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CHAPTER 1
GENERATION OF FAR-INFRARED RADIATION BY OPTICAL RECTIFICATION OF
PICOSECOND LIGHT PULSES AND BY MIXING OF TWO TUNABLE DYE LASERS
Kei-Hsiung Yang
InorganicvMaterials Research Division, Lawrence Befkeley Laboratory
and Department of Physics; University of California
Berkeley, California
ABSTRACT
We have observed»far—infrared radiation geﬁeraﬁed in a Li‘NbO3

crystal bj picosecond lighf pulses from a mode-locked Nd: glass laser.
The output spéctra were analyzed by a Michelson intérferometer and a .
Fabry-Perot interferometer. In one experiment a 0.77 mm thick LiNbO3
crystal was used to rectify the laser pulses. The resulting spectrum
showed peaké of descending power at 2, 6.5, and 10.5 cm-l. This shape
can be roughly_understood as the product of an w2 radiation efficiency,
a phase-matching curve centered at zero frequency, and a Gaussian
envelope corresponding to a 1.8 picosecond laser pulsewidth., 1In a
second experiment the LiNbO3 was oriented to obtain forward phase;
matching at 13.5cm_l and backward phase-matching at 6.5 cm—l. Both
peaks were observed and were in agreemeﬁt with the theoretical_caléula—
tion. The faf—infrared power observed in the rectification caée was
about 200W for a peak laser pﬁwer density of O.ZGW/cm2 and a train of
30 pulses} We also used dual~frequency dye laser systems'to gener#te
céntinuously tunable,faf-infrared radiation from 20vto 190 cm-l. We
have investigated both the collinear (forward and backward) and non-

collinear phase-matching in LiNbO, over most of this frequency range

3
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and the forward collinear phase-matching in ZnO, ZnS, CdS, and CdSe
at selected frequencies. We measured the generated far-infrared power

versus frequency in LiNbO. as well as the far-infrared linewidth of

3

3 cm_l. We also obtained the absorption constant of the far-infrared ¥

O-ray in LiNbO, from the phase-matching curves. We deduced the dis-

3

€2)

persion of Xé4 in LiNbO, from the experiment which agreed well with

3

the theoretical calculation. A plane wave theory using the Creen's
function method was developed to explain the speétra obtained in the
picosecond pulse experiments. Tﬁis plane-wave apprSXimation was
then modified to calculate the far-infrared power produced by mixing

two dye lasers in LiNbO, in both collinear and non-collinear phase-

3

matching schemes.

CHAPTER II
S THEORETICAL STUDY OF COHERENT
PHONON GENERATION BY OPTICAL MEANS IN A
ONE-DIMENSTIONAL SUPERLATTICE
ABSTRACT
With the help of the lattice momentum, phase—matéhed optical genera-
tion of coherent phonons with frequencies higher fhén 50 GHz appears _A ' v
feasible. We have caiculated two cases: (i) Direct conversion of
millimeter or submillimeter photons in a piezoelectfic superlattice,
(ii) Optical mixing of two laser beams in a non—piézoelectric super—
lattice. 1In the first case, an efficiency of 10_4-for photon-to-phonon
power conversion can be achieved using an epitaxial GaAs:GaP superlattice

of 100 unit cells. The piezoelectric superlattices .can be constructed
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from multilayer epitaxially grown crystals, partially oriented sputtered
films, and naturally grown polytypic cr&stals. In the second case,
longitudinal phonon power of 1 mW can be generated by the mixing of t&o
10 MW/cmz—laser beams in ‘a2 KC1:CdS superlattice of 100 vacuum deposited
layers. We have also calculated the first-order effect on the generated
phbnon.power due to *2% random errors in the peribdicity of the super-
lattice. In b9th cases, the high-order unklapp processes which involve
shorter phbnon Qavelengths are most sensitive to sqcb imperfection. 1In
both cases, the acoustic power generated under phase-matching conditions"

is proportionél to the square of the total number of unit cells in the

superlattice.
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CHAPTER I
I. INTRODUCTION
Sinée Zernike and Berman1 observed radiation near 100 cm._l resulting
from the ﬁixing of unknown number of modes from a single pulsed neo-
dymium glass laser in crystal quartz, many groups have been trying to
achieve tunable far-infrared (FIR) radiation by mixing two lasers in
different_ﬂon-linear crystals. We can classify all of this work into
three categoriés according to the type of lasers used for the experiments.
In the'firs£ category, two CO2 gas lésers\werevused to mix in various
semiéonductorsf Zernike2 and Van Tran and Patel3 reported the genera-
tion of radiation in the 100 cm'_l range by mixing the 9.61 and 10.6y
€O, laser transition in InSb. Recently, quite a few experiments belonging

2
to this category have been conducted.l‘-'9

One ihteresting experiment

was done by Van Tran Nguyen and Bridges8 who used the n-type InSb

| at 15°K in a strong magnetic field as a mixing érystal. The enhance-
ment of the second-order resonant optical noniinearity due to conduction-
electron spiﬁs was observed. Boyd, Bridges, Patel, and Buehler7 used
ZnGeP2 as a mixing crystal to produce phase-matched step-wise tunable
radiation from 70 té 110 cm—l. Recently, Aggarwal, Lax, and Favrot9
reported the‘noncolliﬁearVphase—matching in GaAs to produce step—wise
(O;l cm-l) tunablé far-infrared radiation. In the second éategory of
expe;iments, two solid‘state lasers were used. The first observation
of:thé cdntinuously tunable FIR radiation was rebofted by Faries,

Gehring, Richards, and Shen.10

In this experiment, two Rl ruby lasers
with one of the laser rods cooled were mixed in LiNbO3 to produce

radiation in the frequency range from 1.2 to 8.lAcm_l. Later,
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by mixing a R1 ruby laser with a R2 ruby laser (temperature

cooling in.either of the laser rods), a continﬁously

tunable radiafion from 20 to 38 cm_1 was achieved. The third categofy.
was the experiments of mixing two dye lasers. Yang, Morris, Richards,
and Shen11 reperted the generation of the continubuely tunable radiation
from 20 to 190'cm_l by mixing two dye lasers in LiNbO3 and ZnO. Auston,
Glass, and LeFer12 also observed tunable radiation from 2 to 50 cm

using a reduced (black) LiNbO, as a mixing crystal.

3
There are two main reasons for attempting to generate tunable
far—infrared radiation by mixing two laser beams. First, it offers the‘
possibilify.of providing a useful source to do spectroscopy in the far-

infrared region. Second, it provides’understending'of the nonlinear
interaction of the electromagnetic radiation with matter.

Exploratory spectroscopic studies in the region between 3 and
200 cm—-l began more than 50 years ago, but the development has 1agged
well behind that in other parts of the\spectrum by the lack of suitable
bright source.13 Electron beam devices such as klystrons, back wave
oscillator_s,14 etc., can generate coherenf narrow’line-width radiation
with limited tunability which is useful for the high resolution
spectroscopy below 25 cm—l. By using harmonic ger;efation,l4 this
radiation source can be extended to higher frequencies with a great loss
of efficiency. On the other hand, the grating speetrometer and the
Michelson interferometer,15 both with a hot black bedy as a radiation
eource, are used for higher frequencies.

The most widely-used far-infrared source in the Michelson inter-

ferometer is the Rayleigh-Jeans region of the black body spectrum

«
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emitted by a high pressure mercury arc lamp. The intensity of the
radiation emitted by the lamp varies approximately by two, and the

total power radiated by the lamp used in our laboratory into the 1:1.5

optics of the Michelson interferometer, in the region 0-100 cmfl, is

> W, while in the region 0-30 cm—l is of the order 10-8 W. The

16,17

2x10°
newly invented polarization interferometer has improved the
0-100 cm_l.region because the. grid beam splitters of high efficiency
are used. The lack of energy of the source limits the resolution or
lengthens the_measuring time for a reasonable signal-to-noise ratio.
For comparison, the far-infrared peak power per unit frequency over the
region 0-—100'<:m_1 generated by mixing two dye laseré is three to four
orders of magnitude larger than that produced by é.mercury arc lamp.
High peak §0§ers are necessary in ordér to investigate transiéﬁt and
nonlinear phenomena in the far-infrared region, and also possibly, in
using room’témperature detectors. |
In chooéing a spectroscopic technique for a particular application,
several major considerationé must be weigﬁted againsf each other, in-
cluding in particular, the spectral resolution required, the rénge of
frequency to be scanned, the time available for fecording, the ease |
of operation, and the expense or availability of the components. The
recent development of small compact digital computeré, which can be
interfaced to compute the spectrum from the interferogram has increased
the usefulnesé of the Michelson interferometer and the polarization
interferometer. They have the advantages of a rgaéonably good resolu-
tion, a broad range of frequency scanning, and a fast speed of ﬁeasure-

ments.15 They have become the most frequently used tool for the
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spectroscépical investigation in the far—infraréd region. At the=:
present stage, tunable far-infrared radiation by mixing two laser beams
in nonlineér crystals can not compete with the Fourier transform
spectroscopy as a spectroscopic tool. Much engineering effort is
needed before it can be put into practical usage. However, in the long
run, with further engineering development, it might become cheaper in
coﬁstructioﬁ,geasier in operation, and better in‘resolution than the
Michelson interferometer. |

In this thesis, we will agscribe two experiments related to the
tunable far—infrared generation by mixing two lasers in nonlinear
crystals. In‘the first experiment,18 mode-locked picosecond pulses
which have broad spectral contents were mixed in LiNbO3 (a birefringent
crystal). We first derive a theoretical description using a Green's
function method in the plane-wave approximation. We calculate the far-
infrared power spectrum produced for two different crystal orientations.
When the picosecond optical field is parallel to thé c-axis and the
two surfacés of a crystal slab, the resulting spectrum can be under-
stood as the_produét of an wz radiation efficiency, a phase-matching
factor centered at zero frequéncy, and a Gaussian pulse frequencyv
envelope. When the c-axis of the crystal tilts at‘an-angle away from
the normal of the crystal slab, and the optical fieldbpropagates along
that normal with equal components in the ordinary and extraordinary
rays, the resulting spectrum shows two different phase-matching pgaks,
one forward and the other backward, multiplied by_'w2 and Gaussian pulse

envelope. We then describe the experimental arrangements. The far-
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infrared signals was separated into two beams, one for normalization,
the other passing through a Michelson interferometer20 for spectfal
analysis. Interferograms were Fourier transformed to obtain the far-
infrared specfra. We then discuss the agreement betﬁeen the experi-
mental results and the simple theoretical calculations in general shapes
of the spectra, the exact locations of peaks and valleys, and the phase-
matching frequencies. We fit our experimental resulfs with Gaussian
laser pulse léngth of 1.8 or 2.3 bicoseconds, which differs from the
two-photon fluorescence mea;urement of 5 picoseconds. We explain this
discrepancy and compare with other picosecond optiéal pulse experiments
in the discussion. |

In the second experiment,21 a dual—frequency,dyé laser system was
used to generate continuously tunable radiation over the frequency

range from 20 to 160 cm-1 in LiNbO, and at selected frequencies in-

3
Zn0, ZnS, CdS, and CdSe. Phase-matching was achieved by using the bire-
fringent crystéls in the collinear scheme and by>forming a closed
triangle withvthree wavevectors in the noncollinéar scheme. Although !
many experiments have been done in mixing two laser beams to generate
differeﬁce frequency radiation, a complete detailed theoretical
description of the physical process, including the use of focusing
lenses, is still not available. In principle, sucﬁ a description should
be possible ifgnot too tedious ana time consuming, given the temporal
and spatial behavior of the two input laser beams, the frequency

dependent dielectric constants, and the nonlinear coefficients of the

mixing crystal. Unfortunately, in our experiments of mixing two dye



lasers, the transverse modes of the laser beams.ere not known, making

the exact ﬁheoretical description almost impossible. Hence, in this
thesis, we try to ealculate the far-infrared power generated under
collinear and noncollinear phase-matched schemes dsing the Green's
function meehdd in the plane wave approximation. We then discuss the
effects on the far-infrared power of the following factors which are
relevant to our experimental conditions: the double refraction,

boundary conditions,.finite beam cross-section, laser divergence, far- -
infrared diffrection, finite far-infrared linewidth, and the dispersioné
of the dielectric constant and the second order nonlinear susceptibility.
The derivations of the formulas showing the dispersion of the second-
order nonlinear susceptibility are included in Appendix B. We then
describe ouf experimeetal techniques, one-dye cell dual—frequency

scheme, two-~dye cell schemes, far-infrared detection, the crystal prepara-
tions, and phase-matching methods in detail. After eummarizing the
experimental results, we show the comparisons between theoretical and
'experimentalvresults for the far—infrared power generated by collinear

and noncollinear phase-matching schemes, in the far-infrared O-ray
(2)
4

absorption constants, and in the dispersion of X5 for LiNbO,. We

3

also show that the formulas used to calculate the dispersioh of X204
in LiNbO3 can be generalized to calculate the diSpersion of the non-
linear susceptibility in InSb (free electrons in magnetic field) and

Con (magnon mode) .

@ o
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II;.’GENERAIION OF FAR-INFRARED RADIATION BY PICOSECOND

LIGHT PULSES IN LiNbO3

A. Theory
From the uncertainty principle Avt ~ 1, a oﬁe'picosecond mode-

locked bptical pulse should contain a bandwidth.of 33 cm_l. Because_
of its broad spectral content, a picosecond laser pulse can generate
far-infrared radiation in a nonlinear crystal as a fesult of beating
between its various frequency components. Theoretically, Gustafson

et al.22 have investigated the interaction of intense picosecond pulseé
with electfd—optical material. They have calculéted the rectified
field for an ihfinite plane wave, in the limit that the optical and
far—infrared_bhase velocities differ negligibly. - The difference in
phasé velocities is important in explaining the power spectrum of the
generated.fét—infrared, as later verified by the eXperimeﬁtal results.
In their calculations, the reflection and refraction_at the crystal
boundaries was also neglected. Later, Morris and Shen23 carried out a}
more realigtic calculation which included the various effect due to a
’finite beaﬁ cross section, crystal boundaries, ana the significantly
différent optic¢al and far-iﬁfr#red phase velocities. 1In order to
compare with the experimental results, they calchléted numerically the
results of_rectification of the mode—lockevad:gléss laser pulses in
LiNbO3. T&o different phase-matching copditions:wefe investigated.

In the firs§ case, when the optical field was an eXtraordinary ray .
(e~-ray), the generated far-infrared radiétion propagated aiso as an

(2)

e-ray. In this case, the nonlinear coefficient x33 was responsible



for the faf*infrared generation (phase-matched at zero frequency). In
the second case, the optical field had equal componénts in the e-ray

and the ordinary ray (o-ray). The generated far-infrared was in the

(2)
24

process (phasé-matched at finite frequency). 1In this sectibn, a very

o-ray and the nonlinear coefficient X was mainly responsible for this
simple theoretical calculation plus some intuitive physical arguments
which are believgd to be adequate to exﬁlain the experimental résults will
be described. .For the complete detai;ed theoretical calculafions refer
to reference 24,

Assuming a monochromatic electromagnetic wave in an insulator,

Maxwell's equations reduce to the wave equation25

IVXE) = —— =~ Z @ b . (1

wﬁere ‘E*‘ is'the dielectric constant tensor and EN is the nonlinear
polarization resulting from the nonlinear coefficient of the material.
In the case of the picosecond optical pulses propggating in a LiNbO3
crystal, one can study most simply the collinear‘propagatibn.of thé
rectified and optical fields neglecting the radial profiles o£ both.
Assuming tﬁat.the depletion 6f the input opticalfpulse is negligible,.
the rectified‘field produced in the case of phase—mafching at zero.-

frequency is governed by the equation

2 . 4 2 _ -
L) (2,0 =2 B (2,0 @
0z2 V2 2| 3 ¢ g2 3T
where V3e.= —£ is the difference freqUencyvphase velocity, n '
4 na, , “3e

is the far-infrared e-ray index of refraétion. No dispersion for n,.
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is understood since the frequency of the rectified field is below

20 cm—l, where, as in LiNbO,, the lowest frequency polariton mode26

3’

for e-ray is at 248 cm-l. The propagation direction is along z-axis,

as is the ¢-axis of the LiNbO, crystal.
Furthermore, we can write
N - +(2)

Py (z,t) = X33 Eg E (3)
where Ee denotes the laser field in the e-ray. . The causal Green's
function for Eq. (2) is’

G(z-2z',t-t') = - -% H (t—t' . Iz—z'l) (4)
V3e

where H(E) is the heavyside function such that

H(E) =0 forVE <0

1 for £ > 0

The solution for the_rectified field can be written as

: 52
Ey (2,t) = 3e Z'"J dzf de' —-:'—2 Py 3(z'st )H(t t'—-—-—— | z-2" l)
(5)

In the formula (5), the crystal slab is assumed to lie between z =0
and z =%, and the refraction and reflection from the crystal boundaries

is neglected. For z = %, Eq. (5) becomes

’ L
: 1
. _ _2m 9 N, , _
E3e(z,t) ; J dz' e P3(z st S (z-2z') ) (6)
0 3e
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A formula for the frequency spectrum of the far-infrared electric field

is easily obtained by the Fourier transformation of Eq. (6).

©0

y o g Jwt -
- E-3e(z,u)) = = f .dt e E3e(z,t) @)

Equations (3), (6), and (7) indicate that if the exact expression

for ¥ g)(w)vand the laser optical field Ee are khown, one can calculate

(
3
the power spectrum of the rectified field. We assume no dispersion for

ng)ﬂﬂ) and N3, for w<20 cm—_l (this is true since the lowest frequency.
(2 '

polariton mode affects most of the dispersion of ¥ )(w) is at 248 cm-l)
_ _ 33

{
i
]
!
;
i
{

and that the laser optical pulse takes the Gaussian form

o z .
B, = B el - -0 /20%lem1CE2 -0 )] 0 (®)

where Ee denotes the complex amplitude, n, is the index of refraction

for the e-ray laser fiel&, 0 is a parametér related to the optiéal

pulse-width and wy is the laser pulse central frequency. Substituting
Eq. (8) intbeé. (3), then using Eqs. (6) and (7), we obtain the power
‘spectrum of the rectified field by é single picosecond thical pulse . o .
as | \

cn3e *
i S3o(w) = —— E; (z,w)E, (zw)

2.2 '
., T gin2dh
€ |"|xaql®e 2 22 ——2—
e! 1733 K o2 (9) P
_ G _

w2
4n, ¢
3e

In deriving Eq. (9), we assume.that the condition of <<'1 is valid

where £ is the thickness of crystal and a is the far-infrared e-ray

» . | w(n3e-ne)
absorption constant. Also, in Eq. (9), k equals — > where
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w is the far-infrared frequency. It can be seen.from Eq. (9) that the
far-infrared power spectrum deéends on the square of both the input
laser power and the nonlinear coefficient, on the dipole radiation
efficiency @2, on the coherent far-infrared phase-matching factor
[(sin2 k2/2)/(k2/2)2] which is centered at zero frequency and on the
optical pulse envelope e—wzoz/z.

Aithough the experimental observation was of the sum of a pico-
second pulsevtrain instead of a single pulse, the general shape of
this power spéctrum was verified. |

In the case of phase matching at finite frequenéies, the ¢ axis
of the crystal slab is tilted away from the z—axis with an angle 8.

If one neglects the so-called '"walk-off" effect of the laser e-ray,
Eqs. (2), (4), (5), (6), (7) are valid with the subscript e changed to
o to indicate that it is the far-infrared o-ray which is generated. |

Equation (3) should then be replaced by

N
P3(z,t) = Xo£fEoFe (10)
where Ee is expressed as in Eq. (8) and Eo’ the laser o-ray, can be

written as

(i) . . :
B, < E_ expl-(-2 - t)%/zczl exp[1 (-2 z-w0)] (11)

where Eo is the amplitude and n_ is the laser o-ray index of rgfractibn.
Carrying out the calculation as in the first case (for simplicity, we
substitute Eq. (6) into Eq. (7) and integrate with respect to dt first),

we obtain for z =2 £
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' 2 2 . 12 2
_ ~w°o w L -2'“(n,-ng)
. i v v e
E (z w) _-—.——119)—0- E * e 4 e V3 z * eiAk+z . e 40‘21 dzl
307? n3_oc Xefon e o 0 '
(12)
and
_ Yo Sy w ., = _ Botme
Ak —‘no—n ) --(n30 p) c > n=—> (13)

If the difference in the optical path of the laser o-~ray and e-ray

after passing through the crystal slab is much less than the optical
' L(n_-n ) ' ‘
pulse length, i.e. ——EEE~S— << 1 (as is true for a few mm LiNbO3

crystal slab), then Eq. (12) can be simplified as

i 2.2
110 . i(w/vy yz 10k4l

= - . -z s =
Eﬁo(z’w) n.c Xeff oe © € . 1Ak, (14
. 30 . +
The power spectrum for z= £ can be expressed as
2.2
: . -w°o 2 [Aky
S = T P e 2 T e )
30 4n3oc Xeff o e

Ak ,\2
)

Comparing Eq;i(lS) with (9), we can conclude that in #he case of the
laser o-ray beating with e-ray, the phase-matching factor centers at
finite frequency instead at zero frequency. Howevér, so far in both
cases, we have:only solved the forward propagating'far—infrared
radiation (z = £). The Green's function in Eq. (4) implies that there
also exist the solutions for the backward propagating far-infrared

radiation (z < 0). We can easily follow the mathematical formulas and

solve for the condition z < 0. In the case of phase-matching at zero
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frequency, the calculated power spectrum has exactly the same formula
as the Eq. (9). But in the case of phase~matching at finite frequency,

Aky in Eq. (15) changes to Ak_, where
Wy _ v
Ak = (no—ne)-j; + (ngo—n ) w/e (1§)

Thus, the backward and forward phase-matching fréquenéies do not
coincide. ' Since in LiNbO3 ng, = 6.6 yields far;infrared reflectivity
of 54% at the crystal boundaries, this backward phase-matching wave

is reflected from the back surface of the crystal and detected by the
far-infrared detector. In LiNbO3 crystal, the forward phase-matching
frequency is about twiée the backward phase-matching frequency in
magnitude. -Experimentally, both are observed and_égree well with the

theoreticél éalculation.

B. Experiments and Results

The expéiimental scheme is shown in Fig. 1. A Nd:glass 1aser’
simultaneously Q-switched and mode-~locked by.a Kodak 9470 dye solution
was used as an exciting source. A Brewster-angle-cut laser rod 0.95 cm
in diameter and 10 cm 1ong'was placed in a 85 cm long laser cavity.

