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ABSTRACT 

Effective design and application of electrochemical systems require 

an adequate understanding of the principles of current distribution 

in the presence of mass transfer and complex electrode conditions. 

Recent advances in the theoretical methods are reviewed here 

and some specific applications presented for the disk- and spherical-

electroce systems. 

The steady-state current distribution on a disk and a sphere 

is compared below the limiting current. Numerical results are given 

for the secondary distribution and for Tafel kinetics. At high 

rotation speeds, the current distribution for the sphere depends only 

on the specified current level and becomes uniform when this level 

is set below 68 percent of the limiting current at high rotation speeds. 

The results disclose a number of complementary aspects of the spherical 

electrode alongside the disk electrode in electroanalytical applications. 

Mass transfer to a rotating disk electrode is calculated at large 

times after a concentration step or a flux step at the surface. Radial 

dependence of concentration is ignored. Further application of results 

to treat more complex boundary conditions is discussed. 
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A mathematical model is given to treat the transient behavior 

of a disk in the absence of concentration gradients. The galvanostatic 

and potentiostatic cases are investigated separately. The analyses reduce 

to well-defined boundary value problems, which yield solutions in terms 

of newly defined eigenfunctions. The results allow the determination 

of time constants characteristic of decay due to an electrode reaction 

and due to a redistribution of charge within the double layer during 

the transient process. An experimental method is proposed to measure 

the double-layer capacity utilizing these results. 

An asymptotic treatment is given for the short-time response of 

a disk electrode. Numerical results are obtained by expressing the 

potential in terms of an integral equation at the surface. A similar 

formulation is used also to calculate the steady-state current 

distribution for large exchange~current densities. 

'.I 



' ·... \., :;~ 

-1-

I. INTRODUCTION 

The quality of design and efficiency of operation of industrial 

scale electrochemical systems depend on a knowledge of the principles 

of current distribution and electrode processes as well as the 

availability of accurate experimental data. The performance of an 

electrochemical cell is determined by the o~ic drop in the solution, 

the capacitive and faradaic impedances of the electrode-solution interface, 

and the rate at which r'eactants and products are replenished or depleted 

near the electrode. Information about the nature of these processes is 

usually obtained in the laboratory through studies of transport properties 

of electrolytic solutions,. electrode kinetics, and double-layer effects. 

Meaningful interpretation of experimental data again requires an 

understanding of fundamental definiticiJns and principles. 

The necessity to collect fast, accurate, and reproducible experimental 

data has lead researchers to develop systems which are well defined 

from the standpoint of hydrodynamics, current distribution, and 

mass transfer and provide varying degrees of versatility in application. 

Some Of these i d b N 1 d bl 2 h systems are rev ewe y ewman an I . • Among t e 

most commonly used are probably the so called rotating electrode systems, 

which include the rotating disk and cylinder systems in particular. 

The rotating spherical electrode 8 has been introduced most recently 

and promises a number of possible uses in electroanalytical applications 

alongside the disk and the cylinder. 
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Figure 1-1. Rotating disk electrode. 
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Figure 1-2. Rotating spherical electrode 
(from reference 8). 
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1.1. Historical Perspective 

The disk, cylinder, and sphere geometries have been quite popular 

in the past in fundamental studies of heat conduction and fluid mechanics. 

The incentive to employ these geometries as electroanalytical tools 

gained momentum only' a few decades ago after Levich3 treated the convective 

diffusion problem at a rotating disk electrode. Levich showed that the 

disk surface is uniformly aeeessible to mass transfer under the limiting 

current conditions. Rotating cylinders have been employed shortly 
. 4 

thereafter for mass-transfer research as reviewed by Eisenberg et al. 

The disk electrode, however, has been more commonly employed in numerous 

applications evidently due to its simple design (see figure 1) and 

operation. 
5 Riddiford gives a detailed account of the evolution of the 

disk electrode and its uses in electrochemistry. The rotating sphere 

8 
(figure 2) has been proposed lately by Chin as an alternative to the 

disk in high-rate deposition and dissolution studies. 

After the verification and acceptance of Levich's results, uniform 

accessibility of the disk surface has been taken for granted also in 

applications below the limiting current. Newman6 treated in the last 

deuade mass transfer in thin diffusion layers, coupled with a non-

uniform electric field in the solution and complex kinetics at the 

electrode. His results for the disk7 showed that the current distribution 

at the surface can in fact be highly nonuniform even at current levels 

close to the limiting current. 

As the methods of analysis of current distribution problems 

reached their present levels of sophistication, the need for equally 

comple~ models for faradaic and nonfaradaic electrode phenomena became 

• 
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unavoidable in order to be able to simulate situations as close to the 

actual physical processes as possible. The electrochemical literature 

provides an abundance of models and data for the kinetics of electrode 

99 100 reactions, ' which prove to be sufficient for study of steady-state 

processes. Additional complicatioas due to double-layer charging have 

to be taken into account if transient processes are of interest. 

Faradaic and nonfaradaic phenomena have been treated in the past as 

42 two independent processes until Delahay showed that this independence 

cannot be assumed a priori and has to be tested for each individual 

case. Improved methods to treat electrode conditions have subsequently 

43-46 been formulated. A comprehensive review on this subject has been 

published by Parsons. 101 

1.2. Scope and Structure of Thesis 

Due to the intricate coupling of faradaic reactions and double-

layer charging at the surface and mass transfer in the presence of a 

nonuniform electric field in the solution, the design of many electrolytic 

systems and interpretation of data obtained by their use turn out to 

be more complicated than are usually anticipated. To cite a few examples, 

if the current distribution is nonuniform, the placement of the reference 

electrode becomes important; the measured values of ohmic drop and 

exchange-current density have to be corrected for the exact location 

of the reference probe in the solution. If, on the other hand, the 

current distribution is uniform, a uniform potential distribution near 

the surface is not necessarily guaranteed at the same time. This may 

have important consequences in the design and operat,ion of electrochemical 

systems·under controlled potential. Furthermore, the transient behavior 
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of an electrode is.determined by the relaxation of a concentration 

gradient in the solution, capacitive discharge of the overpotential due 

to a faradaic reaction, or a redistribution of charge within the 

double layer. This thesis attempts to investigate the roles of some 

of these effects in determining the overall behavior of electrochemical 

systems. 

Specific problems are worked out for the rotating disk and sphere 

electrodes under laminar flow considerations. The former system is 

already a basic set-up in many electrochemical laboratories, and the 

latter is a newly-proposed tool which has been subject to a relatively 

limited study so far. These geometries have been chosen for study 

also due to their nonuniform current distribution below the limiting 

current, a major complicating factor in the design and operation of 

electrochemical systems. The basic principles governing the application 

of rotating cylinders are adequately covered by Eisenberg et a1.
4 

Ring 

and sectioned electrodes are also not considered. 

The emphasis is on mathematical techniques as well as the physical 

significance of results. The discussion carries the purpose of 

aiding the experimenter in the proper design and operation of electro

analytical tools in the laboratory and meaningful interpretation of data 

employing nonelementary numerical methods if necessary. 

Chapter 2 gives a rigorous treatment of transport and current 

distribution in electrochemical systems'. Equations are developed 

to express the hydrodynamics, potential and current distribution, and 

convective diffusion for the rotating disk and sphere geometries. 

Basic assumptions inherent in the analyses of these equations are listed. 

·...; 

.. 
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The conditions which prevail at an electrode surface during steady-

state or transient applications are discussed in chapter 3, so that the 

.. 
expressions of chapter 2 can be analyzed for certain specific cases to 

obtain numerical results. Thermodynamic arguments are used to express 

faradaic and nonfaradaic processes and relate reaction rates and aouble-

· layer charging effects to measurable quantities such as the over-

potential, current density, and double-layer capacity. 

Chapters 4 and 5 present steady-state applications of these 

equations to the rotating-disk and -spherical electrodes below the 

limiting current. The results are compared for the two geometries to 

determine some guidelines for various applications of each in 

electrochemistry. 

The transient convective-diffusion equation is analyzed in 

chapter 6 for the disk electrode by ignoring radial convection. The 

effects of mass transfer and double-layer charging on the transient 

behavior are investigated • 

. ·Chapters 7 through 9 treat the transient response of a disk 

electrode in the absence of mass transfer. Galvanostatic, potentiostatic 

and alternating current situations are discussed. A singular-perturbation 

analysis is given to determine the short-time response. An experimental 

method is proposed to measure differential capacities of solid electrodes 

by utiliziQg these results. 
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II. FUNDAMENTAL PRINCIPLES OF TRANSPORT IN 
ELECTROCHEMICAL SYSTEMS 

Even though electrochemistry is an old branch of the physical 

sciences, the fundamental treatment of mass transfer and current dis-

tribution in electrochemical cells has been a product of the last few 

decades. Levich's 3 work brought a new perspective to the treatment of 

convective diffusion problems in electrlilchemical systems. Since then, 

significant advances have been made in the improvement and application 

of the· theory. 9 These have been discussed extensively by Levich and 

1 10-12 . 
Newman ' in a number of monographs and review articles. Some of 

the essentials immediately relevant to the thesis are developed here for 

application in the later chapters. 

2.1• Basic Equations 

A generalized treatment of transport in concentrated systems as well 

as dilute solutions has become possible lately. 10 •13 The present dis-

9-11 cussion adheres to the simpler dilute solution theory, which still 

finds frequent use since many applications employ dilute solutions or 

small amounts of reactants in excess supporting electrolyte. The flux 

~ of a solute species is determined by migration in an electric field, 

diffusion due to a concentration gradient, and convection with the fluid 

flow, 

(2-1) 

where ui and Di are the mobility and the diffusion coefficient of species 

i, respectively. A differential material balance for the species i 

. . 
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(2-2) 

where Ri represents production due to a reaction in the bulk and is 

normally zero in electrochemical systems. The electroneutrality 

assumption, which can be expressed as 

(2-3) 

is a good approximation for the bulk of the electrolyte. Furthermore, 

the motion of charged species creates a current density, given by 

(2-4) 

The current density can be written in terms of the electric. field and 

diffusion by combining equations 1, 3, and 4: 

i = -K 1J ~ - FE zi Di IJci 

i 

(2-5) 

In the presence of flow within the electrolyte, the hydrodynamics 

can be determined from the Navier-Stokes equation, 

p( av/at + !. . IJv) = -IJp + ~vl!. + pg (2-6) 

and the equation of continuity for an incompressible fluid, 

(2~7) 
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These equations form the basis for the analysis of electrochemical 

systems. Some basic examples are given below, and more are developed 

in the following chapters. 

2.2. Electrostatics 

When there are no concentration gradients in the solution, equation 

5 becomes 

i = - K'V¢ (2-8) 

where 

(2-9) 

is the conductivity of the solution. Equation 8 is equivalent to Ohm's 

law. Substitution back into equation 4 and combining with equation 2 

yields Laplace's equation for the potential: 

v2ct> = 0 (2-10) 

This is the fundamental equation of electrostatics in the absence of con-

centration gradients and has been analyzed for a large number of electrode 

12 32 33 geometries as reviewed by Newman and others. • 

Let us consider a disk electrode of radius r embedded in a large 
0 

insulating plane. The potential far from the disk can be taken to be 

zero: 

2 2 as r+z -+oo (2-11) 

where r and z are the radial and axial cylindrical coordinates, respec-

tively. On the insulating plane, the current is zero, and hence from 

. . 
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equation 1, we obtain 

a~taz = 0 at z - 0, r > r (2-12) 
0 

The potential is also well behaved along the axis of the disk. The 

solution to Laplace's equation satisfying the above conditions can be 

14 expressed conveniently in terms of the rotational elliptic coordinates, 

co 

~IV • L BnP 2n (n) M2n (~) 
n=O ,. (2-13) 

where P
2
n is the Legendre polynomial of order 2n, M2n is a Legendre 

functioJ of order 2n, and V is a scaling factor, such as the electrode 

potential, introduced to render the coefficients B dimensionless. 
n 

The rotational elliptic coordinates are related to the cylindrical 

14 coordinates by 

z = r ~n. 
0 

r "" (2-14) 

The potential is related to the current density according to equation 8 

in the absence of concentration sradients: 

i .. - K ~:t=O = 

K 
=- --v 

r n 
0 

co 

K ---r n 
0 

The coefficient B can be calculated by applying the orthogp·nality 
n 

property of the Legendre polynomials: 

r 
B ... - --;·-o=:-~ 
n KM;n(O)V ( 

0 

(2-15) 

(2-16) 
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The current distribution on the disk is determined by mass transfer 

and surface conditions as well as the ohmic drop in the solution. A 

method of treating all these effects in a unified manner is discussed 

in the next chapter. 

