a scattering light 

E (w). The following equations describe this situation 
s s 

Iv + ~ £ ) E (w ) = 
\ c p p p 

_ 4~ w2 (ax(l») E (w ) Q(w ) 
2 p aQ s s v 

c 

The right hand sides of Eq. (All) and Eq. (Al2) come from a 

general equation similar to Eq. (2) and using Eq. (AlO) 

= -

i = P or S 

(All) 

(Al2) 

(Al3) 

(Al4) 

The Eq. (Al3) describes the normal mode motion with driving force coming 

from -au(N)/aQ*. Substitute Eq. (Al3) into Eq. (Al2), we obtain 

... 



E (w ) 
s s 
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4n 2 
= - ""2ws 

c 

2 
aX(I) 

aQ IE 12 I * E 
p D(w) s 

v 

(Al5) 

where D(w ) 
v 

The Raman susceptibility is defined as 

Furthermore,. from Eq. (Al4), the electric dipole p(N) radiates the 
s 

(Al6) 

scattered light E (W ) with power dP into a solid angle dQ. From Jackson's 
s s 

Electrodynamics, p. 273, we obtain 

at 90° scattering angle sine = 1. The Raman scattering differential 

corss-section is in the form 

(
dO") = dp/dQ = ~sK: l_a~12 (Q)2 
dQ R P n aQ 

p p 

where P = cn IE 1
2/8n is used. From corresponding principle·, the p p p 

average enery of a normal mode takes the form 

substitute Eqs. (Al9) and (Al8) into Eq. (Al6), we obtain 

n 
~ 

* n K 
s s 

(Al7) 

(Al8) 

(Al9) 

(A20) 
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b. Polarization Mode and Raman Susceptibility. Polariton mode is 

just a kind of normal mode which represents a combinat.ion of phonon-vibration 

and electric field inside the medium. The normal coordinate Q now is a 

linear combination of V(w ) and E
3

(w ) where V(w ) is the lattice v v v 

vibration and E
3

(w
v

) is the associated far-infrared field. Hence, 

(~) in Section a has to be replaced by two constants. We get the 

the following formula 

U(N) = -d E E*E3* - deeE E*V* - eVE3* + c. c. 
E P s P s 

(A2I) 

where lei is the charge of electron and the last term in Eq. (A21) denotes 

the polariton coupling. Deriving the equations for Es' E3 and V due to 

the 

and 

non-linear driving forces caused by Eq. (A2I) , we get 

(V2 + w~ E) 
2 00 

c 

(V2 
+ :; Es) 

2 41Tw 
* v 

E3 = - [dEE E + eV] 2 p s c 

41TW 
2 

*. * s E = - [dEEpE3 + edeEpV ] s 2 
c 

. * uD(w ) V = eE3 + edeE E v p s 

where u is reduced mass of the lattice vibration. 

(A22) 

(A23) 

(A24) 

In Eq. (A24), we can solve V and substitute it into Eq. (A22) and 

Eq. (A23) and we. use the formula 

2 
+ 41Te 

Eoo uD(w) 
v 

(25) .. 
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where S is the oscillator strength of the polariton mode and is equal to 

2 
47Te 
--2 where wr is the polariton mode frequency, we easily get 

uWr 

and 

2 47Tw 
s 

""-2-
c 

(A26) 

. (A27) 

In the mixing experiment, we usually have the far-infrared equation 

as in Eq. (A26) with right hand side replaced by 

Therefore, we obtain the Eq. (35) without the summation 

(A28) 

If the depletion of the input beam is neglegible, Eqs. (A26) and 

(A27) are coupled together. Compared Eq. (A27) with Eq. (A15), the 
\ 

Raman susceptibility in this case is 

\ 

(29) 
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SettingEq. (A29) equal to Eq. (A20) , we finally have the form 

(A30) 

Identifying Eq. (A30) with Eq. (36) term by term, we realize that 

a factor n
T 

+ 1, which can be obtained from a more detailed quantum 

mechanical description, is missing in the denominator of Eq. (A30). 

This factor n
T 

+ 1, differs negligibly from one in the usual cases. 

c. Phonon Generation via Piezoelectric constants in a Superlattice 

In this appendix, the first computer program PIEZO calculated 

the photon-to-phonon conversion efficiency in a GaAs: GaP superlattice 

of 100 unit cells. The input physical constants were 

GaAs 

GaP 

5 . 
v(10 cm/sec) 

2.80 

3.54 

3 p(g/cm ) 

5.31 

4.13 

-4.8 0.416 

-3.0 0.518 

e: 

12.96 

10.24 

The frequencies from first to tenth unklapp processes are shown 

on the abscissa of Fig. 20. 

The second program POPIE calculated the effect on the conversion 

efficiency due to ±2% random errors in the periodicity of the super-

lattice. The input physical constants. were the same as in the first 

program. 

o 
d(A) 

280 

354 
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D. Phonon Generation via Electrostrictive Coupling in a Superlattice 

The first computer progr~m ELETO calculated the photon power 

generated with 1 watt/cm
2 

input power for each laser beam in a KCl:CdS 

superlattice of 100 unit cells. The corresponding physical constants 

for this computation were 

5 v(lO cm/sec) 

KCl 4.20 

CdS 4.50 

3 p(g/cm ) 

1.98 

4.825 

p n 

0.124 0.398 1.50 420 

0.066 0.850 2.43 450 

The frequencies from first to tenth unklapp processes are shown on 

the abscissa of Fig. 21. 

The second program POELE calculated the effect on the generated 

phonon power due to ±2% random errors in the periodicity of the superlattice. 

The input physical constants were the same as in the first program. 
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COMMON EI.E2,TI,T2.A,B.Dl.DI.D.ZI.Z2.BR.TBB.CC.TCC.DD~TDD.EPC.TKC. 

IGAMA. TGMA.OELTA.TOEL 

( THE FUNCTIONS IN THE FOLLOWING ARE THOSE CONTAINED IN (56) FOR FIX) 

C 

DOWRFIX)=COSFIZI*X)-EPC*COSFIZI*DI+ZI*X) 

DOWIFIX'=SINFIZI*X,+EPC*SINFIZI*DI+ZI*XI 

UPRFIX)=COSFIA*X,-BR*COSFIA*OI+A*XI 

UPIFIX,=SlNFIA*XI+BR*SINFIA*DI+A*XI 

DENIFIX)=DOWRFIX)*DOWRFIXI+DOWIFIXI*DOWIFIXI 

TIONRFIXI=IUPRFIXI*DOWRFIXI+UPIFIX,*DOWIFIX',/DENIFIX, 

TIONIFIX'=lUPIFIXI*OOWRFIX,-UPRFIXI*OOWIFIX',/OENIFIX, 

DSRFIXI=IZ-U+IY-VI*COSFIZl*DIII*COSFIZ2*XI+IY+VI~SINFIZI*DII 

I*SINFIZ2*XI ' 

DSIFIXI=IZ+U+IY+V'*COSFIZI*DI)'*SINFIZ2*XI-IY-VI*SINFIZI*DII 

I*CO<;FIZ2*X' 

USRFIXI=I~Rl-DRI'*COSFIB*XI+CR2*COSFIB*X-A*OII-DR2*COSFIB*X+A*Oll 

USIFIXI=ICRI+DRll*SINFIB*X'+CR2*SINFIB*X-A*DII+DR2*SINFIB*X+A*DII 

DEN2FIXI:OSRFIXI*OSRFIX'+DSIFIX,*DSIFIXI 

SIONRFIX,=IOSRFIX'*USRFIX,+DSIFIXI*USIFIX',/DEN2FIXI 

SIONIFIXI:IOSRFIXI*USIFIXI-OSIFIXI*USRFIXII/DEN2FIXI 

UOPRFIXI=COSFIA*X'+BR*COC;FIA*DI+A*XI 

UOPIFIXI=SINFIA*X'-8R*SINFIA*DI+A*XI 

UORFIX)=ICRI+DRI'*COSFIB*X)+CR2*COSFIB*X-A*OI)+DR2*COSFIS*X+A*DII 

UDIFIXI=ICRI-ORII*SINFIB*X)+CR2*SINFIS*X-A*Ol)+DR2*COSFIB*X+A*DI) 

