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PRINCIPLES OF ELLIPSOMETRY
Rolf H. Muller
Inorganic Materials Research Division, Lawrence Berkeley Laboratory and -

Department of Chemical Engineering: University of California
Berkeley, California

ABSTRACT

Theoretical vprinciples of ellipsometry, capabilities and limitations .
of the technique for the study of surfaces and thin films are reviewed.
Factdrs_which need to be considered in the operation of ellipsometers

of present design are considered and directions of future developments

are indicated.
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PRINCIPLES OF ELLIPSOMETRY

I. Introduction

Ellipsometry derives its name from the measurement of elliptically
polarized light wﬁich results from optical réflection.‘ More precisely,
the change in the state of polarization due to reflection is measured and
interpreted in terms of properties of the refleétingvsurfacek The utility
of ellipsometry for electrochemical purposes is largely due to its cap-
ability for eiamining surfaceé in any optically transparent envirohment.
Electrode surfaces can therefore often be ébserved in situ, without
exposing them to conditions (e.g. vacuum, heat, eleqtron impact) which
might alter their properties. Previous reviews of ellipsometry (7,16;lhh)
and proceédiﬁgs from two conferences (13,98) are available.

Two pérameters are measured in ellipsometry: -the change in relative
ampiitude,and relative phase 6f two orthogonal coﬁponents of light due to
reflectidp? The fact that relative, rather than absolute measurements
are made is_one reason for the high resolution of ellipsometry. The
technique employs a built-in reference, so to speak, which largely
eliminates effects due ﬁo external fluctuations,'éuch as'thosg of the
light source. The other reason for the high resolution lies in th; fact
that the measured quantities are usually azimuth angles (i.e. angies
resulting from rqtatién around an optic axis), ana angulgr measurenments
can easily be made with high resolution. For exémple, an angle of
0.01°, the resolution of currently available research instruments,

5

represents 3x10 7 of a full turn, the largest measurement possible.
From the measured two quantities, change in relative amplitude and

phase at constant wavelength, two parameters of the reflecting surface can

be derived. For a bare surface, this can be real and imaginary parts of
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the_refractiye index. For a surface co#ered with a transparent film,
thickness and refractive index of the film can be determined,.if fhe
optical constants of the substate are known. If sufficiently narrow
limits can be iﬁposed on ecceptable solutions, it is sometimes possible
to deterﬁine'more than two unknowns, e.g.'thickneSs end complex refractive
index of an absorbing film. Additional data have béen generated by
immersion in media of different refractive index aﬁd'reflectivity measure-
ﬁents at.nermal incidence (79).

Iﬁ many cases, an increase in film thickness by one wavelength results
" in an szimuth change of a full turn. Under these condi£ioné, ah éngular
resolution of 0.01° results in an average resolution in film thicknessv
of 3X10-5-wavelenéths or about 0.2A.

‘The availability of high-speed comﬁuters and comprehensive programs
(84) has been an important factor for the renewed interest in ellipso-
metry, which has been in existence at least since 1888 (55). The exact
classical.eQuations, presently used for the interpretation of results,
cannot be solved explicitly (130) and, despite their simple algebraic
form, are too tedious for hand calculetions in all but a few special
cases. 'Appfoximations, introduced in earlier days, have more recently
been found to be often not reliable.(3i). |

In the following, a brief account cf the classical. theory of
ellipsometry, its used and limitations'will be éiven. betailed der-
ivations of electromagnetic theory on which this.theory is based, would
exceed ﬁhe scope of this chapter. InSteed, it will be attempted to
provide primarily a physical understanding of the optical phenomena

involved and of the principles of ellipsometer measurements.
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IT. POLARIZED LIGHT

1. Linear Polarization

The Eomplete description of a ﬁonochromatic light wave, in addition
to frequenéy,‘phase, propagation direction and amplitude, has to include
informatién on the orientation of electric and magnetic vectors in space
(Fig. 1). Since the two vectors are orthogonal, it is usually sufficient
to consider the electric vector only. If the electric vector, along a
wave in spaée, lies in a plane, the light is called linearly polarized.
The connecting line between the end-points of the vectors shows the
sinusoidél electric field distribution along the propagation direction
z at a fixed instant in time (Fig. 2). At a given point in space, the
tip of‘the:electric vector oscillates along a stfﬁight line as a function
of time, hence the name. Polarization is a direct consequence of the

transverse nature of light. In the present liferature, the plane which

contains the electric vectors in space is called the plane of polarization.

Superpdsition/of two linearly polarized waves which are in phase results
in another linear polarization (Fig. 3). Linear‘poiarization is the best
known state of polarization of light and often siﬁply referred to as
polarized light.

2. Elliptic Polarization

A. s and p Components

In.analyzing the reflection of light; it is convenient to decompose
incident and reflected waves into two orthogonal linear components. One
of these components has its electric vector oriented parallel to the
plane which contains incident and reflected beams (dr wave normals), .

called the plane of incidence, This component is usually denoted by a

subscript p. The other component, denoted by a subscript s, has its

electric vector oriented normal to the plane of incidence (Fig. 4).
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Both components suffer different changes in phase and.amplitude upon
reflection.

B.  Geometric and Physical Parameters

The.sgperposition of linearly polarized s and p components of the
same frequency, but different phase and amplitude, in general, results &
in elliptiC’ﬁolarization (96,111,122, 143). The tip.df the electric vector
now describes a helix in space or, at a given location, it traces an

ellipse as a function of time (Fig. 5).

i}

E

b |Ep| cos(wt + E?) _ (1)

E

s |Esl cos(wt + es) (2)

This ellipse also results from the projection of tﬁe helix on a plane
normal to tﬂe propagation direction. The ellipséApossesses a positive
(counterclockwise) or negative (clockwise) sense of rotation, as seen
looking into the beam, and is inscribed in a rectangle (if we limit
these conSiderations to orthogonal components) with sides parallel to
the planes of polarization of both components and léngths equal to twice
their amplitudes (Fig. 5; tbp). A detailed review of the analysis of
elliptic polariéation,using matrix methods, has‘ﬁeen given by Richartz
and Hsue (10L).
Eliiptic polarization is the most general state of polarization, ‘
with circﬁlar aﬁd linear polarization being limiting cases. The state
of polarization, independent of liéht intensity, can be characterized by ¥

either of two sets of two parameters each, which can be measured as

azimuth angles with an ellipsometer.

The physical parameters, already mentioned, are the ratio of the
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electric field amplitudes ]EI of p and s components, expressed as the
tangent of an angle Y
||

Fﬁ=tmw - (3)
S .

and the difference A of the time independent phasé €. of the two com-

. ponents

E —-€_=A (4)

The quantities ¥ and A are indicated in the upper part of Fig. 5. The

range of values for the two physical parameters are

0% <y <900 | (5)
0° <A<

360° - (6)

A range of #180° for A is equivalent to the one given in Eq. 6. For
reflection from bare surfaces the ranges of Yy and A values are further

restricted (see section D).

The geometric parameters characterize elliptic polarization by the

. shape and ‘orientation of the ellipse. They are the angle 6, which the

major axis of the ellipse forms with the plane of incidence (measured

counterclockwise)
0 = orientation of major axis (1)

and the exéentricity of the ellipse

minor axis - (8)

ten y = major axis

The angle Y is measured in the sense of the rotatioﬁ of the ellipse and
can therefore assume positive and negative values. The angles Yy and 6
are indiegted in the lower part of Fig. 5. The ranges of the geometric

parameters are



0° < 9 < 180° (9)
-45° <y < )5° . (10)

Physicél and geometric parameters of elliptic polarization can be mutually
converted either graphically by use of the Poincaré sphere (see below)
or algebraically with the following expressions (27,47,96,111134), which

can be derived by coordinate transformations.

sin 2y = sin 2 Y sin A (11)
- tan 2 vy : .

tan A = sin 2 8 (12)
tan 2 6 = -tan 2 Y cos Ab : (13)
cos 2 P = =cos 2 Ycos 26 (1)

All the angles except thé relative phase A appear doubled in the above
relations.

Orientation and sense of rotation of the ellipse are determined by
the phase Qifference A between both componénts (h7,63 ). A few examples
" are given in Fig. 6, where the azimuth angles representing different
parameters are also indicated. It can be seeﬁ that a phase difference
of 0°, 180° etc. produces linear polarization, while a phase difference
of 90° (or a quarter wavelength), 270° etc. results in the ellipse axis
to be oriented parallel to the planes of polariiation of the two components.
Fast and sldw components , mutually out of phase by 90° are indicated for
a general ellipic polarization in Fig. 5. This fact will be used later.
The orientations of the ellipse shown in Fig. 6 are valid only for the
coordinate system indicated, the relative phase A.as defined in Eq. 4

and the phase € as formulated in Egs 1 and 2. The same figures have been

obtained with different definitions of A and e (47).
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Unpolurized light can be pictured as a superposition or rapid
sequence of different states of polarization which may be linear or

elliptic each (96).

C. Poinceré Sphere

Theretete of polarization of any light wave of unit intensity may
be represented by a point E on the surface of a unit sphere, known as
Poincaré ephere (18,64,82,112, 128). The features of this representation
can be derived from the Stokes perameters (27,82,85,122). A coordinate grid
for the-geometic parameters of polarizaticn (Fig. 7, top) is established,
with longitude 2 0, measured on the "equator'" counterclockwise, as seen
from pole.L, from point H, which signifies the plane of incidence, and
latitude 2 Y. Points on the "northern" hemisphefe (o), with positive 7y
values, represent left hand (positive)rotation of the ellipse, points on
the "southern" hemisphere (x) right hand rotation. The two poles repre-
sent leff and right hand circular polarization, while points on the equator
signify linear polarization states of different azimuth, 6, with pure p
polarizetion represented by point'H, pure s by point'V.