Two externaily triggered linear lamps housed in é double ellipse
reflector Qeré ﬁsed to achieve the population inversion for the laéer
-action. The window of the dye cell made an angle of about 60° with
respect to the optical axis of the cavity. An adjdstable circular
aperture was inserted into the cavity to maintain good laser tragsverse
modes. The output was obtained through a 707 reflecting mirror and
was monitored.by a biplanar vacuum photo-diode combined with a

Tektronix 519 oscilloscope which triggered a type 556 oscilloscope.
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A Nichol-prism polarizer was used tb purify the laser polarization.
The mode-locked laser output consisted of a frain of about 30 pulses
between the half-power points of the envolope with 6-nsec separation .
between pulses. The total energy contained in thé pulse train was
about ZO_ﬁJ.F The pulse width measured with two-photon fluorescence
27,28 '

techniques was about 5 psec. A lense with a 30 cm focal length

was used to_fdcus the laser beam into the LiNbO cryétal which was

3
26 cm from the lense, and 1 mm of black pél&ethylene was used at the
output to pfevent laser light from reaching the far-infrared detector.
The far-infrared output was then split into two beams by a Mylar beam
splitter. One of the beams was used for spectralvanalysis in either

a Michelson interferometerls’

? (see Fig. 2) or a ﬁetal—mesh Fabry-
Perot interferometer20 (see Fig. 3). The other waé'used for normaliza-
tion. The entire far-infrared system was evacuated to avoid water-
vapor absofption. - The two beams were separately detected by two n~
type InSb (Pﬁtley) detectors29 operated at 1.50t0.05°K30 in a magnetic
field of 5.4 kG. These two detector sizes were 5X4X2 mm and 7x4x1.5 mm
respectively énd were cut from the same boule, which had a carrier
density of about 7><1013/cm3 and a mobility of 7x105.cm2/vsec meésured
at 77°K. The detector system is shown in Fig. 4. Both detectors were
biased with a constant voltage of 0.2 V and the current of each
detector was measured using an operational amplifier with a feedback
resistor Ry = 205 kQ {see Fig. 5(b)]. The response time of this

system was 2 usec. The sensitivity of the detector was measured using

a blackbody at 200°C and a filter passing 0-50'cm71. This showed
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the averagé noise equivalent power in a 5><105 Hz bandwidth to be
l><10_6 W. However, since the sensitivity is certainly not unifqrm in
this energy regionzg’31 and since there are inevitable local system
resonances aﬁ these long waveléngths, the absolute values of the far-

infrared power may be in error by as much as an order of magnitude.

Measurements with the Michelson Interferometet

The Michelson interferometer used in the experiments is shown in
Fig. 2. It had a 5 mil mylar beam splitter. The chopped mercury arc
lamp source which we assume to have a blackbody spectrum was used to

15,19 (the spectral

measure the instrumental function of the system
sensitivity of the spectrometer-detector combination). For this measure-
ment; the détector signal passing through a lock-in amplifier waé
recorded By a digital data recording system.19 The interferograms1

were meaéured. The instrumental function was obtained from the Fourier
-transform:of the interferogram, corrected for the assumed blackbody
spectrum of the mercury lamp source. The same source was also used to
align the'Micheléon interferometer and locate the zero of path dif-

15’1? To measure the spectra of the laser mixing experiments,

ference.
the arm cohtaiping the chopper and the mercury arc lamp was removed
from the Michelson interferometer and replaced by a 9-inch collecﬁing
brass tube and the polyethylene lens similar to the‘Output arm of

the Michelson interferometer. After ;he laser Qas fired, the two
far-infrared signals detected were displayed on a Tektronix 556 dual

beam oscilloscope and photographed. The ratio of the two signals was

then computed. To obtain the true spectrum from the Michelson
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interferogram, the Fourierrtransformation of the interferogram was
divided pOiﬁt by point by the inétrumental function with the same
resolution. |

Two crystal oriéntations were studied. In the first, a 0.775-mm
thick LiNbO3 crystal was oriented with the normally incident laser beam

polarized along the C-axis and propagating along b. In this configura-

(2)
33

to the generétion of far-infrared polarized along &, and phase-

tion, the nonlinear susceptibility X (= 3.14><10—6 esu)32 contributes
matching occurs at zero difference frequency as the simple theory shows.
The Michelsqn interferometer was used to investigate the far-infrared
spectrum. The interferogram was sampled at intervals of 0.2 mm out to
a maximum of 5 mm, which iimited the resolutionlsfl? to 2 cm—l. Fourb
laser shots were averaged for each sample; The final spectrum computed
with linear aéodizationl5 and corrected by the instrumental function

is shown iﬁ Fig. 6(a). Because of the frequency-dependent reflection
coefficient of the 5-mil mylar beam splitterl5 in the Michelson V
interferometer, the reliable range of the spectrum measured was from

3 to 22 cm-1; The resulting spectrum contains peaks ét 2.5,-6.5, and
10.5 cm—1 with descending amplitude. The gengral shape of the spectrum
and the exact location of the peaks and valleys agreed well with thé
simple theofetiéal calculation using Eq. (9). 1In this calculation,

the far-infrared index of refraction measuredlby Boéomworth33 and the
optical refractive indices of Boyd, gfc.;34 weéé used. A more detailed

theoretical calculation23 including the effects of finite beam cross

section and reflection and refraction from the crystal boundaries and
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assuming a 1.8-psec Gaussian laser pulse is shown in Fig. 6(a) for
comparison. The agreement is good.

In the second case, a 1.524-mm-thick LiNbO, crystal was oriented

3
with its € axis tilted at 6 = 16° away from the normal to the plane
surfaces and tﬁe a axis at an angle ¢ from the plane containing the
normal and the ¢ axis. The normally incident laser beam was polarized
to have equal components in the ordinary and extraordinary rays. In

this configuration, the polarization responsible for the ordinary ray

far-infrared generation can be written as

@ (2)

' X X
PD0 = [xgzgine + xgggin3¢cose]EoEe + —%2C0826C083¢EZ'- —%g cosB¢E§
(17)
(2) _ 6 (2) 7

- ‘ - 32
where Xo4 = 3.08x10 “esu, X99 = 4,4%x10 ‘esu, Eo and Ee are laser
o-ray and e-ray components respectively. The polarization responsible

for the generation of the far-infrared takes the form

_@
PDe = XgyC08 6cos3¢E0Ee B
o X‘Z) fo) XSZ)
+ (x(z%oszesiﬁe - 22 sin3¢cos38 + 31 coszesinﬁ + —-3-§sin36)E2
24 2 2 2 e
(2) @
. X22 X31 2
+ (=5~ sin3¢cosd + —= sinb) E_ _ v (18)

Note that Eqs. (17) and (18) have three-fold symmetry with respect to

the angle ¢ as required by the LiNbO, crystal symmetry. In order to

3
isolate the far-infrared signal produced by the laser o-ray beating
with e-ray from the laser rectifying signal, the angle ¢ was chosen to

be 30° and a grid polarizer was used to filter out the far-infrared
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. e-ray generated by P e in Eq. (18). 1In this case, .the last two terms

D
in Eq. (17) vanishes and PDo contains signals of phase-matching at
finite frequency only. The experimental result measured with the
Michelson interferometer is shown in Fig. 6(b).

The baékward phase-matched peak at 6.5 cm-1 was observed, but the
forward phasg4matched peak expected at 13.5 cm—l was not distinguish-
able from the backgroﬁmd noise. Again, the simple fheoretical calcula-
tion using Eqs. (15) and (16) can predict location and linewidth of
both backwafdvand forward phase-matching frequentigs and the general
shape of thé spectrum. Detailed theoretical curves calculated by

23,24 for 1.8 and 2.3-psec Gaussian laser pulses are shown for -

comparison. - It is seen that the relative strength of the 13.5 cm-l

Morris

peak is very sensitive to the variation of the pulsewidth, which
changes with laser operating condition.

Measurements with the Fabry-Perot Interferometer

In a Separate expefiment, we used a Fabry-Perot interferometer
with metal-mesh reflectors to analyze the spectrum. Since the spectruﬁ
is expected to contain only two narrow phase—métched peaks, a Fabry--
Perot interferometer, which has higher peak transmissivity than the
Michelson inferferometer, should be more suit#ble, The construction
of the Fabry;Perot interferometer is shown in Fig. 3. For conciseness
and simplicity, the two micrometers used to adjuét the parallelism of"
the two metal-mesh reflectors are not shown in‘theifigure. A He:Ne
laser was used to align the parallelism of the two‘metal-mesh‘reflectors
by observing the diffraction spots from the metal meshes. The ex-

perimental results are shown in Fig. 7. The first, third and fifth

1
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peaks in the figure arise from the forward phase-matched peak at

13.5 cm-l, while the second and the fourth peaks have contributions
from both thg'forward‘and the backward phase-matched peaks. Since the
resolving'powerzo of the Fabry-Perot interferometer was limited to
about 4 due to the 406 spreading angle of the far-infrared radiation
from the crystal, the theoretical width (~ 2 cm_l);of the phase-
\matched peaks was not resolved. The solid curve in Fig. 7 is the-'
detailed théoretical calculation of the interferometer fringes assuming
Gaussian laser pulses of 1.8-psec pulse width. The Aetails of this
calculation are given in Appendix A. It appears to be in satisfactory
agreement with the experimental results. As a sepaféte check using

the Fabry-Perot interferometer, we rotated the LiNbO3 cryétal to

phase match at 6 = 14°., The result is shown in Fig. 8. The phase-
matched peaks appear at 11 and 5.5 cm-l as expected ffom.the simple
theory. As was the case for Fig. 7, the detailed tﬁegretical fit
asspmes‘l.8—psec Gaussian laser pulses. The details 6f the calculation
are given in Appendix A.

The tbtal far-infrared energy detected from ng) in the first case
(phase-matchiﬁg at zero frequency) was of the order of 1 erg, which is
about 20 times larger than that detected in the second case (phase-
matching at finite frequency). Both agree to within aﬁ order of
magnitude wiih a theoretical estimate based on a mode-locked laser
train of 30 pﬁlses.and a peak power aensity of 0.2 GW/cmz. We also

2) (2)

measured the relative far-infrared power generated by x§1 and X33 -

The measured ratio xgg)/xgi) > 4 was In satisfactory agreement with

the calculated value of 3.5.32 The peak power of the picosecond

far-infrared pulses in the first case was of the order of 200 W.
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C. Conclusions and Discussions

We have observed far-infrared radiation generated in LiNbO3 by
picosecond 1ight pulses from a mode-locked Nd:glass laser. The plane
wave approximation with the Green's function method was adequate to
explain the general shape of the spectra and the exact location of the
peaks and valleys in the far-infrared power specfra for all of the
experiments. Realistic numerical calculations which included various

effects due to a finite beam cross section, crystal boundaries and

the different optical and far-infrared phase velocities, were in agree-

ment with the experimental results.
There is some discrepancy between the pulsewidths obtained from

the two-photon absorption fluorescence:measurement527’28

and from the
far-infrared generation méasurements. This is due to the different
nature of tﬁe_two methods. The two photon absorptibn fluorescence
techniques measure the'autocorrelation.of the actﬁal_pulse shape. If
the pulse hasISOme rapidly varying ripples on its more slowly varying

27,28 does not have suf-

envelope, and if the photographic technique
ficient resolution, then the two-photon absorption fluorescence
technique tends to yield an autocorrelation function of only the more
slowly varying part., The far-infrared generation measures the actual
sﬁectral content of the pulse and, consequently, would yield an ap-
parently shorter pulse. Yajima, et al.35 observed the far-infrared
radiation as high as 20 cm—1 in the rectifying case and yet they
obtained 1as¢r pulsewidth of 10 psec from the two-photon absorption

fluorescence measurement. This result also indicated strongly the

existence of the more rapidly vafying ripples on its more slowly
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var&ing puiée envelope. In the case of phase—matching at finite
frequency, the forward phase-matching peak at l3.5_cm_1 is very
sensitive to the pulse width around the two picqsecond region., This
method can be generally applied to monitor small pulsewidth changes
under different experimental conditions. For shdrter pulsewidths,
the Gaussian envelope for the far-infrared radiation cuts off at a
higher frequency and a crystal with bigger angle 6 is needed to
monitor this change. Similarly, for longer pulsewidths, the angle

8 should belémaller.

The peak power of the picosecond far-infrared pulses produced in
the rectifying case was of the order of 200 W, which could be increased
to 5 kW by increasing the laser peak power density to 1 GW/cmz. In
the second caée, the spectral width and the tunability of the generﬁted ‘
radiation can not compete with the two CO2 laser systems or the two
dye laser systems described later in this thesis. But if the laser
pulsewidth coﬁld be as short as 0.5 psec, this syétem could be
capable of producing tunable far-infrared pulses from 3 to 40 cm_l.
Such pulses can be used to investigate transient and nonlinear
phenomena in the far-infrared region.

Fﬁrtherﬁore, under the same laser operating éondition, it is
obvious that crystals with larger electro-optical coefficients can
generate morée far-infrared power. The LiIO3 crystal36 was tried with
less satisfactory results than LiNbO3. Crystals with.absdrbing
impurities which enhance the second-order nonlinearity may generate

more powerful far-infrared radiation. This phenomenon has been



observed by Auston et al.

(LiTa0.:Cu ).

3

37,38
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using the copper doped LiTaO

3
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ITI. PHASE-MATCHED FAR-INFRARED GENERATION
BY MIXING TWO DYE LASERS

A. Theory

Consider two plane wave laser beams with frequencies wy and w,

propagating normal to a slab of the birefringent crystal with its
optical G;axis tilted an angle 6 away from the normal. The non-

linear polarizétion\responsible for the difference frequency generation
can be written as |

PN

*
3 = XegsF1E) (20)

where Y is the effective nonlinear coefficient and E_,E, are laser
eff 1’72

fields propagating along Z-axis
i(w,t-k, z)-0,2z/2
J ) J

= j ’ = .
Ej Ej e j=1z2 (21)

w.n, :
and kj = —ld ;n, a, and E, are the refractive index, the absorption

I 3
constant, and the field amplitude, respectively.
| If we assume no depletion of the input laser beams due to the
difference frequency generation, then the Green's fﬁnction method
developed for section IIA can be used to calculate the far-infrared
power. Whgn the far-infrared absorption is inciuded'in (2), na
should be changed to n, + ia3/2. Using Eqs. (4), (5), (6), (7), (20),

and (21),‘we solve the forward collinear case (z.> £) and obtain

ik 23
., V7n 3* "7 %
E3(z,w3) = + 'ES-—C i(L)3 e .
. o, +0.,~0
L L e Sy e
. it . * ei(k1 k2 k3)z —g— z
Xeef 152 | (22)

0
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In the éxpression (22), the crystal slab is situated from 0 to &
along the z-axis. We assume that the detector is buried in the di-
ellectric‘medium which has no far—infrared absorptién but matches the
refractive index of the mixing crystal. We then obtain the far-infrared

output power per unit area as

- L
~0,8  =(a,+a, )R -5 (o to,to )8
pe L 1.2 1222 e > 4e L2 pcoshkge 21 23
37 nge 293 Megs! 1515, , @y ajta) 2
L QK" + (5 - —5)
(23)
where
Be = k) -k,~k, (24)

Similarly, if we solve for the backward propagation far-infrared
radiation (i.e., z < 0), we obtain the same formula (23) for the power

except that

Ak = ky~k, +k ' (25)

273

The factor inside the bracket in formula(23) is the well-known phase¥
matching factor. Its importance can be seen from the following argu-

ments. In the low absorption limit ay = 0 (al =a, = 0), this phase

matching factor is equal to

sinz(%§£2)

2
k 2 ’
& v

which becomes 22 as k approaches zero. The far-infrared power is then
proportional to the square of the crystal thickness. In the high

absorption limit o, & >> 1 (al =0, = 0), the phase-matching factor

3

approaches-i%- -as Ak goes to zero. The far-infrared power is optimized
o .

when Ak = 0.3 This is called the phase-matching condition. In an
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optically isotfopic crystal, this condition cannot be satified for the
collinear caée. Being far away from the anomalous dispersion region,
the far-infrared index of refraction is always larger than the optical
index of refraction. Collinear phase-matching is possible by using a
birefringent crystal. One of the two laser fields is in the ordinary
ray, the other is in the extraordinary réy. The far-infrared radiation
generated can be in the o-ray or in the e-ray. The e-ray index of
refraction is a function of the cr&stal orientation. At a certain
crystal orientaﬁion, kl—k2 can be arranged to be-eqﬁal to k3. This is
the case of forward collinear phase-matching. For the same crystal
orientation, the backward phase—matchiﬁg condition can be satisfied for
a different far-infrared frequency. For instance, LiNbO3 is a negative
birefringent crystal (no >ne). In this experiment,'tbe optical input
wavelengths are around 8330 A. At 6 = 45°, the forward collinear phase-
matching (FCPM) frequehcy happens at Wq =95 cmfl while the backward
collinear phése-matching (BCPM) frequency is at 36vcm_1. The generated
far-infrared is in the'o-réy.~ |

To be commensurate with the real experimental situations, the
plane-wave approximation should be modified.39 In the following, each
experimental condition and the corresponding modification of formula (23)
will be discussed. |

1. Double Refraction

In the collinear phase-matched scheme, since a birefringent crystal
is used,.one of the input fields is in the e-ray whose energy flow
direction differs from that of the wavevector inside the crystal. The

angle between those two directions is called "walk-off" angle.40 Due
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to this effect, the overlap of the two input beams walks off after a

t

certain distarice within the crystal. The maximum "walf-off" angle

41 In the case of LiNbO3, this angle is 2.14°., 1In .

all the experiments, the crystal thickness is less than 2 mm. The

occurs near 8 =45°.

"walk-off" &isﬁance of the two beams at the end of the crystal is less
than 74u whiéh is negligible as the diameter of input beam cross éection
is around 3 mm. However, when the crystal_thickness‘is larger than

1 cm, the effeét becomes important.

2. Boundary Conditions

The refractive index of the mixing crystal differs_froé that of
the vacuum. Boundary conditions should be imposed in solving for the
electric fieldé inside and outside the crystal. The parallel éurfaces>
of the crystal serve like a Fabry-Perot interferometér for both the
input beams and the far-infrared. The LiNbO3 has an'optical index of
refraction around 2.2 which results in a finesse of only 1.16. 1In
addition, the input beams have around ~ 2 A bandwidth which tends to
‘wash out thé fabry—Perot fringes further. Therefo:e ;he effect of the

crystal boundaries on the input beams is adequately described by the

transmission coefficients,

1 n, 2 n,

»

where Pl 2 and Ti o are the power per unit area and the transmission

’ ' ’ o :
coefficients for the frequencies wy and w, respectively, The boundary
conditions affecting the far-infrared radiation are more complicated.

The LiNb(_)3 crystal has far-infrared refractive index of 6.6 for the
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o-ray and 5.4 for the e-ray. Both rays have high absorption constants.
An o-ray can convert part of ifs energ& into the e-ray when it is
reflected from the crystal boundary at 6 #0. In order to see the
Fabry—Pefof pattern in the far-infrared, the transmission of a 0.5-mm
thick LiNbO3 crystal was measured by conventional fourier Transfor
Spectroscdpy. The results showed that as wq > 40 cm—l, the Fabry-Perot
transmission pattern flatened out for both o-ray and e-ray because of
high absorption. Around 20 cm_l, this pattern showed a large modula-
tion. But our generated far-infrared has about # bandwidth of 3 cm—l,
which is wide enough to span a peak aqd valley of that modulation. In
this case, the averaged values of the transmission and absorption co-
efficients are therefore valid. In the dye laser mixing experiment,
the crystal thickness is greater than 0.5 mm. We include these ef-
fects in an effective transmission. Therefore a transmission coeffici~
ent representing the crystal boundary effects on the far-infrared

radiation, T3, is used to modify the expression for the power P3 in

formula (23). In summing up, we obtain

3 T,T,T, n
_ 8m 17273 73 2 2 * L
P3 =3 T = wq lxeffl P1P2 (phase—maFchlng factor)
c nn,n, -

(27)
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3. Effects of Finite Beam Cross Section, Divergence,
and Diffraction '

In reality, the finite laser beam cross section and the associated
divergencg effect should be taken into consideration in the calculation
instead of infinite plane waves. The laser beam in our experiment was
focused and had 2 miliradian divergence. The mixing crystal was situa-
ted at about 26 Raleigh range (estimated from aiTEMoo laser beam) away
from the minimum beam width (detailed information is given in Séction‘
IIB). Therefore the ray-optics approximation is valid for the input

beams. The divergence of the multi-mode input beams will cause the

~ far-infrared radiation to spread through an angle Y as shown in Fig. 9(a),

where § is the divergence angle. Under the forward collinear phase-.
matching condition, Ak is not zero because of this divergence and of

the multi-mode laser beams,

2 :
: (k,8)
_ oAl 2 2 - 1 -
Ak = \Jk3 + (kld) - k3 = —ffg_— ; (28)
‘ k.§

To demonstréte the significance of this effect, if m3 generated is at
20 cm_l, we have Ak = 13.5 cm—1 and vy = 11°. Thé:far—infrared totai
reflection angle inside the'LiNbO3 at w, = 20 cm;1 is 8.7°., We can
see that parﬁ of the far-infrared generated is totally reflected back
to the LiNbO3 crystal and never reaches the detector. The experi-

mental far-infrared power should be less at low frequencies than that

calculated from the plane wave approximation. In addition, the radius
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R of the beam was 1.5 mm at the crystal. The total far-infrared power

should be

P
3 1 2 :
P = . = -(30)
3(tota}) TTR2 R2 R 2+R 2

where P3 is'expfessed as in formula (27), and R1 and R2 are the Qaussian
beam radius at e--2 intensity for wl and wz, respectively. The expres-
sion for R in formula (30) guarentees that the actual area of thé beam
overlap is less than the minimum of the two input béams. For the far-

infrared field, the waveléngth A, is long, and the diffraction angle

3
YD satisfies roughly the following equation inside the crystal
| 1.22 A,
sinYD =
| 2 ng R |
At Wy = 20 cm_l, Yp equals to 1.75° which is much less than Y. The

spreading angle outside the crystal due to Yp is 11.73° which is not
important cbmpared to the 45° collecting angle of the detection system.
"However, the far-infrared diffraction effect will shorten the crystal
coherence iength from the value derived from the plane-wave approxima-
tion. This effect is even more complicated when multi-mode laser beams ‘
are included. This point can not be clarified without going to aimore
detailed tﬁeqretical treatment,

_4?7 Finite Far-Infrared Linewidth

The bandwidth of the input laser beams results in a far-infrared
bandwidth of 3 cm._1 in the mixing experiment. ThiS_finite bandwidth
causes the phése-mismatch Ak to deviate from zero even when the central
far-infrared frequency is phase-matched. For the FCPM case, from

Eq. (24), we obtain
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Aw Aw

- _3 3 :
d(Ak) = (no n3) < + p (no ne(e))
Aw
. 3. -1
o (no—n3) T = 82.9 cm (32) ’
‘and for the BCPM case, using Eq. (25), we get
' bwy  bw ’
4 = (aghng = = == (g (8)
b 5 -1 | '
= (n°ﬂ3) = = 165.8 cm (33)

where Aw3 is.the far-infrared bandwidth and the nﬁmberical values are
calculated for the LiNbO3 crystal. In'calculatiﬁg;the‘far-infrared
power from Egs. (27).an& (28), we should integratelover the far-infrared
bandwidth. However, aside from the phase-matching factor, the ex-

pression is not a sensitive function of w, within this bandwidth, as

3

"w, is reasonably far away from the polariton mode frequency. We carry

3
out the integratidn which only includes the phase-matching factor. It

can be seen from Eqs. (32) and (33) that the integration_averaged over

Ak is different in the FCPM case from the BCPM casé, | .even - though the

far-infrared bandwidth is the same. ' | -

5. The Dispersions of the Dielectric Constant and the Second

Order Nonlinear Susceptibility :

There are eight E polariton modes26 (with the lowest frequency are
one at 152 cm—l) which determine the dispersion of the dielectric

constant of the far-infrared o-ray in LiNbO The refractive index

3-

ni, the absorption constant O35 and the transmission coefficient T3
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can be calculated from the dielectric constant expressed as
S, w

ey =€ + D S (36
' j (wTj - W, ) + 14T

33

where €, is the DC dielectric constant and Lo Sj, and ', are the jth
J

polariton mode frequency, the oscillator strength, and the related
damping constant, respectively. The dérivation42—44 of the dispersion
of the second order nonlinear susceptibility iS_desc;ibed in Appendix
B. It cén be summarized in the following by the assumption that the

linear susceptibility of the mixing crystal does not have appreciable

dispersion in the region of the input laser frequecies w, and w

1 2

1 (2) S 1 Sj"'i do3 |
3 X (W3) = d(W3) = dE + o Z 3 : : (35)

5 WT% - w32+iij3 ’
| 2
srchn s ray |
g o] Ceny 36)
03 S ws"ns(ﬁT +1) B 3
h| h|
*, 44 |

- 4(0) = Z Sydgy = rn * | (37)

In usihg the formula we first calculate dej from Eq. (36) and dE from
Eq. (37), then use dE and d , in Eq. (35) to find out the dispersion

f X(z)(ws).