DISIRFIXI=IUOPRFIXI*DOWRFIXI+UOPIFI~I*DOWIFIXI)/DENIFIXI 

DISIIFIX)=IUOPIFIX)*DOWRFIXI-UOPRFIXI*OOWIFIX))/DENIFIXl 

DIS2RFIXI=IUDRFIX)*DSRFIXI+UDIFIXI*OSIFIXI)/OEN2FiXI 

DIS2IFIX1=IUD1FIXI*DSRFIX)-UORFIXI*OSIFIXII/OEN2FIXI 

C THE PHYSICAL CONSTANTS OF GAAS AND GAP 

.. 
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READ 30. VI. V2. Pl. P2. E1. E2. T1. T2. DEI. DE2 

30 FORMAT C10F8.41 

C THE FREQUENCIES FROM FIRST TO TENTH UMKLAPP PROCESSES 

READ 31. ~/II.W/21.W/31.W(41.W/5).W/61.WC1).WCSIJW/9),~/101 

31 FORMAT /10FS.41 

C 

C THE CONSTANTS RELATED TO SOUND WAVE IN /601 

PE2=P2*V2 

PE1=P1*V1 

Dl=0.2S0 

D2=().354 

D::Ol+D~ 

RATIO=CE2*OE2*V2*T11/IT2*El*DEl*VIJ 

L=l 

100 Zl=WILI/Vl 

Z2::WCLI/V2 

IF (L-n 101. 102, 103 

101 GO TO 115 

102 GO TO 116 

103 IF CL-41 104. 105, 106 

104 GO TO 115 

105 GO TO 116 

106 IF (L-61 101. 108. 109 

101 GO TO 115 

lOS GO TO li6 

109 'I F (L-Sl 110. 111, 112 

110 G'J TO 115 

111 GO TO 116 

112 IF (L-lOI 111, 114. 114 

113 GO TO 115 

114 GO TO 116 



C 

C 

c 

115 S5=-1.0 

GO TO 117 

116 SS=I.0 

117 EPC=SS*(PE2+PE1)/(PE2-PEl) 

Z=(PE2+PE1)!/2.0*PE2) 

Y=Z*ss 

-94-

V=((PE2+PE1'**Z*SS,!//PEZ-PE1,*2.0*PEZ) 

TKC=-Zl*D1 

PRINT 118, EPC, TKe, Z, y, U, V 

118 FO-MAT /7H SOUND 1/6E15.4)) 

THE CONSTANTS RELATED TO LIGHT WAVE I~ (58) 

A=DE1*WIL'!3.0E+05 

B=DFZ*W/L,!~.OE+05 

GOST=COSFIA*D1'*COSFIB*DZ)-IDE1*DEl+DE2*DE2'*SINFIA*D1'*SINFIB*DZI 

1!12.0*OEl*DEZI 

ROT=SQ~TFll.0-GOST*GOST' 

XX=ATANFIROT/GOST' 

S=SINF/O.5*/A*Dl+B*D2-XXI)!SINF/O.5*/A*DI-B*D2+XX)' 

BR=5*IDEl+DE2'/IDEZ-DE1' 

BB=8R*BR 

CRl=/DEZ+DEl)/12.0*DEZ) 

CRZ=CR1*S 

DRl=IDE2-0E1)!IZ.O*DEZ' 

DRZ=(DE2+DEl'**2*S!IZ.O*~E2*/DEZ-DEl)' 

TBB=-A*Dl 

BOUND=4.0!111.0+0El'**2+/1.0-DE1)**2*BB, 

PRINT 120. AR. TAB. CR1. CRZ. DRI. DR2 

120 FORMAT 17H LIGHT /16El~.4)) 

C THE FOLLOWING IS THE CALCULATION FOR Fl IN 157' 

.. 

, 

I - , 



I 
~ , 
, .. , 

130 SUM4=O.O 

SUM2=O.O 

TUM4=O.O 

TU~?=O.O 

PUM4=O.O 

PUM2=O.O 

RUM4=0.0 

RUM2=O.O 

114=1000 

FN=N 

DX=01/FN 

EX=D2/FN 

1=1 

132 FI=I 

x=-rn +F I *"X 

R=FI*EX+O.O 

SUM4=SUM4+TIONRFIXI 

SUM2=SUM2+TIONRFIX+DXI 

TUM4=TUM4+TIONIFIXI 

TUM2=TUM2+TIONIFIX+DXI 

PU~4=PUM4+SI0NRFIRI 

PUM2:PUM2+SIONRFIR+EX) 

RUM4=RUM4+SIONIFIR) 

RU~2=RU~2+SI0NIF(R+EX) 

IF II-N+3) 134, 136, 136 

134 1=1+2 

GO TO 132 
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136 CELL1R=DX*14.0*SUM4+2.0*SUM2+TIONRFIO.01+TIONRFI-D11+4.O*TIONRFI 

I-DXII/13.0E+051 

CELLll=DX*14.0*TUM4+2.0*TUM2+TIONIFIO.OI+TIONIFI-D11+4.O*TIONIFI 

I-DX) 1/13.0E+()5) 

CELl2R=EX*14.0*PUM4+2.0*PUM2+SIONRFIO.O)+SIONRFID21+4.O*SIONRFID2-



c 
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lEX) )/13.0E+05) 

CELLZI=EX*14.0*RUM4+Z.0*RUM2+SIONIFIO.OI+SIONIFIDZI+4.O*SIONI~IDZ-

lEXII/13.0E+051 

CLLR=ICELLIR+RATIO*CELLZRI*EI*VI*DEI/12.0*TI*3.0E+051 

CLLI=ICELLII+RATIO*CELL2I)*El*Vl*DEl/IZ.O*TI)/3. 0E+05 

SCLL=CLLR**Z+CLLI**Z 

PRINT 150. CELLIR. CELLII. CELLZR, CELLZI, ClLR. Clli. SCLl 

150 FOR~AT 114H INTERGATION 117EI4.41) 

C CALCYLATE F2 IN 1571 

C 

CANl=DISIIFIO.OI/PEI+DISZIFIO.O)/PEZ 

CANZ=DISIIFI-DII/PEl+DIS2IFID21/PE2 

DAN1:DISIRFIO.OI/PEl+DISZRFI0.OI/PE2 

DANZ=DISIRFI-Dl)/PEI+DIS~RFID2)/PEZ 

PRINT 151. CANI. CANZ. DANI. DAN2 

151 FORMAT 16H PARE 114EZO.5)) 

HSIN=IE2-El)/14.0E+03*WIL) ) 

CONR=HSIN*ICANI-CAN2) 

CONI=HSIN*IDAN2-DAN1) 

CONS=CONR*CONR+CONI*CONI 

PRINT 15Z. CONR. CONI. CONS 

152 FORMATI8H DISCON 113EZO.4)) 

C CALCULATE THE SOUND POWER 

GOAL=ICLLR+CONR)**2+ICLLI+CONI)**2 

BOR=IZ+U)*COSFIZ2*D2)+Y+V 

SBR=BOR*BOR 

TOR=Z2*Z2*SBR*T2*V2*1.OE+05*12.5664*BOUND/6.0 

AUMP=SCLL*TOR 

DISP=CONS*TOR 

POWER=GOAL*TOR 

PR+NT 155. AtlMP, DISP. POWER 
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155 FORMAT (7H POWER If3E25.4)) 

IF (L-I0) 160. 162. 162 

160 L=L+1 

GO TO 100 

162 CALL EXIT 

EN!) 



C 
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PROGRAM POPIE IINPUT. OUTPUTI 

DIMENSION WIlOI 

COMMON El.El.Tl.TZ.A,B.Dl.DZ.D,Zl.Zl.BR.TBB.CC.TCC.DD. 