As long as the concentration is uniform throughout the system, 

and there are no kinetic and double-layer effects to account for, 

the potential in the solution adjacent to the electrode surface ~ is 
0 

uniform and equal to the electrode potential. Equation 13 satisfies 

this condition for n = 0 and thus reduces to14 

.1 
~~~ = 1- (2/TI) tan-~ 

0 

This is the primary potential distribution for the disk electrode. 

The superscript p has been introduced to distinguish this solution 

from the general solution, equation 13~ 

(2-17) 

The primary current distribution at the disk surface can now be 

evaluated from equation 8: 

i = - K a~ I 2K~ 
= 0 

n az 
z=O n~i:!- 2 r 

(2-18) 

The total current is, therefore, 

r 

I = 2~ J 0 
inrdr = 4Kr ~P 

0 0 
(2-19) 

0 
and the resistance is 

R = ~I I = 1/ 4Kr 
o. 0 

(2-20) 

. . 
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Figure 1 shows the current and potential lines for the primary 

distribution. 

15 Nanis and Kesselman have shown how to solve Laplace's equation 

for thedisk in cylindrical coordinates by use of Hankel transforms. 

It is also possible to express the relationship between the current 

density and the potential as an integral equation. For the dis~, 

this is12 

~(r,z) 

where 

' ' ' 
= Lfro 

'ITK 

i (r ) K(m) r dr 
n 

~ 2 ' 2 z + (r + r ) 
0 

m = 
' 4rr 

2 ' 2 z + (r + r ) 

and (m) is the complete elliptic integral of the first kind,
16 

'IT/2 

K(m) = J 
0 

VI 
dCX 

2 - msin a. 

(2-21) 

(2-22) 

(2-23) 

The analysis is similar for the spherical electrode. In spherical 

coordinates, the boundary conditions are 

~ = 0 as y ~ oo 

. I 
(2-24) 

a~ne ... 0 at e = 0, e = 'IT/2 

and the potential distribution is given by 

00 

~IV="" B P
2 

(cos8)(r /r) 2ri+l 
£.J n n o 

(2-25) 

n=O 
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where 

1 4m+l f 1 
. . 

Bn • V 2m+l i(cos9) P2n (cos9) d(cos9) 
0 

The primary distributions for the potential and the current are~ 

respectively~ 

~~~ "" r /r 
0 0 

and 

The total current to a hemisphere is given by 

The resistance therefore is 

I"" 211'r K~ 
0 0 

R = l/2TTr IC 
0 

(2-26) 

(2-27) 

(2-28) 

(2-29) 

(2-30) 

Results for various other boundary conditions for the sphere are given 

17 by Carslaw and Jaeger. Comparison of equations 27 and 18 shows that 

the primary current distribution on a sphere is uniform~ whereas it 

is highly nonuniform on a disk~ becoming infinite at the edge. 

2.3. Hydrodynamics 

The analyses of the Navier-Stokes equation 6 and the continuity 

equation 7 are classical problems in fluid mechanics for the disk18 

19 and the sphere geometries. The basic equations have to be expressed 

in cylindrical coordinates for the disk and in spherical coordinates 

for the sphere. These lengthy formulas are tabulated by Bird~ Stewart, 
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20 and Lightfoot and will not be repeated here. When the end effects 

are ignored, the boundary conditions for the disk are written as 

V = 0, V = 0, v8 = rQ at Z = 0 r z (2-31) 
vr=O, v8 =0 as z-+oo 

where vr, ve, and vz are the r, e, and z components of the velocity, 

respectively, and Q is the angular rotation speed. The dynamic pressure 

P ( =p-Pgz) also has to be specified at one point. As suggested by 

.. ... 18 
von Karman, a separation of variables can be effected in the following 

12 manner: 

(2-32) 

where G, F, and Hare the dimensionless velocity components, and 

~ = z/Q/V (2-33) 

is the dimensionless axial distance f~om the disk. The dimensionless 

dynamic pressure is 

p = p/'~J.Q (2-34) 

Substitution into equations 6 and 7 gives a set of coupled, nonlinear, 

ordinary differential equations, 

2F + H = 0 

F2 - G2 
r 

+ HF = F" 
(2-35) 

2FG + HG = G" 

HH + p = H" 

. . 

. . 
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with the boundary conditions, 

F = G = 0 as ~ ~ oo I (2-36) 
H c F m 0, G = 1 at ~ = 0 

The first three of equations 35 can be solved first for the velocity 

components, and the pressure can then be obtained by integrating the last 

equation: 

P = P(O) + H' +! H2 = P(O) - 2F ~! H2 
2 2 (2-37) 

These equations have been solved using different: numerical techniques 

b C h 21 d 22 d . 12 ' 1 y oc ran, Rogers an Lance, an Newman. Newman s resu ts are 

reproduced in figure 2. 

In studies of mass transfer and current distribution in electro-

· chemical systems, one is normally interested in the velocity profiles 

very near the surface of the electrode (see section 5). For small values 

of ~. the axial component of the dimensionless velocity can be expressed 

12,21,22 as 

H "" -0.510237;
2 + 0(~3 ) (2-38) 

Similar approximations can be obtained for the other velocity components 

by solving equation 35 for F and G: 

F • 0.51023(; + O(z;
2

) t I (2-39) 
G"' 1 + O(z;) 

For the rotating sphere, only the treatment of the boundary-layer 

approximations to equations 6 and 7 has been possible. 19 Howarth has 

expressed the velocity components as perturbation expansions in the 

e - coordinate: 
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4 

Vr = rnF 

v8 = r.nG 

vz=..;;li H 

3 

2 

0.2 0.4 0.6 0.8 1.0 
Dimensionless velocity 

XBL715-3452 

Figu~e 2-2. Velocity profiles for a rotating disk 
(from reference 12). 
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ve = r n (6F
1 + e3F + . . . ) 

0 3 

v<P = r
0

0 (6Gl + e3c + .) (2-40) 3 

= tV'IT(H + e2H v + • .) ' r 1 2 

where F , G , and H are the functions of the stretched variable n ·n· n 

Z = lfflV (r - r ) 
. 0 (2-41) 

The boundary conditions are 

v = va ... 0, v<P = r Osin8 at r = r . I r 0 0 (2-42) 
ve • v<P = 0 as r ,. co 

Substitution of these equations into the boundary-layer equations for 

23 the sphere and equating terms of equal order in e give a hierarchy of 

coupled, nonlinear, ordinary differential equations for F , G , and H 
n n n 

19 with the corresponding boundary conditions. Howarth attempted an 

approximate solution by applying the von Karman momentum integral 

23 24 method. Banks and Manohar have reported more accurate numerical 

calculations. 25 Using their results, Newman expressed the dimensionless 

shear stress B(6) on the sphere as 

(2-43) 

= 0.510236 - 0.180881963 - 0.040408 sin3e , 

where a is the velocity derivative ave/ar evaluated at the surface. 

Equation 43 is plotted in figure 3. 
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Dimensionless velocity derivative on the surface 
of a rotating sphere (from reference 25). 
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The boundary-layer approximation for the sphere is known to break 

down at a region near the equator19 where the boundary layers originating 

26 at the poles meet and erupt in the form of a swirling radial jet. 

Stewartson27 has shown that the size of this region has the magnitude 

0(1/Re), and thus it can be rendered small by increasing the Reynolds 

number. 

2.4. Mass Transfer 

Substitution of the flux equation 1 into the conservation equation 2 

(Ri = 0) and using the equation of continuity 7 for incompressible 

fluids yield 

(2-44) 

If an excess amount of supporting electrolyte is used, the migration 

term can be neglected. Moreover, if the diffusion coefficient can be 

assumed to be independent of concentration, equation 44 reduces to the 

well-known convective diffusion equation, 

(2-45) 

which finds many applications in both electrolytic and nonelectrolytic 

mass transfer. 

Another case, which allows a similar simplification of equation 44 

is the binary system. The concentration of .the electrolyte can be 

defined in terms of the ionic concentrations as 

c=c/V -=c/V + + (2-46) 
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where v+ and v are the number of cations and anions produced by 

dissociation of one molecule of electrolyte. Fot the ionic species, 

equation 40 reads 

i1c/i1t + v·'i/c = z+u+F'i/•(c'i/<I>) 
2 

I 
+ D+'i/c 

i1c/i1t + v·'i/c z_ u _F'il• (c'i/<I>) 
2 

= + D 'i/c 

Subtraction gives 

(z+u+ z_u_) F'i/•(c'i/<I>) (D -D)'i/c 
2 

0 • + = 
+ -

Elimination of the potential between equation 48 and either one of 

equations 47 leads again to the convective diffusion equation, 

where 

i1c/i1t + v•'i/c = D'il c2 

D = 
z+u+D- - z_u_D+ 

z+u+ ~ z u 

is the diffusion coefficient of the binary electrolyte. 

(2-47) 

(2-48) 

(2-49) 

(2-50) 

For a thin diffusion layer near a disk or a spherical electrode, 

the steady-state form of the convective diffusion equation reduces to 

(2-51) 

where x is measured along the electrode from its upstream end (center 

of the disk and poles of the sphere), andy is measured perpendicularly 

from the electrode surface into the solution as indicated for a sphere 

in figure 4. Di is the diffusion coefficient of the reactant, but for 

" I 
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Figure 2-4. Schematic representation of some variables 
and parameters for the rotating sphere. 
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a binary electrolyte, it should be considered as the diffusion coefficient 

of the salt given by equation 50. Equation 51 applies to any axisymmetric 

diff i 1 d 1 i ibl 11,12,28 F h us on ayer, an a genera treatment s poss e. or s ort 

distances from the electrode, the velocity components can be approximated 

by 

v = yS(x), 
X 

and 1 2 1 d(IRS) 
vy = - 2 Y ~ dx (2-52) 

where S(x) = 0.51023~ x for the disk as can be obtained from the 

results of the previous section., and for the sphere, it is given by 

equation 43 by setting x = r 6. These expressions satisfy the continuity 
0 

equation 7, which can be written in the form 

for axisymmetric diffusion layers. 

(2-53) 

~ (=r for the disk and r sin6 for 
0 

29 the sphere) is the distance of the surface from the axis of symmetry. 

The convective diffusion equation now becomes 

aci 1 2 1 ()ci 
2 

d1Rf3 a ci 
yf3--- y - dx a;-= Di -2-ax 2 IR ay 

(2-54) 

The s.imilarity variable,1 •30 •31 

(2-55) 

reduces equation 54 to the form 

(2-56) 

~ ! 



. It • 

'\ 

\) 

-25-

We want to solve this equation for the case where the·concentration is 

zero at the surface and takes its bulk value ci
00 

far away from the 

surface (the limiting current condition). Thus, the solution is 

r 
0 

3 -x 
e dx 

where the integral is a tabulated function of ~. 16 

(2-57) 

Application of the Faraday's law to equation 57 gives the limiting 

1 
current distribution, 

nFDici00~ 
1

11m = sif(4/3) I [9n1 Jx ~.ms dx] 
0 

(2-58) 

where n is the number of electrons transferred by the electrode reaction 

(see equation 3-1), F is the Faraday's constant and si is the stoichiometric 

coefficient of species i in the electrode reaction. For the rotating 

1 3 9 disk, this reduces to the Levich equation, ' ' 

25 and for the rotating sphere, it becomes 

The average limiting current density is, therefore, 

(i ) 
lim ave 

(2-59) 

(2-60) 

(2-61) 
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Note that the limiting current distribution on a disk is uniform, 

whereas it is a function of e on a sphere as shown in figure 5. The 

behavior of the primary and the limiting current-distributions has 

important consequences in determining the general mass-transfer and 

current-distribution characteristics of the disk and the sphere as 

will be shown by later examples in the thesis.· 

Equations 59 to 61 can be written for metal deposition from a 

single salt solution by replacing the ratio nD/si with z+D/(1 - t+) 

(see equation 3-22), where z+ and t+ are the valence and transference 

number (defined by equation 3~15) of the reactant, and D is given by 

equation 50. The Schmidt number is then defined in .terms of D instead 

of Di. 

Correction terms have been obtained for equations 59 and 60 for finite 

34-36 37 Schmidt numbers. Sparrow and Gregg give results for the disk 

at low Prandtl numbers for the analogous heat-transfer problem. The 

38 39 
effects of migration and available physical properties of the solution, ' 

40 and corrections due to radial diffusion have also been reported for 

the disk electrode. 

The results can be extended to accommodate arbitrary changes in the 

12 28 surface concentration or flux by applying the superposition integral: ' 

dcio I . · dx 

~ x=xo[ =9-D_i_J_x_6l-~-~--dx---:]=-l-/_3...,. 
X 

0 

(2-62) 



~ . 

rt) 
........ 

u 
en 
~ 

Q) 

a:: 

' ~ z 

-27-

1.3,.----------,;---------,.-------..., 

1.0 
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Figure 2-5. 

30 60 90 
8 (degree) 

XBL 716- 36~2 

Local and average Nusselt numbers for a rotating sphere 
at high Schmidt numbers, as calculated by Newman25 
and compared to Chin's results.8 The Nusselt number 
is related to the current density by Nu=2r s.i /nFDicoo o ~ n 
(from reference 25). 
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or equivalently, 

y=O 
x=x 

:o 

IH(x ) dx 
0 0 

(2-63) 

The transient form of the convective diffusion equation is treated 

for the rotating disk in chapter 6. 