8j

The dej in Eq. (36) is directly related to the Raman

Thls formula should be modified if tensor notation is used for x( )
please see reference &44.
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scattering experiment on the w, -frequency polariton mode where n, and
h|

n_ are the refractive indices of the Raman pumping beam and the scat-
tered beam, respectively; LA is the frequency of the scattered beam.

~ The Se J./LdQ.denotes the Raman scattering extinction length per unit

solid angle on the jth polariton mode and n represents the average

T
h|
thermal population number of polariton quanta at the sample temperature
- b4
T. The nT can be expressed as
k|
_ 1
Dp = (38)
Tj ehw;I,j/kT_1

In Eq. (37), r is the meésured electro-optical constant when the
measuring light frequency is the same as that of the Raman scattering
input beam.

In summing up, combining Eqs. (23), (27) and (30), we get the far-

infrared power (in watts)

2 T.T.T.n -
b J8n 1230 (2 2. 2 : (39)
3(total) c3 Y 3 'Meff 12 R 2+R 2 v
b R 1k 12
where 1l
-0,4 ~-(a,+a,)L - S(o,4+0.+0.) L
1= & 3 + e 172 ~ 2cosfkf e 27172773
9 o 0,4+, 2
)’ + - 25

and I is the avérage of I over the different values of Ak caused by
the laser beam divergence, thevdiffraction and finite bandwidth of the
far-infrared radiation. | |

It is worth mentioning the physical meaning expressed by Eqs. (35),

(36), and (37) about the contribution of the polariton modes to the
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second order noﬁlinear susceptibility.‘ We can think the difference
frequency generation as ;n induced parametric process, or as an induced
three photon pfocess. A photon of Wy is converted iﬁto two lower
frequency photdns of L) and LEY The laser beam af frequency v, is used
to enhance, or induce the conversion. The physical picture of this
conversion can 5e illustrated when the far—infrared frequency W is the
same as one of the polariton modes of the mixing crysﬁal. In this
case, a photon at frequency Wy is scattered to become a photon at lower
frequency w2-(like Raman scattering) and excites a polariton mode,
which radiates far-infrared. The nonlinear coefficient responéible for
the difference frequency generationlis proportional to the product of
the Raman scétfering cross—section and the radiation efficiency of that
polariton modé. The term included in the summatiéﬁ inqu. (35) has
this physical meaning. Note that dej in Eq. (36) can be negative or
positive. The contribution of the polariton modes to the second order
nonlinear susceptibility can be constructive or destructive. Note also

that the oscillator strength, S,, of the polariton'mbde plays a com-

h|
-plicated role in its relation to the far-infrared generation from the
mixing experiment. It is contained both in thé nonlinear susceptibil~ |
ity and the faf—infrared absorption constant.

Noncollinear phase-matching is possible in agy.crystal which pos- .
sesses anomalous dispersion between the incident laser radiation and
the far-infrared difference frequency radiation. Optically isotropic
crystals as well as crystals with birefringence can'be.used to achieve

noncollinear phase-matching. All three waves involved are usually

polarized in the same direction. The index of refraction of the far-
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infrared radiation is usually quite large so that arcorner of the mixing
crystél is chopped off in order to facilitate the far—infra:ed collection
(see Fig. 12).  The two input beams cross with an angle and the far-
infrared radiation comes out in a different direction making the exact
detailed theorgtical description even more difficﬁlt than the collinear
phase—maﬁched ¢ase. A heufistic theory which contains the major
physicél effects and is édequate to explain roughly the experimental
results can be obtained from a modification of the collinear phase?
matched case.

We assume that Eq. (39) is true for the nonlinear phase-matched case
except that & is repiaced by zeff which represents the effective crys=
tal length through which the three waves involved reaily intefact.l.A
simple analysis will show that Eq. (39) is only valid at the phasei
matching angle for the noncollinear case. The other physical conditions--
the double refraction, the boundary conditions, the diépersion of tﬁe
dielectric constant and the éecond—order nonlinear susceptibility can
be argued as in the collinear phase-matched case. But the effects of
finite far-infrared linewidth and the divergence of input laser beams
on Ak in Eq. (39) take different forms. Under nonlinear phase-
matching conditions, the divergence of thé input laser beams causes

a nonvanishing Ak in Eq. (39). From Fig. 9(b), we obtain

Ok = k 8sing . ~(40)

where § is divérgence angle and ¢ is the angle between Kl and £3.
Equation (40) indicates the importance of the laser divergence under

phase-matching conditions. In the dye laser experiment using LiNb03;
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we obtain Ak .= 137 cm._l which is much larger than that due to finite
far-infrared linewidth whose contribution to Ak in Eq. (39) can be

expressed as

Aw3
Mk = [n,-n, cos (¢-¥)] —= o (41)

For the derivation of Eq. (41), see Fig. 9(b).

B. Experimentél Techniqpesb

1. Dual-Frequency One Dye Cell Scheme

Figure 10 shows the detailed experimental arrangement using a
dual-frequency dye laser. A Glan Thomsén poiarizéf45 (GTP) with anti-
reflection coatings was used inside the laser caﬁity to divide the
beam into two orthogonaily polariéed components. Two 312 mm echelle
gfatings operated in the Littrow configuration iﬁ the 7th order.wére
used for feedback and independent frequency tuning of the two polariza--
tion components. The grétings were aligned correctly to the output
mirror uéing a‘He:Ne laser. The use of a single dye cell and an output
" mirror enéure& that the two output laser beams were well overlapped
spatially.. Fine tuning for spatial overlap was achieved by observing
the burn spots of each laser in the focal plane of’a'iens. Temporal
overlap of the beams requires equali;ing the net gain in the two arms
of the cavity. A ruby laser beam circularly polarized or linearly
polarized in a direction at 45° from the GIP axis was usé& to pump the
dye cell (DTTC iodide in DMSO46 as in Bradleys47 single ffequency dyé
laser). The dye cell was a 1 cm2 Bechman spectroéhotométer cell. The

dye concentration was not critical; however, it was adjusted to give
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20% transmissibn for low level light at 6900 A. .Temporal overlap
could be optimized by modifying the relative gain of the two arms with
a microscope slide inside the cavity. We estimated the grating re-
flectivity to be 407 based on the reflectivity iﬁ the 8th order auto-
collimation for a He:Ne laser. The output mirror had 70% reflectivity
at dye laser frequencies. With a 30-mW, 30-ns ruby pumping beam the
dye laser output had a peak power of 600 kW and its two wavelengths
could be tuned independently from 8100 A to 8400 A as verified by
an 1-1/2 meter Jarrel-Ash spectrometer. The linear polarization of the
output beam was pure to within 10% and the two polarizations of the
beams were not mutually orthogonal. A lems with 75 cm focal length
was used to examine the focal spot size of the laserlbeams and yielded
a spot radius of about 1.5 mm. This implied that the laser output had
a half angle divergence of 2 milliradian. The neafly elongated spatial
profile foreach beam_indicqted‘that the laser transverse mode was not a
single mode but multi—mode; The lens with 75 cm focal length was used
to focus the beam on the crystal which was placed 70 cm from the lens.
In order'ﬁo reduce statistical noise due to lasér fluctuations,
the far-infrared signal was normalized against the sum-frequency signal
generated by reflection from a (110) surface of an InAs crystal, which
has a negligible dispersion in our frequency range. Discrimination
against the second-harmonic signal48 was achieved byiorienting one
laser field pa;allel to [001] crystal axis which was perpendicular to
the plane of incidence. The other laser field was afranged parallel

to the plane of incidence and had no component along [001]. Since the




-37-

InAs crystal has a cubic symmetry (43m), the polarization'bf the sum
' (2) (2)

14 25

perpendicular to [001]. The second-harmonic signal generated by ¥

was

(2)
36

was polarized parallel to [001] and was rejected by a polarizef. .Seven

frequency signal generated in this configuration by X and X

cm of a saturated solution of CuSO4 was used to filter out the laser

light. The sum frequency signal was detected by an S-5 photomultiplier.

' The intracavity microscope slide (Fig. 8) used to adjust the'relatiVe

gain of the two afms of the cavity was used to couplé out a fraction
of the orthogonally polarized beams for sum-frequency genefation.

The duai—frequency one dye-cell scheme was very eésy to operate
for the forward and backward collinear far-infrared genération. It can
be used for the noncollinear phase-matched experiment by plaé;ng
another Glan fhomson polarizer right after the laser output mifror
to separate.twé beams spatially. Affer the.polarization of the LA

beam is rotated 90°, the two beams can be combined.by a prism (see

Fig. 12).

2. Two—dye—cgll Scheme

The far—iﬁfrared generation can of course be échieved by using
two separate dye lasers. In fact, two-dye-cell schéme was used Before
the idea of the one-dye-cell scheme was well developéd. Figures 11
and 12 show experimental schemes which use two dye cells. ' The former
was for the backward and forward collinear phasé—matched experimeﬁt,
the latter for the noncollinear phase-matched experiment. In Fig. 11,
the ruby beam experimental set-up which was omitted invboth Figs. 10

and 12 was drawn for the purpose of completeness. It consisted of a
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Q-switched ruby oscillator laser rod and the amplifier laser rod which
were both 4-inches long and their diameters were 5/16 inch and'3/8‘inch,
respectiveiy. Two sets of two linear lamps houée& in a double ellipse
reflector were used to excite the oscillator and the amplifier rubyv
rods respg@tiyely. The oscillator lamps discharged about 555 Joules
and the amplifier lamp 750 Joules. The discharge of the amplifier
lamps should precede that of the oscillator in érder to ﬁave high gain.
In our experiment, the lamps of the oscillator and'the amplifier were
fired at the same time so that the ruby laser power was only doubled
by the amplifier. The total ruby laser power was about 30 MW. Half
of the vertically polarized ruby beam was used té_pump a dye laser

(as C2 in Fig. 11) whose polarization was also vertical. The ruling

grooves on the grating reflect more light with its polarization parallel

to them rather than perpendicular. Hence the ruling grooves on the
grating were always arranged to be parallel to the pdlarization of the
pump beam. The other half of the ruby beam with its polarization ro-
tated 90°'byva pair of Fresnel rhombs was used to pump another dye
laser. The dye lasers with orthbgonal‘polarizations were then combined.
by a Glan Thomson polarizer. Again a lense with 75 cﬁ focal length
‘was used to focus the beams on the crystal which was 70 cm from the
lense. About‘SZ of the focused beam was deflectgd by a microscoﬁic
slide to generate sunhfrgquency signal on the InAs surface for normal-
ization. |

Figure 12 shows a two-dye-cellvscheme used for tﬁe nbncollinear
phase-matching‘experiments. The ruby beam was split to pump the two

dye cells. The polarizations of the two output dye lasers were
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parallel. The microscope slides were used to couple out part of the
energy from each beam. Two prisms were used to deflect the coupled-

out wl beam whose polarization was rotated 90° by a pair of Fresnel

rhombs. Thé coupled-out beams were combined by a Glan Thomson polarizer
and focused to generate the sum—frequency signal fof normalization.

Two lenses with 80 cm focal length were used to indépendently focus the
beam. The mixing crystals were 75 cm from each lens. A thifd-prism

was used to deflect the focused W, beam which beat with the focused

2

W. beam in the crystal to generate far-infrared radiation. Non-

1

collinear phase-matching was achieved by the coupled rotation and
transition of the prism. Only one piece of LiNbO3 (a 4 mm cube with
a corner cut off) was used for the noncollinear phése—matching experi-

il

ment. , : o ‘ |

3. Far-infrared Detection g
Far-infrared signals in the 20 to 95 cm-l range were detected with
an n-type InSb detectorz9 (see Fié. 4) operated at 1.4°K in a 14.5 kG
magnetic field which causes a cyclotron resonance peak49 around 95 cm—l.
In the 95 cﬁrl to 200 cm.—1 range, .a Ge:Ga50 photoconductive detector
[see Fig. 5(a)] at 4.2°K was used. .The detector Bias and the current-
measﬁring oéerational amplifier is shown in Fig..S(b). Black_polyf
ethylene sheets with total thickness of 0.75 mm were used to prevent
laser beams from reaching the far-infrared detectors. For the forward
collinear and nbncollinear phase-matching experimeﬁts, a l-cm diameter
evacuated brass light pipe with a black polyethylene window which was

0.5 cm away from the mixing crystal was used to guide the far-infrared

radiation for detection. The L-shaped brass ligth pipe had a brass
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reflector at the elbow-bend. To observe the backward collinearly
phase-matched signal, we added a right angle bend.to the light pipe.
The dye lasgr beams passed through a 1/8-in. hole in the right angle
bend and hit the crystal mounted near the mouth of the light pipe. The
far-infrared radiation was then collected from the back (laser beam
entrance side) of the crystal. There was about 5 cm of air in the
collection path. The electric signal from the amplifier and the
signal from the photomultiplier (representing the sum-frequency signal)
were displayed on a dual beam oscilloscope where we took the picture
of the two signals simultaneously. The ratio of the two signals was
then compufed.

The instrumental function (the sensitivity of the filter-detector
systém) was measured by conventional Fourier transform spectroscopyls’19
using, as a reference, a Golay -cellsll with a diamond window having a
flat response. The far-infrared power detected from the mixing ex-
periment versus frequency was then divided point by point by the instru-
mental function to obtain the true relative power spectrum. In the
measurement of the instrumental function, the meréury arc source, the

interferomefer, and light pipe system were the same as for the Golay
cell and the far-infrared detectors. The only différehce was the
value of A{l, (where A is the detector area and i$ the.detecting
solid angle) which was 0.026 for the Golay cell and:b,079 for the
Fe:Fa detectof; We assumed the difference Af) value did not affec;
the frequency résponse. o
The absolute far-infrared power at 125 cm_1 from the forward col-

linear phase-matching experiment was measured to be 4.85 mW using the
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Ge:Ga detector. The discussion of the calibration of this detector

is as follows. The responsiVityso curve of the Ge:Ga versus frequency
starts at around 80 cm_l, has a peak at 95 cm—l, then decreases
steadily to a negligible value at about 200 cm—l. Tﬁis curve could
be simplified by assuming that the detector's true responsivity

at 125 cm_l was constant over the freqﬁency range from 85 cm_l'to

190 cm.l. The Michelson interferometer (with 1/2 mil mylar beam
splitﬁgr combined with Yoshihaga filter), which had.output radiation
from 50 to 200_cm—1, was used as the source for the Ge:Ga detector

and the_quay cell. At the zero path of the Michelson interferometer,
the Ge:Ga detector had 0.96 mV output, while the Golay cell had 0.2 V A
output. The Golay cell has a flat reséonsé and the responsivity is

51 From this result and

known from the manual to be 8.3><105 V/watt.
the fact that the Ge:Ga detector had three times larger AQ value but
detected one;third less radiation because of senéiti?ity cut-off, we
calculated thét the responsivity of the Ge:Ga detector including the
0.75 cm black polyethylene filter was 2 XlO3 V/watt. The electrical
noise of the Ge:Ga detector which was biased at 1.35 V (the same as
used in the laser mixing experiment) was measured to be 1.2><10—7 v/iz
by a lock—in’a@plifier at a chopping frequency of~280 Hz. The PAR
type D preamplifier used in the lock-in amplifier did not contribute
to the dominant noise at this chopping frequency aﬁd the Ge:Ga

resistance of 240 k{). The noise figure of the preamplifier under

this condition was less than 0.1 dB.
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From these results we concluded that the electrical noise equivalent
power of the Ge:Ga detector was 6 ><10_11 W//ﬁ;. If we assumed that the
Ge:Ga detector absorbs 50% of the incident radiatidn and reflects about
50% with its two surfaces (n=4), then its noise,équivalent power in-
cluding the 500-kHz‘detection bandwidth would be:8.48><10~8 watts. In
the mixing experiment; the 2 us response time.of the detection
system tended to averagé Oﬁt the 30 ns far—infra;gd pulse. The minimum
detectable far-infrared peak power genérated should be equal to
8.48><10-8 Qattsx2'us/30 ns = 5.86 ywatts. This value had to be corrected
due to the 0.75 cm black polyethylene filter52 which attenuated the
125 cm_1 radiation a factor of 8.65 and the light pipe attenuated
a factor of-j by observation. The real minimum detéctable far-infrared
peak power generated at 125 ém_l by the mixing experiments was 0.147 mW.
We observed that the far-infrared signal to noise ratio generated in
LiNbO, ‘at 125 _cm"l was 33. | |
The above absolute power calibration at 125 cm—1 would be invalid
if in the laser mixing experiment, the operationai'émplifier sh&wn in‘.
Fig. 5(b) induced more noise than the Ge:Ga detectof.— We biased the
detector at 1.35 V for the best measured signal to noise ratio. The
peak-to-peak noise voltage Vpp at the amplifiér o#pputwas 2 V. We
replaced the_détector by an equivalent room temperature résistor and
observed Vpp = 0.3 mV. Hence, we concluded that the.detector—SYStem
(Ge:Ga) was detector-noise limited.

However, in using the InSb (Putley) detéctof we observed

Vpp = 0.3 mV, the same for both the detector and the equivalent room
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temperature resistor. Hence, for the system the noise was limited by
the amplifier. As a check, the 95 cm.—l signal generated by the non-
collinearbphase—matching experiment was detected bY’two detector
systems. Thé InSb detector system yielded.a signal to noise ratio
three_times higher than that pf the Ge:Ga detector systEm whose
responsivity aﬁ 95 cm-1 was about twice higher than at 125 cm—l. This
implies that the Ge:Ga detectof is very noisy. This excess noise
might also come from the electric contacts which were made by using
indium solder. | |

4, Crystal Preparation

Tablé:I describes the LiNbO, crystals used for the experiment.
Table II shows the other crystals used in the experiment. In order
to ﬁeasure the resiétivity (2/cm) of the semiconducﬁor samples, we
used Galn alloy to wet the crystal edges for making:the electrical
‘contacts. ~Thé ZnS crystal was a long strip 1 mm wide which would not
accept all the input beams. This factor was included in thé correc-
tion of the far-infrared power measurement shownvin.Table III. Two
CdSe crystals with different resistivities were used for the experi-
ment. No signal greater than noise was obsefved in either case. Note
that the resistivity of the semiconducﬁors is impértant in the mixing
experiments because 1t is related to the free-glectron plasma
oscillation which limits the lowest far-infrared frequency which can
be generated; It is also related to the far-infrared refractive index

which affects the phase-matching.
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5. Phase~Matching Methods

Since LiNbO3 is a negative birefringent crystall(no > n, where

n . are the indices of refraction of the ordinary and extraordinary
td L

rays‘respectively), the forward collinear phése-@aﬁching achieved by
arranging ;he Wl beam along the o-ray and the Wé beam along the e-ray
(W1 >W2, ]k]J >|k2|) generated the far-infrared o-ray. Backward col-
linear phasé-matching obtained by positioning the Wl beam in the e~ray

and the W, beam in the o-ray (w1>w2 but lkl|<|k2f) also generated a

2

far-infrared o-ray. The other four mixing crystals shown in Table II -

are positive birefringent crystals (n0 <ne). The W, beam in e-ray

1

and the W2 beam in o~ray was used for the forward collinear phase-

matching which generated the far-infrared o~ray. In all the collinear

phase-matching experiments using the five crystals, the effective

second order nonlinear susceptibility xé%; was equal to xéi)sine, where
6 is the phase-matching angle. In doing the noncollinear phase-
(2) (2)

matching experiment in-LiNbOs, Xegg = X33 Wwas used which generated
the far-infrared e-ray. The two dye laser beams were required to
cross .at an .angle Y as shown in Fig, 12. The e~ray far-infrared came

out another direction as shown in Fig. 12,

C. Results of Experiments and Comparison with Theory

For quick reference; a summary of experimental results is presented
in Table III which shows the frequency tuning range end the power of
the far-infrared radiation generated in five different crystals.

Typical far-infrared wevelength measurement by a Fabry-Perot inter-

ferometer with metal mesh reflectors is shown in Fig. 13. This
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measuremenf was the earliest taken of the experiments.with the
experimental.scheme shown in Fig. 11. But the two gratings were not
the same, one echelle grating with 312/mm rulings operated on the
7th order, and the other with 1200/mm rulings operated on the first
order. The far-infrared line width produced in this case was different
from that with two 312/mm gratings which were used for the rest of
the experiment. Hence, no theoretical calculatioﬁ for the Fabry~Perot
fringes was étfempted because we did not know the linewidth. The
purpose of this experiment was to calibrate the difference in wave-
length of input laser beams measured by a Jarrell-Ash 1.5m
spectrometer. A photographic plate24 was taken inside the spectrometer
to register the two laser wavelengths, one fixed and the other changed
with the tuning of the laser grating. Hence, the difference frequency
w3 versus the grating tuning was established. The value of w3
calibrated in this way had the estimated error of less than * 2 cm—l.
The LiNBO3 crystals used in the collinear phase-matched experiments
(sge Tabie I) were cut with ¢ = 0° (¢ is the angle‘betweén the a-axis
and the plane containing the c-axis and k—wavévector). In this con-
figuration,.the nonlinear polarizations for far—infraredto—ray and fof

far-infrared e-ray have the following forms from Eqs. (17) and (18),

respectively

.