IGAMA. TGMA.DELTA.TDEL 

C THE FUNCTIONS IN THE FOLLOWING ARE THOSE CONTAINED IN 1561 FOR FIX' 

DOWRFIX'=COSFIZl*X,-EPC*COSFIZl*Dl+Zl*XI 

DOWIFIX'=SINFIZl*XI+EPC*SINFIZl*Dl+Zl*X' 

UPRFIXI=COSFIA*X,-BR*COSFIA*Dl+A*X, 

UPIFIX'=SINFIA*X,+BR*SINFIA*Dl+A*XI 

DENIFIX1=DOWRFIX,*DOWRFIX'+DOWIFIX,*DOWIFIX, 

TIONRFIX,=IUPRFIX,*DOWRFIX'+UPIFIX,*DOWIFIX"/DENIFIX, 

TIONIFIX,=IUPIFIXI*DOWRFIXI-UPRFIX,*DOWIFIX"/DENIFIXI 

DSRFIXI=IZ-U+IY-VI*COSFIZl*Dlll*COSFIZ1*X,+IY+VI*SINFIZl*Dll 

1*SINFIZ1*XI 

DSIFIXI=IZ+U+IY+VI*COSFIZl*Dlll*SINFIZZ*XI-IY-VI*SINFIZl*Dll 

1*COSFIZ1*XI 

USRFIXI=ICRI-DR11*COSFIB*XI+CR2*COSFIB*X-A*Dl)~DRZ*COSFIB*X+A*Dll 

USIFIXI=ICRl+DRll*SINFIB*XI+CR2*SINFIB*X-A*Dll+DRZ*SI~FIB*X+A*Dll 

DEN2FfX,=DSRFIXI*DSRFIXI+DSIFIXI*DSIFIXI 

SIONRFIX,=IDSRFIXI*USRFIXI+DSIFIXI*USIFIXII/DEN1FIXI 

SIONIFIXI=IDSRFIXI*USIFIXI-DSIFIXI*IJSRFIXII/DEN1FIXI 

UOPRFIXI=COSFIA*X'+AR*COSFIA*Dl+A*XI 

UOPIFIXI=SINFIA*XI-BR*SINFIA*Dl+A*XI 

UDRFIXI=ICRl+DRll*COSFIB*XI+CR2*COSFIB*X-A*Dll+DR1*COSFIB*X+A*Dll 

UDIFIXI=ICRI-DRl,*SINFIB*XI+CR2*SINFIB*X-A*Dll+DR1*COSFIB*X+A*Dll 

DISIRFIXI=IUOPRFIXI*DOWRFIXI+UOPIFIXI*DOWIFIXII/DENIFIXI 

DISIIFIXI=IUOPIFIXI*DOWRFIXI-UOPRFIXI*DOWIFIXII/DENIFIXI 

DIS2RFIXI=IUDRFIXI*DSRFIXI+UDIFIXI*DSIFIXII/DEN2FIXI 

DISZIFIXI=IUDIFIXI*DSRFIXI-UDRFIXI*DSIFIXII/DEN1FIXI 

BRIRFIXI=DISIIFIXI/PEI 

BRZRFIXI=DIS2IFIXI/PEZ 



C 
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BRIIFIX)=DISlRF(X)/PEl 

BRZIFIXI=DISZRFIX)/PEZ 

DAMRF(X)=BRIRFIX)+BRZRF(X) 

DAMIFIX)=BRIIFIX)+BRZIFIXI 

/ 

C PHYSICAL CONSTANTS OF GAAS AND GAP 

READ 30. VI. VZ. Pl. P2. EI. E2. TI. T2. DEI. DE2 

,0 FORMAT 110F8.4) 

C 

C THE FREQUENCIES FROM FIRST TO TENTH UMKlAPP PROCESSES 

READ '1. W(I).W(Z).WI3).\tI(4"W(5).W(6).WI7).W(S).W(9"WI10) 

31 FORMAT (10FS.4) 

C 

C THE CONSTANTS RELATED TO SOUND WAVE IN (60) 

PEZ=P2*VZ 

PE1=P1*Vl 

D1=O.Z80 

DZ=0.354 

D=D1+D2 

RATIO=(E2*DEZ*VZ*T1)/(TZ*E1*DE1*V1) 

l=l , 

100 ll=\tI(L)/Vl 

Z2=W(L)/V2 

IF IL-2) 101. 102. 103 

101 GO TO 115 

102 GO TO 116 

103 IF (l-41 104. lOS. 106 

104 GO TO 115 

105 GO TO 116 

106 IF (l-61 107 •. 108. 109 

107 GO TO 115 

108 GO TO 116 



C 

109 

110 

111 

lIZ 

113 

114 

115 

116 

117 
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IF IL-81 110. 111. llZ 

GO TO 115 

GO TO 116 

IF IL-I01 11 ~. 114, 114 

GO TO 115 

GO TO 116 

55=-1.0 

GO TO 117 

55=1.0 

EPC=SS*IPEZ+PEll/(PEZ-PE1) 

l=IPEZ+PE1)/IZ.0*PEZ) 

V=l*C;S 

U=(PEZ-PE11/IZ.O*PEZI 

V=IIPE2+PE11**Z*SS)/IIPEZ-PEll*Z.0*PEZI 

TKC=-ll*Dl 

PRINT 118. EPC. TKC. l, V. U. V 

118 FORMAT 17H SOUND /16E15.4)1 

C THE CONSTANTS RELATED TO LIGHT WAVE IN 1581 

A=DE1*W,LI/3.0E+05 

~=DEZ*W(LI/3.0E+05 

GOST=COSFIA*D11*COSFIB*D21-IDEl*DE1+DEZ*DEZI*SINFIA*D1I*SINFIB*DZI 

I/(Z.0*DE1*DEZI 

ROT=SQRTFl1.0-GOST*GOSTI 

XX=ATANFIROT/GOSTI 

S=SINFIO.5*IA*D1+B*D2-XXII/SINFIO.5*IA*D1-B*DZ+XXJI 

BR=S*IDE1+DE21/IDEZ-DE!1 

BB=BR*~R 

CR1=(DEZ+DEl)/IZ.O*DEZI 

CRZ=CR1*S 

DR1=lDEZ-DE11/IZ.O*DEZ) 

DRZ=(DEZ+DE1)**Z*S/(Z.0*DEZ*IDEZ-DE1 1 ) 

. , 



c 
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TBB=-A*Dl 

BOUND=4.0/111.0+DEl)**2+(1.0-DEl)**2*BBJ 

PRINT 120. AR. TBB. CR1. CR2. DRI. DR2 

120 FORMAT 17H LIGHT 116E15.4J J 

C THE FOLLOWING IS THE CALCULATION FOR Fl IN (57) 

KI =20 

HI=I(I 

130 SUM4=0. 0 

SUM2=0.O 

TUM4=O.0 

TUM2=O.0 

PUM4=O.O 

PUM2=O.O 

RUM4=0.O 

RUM2=0.0 

N=lOOO 

FN=N 

DX=DI/FN 

EX=D2IFN 

1=1 

112 FI=I 

X=-Dl+FI*DX 

R=I').f')+FI*EX 

SUM4=SUM4+TIONRFCX) 

SUM2=SUM2+TIONRF(X+DX) 

TUM4=TUM4+TIONIF(XI 

TUM2=TUM2+TI~NIF(X+DXI 

PUM4=PUM4+SIONRFCRI 

PUM2=PUM2+SIONRFCR+EX) 

RUM4=RUM4+SIONIFIRI 

RUM2=RUM2+SIONIFIR+EXI 



C 

IF fI-N+KI+31 Y34, 136, 136 

134 1=1+2 

GO TO 132 
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136 CELLIR=DX*14.0*SUM4+2.0*SUM2+TIONRFf-Dll+TIONRFf-HI*DX1+ 