2.5. Basic Assumptions 

Some fundamental assumptions are inherent in the forthcoming 

development. Many of these have already been stated. in this chapter. 

6 An explitic summary of these at this point may be worthw.ile for later 

reference .and to convey the overall limitations of the theory. 

1. The disk electrode is embedded in an infinite insulating plane. 

The spherical electrode is suspended and allowed to rotate in an 

otherwise stagnant electrolyte. However, the analysis also applies to 

8 a hemispherical cap on an insulating plane. The counter electrode is 

placed at infinity. 

2. Dilute solution theory is applicablewith constant transport and 

thermodynamic properties. Free convection is not taken into consideration. 

3. For simplicity, the analysis is restricted to metal deposition 

. from a single salt solution or to a single electrode reaction in the 

presence of excess supporting electrolyte. Migration is not accounted 

for explicity. Correction for migration effects can be introduced 

if needed by the method of successive ~pproximations as discussed in 

3 9-11 detail elsewhere. ' Also, there are no reactions occurring in the 

bulk of the electrolyte. 

• J 
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4. The fluid flow near the electrode is incompressible and 

laminar. Furthermore, the hydrodynamic boundary layer is thin (high 

Reynolds numbers}, so that the boundary-layer solution of the Navier-

Stokes equations is an adequate description of the hydrodynamic 

conditions near the surface. 

5. Diffusion in the direction parallel to the electrode surface 

can be neglected whenever the diffusion layer is thin compared to the 

size of the e~ectrode. It is further _assumed that the diffusion layer 

is thin compared to the hydrodynamic boundary layer (high Schmidt 

numbers), so that the velocity components inside the diffusion layer 

can be approximated by their first terms in Taylor's expansions with 

respect to distance from the surface (equation 52). 

6. Outside the diffusion layer, the concentrations are uniform, 

and as a consequence the potential in the bulk is governed by Laplace's 

equation. The gradient of the potential just outside the dif.fusion 

layer is proportional to the current density (equation 7), which in 

turn depends on mass transfer within the diffusion layer and the con-

ditions at the electrode surface. As a result, the potential distribution 

in the bulk and the concentration distribution in the diffusion layer 

are coupled through the conditions prevailing at the electrode surface 

(see chapter 3). Mathematical treatment of the problem in the presence 

of this coupling may become excessively complex for nonsteady-state 

phenomena, and additional assumptions may be needed. These will be 

introduced later as they become necessary. Additienal discussion 

Eelating to this assumption is given in section 3.5. 
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III. CONDITIONS AT THE ELECTRODE SURFACE 

When current is applied to an electrochemical cell, two iiDportant 

processes occur at an electrode surface, namely, faradaic reaction 

and double-layer charging. The assessment of reaction rates and their 

relation to the current density lie in the field of electrode kinetics. 

99 
Much work has been done in this area as reviewed by Vetter. The 

treatment of the double-layer effects has been possible after the classical 

41 work of Grahame concerning the structure of the double layer at an 

ideally polarizable electrode. 42 45 Delahay and co-workers ' discussed 

how one might account for the faradaic and charging effects simultan-

eously in working mass-transfer and current-distribution problems at 

nonideally polarized electrodes. 1 6 11 More recently, Newman ' ' has developed 

a method for analyzing electrochemical eells by considering the effects 

of mass transfer and potential distribution coupled with complex 

electrode conditions. Some of these methods are discussed here with 

possible simplifications for numerical analysis. 

3.1. Thermodynamic Principles and Definitions 

An electrode reaction of the form 

obeys the general equilibrium relationship 

nJ.l -e 

(3-1) 

(3-2) 

where Mi is the symbol for the chemical formula and J.li is the electro

chemical potential of species ~respectively. The stoichiometry of the 

chemical reaction requires 

0 • 

• i 



I' 
") • ;.) " y ,_; 

~.) v u I / d._l l • 

-31-

(3-3) 

For very dilute solutions, the electrochemical potential can be related 

to the electrostatic potential ~ by .. 
(3-4) 

The equilibrium states of the solution and the metal phases can thus be 

determined if ~ can be measured. 

Newman6 has introduced the idea of using reference electrodes to 

measure potentials in the solution. Consider a reference electrode, 

which moves in the solution with respect to a stationary reference 

electrode of the same kind. The manner in which the measured potential 

changes is expressed as 

'illl-•-FV\1 e r (3-5) 

Consider also the situation, where the stationary electrode is a reference 

electrode of a '~iven kind." The potential relative to this electrode 

as measured by a reference electrode of a different kind and corrected 

for liquid-junction potentials is given by (see reference 11, section 40) 

' F(V ~ V ) = - ll _ - F~ + const 
r r e 

(3-6) 

The constant term is characteristic of the given electrode; for a calomel 

electrode, _for example, this is 

const = ll 0 + .!. If. · + RT ln cC1-Hg. 2 . Hg
2

c1
2 

(3-7) 
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. 0 
where Pi is the electrochemical potential of a pure phase and cC1- is the 

chloride concentration in the calomel-electrode compartment. The notion 

of measuring the potential in the solution between reference electrodes 

of the same kind and the definition of a potential with respect to a 

reference electrode of a given kind are well-defined thermodynamic 

constructions, which help to derive expressions for nonthermodynamic 

quantities such as the overpotantials in terms of measurable properties. 

A few additional definitions useful for the purposes of this chapter 

41 follow from the theory of the double layer. The charge density on the 

metal side of the double layer is given by 

(3~8) 

where ri is defined as the moles of species i per unit area, which is in 

excess at the interface over the amount which would be present in the 

solution if the concentrations remained uniform. The differential 

capacity of the electric double layer is the derivative of the surface-

charge density with respect to the potential at constant composition: 

C • {()q/cW) T 
lJ, 

.(3-9) 

This is a physical p~operty of the double layer and has to be determined 

experimentally. 

3.2. Concentration Overpotential 

Let us place two reference electrodes of the same kind as the 

working electrode, one (rl) just outside the electric double layer 

and the other (r2) outside the diffusion layer as indicated in figure 1, 
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Figure 3-1. Schematic representation of the positions of reference electrodes relative to the 
working electrode in the thermodynamic construction. The primed quantity is the 
potential of an electrode of a given kind, whereas the unprimed quantities are the 
potentials of electrodes of the same kind. 
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and let M
0
hm(• q>

0 
... q>co.) be the potential difference between these 

electrodes when there is the same .current distribution but no concentration 

variations. The concentration overpotential is then defined as 
6 

n . = v . - v - ~q,ohm c rl . r2 
(3-10) 

Application of the thermodynamic principles of the previous section 

gives, with the aid of equations 2-3, 2-5, and 2-8, . · 

nc • in J~ (~ -K~) RT ci00 

dy +- r si ln nF i cio 
0 

(3-11) 

where the subscripts o and 00 refer to the electrode surface and the 

bulk of the solution, respectively. In the presence of excess supporting 

electrolyte, conductivity variations in the solution are negligible. 

The last term is on the order of the reactant concentration divided by 

the supporting electrolyte concentration and is therefore small relative 

to the second term. Thus, equation 11 reduces to 

n c 
RT cioo 

= -"' 1 Ft... si n --
n i cio . 

6 Newman also proposes the approximate form 

[ 
coo 

ln-- t 
c + 

0 

(3-12) 

(3-13) 

for metal deposition in a binary salt solution (see also reference 11, 

section 126)~ This expression is obtained from equation 11 by assuming 

. . 



l \ ,.J d <..) '' t~,J '1 ..... u / Li >'I ·' ;.-

-35-

a linear concentration distribution across the diffusion layer and 

expressing the diffusivities. by the Nernst-Einstein expression 

Di = RTui (3-14) 

Equation 8 is substituted for.the conductivities, and the transference 

number is given by 

t "" 1 .... t + (3-15) 

3.3. · Surface Overpotential, Faradic Current, and Electrode Potential 

The surface overpotential represents the departure of the working 

electrode from its equilibrium potential. In terms of the potential 

with respect to the reference electrode rl defined above, this can be 

written as 

(3-16) 

The surface overpotaatial is assumed to be related to the faradaic 

current by the semi-empirical Butler-Volmer expression, 

(3-17) 

where i (~) is the exchange-current density at the bulk composition, 
0 

a , a , and Y are kinetic parameters for the electrode reaction. For a c 

small current densities lifl. << i
0

, equation 17 can be approximated with 

the linear expression 

(3-18) 
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In the other extreme, where the current density is large, the over-

potential is also large, so that equation 17 reduces to the Tafel 

expression, 

this one expressing a cathodic process. For 

replaced by -a • In equations 18 and 19, i a · o 

anodic currents, a is 
c 

= i (c
00

)(c /c )Y, that 
0 0 00 

is, the exchange-current density is concentration dependent. 

(3-19) 

In the absence of double-layer effects, the faradaic current is 

related to the flux by Faraday's law, 

(3-20) 

For metal deposition in a binary solution, the faradaic current can 

be related to the concentration derivative of the salt at the electrode 

surface by eliminating the potential between the flux expressions 

(equation 2-1) for the anion and the cation: 

(3-21) 

We now wish to relate the overpotentials to the potential of the 

working electrode V. Equation 10 can be written as 

n =V+V -v-v +<I>oo c rl r2 
<I> 

0 
(3-22) 

The quantity 4>
00 

- vr
2 

in effect represents the potential difference 

between two reference electrodes of the same kind at the same location 

in the bulk and is therefore zero. Substitution of the definition 

for the surface overpotential gives 

• f 
_I 
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v = n + <P 
0 

(3-23) 

where 

n = n + n 
c s 

(3-24) 

is the total overpotential. The electrode potential should be regarded 

as determined by a reference electrode of the same kind placed at 

infinity with respect to the working electrode. <P represents the 
0 

. ohmic drop calculated for the actual current distribution and extrapolated 

to the electrode surface. It does not contain any contributions due to 

concentration variations in the solution, which are compensate~ fully 

by the concentration overpotential. 

3.4. Double-Layer Effects 

In the presence of double-layer charging, Faraday's law has to 

be corrected for double-layer effects, and the surface flux is given 

by 

(3-25) 

Substitution into equation 2-4 gives an expression for the current 

density, 

where the surface-charge density q is defined by equation 8. The 

derivative can be expanded to read 
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v:J 
' 

~- [ aq a (v - v ) 

(a:~Jv-v' 
dcio rl + [ (3-27) 

at a <v at at i 
cio rl 

c. •::Ji JO ,] 

' where Vrl is the potential of a reference electrode of a given kind . . 
' placed just outside the double layer. The quantity (aq/a(v - V 1)] 
r cio 

can be identified as the double-layer capacity defined by equation 9. 

' The derivative a(v- Vrl)/at can be determined by writing 

• ~ (V- v - v' + vr1) at rl rl 

(3-28) 

Substitution of equations 6, 2, and 4 in that order gives 

Comparison with equation 11 suggests 

a(n + n ) r 
= ---'='s--,.-.=.-c - ~ i (! - L) dy 

at at n K K 
00 

0 (3-30) 

a f oo[ ziDi aci] 
- F at I -K- ay dy 

0 
In the presence of excess supporting electrolyte, the last two terms 

can be dropped. 

The derivatives of the type (aq/aci >v-v . are thermodynamic 
0 rl'cjo,Jt'i 

properties of the electric double layer. They either have to be 
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41 measured experimentally or estimated from the microscopic theory of 

the electric double layer (see reference 11, section 52). Delahay 

43-45 and co-workers offer some discussion on how to evaluate these 

derivatives. 

Simplifications of the flux equation are possible under certain 

conditions. If the results of this section so iar are combined and 

simplifications introduced for the presence of an excess amount of 

supporting electrolyte, equation 25 reads 

acil N =-D --
io i ay y=O 

ari si 
[in-= -Tt- nF 

c an + E 
at i 

(3-31) 

(*-) ' acio J 
at • 

io v-v 
rl 

cj 'I:. 0 ,J l. 

We would like to reduce this further by assuming that a single reactant 

is present, and the supporting electrolyte is the major contributor 

to the double-layer charge on the solution side. We also neglect the 

concentration variations of the supporting electrolyte just outside 

the double layer. Thus, equation 31 can be approximated as 

c an) at (3-32) 

where the subscript R refers to the reactant. This is the form of the 

42 flux exp~ession which has been criticized by Delahay. The capacitive 

term represents here the charging current, and subtracting this from 

the measured current gives the faradaic current and therefore equation 20. 
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This constitutes an a priori separation of the faradaic and charging 

currents and is not permitted if the correct form of the flux expression, 

equation 31, is used. As Delahay shows, equation 32 is a good approxi-

mation only if the electrode reaction is highly reversible, so that 

the faradaic term dominates in the flux equation for the reactant. 