*

9 (41)

P sineElE

30 - X24

. 2 * . e
P = XppC08 BEE," + Rectlfylng term (42)

. * *
The rectifying term represents the contributions from ElEl and E2E2

which are centered at zero frequency. In the experiment, only the
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¢

~phase—matchea o-ray generation was exﬁlored. The polarization of
far-infrared output was checked by a grid polarizer. Note that be-
cause the far-infrared o-ray index of refractiop is different from
that of e-ray, the phase-matching condition can Be satisfied for one
of them but ﬁot for both simultaneously. The eeuations indicate that
the phase—mefched o~ray power is greater than the phase-matched e-ray
power (xéﬁ) = 7 xég)) with the exception of the sma11 6 case. Also
the e-ray is difficult to distinguish from the laser rectifying
signals.

The theoretical calculations for the phase-matching angle versus

the phase-~matching frequency is shown in Fig. 14 for LiNb0333’34

(both FCPM and BCPM), Zn0,”>7>%* zns,>?*% and cds®>*’ (FcPM only).
Experimentally, under the condition that no precise angle determination

was attempted for LiNbO, and the uncertainty in the measurement of W3,

3
we observed that the results were quite well described by this
theoretical calculation from 20 to 127 cmfl. In ZnO, the observed
phase-matching frequency of 190 cm.-l at 6 = 90° agreed well with the

theoretical calculation. ﬁowever, in CdS the obsetved phase-matching
frequency of 180 cﬁ—l at 6 = 90° was lower than that of the predicted
value. This discrepancy might be due to the facf_thét our CdS crystal
has a low reéistivity of 1.5 /cm so that the farjinfrared index of
refractionIWAS.changed due to the free electron piasma oscillation in
the crystal. Note that the ZnO crystal has high resistivity of
2 X~i04$2/cm. The observed phase-matching frequency of 91 cm.-"1 at

1

6 = 90° for ZnS was also lower than the predicted value of 120 cm .

However, in calculation of ZnS, the dispersion of the far-infrared
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refraction index was not included (so = 8.6)56 due to nonavailability

of the experimental results.58

Figure 15 shows two phase-matching curves. The inner curve was

obtained in a 1.6-mm thick LiNbO, with © = 16°. The forward phase-

matching frequency was at 21 cmfl. Another piece of 0.5 mm thick

LiNbO3 crystal was cut from the same boule at 6 = 90° for the far-

infrared transmission measurement by a Michelson interferometer. From
the Fabry-Perot transmission pattern of this crystal and the known
far-infrared o-ray index of refraction (n = 6.6), we deduced that the

o-ray far-infrared absorption constant 05 was 14 cm-_1 at Wy = 21 cmfl.

The outer curve in Fig. 15 shows the backward phase-matching curve

at 56 cm—l in LiNb03. Another two forward phase-matching curves in

LiNbO3 are shown in Fig. 16. Both Figs. 15 and 16 were obtained by

fixing the wavelengths of the input beams and rotating the mixing
crystal. The abscissa denoted the angle of rotation inside the crystal,
From Eq. (39), we obtained the following formula for the far-infrared

power (in watts)

-a.l : ~a./2 -2

2 3 3
1+ e ~2cos(Ak(9)) e ]d(Aw3)

Asin 6‘
‘|Ak(6)|2+(a3/2)2

P,(6) =

(43)
where A is a constant and the integration is over the far-infrared line-

width. The Ak(6) in Eq. (43) can be expressed as

Aw3 v, dne(e)
Ak (8) = (no—n3) -~ - = —Eg—— 6=6 AB | (44)
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The equations (43) and (44) indicate that in an.ideal case either the
far—infrarea linewidth or the absorption constant 04 can be deduced
from the fh#se—matching curves if the other valdg is given. Computer
calculationsz4 fitting the forward collinear phase-matching curve
obtained by a.1.6—mm thick LiNbO3 crystal at 6 = 16° (phase-matched
at 21 cm—l) and a3 = 14 cm-l (measured) yieldedAthe'far~infrared line-
width of 3 cm-l. Both the experimental result and the theoretical

calculation is shown in Fig. 15. When a,f >>1 and a, >> (n3in0)Aw3/c

3
(+ for BCPM, - for FCPM), P3(6) in Eq. (43) reduces to

A sin26

P,(8) = @) (45)

Y2 2 2
(- (0, (8)-n)+B) "+ (0,/2)

where B is a constant related to the center of thé phase-mafching
curve. This éituation represents the experimental results shown by
the outer curve of Fig. 15 and the curves of Fig. 16. In order to
obtain thé absorption constant Oq and its standard deviation ftom

the phase-matching curve, the quantity

2 : 2 2
U,p,ay = 2Py ~ Py (e'j)A,B,a3]/(m—3) | (46)
p |

was minimized24 with respect to the parameters A, B, and Ogs where
Pj was the experimentally observed far-infrared power and P3(6.)

j’A,B,0

was the calculated value at 6=9j respectively and m was the number

3

summed over j. The QA B.o represented the power standard deviation
E St ]

3 24,59

which was inverted to give the standard deviation of the absorp-

tion coefficient. Figure 17 summarizes the absorption constants and

LRUS
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their standard devistions from the forward collinear phase-matching

experiments -in LiNbO The solid curve in that figure shows the ex~

3.
perimental results obtained by the far-infrared transmission measure-
ment of Bosomworth33 for Wg <70 cm—1 and the infrared refiection

measurement of Barker and Landon26 for w3.> 70 cm—l. The deviation
of the absorption constant from the different samp;es with different
ways of measurements has been reported by Ushioda‘et al.60 in the
crystals of GaP, ZnO and LiNbO3 (Al mode). We belive the deviation
as shown in Fig. 17 is real in our sample. The sha;p rising around
e 65 cm,..'l might be directly associated with two phonon density of
states.60 'Note that, from Eq. (43), when |Ak(6)| eVaiuated at the
phase-matching angle doés not vanish and is greatéf than -%; due

to the laser beam divergence and/or the'finite bandwidth of w3,vthe
phase-matching éurve is no lohger a sensitive way to measufe the fap—
infrared absorption constant. We were not able té deduce the absorp-
for the e-ray from the mixing experiment. The FIR

3
e-ray signal generated with FCPM via Xéé) was too weak ‘[see Eq. (42)]

tion constant o

and the values‘of a3 deduced from the NCPM results were rather in-
accurate because of the 4-m rad laser divergence (see Section IIA).

The far—infrared power as a function of Wg generated in LiNbO3
for the collinear phase-matched (both forward and backward) and the
noncollinear phase-matched schemes after the correction of instrumental
functiops is shown in Fig. 18. The solid curves represent the cor-

responding theoretical calculations using the Eq. (39) whose validity

was discussed in detail in Section IIIA. In using Eq. (39), we
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carried out the average only over the phase-matching factor I

2 = 0), since the rest of the equation varies slowly as a function

of W3 within the bandwidth of 3 cm—l. Note that the main contribution

to Ak in I is due to the finite far-infrared bandwidth for FCPM and

BCPM and due to the divergence of the input laser beams for NCPM (see
(2),,(2)

Section IIIA). For the calculation of the dispersions of x24 ()(24 (0)'=
3.2 % 10.-6 e.s.u. for CPM) and ng%(xgg)(O) =3.3x 10"6 e.s,u, for

NCPM), we used Eqs. (35), (36) and (37) and the oscillator strengths
of Barker and Loudon26 and the Raman cross section of Kamino& and
Johnston, Jf.6; In calculating the dispersions of n3(o~ray fqr CPM
and e-ray fof NCPM) we used the data of Bosomworth33 and Barker and
Loudon.26 For the o—ray; we used the observed values of Oy shown in
-Fig. 17. Thoéé dispefsions were included in thg calculation for the
far-infrared ?ower. “

The theoretical calculation for the FCPM case (see Fig. 18)
describes the experimental result quite well except oﬁ the low fre-
quency side.‘ Now let us take the divergence of the laser beam into
consideration. From Section ITIA (3) or Fig. 9(a), the far-infrared
radiation spreads a half angie of 11° at Wy = 20 cm—1 inside the
crystal due to the laser beam divergence effect. If the detector has
a collection half angle of 45°, this means that only the radiation
within a cone with a half angle of 6.7° inside the:crystal goes to
=20cdd

3 ‘
should be 3 times higher than detected. For the same reasbn,-the

the -detector. The generated far-infrared power at w

generated far-~-infrared power at w, = 30 cm-'1 should be 1.4 times higher

3
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than monitored. For LAY = 40 cm-l, the far-infrared spreading angle
is less than the collection angle so that all the radiation is collected.
The collegtién angle of 45° is reasonable for the InSb detector (see
Fig. 4) since no focusing cone was used in front of the detector.
From the above arguments, we conclude that for the FCPM case, the
experimental results agree quite well with the theoretical calculations.
The dip at 65'cm‘-l is mainly caused by the dispersion of g which
has absorption peaks around 65 cm_l superimposed'oﬁ the slope of ﬁhe
strong infrared.mode at 152 cm—l.26
In the BCPM case, because of the frequency dependent far-infrared

loss through the hole on the collecting brASS light pipe (see Section
IIIB(3)) and 5 cm of air in the collection path, the data were dif-
ficult to calibrate precisely. The experimentai results did not agree
well with the theoretical calculation. However, &e still see the
severe drop in power at low frequency side and this might be due
to the laser divergence effect as in the FCPM case. The theoretical
calculation curve in the BCPM case, which predicts a factor of two
times that of the FCPM case, comes close to the FCPM curve on the
low frequency side. This is caused by the averagevover different Ak
values in I (Ak from O to 82.9 cm_l for FC?M and from O to 165.8 cm-’-l
for BCPM including the linewidth effect) in the fegién where.a3 is
small.

| In the NCPM case, a 4-mm cube of LiNbO3 was used with one corner
cut off at 68° to let the generated far-infrared out (see Fig. 12).

Noncollinear phase-matching of far-infrared generation was achieved

by varying angles ¥ (outside the crystal) and ¢ (inside the crystal)
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from 0.81° to 4.60° and from 65.11° to 73.08° reépectively.33’34

The far-infrared output in this case should be strongly affected by

the divergeﬁce of the input beams. The theoretical curve for NCPM

in Fig. 18 was therefore the average over Ak from O to 137 cmfl,

which was appropriate for our.4 m rad beam divergence at the crystal.
With Qeff = 0.5 mm, it fits the experimental data very well except

at the point w, = 160 cm-1 where the signal-to-noise was the poorest

3

and where we were near the maximum translation fange of the prism
(see Fig. 12). The sﬁeady decrease in the far~infrared signal with

-1 '
w3 above 55 cm = (where a32eff >> 1 and zeff is not an important

parameter) is due to the increasing e-ray absorption.26 The decrease
on the low frequency side is caused by the laser divergence and the

w 2 radiation efficiency factor. Note that far-infrared spreading

3
angle (y' as defined in Fig. 9(b)) caused by the laser beam divergence

is only 5.0° at w3=20 cmrl in this case. The generated far-infrared
radiation should be the same as detected.

The NCPM scheme generates more far-infrared power than the FCPM

(2). (2) 32 (2)
33 X240 Xeff

FCPM is reduced by a factor of sin®, which decreases at low frequencies.

scheme for two basic reasons. First, since X for

Second, the FIR e-ray generated with NCPM has a lower absorption co-

efficient than the FIR o-ray generated with FCPM.

Finally, the dispersion of xgz)as a function of w, is shown in

3

Fig. 19. The experimental values were obtained from the FCPM results -
shown in Fig. 18. The standard error bars were deduced from the

observed power deviation and the standard deviation of a, shown in

3
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Fig. 17. For the theoretical calculation, we used Eqs. (35), (36), and
(37) and the data as listed in Table IV. The agreement between the
experiment.'and the theoretical calculation is reasonable. The dis-

(2)

persion of X34 Was not plotted because we could not deduce the values

of a, for the e-ray in the mixing experiment.

3

D. Conclusions and Discussions

1. Conclﬁsions

We have investigated the phase-matched far-infrared generation
by optical mixing of two dye laser beams under three different experi-
mental schemes in five diffefent crystals. We used sum frequency
generation by reflection from an InAs surface for normalization. Using
LiNbO3 as a mixing crystal, we have observed the ;unable far4inffared
radiation froﬁ 20 to 127 cm“1 in the FCPM scheme, from 20 to 95 cm—l
in the BCPM scheme, and from 40 to 160 cm-1 in the NCPM scheme. The
observed far-infrared power as a functiqn of Wg in both the FCPM and
NCPM scheﬁes agreed quite well with theoretical calculations derived
from the plane-wave approximation with several modifications which
were relevantvto our experimental conditions.  The obéerved far-
infrared powgr‘as a function of LEY in the FCPM scheme did not agree
with the theoretical calculation because of the uncertainty and
difficulty in our far-infrared collection system. We conclude that
the finite laser beam divergence has detrimental effects on the far-
infrared generation in the NCPM scheme and in both the FCPM and BCPM
schemes at low frequencies. We have also investigated forward col-

linear phase-matching in ZnO, ZnS, CdS and CdSe at selected frequencies,
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among which Zho is the best crystal.

We have demonstrated a way of measuring the'FIﬁ absorption con-
stant as high as 845 cm—1 using the phase-matching curves.in the FCPM
and BCPM:éxperiments. Our measured FIR absorption constants with FCPM
deviated frém the FIR transmission measurement of Bosomworth and the
infrared reflection measurement of Barker and Loudon. We also observed
the FIR baﬁdwidth of 3 cmfl from the phase-matching curve with FCPM.
We have deduced the dispersion of xgi) of LiNbO3 from the FCPM experi-
ment. It was consistent with the theoretical caléulation.

Compared with the FCPM scheme, the NCPM schemebrequires only one
crystal for operation over a wide frequency range bu; needs two
angular adjustments to orient the cfystal for phase—matching. It
generates mdfe FIR power than the FCPM scheme in:LiNb03. The single-
dye-cell experimental scheme (see Fig. 10) which céuldlbe used for
both the collinear and noncollinear phase-matching was rather single
and very éonvenient to operate in comparison with two-dye-cell schemes.
Compared with the other FIR generation experiments using C02 lasers,
our dual-frequency one-dye-cell scheme is attractivé because of the
ease with Qﬁich temporal and spatial'overlap of tﬁé two input beams
is obtained. It also has the advantage of a léfge continuous tun-
ability and the use of room temperature mixing crystals.

2.7 Discussion. .
~ Ushioda, et al.60 has reported the observation of the structure
of the FIR absorption constant in GaP, uéing small angle Raman scatter-

ing. He associated this structure with the two phonon density of
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states. In.fhis thesis, we lack the identification of the sources
which caused the strong FIR o-~ray absorptiop around wy = 65 cm-l. It
was either due to the local phonon modes of certain impurities or
incurred by the multi-phonon processes. We could not identify its
relation wifh'two phonon densfty of states since;”to the best of my
knowledge, ﬁo neutron scattering experiments or ofher experiments have
been done to find out the phonon dispersion curves'qf LiNbOB. Further
research is needed to see if using the difference frequency generation
experiment one can extract the information of the two phonon density
of states for the mixing crystals.

In thié.thesis, we have not answered the question of whether the
FIR diffraction might shorten the crystal coherence 1enéth as derived
from the plane~wave approximation. Another expefimgnf, focusing
two TEM_ Gaussian laser beams with narrow linewidth, is worth per-
forming. The observation of the FIR output as a function of how hard
we focus the beams should help fo fesolve this mystery.

There are opportunities for further résearch alongvthe following
lines:
a. As a device to do FIR spectroscoﬁy

The FIR bandwidth of 3 cm-l can be narrowed.b} applying ihtra—
—cavity beam expanding telescopes to effectively use larger areas of
the gratings. About a 0.1 A bandwidth6? of the dye laser beam can
be achieved by using a diffraction grating and a telescope inside the
cavity. Forffurther'narrowing, in addifion, a.tilted Fabry-Perot

etalon should be placed inside the cavity with a sacrifice of laser
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output power. The use of better far-infrared detector is possible and
rewarding. 'A'Jbsephson junction bolometer, which has an NEP (noise-
equivalent-power) as low as 5»><10“15 W/ iz reportéd by Clarke, et al.,63
appears verykpromising. A germanium bolometer with an electrical NEP
of QXIO—l4 W/v"ﬁ?G4 will improve the far-infrared detection about three
orders of magniﬁude provided that the amplifier noise can be improved
to that degree also. | |

Since the 1aser technology is developing rapidly, there always
exists the opportunities of using better laser sources for the mixing
experiment. We ﬁave verified that the dual-frequency dye laser sYstem'
shown in Fig. 10 can be operated with flashlamp-pumped rhodamine 6 G
~ dye laser, although the dye laser output of our system was still in;
sufficient to generate detectable FIR in the mixing experiment. How-
ever, a flashlamp-pumped dye laser system of 100 kﬁ'peak power and
1 us pulsewididtht::'could yield the same FIR signal for each pulse as our
laser pumped system with 600-kW peak power and 30 ns pulsewidth.
Because a repétition rate greater than 1 pulse/sec_is-possible with
suchia dye laser, the dual-frequency single dye cell scheme described
here should make a very useful source for FIR spectroscopy.

It is also a matter of time and effort to develop mixiﬁg crystals
‘'with better properties. An ideal crystal would be tfansparent to the
lasers, have very small absorption for the far-infrared, have large
nonlinear susceptibilities (or large electro-optical constants), be.
easily thainable in good quality large crystals, and be highly
resistent to optical damage. It has been reported that the aﬁmonium

oxalate crystal [(NH4)2C202'H20]65 has electro-optical coefficients
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-8
T, 50 = 980, and Tey = 750 (x10 = e.s.u.) and the strontium
)66

barium niobate crystal (Sr0.7Bao.25Nb206

1° 680, f
has electro-optical co—b
efficient Taq = 4\020><10_8 e.s.u. Compared to LiNbO3’with

Tyq = 92.8><10"8 e.s.u., thesé two crystals shoul& improve the far-
infrared oﬁtput two to three orders of magnitude if thgir FIR absorption
constants aré less than that of LiNb03. A piece of ammonium oxalate
crystal was grown and, though it was not good enough in optical quality
for the miiing experiment, it was used for a rough FIR absorption
measurement. ifs FIR absorption constant was much iower than that of
LiNbO3 at low frequencies (e.g., a3 = 10 <:m--1 at Wy = 42 cm_l). Another
advantage of using crystals of large nonlinear suscebtibility is that
the far—infrafed radiation can be generated witﬁ reasonable ﬁower output
without phase-matching in the collinear schem.e.| Thus, the angular
rotation of the mixing crystal for phase-matching caﬁ be avoided and
only the tuning of the laser grating is needed to achieve thé tunable
far-infrared radiation. Auston et al;12 ha§e used the reduced

LiNbO3 (by N, and H2 mixture) to generate tunable FIR radiation from

2
2 to 50 cm—1 in the collinear scheme without phase-matching. The
second-order nonlinear susceptibility of the reduced‘LiNbO3 is
enhanced by the strong absorption of the laser beams due to the dipole
moment of the absorbing centers upon excitation and the pyroelectric

‘polarization which accompanies the subsequent thermalization of the

excitation. Looking for better crystals is an area of further research.



b. The invéstigation of the nonlinear optical properties of materials.

Van Tran Nguyen and T. J. Bridges8 have observed an enhancement of
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second-order nonlinearity when the far-infrared difference frequency

Y3

by the conduction-electron spin in the magnetic field.

ment, they mixed two CO2 lasers in an n-type InSb in a strong magnetic

was tuned to that of the spin-flip (magnetic dipole) mode caused

In the experi-

field. Terrence L. Brown and P. A. Wolff have specifically explained

this nonlinea; spin-resonance effect caused by the spin-flip mechanism.

Note that our calculation of the dispersion of ¥

(2)

using Eqs. (34),

(35), and (36) for the polariton modes can be genefalized for this

case and for the anti-ferromagnetic resonance case.

by Shen,67

(InSb in magnetic field) can be expressed as

CEVYY:

where €, is the complex dielectric constant without magnetic field

3

= 83(1+41rxm

(

l))=e 1 -

3

T

including a polariton mode at w,, = 183 cm

(o}

1

2
N(guB) L

h (w:‘}—wo +1il)

(1)
» Xa

As pointed out

is the magnetic

susceptibility, N is the number of condution-electron per unit

the effective dielectric constant for the spin-flip case

(47)

volume, g is the Laudon g-factor, g is the Bohr magneton and wo[is _

the spin—fiip frequency. In evaluating the corresponding oscillator

strength for the spin-flip mode, we set (€3)eff in Eq. (47) equal to

(€3) ofs =

€

3"

Sw
0

(w-wo)+iF

(48)
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The equations (47) and (48) imply that

s = e N(guy) ‘n/hu_ N (49)

3
we obtain the second-order nonlinear susceptibility on the spin-flip

Note that S includes €, in Eq. (49). Using Eqs. (35), (36) and (49)

resonance in the form

‘ Sd w
1l (2, _ _ & 0 ' _
7 Xg Wy ) = dgwg=w ) = o=  +dg o -G

0)

where dN M denotes the nonlinearity when there is no magnetic field

present. The spin-flip resonance nonlinearity denoted by the first

term on the fight hand side of Eq. (50) is equalito.lr.3><10-6 e.s.u.

taking g = 40, I = 0.1 cnrl, w, = 90 cm_l, w_ '= 1000 éﬁ’l, n E'ﬁs,
15 3
T,
J ' -6
This value is in good ggreement with Brown's result of 4.1x10 = e.s.

a. =0 (at 15°K), N = 2.2x10%° cm >, and Sex '3 /Ld2 = 0.2x10723 e lgr 1 88,69

u.
and Shen's result of 4.5X10-6 e.s.u. while dN.M. is edual to 5?‘_10_7 e.s.u.
Another interesting case 1is the gnhancement of sécond—order non-
linearity due to the anti-ferromagnetic resonance of 37 cnrl in CoF2.'
The absorption.constant a370 of 150 cm_1 on resonance was measured
by far-infrared laser spectroscopy. From Eq. (48), we can relate aj
to the oscillator strength by
w w w
%3 = /e% - Im(€3)eff_—§—/—— = 5T (51)
3 3
Qhere Im(es)eff represents the imaginary part‘of (63)eff' We evaluate

S = 0.085 by taking w_ = 37 cm'l, r=1.35 cm'1,71 and €y = 6.1.72
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In order to evaluate dej in Eq. (36), we take the values np =n_,
n = 0 (T = 4°K), w, = l.58><104 cm_1 (He:Ne lasér), and Sex,j/LdQ =

T,
d =9 =1 =173 -
0.27x10 cm sr . The second-order nonlinearity on resonance ‘

Sde Wo ) -8 .
Zm T is equal to 5.13%X10 = e.s.u. Since CoF2 is a.centro- =

symmetric ct&stal, there is no electric~dipole-type polariton mode.