14.0*TIONRFI-fHI-l.01*DX»/3.0E+05 

CELLll=DX*14.0*TUM4+2.0*TUM2+TIONIFf-Dl)+TIONIFI-HI*DX)+ 

14.0*TIONIFI-IHI-I.0)*DX»/3.0E+05 

CELL2R=EX*14.0*PUM4+2.0*PUM2+SIONRFCO.0)+SIONRFCD2-HI*EX)+ 

14.0*SIONRFCD2-IHI-l.0)*EX) )/3.0E+05 

CELLZI=EX*14.0*RUM4+2.0*RUM2+SIONIFIO.OI+SIONIFID2-HI*EX)+ 

14.0*SIONIFCD2-IHI-l.O)*EX) )/3.0E+05 

C THE VARIATION OF Fl DUE TO Z PER CENT ERRORS IN PERIODICITY 

TYl=-Dl*HI/FN 

TY2=D2*IFN-HI)/FN 

PX=DX/Z.O 

RX=EX/2.0 

PINR=O.O 

PING=O.O 

RINR=O.O 

RING=O.O 

VARI=2.0*HI+l.0 

NI=1 

140 PI=NI 

ARG=TYl+PI*PX*2.0 

BRG=TY2+PI*RX*Z.0 

PINR=IPINR+PX*fTIONRFIARG-2.0*PX)+4.0*TIONRFIARG-PX)+TIONRFIARG" 

1/3.0)*IVARI-PI'/VARI 

PING=IPING+PX*ITIONIFIARG-Z.0*PX)+4.0*TIONIFIARG-PX)+TIONIFIARG" 

1/3.~I*IVARI-PI'/VARI 

RINR=IRINR+RX*ISIONRFIBRG-Z.O*RX)+4.0*SIONRFIBRG-RX)+SIONRFIBRG,) 

1/3.0)*IVARI-PI'/VARI 



142 

144 

146 

c 
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1/3.01*(V~RI-PII/VARI 

RING=(RING+RX*(SIONIF(BRG-2.0*RXI+4~O*SIONIF(BRG-RXI+SIONIF(BRG)) 

1/3.01*(VARI-PII/VARI 

IF (NI-2*KI) 142, 144, 144 

NI=NI+1 

GO TO 140 

PC1R=CELLlR+PINR 

PCl T=CF:LLl I+PING 

PC2R=CELL2R+RINR 

PC2I=CELL2I+RING 

PCR=PC1R+PC2R 

PCI=PC1I+PC2I 

PSC=PCR*PCR+PCI*PCI 

PRINT 146. PClR. PCll. PC2R. PClI. PCR, PC I, PSC 

FORMAT (9H PINTEG I ( 7E 14.4 I) 

C THF: VARIATION OF F2 IN (57) DUE TO 2 PER CENT ERRORS IN PERIODIC1TY 

AUM4=O.O 

AUM2=O.O 

BUM4=O.O 

BUM2=O.O 

CUM4=O.O 

CUM2=O.O 

DUM4=O.O 

DUM2=O.O 

EUM4=O.O 

EUM2=O.O 

GUM4::0.0 

GUM2=().O 

nX=D1/l000.0 

DDT=D211000.0 

~I=l 
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147 Gl=~I 

RON=I-HI+GII*TTX 

RIC=I-I000.0-HII*TTX+GI*TTX 

ROG=IIOOO.O-Hl+Gll*D~T 

AUM4=AU~4+DA~RFIRONI 

AtJM2=AlIM2+DAMRFIRON+TTXI 

~UM4=BUM4+DAMIFIRONI 

BUM2=AI fM2+DAM I F I RON+TTX I 

CUM4=CUM4+BR 1 RF I,R I C I 

CUM2=CUM2+BRIRFIRIC+TTXI 

DU!Io14=DlfM4+ARIIFIRICI 

DUM2=DUM2+BRIIFIRIC+TTXI 

ElJM4=EUM4+BR2RFIROGI 

EUM2=EU~2+8R2RFIROG+DDTI 

GUM4=GtJM4+BR2IFIROGI 

GUM2=GUM2+BR2IFfROG+DDTI 

IF I~I-2*KI+31 148. 149. 149 

148 MI=MI+2 

GO TO 147 

149 TAUR=14.0*AU~4+2.0*AUM2+DAMRFI-HI*TTXI+DAMRFIHI*TTXI 

1+4.0*DAMRFltHI-l.01*TTXII/6.0/HI 

TAUI:14.0*BUM4+2.0*BUM2+DAMIFI-HI*TTXI+DAMIFIHI*TTXI 

1+4.0*DAMIFIIHI~I.01*TTXII/6.0/HI 

SHER=14.0*CUM4+2.0*CUM2+BRIRFI-DI-HI*TTXI+BRIRFI-DI+HI*TTXI 

1+4.0*BRIRFI-Dl+IHI-I.01*TTXII/6.0/HI 

SHEI=14.0*DUM4+2.0*OUM2+ARIIFI-OI-HI*TTXI+BRIIFI-Dl+HI*TTXI 

1+4.0*BRIIFI-DI+IHI-I.01*TTXII!6.0/H1 

CHER=14.0*EUM4+2.0*EUM2+BR2RFID2-HI*DDTI+BR2RFID2+HI*DDTI 

1+4.0*8R2RFIDi+IHI-l.01*ODTII/6.0/HI 

CHEI=14.0*GUM4+2.0*GUM2+BR2IFfD2-HJ*DDTI+BRZIFIDZ+HI*DDTI 

1+4.0*BRZIFCD2+CHI-l.01*DDTII/6.0/HI 

HSIN=IDE1**4*CI-DEZ**4*C21/C4.0*WCLI*I.0E+041 



C 

CONR=HSIN*ITAUR-SHER-CHERI 

CONI=-HSIN*ITAUI-SHEI-CHEII 

CONS=CONR*CONR+CONI*CONI 

PRINT 152. CONR. CONI. CONS 

-105-

152 FORMAT 18H DISCON 113E20.411 

C CALCULATE THE SOUND POWER 

GOAL=(PCR+CONRI**2+(PCI+CONII**2 

BOR=(Z+UI*COSFIZ2*D21+Y+V 

SBR=ROR*BOR 

TOR=Z2*Z2*SRR*T2*V2*1.0E+OS*12.5664*BOUNDJ6.0 

AUMP=PSC*TOR 

DISP=CONS*TOR 

POWER=GOAL*TOR 

PRINT ISS. AUMP. DISP. POWER 

155 FORMAT (7H POWER 113E25.411 

IF (L-1QI 160, 162. 162 

160 L=L+l 

GO TO 100 

162 CALL EXIT 

END 



C 

PROGRAM ELETO IINPUT, OUTPUTI 

DIMENSION WIlOI 
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C THE FUNCTIONS IN tHE FOLLOWING ARE THOSE CONTAINED IN 1561 FOR FIXI 

C 

DOWIFIXI=SINFIZl*XI+EPC*SINFIZl*Dl+Zl*XI 

DOWRFIXI=COSFIZl*XI-EPC*COSFIZl*Dl+Zl*XI 

DENlFIXI=1.O+EPC*EPC-Z.O*EPC*COSFIZl*Dl+2.0*Zl*XI 

DSRFIXI=IZ-U+IY-VI*COSFIZl*Dlll*COSFIZ2*XI+IY+VI*SINFIZl*Dll 

l*SINFIZZ*XI 

DSIFIXI=IZ+U+IY+VI*COSFIZl*Dlll*SINFIZ2*XI-IY-VI*SINFIZl*Dll 

I*C05FIZZ*XI 

DENZFIXI=DS~FIXI*DSRFIXI+DSIFIXI*DSIFIXI 

TIONRFIXI=IATl*DOWRFIXI+ATZ*IREAS*SINFI1.O*A*XI+RIAS*COSFIZ.O*A*XI 

11*DOWIFIXII/DENIFIXI 

TIONIFIXI=I-ATl*DOWIFIXI+ATZ*IREAS*SINFIZ.O*A*XI+RIAB*COSFI1.O*A*X 

111*DOWRFfXII/DENIFIXI 

SIONRFIXI=ICTl*DSRFIXI+CT2*IRECD*SINFIZ.O*B*XI+RICD*COSFI2.0*B*XII 

l*DSIFIXll/DENZFIXI 

.SIONIFIXI~I-CTl*DSIFIXI+CTZ*IRECD*SINFI2.0*B*XI+RICD*COSFI2.0*S*XI 

11*DSRFIXII/D~NZFIXI 

RIIFIXI=1.O+AB+2.0*IREAB*COSFIZ.O*A*XI-RIAB*SINFIZ.O*A*XI) 