Another type of simplification is justified if concentration 

variations can be ignored such as in well-stirred solutions. Equation 26 

then reduces to 

. an 
i =C ~t + if(n ,c.00) n a s. J 

(3-33) 

Combining with equation 2-8 gives 

a~, an - K ~ = C ~ + if(n ,c.
00

) 
r:~y y=O at S J 

(3-34) 

41 
If faradaic reactions are not permitted (ideally polarizable electrode ), 

this further reduces to the form 

- K a <I> = c ---:::---...::;.o_ I 
acv- ~ > 

ay y=O at 
(3-35) 

Despite their shortcomings, the simple forms of surface conditions 

developed in this chapter .are very useful for studying the behavior of 

electrochemical systems mainly because they are tractable for mathe-

matical analysis. It is also possible, with the aid of these equations, 

to isolate certain aspects of the electrode phenomena for study in the 

absence of other complicating effects. In this way, one can obtain a 

better understanding of the roles played by different effects to 
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determine the overall electrode behavior. Various complications can 

be introduced systematically as indicated. For example, equation 35 

singles out the capacitive charging effect only. Equation 34 introduces 

the faradaic reaction term. Faraday's law is adequate in most cases 

to account for the surface conditions at steady state. It can also be 

used perhaps for nonsteady state situations in the presence of a purely 

reversible electrode reaction. Equation 32 adds on the effect of 

double-layer charging. More complex phenomena are included in equations 

30 and 31. 

3.5. Statement of the Mathematical Problem and the Method of Solution 

We would like to investigate the current distribution and mass 

transfer at rotating disk and spherical electrodes with. the consideration 

of complex electrode conditions such as a faradaic reaction and/or 

double-layer charging. This can be accomplished by solving the basic 

flux equation 2-1 to satisfy the general boundary condition 25 at the 

electrode surface. This is a complex problem due. to the fact that 

the potential distribution and mass transfer are coupled and cannot 

be treated separately unless one or the other can be neglected. In 

well-stirred solutions, concentrations are uniform; hence, the problem 

involves the solution of Laplace's equation, as discussed in section 2.2, 

to satisfy the condition 34. If the effect of the electric field can 

be ignored, a solution of the convective diffusion equation only is 

necessary. Some results are given in section 2.4. 
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When both the electric field and mass-transfer effects are present, 

a straightforward method of solution is not possible. 
. 6 

Newman has 

made a significant contribution by developing a method for treating 

problems of this kind for thin diffusion layers. In the limit of high . . 
Pe~let numbers, the diffusion layer is vanishingly thin. Thus, as 

far as the potential distribution is concerned, the concentrations are 

uniform in the solution, and Laplace's equation applies so as to 

satisfy the current distribution at the electrode surface. The 

diffusion layer can be treated as a separate region where the convective 

diffusion equation applies so as to satisfy the same current distribution 

at the surface as the potential and the condition of uniform concentration 

far from the electrode. Hence, the two solutions have to match through 

the boundary conditions specified at the surface. This is a singular-

perturbation problem. 

N~nsteady-state problems of this type are very complicated (see 

chapter 6) and tractable only in very few specialized cases, such as 

. . 46 47 
the convective Warburg problem. ' However, efficient and generalized 

48 numerical methods are available to treat the steady-state problem 

for almost any type of conditions at the electrode surface as long as 

the hydro~ynamics are known, and Laplace's equation can be solved for 

an arbitrary current distribution at the surface. The numerical 

procedure consists of an iterative solution of equation 2-62 or 2-63 

together with appropriate expressions of Faraday's law, and the surface 

and concentration overpotentials as derived in this chapter, and an 

expression for the potential in the solution, such as equation 2-13 

for the disk and equation 2-25 for the sphere, evaluated at the surface. 
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Hence, a total of six equations are needed to solve for the six unknowns, 

c , (ac/ay) O' i , n , n , and ~ • This method has been applied to o ~ n s c . o 
7 48-53 a number of electrode geometries. ' Some results are given for the 

disk in the next chapter and for the sphere in chapter 5. . . 
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IV. CURRENT DISTRIBUTION ON A ROTATING DISK 
B~LOW THE LIMITING CURRENT 

3 Since Levich showed that the limiting current distribution is 

uniform on a rotating disk electrode (see equation 2-59), the disk 

surface has been assumed for a long time to be uniformly accessible 

5 
to mass transfer also at current levels below the limiting current. 

14 Newman disputed this based on the reasoning that if the current 

distribution is intermediate between the two extreme cases of limiting 

current and primary current distributions, it can no longer remain 

uniform since the primary distribution is highly nonuniform. He went 

on to prove this by a detailed analysis of the current-distribution 

problem with the consideration of mass-transfer limitations near the 

disk, the influence of ohmic drop in the solution, and the effect of 

complex kinetics at the electrode surface. 7 •50 Newman's results have 

been verified many times experimentally by direct measurement of the 

thickness of an 
54 55 electrodeposited metal, ' measurements of the collection 

efficiencies on 28 55-59 . ring-disk systems, ' appl~cation of sectioned 

di k 1 . . d 28 d di s e ectro es, an rect potentialmapping by reference probes 

near the surface of the disk.~9 • 95 

Some of these results are reviewed here along with a few recent 

calculations. The emphasis is on the secondary distribution, which is 

needed in the formulation of the transient response of a disk (see 

chapters 7 and 8), and results for Tafel kinetics, which may be interesting 

to compare with the analogous results for the sphere reported in the 

next chap~er. 

. . 
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4.1. Secondary Distribution for Linear Kinetics 

The diffusion.layer near a disk electrode can be neglected when 

the rate of stirring is high (high rotation speeds), so that 

lifl << jiliml. Under these conditions, the secondary current dis

tribution is said to prevail at the disk surface. 7 Furthermore, for 

sufficiently small current densities lifl << i
0

, the kinetics of the 

electrode reaction can be linearized, and the current density can 

thus be expressed by equation 3-18. In dimensionless form, this is 

(4-1) 

where~ and~ are the rotational elliptic coordinates (equation 2-14), 

and 

J = i r F(a +a )/RTK (4-2) 
o o a c 

is the dimensionless exchange-current density. The superscript ss 

denotes steady state and has been added here to distinguish the 

potentials for the secondary distribution from the potentials corresponding 

to the primary distribution (section 2.2) and the transient distribution 

(chapters 7 and 8). 

The potential in the solution can be exPressed as (see section 2.2) 

ClO 

q,ss /~ = L B:sp 2n (n) M2n (~) 
n=O 

(4-3) 

The choice of q,P (• I/4r K) as the scaling factor is mathematically 
0 0 

convenient since this normalizes the numerical value of Bss to unity 
0 

regardless of the electrode conditions. Combining equations 1 and 3 
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and employing the orthogonality properties of the Legendre polynomials 

give 

and 

n 

!: [•m,n 
n=l 

where 

00 

Vss I tp = 1 + 4/TTJ + 2 """" Bss o ~ao,n n 
n=l 

- 2a a o,m o,n 
M2' (0) J - o ~m=-~-

m,n {4m+l) J 
Bss =.La 

n 7TJ o,m 

a =fl 
o,m 

0 

0 = 
m,n 

{m = 1 , 2 , .•• , n ) , 
max 

if m:ln 

if m=n • 

(4-4) 

(4-5) 

(4-6) 

(4-7) 

(4-8) 

The series in equations 4 and 5 are truncated at n for the purposes 
max 

of numerical calculation, which involves a straightforward matrix-inversion 

operation. ss 60 The coefficients B have been computed for various J values 
n 

by picking n • 45. Values for the first 10 terms in the series are 
max 

listed in Table 4-1. The quantity Vss/¢P, which can directly be calculated 
0 ' 

ss 
from equation 4 once B are obtained from equation 5, is Identified as n 

61 
the dimensionless, ef.fective direct-current resistance 4r

0
KReff for the 

disk system with the reference electrode at infinity. Some values are 

given in Table 4-2 for various J values. 

! 
~! 

.. 

. ' 
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Table 4-1. ss The coefficients B in the series for n 
the steady state potential. 

n J = 0 J = 0.1 J = 1 J = 10 

0 1.00000 1.00000 1.00000 1.00000 

1 o. 31250. 0.30731 0.26863 0.13306 

2 -0.05273 -0.05446 ~0.06568 -0.07356 

3 0.01984 0.02040 0.02491 0.04037 

4 -0.00993 -0.01019 -0.01232 -0.02324 

5 0.00580 0.00594 0.00713 0.01423 

6 -0.00373 -0.00382 -0.00455 -0.00926 

7 0.00256 0.00262 0.00312 0.00636 

8 -0.00185 -0.00189 -0.00224 -0.00456 

9 0.00139 0.00142 0.00168 0.00339 

10 -0.00107 -o. oono ...:o.oo13o -0.00260 
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Table 4-2. The effective direct-current resistance 
4r KR ff (=,vssfq>P) at different values o e o 
of the parameter J. 

J 

0.1 

0.2 

0.5 

1 
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10 

20 

50 

100 

200 

500 

13 .• 81194 

7.44458 

3.62161 

2.34368 

1.69962 

1.30375 

1.16459 

1.09002 

1.04072 

1.02231 

1.01217 

1.00543 
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The current distribution is determined from equation 1. The results 

are shown in figure 1. The extreme case where J=oo corresponds to a 

reversible faradaic reaction for which the current distribution approaches 

the primary distribution as a limit. 

The restuls for J = 0 correspond to the other extreme case where 

the passage of current from the metal to the solution phase is not 

permitted; thus, a faradaic reaction cannot occur. This type of an 

41 electrode is said to be ideally polarizable. If one tries to force 

a constant current I through a cell with an ideally polarizable electrode, 

the current will be used to charge up the double-layer capacity. The 

charging process will continue as long as the current is applied, and 

this will cause a continuous rise in the electrode potential only to 

be interrupted by perhaps hydrogen or oxygen evolution (see chapter 7). 

At the instant current is applied, the current distribution is nonuniform 

on the electrode since the primary distribution is nonuniform. Shortly 

afterwards, the current distribution is rendered uniform as the surface 

charge redistributes itself quickly. As a result, the potential 

distribution in th~ solution reaches a steady state even though the 

electrode potential keeps increasing. The boundary condition 1 can 

be written for this situation in the form 

which allows one to express the coefficients Bss explicitly: 
n 

' = - 4a (4n + l)/mM2n(O) o,n = -
(4n + l)[P

2
n(0)]

3 

(2n - 1) (n + 1) 

(4-9) 

. (4-10) 
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Figure 4-1. Secondary current distribution for linear 
polarization (from reference 7). 

; 
" . \ 

. . 

.l 
! 
i 

.. 
. I 



. . 

.. 

/ 

-51-

The potential distribution obtained under these circumstances is 

identical to the potential distribution which exists on a nonideally 

polarized electrode at limiting current conditions (see figure 4-6). 

7 Newman reports additional results for the secondary distribution 

at higher current levels, where the linear kinetic expression no longer 

holds. 

4.2. Secondary Distribution in the Presence of a Highly Reversible 
Electrode Reaction 

For large but finite exchange-current densities, the current 

distribution approximates closely the primary distribution on the disk 

except near the edge, where the faradaic impedance is large enough to 

force the eurrent density to remain finite. Numerical results for 

this case are difficult to obtain by the method of the previous 

section because a large number of terms are required in the series. 

An asymptotic expression for the potential can be derived by employing 

62 the.singular-perturbation technique. The singular nature of this 

61 problem has been recognized earlier; however, its consequences were 

not of immediate interest. The analysis is outlined here to render more 

complete the overall treatment of the secondary distribution at a 

disk electrode. A similar problem is encountered for the short-time 

response of a disk electrode and is treated in chapter 9. Still another 

problem of the same type at high frequencies for the alternating-current 

61 distribution on a disk electrode has been treated by Newman. We 

follow here the same guidelines in the mathematical formulation as 

developed in that paper. 

Since the current density is small compared to the exchange-current 

density, we can safely assume linear kinetics and use equation 1 to 
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express the conditions at the electrode surface~·· The potential outside 

the edge region is given by the primary distribution. As approximated 

for small ~' this condition can be expressed by. 

as (4-11) 

Furthermore, the con4ition on the insulating surface is given by 

(4:-12) 

A set of stretched variables can be defined for the edge region 

as follows: 

(4-13) 

(4-14) 

Substitution into Laplace's equation and the boundary conditions yields 

the system 

i.! + a2~ = 

an2 a~2 
0 (4-15) 

a~/a~ = n~ at ~ = 0 (4-16) 

a~1an - 0 at n = 0 (4-17) 

~ -+- ~ -2 as n + ~2 -+-CO (4-18) 

The solution to this system of equations was obtained numerically 

by finite-difference methods. The method has been described in detail 

63 
by Klingert ~· Doubling and overrelaxation techniques were 

employed to increase accuracy and speed up convergence, respectively. 

. J 
i. 