73,74 hich is simultaneously infrared

active and Raman active is at the frequency of 256 cm_l. The

The spin-opitcal phonon mode (Eg)

contributidn-of that mode to the second-order nonlinearity is estimaﬁed
to be less thén 1><10—8 e.s.u. at low frequencies (<<‘256 cm-l). The
electronic sfate contribution (e.g. dE in Eq. (36)) to the second-
order nonlinéarity vanishes because of centro-symmetric crystal in
CoFZ. Hence, ﬁhe far-infrared output generated in CoF2 around

wy = 37 cm-1 (near AFMR) will be at least three orders of magnitude

less than that produced in LiNbO, with FCPM.

3 .
In this thesis, we have demonstrated both in théory and in experi-
ment that we cén investigate the second order nonlinearity of the
crystals using two—laser mixing. Such investigatioﬁ can be carried
further and it provides an important gﬁidance to choose better crystals

to generate tunable far-infrared radiation for the purpose of doing"

spectroscopy.




-61-

Table 1
LiNbO3
Thick- Experi-
Source 9 .¢+ ness ments
Crystal technology 15°,25°,35°,45°, 0° 0.65 mm FCPM &
(0.5x0.5%3 cm) 55°,65° BCPM
Crystal technology with one corner NCPM
(4 mm cube) cut off
Hansen Microwave 16° 0° 1.6 mm FIR line-
Lab. ) width meas-
urement

* .
Diamond abrasive of 1 U size was used for the final optical polishing.

+¢ is the angle between the a-axis and the plane containing the c-axis

and k-wavevector.
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Table II

Other Crystals

Crystal P(§2/cm) 6 Thickness ‘Experiments
* 4 o ' .
Zn0 2x10 90 1 mm FCPM
*
Cds 1.5 90° 1 mm FCPM
* -
Zn$S 90° 1 mm FCPM
. ‘ 2 °
CdSe+ 0.1,10 90 1 mm FCPM

*
Already well polished

TCleaved from bulk samples and finally polished by Al

2%

1u abrasive.
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Table III

Summary of the mixing experiments on five different crystals

Crystals Tunable range . .Power (Frequency obseryed)
LiNbO3 ’ 20 to 127 cmfl.(FCPM) see Fig. 18
20 to 95 cm & (BCEM) ~ twice that of FCPM
40 to 160 cm.l (NCPM) see.Fig. 18
700" | < 190 em t (FCPM) 14 oW (190 cm'l)
cas” < 180 cu 1 (FCPM) 3w (180 cm 1)
zms® < -9.1 cm T (FCPM) 0.74 mW (91 cm'l) ‘
cdse” < 150 cu ! (FCPM) <0.15 oW (150 em 1)

*
Crystal thickness 1 mm

TLess than the detector noise level

-



The data of infrared and Raman scattering measurements used to calculate

the dispersion of Xéz) in LiNbO,.

X24

laser at 4885 A (not dye laser) which was the input beam for the measure-
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Table IV

3

ment of Raman scattering cross—sections.

The polariton modes are E modes and

)(w3=0)=3.74><10"6 e.s.u. is the value associated with the argon

wTj(cm—l) | Sj Yj (cm_1)~ S/Df?-l?i dej'SjXIO6 e.s.u.
(cm “sr )

152 22.0 14 3.8 11.0

236 0.8 12 2.9 1.85
265 5.5 12 0.54 1.83
322 2,2 11 0.96 1.48
363 2.3 33 0.94 1.46
431 0.18 12 0.39 0.25
586 3.3 35 2.2 2,2

670 0.2 47 0.04 0.07
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CHAPTER II

I. INTRODUCTION

The techniques of using piezoelectric transducers to generate
coherent monochromatic phonons at microwave frequencigs become very
inefficient as the frequency approaches 50 GHz. Because of the can-
cellation of the sound energy produced from differént parts of the
crystal, the effective interaction volume between the electric field
and the sound wave becomes very small at high frequenciesf The small
effective‘inﬁeraction volume results in a low convérsion efficiency.
The highest frequency of coherent phonon generated‘by driving a
piezoelectric crystal ip'a microwave cavity was at 114 GHz, an experi-
ment done by J. Ilukor and E. H. Jacobson.75 The éonversion efficiency,
however, wés lower than 10—8. Phonon experiments at frequencies in
excess of 50 Gﬁz have generally used incoherent heat pulse techniques76’77
or, more recently, phonon fluorescence78 in superconductors which pro-
vides a relaﬁively intense noncoherent phonon source at the energy-gap
frequency.

In this chapter, we examine the feasibility of generatingbhigh
frequency éoherent phonons in periodic superléttiées by optical means.
Because of the periodicity of a superlattice, cohereﬁt phase-matched
generation of phonons by umklapp processes can occur at frequencies
which would be proﬁibited in a homogeneous material;: Direct conversion
of photons into phonon is possible through the first-order interaction

if the superlatttice is piezoelectric, as suggested by Bloembergen

and Sievers-.?9 This is the case in multi-layer epitaxially grown
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82,83 or in.

crystals,so:’81 in partially oriented sputtered fiims,
polytypic crystals84 as SiC in which a superlattice of periodicity as
large as 1500 A has been observed.

The second-order interaction between sound and light involves the
electrosttiQtive constants of the medium. In a single crystal or uni-
form médium,:the Brillouin and stimulated Brillouiﬁ scatterings using
electrostrictive constants can.generate phonons wﬁosg highest achievable

frequency is restricted by the maximum momentum transfer of twice the

photon momentum. Unless intense laser sources with wavelengths shorter

than that of ultraviolet light are available, this frequency is usually

less than 50 GHz. 1In a&dition, the phonon spectrum generated by
Brillouiﬁ'sqattering has a broad bandwidth and a very:low intensity.
By constructing a superlattice, the electrostrictivé interaction would
permit cohefent phonon generation by stimulated Briliouin scattering

or by two laser mixing. Stimulated Brillouin scattering is not

favorable for high-frequency phonon generation in a superlattice. High-

order umklapp precesses have largér phonon attenuation constants and
so larger threéholds for stimulated Brillouin scattering than the
zero-order process. Unless specially désigned cavities are used to
discriminatevagéinst‘the zero-order umklapp process, stimﬁlated
Brillouin scattering in a superlattice would thus produce only the

same low-ffequeﬁcy phonons as in a uniform medium. The only aﬁtractive
way to gehéfate'high frequency coherent phonons by the second-order
process in a sﬁperlattice.appears to be the electrostrictive beating

of the two laser beams at their diffgrence frequency. Singie crystals
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are not required for this process, so that superlattices constructed

83,85 can be used.

by sputtering82 or vacuum deposition
In this chapter, we present the detailed calculations of phonon
power generated by both first and second order processes. In Section
I1, we discuss the direct conversion of milliméter or submillimeter
wave photons into phonons at the same frequency in a piezoelectric
superlattice. Conversion efficiency as high as 10-_4 in a 100-layer
GaAs:GaP superlattice is achievable. The effect of the random errors
in the periodicity of the superlatticé on the generated phonon power'
was estimated with the assumption that wave funcfions with Bloch's
form for both sound and light were still valid. FIﬁ.Section I1I, we
calculated the generation of high frequency coherent phonons by the
second order electrostrictive process of mixing‘two laser beams. The
calculatedvefficiency suggests that the 1 mW phonon power can be ob-
tained by the mixing of two 107 W/cm2 ruby laser ﬁeaﬁs in a one-
hundred layer superlattice 8.7 u-thick. The effect of random errors
in the periodicity of the superlattice is also discussed. 1In Section
IV, the summary of the calculations, the experiments done in this
field, the discussion of the material problems related to the con-

struction of a superlattice as well as the future experiments will be

presented.



II. . FIRST ORDER INTERACTION VIA PIEZOELECTRIC EFFECTS
1f the superlattice is composed of partially oriented alternating
thin films, direct conversion of photons into phbnons is possible via
piezoelectric effects. Consider a superlattice with alternating
crystal layers of thickness d1 and,dz, fespectively, High-frequency
- transverse phonon waves propagating along the x axis perpendicular to
the layers'c;n be generated at discrete frequencies by a far-infrared

~

field E which is governed by the equation

| 2 Y 2
3t X ox

where i = 1 or 2 indicates the two different crystél layers, and Pi’

Yi’ Ti and e, are the density, the acoustic damping,_the elastic

i
stiffness, and the piezoelectric stress constants; respectively. The
coupled far-infrared field satisfies the following equation

2 € 2 2

°E _ - Bz(e_. , o (53)
9x c ot ¢’ ot '

ol
f

[N

where € (1 =1 and 2) are the dielectric constant of the two different

crystal layers. Since we are interested in the sound frequency above

100 GHz that corresponds to a superlattice with unit-cell thickness of ;

500 A for the first order pmklapp process, the number of atoms in such
a unit cell is so large that the exact calculation of polariton modes86
is extremely difficult. However, we can estimate_tﬁé polariton effect
due to the superlattice by solving Eqs. (1) and (2) in the long-wave
limit of the electric field. The dispersion of the dielectric constant

can be easily obtained as
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4ﬂ€2G2/5w 2

e'(o) = +Z' - . (54)

n l——2— +iY

w Tn 2p uﬁh

_2m

’
dl+d2

is the nth polariton mode which is roughly equal to nvG, and v is the

the reciprocal unit vector of the superlattice, w,

Vhere G = o

averaged sound velocity of two crystal layers in a unit cell. The
physical constant with a bar over it in Eq. (54) deootes the averaged
value of corresponding constants in a unit cell (e.g. € = (€1+€2)/2
and so forth). From Eq. (54), we can obtain the oscillator strength

4W52G2/5w 2 “for nth polariton mode due to the superlattice in the -

order of 10 3/ 2 87 However, the correspohding phonoﬁ damping term

5% (; is in the order of 10_3n for a superlattice below 10°K which
W

is thg temperature we will assume for the rest of the calculations.

Hence the ratio of the oscillator strength to the corresponding
phonon attenuation term is small compared to the optical dielectric
oonstant so that the polariton effects due to the superlattice can
be neglected;

We shall assume that the over-all thickness of the superlattice
is small enough that the far-infrared power is not depleted appreciably
in the eonversion. The undepleted far-infrared field in a periodic
medium shoﬁld.have the Bloch form E = E(x)exp(ikx-iwt) with
E(x) = (x+nd>,'where d = dl+d2 and n is an integer. This function E(x)
and the reduced wave vector k can be obtained froo the homogeneous

wave equation with the boundary conditions for the given layer structure.



-70-

If the wavelength of the far-infrared field is much larger than d,

then €(x)= constant. Similarly, without the driving field the acoustic

wave should also have the Bloch form U = u(x)exp(iqx—iwqt) where
u(x)=u(x+nd). With the driving field in Eq. (51), the acoustic wave
can be written as U = A(x)u(x)exp(iqx—iwqt), where the amplitude
function A(x) is a monotonically increasing functiom of x. If A(X)

is slowly varying that

2
dA 9°A '
U3xl >> |73 (55)
ax
then Eq. (1) can be written as
M _3(eE) o duy 7t :
= oD exp(-1g0) [2T(lqu(x) +3D] = £ (56)
The Solution of the above equation is
A(Nd) = M(F+F,)
M= {l—exp[i(k—q)Nd]}/{l—exp[i(k—q)d]}
.d,-€ d1+d2-e
Fl -'-J f(x)dx + I f(x)dx
~Te o d,+€ o
T’ Lim €+ 0 (57)
do+€ dl+d2+€
Fy =f f(x)dx +f £(x)dx
| dl—e d1+d2—s J

- where F, is the contribution from the fulk and F

1 2 is the contribution

from the discontinuous boundaries between layers and N denotes total

number of unit cells in a superlattice.
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From Eq. (57), it is seen that if k = q, then M = n is a maximum.
This phase-matching condition can be satisfied at many different phohon
frequencies in a superlattice, whenever in the reduced zone scheme the
photon dispersion curve crosses the phonon dispefsidn curve. Physical-
1y, the phase—mafched generation of phonons at.yafious frequencies with
the same wave vector corresponds to different orders of Umklapp
processes. With a small phase mismatch Ak = k—q; we have |M|=
sin(AkNd) /sin(Akd).. |

As an.exaﬁple, we consider a superlattice of 100 epitaxial
GaAs:GaP layers normal to the [1111 axis. The incdming em field
propagatiﬁg along [111] is polarized along [01l]. We choose dl = 2804
, are the sound
velocities in GaAs and GaP réspectively. In this configuration, we
obtain the piezoelectric stress constant e = ¥/V/3 c44d14, and dlA'is

the piezoelectric strain constant. We also obtain for Eq. (1)

., are the elastic stiffness constants. The

=1
T = 3(c11+c44—c12) where ciJ

Bloch form solutions of the homogeneous far-infrared field equation

take the forms

e(x) = a ei(OL"k)x +b e—(a+k)x 0<x< d
1 1l 1l
_ (58)
= aelBRIx L ~(BHOX d, <x< d
2 P2 1
et ‘
where a = c /hl, B - /Eé and a;, b,, a, and b, are constants which

are related to each other through four homogeneousequations88 by im-

posing the conditions of continuity and periodicity on £(x) at x = d1
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and d. Equating the determinant of these four equations to zero yields
. the dispersion equation determining k

. €1+€2 : -
cosBd2 - ————— ginod,sinfd (59)
y—— 1 2
2ve162

coékd = éésadl
This equation determines the & versus k dispersion relgtion and the
forbidden gaps for light propagating in the superlattice. As_the
result of four'homogeneous equations and the dispersion relation, only
a, in Eq. (58) is an independent variable whose valug can be calculated
by matching the boundaryacundifions af the input‘bouﬁdary of the super-
lattice.

The Bloch form solutions for thevhomogeneoﬁs sound wave u(x) have

LR

the same forms as in e€(x)

i(kl—q)x —i(k1+q)x
= : L x< .
u(x) Lle ‘ + Rle 0 ‘x d1
(60)
_ -i(k,+q)x
o Alkmx P2 d.<x< d
=L,e 1
2 .
where 2
2 Y w Y :
k2=9 Loy, kZ-—+ 2 4 and L., R,
1 ‘v2 2T 2 v 2 2T ' 1 1
1l 1 2 2

L2 and R2 are constants as in the far-infrared field case. The sound

dispersion relation is determined by the equation

cosqd = cosk.d,cosk,d, -

171 272 2z.,2

s."l.nkldlsinkzd2 (61)
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where z1 = plvl and z, = p2v2 are sound impedances for GaAs and GaP

respectively.
Substituting Egs. (58) and (60) into (57), we can obtain A(Nd).

The sound power generated can be expressed as

1
Pg = 7 Tyvy

2 2 2 h
|ad) [“q" [u(a) | (62)
We have calculated the conversion efficiency (generated sound
power divided by the input far-infrared power) as a function of discrete
phonon frequencies corresponding different order of umklapp processes{

The physical constants and the computer program used for the calculation -

is shown in Appendix C. The result of this calculation is Bhown in

1
comparison -with F2. From Fig. 21, it is seen that the odd-order

Fig. 20. Here, unless d > 50 u, F. in Eq. (57) can be neglected in
umklapp processes have large conversion efficiencées (~ 10_4). This
is because the phonon waves generated at the successive boundaries
between layérs are in phase; For the'evenQO:derkumklapp processes,
they are out of phase. We have aésumed in the calculation that the
piezoelectric éonstant is independent of frequency'and the discontin-~
" uities between layers are infinitely sharp. Therefore, the conversion
efficienciéé'for the odd-order and the even-order Umklapp processes
separately héve no appreciable dependence on frequency. If the dis-
continuities between 1ayers‘spread over a distance comparable to the
phonon wavelength, then phase cancellation occurrinngithin thé
boundaries will decrease the conversion efficiency.

In reality it is very difficult to manufacture a perfect super—.

lattice with an exact periodicity for 100 layers. It is important to
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know the effect of the random errors in the periodicity on the phonon
power produced. For simplicity, we assume an equal probability of
making the thickness of each layer accurate to within certain percent-
ages. The imperfection of the periodicity will modify the homogeneous '
sound wave function as described in Eq. (60) and ;he homogeneous far-
infrared wavevfunction.as expressed in Eq. (58).V It will also change
the integration limit for each layer in the prbcesées of obtaining
A(Nd) from Eq. (56). As a first-order approximatibn, we assume the
imperfectipn of the periodicity does not effect the Bloch form wave
function for sound as well as for light so that the constants a

1,2°

in Eq. (58) and L in Eq. (60) are fixed values. Inte-

| 1,2* R1,2 ,
grating f(x) iﬁ Eq. (56) through layers of certain. randomness in thick-

b1,2

ness, we easily obtain the following formula

d +Ad d+Ad

- 1

A (Nd) = Adl Ad ;[ M(F1+F2)dy dz‘ (63)
' ' —Ad d-Ad :

where y and z are dummy variables and represent the replacements for

d1 and d contained in M(F1+F2) respectively. Furthermore, assuming
Ady Ad - o
< T the percentage random error in thickness is the same for

each layer. When the phase-matching condition (i.e., q=k) is

satisfied, M in Eq. (63) is equal to N (the number of unit cells in
the superlattice) which can be taken out of integration. The computer
calculation of %g = 2% for the numeric;i example of GaAs:GaP super-
lattice is listed in Appendix C. ‘The results are shown in Fig. 20,

The random variation tends to decrease the phonon power at points of
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high conversion efficiency, and increases the phonon power at points
where the efficiency is low due to cancellation. The high-order
umklapp processes which involve shorter phonon wévelengths are more

sensitive to such imperfection as one would expect.
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III. SECOND-ORDER INTERACTION VIA ELECTROSTkiCTIVE COUPLINGS
When a superlattice possesses inversion symmetry as in the alter-

nating thinffilms of vacuum deposition, all the piezoelectric constants
are zero. The only attractive way to generate high-frequency coherent
phonons in such a superlattice is through the eléctrostrictive mixihg
of two laser beams. Consider two laser beams at frequencies vy and v,
mixing in a superlattice of alternating thin films to generate high-
frequency longitudin#l phonons. We assume that the two beams propagating
along x have the same polarization. Then the phonon genergtion is
again described by Eq. (52) but with the driving term replaced by
lEé*/4ﬂ)’ where €, 1s the optical dielectric constant, and P
the stress—optical constant. A similar solution to Eq. (57) can also

3 2
(—a;) (Eo PE

be obtained by assuming negligible depletion of laser power.

As a nﬁmerical example, we consider a superlattice composed of
100 vacuum-deposited KC1:CdS layers with d, = 420 A and d, = 450 A
so that again"dl/v1 = d2/v2. The homogeneous wave functions for the
two laser beams and the dispersion relation canvbe"obtained from Eqs.
(58) and (59) respectively. The homogeneous wave function and the
dispersion rglation for sound are describea by Eqs. (60) and (61)
respectively. The detailed computer calculation is included in
Appendix ﬁ. The calculated phonon power is shown in Fig. 21 as a
function of the discrete'phonon frequencies corresponding to various

umk lapp processes. For odd-order umklapp processes, F, in Eq. (57)

2

is the dominant effect as in the piezoelectric case. We note that

even fqr high-order umklapp processes, the phonon power generated
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by two 10 mW/cm2 laser beam can be as high as 5 mW provided that the
discontinuities between layers spread over a distance much smaller than
the sound wévelength. For even-order umklapp processes, the dominant
contribution to the sound power is from Fl in Eq; (57), since the two -
terms in F, are out of phase. The effect of a *27 random variation

2
in the period of the superlattice is also shown in Fig. 21, The com

-

puter calculation is listed in Appendix D. Again, the high-order

umklapp processes are more sensitive to such imperfection.
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1V. DISCUSSIONS AND CONCLUSIONS
From er calculations, we see that the phonon.ﬁulse generated at

the discontinuous boundafy between layers is the‘dominant process for
both the first and second order interactions. This is not surprisingb
because the generation of phonon using the discontinuity between vacuum
and a quartz crystal was obgerved first by Ilukor and Jacoksen. They
employed a TM3,4,8 mode rectangular cavity which wés éompletely_filled
ﬁith a big piece of crystal quartz to generate the coherent hypersonic
wave of the highest frequency at 114 GHz. |

" We did'nbt treat the optical umklapp processes (resulting from the
periodié index of refraction for light) and the acoustic umklapp

processes (coming from the periodical acoustic properties of a supér—

lattice) separately in our calculations. Note that our general formulas

are valid for a superlattice which is either periodic in sound or

periodic in light as well as periodic in both sound and light. How-

ever, in direct conversion of photons into phonons, the optical umklapp '

xprocesses are negligible because the wavelength of the far-infrared
field is much longer than the period of the superiattice. The acoustic
umklapp p:océsses are dominant in this case sovthaf,it is important to
have a superlattice which is periodic in sound. in the second-order
interaction case, the optical umklapp processes are as important as

the acoustic umklapp procésses sincé ;he wavelengths of the input

laser beams are comparable to the period of the superlattice. A
medium which hés a sﬁatial modulation of the refractién index can be

used to generate high frequency phonons by the mixing of two laser
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beams. For example, a gelatin fiim89 (on a glass éubstréte) was exposed
to the interference pattern produced by two coﬁereﬁt laser beams. After
exposure the>ge1atin was developed using techniques ﬁhich are well-known
in hologréphy90 and which result in a spatial modulafion of the index
refraction. This gelatin is a superlattice for thé input laser beams
and can be ﬁéed to generate coherent phonons by 6p£ical umklapp processes ..
only.

To make a piezoelectric superlattice of about 100 layers by.

81,82 is still a formidable

molecular beam epitaxial vapor deposition
job. Recently, Chang and Esaki et al.91 reported_fhe manufacture of
a superlattice of 100 unit cells with each cell consisting of a GaAs

layer about 60 A thick and a Ga As layer about 20 A thick.