A similar coordinate grid can be established to represent the
physical parameters of pola;ization (Fig. 7, center). Point H forms
one pole of this coordinate grid. ‘Great circles represent lines of
constant relative phase A, which is meesured from the "equator" in a
positive-(counterciockwise) sense of rotation, as seen from point H.
Lines ofrconstant paramter 2>W'are small circles»with the origin at the
pole V opposite to H. This pole represents the plane normal to the

plane of incidence, or pure s polarization. Points on the circle of



2 ¥ = 90° (which is also a great circle through poles L and R) represent
states of polarization of equal amplitude of p and s cdmponents.

It should be noted that all angles, except phase angles appear
doubled én the Poincaré sphere, as in equétions 9 td 12, which can also
be derived from the two coordinate grids by use of spherical trigonometry.

The equator of the Poincaré sphere is also used to indicate the
orientation of polarizer and agalyzer transmissiOn.gkis-P and A and the
fast axis F of the compensator. Their azimuth engles p, a and q (measured
counterclockwise from the plane of incidence) are also doubled on the
sphere ana have the'same value as the gquantity O.

A superposition of the coordinate girds for geometric and physical
parameters provides a graphical conversionvbetween the twe. For
this purpose, and other apélications of the Poincaré sphere to follow,
the use of a stereographic projection of the sphere, indicated in the
right hand column of Fig. T, is best suited (141). The stereogréphic
projection provides an angle-true representation of the surface of a
sphere. It is obtained by a central projection of a hemisphere from
the opposite pole on a plane through the equator. Stereographic grids
(polarvénd equatorial, Wulff's net) are commonly used in crystallo-

- grephy (11).

The third coordinate grid, indicated on the bottom of Fig. 7,
represents the effect of a retardation plate. The orientation of the
fast axis of this compensator plate, chosen to be of azimuth hSo in the
figure, is represented by point F on the equator.éf the sphere. The
retardation dQ of the plate result; in a positivé.fotation on the ‘sphere,
as seen from F. 'This grid is identical to the one for A with the fast
axis F taking the place of the ﬁlane of incidence H, its use will become

clearer in some sections to follow.

- ¢

¥,
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III. OPTICAL REFLECTION

1. Reflection from Bare Surfaces

Complex Ampiitude

The complexvnotation provides a simple formalism for the description

of oscillations and waves (47,62,121). Its advantages are best seen in

the

addition of two waves of different phase which can be performed

as an addition of two vectors in the complex plane without the use of

tedious trigonometric formulas.

The instantaneous amplitude of & harmonic oscillation can be form-

ulated trigonometrically (Eq. 1) as

E = |B| cos(wt +¢€) | (15)

According to the Gauss equation

the

For

the

The

e* = cos x + i sinx (16)

exponential formulation (Eq. 17) has the same real part as Eq. 15.

imeginary unit v-1 is designated by the letter i.)
0 + ~ )

|E| Jllut +e) _ |E| [cos(wt + €) + i sin(wt + €)] (17)
this reason, it is used to represent the cosine formulation, with
understanding that the real part represents the oscillation.

. + g
E, = |E| llut +¢€) - (18)
time-dependent factor in Eq. 18
v iwt

e

is not particularly important and often disregarded in considerations

of monochromatic light. The time-independent part of Eq. 18 is called

the

complex -amplitude E:
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i€ ’
E=|E| e : (19)
Its modulus'|E| is the real amplitude, its argument € the phase of the
oscillation relative to a reference.

B. Fresnel Equations

The reflection of light on a dielectric (non-sbsorbing) interface
can be described by the Fresnal (amplitude) reflection coefficients r.
These coefficients represent the ratio of reflected to incident electric

field amplitude, they are different for s and p components

E"

r = EE B (20)
P
E"
= S

r = Es (21)

As indicated in Fig. 8, double-primed quantities refer to the reflected,
unprimed to the incident wave. The Fresnel equations (27,63,126,128,134,
139), in their simplest form relate the amplitude reflection coefficients

to the angles of incidence and refraction, indicated in Fig. 8.

y = tan(d - ¢1) | ' (22)

p tan(¢ + ¢')

- _ sin(¢ - ¢')
s sin(¢ + ¢').
The angle of refraction ¢' can be obtained from the angle of

incidence ¢ and the refractive indices of both media at the interface

-

by use of Snell's law

o]

sin ¢' = HQ sin ¢ | (24)
1

Fresnel coefficients of negative sign signify a phase change of 180°
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(eipvi T = -1) of the reflected with respect to the incident wave at
the reflecting surface.

Application of electromegnetic theory (19,26;7;37&6,72,80;06,123) shows
that the Fresnel equations can be adapted to describe reflection from
absorbing media by introduction of a complex refraetive index n, in
place of n,

n,=n-1ik (25)
If n, is defined here to be a material constant, independent of angle of

incidence (41,90), application of Snell's law

n sin ¢ = n, sin ¢é _ (26)

‘results in a complex angle of refraction ¢é, which provides a valid
formalism, but has no recognizable physical meaning.
The resulting complex reflection coefficients can be cast in

exponential form

: EH .
r | =L | (30)
%s|

and the argument representing the (absolute) change-in phase § due to

reflection



-1o-

§ =€l -¢€ - (31)
§ =e"%“-¢ (32)
s s s -

Thus, the complex Fresnel reflection coefficients can also be expressed

as

(33)

Il
L
(0]

r (34)

S s

As shown by Koenig (68) the use of complex arithmetic to derive
the above quantities can be avoided by the introduction of expressions
involving only real quantiﬁies. For the present conventions and definitions

these expressions are (51,88):

Ir | = JA2+B2—2A cos9+vcos‘2¢ (35)
s A2 + B2 + 2A cos ¢ + cos2 ¢

Alr | = |rs|— JA2+B2—2A sinitan¢+sin2(ttan2$ (36)

P 2% + B2 + 2A sin & tan ¢ + sin° & tan- ¢

-1 2B cos ¢ '
5. = tan [- _ ] (37)
s -A2 + B2 _ cosg'¢
, 2 2 . 2
‘Sp _ tan-—l[ 2B cos ¢ ( A + B r.sém d) ] (38)
A%+ B - —llT (n® + k) cos® ¢
n
)

with the intermediate variables A and B defined as N
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A=
. | A ' ;
. - s - 1 ,
J = 5 [%2 - k2 -n 2 sin2 o) + hngkg + (n2 - k2 -n 2 sin d))] (39)
o v o
2n
o
B =
. i J
. ] .
v 2
J 1 [J;z - k2 -n 2 sin2 o) + hn2k2 - (n2 - 1{2—n2 sin2 Cb)] (k04
on? o o
o) o

When the direction of propagatioﬁ of the refracted wave (the phyéical,
real angle of refraction ¢;)-has to be known, e.g. for determining the
penetration depth at non-normal incidence, an alternate complex refractive
index

n,'=n'- ik’ (k1)

which depends on the angle of incidence can be defined (41). The real
part of this refractive index and the real angle of refraction ¢; satisfy
Snell's law

2 = t : t ' '
n_ sin ¢ = n' sin ¢r | (k2)
"The imaginary part describes the decay of the electric field amplitude

with increésing distance z normal to the surface

27T .,
E~e X;-k & - - (43)

where Ao is the vacuum wavelength.
The distance at which the square of the electric field amplitude
(a measure of light intensity) decreases by a factor 1l/e is the (intensity)

penetration depth

- 9 '
27 W K (bh)
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Some penetration depth data are given in Fig. 9. For most metals, z is
a few hundred Angstrom units. The complex refractive index and its alter-

nate are related_(hl) by
.n2 - k2 = n'2 - k'2 : (ks5)
nk = n' k' cos ¢;- o (L46)

The dependence of the alternate optical constants on the angle of incidence
has been illustrated elsewhere (90). For many metalé the change is small.
At normal incidence the two quantities become identical. The angle-
dependeht optical constants have deliberately béen used by Vafflek (133).

C. Equations of Ellipsometry

The ellipsometer determines the ratio p of the (complex) reflection
coefficients for p and s components

b= (47)

U)H }d"i

The use of equations 27 and 28 and re-arranging of terms results in
B4 |

E" : 1" " | : A
0 = __T___]__lEs| el[(€p - es) - (sp - es)] \ (48)

T

S

The modulus of this expression contains the relative amplitudes of p and
s components in reflected (subscript r ) and incident (subscritp i) waves,

which can be formulated according to Eq. 3 as

E" ‘ . '

tan wf = {iﬁ%- | (L9)
S .
E

tan Y, = ﬁ}’—- (50)
S

AN



-15-

The argument of Eq..h8 contains the relative phase of p and s com-
ponents in reflected and incident waves. According to Eq. 4 they can be

formulated as

Ai=€p-ss B (52)_

Thus, Eq. 48 becomes the basic equation of ellipsdmetry

tan wr

p = Egg—ig-e T i » (53)

which is often given in a simplified form as

A

p = tan y e’ (5)

For the sake of simplicity, the present usage of ellipsometers
employs equal amplitudes of p and s components in the incident light,
so that tan wi = 1. The relative phase between the two components may

be zero in the incident or reflected bean.