. i 
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33 These are discussed lucidly by Fleck in a report where he has also 

developed a generalized computer program to solve Laplace's equation 

for arbitrary electrode geometries and boundary conditions. The 

overrelaxation factor used here was 1.9, the value suggested by 
,, . 

Fleck for an L-shaped cell geometry. A listing of the computer 

program is given in appendix F. The results are plotted in figure 2. 

The steady-state current or potential can be calculated from 

~P/vss ss 
1 - l/4r KReff 1 - • 1 - I/4r KV = 

0 0 

(4-19) 

-r (1 _ ~ss /Vss) dn 1 = 7TJ ln J + A/J 
0 

0 

where 

A ... ;{f ~ dn +Joo (~ - lin> dn - ln b} 0 0 
' 0 b (4-20) 

=0.708 

These formulas are derived in appendix G. Figure 3 shows a comparison 

between the present results and the values for the dimensionless, 

effective direct-current resistance obtained in the previous section. 

The two results agree quite well for large values of J. 

4.3. The Effect of Concentration Polarization7 

At high current levels and moderate stirring rates, the concentration 

effects cannot be ignored, and therefore the diffusion layer has to be 

taken into consideration. This is no longer an elementary problem 

because the convective diffusion equation and Laplace's equation have 

to be solved simultaneously to satisfy the conditions at the surface 
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Figure 4-2. The surface potential distribution for large 

values of the kinetic parameter J near the 
edge of a disk electrode. 
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as described in section 3.5. The concentration overpotential is 

assumed to be given by equation 3-12 in the presence of excess 

supporting electrolyte and equation 3-13 for a binary system. Further-

more, the effects of the other species, which may be present besides 

the limiting reactant in a solution with excess supporting electrolyte, 

are ignored as a simplifying measure. Otherwise, the couvective 

diffusion equation has to be solved for each species, and the con-

centrations of these species have to be considered in calculating the 

overpotentials. The numerical procedure can be modified without much 

effort, but with increased computation time, to account for these 

additional complications, if necessary. The details of the mathematical 

analysis and the numerical method are given in appendix A •. 

A scaling of all parameters which appear in the problem suggests 

that the results can be best presented in terms of the dimensionless 

quantities 7 (see also appendix A), 

J = 

N = 

i r ZF 
0 0 

RTKOO 
(4-21) 

(4-22) 

in addition to the kinetic parameters a /Z, ac/Z, andY, and the 
- - a 

transference number t+. The parameter Z is equal to -z+z_/(z+- z~) 

fo-r a single salt and -n/sR with supporting electrolyte, and a = 0.51023. 

In the presence of excess supporting electrolyte, DR is the diffusion 

coefficient of the limiting reactant; for a solution of a single salt, 

DR is the diffusion coefficient of the salt. The current level i /ili ave m 

.. 
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also has to be specified for a complete definition of a case problem. 

The effect of varying the dimensionless exchange current density 

J has been demonstrated for the case of secondary distribution. Another 

parametric study of that type is not included in this section because 

the results are qualitatively similar to those of section 1; an increase 

in J, while the other parameters are held constant, causes the current 

distribution to become more nonuniform. 

The parameter N can be regarded as a dimensionless limiting current; 

it repeesents the importance of mass transfer in the diffusion layer. 

For example, an increase in the rotation speed'n facilitates convection, 

and as a result the electrode reaction can become mass-transfer 

limited at increasingly higher current densities. Large current 

densities in turn cause large ohmic drops relative ~o the magnitude. 

of the concentration overpotential. As the ohmic drop becomes a 

major factor in determining the electrode potential, the secondary 

distribution is approached more closeiy. In addition, if the applied 

current is much above the exchange-current density, the kinetic 

effects are small, the solution is well-stirred, and the current 

distribution resembles the primary distribution. This state of affairs 

is demonstrated dramatically for the case of Tafel kinetics as depicted 

in figures 4 and 5. The exchange-current density contributes a constant 

term to the kinetic expression, equation 3-19, .and hence its actual 

value is not important. As the figures show, the concentration and 

current distributions become more nonuniform with increasing values 

of N, but they are still limited by mass transfer at large current 

levels. The current density can also exceed the limiting current 
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Figure 4-4. Surface concentration for Tafel kinetics 
(from reference 7). 
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Figure 4-5 •. Current distribution for Tafel kinetics with an 
appreciable fraction of the limiting current 
(from reference 48). 
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! density locally, an interesting result. 

The disk electrode is commonly employed in the studies of electrode 

kinetics and mass transfer. The parameters such as i , a , a , and Y 
o a c 

,in the kinetic expression are assessed5 from current versus voltage 

'measurements with the incorrect presumption that the current distribution 

'is uniform at all current levels. The calculated parameters then 

depend on the measured average current density or surface overpotential 

'and cannot be generally applicable. The kinetic parameters should, 

at least in principle, be independent of such variables if the non-

uniform current distribution is taken into consideration. 
7 

Newman 

discusses in detail how this can be accomplished using his calculated 

.results. The ohmic drop in the solution is often determined by 

81 interrupter methods in electroanalytical applications. Since the 

primary distribution on a disk is nonuniform, the ohmic drop between 

a reference probe and a given point on the disk strongly depends on 

the position of the probe in the solution. Tiedemann et a1. 64 discuss 

the error which may be caused in the measurements of electrode kinetics 

on a disk if proper corrections are not made for the placement of the 

reference electrode. Miller and Bellavance59 show how this correction 

can be effected properly in experimental measurements. The disk 

electrode, on the other hand, is well suited for mass-transfer studies 

which are conducted under limiting current conditions. The measurement 

of the limiting current for a given rotation speed along with the 

knowledge of the bulk concentration of the limiting reactant and 

viscosity of the solution makes possible the assessment of the diffusion 

coefficient via the Levich equation. 
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Except for the primary distribution, the potential distribution 

near the surface of a disk is nonuniform, and this may have important 

consequences in potentiostatic applications (see discussion at the 

end of chapter 5). The maximum potential variation between the center 

7 and the edge of the disk occurs at the limiting current (figure 6) 

and is given by (see reference ll, section 117) 

A~ = 0.863 r i /K o o ave ~ 

This formula may be helpful in design calculations to determine the 

permissible values of r , i , and K~ for a maximum allowable o ave 

potential variation near a disk electrode. 

(4-23) 
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V. CURRENT DISTRIBUTION ON A ROTATING SPHERE BELOW 
THE LIMITING CURRENT 

The sphere has been employed in the past as an important electrode 

geometry in electrochemical research such as the investigation of the 

65 double-layer structure on mercury drops and the study of the over-

potential and reaction kinetics on copper electrodes by transient 

66 methods. The effects of diffusion were eigher eliminated or ignored 

in that work. The rotating sphere has been proposed anew as a potential 

tool in studies of mass transfer and reaction kinetics in electrochemical 

8 67 systems. ' The convective diffusion equation for a thin diffusion 

8 25 36 layer at limiting current conditions has been solved recently ' ' 

(see equation 2-60) and compared successfully with experimental data. 68 

52 The present intemest in the rotating sphere arises from the fact 

that the mass transfer and current distribution characteristics of the 

disk and the sphere turn out to be rather complementary in some respects. 

As reviewed in the previous chapter, the rotating disk exhibits a 

uniform limiting current distribution, which makes it attractive for 

mass transfer work. On the other hand, the spherical electrode may be 

more suitable for studies of electrode kinetics owing to its uniform 

primary distribution. The disk electrode can be polished very easily, 

but the surface preparation for the spherical electrode does not 

seem to be just as straightforward if a reasonable spherical shape 

is to be maintained. However, in high-rate metal deposition or 

dissolution studies, the disk electrode tends to rise above or recede 

below the insulating surface rapidly, thereby altering seriously the 

hydrodynamic conditions prevailing at the surface. 8 This effect is 
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within a.much lesser degree for the sphere, which maintains its geometry 

to the extent permitted by the degree of uniformity ·of the current 

distribution existing at its surface. Below the limiting current, the 

current distribution on a rotating disk is nonuniform. Itis possible 

in principle to attain a uniform distribution of current on a rotating 

sphere below the limiting current even in the presence of concentration 

variations at the surface as will be shown in this chapter. 

The underlying theory, the basic assumptions, and the method of 

solution were outlined in chapters 2 and 3. Additional simplifying 

assumptions cited for the disk problem in section 4.3 are also retained 

here. A more detailed description of the mathematical analysis and 

the numerical method is given in appendix A. 

5.1. Results for Tafel Kinetics 

A problem for the sphere is completely defined, as in the case of 

the disk, by specifying the dimensionless parameters J, N, a /Z, a /Z, 
a c 

Y, t+' and the current level i /(i1im) • The parameter N for the ave . ave 

sphere is given by 

(5-1) 

Since the primary distribution is uniform, the secondary current distri-

bution, which is obtained by ignoring the concentration polarization, 

is also uniform regardless of the reaction kinetics. As a consequence, 

the results do not depend strongly upon the dimensionless exchange-

current density J even when concentration polarization is present. Our 

numerical calculations for different J values, although not shown 

. . 

., 
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here, confirm this conclusion. Current and concentration distributions 

thus largely depend on N, and the specified current level with respect' 

to the average limiting current. In view of these observations, and 

because mass-transfer effects are important at high current densities, 

we have chosen to report results for Tafel kinetics, thus, for the 

parameter J tending toward zero. 

Figures 1 and 2 show the current and concentration distributions 

respectively for various .current levels at N = 10. All other parameters 

are arbitrarily set at 0.5. The current becomes more nonuniform as 

the limiting current is approached whereas the concentration shows 

marked derivations from its average value at intermediate current 

levels. Figures 3 and 4 show the effect of increasing N (or increasing 

rotation speed) on the current and concentration distributions for a 

fixed concentration (c = 0.5 C
00

) at the pole. The current density 
0 

exceeds the limiting current locally close to the equator. This 

can also be observed in figure 1 for large enough current levels. The 

same phenomenon has been reported for other geometries under similar 

7 48 49 . . conditions ' ' (see also sect~on 4.3). With increasing N, the 

concentration distribution becomes slightly more nonuniform and appears 

to be approaching an asymptotic profile. Meanwhile, the current 

distribution becomes more uniform, and the current level tends toward 

a limiting value different from the limiting current distribution. 

This represents a contrast to what has been observed for the disk
7 

and 

48 49 plane electrodes, ' where the diffusion layer is completely depleted 

of the reactant near the trailing edges for large enough flow rates, 

thereby limiting the local current density. The present results suggest 
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Figure 5-2. -Concentration distrib~tion for Tafel kinetics. 
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Figure 5-3. The effect of rotation speed on the current distribution . - i 
for Tafel kinetics: (1) N=lO, i /(i

1
. ) =0.6277; 
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(2) N-20, i /(i

1
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1
. ) = 

ave ~m ave . ave ~m ave 
0.6623; (4) N=lOO, i /(i

1
. ) =0.6722. 

ave ~m ave 
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FigUre 5•4. The effect of rot~tion spe~d on the concentration 

distribution for Tafel kinetics. 



-70-

the possibility of attaining a uniform current distribution for large 

N on a rotating sphere in the presence of appreciable concentration 

polarization. Further investigation is in order below. 

5.2. Conditions at High Rotation Speeds 

If a constant-flux situation prevails on the surface of the sphere, 

the concentration derivative inside the integral in equation 2-63 is 

constant and related to the uniform current density by Faraday's law 

(eq~ation 3~20 or 3-21). After scaling the current With respect to 

the average limiting current density (equation 2-61), equation 2-63 

reduces to 

(5-2) 

where 

sin6'd6' 
(5-3) 

sin6IBsin6 de] 2/ 3 . 

This function F(8) is plotted in figure 5; it increases from the value 

3.14768 at e = 0 (the pole) to the value 6.36850 at e = nf2 (the 

equator). Since the surface concentration is always positive or zero, 

equation 2 can be satisfied over ,the entire surface if and only if 

i/(il. ) ~ 0.680267 1.m ave (5-4) 

It also follows from equation 2 that for currents restricted by condition 

4 the concentration at the pole will be given by 

c (O)/c
00 
~ 0.505742 

0 
(5-5) 
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Figure 5-5. Concentration distribution for uniform flux 
condition at the sphere below the limiting 
current. 
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Equation 4 or 5 is the condition, therefore, for which a uniform 

distribution of current is possible on the sphere. The corresponding 

concentration distribution is given by equation 2. 