RZZFIXI=CC+DD+Z.O*IRECD*COSFIZ.O*S*XI-RICD*SINFI2.0*S*XII 

ARIRFIXI=RllFIXI*DOWIFIX)/IPEI*DENIFIXII 

BRZRFIXI=RZ1FIXI*DSIFIXI/IPE1*DEN1FIXII 

SRIIFIXI=RIIFIXI*DOWRFIXI/IPEI*DENIFIXII 

BR1IFIXI=RllFIXI*DSRFIXI/IPEZ*DEN1FIXII 

C PHYSICAL CONSTANTS FOR KCL AND CDS 

C 

READ 11. DEI. DEl, Pl. Pl. VI. Vl. CI. Cl. TI~ TZ 

11 FORMAT IIOF1.4) 

C THE FREQUENCIES FROM FiRST TO TENTH UMKLAPP PROCESSES 



C 
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REA~ 12. WIII.WI2I,WI31.WI41.W(51.WI61.WI71.WI81.WI91.WIIOI 

12 FORMAT IIOF8.41 

C FINDING THE CONSTANTS FOR LIGHT WAVES 

C 

A=O.144*DEl*6.28~2 

B=O.144*DE2*6.28~2 

Dl=O.4?0 

D2=0.450 

D=Dl+D2 

Ql=CI/Tl 

Q2=C2/T2 

l/IZ.O*DEI*DE21 

GOST:COSFIA*Dll*COSF(B*D21-(DEl*DEl+DE2*DE21*SINF(A*DlI*SINF(B*D21 

ROT:SQR~Fll.0-GOST*GOSTI 

XX=3.1416+ATANF(ROT/GOSTI 

S:SINFIO.5*(A*Dl+B*D2-XXII/SINF(O.5*(A*Dl-B*D2+XXII 

BR=IDEl+DE21*S/IDE2-DE11 

BB=IDEl+DE21**2*S*S/IDE2-~EII/IDE2-DE11 

REAB=I~E2+DEll*S*COSFIA*DII/IDE2-DE11 

RIAB=IDE2+DEll*S*SINFIA*DII/(DE2-DE11 

CC=IDE2+DEll**2*ll.O+S*S+2.0*S*COSFIA*DI11/14.0*DE2*DE21 

DD=IIDE2-DEll**2+IDE2+DEll**4*S*S/I~E2-DEll**2+2.0*IDE2+DEll**2* 

lCOSFIA*Dll*SI/(4.0*DE2*DE21 

TD=IDE2+DEI1/14~0*DE2*DE2) 

SD=IDE2+DEl'**2/IDE2-DEll 

RECD=TD*IDE2-DEl+SD*S*S+ISD+DE2-DE11*S*COSF(A*OI11 

RICO=-TD*IDE2-DEl-SOI*S*SINFIA*DI1 

BOUND=4.0/(ll.0+DE11**2+ll.0-DE11**2*BBI 

PRINT 13. BB. CC. DD. REAB. RIAB. RECD. RICD 

13 FORMAT (7H LI~HT 1(7E16.511 

C THE CONSTANTS RELATED TO SOUND WAVE IN (60) 



C 

PE2=P2*V2 

PEl=Pl*Vl 

L=1 

100 Zl::WILI/VI 

Z2=WILI/V2 

55=-1.0 

lOS EPC=SS*IPE2+PE11/IPEZ-PEll 

Z=IPE2+PE11/(2.0*PE21 

y=Z*SS 
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U=IPE2-PElI/12.0*PE21 

V=IIPE2+PE11**Z*S51/1(PE2- PEll*2.0*PE2) 

TKC=-Zl*D1 

PRINT 110. EPC. TKC. Z. y. U. V 

110 FORMAT (7H SOUND 116E15.4)1 

GO TO 129 

112 Zl=WILIIVI 

Z2=WILI/V? 

5S=1.0 

EPC=SS*IPEZ+PE1)/IPE2-PEl) 

Z=(PE2+PE11/(2.0*PE21 

Y=Z*SS 

U=IPEZ-PE11/(Z.0*PEZI 

V=I(~E2+PE11**2*SSI/I(PE2-PE11*2.0*PEZ) 

TKC=-Zl*Dl 

PRINT 114. EPC. TKC. Z. y. U. V 

114 FORMAT (7H SOUND 116EI5.4)1 

C THE FOLLOWING IS THE CALCULATION FOR Fl IN (57) 

lZ9 AT1=OE1**5*Ql*WILI*II.0-RB)/16.0E+OS*Zl) 

ATZ=Z.0*DE1**4*Ql*A/ZI 

CT1=DEZ**5*Q2*WIL)*ICC-DD)/16.0E+05*ZZ) 

CT2=2.0*DEZ**4*QZ*B/Z2 



110 S'JM4=O. 0 

SUM2=O.0 

TUM4=O.O 

TUM2:r:O.O 

PUM4=O.O 

PUM2=O.O 

RUM4=O.0 

RUM2::0.0 

/>oIs1000 

FN=N 

DX=D1/FN 

EX=D2/FN 

1=1 

132 FI=I 

X=-Dl+FI*DX 

R=O.O+FI*EX 

SUM4=SU~4+TIONRF{X) 

5UM2=SUM2+TIONRFIX+DX) 

TUM4=TUM4+TIONIFtX) 

TUM2=TUM2+TIONIFIX+DX) 

PUM4=PUM4+5IONRFIR) 

PUM2=PUM2+SIONRFIR+EX) 

RU~4·RUM4+SIONIFIR) 

RUM2=RUM2+SIONIF{R+EX) 

IF (1-N+3) 134. 136. 136 

134 1=1+2 

GO TO 132 
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136 CELLIR:DX*14.0*SUM4+2.0*SUM2+TIONRF{O.O)+TIONRFI-Dl)+4.O*TIONRFI 

1-DX))/(3.0E+OS) 

CELLII=DX*14.0*TUM4+2.0*TUM2+TIONIF(O.O)+TIONIFI-Dll+4.O*TIONIFI 

1-DX))/13.0E+05) 

CELL2R=EX*{4.0*P'JM4+2.0*PUM2+SIONRFIO.O)+SIONRFID21+4.O*SIONRFID2-



c 
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lEXII/13.0E+051 

CELL2I=EX*14.0*RUM4+2.0*RUM2+SIONIFIO.OI+SIONIFID21+4.O*SIONIFIDZ-

lEXII/13.0E+051 

CLLR=ICELL1R+CELL2RI 

CLLI=ICELL1I+CELLZII 

SCLL=CLLR**2+CLLI**2 

PRINT 150. CELLIR. CELL1I. CELLZR. CELLZI. CLLR. CLLI. SCLL 

150 FORMAT 114H YNTERGATYON 117E14.411 

C CALCULATE F2 IN 1571 

C 

CANl=BRIRFI0.01+BR2RFI0.OI 

CANZ=BRIRFI-OII+RRZRFIDZI 

DAN1=BRIIFIO.01+BR2IFI0.01 

DAN2:BR1IFI-D11+8R2IFID21 

PRINT 151. CAN1. CAN2. DANI. DAN2 

151 FORMAT 16H PARE /14EZO.411 

HSIN=IDEl**4*C1-DE2**4*CZI/14.0*WILI*1.0E+041 

CONR=HSIN*IBR1RFIO.OI+BR?RFIO.01-BR1RFI-DII~BR2RFID211 

CONI=HSIN*IBR1IFIO.01+BR2IFI0.01-BR1IF(~D11-BR2IFIDZII 

SCON=CONR*CONR+CONI*CONI 

PRINT 152. CONR. CONI. SCON 

152 FORM~T 18~ DISCON 113EZO.411 

C CALCULATE THE SOUND POWER 

SAMP=ICONR+CLLRI**2+ICONI+CLLII**2 

PRINT 153, SAMP 

153 FORMAT 16H SAMP .lE20.51 

BOR=V2*T2*Z2*Z2*BOUND*BOUND/172.0*1. 0 E+051 

TOR=BOR*3.2415 

AUM=TOR*SCLL 

DIS=TOR*SCON 

POWER=TOR*SAMP 
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PRINT 154. AUM. DIS. POWER 