With the formulation of Eqs. 33 and 34 Eq. 47 can also be written as

Ir .
o = rp’ el(dp - és) (55)

]

comparison with Eq. 54 leads to the definitions
r
san ¥ = 122} (56)
s

A=§ -6 - (57)

Expressions for relative phase and amplitude change due to reflection

from a bare surface using only real quantities (51,68,88) are:
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2

A = tagl (_ 2B sén ¢ tag ¢ 5 ) - (58)
A" + B® - sin” ¢ tan” ¢

V= tan_l{"/Ag + B2 - 2A siln ¢ tan ¢ + sin2 ¢ tanzgi (59)
A2 + B2 + 2A sin ¢ tan ¢+ sin2 0] tan2 ¢

The intermediate variables A and B have been defined in Eqs. 39 and L0.
Conversely, the optical constants of a bare surface can be determined

from the parameters Y and A by

————

(' 2
n=mn_ {1/_2 _3((}2 _ g2 +'sin2 ¢) + (G2 - E° 4 -si_n2 o) + hGgEE} (60)

. . . N r 2__
k = nov 1/2 ; - (G2 - E° + sin® $) +\l(G2 - g2 + sin® ¢) + thEes (61)

With the intermediate variables G and E (equal to A and B in Egs. 39, L0)

defined as _ sin ¢ tan ¢ cos 2 ¥ | (62)
1+ sin 2 Y cos A

£ = Sin ¢ tan ¢ sin 2 Y sin A
1+ sin 2 ¥ cos A (63)

D. Data for Reflection from Bare Surfaces

In the following, some results of_numerical qomputations for refec-
tionsvfrqm bare surfaceé{(88) are presented in graphical form in order
to pfqvide e better idea of the relationships between the optical and
ellipsometric 'quantities discussed.

Figufe 10 illustrates the dependence of ellipsometer parameters and
complex reflection coefficients on angle of incidenée (40,63,126). It
also shéws/the effect of an increased imaginary part of the refractive

index, starting with dielectric reflection as a limiting case. For an

incident dielectric medium of refractive index n_,n and k/n have to be
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divided by n_ (72,128). Similar data based on differenf conventions can
be found invthe literature (27,12k4). The-sensitivity for determining metal
optical constants greatly depends on angle_of incidénce (75,91).

The dependence of the same four quantitieé on the optical constants
n and k/n of the reflecting surface is illustrated in Figs. 11-18 for
angles of incidence 2°, 45° and 75°. The data for 2° are a close approx-
imation tb normal incidence, where indeterminate values resulting from
" the computations would have to be resolved by a limiting process. At
normal incidence, s and p components become indistinguishable. The
differencé in phase of 180° between s and p componehts shown in.Figs. 11
and 12 is due to the choice of coordinate system (Fig. 8). Not all com-
binations of optical constants shown are physically rgalizable. Computed
nets of n, k vs Y, A values for bare surfaces (lh,7l; 139) and detailed
data for dielectric reflection (69) as well as the use of reflectance

(19,43,113) can be found in the literature.

2. Reflection from Film-Covered Surfaces

A. Drude Equations

The ciassical theory of optical reflectiqn from a film-covered sﬁr—
face aséﬁmes a8 planar substrate covered with a plano-parallel, homogeneous,
isotropic film. Application of electromagnetic theory to this geometry
provides‘solutions for waves traveling in incideﬁt medium, film and sub-
strate in:the directions indicated in Fig. l9b.i These waves are equivalent
to the summation of multiple refiections shown in Fig. 19a (56,7h,8d,l3l).
_ The resultant reflected wave is deséribed in the (exact) Drude equations
(Eqs. 64,65) by an overall, complex reflection coefficient r, which

depends on the reflection coefficients r_. and r., of the two interfaces

1 2
and 'the phase delay D due to the travel of the light in the film ( 142).
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" -iD
r = EP _ rlD N r2D © (64)
p Ep l+r r e_lD
lp 2p
" - -1D
R S P~ (65)
s Es 1 +r r e_iD
ls "2s

The delay in the film of refractive index n and thickness L is

ctf

D = ;‘—: L, cos ¢, o (66)

where Xo is thevvacuum wavelength of the light and ¢cf the complex angle
of refréction in the film (equal to ¢é of Eq. 26). .The reflection
coefficieﬁts ry and r, are the Fresnel coefficients for the two interfaces
considered seperately (with an infinitely thick film). With_ﬁhe electric

field designations given in Fig. 20 they are defined as
E

et |
r = : | | (67)
v, = EL (68)

with Egqs. 20 and 23 they can be formulated as

tan(¢ - ¢Cf)
T1p T Tan(6 + 9_.) (69)
sin(¢ - ¢Cf)
Tog =~ sin(¢ + ¢cf) (T0)

tan(¢ . - ¢_ )
r2 - cf cm (71)
P ta'n((bcf * ¢cm)




-19-

Sin(¢cf B ¢cm) : (72)

2s sin(¢cf +-¢cm)

r

where ¢¢f and ¢cm are the complex angles of propagation in film and

substrate, obtained by applying Snell's law (Eq. 26) to the two interfaces

n_ sin ¢ = n . sin ¢cf (73)

n e sin ¢ .= n sin ¢ (k)

Drude has also derived a linearized form (31,42,80) of Egs. 64 and
65 which are sometimes called the Drude equations (56,134), To avoid confusion,
this nomenclature should be discontinued. Other approximations have been
developed since (3,5,36,77 ). The exact equations are, ﬁowever, easily

handled by a computer and are now mostly used.
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B. Computations
With the Drude equations for reflection from a film-covered

surface, the basicvequation of ellipsometry becomes

' -1iD -iD
(rlP+r2pe )(1+rlsr25e )

-iD
*r, e )(1+r1pr2pe

iA

= tan Y e (75)

p= -
(r 10,

1s

For gi?en values.of tﬁe optical cohstants of the three media involved
(Fig. 20) and the thickness of the film, the ellipsémeter parameteré
Y and A can be computed by use of Eq. 75(83). Examples for different
classes of film-covered surfaces, with film thickness (in Angstrom units)
indicated as a parameter along the curve, are given in Figs. 21-24.

It is typical for dielectric films that the ellipsometer parameters
Y and A repeat themselves aftef an increment of 6ne wavelength optical
path (or an increment of 2T ‘in phase delay D) in the film. According
to Eq. 66 one wavelength optical path usually requires a film thickness
of about half a wavelength. A dielectric film on a metallic substrate_
(Fig. 22) produces, in general, a greater change in‘A and Y .than a
dielectric film on a dielectric substrate (Fig. 21). In both cases, the
curves are closed. Good agreement with measurements has been reported
for the optical constants used in Fig. 22 (71).

With absorbing films, tﬁe effect of the subétrate material is
increasingly obscured, with increasing film thickness, by the liéhf
absorption in the film, and the ellipsometer parameters y and A approach

the values representative of bulk film material. The Y vs. A curve is



therefore not closed but runs from a point repreeenting the bare substrafev
to a‘poiht representing the bare film meterial. Extremely thin absorbing
films on a dielectric subetrate (Fig. 23) can be expected to produce partic-
ularly large changes in ¥ and A, because of the iarge difference in optical
constants of the two.materials. Since the opticai properties of a metal -
‘film and a metal substrate are more similar to each other, the ellipsometer
parameters are much less sensitive to film thickness for such a combination
(Fig. 2&)} >

The effect of film thickness (in the 100A range) on changes in
Y and A depends on the angle of incidence for each film-substrate combina-
tion and may even change sign. The optimum angle of incidence lies
usually in the range of 60-80° (7,91,117,139). |

Inbpractice, one is usually interested in aetermining the thickness

L and refractive index n__. of a film on a substrate of known properties

cf
from measured values of ¥ and A. The above procedure for celculating
Y and A for varioes combinations of ng, kf and L can be used, until
satisfactory agreement with measurement is found. Computed parametric
curves (7,15,16,23,82,99) or computer-generated visual displays
(92) can assist in this process. If an appreciable range of each of
the three variables has to be covered in the search for a solution, the
number of computations soon becomes too large to evaluate manually.

A more efficient determination of film thickness anqrrefractive
index frem ellipsometer measurements (82,84), “makes use of the
fact that Eq. 75 can be solved explicitly for L as a function of Nogs

Y and & (this is, however, not possible for ncf). This solution involves

a quadratic equation and therefore provides two values of L which should



—22-

be a real quantity. In practice, the solution with the smaller imaginary

part is chosen to represent the physical situation.

C. Double Beam Model for Transparent Films

Since s and p components of reflected light arevdelayed‘to the
same extent by the optiéal path in a film (Eq. 51),vit is not obvious
why the resulting state of polarization should depend on film thickness.
The following double beam approximation to reflection from a transparent
film on a métal substrate is intended to illustrate the physical basis
of the ellipsometry of film-covered surfaces. The prese;t approach is
more easily understandable than a graphical éomputétion (139) and a
multiple beam model (L) employed before. |

As an example for this approach, a tantalum oxide film on a
tantalum surface will be considered. The multiple beam model of
reflection (Fig- 25), which involves the summation of an infinite series
of beams, will be approximated by the sum of the zero order reflection
Tos which involves only a dielectric reflection and r_, the resultant
‘of all higher order reflections, which involve at least one metallic
reflection.

for an incident wave of unit amplitude, T, and r  are complex
reflected amplitudes which can be added vectorially in the complex plane
to form the reéultant r. This process is carried out in Fig. 26, for
s and p coﬁponents for a film of negligible thickness. With the known
Fesnel coefficient L for the film material, r_ is chosen in such a way

that the resultant r agrees with the known Fresnel coefficient for the
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bare substrate surface. The relative phase A between p and s components
is directiy visible in the figure, the’rélative amplitude attenuation
tan Y has to be formed from the ratio of the 1engfhs of the resultant
p and s vectors.

An increase in film thickness results in an increased delay D,
or a decrease in phase of r indicated by the dbuble—arrows in Fig. 26.
This delay is equal for s and p components. (It will be assumed that
the amplitude of r_ remains constant.) Phase and amplitpde of rys on
the other hand, are independent of film thickness. The sequence in Fig.
27 illustrates how the resultant s and p components are affected dif-
ferently by the increase in film thickness and, thus, ¥ and A values
change. A comparison of results obtained graphically by this method
with exact computations (Fig. 28) indicates that the double beam model

provides a reasonable approximation to reality.