If condition 4 or 5 is not met, the concentration becomes zero 

'* at a certain angle e , which can be determined from equation 2 by 

setting c = 0. 
0, 

* The current becomes limited for 6 > 6 due to this 

zero concentration distribution and is expected to be nonuniform. Hence 

equation 2 is no more applicable in this region. Under these circumstances, 

the current density can be calculated from equation 2-62. After 

combining with Faraday's law and equation 2 and some rearrangement, 

this becomes 

i (6) = 0.379408 [1 - c (0)/c ] 1Bsin6 
0 00 

(5-6) 

Numerical calculations for various current levels yield the 

interesting results depicted in figures 6 and 7. Notice that equations 2 

and 6 do not depend on any of the kinetic parameters or the exchange-

current density; the current and concentration distributions are determined 

only by the specified current level for a galvanostatic process. The 

reaction parameters are necessary, however, to calculate the over-

potential, or conversely, to calculate the current level if the 

electrode potential is fixed (potentiostatic process). These remarks 

are also true for the secondary distribution. In fact, the results of 

this sect~on map out the transition from the secondary current 

: 
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Fig. S-6. Current dist~ibution at high rotation speeds. 
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I 
:I 

distribution, which is uniform, to the limiting current distribution, 

which is nonuniform • 

. " At low current levels (Iii << i 1im), the secondary distribution q 
.I 
·I 

:I 
"I 
·.I 

prevails, and the surface concentration is equal to the bulk concentration. 

As a result, the concentration overpotential is negligible, and the 

electrode potential is due to the surface overpotential and the ohmic 

.I drop in the solution, the latter being given by (see equations 2-27 

:: 
I 

and 2-29) 
I 

'I 
·' 

q> = I/27TK r 
00 

(5-7) 

where I is the total applied current. As the current level increases, 

the ohmic drop rises linearly with I according to equation 7, and the 

surface overpotential increases as lnl according to the Tare! expression. 

If there are no mass-transfer limitations, the concentration overpotential 

does not vary significantly. Therefore, the current distribution is 

controlled by the large ohmic drop, which remains uniform at the surface 

in the absence of mass-transfer limitations, and the current dis-

tribution is also uniform. The concentration becomes zero at the 

equator once a critical current level is reached as specified by 

equation 4. With increasing current, the depleted portion of the 

diffusion layer grows from near the equator toward the poles, and 

correspondingly the region of uniform current density shrinks in the 

same direction. Finally, the limiting current distribution is attained. 

The present results are significant, first of all, in high-rate 

dissolution or deposition studies because the spherical electrode 

maintains its geometry, especially when the current level is kept 
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r' 

below 0.68(i
1

. ) ; and high rotation speeds are . .:lpplied. Secondly, 
J..m ave 

the placement of the reference electrode is not as crucial as for the 

disk because the potential distribution is uniform if constant flux 

prevails at the surface. If the reference electrode is close to the 

surface, a correction for radial position is required. This consists 
~ 

of a simple extrapolation to infinity since the primary distribution 

(equatfoil 7) is a function of radJal displacement only. Undt~r tlwsP 

conditions, the assessment of the ohmic drop by the interrupter technique, 

which measures the value corresponding to the primary distribution,
81 

is also much more strafghtforward in comparison to the disk electrode 

(see c?apter 7). 

Ohmic effects due to a .nonuniform potential distribution near 

the surface of an electrode may become important in electroanalytical 

work. A nonuniform ohmic drop can result in a loss of control of the 

. 96 97 electrode potential in potentiostatic appll..cations, ' cause waste 

of current due to hydrogen evolution during the cathodic protection of 

metals against corrosion, or render difficult the anodic protection of 

1 i h . . k. . 58 , 98 meta s w t actJ..ve-passJ..ve J..netJ..cs. The potential variation 

across the surface of a sphere is at a maximum level at the limiting 

current (figure 8) as for the disk. The maximum potential 

difference between the pole and the equator is 

6~ = 0.546 r i /K o o ave oo 
(5-8) 

Problems due to a nonuniform potential distribution can of course be 

eliminated by operating close to the conditions which effect a uniform-

current and at the same time a uniform-potential distribution on the 

sphere as discussed in this section. 
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Figure 5-8. Current and potential distributions at the 
limiting current on a spherical electrode. 
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VI. TRANSIENT CONVECTIVE DIFFUSION TO A DISK ELECTRODE 

Nonsteady-state methods are commonly employed in electrochemistry 

for the study of electrode kinetics an~ mass transfer in electrolytic 

solutions. The fundamental treatment of transient diffusion at electrode 

surfaces has been of interest since the classical study of the problem 

. 70 
early in the century by Roseburgh and Lash-Miller. Levich

9
•71 has 

solved for the first time the transient diffusion equation for the disk 

geometry. Since convection is ignored in that·treatment, the results 

are valid only for very short times. 72 73 Subsequent analytic efforts ' 

with the consideration of aXial convection are also limited to small 

time intervals due to approximate methods of analysis. Fairly accurate 

74 numerical solutions are available for response to flux step and 

concentration step 75 •76 at the surface. However, analytic results are 

always more desirable for design calculations, 'determination of 

< 
relaxation times, and investigation of complex boundary conditions 

involving electrode kinetics and capacitive effects. 

77 Krylov and Babak have recently attempte~ an exact solution of 

the axial convective-diffusion equation by a classical perturbation 

expansion· technique. They have reported results for the concentration 

step and flux step conditions. 
76 Selman derived independently the 

same solution for the concentration step. These results provide 

considerable improvements over the previous analytic work but are still 

confined to relatively short times if a reasonable number of terms are 

t'o be retained in the series expansion. We would like to contribute 

here to the past effort by presenting and alternative treatment for 

large times, so that the results can be employed interchangeably with 

I(. 

. . 
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the short-time series of Krylov and Babak within their ranges of 

applicability. The method of Krylov and Babak is also reviewed. 

6.1. Theoretical Formulation 

We introduce the assumption here that the disk is uniformly 

accessible, and thus radial convection can be ignored. One should 

realize, however, that the latter assumption is introduced merely as 

a mathematical convenience. It is well accepted by now that radial 

7 
convection becomes significant below the limiting current (see also 

section 4.3). 78 The experimental data of Nanis and Klein seem to 

indicate that this assumption may lead to appreciable error especially 

during the transient build~up of overpotential after a step increase 

in the current. The more general case with radial convection is 

discussed in appendix B. 

Without the radial terms, the transient equation for convective 

diffusion reads 

where v is the axial velocity component for the rotating disk 
y 

approximated for the diffusion layer (equation 2-52). We introduce 

the dimensionless variables 

(
a\1)1/3 fn 

' = y 3D "v , 
e ... --- (concentration step) 

(6-1) 

(6-2) 

(6-3) 

(6-4) 
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or 
· cw -c 

e = (flux step) 
(Clc/Cll;;) l;;=O 

(6-5) 

Equation 6-1 thus becomes 

(6-6) 

Consider the build-up case after a step increase in the concentration 

or flux. The boundary conditions are 

e = o as l;; ~ 00 I (6-7) 
e = o at e = o 

e 1 at z:; = 0, e > o (concentration step) (6-8) 

or 

Cl0/Cll;; = -1 at r; = 0, e > 0 (flux step) . (6-9) 

Results for the decay case can be obtained simply by subtracting 

the results for the build-up case from the steady-state distribution 

(see equations 21 and 22). Therefore, a separate formulation is not 

necessary, contrary to the analysis given by Nanis and Klein. 78 

6.2. 76 77 Short-Time Series ' 

The solution to equation 6 can be represented in terms of the 

series expansion, 

or 

00 

e -- "e3n/2 Gn(z) ( ) ~ concentration step 

n=O 

co 3n+l 

0 = L 6-2- F (z) (flux step) 
n 

n=O 

(6-10) 

(6-11) 

.. 

-· 
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where F and G are functions of the similarity variable z = r;.J/2e. n · n 

Substitution into the differential equation and equating the terms of 

equal order in a yield 

" I 

II I 

G + 
0 

zG = 0 
0 

2 I 

612 z Gn-l I (concentration (6-12) 

or 

with the 

or 

G + zG 
n n 

II I 

F+ zF -n n 

- JnG = -n 

" I 

F + zF 
0 0 

(3n+l) F n 

boundary conditions 

G (0) 
0 . - 1, 

G (0) = 0, n 

(n > 0) , step) 

- F = 0 
0 

612 z2
F ' = - n-1 

(n > 0) 
.I (flux step) 

G (oo) = 0 .I 0 (concentration 

G (oo) = 0 (n > 0) 
step) 

n 

I 

-12, F (0) = F (oo) = 0 
0 0 

(6-13) 

(6-14) 

. I 
(flux step) (6-15) 

I 

F (0) = 0, F (oo) == 0 (n > 0) 
n n 

Krylov and Babak have expressed the solutions in terms of parabolic 

. 77 
cylinder functions. The results, evaluated at the surface of the 

disk, are 

(6-16) 

(concentration 
step) 
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0 = 2 ff- l e2 + - 3- e7 ' 2 - 0(65) .(flux step) 
o v n 8 70;rr 

79 Long-Time Series 

(6-17) 

It is possible to express 8 in terms of a steady-state and a transient 

part, 

ss t 
0 = 0 - 0 (build-up) (6-18) 

so that each part satisfies equation 6 separately. The boundary conditions 

ss for 0 are 

as 

0ss = 1 at ~ = 0 (concentration step) 

or (6-20) 

o0ss/a~ = -1 at ~ = 0 (flux step) 

These yield the solutions 

dx (concentration step) (6-21) 

or 

dx (flux step) (6-22) 

where the integral can be found as a tabulated function of ~. 16 The 

transient part of concentration satisfies the conditions 

~· ... 

~· . 
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(6-23) 
at 

t 0 m 0 at ~ a 0, e > 0 (concentration step) ' (6-24) 

. aetf()~ =· 0 at- r,; = 0, e > 0 (flux step) (6-25) 

The solution to 0t can be derived conveniently in terms of a 

boundary-value problem since equation 6 is separable, and the conditions 

23 to 25 are homogeneous in the ~-coordinate. 

the .form 

00 
->.. a 

0t = ~ B Z (I;) e n 
~ nn 
n=O 

t Let us express 0 in 

(6-26) 

where Z is an eigenfunction, and A. is the eigenvalue associated with 
n n 

it. Substitution into equation 6 arid conditions 23 to 25 yields the 

Sturm-Liouville system 

II 

3~2z' + t.. z z + = 0 ' n n · n n 

z (00) = 0 n (6-27) 

' z (0) .. 0 z (0) = 1 (concentration step) n n 

or ;"· . 
. ' z (0) .. 0 

' z (0) = 1 (flux step) . 
. .n .n. 

This system has been solved here numerically by a method commonly 

. 10 11 80 employed in this laboratory. ' ' The coefficients B are given by 
n 
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(6-29) 

and were evaluated by numerical integration. A listing of the computer 

program used to calculate the eigenvalues and the coefficients is 

given in appendix C. 

Table 1 lists the eigenvalues and the coefficients B after they 
n 

have been extrapolated to zero mesh size. The first three eigen-

functions are plotted in figures 1 and 2 for concentration step and 

flux step, respectively. The results are compared with the short 

time series of Krylov and Babak in figures 3 and 4. The two series 

match quite well over a certain range of 8 for each case even though 

only three terms of each series were used to plot these figures. 

The two series are also compared with the numerical solutions of 

74 76 Hale and Selman in table 2. The agreement is satisfactory within 

the accuracy of those solutions. 

The present results enable the assessment of time constants, 

T = (6-30) 

for build-up or decay of a concentration gradient after a step change . 

in the surface concentration or flux. For a concentration step, 

K = 0.45142, and for a flux step, K = 1.2623. These results are 

accurate insofar as the radial dependence of concentration can be 

ignored, such as in heat-transfer studies75 and mass transfer in 

nonelectrolytes. In electrolytic mass transfer, equation 30 is 

.. 

.. 
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Table 6-1. The first .ten eigenvalues and the related coefficients B of 
n 

the eigenfunctions • 

" concentration step flux step 

n A B A B n n n n 

0 7.21644439 1.12818046 2.58078493 0.663516066 

1 18.1596045 0.90505798 12.3099728 0.081564022 

2 31.1962389 0.7907692 24.4331401 0.034457046 

3 45.7926549 0.718387 38.3054830 0.01962199 

4 61.6691473 0.666834 53.5740271 0.0128965 

5 78.6461928 0.627481 70.0220380 0.0092267 

6 96.5966836 0.596032 87.5010784 0.0069829 

7 115.424957 0. 570071 105.902059 0.0055048 

8 135.05591 0.548117 125.140833 0.0044645 

9 155.42872 0.52920 145.15016 0.0037089 
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Figure 6-1. The first three eigenfunctions for the concentration
step case. 
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Fig. 6-2. The fir.st three eigenfunctions for the flux
step case. 
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Figure 6-4. Comparison of the short-time and long-time series 
for a flux step. 
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Table 6-2. Comparison of the short-time and long-time series with 
the numerical solutions of Selman76 and Hale74 at a 
few selected values of e. 