154 FOR,.,AT (7H POWER /(3E30.4)) 

IF (L-10) 160. 180. 180 

160 L:L+1 

GO TO 163 

163 IF (L-2) 164. 164. 165 

164 GO TO 112 

165 IF ([.-41 166, 167. 168 

166 GO TO 100 

167 GO TO 112 

168 IF (L-6) 169, 170. 171 

169 GO TO 100 

170 GO TO 112 

171 IF (L-8) 172, 171, 174 

172 GO TO 100 

173 GO TO 112 

174 IF (L-101 175. 176. 180 

175 GO TO 100 

176 GO TO 112 

180 CALL EXIT 

END 
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C THE FUNCTIONS IN THE.FOLLOWING ARE THOSE CONTAINED IN 1561 FOR FIXI 

c 

DOWIFIXI=SlNFIlI*XI+EPC*SINFIll*Dl+ll*XI 

DOWRFIXI=COSF1l1*XI-EPC*COSFIll*Dl+ll*XI 

DENIFIXI=I.O+EPC*EPC-2.0*EPC*COSFIZl*Dl+2.0*ll*XI 

DSRFIXI=ll-U+IY-VI*COSFIlI*DIII*COSFll2*X)+IY+VI*SINFIll*Dll 

I*SINFIl2*XI 

DSIFIXI=ll+U+IY+VI*COSFIll*Dlll*SINFIZ2*XI-IY-VI*SINFIll*Dll 

I*COSFIZ2*XI 

DEN2FIXI=DSRFIXI*DSRFIXI+DSIFIXI*DSIFIXI 

TIONRFIXI=IATl*DOWRFIX)+AT2*IREAB*SINFI2.0*A*XI+RIAB*COSFI2.0*A*XI 

11*DOWIFIXII/DENIFIXI 

TIONIFIX)=I-ATl*DOWIFIXI+AT2*IREAB*SINFI2.0*A*XI+RIAB*COSFI2.0*A*X 

111*OOWRF(XII/DENIF(XI 

SIONRFIXI=(CTI*DSRFIXI+CT2*(RECD*SINFI2.0*B*XI+RICD*COSFI2.0*B*XII 

I*DSIF(XII/DEN2FIXI 

SIONIF(XI=I-CTl*DSIFIXI+CT2*IRECD*SINFI2.0*9*XI+RICD*COSFI2.0*B*XI 

II*DSRF(XII/DEN2FIXI 

RIIF(XI=I.O+BB+2.0*IREAB*COSFI2.0*A*XI-RIAB*SINFI2.0*A*XII 

R22FIXI=CC+DD+2.0*(RECD*COSFI2.0*B*XI-RICD*SINF(2.0*B*XI) 

BRIRFIXI=RIIFIXI*DOWIF(XI/IPEI*DENIFIXII 

BR2RFIXI=R22FIXI*DSIFlxl/IPE2*DEN2FIXII 

BRITFIXI=RIIF(XI*DOWRF(XI/IPEI*DENIFIXI) 

BR2IFIX)=R22FIXI*DSRFIXI/IPE2*DEN2FIXI) 

DAMRFIXI=~RIRFIXI+BR2RF(X) 

DAMIFIX1=BRIIFIX)+BR2IFIXI 

C PHYSICAL CONSTANTS FOR KCL AND CDS 

READ 11. DEI. DE2. Pl. P2. VI. V2. Cl. C2. TI. T2 

11 FOR~AT (10F7.4) 
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c 

C THE FREQlJF:NCtES FROM FIRST TO TENTH UMKLAPP PROCESSES 

REA I) l? 9 WI 1) ,W 1 2 ) ,W 1 3 ) 9 WI 4 It W 1 5 ) 9 \oJ 1 6 ) • W !7 It WI 8 ) ,W 1 9 It W 1 10 ) 

12 FOR~AT IIOF8.4) 

c 

C FINDING THE C~NSTANTS FOR LIGHT WAVES 

A=O.144*DEl*6.2832 

8=0.144*DE2*6.2832 

1)1=O.4?I') 

1)?=O.4">O 

I1=Dl+112 

Q1=Cl/Tl 

Q?=C?/T2 

GOST=COSFIA*Dl)*COSFIB*D2)-IDE1*DE1+DE2*DE2J*SINFIA*DlJ*SINFIB*D21 

1/12.0*DEl*DE2J 

ROT=SQRTFIl.O-GOST*GOSTJ 

XX=3.1416+ATANFIROT/GOST) 

S=SINFIO.5*IA*Dl+B*D2-XX))/SINFIO.5*IA*Dl-B*D2+XXJ) 

BP.=IDEl+DE2)*S/IDE2-DEIJ 

BB= I DEI +DE2) H 2*S*S/ I DE2-DFl) / I DE2-DEl J 

REAB=IDE2+DEIJ*S*COSFIA*Dl)/IDE2-DF:I) 

RIAA=(DF:2+DEI '*S*SINFIA*OI)/IDE2-DEI) 

CC~IDE?+DEIJ**2*ll.O+S*S+2.0*S*COSFIA*DI))/14.0*DE2*DE2) 

DD=(IDE2-DEIJ**2+IDE2+DE1)**4*S*S/IOE2-DE1)**2+2.0*IDE2+DE1)**2* 

lCOSFIA*DIJ*S)/14.0*DE2*DE2J 

TD=IDE2+DF:I)/14.0*DE2*DE2) 

SD=IDE2+DEIJ**2/IDE2-DE1) 

RECD=TD*IDE2-DEl+SD*S*S+ISD+DE2-DElJ*S*COSFIA*Dl)) 

RICD=-TD*IDE2-DE1-SD)*S*srNFIA*DIJ 

BOUND=4.0/(ll.O+DElJ**2+ll.O-DElJ**2*BBI 

PRINT 13,BB, CC. DD. REAB, RIAB~ RECD, RICD 

13 FORMAT (7H LI~HT /17E16.5)) 
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c 
C THE CONSTANTS RELATED TO SOUND WAVE IN 1601 

c 

PF:;>=P2 ..... V2 

PE1=Pl ..... Vl 

L=1 

IOO ll=WIL,1V1 

Z2=WIL,/V2 

55=-1.0 

105 EPC=SS*IPE2+PE11/(PE2-PEl1 

l=IPEJ+PEII/C2.0*PE21 

V=l*Sc; 

U=(PE2-PEI1/12.0*PE21 

V=I(P~2+PE11**2*SSI/IIPE2-PEll*2.0*PE21 

TKC.=-ll *Dl 

PRINT 110. EPC. TKC. l. V, U. V 

110 FORMAT (7H SOUND /16EI5.4'1 

GO TO 129 

112 ll=I!lILl/Vl 

l2=W(LI/V2 

SS=I.0 

EPC=SS*IPE2+PE11/(PE2-PE11 

TKC=-ll*Dl 

l=(PE2+PE11/(2.0*PE21 

V=l*SS 

U=(PE2-PEII/C2.0*PE21 

V=( IPE2+PE11**2*SSI/«(PE2- PEl'*2.0*PE21 

PRINT 114. EPC. TK(. l. V. U. V 

114 FORMAT (7H SOUND /(6EI5.411 

C THE FOLLOWING IS THE CALCULATION FOR Fl IN (571 

C 

C THE VARIATION OF Fl DUE TO 2 PER CENT ERRORS IN PERIODICITV 
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129 AT1=DE1**~*Ol*WCL)*C1.0-~B)/C6.0E+O~*Zl) 