D. Multiple Films -

The optical effect of several different layers of film stacked up
on a substrate can be computed by recursion formulas(38,84) or matrix
methods (97, 139,132). , Inhomogeneous films with continuously vary-
ing optical properties in the direction normal to the substrate surface
(1,132 can be represented by multiple films (83). Evidence for the
exigtence of multiple or inhomogeneous films cannot be‘obtained by
ellipsometfy_alone and considerable leeway usually exists in the choice

of the additional parameters describing such films.
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3. Conventions and Definitions

Nuﬁerical values of most of the parametersvwhich appear in the
theory of ellipsometfy, or result from measurementé, depend on the
choice of arbitrary conventions and definitions. The effect of nine two- g
fold ;hoices (resulting in 512 bossible cémbinations) and their past
usage hés been discussed elsewhere (90). |

Depending on the choices made, reflection from any giveh surface
can be represented by 8 ﬁumerically different combinations of ellipsométer 
parameters Y and A. Conversely, from any measured set of y and A values,
16 differéht combinations of optical constants of a bare surface can
be derived.

The preferred usage, determined at the International Eilipsometry
Conference in Nebraska, and used throughout this chapter is:

(1) Definition of the relative amplitude parameter Y

. r T
tan Y = Lpl (alternative: 1y
I¥s| I"p|

(2) Definition of the relative phase parameter:A

A=6_-26 ive: 8 - .
» < . (alternative §s dp)
(3) Definition of complex relative amplitude attentuation o
i . ' ~i
p=tan y e A (alternative: tan Y e 14 )

(4) Choice of time dependence factor

iwt -1
E ~ e {(alternative: e 1wt)



&

(5)

(6)

(7)

(8)

(9
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Definition of absolute phase

ej(wt+6) i(wt—d))

E ~ (alternative; e
Positive coordinate directions for p-component as shown in
Fig. 8 (alternative: E; of opposite diréction).

Positive coordinate directions for s-component as shown in

Fig. 8 (alternative: E; of opposite direction).

Formulation of complex refractive index

n_=n - ik (alternative: n, = n(l-ik)
Definition of complex refractive index
n,=n - ik (alternative: né =n' -1 k')

Azimuth angles of polarizers and analyzers are measured counter
]

clockwise from the plane of incidence to the transmission direction for

the electric field vector. Azimuth angles of compensators are measured

.

counterclockwise from the plane of incidence to the fast axis of the

compensator. In both cases the observer looks into the beam.
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IV. ELLIPSOMETER ARRANGEMENTS

1. Measurement With or Without Compensation

Elliptically polarized light (Fig. 5) can be analyzed by measuring
the intensity transmitted by a rotating linear polarizer (analyzer)
as a function of its azimuth angle (30 ). The azimuth of the intensity
maximum represents the orientation 6 of the major ellipse axis, the
ratio of the square roots of intensity minimum to maximum represents
the excentricity tan y of the ellipse. (Fig. 29). This measurement
without compensation requires absolute intensity determinations and
therefore does not take full advantage of some of the inherent
capabilities of ellipsometry.

The measurement of elliptic polarization with compensation is
based on the restoration of linear polafization ﬁy the introduction
of a known phase difference between two orthogonal components of the
elliptic polarization. This phase difference is generated by a
compensator (wave plate) and can have a fixed or variable value. The
restored linear polarization is recognized by the extinction with a
(linear) analyzer. In:practice, a miniﬁum in the transmitted light

intensity 4is sought.

2. Fixed and Vafiable Compensatqrs
Conceptually the simplest ellipsometer arrangement, although
not hormally used in practice, employs linearly polarized light from
a polarizer P of azimuth a = 45° incident on the reflecting surface.
Thus, s and p components of the incident light are in phase and of

equal amplitude. (In the basic ellipsometer equation (Eq. 53)
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tan wi‘= 1 and Ai'= 0.) As indiéated in Fig. 30, reflection of this

light results in elliptic polarization, due to é change in relative

.phase and.amplitude df p and s components.» é.g. the p compoqent may

now be ahead of the s component and be‘of smaller amplitude. (For the
séke of simplicity, A is assumed to have a value between 0 and 90°,

] betwéen 0 and 45° in Figs. 30-33. With bare metal surfaces this

case is realized at angles of incidence asbove the principal angle.)

Thévphase difference between the two components can be restored by a

compensator of variable retardation and fixed azimuth (Babinet-Soleil com~

pensator, symbolized by a wedge C in Fig. 30), which introduces a relative
phase éﬁange GC between p and s components which is equal but of opposite
sign to that due to reflection (15,16). For this purpose, the fast
axis F of the compensator is aligned with the component which has been
retarded in reflection (e.g. the s-component) and é retardation is
chosen such that linear polarization is restored. The plane of this
polarization forms the diagonal of a rectangle, in contrast to the
diagonal of a square shown for the incident polarization, because p and

s compoﬁents, have been sttenuated differently‘during reflection. Thus,
the change in relative phase A due to reflection is obtained from the -
retardation GC of the compensator, while the chﬁnge in relative ampli-
tude, tan ¢, is obtained from the azimuth of the restored linear
polarization. In practice the latter is derived from the azimuth a

of the andlyzer A at extinction, as indicated in Fig. 30.
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The elliptic polarization which results from the reflection of
linearly polarized light can also be compensated with a compensator

of fixed retardation and vériable azimuth, as_illuétrated in Fig. 31.

The'elliptic polarization, in this case, is decomposed into components
parallel to the major and minor axis of the ellipse. As had been
pointed out in the discussion of Fig. 6, these two components are
mutually out of phase by 90° or a quarter wavelength. Linéar
polérization can therefore be restored by the introduction of & quarter
wave phase difference between these components bj means of a guarter
wave plate (Sénarmont compensator Q). Thus, the azimuth § of the
quarter wave plate at extinction is a measure of the orientation é of
the major ellipse axis, the azimuth of the restéred linear polarization
is a measure of the excentricity tan y of the éllipse. In contrast

to the first arrangement, which provided a direct measurement of the
physical parameters of elliptic polarization, this arrangement therefore
provides the geometrical parameters.

Pfesently available compensators of variable retardation allow
one to determine retardation only with a resolution of approx. 1°,
because the measurement involves a translatory movement, in contrast to
the rotatory movement employed with a compensatorvof fixed retardation.
If & compénsator of variable retardation is used in practice (e.g. for
spectral work), it is therefore preferable not to‘change its retardation
during a measurement, but to set it'to_quarter.wave and rotate it
like a compensator.of fixed retardation. Opticai imperfections are

more prevalent in variable than in fixed compensators and may also
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affect the accuracy of such measurements. If reliable variable com-
pensators of high resolution.become available (e.g. electro-optic
devices) some of the presently unused ellipsometer arrangements, such

as the one in Fig. 32 may become of practical interest.
3. Linear and Elliptic Polarization Incident

Both ellipsometer arrangements described above employ linearly
polarized light incident on the specimen and the elliptic polarization

resulting fromthe reflection is converted back to linear polarization.

A reversal of the sequence of optical elements results in elliptically_
polarized light incident on the specimeﬂ} The élliptic polarization
is then chosen so that reflection results in linear polarization. If
s and p éomponents of the incident light are agéin chosen to be of equal
amplitude,; the use of compensators with variable or fixed retardation
results in the following ellipsometer arrangements.

A compensator of variable retardation, shown in Fig. 32,

introduces a phase difference GC between p and s components before

reflection. This phase difference is of equal magnitude but opposite
sign compared to the one due to reflection on the specimen. Linear'
polarization is therefore restored by feflection. As with the
arrangement of Fig. 30, the parameters A and Y, characteristic of the
reflecting surface, are derived from the retafda#ion GC of the com-
pensator and the azimuth a of the anaiyzer.

The use of a quarter wave cpmpensator with elliptic incidence is
illustrated in Fig. 33. This arrangement is presently the preferred

t .
one for practical use. The 45° azimuth @ of the quarter wave plate
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results in equal amplitudes of p and s components incident on the
specimen. At extinction, the polarizer azimuth p is a measure of A,
the analzyer azimuth a a measure of Y due to the reflection. These -

features will be more apparent by use of the Poinceré sphere (Fig. 37).
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L. Appliciation of Poinceré Sphere

Linear Polarization Incident

The state of polarization can easily be traced on the Poincaré

sphere ( 34) through the elements of an ellipsometer ( 140) operated in

the

four modes shown above. The stereographic projection of the sphere,

looking down on the "north" (L) pole, will be used for this purpose.

The

effect of reflection is represented by two separate steps, one

affecting only A, the other only ¥. The following symbols are used

H -

V -

(¥)-

plane of incidence (origin of azimuth measurements), p component
piane of s-component

left hand circular pole of sphere

polarizer transmission axis, azimuth p (angle tb plane of incidence)
change in relative phase introduced by reflection between p and s
components.,

elliplic state of polarization before or after reflection

change in relative asmplitude ¥ due to reflection

changé in relative phase between fast and slow axis, introduced
by & compensator of variable retardation

change in relative phase introduced by a quarter wave plate.
compensator fast exis, azimuth q

restored linear polarization, azimuth a!

analyzer transmission axis, aximuth a (at extinction)

—o0- circles and points on the upper hemisphere (left hand polarization).