0.5*0.5
Time and effort will be required to make a superlattice of more than
100 unit cells with periodicity within 1 or 2% accuracy. An easier
way to make a piezoelectric superlattice is by alternating sputteringS3
of thin films with matgrials like CdS, ZnS, ZnO, PZT (lead-zirconate-
titanate) and'the niobates and tantalates of the alkali metals. Since
most of those maﬁerials have hexagonal symmetry, a proper choice of

the c-axis with respect to the superlattice axis can faciliéate

the generation of both the longitudinal and transverse phonons83
using.one suéerlattice; Nature even provides us polytypic crysta1584

like SiC, CdI, which are superlattices in crystal forms. Polytypic

2

silicon carbide crystal is well-known being a supérlattice with unit

cell as large as 1500 A (type 594R).92 The phonon modes (corresponding

to different orders of umklapp processes) of 4H,93 6H,94 15R,95 21R

and 33R96 SiC.have been studied by Patrick and Choyke et al. Those

are good for very high frequency phonon generatioﬁ (> 270 cm_l) by
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direct absorption of far-infrared photons. By choosing polytypic SiC
with large unit cell as in the types 192R,84 400H97.and 594R,92 we
might be abie to generate coherent hypersonic wa?éé'with frequencies
greater than 150 GHz. |

Another type of superlattice used by Martiﬁ, et al.98 are the
crystalline long-chain paraffinic solids which are composed of the
n-paréffin by replacing a specific CH2 group in the chain by a
dipolar C=0 group. They reported the generation of phonons at
frequencies 28, 37, 58, 73, and 115 cm-l 99 by difect absorptionAof
far—infraréd radiation in the long-chain molecular sﬁperlattice. They
constructed a superlattice of this type with total thickness of 100 M
and periodicity of 40 A, They estimated the photon?to—phonon power
conversion efficiency which is an order of magnitude greater than the
GaAs-GaP piezoelectric system (in our calculation) pér superlattice
layer. | .

Note that avsuperlattice which is composed of isoﬁropic alternating
thin films by,vacuum deposition can only be used.to generate longitu—
dinal phonons by the mixing of two laser beams. No pﬁonon can be
generated by the first-order interaction because of iﬁversion symmetry
and no transverse phonons can be produced by two-laéér mixing.

From our calculation and diséussion, it appears that a super-
lattice that can be constructed by many different ways can be used as
a practical device to generate coherent hypersonic waves at very high

frequencies. In both cases we have calculated, the acoustic power

generated under phase-matching conditions is proportional to the square
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of the total number of unit cells in the superlattice. The generation
of hypersonic waves at frequencies higher than 50 GHz with a power

larger than 1 mW should be possible in a superlattice about 10 p thick.
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APPENDIX

A. Calculation of Fabry-Perot Interference Fringes

In this caiculation, we mainly used the formulasfbbtained by
Ulrich et al.zo Consider a 2-dimensional square grid with separation g
between wires of rectangular cross section with breadth 2a. Ifba
Fabry-Perot interferometer (FPI) is composed of two identical paralle
plane grids (or metal meshes) of this type with separafion d, the power
transmission T()\) for a normally incident plané wave of wavelength A is

: -2 : -1
A 4R 2§

™(A) = (1 + % (l + ——— sin —) (A1)
( T) a - R)2 2

where

§ = 4mnd/A - 2(¢p - W) - ' (A2)

1/2_i¢ ' L
and where R™" "e ', A, and T are the amplitude reflection coefficient,
the power abSorptioh, and the power transmission of a single 2d grid

respectively. - There three parameters are related to one another

through the following two equations

T=1-R= 4w2g2/A2 s (A3)
‘ ' -2 3/2 1/2 o
= A .1 o A g ,
T, = (; + T) = 1 7 (c> o (a4)
6agw :

where To is the peak power transmission of a FPI and_w is defined as

w = lncsc(mal/g) | (A5)
The finesse F is defined as
1/2 2 . o
F e TR - AT a - 4w2g2/lz)l/2 N xz‘,.n (A6)
.1 -R -, 22 -2 .2
. bw g bdu'g .
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In the abovevformula, the approximations are valid for R 2 0.6 and
A >> g,

In the e#périment, however, Ulrich et al. obéerﬁgd both To and F
were only 80% of yalues calcula;ed from Eq. (A4) and Eq. (A6) due to
deviations Ad in spacing caused by the uneveness andvpoor parallelism.

of the two gridé.

In the picosecond laser experiments, we used the electroformed nickélv

metal-mashed FPI of 100 lines per inch with a = 0.00105 in. to measure a |
spectrum containing twb narrow peaks—--forward and Back&ard phase-matched

peaks respectively. The power -tranmission took the fofm
(A7)

' I.(v) dvde L (v) dvde
Td = ff 27 + 2'ﬂv
g 1+ stin = ™V 4-cosb) 1 + B, sin 22T, gcost)

where 0 was angle between the incident far-infrared and the normal of

FPI grids. The If(v) and Ib(v), which denoted the theoretically calculated
forward and backward phase-matched spectra (shown in‘ng;6(b)) multiplied
by the corresponding peak transmissivity of the FPI as expressed in

Eq. (A4), hadvtfuc Avf (Fullwidth half maximum) of'1;2 cm_l and

Avb of 0.6 cm—l_réspectively. The linewidths were caiculated using

Eqs. (15) an&"(16). In our case, we assumed that To and F had 80%
values calculated‘from Eqs. (A4) and (A6). We obtained F = 2 9,

B, = 3.76 for v, = 13.5 cu ' and F = 16.8, B, = 114.7 for v, = 6.75 cu .
Thé numerators in Eq. (A7) are not‘sensitive function for Q within fheir

corresponding linéwidthé. Using the two-peak spectrum of Fig. 6(b),

integrated with respectvto v first and obtained the form
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40° (A8)

T4 °1., . 52TV, €2 ’ A ‘
1+ 3.76 sin ( c dcose) ' 1+ 114.7sin ( o dcose)
o 0 .

where c1/c2 = 1.

In Eq. (A8), we assumed the far-infrafed spreading angle of 40° and

both Bf and Bb were independent of 6 within this range. The result of this

calculation is shown as the solid curve of Fig. 7. .The theoretical
calculation in Fig. 8 was obtained by using the same formula (Eq. (A8))
and cl/c2 =1.7, Bf

B. The Dispersion of ¥

= 7.16, B

= 234,’vf =11 cm_l.and v, = 5.5 cm_l.
(2) ‘

b b

In the following, we will derive Egs. (35) and (36 ) in a simple

way. Our derivations will differ only a factor from the detailed rigid
o . 42 43 67

derivations which come from Henry et al. Sussman, -~ and Shen. The

derivation of Eq. (37 ) can be found in Appendix 3 of Quantum Electronics

by Yariv.44 For simplicity, only single polariton mode will be treated
while multi-polariton modes can be easily included by a summation. Tensor

notations which complicate the derivations will be neglected.

a. Spontaneous Raman Scattering and Raman Susceptibility. Suppose
a material has a vibration mode, or é polariton mode, or a magnon mode,
then the linear susceptibility of that méterial_caﬁ be expanded as a

function of a normal mode

ax(1) |
_ L.
X=X, +< BQ)OQ | W

where Q‘repreéents the specific mode mentioned. The energy density in
the medium (or interacting Hamiltonian) has the following form when there

is optical E field present inside the medium



(1)
U= -PE = -XE'E = -[xél) + (L) Q] EE
1 o

' 1
(0) ™ - D g (éZL{) QEE

= U aQ

+U

(A10)

The second term on the right hand side of Eq. (A10) is responsible

for the Raman scatterings. The first term represents the linear

interaction between the field and the medium. Wheh_a strong laser beam

Ep(w ) shines on the medium, the normal mode Q(wv)_can be excited due

to the non-linear interaction which also produces a scattering light

Es(ws). The following equations describe this situation

2
w (1)
P o bm 2 (éx__
<V + = ep> E (w) = c2 vy )Es(ws) Q(wv)

. PP 3Q
2 Wﬁ 4w 2 Bx(l) *
v+ :§'€s Es(W ) = - ;E.ws( aQ )'EP(WP) @ ‘wﬁ)

an .
(wé - wi + irwv) Q (éxsa—) Ep(wp) E:(WS)

The right hand sides of Eq. (All) and Eq. (Al2) come from a
general equation similar to Eq. ( 2) and using\Eq.{(AlO)
P (N) .
™ __ ™ o () ot g u e e
Pi = - x + Y Q EpEs + c.c.

Q
BE, 3E, L

i=Por s

The Eq. (Al3) describes the normal mode motion with driving force

* . ’ .
from -BU(N)/QQ . Substitute Eq. (Al3) into Eq. (AlZ), we obtain

- (A1D)

(A12)

(A13)

(Al4)

coming
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2 o
| 2
<V2 *2 €s> B0 = - 5w | It —m, w3
c c D(wv) '

where D(wv) = wi - wi + iPwv. The Raman susceptibility is defined as

2
oy D

] | 1
XR 3Q

* (A16)
D(wv)

8

S

Furthermore, from Eq. (Al4), the electric dipole P radiates the
scattered light ES(WS) with power dP into a solid angle d2. From Jackson's

Electrodynamics, p. 273, we obtain

4 ey ghioi? ginom S n 2 %LQT_I _IEp|2 @? stn?e  (a17)

dQ 8T s'8 8m s's

.at 90°.scattering angle sin® = 1. The Raman scattering differential

corss—-section is in the form

.

1)
) G RPN

: 2 - (A18)
5Q

4
. (gg) _ dp/d@ _ nsKs
dQ R P n

P

where Pp = cnp|Ep|2/8n is used. From corresponding principle, the

average enery of a normal mode takes the form
@2 w2 = Lhw | O (a19)
- 4Q W_Z T . .

‘substitute Eqs. (A1l9) and (A18) into Eq. (Al6), we obtain

2w n
hp(w ) nK R
v s .
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b. Polarization Mode and Raman Susceptibility. Polariton mode is

just a kind of normal mode which represents a combination of phonon-vibration
and electric field inside the medium. The normal céordinate Q now is a
linear combination of V(wv) and E3(wv) where V(wv) is the lattice

vibration and E3(wv) is the associated far-infrared field. Hence,

aQ

the following formula ‘ '1

(éX) in Section a has to be replaced by two constants. We get the

*
3

*

3 d

* % ‘ : '
eEpESV - eVE, + c.c. (A21)

M _ oo
U = dEEpEsE 0

I

where |e| is the charge of electron and the last term in Eq. (A21) denotes
the polariton coupling. Deriving the equations for.ES, E3 and V due to

the non-linear driving forces caused by Eq. (A21), We get-

2 2 .
. 2 wv 4ﬁwv 0 v
AV e ) By = - [dEEpES + eV] : (A22)
c c .
2 Wz 4““: * - %
vV© + —(-:-i- ES Es = - —c_i— [dEEpE3 + edeEpV ] : (A23)
and
_ * '
uD(wV) VvV = eE3 + edeEpEs | (A24)

where u is reduced mass of the lattice vibration.
In Eq. (A24), we can solve V and substitute it into Eq. (A22) and

Eq. (A23) and we use the formula

. 2
Sw, : 2
e =¢ T e 4me

v w ¥ D(w&) B oo UD(WV) - (25).
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where S is the oscillator strength of the polariton mode and is equal to

2
4ﬂe2 where Wi is the polariton mode frequency, we easily get
uw,
T .
1o wi 4ﬂw§ 1 Sdewi * »
VA28 77 et v | Bl (426)
c c v
and
2 wz 4Ww§ 1 Sdewi ' * Aﬂwz
v +—‘2-€S ES‘=- 3 dE+4_,n_ —*—— EPE3-.- 3 (A27)
c c D (w) c
2, 12
p Svpldgl 2
I * IEPI Es
D(wv)

In the mixing experiment, we usually have the far-infrared equation

as in Eq. (A26) with right hand side replaced by

(2)
i 2 XD
2 Y3 E,E,

N

IxPwy =a + o (A28)

If the depletion of the input beam is neglegible, Eqs. (A26) and
(A27) are coupled together. Compared Eq. (A27) with Eq. (Al5), the

Raman‘susceptibilityvin fhis case 1is

L % o
X = . @
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Setting Eq. (A29) equal to Eq. (A20), we finally have the form

8mn C4 do 1/2
a, = + | —B—— (&= ' (A30)
8 o 4 \an
WTS w R

Identifyihg Eq. (A30) with Eq. (36) term by term, we realize that
a factor ;T +'1, which can be obtained from a moré detailed quantum
mechanical description, is missing in the denominator of Eq. (A30).

This factor ET + 1, differs negligibly from one in the usual cases.

C. Phonon Generation via Piezoelectric constants in a Superlattice
In this appendix, the first computer program PIEZO calculated
the photon-to-phonon conversion efficiency in a GaAs: GaP superiattice

of 100 unit cells. The input physical constants were :

v(lO5 cm/sec) p(g/cm3)v e(lO-Sl esu) T 1012 dyne € d(z),

dyne 2

cm
GaAs 2.80 5.31 -4.8 0.416 12.96 280
GaP 3.54  4.13 -3.0 0.518 10.24 354

The frequencies from first to tenth unklapp processes are shown
on the abscissa of Fig. 20. |

The éecond prograﬁ POPIE calculated the effegt on the conversion
efficiency-due tb +27% randomverrors in the periodicity‘of the super-
lattice. The input physical constants were the saﬁé as in the first

program.
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D. Phonon Generation via Electrostrictive Coupling in a Superlattice

The first computer program ELETO calculated the photon power
generated with 1 watt/cm2 input power for each laser beam in a KC1:CdS
superlattice of 100 unit cells. The corresponding pbysical constants

for this computation were

v(loscm/sec) p(g/cm3) P T(lolz_gxgg) n ad)

: cm
KC1 4.20 1.98 0.124 0.398 - 1.50 420
cds 4.50 4.825  0.066 0.850 2.43 450

The frequencies from first to ﬁenth unklapp brocesses are shown on’
the abscissa ef Fig. 21.
The second program POELE celculated the effect on the generated
phonon powef due to *27 random errors in the periodicity of the superlattice.

The input physical constants were the same as in the first program.
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PROGRAM PIEZO (INPUT, OUTPUT)
DIMENSION W(10)

COMMON EloEZyTlsT2¢AoBoDloDloDoZl922OBRoTBB-CCofCCoDDiTDDoEPC{TKCo

1GAMAs TGMASDELTA,TDEL

THE FUNCTIONS IN THE FOLLOWING ARE THOSE CONTA]NEb IN (56) FOR F(X)
DOWRF (X)=COSF(Z1%#X)-EPC*COSF(21%D1+21%X) '
DOWIF(X)=SINF(Z1*X)+EPCHSINF(Z1%D1+Z1%X)
UPRF(X)=COSF(AfX)-BR*COSF(A*ﬁI*A*X)
UPIF(X)=STNF(A#X)+BR¥SINF(AXD]1+A*X)

DEN1F ( X ) =DOWRF (X ) #DOWRF (X ) +DOWIF ( X ) *DOWIF (X)
TIONRF(X)-(UPRF(X)*DOWRF(X)+UPIF(X)*DOHIF(X))/DENlF(X)
TIONIF(X)=(UPIF(x)*DOWRF(X)-UPRF(X)*DOWIF(X))/DENlF(Xl
DSRF(X)=(Z—U+(Y—V)*COSF(ZI*DI))*COSF(ZZ*X)+(Y+V)*SINF(ZI*DI)
1%#SINF(Z2%X) , . ~ '
DSIF(X)’(Z+U+(Y+Vl*COSF(ZI*Dl))*SINF(ZZ*X)—(Y V)*SINF(ZI*DI)

1#COSF (22%X)
USRF (X )= (CR1=DR1) *COSF ( B¥X ) +CR2¥COSF (B*X~A#D1)-DR2¥COSF (B*X+A¥D1)
USTF(X)=(CR1+DR1)*SINF (BXX)+CR2*¥SINF (B*X-A*D1)+DR2*SINF (B¥X+A*D1)
DEN2F (X) =DSRF (X) *DSRF (X ) 4DSTF (X) #DSIF (X) |

STONRF (X) = {DSRF {X) *USRF (X) +DSIF (X) ¥USTF (X)) /DEN2F (X)

STONTF (X) 2 (DSRF (X) *USIF (X) =DSIF (X) *USRF (X)) /DEN2F (X}

UOPRF (X ) =COSF {A%X) +BR*COSF (A*D1+A%X)

UOPIF(X)=STNF (A%X)-BR¥SINF (AXD1+A%X)

UDRF (X) = (CR1$DR1 ) #COSF ( BXX) $CR2¥COSF (BXX-A*D1) +DR2¥COSF (BXX+A¥D1)
‘UDIF(X)=(CR1-DR1)*SINF (B#X)+CR2¥SINF (B¥X-AXD1)+DR2*COSF (B¥X+A*D1)
DIS1RF (X1 =(UOPRF (X ) *DOWRF ( X) +UOP TF (X ) *DOWIF (X)) /DENLF (X) -
DISIIF (X)=(UOPIF {X)*DOWRF (X)~UOPRF (X)#DOWIF (X)) /DENLF (X)

DIS2RF (X)=(UDRF (X ) %DSRE (X) +UDIF (X} ¥DSTF (X)) /DEN2F(X)

DISZIF(XJ:(UDiF(X)*DSRF(X)—UDRF(X)ﬁDSIF(X))/DENZF(X)

THE PHYSICAL CONSTANTS OF GAAS AND GAP
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READ 30s V1s V2, Pl, P2y El1s E2s T1le T2y DEls DE2
FORMAT (10F844)

THE FREQUENCIES FROM FIRST TO TENTH UMKLAPP PROCESSES
READ 31 W{1)oW(2)sW(3)sW(a)sW(S)sW(H)sW(T)sW(B)sWI(I)»W(10)

FORMAT (10F844)

THE CONSTANTS RELATED TO SOUND WAVE IN (60)
PE2=P2#V2
PE1=P1#*V1
D1=04280
P22n,354
D=D14D2
RATIO= (E2*DE2#V2%T1)/(T2*E1*DE1#V1)
L=1
Z1=W(L)/V1
222W(L)/V2
[F (L-2) 101, 1025 103
GO TO 115
GO TO 116
IF (L-4) 104, 105s 106

GO TO 115

60 TO 116

IF (L-6) 107, 108s 109
GO TO 115
GO TO 116
MF (L-8) 110, 111s 112
G TO 115
GO TO 116
IF (L-10) 111» 114» 114
GO TO 115

GO TO . 116
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115 $S=~-1.0

GO TO 117

116 SS=1.0

117 EPC=SS*(PE2+PE1) /{PE2-PEY)

118

120

Z=(PE2+PE1)/(2.0%PE2)

Y=2%sS

U= (PE2=PE1)/(2.0%PE2)
V={(PE2+PEL)#%#2%5S) /((PE2-PE1) %2, 0*PE2)
TKC=-Z1#D1 ‘ |
PRINT 118, EPCs TKCs Zs Ys Us V

FO-MAT . (7TH SOUND /(6E1544))

THE CONSTANTS RELATED TO LIGHT WAVE IN (58)
A=DE1%*W(L}/340E+05

B=DE2%W(L)/340E+05

GOST:COSF(A*DI)*COSF(B*DZ)—(DEI*DEI+DE2*DE2i*SINF(A*Dl)*SINF(B*DZ)

1/(2.0*DE1%DE2)
‘ROT=SQRTF(10-GOST*#GOST)

XX=ATANF (ROT/GOST)

S=SINF(D.5*(AXD]1+B%D2-XX))/SINF(Oe5* (A%D]1~B*D2+XX))

BR=S*(DE1+DE?)/(DE2-DE])

BB=BR#*BR

CR1=(DE2+DE1)1/(2.0%DE2)

CR2=CR1*S

DR1=(DEZ-§E1)/(2.0*DE2)
D§2=(DE2+DE1)**2*5/(2o0*052*(DEZ-DE1’)
TBB=-A%D1
BOUND=4+,0/((1.0+DE1)*%2+(1,0-DE1)*%2%88)
PRINT 120+ BRs TBBs CR1s CR2s DR1s DR2

FORMAT (7H LIGHT /(6E15e4))

THE FOLLOWING IS THE CALCULATION FOR F1 IN (57)

i
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130 SUM4=20,0

SUM2=040

TUM4=0,0

TUM?=2040

PUM&=0,0

PUM22040

RUM&4=0,0

RUM22040

N=1000

EN=N

DX=D1/FN

EX=D2/FN

1=1
132 FI=1

X==D1+F I #DX

R=FI#EX+0,0

SUM4=SUMG +T TONRF (X)

SUM2=SUM2+T IONRF (X+DX )

TUM4=TUM4+TIONIF (X) |

TUM2=TUM2+TIONIF (X+DX)

PUM4=PUM4+STONRF (R)

PIUM2=PUM2+STONRF (R+EX)

RUM4=RUM4+STONTF (R)

RUM2=RUM2+STONTF (R+EX)

IF (I-N+3) 134, 136, 136
134 i=l+2

GO TO 132 |
136 CELL1R=Dx~«4.o*suma+2;o*sumz+rIONRF(o.o)+rlouR#k—D1)+4.0fT10NRF(

1-DX1 1/ (340E+05)

CELLI1=DX*(4.0*TUM4+2oO*TUM2+TIONIF(0.0)+TIONIF(—Dl)+Q¢O*TIONIF(

1-DX) )/ {3s0E+N5)
CELL2R=EX* (44 0%PUM4+2 4 O*PUM2+STONRF (0+0)+STONRF (D2) +4+ O*SIONRF (D2-
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1EX) ) /(3.,0E+05)

CELLZI;EX*(Q.O*RUMQ+2-O*RUM2+SION1F(0.0)+SIONIF(DZ)+4.0*SIONIF(DZ—

1EX))/(3.0E+05)
CLLR:{CELL1R+§ATIO*CELL2R5*El*Vl*DEl/(2.0*T1*3.0é+05)
CLLI=(CELLLI+RAT [OXCELL21) ¥E1*VI*DEL/ (2.0%T1) /34 0E405
SCLL=CLLR*%¥24CLL [#%2

PRINT 150, CELL1Rs CELL1I» CELL2Rs CELL2Is CLLRs CLLI» SCLL

150 FORMAT (14H INTERGATION /(7E1444))

151

152

CALCULATE F2. IN (571
CAN1=DlSiIF(0.O)/PE1+DISZIF(0;0)/PE2
CAN2=DIS1IF(~D1)/PE1+DIS2IF(D2) /PE2
DAN1=DISIRF(0+0)/PE1+DIS2RF(040) /PE2
DAN2=DISIRF(=D1)/PE1+DIS2RF (D2} /PE2
PRINT 151s CAN1s CAN2s DAN1» DAN2
FORMAT (6H PARE /(4E2045))
HSIN=(E2-E1) /(44 0E+03%W (L))
CONR=HSIN* {CAN1~CAN2)
CONI=HSIN*(DAN2-DAN1)
CONS=CONR*CONR+CONI*CONI
PRINT 152s CONR, CONIs CONS

FORMAT (8H DISCON /(3E20.4))

CALCULATE THE SOUND POWER

GOAL= (CLLR+CONR) %%2+ (CLLI+CONI ) #¥2

BOR=(Z+U) #COSF(Z22%D2) +Y+V

SBR=BOR#BOR
70R=22*zé*séairz*v2f1.os+os*1z.5664*éouno/6.o
AUMP=SCLL*TOR

DISP=CONS*TOR

POWER=GOAL *TOR

PR+NT 155s AUMP, DISPs POWER
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155 FORMAT (7H POWER /(3E2544))
IF (L-10) 160s 162, 162