6 

0.0001 

0.01 

0.25 

1 

6 

0.0797 

0.319 

1.037 

1.994 

Short-Time 
Series (3 terms) 

56.4190 

5.6495 

1.3265 

1.3988 

Short-Time 
Series (3 terms) 

0.3209 

0.6759 

1.5798 

3.3551 

Concentration Step 

-(30/3!;;) l;;=O 

Long-Time 
Series (9 terms) 

Numerical 76 Solution by Selman 

8.1551 56.4190 

5.2647 5.6494 

1.3198 1.3155 

1.1207 1.1207 

Flux Step 

0 
0 

Long-Time Numerical 74 
Series (9 terms) Solution by Hale 

0.3161 0.314 

0.6001 0.599 

0.8473 0.847 

0.8891 0.889 

.. 

-· 
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sufficient for making estimates, but correction for nonuniform current 

distribution is probably necessary for more accurate calculations. A 

complete analysis of the convective diffusion equation with radial 

dependence appears to be very complicated and rather demanding in 

numerical effort. However, an asymptotic calculation for large times 

may be tractable to determine the necessary time constants, as discussed 

in appendix B. 

6.4. Treatment of Complex Boundary Conditions 

The above results can nowbe extended to treat time-dependent 

surface conditions. Application of the superposition integral gives 

c - coo= Ic (O) - c J e (6,~) 
0 00 c 

or equivalently, 

c - coo = -16 
0 

de , , 

de o . , 6 (6 - 6 , ~> d6 
6=6 c 

a ' 
dC' ~ ~=0 

--, 
a6 

[0f(6- 6 .~>J d6 

' 6=6 

(6-31) 

(6-32) 

where the subscript o denotes conditions at the electrode surface, and 

ec and ef represent the concentration-step and the fltix-step solutions, 

respectively. Differentiation of equation 31 yields an explicit 

expression for the flux at the surface, 

de 
0 

d6 6=6' 

ae 
c 

~ ~=0 
6=6-6' 

' d6 (6-33) 
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which may prove more useful for certain calculations. 

These equations are in a convenient form t.o calculate the potential 

in current-controlled applications, or vice versa, the current in potentia-

static cases. For example, if the double-layer effects can be ignored 

in a reversible situation, and if the time dependence of the applied 

current is known, the flux at the surface can be obtained from Faraday's 

law and substituted into equation 32 to calculate the concentration. 

The overpotentials, ohmic drop, and the electrode potential can then 

be calculated in a straightforward manner. If, on the other hand, the 

potential is controlled, a trial and error solution of one of the integral 

equations is necessary simultaneously with the expressions for the 

overpotentials, the potential in the solution, and the electrode 

potential. 

Double-layer effects may become important in transient electrode 

42-45 processes. Delahay and co-workers have shown how to treat the 

conditions at an electrode surface in the presence of uiass transfer, 

faradaic reaction, and double-layer charging (see section 3.4). 

Equations 31 to 33 can be applied conveniently to treat these effects. 

A simple example is given below. 

6.5. The Effect of Double-Layer Charging 

78 Nanis and Klein have conducted experiments to determine the 

transient behavior of the overpotential in the presence of a highly 

reversible electrode reaction. Their experimental relaxation times 

lag those which would be predicted by the theory formulated in the 

previous sections. The discrepancy is possibly due to the assumption 

.. 



.. 

.. 

: ' d I ' 0 

-93-

that the disk is uniformly accessible to mass transfer. When the 

current is initially switched ·on as a step, the flux is much higher 

at the edge than at the center of the disk~ and the overpotential 

thus builds up at a faster rate at the edge relative to the center. 

This results in a rather nonuniform overpotential early in the transient 

process in violation of the assumption. 

Another possible cause of the discrepancy is the effect of double-

layer charging; some of the current may be used to charge the double 

layer, thereby delaying the build-up of the overpotential. This effect 

is investigated here for the case of a fast and highly reversible 

deposition of a single reactant in the presence of an excess amount 

of supporting electrolyte. The double-layer capacity is assumed to 

be independent of the potential (see·chapter 7). Since the electrode 

reaction is fast, it is safe to assume also that T"Jc >> ns. In the 

light of these assumptions, _equation 3-32-should be adequate to express 

the conditions at the electrode surface. After substituting equation 3-12 

for the concentration overpotential and putting in dimensionless form, 

equation 3-32 can be written as 

T ael ar z;=o = 

1 

r(~) 
(6-34) 

where 

(6-35) 
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and I/IL is the current level. The importance of the double-layer 

charging depends on the magnitude of the parameter Q which is normally 

·-3 2 
of order 10 to 10- • Even though this seems small, it is hard to 

predict in advance whether the double-layer effect is also small 

because the derivative dG /de can be quite large at small times and 
0 

influence the transient behavior at large times. 

Equation 34 was combirted with equation 33 and then solved numerically 

for an initial step increase in the current. The results are compared 

to the case where the double-layer effects are completely ignored in 

table 3. This latter case is identical to the flux-step solutions 

given in sections 2 and 3. The same results can be obtained from 

equations 33 and 34 by setting Q = 0 and are also included in table 3, 

so that errors due to the numerical method will not be attributed to 

double-layer effects. 

The results indicate a definite delay in the relaxation of 

concentration with increasing Q so as to alter appreciably the 

characteristic time constants calculated previously in the absence 

of the double-layer effect. However, this delay is not at all as 

large as that measured by Nania and Klein. The results of Nanis and 

Klein are for a redox reaction, but the consideration of the product 

concentration in the present calculations would probably not alter 

the results appreciably. 7 The present results seem to suggest that 

the double-layer charging does not effect significantly the transient 

mass-transfer phenomena at a disk in the presence of a reversible 

reactiou. However, the validity of the assumption that the concentration 

of the supporting electrolyte does not change has not been tested. The 
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Table 6~3. The effect of double-layer charging on 
transient mass transfer to a disk in 
the presence of a highly reversible 

.. electrode reaction (I/IL=l)~ 

e e e CQ=O) 0 (Q=O.OOl) 0 (Q=O.Ol) .. of 0 0 o· 

0 1 1 1 1 

0.2 0.452 0.452 0.455 0.469 

0.4 0.265 0.267 0.269 0.285 

0.6 0.158 0.160 0.162 0.179 

0.8 0.094 0.096 0.098 0.115 

1 0.056 0.057 0.060 0.076 

.. 
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effect of migration has been shown to be negligible under steady-state 

. 82 , 83 b i b . if. i . h situat1ons; · ut, t can e s1gn 1cant n trans1ent p enomena 

since the time derivatives of concentration enter the equations for .. 
the surface flux rather than the absolute values (see equations 3-25 

and 3-31). -In order to incorporate into the analysis the concentration 

variations of the supporting electrolyte, the convective-diffusion 

equation has to be solved for the supporting electrolyte with the 

consideration of migration effects (see reference 11, section 73) for 

a step change in the concentration or flux and the solution generalized 

into a form such as equation 32 to account for arbitrary initial 

conditions. The system of integral equations for the supporting 

electrolyte and the reactant can then be solved together to satisfy 

a general boundary condition of the type given by equation 3-25. An 

analysis of this type is outside the present scope. 

The numerical method of this section is discussed in appendix D. 

Even though the results were no't conclusive, the method may be of some 

interest since it demonstrates an application of the equations of the 

previous section to a relatively complex electrode process. 

. .. 
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VII. THE TRANSIENT RESPONSE OF A DISK ELECTRODE 
UNDER GALVANOSTATIC CONTROL 

In studies of electrode kinetics, the uncompensated ohmic drop 

in the solution has often been measured by transient methods since 

the development of the CODIIIlutator method 86 by Glasstone. The more 

' . 87 
accurate interrupter technique has subsequently been invented and 

88-90 ' perfected as a reliable tool in the last couple of decades. The 

presence of a nonuniform current distribution at the electrode surface 

(such as in the case of a disk electrode below the limiting current), 

however, appears to complicate the interpretation of interrupter data, 

as this subject has already received ample thought arid experimentation 

(references 15,59,64,81,89; see also the discussion on reference 15). 

81 Newman has shown that the step change in potential at interruption 

corresponds to the primary current distribution and discussed the time 

constants for decay of the double-layer capacity due to a faradaic 

reaction and redistribution of charge within the double layer. A more 

complete mathematical study will be presented here in order to determine 

the transient response of a disk electrode to step changes in the cell 

60 current. 

The problem was originally conceived for an ideally polarizable 

electrode with the purpose of calculating the transients one would 

observe during the charging and decay of the double-layer capacity. 

However, the effect of a faradaic reaction can be incorporated into the 

formulation without any added difficulty in the analysis. The more 

general case will therefore be analyzed with due notice of the 

mathematical subleties relevant to an ideally polarizable electrode. 
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7.1. Mathematical Model 

The present analysis intends to investigate the effects of double-

layer charging and a faradaic reaction on the transient behavior 

of the disk in the absence of concentration variations. The model 

therefore differs from the one described in chapter 6 because the 

diffusion layer is ignored, whereas the effect of the ohmic drop in 

the solution is considered along with the types of electrode conditions 

mentioned above. The results have a physical significance in situations 

where the current level is low and the rate of stirring is high, and 

hence the concentration variations in the solution can actually be 

neglected. It is further assumed that linear kinetic relationships 

govern the electrode reaction and the double-layer capacity is independent 

of the potential. The latter assumption is a reasonable approximation 

for small changes in the electrode potential, especially for cathodic 

polarizations with respect to the electrocapillary maximum. Some 

attention has been directed to the proper treatment of the capacitive 

effect of the diffuse double layer in transient problems in the 

presence of concentration and sizeable potential variations, and the 

. 11 41-47 91 
reader is directed to the pertinent literature ' ' (see also 

sections 3.4 and 6.5). More discussion is also in order in a later 

section concerning the validity of the above assumptions in practical 

application. 

The potential in the solution satisfies Laplace's equation 2-10 

and the conditions at infinity and on the insulating surface expressed 

by equations 2-11 and 2-12, respectively. The potent·ial is furthermore 

0 • 



.. 

I -, 
• :-,) '' >' 9 \, .. i \ . ' ,:; u l 

-, / ? 9 .• ··.~· .. 
I 

-99-

well behaved on the axis of the disk. The noonal component of the current 

density at the electrode surface is,given by (see equations 3-18 and 

3-34) 

where 

an - i r 
i =C~ +(ex +ex) R

0
Tn =-n Pt a c s 

a~ 
K

dZ 

at z = 0, 

n = v- ~ s 0 

r E;;; r 
.o 

(7-1) 

(7-2) 

We would like to have our model simulate the transient response 

of a disk.electrode for the charging or decay of the double-layer 

capacity immediately after the current is turned on or off respectively. 

The potential in solution for the charging period can then be represented 

as the difference of a steady state and a transient contribution, 

~ = ~ss _ ~t (7_3) 

such that each part satisfies Laplace's equation by itself. The 

electrode potential V can similarly be expressed as the difference of 

a steady state and a transient part. The steady state part of the 

potential includes the contribution of the total cell current, while 

the transient part contains no net current. Once the current is 

turned off, therefore, the steady state part vanishes, and the decay 

period is represented by only the transient part: ~ = ~t. The 

steady state part of the potential is treated in section 4.1. 
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7.2. An Eigenvalue Problem 

The transient part of the potential can be eXpressed by a series 

expansion of the form 

00 -t/T 
~c e i 
LJ i . 
i=l 

ui (r ,z) (7-4) 

where Ui is a characteristic dimensionless potential defined here to be 

independent of time, and Ti is a time constant for decay corresponding 

to the potential Ui. The analysis can be pursued conveniently in terms 

of two additional dimensionless quantities, namely the dimensionless 

eigenvalue, 

and the dimensionless time, 

e = Kt 
r C 

0 

Equation 4 then transforms to the fopm 

The transient part of the electrode potential can analogously be 

expressed as 

(7-5) 

(7-6) 

(7-7) 

(7-8) 

• • 
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where ui is a constant which will henceforth be taken to be unity, 

thus providing a normalization for the eigenfunctions Ui • 

The functions Ui satisfy Laplace's equation, 

and the conditions 

v~ = o 
i 

aui 
aT)= 0 at n = 0 

Ui well behaved at n = 1 

The solution can therefore be given by 

(7-9) 

(7-10) 

(7-11) 

The zeroeth term is eXcluded from the swmnation since Ui includes no 

contribution to the net current. The boundary condition 1 now reduces 

to 

(7-l2) 

Combining equations 11 and 12 and invoking the orthogonality property 

of the Legendre polynomials yield 

n 

~a LJ o,n 
1 

B f = 2· n, . 
(7-13) 
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n . 

max ~ . o M' (0)] + mn 2m B E am,n ~ 4m + 1 n,i == 

n=l 

a (m = 1 , 2 , • • • , n ) o,m max 
(7-14) 

The above set of equations can be solved simultaneously for Ai and 

B i• The computer program is reproduced in appendix E. 
n, 

Some results 

are given in table 1, and the first three eigenfunctions are plotted 

in figure 1. 

Each term in equation 4, and the corresponding term in equation 8, 

describes a potential distribution and a state of charge in the electric 

double layer which can decay with a single time constant and involves 

no net current flow to the counter electrode at infinity. The state 

of charge is proportional to V-~ or to l-Ui for a particular 
0 ,o 

eigenfunction. If this state of charge is non-uniform, it will have 

associated with it a flow of current through the solut;f.on in a direction 

which tends to make even the charge distribution across the electrode. 