AT2=2.0*DE1**4*Ol*A/Z1 

. CT1=DE2**S*O'*WCL)*CCC-DD)/C6.0E+05*Z2) 

CT2=2.0*DE2**4*Q2*B/Z2 

KI=20 

HI=KI 

130 51111014=0.0 

5UM2=0.O 

TUM4=O.O 

TUM2=0.0 

PUM4=O.0 

PU"12=O.O 

RU"14=O.O 

RU"12=O.O 

N=1000 

FN=N 

DX=DI/FN 

EX=n2lFN 

1=1 

1'32 FI =1 

X=-D1+FI*DX 

R=O.O+FI*EX 

5UM4=SUM4+TIONRFCX) 

5UM2=5UM2+TIO~RFCX+DX) 

TU"14=T\IM4+T IONI F C X) 

TUM2=TUM2+TIONIFCX+DX) 

PUM4=PU"14+SIONRF(R) 

PUM2=PUM2+510NRFCR+EX) 

RUM4=RUM4+SIONIFCR) 

RUM,=RUM2+SI0NIFCR+f:X) 

IF CI-N+KI+3) 134. 136. 136 

1~4 1=1+2 
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GO TO 132 

136 CELLIR=DX*14.0*SUM4+2.0*SUM2+TIONRFI-DII+TIONRFI-HI*DX1+ 

14.0*TIONRF(-(HI-1.OI*DXII/3.0E+05 

CELLll=DX*(4.0*TUM4+2.0*TUM2+TIONIF(-DII+TIONIF(-HI*DX1+ 

14.0*TIONtF(-(HI-l.01*DXII/3.0E+05 

CELL ~R = "'"x* (4 •. O*PLJM/~+2. O*PUM2+5 IONR F (0.0 I +S I ONRF I D2-H I *E X) + 

14.0·SIONRFCDZ-CHI-l.01*EXII/3.0E+05 

CELLZI=EX*14.0*RUM4+Z.0*RUM2+SIONIFIO.OI+SIONIFCD2-HI*EXI+ 

14.0*SIONIFIDZ-IHI-I.01*EXII/3.0E+05 

CLLR=CCELLIR+CELL2RI 

CLLI=CCELLII+CELl211 

SCLl=CLLR**2+CLlI**2 

PRINT 137, CELLIR, CEllII, CELL2R, CELL2I, CLLR, CLlI, SCLl 

137 FOR~AT 114H INTERGATION IC7E14.411 

TYl=-Dt*HI/F"I 

TY2=D2*IFN-HII/FN 

PX=DX/2.0 

RX=EX/2.0 

PINR=/).O 

PING=O.O 

RINR=/).O 

RING=O.O 

VARI=2.0*HI+1.O 

"11=1 

140 PI=NI 

ARG=TYl+pr*PX*z.o 

ARG=TY?+PI*RX*Z.O 

PINR=IPINR+PX*ITIONRFCARG-2.0*PXI+4.0*TIONRFCARG-PXI+TIONRF(ARGII 

1/3.01*IVARI-PII/VARI 

PING=CPJNG+PX*(TIONIFCARG-2.0*PXI+4.0*TIONIFCARG-pxi+TIONIFIARGII 

1/3.01*(VARJ-PII/VARI 

RINR=CRI"IR+RX*ISIONRFIBRG-Z.O*RXI+4.0*SIONRFIBRG-RXI+S10NRFIBRGli 
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RING=(RING+RX*(SIONIF(BRG-2.0*RX)+4.0*SIONIF(BRG-RX)+SIONIF(BRG)) 

1/3.0)*IVARI-PI)/VARI 

IF INI-2*KI) 142. 144. 144 

142 1111=1111+1 

GO TO 140 

144 PCIR=CELLIR+PINR 

PCII=CELLll+PING 

PC2R=CEI.,L2R+RINR 

PC2I:CELL2I+RING 

WRON=El*Vl*DEl/16.0E+05*Tl) 

PCR=WRON*(PC1R+RATIO*PC2R) 

PCI=WRON*IPCII+RATIO*PC2I) 

PSC=PCR*PCR+PCI*PCI 

PRINT 146. PCIR. PC1I. PC2R. PC2I. PCR, PCI. PSC 

146 FORMAT (9H PINTEG /(7EI4.4)) 

C THE VARIATION OF F2 IN (57) DUE TO 2 PER CENT ERRORS IN PERIODICITY 

AUM4=O.O 

AUM2=0.O 

BUM4:0.0 

BUM2=0.O 

CUM4=0.O 

CUM2=0.O 

DUM4=0.0 

DUM2=0.0 

EUM4=0.0 

EUM2=0.O 

GUM4=0.0 

GU~2=0.0 

TTX=Dl !l000. 0 

DDT=D2/l000.() 

MI=l 



147 GI=MI 

RON=I-HI+GII*TTX 

RIC=I-IOOO.O-HII*TTX+GI*TTX 

ROG=11000.0-HI+GII*DDT 

AUM4=AUM4+0A"1RF(RONI 

AUMZ=AUMZ+DAMRFIRON+TTXI 

BUM4=BUM4+DAMIFIRON) 

BUM2=BUM2+0AMIFIRON+TTXI 

CUM4=CUM4+BRIRFIRIC) 

CUMZ=CUMZ+BR1RFIRIC+TTXI 

DUM4=DUM4+BRIIFIRICI 

DUMZ=DUM2+BRIIFIRIC+TTXI 

EUM4=EUM4+BRZRFIROGI 

EUM2=EUMZ+BR~RFIROG+ODTI 

GUM4 a GUM4+BRZIFIROGI 

GUMZ_GUM2+BR2IFIROG+DDTI 

IF IMI-Z*KI+31 148. 149. 149 

148 MI=MI+Z 

GO TO 147 
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149 TAUR:14.0*AUM4+2. 0*AUMZ+DAMRFI-HI*TTXI+DAMRFIHI*TTXI 

1+4.0*DA"1RFI(HI-1.OI*TTXII/6.0/ H1 

TAUI:(4.0*BUM4+Z. 0*BUMZ+DAMIFI-HI*TTXI+DAMIFIHI*TTXI 

1+4.0*DAMIFIIHI-1. 0 1*TTXII/6.0/HI 

SHER=14.0*CUM4+Z.0*CUMZ+RR1RFI-DI-HI*TTXI+BR1RFI-D1+HI*TTXI 

1+4.0*BRIRFI-Dl+IHI-1.01*TTXII/6.0/HI 

SHEI=14.0*DUM4+Z.0*DUM2+BR1IFI-DI-HI*TTXI+BRIIFI-Dl+HI*TTXI 

1+4.0*BRIIFI-D1+IHI-1.OI*TTXII/6.0 / HI 

CHER=14.0*EUM4+2.0*EUMZ+RRZRFIDZ-HI*DDT)+~RZRF(DZ+HI*DDTI 

1+4.0*BRZRFID2+IHI~1.01*DDTII/6.0/HI 

CHEI=14.0*GUM4+Z.0*GUMZ+BRZIFIDZ-HI*DDTI+BR2IFIDZ+HI*DDT) 

1+4.0*BRZIFID2+IHI-1.01*DDTII/6.0/HI 

HSIN=IE2-ElI/14~OE+03*WILI ) 
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154 

160 
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CONR=HSIN*ITAUR-SHER-CHERI 