160 L=L+1
GO TO 100

162 CALL EXIT

END
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PROGRAM POPIE (INPUT,s OUTPUT)
DIMENSION W(10) .
COMMON EIIQEZQTI’TZOAOB'DI’DZQDQZI9ZZQBR,TBB;CC.TCC’DDO

- 1GAMAs TGMASDELTASTDEL

THE FUNCTIONS IN THE FOLLOWING ARE THOSE CONTAINED IN (56) FOR F(X)
DOWRF { X) =COSF (21 %X} ~EPC#COSF(Z14D1+Z1%X)
DOWIF(X)=SINF (Z1%#X) +EPC*SINF(Z1#D1+21%X)

UPRF (X ) =COSF (A%X ) ~BR*COSF (A%*D1+A%X )

UPTF(X)=SINF(A®X)+BR®S INF(AXD]1+A%X)
DEN1F(x;;nowRF(X)*DowRF(X)+oow1F(X)*oow1F(X)

TIONRF (X ) = (UPRF { X ) DOWRF ( X) +UP TF (X ) ¥DOWIF (X)) /DENLF (X)
TIONIF(X)=(UPIF(*)*DOWRF(X)-UPRF(X)*DOWIF(X))/bENlF(X)
DSRF(X)=(Z=U+(Y=V) #COSF(Z1%D1) ) *COSF (Z2%X) +(Y+V) ¥SINF (Z1%D1)
1*SINF(Z2%X)
DSIF(X)=(Z+U¥(Y+V)*COSF(ZI*DI))*SINF(ZZ*X)-(Y-V)*SINF(ZI*DI)
1%COSF(22%X) |
USRF(X):(CRI—DRl)*COSF(B*X)+CR2*COSF(B?X—A*Dl)vDRZ*COSF(B*X+A*Dl)
uSIF(xi=<CR1+oR1)*SINF(B*x)+CR2*51NF(B*x-A*DI;+DR2f51NF«B*x+A*bl)
DENZF(X)=DSRF (X) *DSRF (X ) +DSIF (X1 *DSIF (X)

STONRF (X)= (DSRF {X) #USRF (X1 +DSTF (X) #USIF (X)) /DEN2F(X)

STONTF (X) = (DSRF (X)#USIF (X)=DSTF(X) #USRF (X} ) /DEN2F (X )

UOPRF ( X)=COSF ( A¥X) +BR®COSF (AXD1+A%X)

UOPTF(X)=SINF(A*X)-BR*SINF (AXD1+A%X) |

UDRF (X )= (CR1+DR1)*COSF { B¥X ) +CR2%*COSF {B*X-A*D1) +DR2*¥COSF (B*X+A*D1)
UDIF (X)=(CR1-DR1)*SINF (BXX)+CR2*SINF (B¥X-A*D1)+DR2%COSF (B¥X+A*D1)
DISIRF(X)=(UOPRF(X)*DOWRF(xi+UOPIF(X)*DOWIF(X))/DENIF(X)
DISIIF(X)=(UOPIF (X)*DOWRF (X )~UOPRF (X)*DOWIF (X)) /DEN1F{X)

DIS2RF (X) = (UDRF [ X) *DSRF (X) +UDTF (X) ¥DSTF (X) ) /DEN2F (X )
DIS2IF(X)=(UDIF(X)*DSRF (X)-UDRF (X) *DSIF (X)) /DEN2F (X)
BRIRF(X1=DIS1IF(X)/PE]

BR2RF(X)=DIS2IF(X)/PE2
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BRIIF(X)=PISIRF(X)/PE1
BR2IF(X)=DIS2RF(X)/PE2
DAMRF (X} =BRIRF (X} +BR2RF (X )

DAMIF(X)=BR1IF(X)+BR2IF{X)

PHYSICAL CONSTANTS OF GAAS AND GAP
READ 30y V1s V2 Pls P2, Els E2s Tle T2+ DEls DE2

FORMAT (10F844)

THE FREQUENCIES FROM FIRST TO TENTH UMKLAPP PROCESSES
READ 319 WU1)oW(2)sW(3)sW(4)sW(S5)sW(E)sW(T)oW(B)oW(9)eWI(10)

FORMAT (10F844)

THE CONSTANTS RELATED TO SOUND WAVE IN (60)
PE2=P2%V2
PE1=P1#V1
D1=0.280
D2=0.354
D=D1+D2
RATIO=(E2*DE2%V2*#T1)/(T2%E1%DE1*V])

L=1

100 Z1=w(L)/V1

101
102
103
104
105
106
107

108

Z2=W(L)/V2

IF (L-2) 101, 102 i03
GO TO 115

GO 70 116

IF (L-4) 104y 105 106
GO 70 115

GO TO 116

IF (L-6) 107, 108s 109
GO 10 115

GO 7O 116



109
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117

118
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1F (L-8) 1104 111s 112
GO TO 115

GO TO 116

IF (L-10) 113 114, 114

GO TO 115

GO TO 116

$S=-140

GO TO 117

$5=1.0

EPC:SS?(PE2+PE1)/(PEZ—PEI)
Z=(PE2+PE1)/(2,0%PE2)

Y=Z#SS

U=(PE2-PE1)/(2+0%PE2)
v=((PE2+PEI)**2*SS)/((PEz*PEI)*Z.G*PEz)
TKC;fZIGDl |
PRINT 118+ EPCs TKCs Zs Y» Us V

FORMAT (7H SOUND /16E1544))

THE CONSTANTS RELATED TO LIGHT WAVE IN .(58)

A=DE1*W(L)/3,0E+05

B=DE2#W(L)/3,0E+05

GOST:COSF(A*DI)*COSF(B*Dé)—(DEl*DEl+DEZ*DE2)*SINF(A*Dl)*SINF(B*DZ)

1/(2.0*DE1*DE2)
ROT=SQRTF(1.0-GOST*#GOST)

XX=ATANF(ROT/GOST)

S=SINF{0e5%*(A%D]1+B*¥D2~XX) ) /SINF(0Q.5% (A%D]1-B*D2+XX))

BR=S*(DE1+DE2)/(DE2-DE1)
BB=BR*8R
CR1=(DE2+DE1)/(2.0%DE2)
CR2=CR1%#S
DR1=(DE2-DE1)/(2.0%DE2)

DR2=(DE2+DE1 ) *%#2%#S/ (2.0%DE2*(DE2-DE1))
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T8B=-A*D1
BOUND=440/({140+DE1)##2+(1.0-DE1}##2%BB).
PRINT 120s RRs TBBs CR1ls CR2, DR1,s DR2

FORMAT (7H LIGHT /{(6E1544))}

THE FOLLOWING IS THE CALCULATION FOR F1 IN
K1=20
HI=KI

SUM4=0.0

TUM4=0 40
TUM22040
PUM&=0 40
PUM2=0,0
RUM&4=040

RUM2=0,0

-NélOOO

FN=N
DX=N1/FN

EX=D2/FN

X=~=D1+F I #DX
R=O.A+FI*EX
SUM4=SUM4+TTONRF (X)
SUM2=SUM2+T TONRF { X+DX )
TUM4=TUM4+TIONIF (X)
TUM2=TUM2+TIONIF (X+DX)
PUM4=PUM4+STONRF (R)
PUM2=PUM2+510NRF(R+EX)
RUM4=RUM4+SIONIF(R)

RUM2=RUM2+STONTF (R+EX)

(57}
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IF (I-N+KI+3) 134 136y 136
134 [=1+2

GO TO 132
136 CELLIR=OX*{4,0%SUM4&+2.0%SUM2+TIONRF(~D1)+TIONRF (-HI#DX)+

IQoO?TIONRF(—(HI—loO)*DX))/3-0E+05 _
CELL1T=DX*(4o0%TUM&+240%TUM2+TIONIF(=D1)+TIONIF(-HI%DX)+
144 0%TIONIF (=(HI=140)¥DX))/340E+05
CELL2R=EX*(a.o*PUM4+2.o*pumz+sIONRF(o.o)+sioNR#xoz—Hxiexi+
1400%STONRF (D2-(HI=1+0)%EX) ) /3, 0E+05
CELLZI=EX*(4.0*RUM4+2.0*RUM2+SIONIF(0.0)*SIONIF(DZ-HI*EX)+

1440%SIONIF (D2-(HI=1+0)#EX))/3,0E+05

THE VARIATION OF F1 DUE TO 2 PER CENT ERRORS IN PERIODICITY
TY1=-DI*HI/FN ‘
TY2=D2# (FN-HI)/FN
PX=DX/240
RX=EX/240
PINR=0,0 4
PING=04n
RINR=040
RING=0,0
VARI=2,0%HI+140
NI=1
140 P1=NI
ARG=TY1+PI*PX%2,0
BRG=TY2+PI*RX%240
PINR:(PINR+PX*(TIONRF(ARG—Z-O*PX)+4.0*TIONRF(ARG-PX)+TIONRF(ARG))
1/340) *(VARI-PI) /VARI | '
PING=(PING+PX*(TIONIF {ARG=2+0%PX) +440#T [ONIF (ARG-PX)+TIONIF (ARG) }
1/347) % (VARI-P1)/VARI
RINR:(RINR+RX*(SIONRF}BRG—Z.O*RX)+4.0*SIONRF(BRG-RX)+SIONRF(BRG))

1/3.0)#(VARI-PI)/VARI
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1/3.0)%(VARI-PI)/VARI
RING=(RING+RX*(STONIF (BRG-2+0%RX)+4.0%SIONIF (BRG~RX)+SIONIF(BRG))

1/340) ¥ (VARI=P1) /VARI
IF (NI-2%K1) 142, 144 144
142 NI=NI+1
60 TO 140
144 PCIR=CELL1R+PINR
PCLT=CELL1I+PING
PC2R=CELL2R+RINR
C21=CELL2I+RING
PCR=PC1R+PC2R
PCI=PC1I14PC21
PSC=PCR*PCR+PCI*PCI
PRINT 1465 PCIRs PC1Is PC2Rs PC21s PCRs PCle PSC -

146 FORMAT (9H PINTEG /(7E14.4))

THE VARIATION OF £2 IN (57) DUE TO 2 PER CENT ERRORS IN PERIODICITY

AUM4=0,0

AUM2=0,0

BUM&4=0,0

BUM2=0,0

CUM4=0,0

CUM2=040

DUM4=0,0

DUM2=0,0

Euma=o.d

EUM220.0 , i
GUM4&20,0

GUM2=0,0

TTX=D1/100040

DDT=D2/100040

MI=1
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147 Gl=MI
RON=(-HI+GT) *TTX

RIC=(~1000e0-HI ) *#TTX+GI*TTX
ROG= (10004 0~H1+GT)*DPT
AUM& = AUM4 +DAMRF ( RON )
AUM2=AUM2 +DAMRF (RON+TTX)
BUM4=BUM4+DAMIF (RON)
BUM2=B1/M2+DAMIF (RON+TTX) .
vCUMa=CUMa+8R1RFLRICf
CUM2=CUM2+BRIRF (RIC+TTX)
DUM4=DUM4+BR1TF (RIC)
DUM2=DUM2+BR1IF(RIC+TTX)
EUMa:EUMa+BR2RF(ROGi
EUM23EUM? +BR2RF (ROG+DDT)
GUM4=GUM4+BR2 TF (ROG)
GUM2=GUM2+BR21F (ROG+DDT)
IF (MI-2%#KI+3) 148y 149 149
148 MI=MI+2 |
GO TO 147
149 TAUR= (4« 0%AUMG4+2 o 0% AUM24DAMRF (=HI ¥ TTX ) +DAMRF (HI*TTX)
1444 O¥DAMRF ( (HI=140)%TTX))/640/HI |
TAUL= (4 «0%BUM&+2 4 0%BUM2+DAMIF (~HI*#TTX) +DAMIF (HT#TTX)
1444 OX¥DAMIF { (HI=140)*#TTX))/640/HI ,
SHER=(4+0%CUM&+2 c0%CUM2+BR1RF (~D1~HI#TTX) +BR1IRF (=D1+HI*TTX)
144 0%BRIRF(=D1+(HI-1,0)1%TTX))/6+0/HI '
SHE 1= (4¢0%DUM&+2,0%¥DUM2+BR1IF (~D1-HI*#TTX)+BRIIF(-D1+HI*TTX)
1+4e0%BRIIF(-D1+(HI-140)#TTX))/640/HI
CHER:(Q.O*EUM4+2.0*EUM2+B§2RF(DZ-HI*DDT)+8R2RF(DZ+HI*DDT}
1+4o0*BR2RF(DZ+(H[-1oO)*DDT))/6.0/Hl
CHEIé(4.0*GUM4+2.0*GUM2+BR21F(DZ-H!*bDT)+BR21F(DZ+HI*DDT)
1440 0%BR2IF(D24(HI=1.0)#DDT))/640/HI |

HSIN= (DE1#%#4%C1-DE2##4%C2) /{4, 0¥W(L) ¥1.0E+04)
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CONR=HSIN*{ TAUR-SHER-CHER )
CONT==~HSTIN*(TAUI~SHE I~CHEI )
CONS=CONR*CONR+CONT*CONI

PRINT 152» CONRs CONI» CONS

FORMAT (8H DISCON /(3E20.4))

CALCULATE THE SOUND POWER
GOAL={PCR+CONR ) * %2+ (PCI+CONI ) #%2
BOR=(Z+U)*COSF(Z2%*D2)+Y+V

SBR=BOR#*#BOR

_ TOR=Z2#72%SBR2T2%¥V2%*] 0E+05%12¢5664*BOUND/6.0

155

160

162

- AUMP=PSC#TOR

DISP=CONS*TOR
POWER=GOAL#TOR

PRINT 155, AUMP, DISP, POWER
FORMAT (7H POWER /(3E25.4))
IF (L-10) 1609 162s 162

L=t+1

GO TO 100

CALL EXIT

END
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PROGRAM ELETO (INPUTs OQUTPUT)
DIMENSION W(10)

THE FUNCTIONS IN THE FOLLOWING ARE THOSE CONTAINED IN (56} FOR FIX)

DOWIF(X)=SINF(Z1#X)+EPC*SINF (Z1#D1421#X)

DOWRF (X ) =COSF{Z1#X)—EPC*COSF(Z1#D14Z1%X)
DENIF(X)=1e0+EPC#EPC=2,0#EPC¥COSF(Z1%D1+2,0%Z1%X)
DSRF(X)=!Z-Uf(Y-V)*COSF(Zl*Dl))*COSF(ZZ*X)+(Y;V);SINF(ZI*DI)
1%#SINF(Z2%X)
DSIF(X)=(Z+Us{Y+V)#COSF(Z1¥D1) ) XSINF (Z2%X)=(Y=V) *SINF(Z1#D1)
1%#COSF(Z2%X)

DEN2F (X)=DSRF (X ) *DSRF (X)4+DSIF (X) #DSIF (X) |

TIONRF {X) = (AT1#DOWRF (X ) +AT 2% (REAB*SINF( 24 0%A%X) +R I ABFCOSF (24 0%A%X)
1) *DOWIF (X)) /DENTF(X) _' ' o
TIONIF (X)=(~AT1%#DOWIF (X)+AT2% (REAB®SINF (2,0%A%X) +RIAB*COSF (20 0% A¥X
1)) #DOWRF{X) ) /DENTF (X)

SIONRF (X)=(CT1*OSRF(X)+CT2# (RECD*SINF (240%#B%X ) +RICD*COSF (2.0%B*X) )
1#DSTF (X)) /DEN2F (X) -
.SIONIF(X)il—CTl*DSIF(x)+CT2*1RECD¥S[NF(Z.O*B*Xi+RICD*COSF(2.0*B*X)
1) %#DSRF (X)) /DEN2ZF (X) :
R11F(X)=100+BB+2+0%(REAB¥COSF(240%A%X ) ~RIAB*SINF (24 0%A%X ) )
Rzzr(x)=cc+oo+2.o*(REc0*c05F(2.o*s*x)—Rxcofsiuﬁgz.o*a*x))
BRIRF(X)=R11F (X)*DOWIF (X)/ (PE1*DENTF (X))

BR2RF (X)=R22F (X) *DSIF (X )/ (PE2*DEN2F (X))
BRIIF(X)=R11F(X)*DOWRF (X)/ (PEL*DENIF (X))

BR2IF(X)=R22F(X)*DSRF(X)/(PE2#*DEN2F (X))

PHYSICAL CONSTANTS FOR KCL AND CDS

READ 11 DE1ly DE2s Pls P2s V1s V2s Cls C2s Tl T2

11 FORMAT (10F7,.4)

THE FREQUENCIES FROM FIRST TO TENTH UMKLAPP PROCESSES
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READ 129 WIL)oW(2)eWI(3)oW(4)sWIS)sW(E)sW(T)sW(B)oWI(F)sWI(10)
FORMAT (10F8.4)

FINDING THE CONSTANTS FOR LIGHT WAVES
A=0.144%DE1%6 42832

B=0e144%DE2%642832
D1=0.420
D2=0,459
D=D14D2
Q1=C1/T1
Q2=C2/72
1/(2.,0%DE1*#NE2)
GOST=COSF(A*D1)#COSF(B*D2)-(DE1*#DE1+DE2*DE2) *SINF (A*D1) *SINF(B*D2)
ROT=SQRTF(1e0=-GOST#GOST)
XX=3,1416+ATANF(ROT/GOST)
S=SINF(045%(A*D1+B¥D2-XX) ) /SINF(0e5% (A*D1-BX*D2+XX) )

BR=(DE1+DE2) *#S/(DE2-DE1)

" BB=(DE1+DE2)*##2#5%S/(DE2-DE1})/ (DE2-DE1)

REAB=(DE2+DE1) *S*COSF (A%D1) /(DE2-DE1 )
RIAB=(DE2+DE1) *S¥SINF (A¥D1)/(DE2-DE1)

CC=(DE2+DE1) ##2%(1,0+S*5+2,0%S*COSF(A%D1) )/ (4+0%#DE2#DE2)

DD=( (DE2-DE1) *##2+(DE2+DE1) #*4*S¥S/ (DE2-DE1) ¥ %242, 0% (DE2+DE1) *#2%
1COSF(A%D1)#S) /(4 ,0%DE2%DE2)

TD=(DE24DE 1)/ (44 0*DE2*DE2)

SD=(DE2+DE1)##2/ (DE2-DE1)

RECD=TD* (DE2-DE1+SD*S*S+(SD+DE2-DE1) ¥S*COSF (A*D1))
RICD=-TD*(DE2-DE1-SD) *S*SINF(A*D1)
Bouwoaa;oz((1.0+DE1)**2+(1,0—551)**2*33)

PRINT 13y BBs CCy DDs REABs RIABs RECDs RICD

13 FORMAT (7H LIGHT /(7E16+5))

THE CONSTANTS RELATED TO SOUND WAVE IN (60)
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PE2=P2%V2
PE1=P1#V1
L=1
100 Z1=w(L)/V1
22=WIL) /V2
$5=-1¢0
105 EPC=SS#(PE2+PE1) /(PE2-PEY) |
2=(PE24PE1)/(2.0#PE2) |
Y=245S
U=(PE2-PE1)/(2.0%PE2)
V=((PE2+PE1) #%2%55) / ( (PE2-PE1) #2.0%PE2)
TKC=-21%D1 |
PRINT 110s EPCs TKCs Zs Ys» Us V S _ |
110 FORMAT (7H SOUND /(6E15+4)) |
G0 TO 129
112 Z1=w(L)/V1
Z2=w(L)/V?2
$5=140 | _ z
EPC=5S#* (PE2+PE1) /(PE2-PE1) |
2=(PE2+PE1)/(2.0%PE2)

Y=72%SS

U= (PE2-PE1)/(240%PE2)

V=( (PE2+PE1) ##2%#55) / ( (PE2~-PE1) #2.0#PE2) ‘ |
TKC=-Z1%D1 ‘

PRINT 114s EPCs TKCs Zs Y» Us V

114 FORMAT (TH SOUND /{6E15.4))

THE FOLLOWING IS THE CALCULATION FOR F1 IN (57)
129 AT1=DE1#%5#Q1*W(L)*(1.0-BB)/(640E+05%Z1) . X
AT2=2.0%DE1##4*Q1%A/Z1 ' '

CT1=DE2##5%Q2#W(L)*#(CC-DD)/(6+0E+05%22)

CT222,0%DE2##4%Q2%B/ 22
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130 SUM4=040
SUM220,0
TUM4=0,0
TUM2=0,40
PUM4=0,0
PUM2=0,0
RUM4=0,0
RUM2=0,0
N=1000 -
FN=N
DX=D1/FN
EX=D2/FN
1=1
132 Fl=I
Xz-D1+F I *DX
R=0+0+F I #EX
SUM4=SUM4+T IONRF (X)
SUM2=SUM2+T TONRF { X+DX)
TUM&=TUMA+T TONTF (X)
TUM2=TUM2+TIONTF [ X+DX)
PUM4 =PUM4+STONRF (R)
PUM2=PUM2+STONRF (R+EX)
RUM&=RUMG+STONIF (R)
RUM2=RUM2+STONTF (R+EX)
IF (1-N+3) 134s 136, 136
134 I=1+2 -
GO TO 132
136 CELLlRéDX*(4.0*5UM4+2.0*SUM2+TIONRF(0.0)+TION§F(—DI)+4.0*TIONRF(
1-DX) )/ (34 0E+05) '

CELLlI=DX*(4.0*TUM4;2.0*TUM2+TIONIF(0.0)+TIONIF(—-DI )+4e QR TIONIF (

1-DX) )/ (340E+05)
CELL2R=EX* (40 0%PUMA+240%PUM2+STONRF (040)+SIONRF (D21 +440%SIONRF (D2~
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1EX)1/{3.0E+05)

150

151

152

CELLZI=EX*(4.0*RUM4+2.0*RUM2+SIONIF(0.0)+SIONIF(DZI+Q.O*SKONIF(DZ-

1EX) ) /(3.0E+05)
CLLR=( CELL1R+CELL2R)
CLUI=(CELL1I+CELL2I)

SCLL=CLLR®E#24+CLLI**2

PRINT 150s CELL1Rs CELL1ls CELL2R, CELL2], CLLR. cLily sCLL

FORMAT (14H !NfERGATION 7(TEY4e&))

CALCULATE F2 IN (57)
cAN1=aR1RF(o.oy+aRsz(o.d)

CAN2=BRiRF(-Dl)+BRZRF(DZ) :
DAN1=BR11#(0.0)+8R21F(o.0)

DAN2=BR1IF (=D1) +BR2IF(D2)