——

- circles and points on the lower hemisphere (right hand

polarization)
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With linear polarization incident and a vafiableAcompensator,
the stafe of polarization through an ellipsometer, arranged as shown in
Fig. 30 is given in Fig. 34. The»linear polarization produced by the--
polarizer of fixed 45° azimuth is represented by point P on the
equator (angle from plane of incidence H doubled). Reflection on the
specimen results in a change of relative phase A and relative amplitude
(tan w). (As in Figs. 30-33, A is assumed to have a value between 0 and
90° and w‘is assumed fo lie between 0 and 45°.) Point E on the sphere
represents the elliptic state of polarization after reflection.
Introduction of the phase change GC (equal but opposite to A), between
fast and slow axis of the variablie compensator of fixed orientation of
its fast axis F, results in the restored linear polarization A', which
forms the angle ¥ (doubled on the sphere) with the direction V of the
s—componenf (coincides here with F). In practice; Y is derived from
the azimuth a of.analyzer A_(2a measured counterclockwise from H to A).
Figure 35 similarly traces the state of polarization for linearv
incident polarization and a compensator of fixed retardation (1L40).
In this case, the elliptic polarization E has to be converted to a
= 90° retardation

Q
(quarter wave plate, Mac Cullagh method of compensation (105)). This

lineé} polarization with a compensator of §

is -accomplished by choosing F on a great circle through L and E
(parallel to a principal ellipse radius of azimuth 6). A 90° rotation
in the positive direction, as seen from F then brings point E to A'.
The difference in ezimuth g between the Tast axis F of the compensator
and the aximuth a' of the restored linear polarization A' is the ‘

geometric ellipse parameter Y.
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B. Elliptic Polarization Incident

Elliptic incident polarization, produced,by.a éompensator of
variable retardation, is illustrated in Fig. 36. The polarizer P is
again in a U45° azimuth (90° from pbint H on'the sphere). The effect
60 of the compensator (positive rotation as seen from F) results in‘
right ﬁand elliptic polarization incident on the specimen. Point E,
representing this state of polérizafion lies on the‘loﬁér half of the
Poincaré sphere and is represented by a cross in Fig. 36. The phasei
change A due to reflection is eqﬁal and opposite to GC’ the unequal
amplitude attenuation in reflection resulis.in the.linear polarization
state A'. The angle Y is derived from the azimuth of analyzer A.

Elliptic incident polarization, produced with a quarter wave
plate, is illustrated in Fig. 37 (140 ). This is the most important
ellipsometer arrangement in practice. In this case, the incident

elliptic state of polarization E, identical to the one in Fig. 36, is

obtained from the linear state P (determined by the polarizer azimuth D)

by the action of the guarter wave plate with fast axis F of azimuth
q = 45° (90° from H on the sphere). The effect of the quarter wave
plate on the Poincaré spheré is a 90° positiveb(counterclockwise)
rotation on a small circle around F. As in Fig. 36, phase and
amplitude change during reflection result in the restored linesr state
of polarization A' which is extinguished by the analyzer A of azimuth
a.

The above argument assumes ideal,lperfectly aligned optical

components. In particular, the quarter wave plate is assumed‘fo
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introduce a retardation of exactly 90° and not to change thé relative
amplitude. Deviations from these conditions can be determined (60 )
and employed in theé computations (82,84). Averaging measurements in
"four zones" (t0 be discussed) also serves to reduce the effect of some

errors (82).

C. ZError Propagation

The operation of an eilipsometer with a quarter wave compensator
requires the rotation in azimuth of. two components to reach extincfion.
For precise messurements, it is important that small deviations in
azimuth from the correct (final) setting of one component do not affect
the azimuth of the other component for minimum transmitted light
intensity.

The éllipsometer arrangements of Figs. 31 and 33 differs in this
respect. With incident linear polarization (Fig. 38a) any deviation in
the quartgr wave plate azimuth from the correct value 4 results in a
proportionate displacement of the analyzer aximuth a for intensity
minimum, and vice versa. Compensator and analyzer azimuth therefore
hunt each other in search for the deepest intensity minimum, which is -
not very well defined and often affected by noise in the photodetector
circuit.

With incident elliptic polarizaetion, on the other hand, the
analyier azimuth a for.minimum intensitybis not affected by deviations
in the polarizer azimuth from the final value p,, the T;nima are not

as low, but occur at the same angle. The same is true for intensity
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as a function of polarizer azimuth with the analyzgr in different
orientations. The lack of propagation of errors from one azimuth
reading to the other is the‘reason for the preferred usage of the
afrangeménﬁ shown in Figs. 33 and 37.

The difference in error prop;gation can be demonstrated on the
Poincaré spﬁere. With linear polarization incident (Fig. 39a), a
compensator of fast axis FQ’ which is different frém the correct loca-
tion Fi results in a restored polarization A.', (indicated by x) which
is slightly elliptical. The major axis of the,ellipée.is indicated by
a great circle through x and L, which appears as-a-diameter of the circle
in the projection. A minimum in transmitted intensity is reached with
the transmission direction of the analyzer in orientation A2, parallel
to the minor axis of the ellipse. Thus, in first approximation, the
difference in compensator azimuths between F. and F_ is shown to be

1 2

transmitted to the analyzer azimuths of Al and A2’ as shown by

experiment (Fig. 38).
The situation with elliptic polarization incident is illustrated

in Fig. 39b. A polarizer P2 of an azimuth which is different from the

correct setting Pl,results, in first approximation, in a restored

slightly elliptic polarization A_' with major axis parallel to the

2

correctly restored linear polarization A Thus, the polarizer

1
. l )
azimuths Al and A2 for minimum transmitted intensity are shown to be
the same, in agreement with experiment.
A similar analysis for the variable compensators, used as shown in

Figs. 30 and 32, shows that errors in retardation 6C do not propagate to

the azimuth of the analyzer A.
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Fof a more general analysis of the amplitude transmitted by an
analyzer (82,103,139,141), a right triangle can be inscribed in the
Poincaré sphere, with the three corners representing transmission and
absorption directions of the analyzer aﬁd the state of polarization
incident on it. The length of thé side of the triangle opposite to
the transmission of the analyzer (a chord on the sphere) is then a

measure of the transmitted amplitude (82). .
5. Other Ellipsometer Arrangements

" The four ellip;ometer arrangements discussed employ equal ampli-
tudes of p ahd S éomponents incident on the specimen (state of
polarization'represented'by a point on the horizontal diameter of the
circle, showing a great circle through pole L, in Figs. 34 to 37).

In principié, any two optical elements can be adjusted to reach ex-
tinction, with the others remaining unchanged, and many more modés of
operation are feasible. The derivation of resulté from the measured
quantities is, however, somewhat more complicated if incident p and s
components are not of equal amplitude. Arrangements with incident linear
polarization and quarter wave plate of fixed azimuth (65) as well as the

use of an optimum compenssator azimuth {109) have been described.

6. Modern Instrumentation

A. Self-Compensating Ellipsometers

The manual operation of an ellisometer is quite slow. To find
extinction with good precision, several minutes .are required for a
meagsurement in one zone. A considerable fraction-of this time is used

for the repeated reading of azimuth circles. Mechanizing this process,

»’
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e.g. by use of digital anglg position encoders, seems to be a promising
route which has not been taken yef to speed up the response of manually
operated ellipsometers. With optical modulation techniques and
mechanized azimuth readout, manual operation with response times of a
few seconds appears feasible. A manually operaﬁed instrument with
azimuth and phaée modulation by use of Faraday and piezo optic cells -
has been described by Wilmans (138).

Self-compensating ellipsometers, for the most part, simulate
manual operation at a greater speed and maintain the precision inherent
in compensating measurements. Two kinds of mechanically operated
self-balancing instruments have been described. One, by Ord (93,94 ),
is controlled by the intensity of the,photodetectbr output. Compensation
is reached in about a secoﬁd. Another one, by Takasaki (127) is
controiléd by the phase of the photodetector output. A modulation in
the state of polarization is introduced by two electro-optic elements
(Pockels cells). Compensation takes several seconds.

inétead of by mechanical rotation of a polarizing pfism; the
plane of polarization of light can also be rotated electronically by
a magneto-optic element (Faraday cell). This approach has been used
by Layer (. 73) for anxautomatic ellipsometer, designed to respond
within approx. 10-3 sec. A slew rate of L°/sec has been demonstrated.
Unfortunétely, no final analysis of the performance of this instrument
is avallable. The use of Faraday and Pockels célls for automatic

ellipsometers has been suggested by several authors (137,10 ).
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Several new designs of self-compensating ellipsometers would
be made-possible‘by the gvailability of a reliasble electronic
compensator of measurably variable retardation. Future forms of electro-
optic or piezo-optic ( 61,66,95 ) devieces may be useful for this

purpose.
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B. Non-Compensating Ellipsometers

' Off-bélance intensity changes of the transmitted light can be used
as a measure of changes in ellipsometer parameters (70,102, 118).
Depending on the azimuth settings chosen, the output is primarily due to
changes in Y or A, provided thét the changes are of limited extent.
Time resolution of less than 10_3 sec should be realizable by this
approach. |

As had been explained with Fig. 29, an elliptic state of polariza-
tion can also be determined erm the transmitted light intensity as a
function of the analyzer azimuth (103). An instrument which employs a
rotating analyzer has been reported by Cahan and Spanier (33).

It mﬁst be remembered that the use of light intensity measurements
in ellipsometry, common to all non-compensating techniques, to some
extent negates one of the basic advantages of thé_technique: its use of
the state of polarization, rather than the intensity of reflected light.
To what extent this fact affects the reliability of results obtained

from such measurements has to be analyzed for each specific case.
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V. EXPERIMENTAL ASPECTS

1. Four Zones

The following discussion will be restricted to the use of a compensa-
tor of fixed retardation, a quarter wave plate,_and elliptic incident
polarization which are at present most commonly employed. Similar
classifications can be derived for other modes of operation. ‘

A giVen pair of values Y and A, due to reflection, can be
determined by 32 different combinations of polarizer; analyzer and
- compensator azimuth settings. These combinations can be organized in
four groups or '"zones" (82), which are identified by the quadrant on the

"equator" of the Poincaré sphere (with origin H),_in which the polarizer

is located (Table 1I).