CONI=HSI~*ITAUI-SHEI-CHEII 

SCON=CONR*CONR+CONI*CONI 

PRINT 15Z, CONR, CONI, SCON 

FORMAT ISH DISCON 113EZO.411 

SAMPs(CONR+CLLRI**Z+ICONI+CLLII**Z 

PRINT 153. SAMP 

FORMAT C6H SAMP .lEZO.51 

CALCULATE THE SOUND POWER 

BOR=VZ*TZ*ZZ*ZZ*BOUND*BOUND/(7Z.0*1.0E+051 

TO.R=BOR*3.2415 

AUM=TOR*SCLL 

DIS=TOR*SCON 

POWER=TOR*SAMP 

PRINT 154, AUM, DIS. POWER 

FORMAT C7H POWER 113E30.41 I 

IF (L-I01 160. 180. 180 

L=L+1 

GO TO 163 

163 IF (L-21 164. '164, 165 

164 GO TO 112 

165 IF (L-41 166, 167. 168 

166 GO TO 100 

167 GO TO 112 

168 IF (L-61 

169 GO TO 100 

170 GO TO 112 

171 IF IL-81 

172 GO TO 100 

173 GO TO 112 

174 IF (L-101 

175 GO TO lOO 

176 GO TO lIZ 

180 CALL EXIT 

END 

169, 170. 171 

172. 173, 174 

17';' 176. 180 
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FIGURE CAPTIONS 

Fig. 1. Experimental scheme for measuring the spectra of mixing pico-

second optical pulses in LiNb0
3

• In the case of phase-matched at 

finite frequency, some spectra were measured using the same scheme 

except that the Michelson interferometer was replaced by a Fabry-

Perot interferometer. 

Fig. 2. The detailed construction of the Michelson interferometer used 

to measure the far-infrared spectra in the picosecond pulse experi-

ments. 

Fig. 3. The drawing of the Fabry~Perot interferometer utilized in the 

picosecond pulse experiments to measure the narrow spectral peaks 

produced from the case of phase-matching at finite frequency. The 

micrometers used to adjust the parallelism of the two metal-mashed 

reflectors are not shown in the figure. 

Fig. 4. The far-infrared dual detector system used in the picosecond 

pulse experiments. The whole system was inunersed in a liquid helium 

dewar. 

Fig. 5. Cal The Ge:Ga photoconductive detector used to detect the far .... 

-1 infrared radiation from 95 to 190 em produced by mixing two dye 

laser beams. Cb} The diagram shows the bias and the operational 

amplifier used in the picosecond pulse experiments as well as in 

the experiment of mixing two dye lasers. 

Fig. 6. (a) Far-infrared spectrum generated by mode-locked pulses in 

LiNb0
3 

phase-matched at zero frequency. The experimental points are 

obtained from the Michelson interferogram and the solid curve from 

a tneoreticalcalculation by J. R. Morris assuming Gaussian laser 
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pulses of 1.8-psec pulsewidth. (b) Far-infrared spectrum generated 

by mode-locked pulses in LiNb0
3 

oriented to have forward and backward 

-1 phase-matching at 13.5 and 6.7 cm ,respectively. The experimental 

points are obtained from the Michelson interferogram. The solid and 

dashed curves are calculated assuming Gaussian laser pulses with a 

pulsewidth of 2.3 and 1.8 psec. respectively. In this experiment, 

our laser condition is somewhat different than in the other experi-

ments, and it is very likely that the output pulses are longer. 

Fig. 7. Fabry-Perot fringes of far-infrared radiation generated by mode-

locked pulses in LiNb03 simultaneously phase-matched at 13.5 and 6.7 

-1 
cm The curve is calculated from the dashed theoretical spectrum 

in Fig. 6(b) corresponding to Gaussian laser pulses of a 1.8 psec 

pulsewidth. 

Fig. 8. Fabry-Perot fringes of far?infrared radiation generated by mode-

locked pulses in LiNb03 simultaneously phase-matched at 11 and 5.5 

-1 em The curve is the theoretical calculation from the result of 

theoretical spectrum simila~ to the dashed spectrum in Fig. 6(b). 

The Gaussian laser pulse corresponds to a pulsewidth of 1.8 psec. 

Fig. 9. (a) The diagram shows the effect of the divergent.input laser 

beams on the phase-matching factor in the experiment of collinearly 
I 

mixing two dye lasers, where 0 denoted the divergence angle of the 

input laser beams. (b) In the non-collinear phase-matching scheme, 

two input laser beams cross at an angle $. Under the phase-matched· 

condition, there exists a phase mismatch, ~k, caused by the input 

laser divergence. 
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Fig. 10. One-dye-cell scheme for the far-infrared generation set-up. 

The wavelength of the two beams can be independently varied from 

8100 to 8400~. The diagram for the ruby pump system is not shown 

in this figure, but depicted in Fig. 11. 

Fig. 11. Two-dye-cell scheme used for the collinear (both forward and 

backward) phase-matching experiments. The ruby oscillator was Q-

switched by a rotating prism. 

Fig. 12. Another two-dye-cell scheme used for the non-collinear phase-

matching experiment. The diagram of the ruby pump system shown in 

Fig. 11 is omitted. 

Fig. 13. Typical Fabry-Perot interference fringe resulted from mixing 

of two dye lasers in LiNb0
3

• The curve is for the illustration and 

is not a theoretical calculation. 

Fig. 14. Theoretical calculations of the phase-matching frequency vs. 

the phase-matching angle for LiNb0
3

, ZnO, ZnS; and CdS crystals in 

the collinear phase-matching case. 

Fig. 15. Phase-matching curves. The outer one is forward collinear 

-1 phase-matching curve for 21 em in a 1.6-mm LiNb03 crystal; the 

-1 
inner one is backward collinear phase-matching curve for 56 cm in 

a 0.5~mm LiNb0
3 

crystal. The solid curves are the theoretical cal­

-1 
culations •. From the outer curve and the measured a

3 
of 14 cm ,we 

-1 deduced the far-infrared linewidth of 3 cm • From inner curve we 

b i d 236 em-I 
o ta ne a 3 = 

Fig. 16. Another two collinear ,forward phase-matching curves in two 

0.5-mm thick LiNb0
3 

crystals. The solid curves are the theoretical 

calculations from which we deduced the far-infrared absorption 
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constants and their standard deviations. 

Fig. 17. The far-infrared o-ray absorption constant vs. w
3

• The dots 

and associated error bars are deduced from the phase-matching curves. 

The solid curve is the experimental results obtained by the far­

-1 
infrared transmission measurement of Bosomworth for w

3
<70 cm and 

the far-infrared reflection measurement of Barker and Loudon for 

-1 w
3

>70 cm 

Fig. 18. Far-infrared power generated vs. frequency for three phase-

matching conditions. The far-infrared power is normalized by a 

sum frequency signal. The solid curves are based on data of the 

far-infrared absorption and the Raman cross-section in LiNb03 • 

Fig. 19. The dispersion of xi~) vs. frequency in LiNb0
3

• The dots. 

are experimental results deduced from the forward collinear phase-

matched experiments. The solid curve is the theoretical calculation 

using the oscillator strengths of A. S. Barker, Jr., and R. Loudon, 

and Raman cross section of I. P. Kaminow and W. D. Johnston, Jr. 

Fig. 20. The circular points are the calculated conversion efficiencies 

for various orders of ~k1app process using a piezoelectric super-

lattice consisting of 100 epitaxial layers of GaAs:GaP with a total 

thickness of 6.34 u. The triangular points give the conversion 

efficiency if the pet~odicity of the superlattice has a ! 2% randdm 

variation. Note the break in the vertical scale. 

Fig. 21. The circular points are the calculated coherent phonon power 

(divided by the product of the powers of two mixing ruby laser beams) 

for various orders of ~k1app process in a super-lattice of 100 al-

ternating vacuum evaporated layers of KCl:CdS with a total thickness 



-131-

of 8.7 u. The triangular points give the phonon power if the period­

iCity of the super1attice has a 2% random variation. Note the break 

in the vertical scale. 
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