PRINT 151» CANls CAN2, DANI» DAN2

FORMAT (6H PARE /(4E2044))
HSIN=(DE1#¥4%C1-DE2¥%4%#C2) /(4,0%W (L) *1.0E+04)
CONR:HSLN*(BRIRF(0.0)+BR2RF(0.0)-BR1RF(—DI)?BRZRF(DZ))
CONi:HS)N*(BRllF(O.O)+BR21F(Q.O)-BRIIF(FDI)—BRZIF(DZ))
SCON=CONR®CONR+CONT*CONI

PRINT 152+ CONRs CONIs SCON

FORMAT (8H DISCON /(3E20.4))

CALCULATE THE SOUND POWER
SAMP=(CONR+CLLR) #¥2+(CONI+CLLI ) #%2

PRINT 153s SAMP

153 FORMAT (6H SAMP ;1E2045)

BOR=V2*TZ*ZZ*ZZ*BOUND*BOUND/(72.0*}-OE+05)
TOR=BOR#¥342415 .
AUM=TOR*$CLL

DrS=TOR*SCON

POWER=TOR#SAMP
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PRINT 154» AUMs DIS, POWER

154 FORMAT (TH POWER /(3E3044))
IF (L-10) 160» 180, 180

160 L=L+1
GO TO 163

163 IF (L-2) 1644 1645 165

164 GO TO 112

165 IF (L-4) 1665 167+ 168

166 GO TO 100

167 GO.TO 112

168 IF (L-6) 169y 170s 171

169 GO TO 100

170 GO TO 112

171 IF (L=-8) 1725 173s 174

172 GO TO 100

173 GO TO 112

1764 TF (L-10) 175, 176, 180

175 GO TO 100

176 GO TO 112

180 CALL EXIT

END
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PROGRAM POELE (INPUTs OUTPUT)

DIMENSION. W(10)

THE FUNCTIONS IN THE .FOLLOWING ARE THOSE CONTAINED IN (56) FOR F(X)
DOWIF(X)=SINF(Z1#X)+EPCHSINF(Z1%D1+Z1%X)
DOWRF (X)=COSF(Z1%X)—EPC*COSF(Z1%D1+Z1%X)
DEN1F(X)=1e0+EPC*EPC~2,0%EPC*COSF (Z1%D1+240%Z1%X) |
DSRF (X)=(2-U+(Y-V) #COSF(Z1¥D1) ) *COSF(Z2%X) +( Y+V) #SINF(Z1%D1)
1#SINF(Z2%X) ‘ '
DSIF(X)=(Z+U+{Y+V)*COSF(Z1%D1) ) *SINF(Z2#X)=(Y-V)*SINF(Z1%*D1})
1%COSF(22%X)

DEN2F (X} =DSRF [ X) #DSRF (X ) +DSIF (X) ¥DSIF (X)

TIONRF (X} = (AT1#DOWRF (X) +AT2% (REAB*SINF (2. 0%A*X) +RIAB*COSF (2,0%A%X)

11 *DOWIF (X)) /DENLIFIX) ) : ' i
i

TIONIF (X)=(~AT1%#DOWIF (X)+AT2% (REAB*SINF (2,0%A%X)+RIAB*COSF (24 0%A%X
1)1 %DOWRF (X)) /DENTF (X) : : | : N
STONRF (X)= (CT1#DSRF (X)4CT2% (RECD*S INF (204 0%B¥X) +RICO*COSF (200%B¥X) )

1#DSTF (X)) /DEN2F (X) -
SIONTF(X)=(~CT1%#DSIF(X)+CT2%#(RECO*SINF(240%B*X)+RICD*COSF (2, 0%B*X)

1) #DSRF (X)) /DENZF (X)
RIT1F(X)=140+BB+2.0%(REAB*COSF (2.0%A%X ) ~RIAB*SINF(240%A%X))

R22F (X) =CCHDD+24 0% (RECD¥COSF (24 0%B¥X ) ~RICD*SINF(2.0%B*X) )
BRIRF(X)=R11F (X)*DOWIF (X)/(PE1*DENIF (X))

BR2RF (X)=R22F(X) *DSTF (X )/ (PE2¥DEN2F (X))
BRITF(X)=R11F (X)*DOWRF (X)/(PE1*DENIF (X))
BR2IF(X)=R22F (X) ¥DSRF (X) / (PE2#DEN2F (X))

DAMRF (X ) =ARIRF (X ) $BR2RF (X) |

DAMIF(X)=BRIIF(X}+BR2IF(X)

PHYSICAL CONSTANTS FOR KCL AND CDS
READ 11s DEls DE2s Ple P2s V1s V2, Cls C2, Tls T2

11 FORMAT (10F7.4)
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THE FREQUENCIES FROM FIRST TO TENTH UMKLAPP PROCESSES

READ 129 WIT)sW{2)aW(3)oW(4)sW(5) s W(E)sW(T)sW(B)sWID)sW(10)

FORMAT (10F844)

FINDING THE CONSTANTS FOR LIGHT WAVES
AZ0.146%DE1%642832
B=04144%DE2%642832
N1=0e4?0
N2=0e450
D=01+Dé
Q1=C1/T1
a2=C2/12
GOST=COSF(A¥D] ) *COSF (BXD2) —(DE1#DE 1+DE2*DE2 ) ¥SINF (A*D1 ) *SINF (B%D2)
1/(2.0%DE1*DE2) '
ROT=SQRTF (1+0-GOST#GOST)
XX=3.1416+ATANF (ROT/GOST)
S=SINF(0e5%(AXD1+B#D2-XX)) /SINF (0o 5% (AXD1-B*D24+XX) )
BR=(DE1+DE2) %S/ (DE2-DE1) ' |
BB= (DE1+DE2) #%2%S¥S/ (DE2-DF1) / (DE2-DE1)
REAB= (DE2+DE1)*S*COSF (A*D1)/(DE2=DEL)
RIAR= (DE2+DE11¥S¥SINF (A¥N1)/(DE2~DE1 )
CC=(DE2+DE1) ¥#2% (1.0+S*S+2,0%S*COSF(A*D1)) /(4 40¥DE2*DE2)
DD=( (DE2-DE1) ¥ %2+ (DE2+DE] ) ¥*4%S¥S/ (DE2-DE1 ) ¥*242.0% (DE2+DE ) #¥ 2%
1COSF(A%D11%5) /(4 .0%DE2*DE2)
TD=(DE2+DE1)/(4.0*DE2*DE;3
SD=(DE24DE1) ##2/(DE2~DE1)
RECD=TD*(DE2-DE1+SD*S*S+( SD+DE2-DE 1) #S*#COSF (A*D1) )
R1CD==TD*(DE2-DE1-SD) *S*SINF(AXD1)
BOUND=4+0/((1+0+DE1) ¥%2+(1,0-DE1) *%#2%88)
PRINT 13» BB, CCs DDs REAB, RIAB, RECDs RICD

FORMAT (.7H LIGHT /(7E1645))
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THE CONSTANTS RELATED TO SOUND WAVE IN (60)
PE2=P2%Vy?
PE1=P1¥V1
L=1
Z1=w(L)/V1
22=W(L)/V2
$S==~10
EPC=5S#(PE2+PE1) /(PE2-PE1)
Z=(PE2+PE1)/{2.0%PE2)
Y=2*s< 
U=(PE2-PE1)/(2.,0%PE2)
V=((PE24PE1) #%2%5S) / ( (PEX=-PE1) %2, 0%PE2)
TKC=-71%D1
PRINT 110s EPCs TKCs Zs Ys Us V

FORMAT (7H SOUND /(6E1544))

GO TO 129

Z1=W(L)/V1

22=W(L) V2
$5=140

EPC=SS* (PE2+PEL) /(PE2-PE1)

TKC=-21%D1

Z=(PE2+PE1)/(240%PE2)

Y=Z%sS |

U= (PE2-PE1)/(2.0%PE2)
V=((PE24PE1) #¥2%5S)/ ( (PE2-PE1) #2,0#PE2)

PRINT 1149 EPCs TKCs Zs Ys Uy V

114 FORMAT (7H SOUND /(6E1544))

THE FOLLOWING IS THE CALCULATION FOR F1 IN (57)

THE VARIATION OF F1 DUE TO 2 PER CENT ERRORS IN PERIODICITY
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129 AT1=PE1#¥5*Q1*W(L)*(1,0-BB)/(640E+05%21)
AT2=2.N*DE1#%4#Q1%A /21
CT1=DE2*#5%Q2*W(L) % (CC=DD) /(6,0E+05%22)
CT2=240%DE2%*#4%Q2%B /22 |
K1=20
HI=KT
130 S1IM4=0,40
SUM2=040
TUM4=040
TUM2=040
PUM&=0,0
PUM2=040
RUM&=040
RUM2=040
N=1000 )
FN=N
PX=D1/FN

EX=D2/FN

132 Fl=1

X==D1+F [#DX

R=040+F 1 ¥EX
SUM&=SUM4+T TONRF (X)
SUM2=5UM2+T [ONRF ( X+DX )
TUMG=TUMG+TTONTF (X)
TUM2=TUM2+TIONIF (X+DX)
PUM4=PUM4+STONRF (R)
PUM2=PUM2+S TONRF (R+EX)
RUM4=RUM4+STONIF (R)
RUM2=RUM2+STONTF (R+EX)

IF (I-N+KI+3) 134s 136y 136

134 1=1+2
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GO 10 132
136 CELL1R=DX%*({4,0%SUM4+2,0%SUM2+TJONRF(~D1)+TIONRF(~HI*DX)+

144 0%TIONRF (= (HI=140)*DX))/340E+05
CELL1T=DX*(4,0%TUM4+240%TUM2+TIONIF(~D1)+TIONIF(~HI*DX )+
1440%TIONTF (=(HI=1¢0)*DX))/3.0E+05

CELLR=EX* (400%PUMA+240%PUM2+STONRF(040)+STONRF (D2-HI *EX )+
14+0%STONRF (D2-(HI~140)*¥EX) ) /3,0E+05 o
CELL2T=EX¥(4,0%RUM4+2.0*RUM2+STONTF(040)+SIONIF (D2-HI*EX) +
14+0%STONTF (D2~ (HI=1+0)*EX) ) /34 0E+05 |
CLLR=(CELLIR+CELL2R)

CLLI=(CELL1T+CELL2T)

SCLL=CLLR**2+4CLLI*#2

PRINT 137, CELLI1Rs CELL1Is CELL2Rs CELL2I, CLLR, CLLI, SCLL

137 FORMAT (14H INTERGATION /(7E1444))

TY1==D1%*HI/FN

TY2=D2% (FN=HI) /FN

PX=DX/240

RX=EX/7e0

PINR=0 40

PING=040

RINR=040

RING=0,0

VARI=2,0%HI+1.0

NI=1

140 PI1=NI

ARG=TY1+PI#PX#2,0

BRG=TY?+P#RX%2,0

PINR=(PINR+PX* (T IONRF (ARG=2+0%#PX) +440%T IONRF (ARG~PX ) +T [ONRF ( ARG ) )
1/340) * (VARI-PT)/VARI

PING= (PING+PX* (TIONTF(ARG-2+0%PX) +440%T IONIF (ARG=PX ) +T IONTF (ARG ).
1/340) % (VARI=P1) /VARI

RINR=(RYNR+RX*(SIONRF(BRG—Z-O*RX)+4.0*SIONRF(BRG—RX)+SIONRF(BRG))
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RING={RING+RX*(STONIF (BRG=2+0%RX) +4+0%SIONIF (BRG-RX)+SIONIF (BRG) )
1/3¢0) % (VARI-P1)/VARI

IF (NI-2%K1) 1424 144, 144

NI=NI+1

GO TO 140

PCIR=CELLIR+PINR

PC1I=CELLII+PING

PC2R=CELL2R+RINR

PC21=CELL2T+RING

WRON=E 1 ¥V1*DE1/(6+0E+05%T1)

‘PCR=WRON* (PCIR+RATIO*PC2R)
PCI=WRON*(PC11+RATIO*PC21)

PSC=PCR¥PCR+PCI*PCI

PRINT 146s PCIRs PC1ls PC2Rs PC21s PCRs PCIs PSC

FORMAT (9H PINTEG /(7E14e4))

THE VARIATION OF F2 IN (57) DUE TO 2 PER CENT ERRORS IN PERIODICITY
AUM4=0 40
AUM2=0,0
BUM4=0,0
BUM2=040
CUM4=0,0
CUM2=0.0
DUM4=0.0
DUM2=0,0
EUM4=040
EUM2=0,0
GUM4=040
GUM2=0,0
TTX=D1/100040
DDT=D2/100040

MI=1
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147 Gl=MI _ _ |
RON=(~HI+GI) % TTX |
RIC=(~100040-HI ) *TTX+GI*TTX
ROG=(10000-HI+GI ) *DDT
AUM4 =AUMS +DAMRF (RON )
AUM2=AUM2+DAMRF (RON+TTX)

BUM4=BUM&+DAMIF { RON)

BIM22BUM2+DAMIF (RON+TTX)
CUM4=CUM4 +BR1RF (R1C)

CUM2=CUM2+BRIRF (RIC+TTX)

DUM4=DUM4+BR1TF (RIC)

DUM2=DUM2+BR1TF (RIC+TTX) | o -
EUM4=EUM4+BR2RF (ROG) » ' o o i
EUM2=EUM2+BR2RF (ROG+DDT) :
GUM4=GUM4+BR21F (ROG)

GUM2=GUM2+BR2 1 F(ROG+DDT) ’ : v

IF (MI-2%KI1+3) 168, 149, 149
148 MI=MI+2

GO TO 147
149 TAUR=(4.0*AUM4+2.0*AUM2+DAMRF(-HI*TTX)+DAMRF(HI*TTX)

1+4 . 0%#DAMRF ((HI-10V*TTX))/6+0/HI

TAUI=(Q;O*BUM4+2.0*BUM2+DAMIF(-HI*TTX)+DAMIF(HI*TTX)

1+4 4 0O#DAMIF({HI~1.0)*TTX))/660/HI
SHER=(A.O#CUM4+2.Q?CUM2+8R1RF(-DI“HI*TTX)+BR1RF(fDl+HI'TTX)

1+440%BR1RF (~ ~D1+(HI-1,0)*TTX))/640/H! - ' ' !
SHE 1= (4+0%DUM4+24 0#DUM2+BRIIF (=D1-HI*TTX) +BRIIF(~D1+HI*TTX) - : ;
: i

|

1+4¢0%BRITF(=D1+(HI-1,0)*TTX))/640/HT
CHER=(4.0%EUM4+2 0% EUM2+4BR2RF (D2=HI*DDT ) +BR2RF (D2+HI*DOT) ' ;

1+4+0%BR2RF (D2+(HI=1+0)%#DDT )} /6e0/HI , ‘ ' i
CHE1=(4+0%#GUM4+2,0%GUM2+BR2IF (D2-HI*DDT)+BR2IF (D2+HI*DDT) : ‘
144+ 0¥BR2IF (D2+(HI=1.01#DDT)1/640/HI

HSIN=(E2<E1) /(4 0E+03%W(L))
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CONR=HS IN#( TAUR-SHER=CHER)
CONI=HSIN#(TAUI-SHEI-CHET)
SCON=CONR*CONR+CONT#CONI

PRINT 152» CONRs CONIs SCON

FORMAT (8H DISCON /(3E20,4))
SAMP=(c0NR+CLLR)'*2+(c0Nr+CLL1)**2
PRINT 153y SAMP

FORMAT (6H SAMP ,1E20.5)

CALCULATE THE SOUND POWER
BOR=V2*TZ*ZZ#ZZ*BOUND*BOUND/(72.0*1.0E+05)
TOR=BOR#*342415 '
AUM=TOR*SCLL
DIS=TOR%#SCON
POWER=TOR#*SAMP
PRINT 154, AUM, DIS, POWER
FORMAT (7H POWER /(3E3044))

IF (L-10) 160, 180, 180
L=t+l
GO TO 163
IF (L=2) 164, ‘164 165
GO TO 112
IF (L-4) 166+ 167+ 168
GO TO 100
GO TO 112
IF (L-6) 169, 170s 171
GO TO 100
GO TO 112
IF (L-8) 172y 173s 174
GO TO 100
GO TO 112

IF (L-10) 175s 176, 180

GO TO 100
GO TO 112

CALL EXIT

END
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FIGURE CAPTIONS
Fig. 1. Experimental scheme for measuring the spectra of mixing pico-

second optical pulses in LiNbO In the case of phase—matched at

3"
vfinite frequency, some spectra were measured ﬁsing the same scheme
except that the Michelson interferometer was reﬁlaéed by a Fabry-
Perot interferometer. |

Fig. 2. The detailed construction of the Michelson interferometer used
to measure the far-infrared spectra in the picosecond pulse experi-
ments. |

Fig. 3. The drawing of the Fabry-Perot interferometér_utiiized in the
picosecond pulse ekperiments to measure the narrow spectral peaks
vproducéd_from the case of phase-matching‘at finite frequency. The
micrometers used to adjust the paralléliSm of the two metal-mashed
reflectors are not shown in the figure.

Fig. 4. The far-infrared dual detector system used in the picosecond
pulse experiments. The whole system was immerséd in a liquid helium
dewvar. o

Fig. 5. (a) The Ge:Ga photqcondﬁctiye detector used-tp:detect the far-—
infrared radiation from 95 to 190 cm—l produced by mixing two dye
laser beams. (b) The diagram shows the bias and the operatiomal
amplifierIUSed in the picosecond pulse experimenté'as well as in
the experiment of mixing two dye lasers.. | | |

Fig. 6. (a) Farfinfrared spectrum genefated by mode-locked pulses in

Li'NbO3 phase-matched at zero frequency. The experimental points are

obtained from the Michelson interferogram and the solid curve from

a theoretica1 éa1cu1atibn by J. R. Morris assuming Gaussian laser
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pulses of 1.8-psec pulsewidth. (b) Far-infrared spectrum generated

by mode~locked pulses in LiNbO. oriented to have forward and backward

3
phase—matdhing at 13.5 and 6.7 cm—l, respectively. The experimental
points are obtained from the Michelson interferogram. -The solid and
dashed curves are calculated assuming Gaussian laser pulses with a
pulsewidth of 2.3 and 1.8 psec. respectively. .In this experiment,
our laser condition is somewhat different than ih the other experi-
ments, and it is very likely that the output ﬁulées are longer.

7. Fabry-Perot fringes of far-infrared radiation generatedAby mode-

locked pulses in LiNbO, simultaneously phase-matched at 13.5 and 6,7

3
cm—l. The curve is calculated from the dashed.theoretical spectrum

in Fig. 6(b) corresponding to Gaussian laser pulses of a 1.8 psec

pulsewidth.

8. FaBry—Perot fringes of far-infrared radiation generated by mode-

locked pulses in LiNbO3
cm-l. The.curve is the theoretical calculation from the result of

simultaneously phase-matched at 11 and 5.5

theoretical spectrum similar to the dashed spectrum in Fig. 6(b);

The Gaussian laser pulse corresponds to a pulsewidth of 1.8 psec.

. 9. (a) The diagram shows the effect of the diVergent.input laser

beams oﬁ the ph?se—matching factor in the experiment of collinearly
mixing two dye lasers, where § dénoted the diﬁergénce angle of thé
input laser beams. (b) In the non-collinear phése—matchiﬁg séheme,
two input laser beams cross at én angle Y. Under the phasé—matched'
condition,vfhere exists a phase mismatch, Ak,'éaused by the input'

laser divergence.
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Fig. 10. Ongfdye—cell scheme for the far-infrared generation set-up.
The wavelength of the two beams can be independentlybvaried from
8100 to 8400 X. The diagram fbr the ruby pump system is not shown
in this figure, but depicted in.Fig. 11.

Fig. 11. T&o—dye—cell scheme used for the collinear (both forward and

backward) phase-matching experiments. The ruBy osclllator was Q-

o~

swifched by é rotating prism.

Fig. 12. Another two—dye—céll scheme used for the non—collinear phase~
matching experiment., The diagram of the.ruby pqmp system shown in
Fig. 11 is omitted.

Fig. 13. Tyﬁicai Fabry-Perot interference fringe resulted from mixing

of two‘dye»lasers in LiNBO The curve is for the illustration and

3l
is not a theoretical calculation.'

Fig. 14. Theorétical calculations of the phase-matching frequency vs.

Zn0, ZnS; and CdS crystals in

the phase-matching angle for LiNbO3,

the collinear phase-matching case.
Fig. 15. Phasefmatchiﬁg curves. The outer one is forward collinear

phase-matching curve for 21 cm—1 in a 1.6-mm LiNbO, crystal; the

3

. ' . ~1
inner one is backward collinear phase-matching curve for 56 cm =~ in

a 0.5-mm LiNbO crystal; The solid curves aré the theoretical éal—

3
culations. From the outer curve and the measurgd a3 of 14 cm-;, we .
deduced the. far-infrared linewidth of 3 cm—l.' From inner curve we

obtained oy = 236 em L.

Fig. 16, Another two collinear forward phase-matching curves in two

0.5-mm thick LiNbO, crystals. The solid curves are the theoretical -

3

calculations from which we deduced the far-infrared absorption
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i
'
i
|
]
i
:

constants and their standard deviatioms.

Fig. 17. The far-infrared o-ray absorption constant vs. Wae The dots

and associated error bars are deduced from the phase-matching curves.
The solid curve is the experimental results obtained by the far-
infrared transmission measurement of Bosomworth for w3§70 cm—1 and

the far-infrared reflection measurement of Barker and Loudon for ' *

w3>70 cm—l. | a : ‘ .g

Fig. 18. Far-infrared power geﬁerated vs. frequency for three phase-
matching conditions. The far-infrared power is normalized by a
sum frequency signal. The solid curves are based on data of the

far-infrared absorption and the Raman cross~sedfion in LiNb03.

Fig. 19, The dispersion of Xéz) vs. frequency in LiNb°3' . The dots.

are experimental results deduced from the forward collinear phase-
matched experiments., The solid curve is the theoretical calculatiqn v E
using the oscillator strengths of A. S. Barker, Jr., and R. Loudon, : ' |
and Raman cross section ova; P. Kaminow and W. D. Johnston, Jr. ‘ :_ *

Fig. 20. The circular'points>are the calculated coh&ersion efficiencies

for various orders of umklapp process using a piezoelectric super-
latticé cbnsisting of 100 epitaxial layers of GaAs:GaP with a total

thickness of 6.34 u. The triangular points give the coﬁversionv ' L.
efficieﬁéy if the perfodicity of the superlattice has a ¥ 2% random - -

variation., Note the break in the wvertical scale.

Fig., 21. The circular points are the calculated ¢Oh¢rent phonon power
(divided by the product of the powers of two mixing ruby laser beans)
for various orders of umklapp process in a super-lattice of 100 al-

ternating vacuum evaporated layers of KC1:CdS with a total thickness
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of 8.7 u., The triangular points give the phonon power if the period-
icity of the superlattice has a 27 random variation. Note the break

in the vertical scale.
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