Table I

Definition of zone numbering

Zones / , AziTuth p of polarizer transmission axis
1. 0-45°
2 45°-90°
3 | 90°-135°
4 ' 135°-180°

The algebraic expressions which relate the azimuth readings, p, g
and a2 of polarizer, quarter wave plate and analyzer, with the desired

quantities Y and A are slightly different for different ranges of the



41

value of A. It is therefore convenient to distinguish four groups of

zoneé A to D (Tgple 1I).

Table II

Definition of zone groups

Zone Groups ' ' ‘ A
A | " 0 - 90°
B 90 - 180°
C | | 180° - 270°

D . 270° - 360°

The reason for the existénce of four zones is most easily shown
on the Poincaré sphere with a small value of A.(group A) and is illustrated
in Fig. 40. Zone A-1, with the fast axis F of the quarter.wave plate in a
45° azimuth, is identical to the arrangement discussed ‘in Fig. 37.
:The same state of incident polarization is prodﬁced in zone A-2 with the
quarter wave plate of 135° (or -45°) azimuth and the polarizer in a
position symmetrical to the first one around thé_45° azimuth. 1In both
cases, the analyzer azimuth at extinction is the same. Zones 3 and 4
are related to each other like zones 1 and 2. The incident state of
polarization is now represented by a point on the upper hemisphere
(circle).

Because any two azimuth positions of polarizer, quarter wave plate
and analyzer 180° apart are optically identical, a measurement in each

zone can be obtained by 8 different combinations of azimuth circle
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readings, or 32 combinations for all four zones. To avoid this additional
multiplicity, all azimuth readings should be restricted (or converted)

to values in the range of 0-180°.

2. Sixteen Zones

- The derivation of ellipsometer parameters Y and A from the measured
azimutﬁ angles in zone A-1 can be seen in Fig. 37 and may be applied to
the other zones in group A. If we denote the azimuth angles (measured
counterclockwise from the plane of incidence H) of polarizer, quarter
wave plate and analyzer by p, q, and a, the algebraic expressions
listed in Table III result. The expressions for zone groups B to D can
be derived similarly, as indicated in Fig. 41 for zone 1. All azimuth
readings are assumed to lie in the range O to 180°.

Azimuth circles in‘ellipsometers often have their origin in the
plane of the s, rather than the p compbnént and increase clockwise,
rather than counter-clockwise. Readings from such circles will first
have to be ;onverté& to the azimuth angles defined here, before the
expressipps for ¢ and A given in Table III can be used. Alternatively,
a new éet of expressions for yand A, which permits the use of instru-
ment readings which do not conform to the definitions, can be derived.
In practice, the use of Tablé IIT first involves a search for the
correct ione, based on the values of polarizér, compensator and analyzer
azimuths. Then the appropriate algebraic expréssions for deriving

and A can be used.



Table IIT1

Derivation of Y and A from ellipsometer azimuths of polarizer,
Quarter wave plate and analyzer (all angles in-degrees).
(y=0° to 90°, A=0 to 360°) = A

_En_

Range of Polarigzer Compensator Range of Analyzer

Transmission Fast Axis Transmission
Zone Azimuth p Azimuth q Azimuth a (] A
A-1 0-k5 4s 90-180  180-2 90-2p
A-2 45-90 135 90-180 180-2 2p-90
A-3 90-135 ' 45 : 0-90 . | a 270-2p
A~k ) 135-180 135 0-90 . a 2p-270
B-1 - 0-L5 135 0-90 a 90+2p
B-2 45-90 45 0-90 a 270-2p
B-3 90-135 135 90-180 180-=a 2p-90
B-4 R 135-180 45 . 90-180 180-a h50-2p
c-1 © 0-b5 b5 . 0-90 S a 270-2p
c-2 45-90 | 135  0-90 . a 90+2p
c-3 90-135 45 90-180 - 180-a 450-2p
C-k 135-180 135 90-180 - 180-a 2p-90
D-1 0-45 135 90-180 180-a 270+2p
D-2 45-90 45 90-180 180-a 450-2p
D-3 _ 90-135 135 0-90 a 90+2p

D-4 s 135-180 45 0-90 a 630-2p
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3. Zone Averaging
With ideal, perfectly aligned ellipsometer components,‘thé algebraic
expressions 'in table III provide identical ¥ and A values for a given
surface measured in all four zones. In practice,’however, the results
are different (78,116).If the effect of different errors is investigated
on the Poincaré sphere, it can be shown that by using Phe arithmetic
average of results from four zones, errors due to different causes are
reduced to different degrees:
--- Errors due to deviations in polarizer and analyzer circle alignment
are closely eliminated. |
--= Errors due to'deviations of the compensator retardation from
quarter wave and due to unequal transmission of fast and slow
components are fartially eliminated.
--= Errors due to aeviafions in compensator azimuth are not reduced.
Of the optical elements in an ellipsometer, the quarter wave plate
psually deviates most from the ideal state. In addition to deviations
from 90° retardation (50,52,107) differences in transﬁittance between
fast and ;slow directions, due to absorption or interference (6,136,1L2)
should be considered. A detailed theory of retardation plates (59)
their use and calibration (60) has been given by Holmes and Feucht.
Corrections based on measurements in two zones are contained in the
computer program by Mc Crackin (84) and corrections of measurements from

one, two or four zones have been analyzed by Azzam and Bashara(9).
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4. Alignment and Calibration
The mechanical adjustment of azimuth circles (to read zero for the
- plane of incidence) has been described in detail (82). The procedure
is based on the fact that pure s or p polarization remains linearly
polarized in reflection from a metal surface, and linear polarization

parallel to fast or slow axis of the compensator remains linear upon trans-
mission through it. Dielectric reflection can also be used (8). Most in-
struments do not provide for a precise adjustment of azimuth circles. One,
therefore, has to establish corrections, whiéh-afe then applied to all the
readings. 4 ‘

Less information is available on the alignment of the axes

of polarizer, analyzer and compensator (51). The first two elements are
often built into collimator and telescope (polarizer and analyzer
telescopes), respectively, the axes ~of whiéh should lie in the

same plane and interséct in the surface of the specimen (pig. k2). If
collimator or telescope can be rotated to vary'thé angle of incidence,

the two axes are most easily made parallel to each other by
aligning Both telescopes with respect to each other in the straight-
through position. The axXes. can then be made to intersect in the
specimen surface by use of a mirror with a target on its surface. Iris
diaphragms centered on the axes . of collimator apd telescope (E and
J in Fig. 43) are of great help in this operation; The point of inter-
section élso has to coincide with the axis of rotation of the movable
telescope (138). Auto-collimation techniques cén be used to align the

axis of rotation of the specimen table normal to the plane of incidence.
The plaﬁe'of incidence, defined by the two optic axis must be parallel

to the plane of rotation of the telescope.
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» Wifh ellipsometers of fixed angle of inéidence,(89) & mirror stand

with calibrated angle of rotation or a prism of the desired angle
between reflecting faces has to be used for fhe'alignment of collimator
and telescobe.

Adjustment of. the angle of incidence circie; similar to the align-
ment of opic axis, is also accomplished in the straight-through
position for instruments with variable angle of incidence and requires
the use of a mirror with calibrated rotation or a prism with reflecting
faces at the desired angle for instruments with fixed angle of incidence(51).

In order to employ a narrowly defined angle of incidence 1in
ellipsometer measurements, it is important that the'light incident on
the specimen is well collimated (a parallel beam). For the use of most
light sources, a small diaphragm (pinhole), precisely positioned in the
focal plane of the collimator lens, provides the parallel beam. The
location of the focal plane can best be found by auto-collimation with
a cross-hair in place of the pinhole: 1In the correct position the
cross-hair and its reflected image appear sharp and without parallax.
The diameter of the pinhole has to be chosen to result in an acceptable
divergence in the collimated beam and a sufficient output Qf the photo-
detector. Effects of angle at incidence errors have been’discuSSed (75,110,119).

All adjustments and alignments should be checked periodically.
Such complete checks can be quite time-consuming, but it would often be
satisfactory to check the over-all reproducibility of an ellipsometer,
if a reproducible reflecting surface were available. A totally reflect-

ing glass prism, with faces oriented normal to entering and exiting
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beams, has been found very suitabie for this purpose. To render the
reflecting surface independent of the surrounding medium, it has been
éoated with an opaque aluminum film, which in turn was profected by a
layer of silicon monoxide. Except for some small changes due to aging
during the first two weeks after preparation, this surface provided a
stable feference. No changes could be detected-when the environment of

the prism was altered from vacuum to saturated vapors of several solvents.

5. Other Sources of Errors

Cell windows act as a source of errors in seﬁeral different ways:
Refiection adds "parasitic" beams which are reflected by other components
into the photodetector. These parasitic beams are not extinguished
together with the main beam and result in a broadening of the intensity
minimum and possibly a shift in the azimuth at which the minimum is
reached. ‘The application of anti-reflective coatings (which must not
‘be polarizing or birefringent) to all reflecting surfaces reduces the
in;ensity of parasitic beams (1LL4), but further reductions are often
desired. For this purpose, a pinhole in the focal plane of the analyzef
telescope can be used (138). Because of (inadvertent or purposeful) slight
misalignment of reflecting sﬁrfaces from the axis, parasitic beams
are in general not focused on the : axis, as the main beam is aligned
to be. .The pinhole can therefore prevent parasitic beams from reaching
the photodetector (Fig. 43). \

A pinhole on the aXis in the focal plane of the telescope

also serves to better define the angle of incidence on the specimen.
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Light whiéh is not reflected parallel to the - axis, or under an angle
of reflection equal to the angle of incidence,’(e.g., due to surface
roughness) is not accepted for measurement. For this reason alone, the
pinhole Should be routinely employed. The diameter of the pinhdle
determines the range of angles of incidence which contribute to the
measurement. To avoid unnecessary signal attenuation, the telescope

pinhole éhould be slightly larger than the co}limator pinhole (if
both lenses are of the same local length). The imége of the collimator
pinhole must be centered on the telescope pinhole for proper operation.
This alignment can easily be acﬁiéved by fine-adjusting the reflecting
surface to maxim{ze'the photodetector butput off extinction. Figure 43
also shows two‘iris'diaphragms E and J which control the diameter of
the light beam and are used in the alignment procedure. Not shown is a
condenser lens, possibly inserted between light source and collimator
pinhole,as well as color filters, usually positidned in the same area.

Birefrigence in celi windows, usually caused by stress, is a serious

source of error (10,100) which often- goes unnoticed, because under most
circumstances, it can only be detected by use of é reference surface

in place of the specimen. In all-glass equipment, carefully annealed,
fused quartz windows have been used successfully(82). Satisfactory
constructions for windows on bakesble Stainless vacuum chambers still
néed to be developed. Glass with a low stress-optical coefficient (67)
may find a use there.

Even a perfectly isotropic cell window changes the state of-

polarization of transmitted light which is not incident normal to the
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surface of the window (91). Measurements shown in Fig. 44 indicate thaﬁ a
one degfee deviation from normal incidence, which.is more than the
accuracy usually achieved in construction and alignment of cells, can

be tolerated. The use of substantial angles ¢ would require, however,
that their value be known to a higher degree of accuracy than is usually
possible, in order to. satisfactorily compute the effect of such cell
windows and back it out of measurements (22,23,i03).

The optiéal properties of the window matérial, including the presence of
surface layers, would also have to be known precisely for such computa-
fions.

Most of the errors discussed need not be considered if they remain
constant during an experiment and only ''relative'' measurements are made,
in which a change in the optical properties of the surface, e.g., due to
the formation of a film, is of interest. The interpretation of this
change is usually little affected by substantial errors in-the absolute
magnitudé of the heasurements (120). '"Absolute'" measurements, on the
other hand (e.g., bare surface optical constants),_require careful
consideration of all sources of error (9,53,65,110,115).

The availability of an absolute reference surface would be highly

desirable for such purposes.
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6. Manual Ellipsometer Operation

The use of electronic photodetectors (photomultipliers, phototrans-
istors) for establishing minimum transmitted light intensity (108) has
largely displaced half-shade devices (lS,th,lé9)-employed earlier. for
visual operation, although visual observation continues to be indispensable
for detecting surface inhomogeneities. As shown in Fig. 38b the minimuh
in the transmitted 1ight intensity as a function of azimuth setting is
flat.and therefore'ﬁot well defined. For precise measurements, advantage
is taken of the symmetrical nature of the intensity curve, and the
azimuth of minimum intensity is found as the center between the azimuth
of two off-minimum readings of equal intensity (4). This technique
provides the_highest resolution possible with manual operation, but
several minutes are requifed for establishing polarizer and analyzer
azimuths in one zone. (Off-minimum readings are also employed in an
7 automatic ellipsometer (93) and the same effect is achieved by modulation
of the state of polarization (73,127,138).)

Noise due to the laboratofy environment, the light source, the -
photodetector and its instrumentation are often limiting the resolution
obtainable. The,ﬁse of a phase-sensitive detector and beam modulator
(61,91) may be neéessary to realize the 0.01° resolution in azimuth
reading commonly offered by research-grade ellipsometers.

The physical appearance of a manually operated ellipsometer is shown
in Fig. 45. A commercially available inst?ument (Gaertner L—ll9) has
been extensively modified to provide space for large specimens, facili-
tate the exchange of light sources and the conversion from elliptiec to

linear incident polarization. Other additions are iris diaphrams on

collimator and telescope, the illumination of circles, a motor-driven,

vertically movable specimen table and a light chopper.
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VI. OUTLOOK
1. Theoretical Problems

The theory of optical reflection, on which the present theory of
ellipsometry is based, employs the macroscopic Maxwell equations (123).
Although extrapolations of this theory to atomic dimensions hgve in many
cases been sﬁrprisingly successful (see also chapter'by Kruger), and good
argumentsbcan be made that the ellipsometer measures the amount of material
present on a surface (5), a general validity of the theory in this regime
.éan hardly be expected.

A more realistic model for optical reflection from bare surfaces,
in place of an ideally flat, continuous interface, will have to consider
the efféct of surface roughness (17) , which is found to be present on
most real surfaces, usually on a scale much larger than atomic dimensions
(Fig. 46). The rgpresentation of roﬁghness as an inhomogeneous surface
layer, which is then treated byvthe present macrdscopic theory, has been
proposed by Mc Créckin (4s). The validity of.the assumptions inherent
in this model still need to be tested experimentally. A new theoretical
approach,by.Berreman (21) is based on optigal scattering from sub-
microscopic spherical surface irregularities. Computational applications
or experimental checks of this theory are also not available yet. Exact
solutions for optical reflection from a plug—typé model of surfaée rough-
ness have been obtained by Deriugin (39).

Further information for the prediction of transitional layers on
clean surfaces (25), due to the different environment of surface atoms

as compared to bulk atoms (dangling bonds) will have to be developed.
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The classical theory for ellipsometry of film-covered surfaces is
alsovin need of refinement. Instead of the plaﬁo—parallel films of
sub-molecular thickness assumed so far, and often successfully interpreted
as equivalent films of equal mass (12,20,28,32,87,118),
approaches considering arrays of individual oscillators (11k,125)
may have to be extended to account for the discrete distributions of atoms
in films of molecular coverage. A comparison of different models now
available for sub-monolayers with measurements has shown a nearly_linear.
relationship between the. change in A and degree oficoverage (2k,25).

The effect of submicroscopic patchwise film coverage, or local
agglomeration of material, found in many thin films (20,57,58,143),
on ellipsometer measurements needs to be analyzed. It may be possible
to identify'patch size by use of variable lateral coherence in the
incident light, because coherent and incoherent superposition of light
(54) reflected from bare and film-covered surface elements can be
expected to result in different states of polarization (Fig. 47).

The availability of more explicit frocedures for the ellipsometry
of anisotropic films and substrates (h9,139) would be desirable.

of immediate electrochemical interest is a better understanding
of the optical properties of electfolytic double layers (35) and mass
transfer boundary layers which are present in most electrochemical
situations. Procedures to account for the latter are in principle
available but have not been sufficiently useéd or compared to results

from other techniques yet.



53—

2. Ins;rumental Problems

Automated ellipsometers should soon improve the time-resolution of
measurements greatly. Response-times in the order of 10_3 sec appear well
realizable.. Some forms of automated operation should alsp make it. possible
to increase azimuth resolution to 10—30 or better. TIncreased sensitivity
will be necessary for some of the data interpretations suggested above,
such as. in the stﬁdy of patchwise film coverage and'éurface roughness.

Ellipsometry, as presently constituted, provides information only
on one surface element at the time. Size and shape of this element are
determined by the beam cross-section. The development of holographic
ellipsometry (29,46,76) offers.the.capgbility for
simultanéously observing many different surface elements of extended
objects. No wusable instrument of this kind seems to have been
operaﬁed yet.

Sbme highly desirable instrumental developmeﬁts concern the
convenient scan in wavelength of the light used in an ellipsometer,
and very promising leads in the field of ellipsome;ric spectroscopy (81)

have been developedt
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3. Conclusions

Ellipsometry offers some unique possibilities for thé study of
suffaces and thin films. Some of these possibilities are particularly
attractive for electrochemical appiications. For the satisfactory use
of ellipSométry, some of the principles outlined in this chapter must
be cpnsidered. Except for precisely repetitive applications, an
ellipsometer can therefore not normally be considered a routine
analytical tool. Since ellipsometry, in general, provides only two
measured parameters, the characterization of complex systems often
requires a combination with other techniques (86,135).
Many applications of the ellipsometer in its present form remain to be
explored and new possibilities will be opened by instrumental_deVelop-

ments presently in progress.
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FIGURE CAPTIONS

Electric and mégnetic vectors in a linearly polarized light wave.
Electric vector in linearly polarized light. The plane of

polarization contains the electric field vectors in space. At a
fixed location, the tip of the electric vector traces a straight

line as a function of time.

. Linear polarization resulting from the superposition of two

linearly polarized waves in phase with each other. x and y co-~
ordinate directions may represent p and s components, respectively.
Reflection of polarized light. Plane of incidence defined by

1 _ :
incident and reflected beam. s and p components indicated in

incident light, with electric vector normal and parallel,

'.respectively, to the plane of incidence.

Elliptic polarization resulting from the superposition of two

linear components of different phasé and amplitude. Representation

.as a helix in space or an ellipse.in a plane normal to the

propagation direction k. Physical parameters Y, A and geometric

parameters €, y of the state of polarization. E orthogonal

re Bsr

fest and slow components ahead or behind each other in phase,

respectively, by a quarter wave (90°).

Dependence of gemetric parameters 6 and Yy of elliptic polarization

on phase difference A between p and s components for constant

relative amplitude tan V. .
Poincaré Sphere (left) and its stereographic projection (right) seen

from the left hand circular pole L. Reference point H denotes

the plane of incidence. Top: grid for geometrical parameters,
© and Y, center: grid for physical parameters Y and A, bottom:

grid for retardation §, of a compensator with fast axis F.

Q



Fig. 8.

—6h-

Reflection and refraction at a dielectric interface. Definition

of symbols and of positive coordinate directions for p and s
components of electiric field vector E in incident, reflected and
féfracted waves. Circles represent arrows pointing out of the plant
of the drawing.

k - propagation direction of the threé waves

¢ - angle of incidence
¢' ~ angle of refraction

n - refractive index of incident medium

" n. - refractive index of reflecting medium,

Fig. 9.

Fig. 10.

z = coordinate direction for amplitude attenuétion if the
reflection medium is absorbing.

Light penetration into absorbing media of alternate complex

refractive index nc' = n' - ik'. Wavelength 5.146l><10_5 cm.

Reflection from bare surfaces of complex refractive index n,

as a function of angle of incidence ¢. a) Argument § (absolute

phase change) and modulus Irl of reflection coefficient for p

(—) and s (-=--) components. b) Ellipsometer parameters A

' (relative phase change) and Y (relative amplitude attenuation

tan V).

Identification of curves

o)
[=]
1

o 1.5 (clear glass)
2. n, = 1.5 - 0.15i (dark glass)
3. n,=3.3-2.3L (Tantalum)
4. n =0.2 - 4.0i (Silver)



Fig. 11.

Fig. 12.
Fig. 13.
Fig. 1k.
Fig. 15.
Fig. 16.

Fig. 17.

Fig. 18.

Fig. 19.

Fig. 20.

Fig. 21.

As Fig. 11, angle of incidence 75°, s

strate (glass, n

-65-

Argument § (absolute phase change) and modulus |r| (amplitude)

of reflection coefficient for reflection from a bare metal surface
?f.refractivelindex n,=n - ik. Angle of incidence 2°,'p - |
component.

As Fig. 11, s - component.

As Fig. 11, angle of incidence 45°, p - component.

As Fig. 11, angle of incidence 45°, s - component.

As Fig. 11, angle of incidence T5°, p - component.

cémponent.
Ellipsometer parameters A ( relative phase change) and ¥ (relative
amplitude change tan Y) for reflection from a bare metal surface

of refractive index n - ik. Angle of incidence 450, -

As Fig.'lT, angle of incidence T5°.

Reflection from idealized film-covered surface (a) representation
by multiple beam reflections (b) representation by resultant
waves.

Reflection coefficients ry and r, at both interfaces of a
film-covered surface. Designation of refractive indices and

electric fields. All the angles of propagation except ¢ are com-

plex (indicated by dotted circles and lines) and cannot be

'interpreted geometrically.

Computed values of Y and A (Eq. 60) for 100 A increments of a
dielectric film (CaF,, n, = 1.4339-0i) on & dielectric sub-

1.519-0i). Angle of incidence 60°. Incident

medium vacuum (n0 = 1), wavelength 5461 A, film thickness in A

indicated along the curve.



T, anf r for s and p components, Ta20

Fig. 22.
Fig. 23.
Fig. 2k,
Fig. 25.
Fig. 26.
Fig. 27.
Figf 28.

Fig. 29.
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Computed values of Y and A for 100 A increments of a dieléctric
film (Ta205, n_ = 2.26—01) on an absorbing substrate (Ta, n

= 3.5-2.4i). Other data as in Fig. 21.

Computed values of ¥ and A for an absofbing film (Cr, n e =
2.96~-3.451) on a dielectric substrate (glass, n,, = 1.519-0i).
Other‘data as on Fig. 21.

Computed values of ¥ and A for aﬁ absorbiﬁg film (Cr, n.e = 2.96-

3.45i) on an absorbing substrate (Ni, n, = 1.4-2.52i). Other

data as on Fig. 21.

-Multiple beam model ro +r. +r_ + r_  etc. and double beam

7 1 2 3
approximation r + r  of reflection r from a dielectric film
(Tapo0s5, neg = 2.26-01) on an absorbing substrate (Ta, ney = ’
3.5-2.4i). Angle of incidence T5°, incident medium vacuum
(nO = 1). o
Double beam model of ellipsometry. Addition of complex amplitudes
Sbon Ta, data as in Fig. 25,
negligible film thickness.
Double beam model of ellipsometry. Effect of increasing film
thickness on ellipsometer parameters A and lfp|/|rsl = tan VY,
Ta205 film on Ta, data as in Fig. 25. - ‘
Comparison of ellipsometric parameters ¥ and A obtained graphi-
cally by means of the double beam model (dashed curve) with

275

on Ta (ncm = 3,5-2.L4i). Angle of incidence 75°, incident medium

exact computations (solid curve). Ta,O_ film (ncf = 2.26-01)

vacuum.

Analysis of elliptic polarization with a rotating analyzer.



-67-

Fig. 30. Arrangement of cohponents and states of polarization in an
, ellipsometef with lineai polarization iﬁcident on the specimen
and use of a compensator of variable retérdation.
P - polarizer with transmitted electric field direction in fixed
45° azimuth.
5 - reflecting specimen surface.
E - elliptic state of polarization after reflection.
C - variable compensator of fixed azimuth.(leW and fast axis
parallel to p and s directions). Retardation at extinction
is a measure of A.
A' - restored linear étate of polarization.
A - Analyzer with transmitted electric field diréction. Azimuth
a at extinction is a measure of .
Fig. 31. Ellipsometer with linear polarization incident and compensator

of fixed retardation.

P,S,E,LA' - as in Fig. 30.

Q - fixed compensator (quarter wave plate) of variable azimuth
q (at extinction, fast axis F parallel to major axis of

ellipse, @ = 6).

A - analyzer with transmitted electfic field direction. Azimuth
a at extinction is a measure of Y.
Fig. 32. Ellipsometer with elliptic polarization incident and compensator
of variable retardation. P, C, S, A', Avas in Fig. 30.

E - elliptic state of polarization before reflection.



Fig.

Fig..

Fig.
Fig.
Fig.

Fig.

33.

34

35.
36.
37.
38.

~ sator azimuth 45°, polarizer azim.uth'pl = 0.33°, p

68~

" Ellipsometer with elliptic polarization incident and compensator

of fixed retardation.

P_— Polarizer with transmitted electric fiéld direction. Azimuth
p at extinction is a meésure of A.

Q - Fixed compensator (quarter wave plate) of fixed azimuth

(fast axis F at 45° to plane of incidence).

E - Elliptic state of polarization before reflection.
5 - reflecting specimen surface.
"A' - restored linear state of polarizatidn

A - analyzer with transmitted electric field direction. Azimuth
a at extinction is a measure of V.
Poincaré representation of the changes in the state of polari-
zation through the components of an ellipsometer arranged as in
Fig. 30. Stereographic projection. Symbols listed in text.
Poincaré representation of ellipsometer arrangement of Fig. 31.
Poincaré ré@resentation of ellipsometer arrangement of Fig. 32.
Poincaré representation of ellipsomé£er arréngement of Fig. 33.
Propagation of azimuth errors with quater-wave compensator.
Transmitted light intensity as a function of analyzer azimuth.
Stainless steel surface in air, angle of incidence 75°, Photo-

multiplier RCA 931A,-800V. (a) linear polarization incident

polarizer azimuth 135°, compensator azimuth q = 96.87°, qa, =

= 95.37° (b) elliptic polarization incident, compen-

°
95'87 2 q3

= o
5 = 1.33%

= 1.83°. :
p3 83



Fig. 39.
Fig. h4o0.
Fig. W1.
Fig. Lo,
Fig. U43.

C

_69_

Propagation of azimuth errors with quarter wave compensator,
Poincaré representation. (a) linear Polarization incident.
(b) elliptic poiarization incident.

Four zones for elliptic incident polarization and quarter wave
compensator. Zone group‘A (A = 0 to 90°). Measurement of the

same values Y and A due to reflection. Stereographic projection

~of Poincaré sphere.

Four zone groups for elliptic incident pélarization and quarter
wave compensator. Zone 1 (p = Ojto 45°), Sterographic pro-
jection of Poincaré sphere.

Errors in alignment of axes of collimator (A) and
telescopé (). (a) plan vue with intersection of axes

in front of spécimen surface (B). (b) side view with axes
intersecting in specimen but not parallel to each other (c)
éide view with axes parallel but not in the same plane.

Effect of pinhole in analyzer telescope. 'Ellipsometer for

'elliptic incident polarization with quarter wave compensator.

A - light source

B - collimator pinhole

collimator lens

D - polarizer prism

E, J - iris diaphragms
¥ - quarter wave plate
G, T - cell windows

H ~ reflecting specimen
K - analyzer prism

L ~ telescope lens
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M -~ telescope pinhole
"N - photodetector
main beam

- parasiﬁic beam
Fig. Lh. Effect of  non-normal inci&ende on a 3/8vin; thick cell window

on the state of polarization of transmitted light.
Fig. 45. Modified ellipsometer, elliptic polariiation’incident;
A - movable carriage for light sources
B - exchangeable monochromatic light sources
C é_light chopper and generator of reference signal for phase-

sensitive detector
D - collimator tube Qith pinhole entrance
E - pélarizer circle with illuminated scale
G - cell with specimen surface
H - iris diaphragm for control of observed specimen area
I - polarizer circle with illuminated scale
K - telescope tube with pinhole exit
L - photomultiplier
M - base plate for exchange of light sources and conversion to
linear polarization incident

N - angle of incidence circle
0 - specimén table with vertical movement

P

motor drive controle unit for specimen table.

Fig. 46. Models for optical reflection from a rough surface (a) tri-
angular ridge model of surface profile (b) peak to peak
variations in su?face profile represented.by a homogeneous

transitional layer (c) inhomogeneous transitional layer with

optical properties varying in the vertical direction



Fig. U47.

-T1-

Reflection from patch-wise distributed'filﬁs, variation of
lateral coherence (indicated by width of wave ffonts) in incident
light. (a) coherent superposition of polarization states due to
reflection on bare and film-covered surface»elements.

(b) incoherent superposition of polarizatiqh states.
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