At the same time, the double-layer charge may be decaying through the 

faradaic reaction (if J > 0). 

If each eigenfunction is to represent a single time constant, 

Uhe amount of current flowing through the solution (related to au/a~ 

at ~ a 0) must be proportional, over the surface of the electrode, to 

the rate of change of the double-layer charge. Equation 12 represents 

this state of affairs. Only for certain characteristic decay constants 

Ai is it possible to find constant current and cha~ge distributions 

which decay with asingle time constant, and these eigenvalues are 

not kno~ in advance. The lowest eigenvalue, either A
0 

= 0 or 

A1 • 4.12130, is the most important because its ·effect can most 

.. 

.• 
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Table 7.-1. The first five eigenvalues and the related 
coefficients B i of the eigenfunctions. n, 

Al A2 A3 A4 As 

.. 4.12130 7.34208 10.5171 13.6773 16.8308 

n i = 1 i = 2 i = 3 i = 4 i = 5 

1 4.56973 3.77405 3.44403 3.25860 3.13835 

2 3.58511 -3.70789 -4.65165 -4.79056 -4.75592 

3 0.51738 -7.51662 -0.26793 2.76530 4.12700 

4 0.10883 -2.89555 9.61986 5.38647 1.50528 

5 -0.03142 -0.67828 6.80910 -8.19370 -8.96687 

6 0.02274 -0.02899 2.44679 -10.7732 3.13094 

7 -0.01587 -0.03991 0.44950 -5.76314 12.7102 

8 0.01161 0.02427 0.11317 -1.72889 10.1185 

9 -0.00879 -0.01882 -0.02225 -0.42934 4.33793 

10 0.00684 0.01470 0.02444 -0.02855 1.34839 

·-
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Fig. 7-1. The first three eigenfunctions for the 
transient solution. 
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readily be observed experimentally after the other eigenfunctions have 

decayed to negligible values. 

It is a further consequence of boundary condition 12 (current in 

solution is proportional to surface charge for each eigenfunction) 

that the eigenfunctions ui satisfy the unusual orthogonality relationship 

' 00 

M2n(O) 
~~.1 L B2 if i = j 

r · i n=l 
4n + 1 n,i 

u. (1-u. ) ndn = (7-15) 1. 0 0 J ,o 

0 0 if i -i j 

This has much the same meaning; the potential at the surface for one 

eigenfunction is in a sense orthogonal to the current density for 

another eigenfunction. 

One can study the eigenfunctions in figure 1 to visualize how 

the current flows through the solution. The potential is nonuniform 

for a given eigenfunction because the state of charge is nonuniform. 

The current density in the solution is proportional to l-Ui 
0 

and 
' 

flows from a region of high charge to a region of low charge. The 

higher order eigtnfunctions have more minima and maxima in the curves. 

The current need therefore flow a shorter distance in order to even 

up the charge, and the time constants are correspondingly shorter. 

7.3. Transient Potential Distribution 

In order to be able to calculate the values·of C. and thereby 
l. 

complete the analysis, we need to specify suitable initial conditions 

for the problem. Let us assume that the current is switched on as 

a step at 6 = 0+ and kept constant until 6 = ech' at which instant it 
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is turned off. The time scale for the decay period can be defined as 

I 

e = e~e 
ch 

Therefore, for the charging period, 

v 

and for the decay period, 

~ = ~p at e = 0+ ·~ = 0 
0 0 

at 8 1 = 0+, ~ 0 

(7,-16) 

(7-17) 

(7-18) 

Application of the initial condition (17) for the charging period to 

equation 3 gives 

(7-19) 

Multiplication by (1-U. )nand integration with respect to n yields 
J,O 

r ~~· I 
00 ' 

(1-u. ) ndn 
L M2rt(O) BssB 

~p J,O 4n + 1 n n ,j 
0 n=l 

0 
c. = (7-20) 

J f\. (1-U. ) 

00 I 

ndn L M2n(O) 2 
4n + 1 

B 
n,j J ,o J ,o 

i=l 
0 

Application of the corresponding initial condition·. for the electrode 

potential gives 

c 
0 cpP 

0 

00 

(7-21) 

.. 
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- ·. t. 
For the decay period where cp = cp (the negative of the transient 

part for charging), the same results, sununarized by equations 19 through 

21~ also apply as long as ech is larg~enough so that the steady state 

has been reached right before interrupti9n. If this is not the case, 

the equations for decay become 

I 
00 

-8 (J\. +J)J -8 (J\. +J) cp 
L:ci[l 

ch J. l.' u. (7-22) -= e e 
cpP l. 

0 i=l 

for the potential in the solution, and 

v -= 
cpP 

I 

( 
- 8chJ). -8

1
J L:oo [ - 8ch(Ai+J)J - 8 (Ai+J) 

C · 1-e e + C. 1-e e 
0 . l. ' 

(7-23) 

0 i=l 

for the electrode potential. The coefficients Ci are the same as for 

the charging period, given by equations 20 and 21. 

~or an ideally polarizable electrode (J=O), the same relationships 

hold to express the potential in the solution, both for charging and 

for decay. The electrode potential, however, increases indefinitely 

once th.e current is turned 011 and decays to a nonzero value after the 

interruption of current. This is because of the fact that the net 

double-layer charge has no means for decay in the absence of an electrode 

reaction; it can only redistribute by flow of current through the 

solution in order to attain a final uniform state. Hence, for the 

charging period we have 

v -= i 0 + D 
1T 

i=l 

(7-24) 
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The constant term can be obtained by intergrating condition 1 over 

the elect~ode surface for the total period of charging to obtain the 

net charge added to the double layer: 

(7-25) 
(V-4> ) 

. 0 

dt 

Substitution of equations 3 and 24 into the left side and integration 

lead to the result 

00 

D = 2 ~Bnss a L.J o,n 
1. 08076 (7-26) 

n=O 
Finally, the electrode potential for the decay period is 

v -·= i 8 
TI ch 

(7-27) ( 
-A 8 ) l-e i ch 

cpP 
0 

The analysis at this point can readily be extended to account 

for arbitrary changes in the cell current by a straightforward 

application of the superposition integral. If the time dependent 

cell current is given by I(8), the electrode potential can be expressed 

as 

4r KV = I(6) 
0 

+ C
0
Je-63 Jre 1(6) e 63d6 

0 
00 

+ E ci (Ai + J) 

i=l 

-8(1\ + J) 
e e 

8(A. + J) 
~ 

(7-28) 

d8 

.. 
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in the presence of an electrode reaction, and 

4r KV 
0 

fl. e 
I(8) e i d8 (7-29) 

for an ideally polarizable electrode. One application of these equations 

would be for an alternating current situation, where the frequency 

dispersion of the measured impedance is of interest. This discussion 

is postponed to the next chapter where an analogous equation for the 

potentiostatic case is developed. 

7.4. Results and Discussion 

Figure 2 depicts a typical potential trace for double layer 

charging and decay in the presence of a faradaic reaction, and figure 3 

shows potential decay curves after the interrupt.ion of current for 

various values of the kinetic parameter J. For both representations, 

the current is interrupted after the double layer is charged to steady 

state conditions. For large decay periods, the slope of each curve 

approaches the corresponding J value on a semi-logarithmic scale as 

can_be inferred from equation 23. Curves similar· to figure 2 could 

be constructed for different J values by making use of the information 

contained in figure 3 and by remembering that the ohmic drop is given 

by the primary distribution <If> and the charging and decay portions of 
0 

each curve are symmetric. 

The fact that the instantaneous potential step immediately 

preceding both the charging and decay portions of figure 2 corresponds 

to the primary current distribution
81 

is implicit in the present 

analysis by virtue of the particular initial conditions (equations 17 
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Figure 7-2. Double layer charging and.decay in the presence 
of a faradaic reaction. 
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Figure 7-3. Decay of the electrode potential for various 
values of the kinetics parameter J. A steady 
condition was attained befor~ interruption of 
the current. 



and 18) employed. Nanis and Kessel.man15 have expressed the contrary 

view in this regard. We would like to stress that the same criterion 

would hold for the ohmic drop even if the diffusion layer were taken 
. . 

into consideration. An experimental verification along these lines 

has been provided by Miller and Bellavance. 59 

The transient response of an ideally polarizable electrode to step 

changes in the current is depicted in figure 4. The step portions again 

correspond to the primary distribution. The differences in comparison 

to figure 2 are obvious. The potential-time relationship becomes 

·linear for sufficiently large charging periods as the surface current 

density attains a uniform distribution. After the interruption of 

current, the electrode potential decays to a nonzero value, given by 

Decay curves for various charging periods are sketched in 

fig~re 5 to show the effect of short charging times on the potential 

dec~y. The same effect is also discernable when J is greater than 

zero~ but the dependence on the charging period was not of prime 

'interest in constructing figure 3 and was suppressed by allowing a 

steady state to develop before current interruption. 

An important result of the present analysis is the assessment of 

an accurate time constant for the decay of the double-layer capacity 

in the absence of concentration gradients at the electrode surface. 

From equation 5, we obtain 

r C 
0 

K 
(7-30) 

.. 
- I 
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Figure 7-4. Double layer charging and decay in the absence 
of a faradaic reaction. 
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Figure 7-5. Decay of the electrode potential for various charging 
periods in the absence of a reaction. The slope 
here is related at long times to the first 
eigenvalue A1 . 
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When an electrochemical reaction is possible, the dominant time 

constant at long times is 

T :: 
r C 

0 

KJ 

81 
as identified by Newman. When an electrochemical reaction is not 

possible (the ideally polarizable electrode), this ·time constant 

becomes infinite, and the potential decays to a nonzero constant. 

The dominant time constant then is 

r C 
0 

K 

also suggested in the same context81 but without the determination 

(7-31) 

(7-32) 

of the numerical factor. The present analysis amplifies the roles and 

interrelationship of these two quantities and the processes they describe. 

A direct experimental test of these time constants may be performed 

with the utility of an original reference electrode system designed by 

Miller and Bellavance. 59 This consists of two probes positioned 

coaxially with the disk in,the solution, so that the potential drop 

between two distinct locations in the solution could be measured. If 

linear electrode kinetics and f.inite exchange current densities are 

ensured, and concentration gradients near the surface of the disk are 

avoided, the time constant so measured should correspond to equation 30 

for i = 1. 
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7.5. Validity and Significance of Theoretical Results in Practical 
Application 

The reference electrode was assumed to be positioned at infinity 

relative to the working electrode in obtaining all our results. In 

practical situations, the reference electrode has to be placed at a 

finite distance from the disk, and if this is not accounted for in 

64 the evaluation of experimental data, serious errors may result. The 

necessary correction is rather simple to accomplish; since one can 

assume without significant error that the primary distribution prevails 

in the bulk of the solution, the reading on the reference electrode 

59 can be extrapolated to infinite distance from the disk. 

Apossible application of the present results might be in the 

study of the double-layer structure at solid surfaces. Difficulties 

are enco_untered in the measurement of differential capacities at solid 

61 electrodes due to the frequency dispersion effect, except when it is 

. . 65 66 
feasible to construct and employ spherical electrodes. ' Such 

difficulties may be overcome by attempting to measure relaxation times 

in interrupter experiments; in the absence of mass transfer, these 

relaxation times are related to the differential capacity of the 

disk electrode as shown in previous sections. 

In practice, one first investigates the structure of the double 

layer in the presence of supporting electrolyte alone. If currents 

due to gas evolution and reduction of impurities are avoided, the working 

electrode is an ideally polarizable electrode. In this way, one finds 

out about the relationship between the electrode potential and the 

41 
surface charge density. One may then add a small amount of reactant 

. -
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\ 
and assume that the same charge-potential dependence prevails. 

Investigations along these lines appear to be successful in depicting 

qualitatively the influence of the double-layer structure on faradaic 

. 92 
reactions,as reviewed by Parsons • 

Let us consider an ideally polarizable disk system where r = 0.635 em, 
0 

. 2 -1 -1 
C = 30 ~f/cm , K = 0.036 ohm -em , and the ohmic drop is 11 ohms. The 

current is interrupted after charging the electrode for 1 msec at 

I = 5 mA. The characteristic time constant for decay can be calculated 

from equation 32 as T = 128 ~sec. We can further compute 

q,P = 55 mV 
0 

' ' Av ~ vee = O+) - vee = co) = 0.08076' cpP = 4.44 mV 
0 

If the reference electrode is placed along the axis of the disk, .we 

' ' b.cl> (r = 0) - cp (r = 0, e = 0+) - cp (r = 0 e = oo) 
0 0 0 ' 

' q,SS (r = 0) q,P = cp (r = 0, a = 0+) = -
0 0 0 

= 15 mV 

b.(V - ci> ) = b.V - b.cl> (r = 0) = - 10.6 mV 
0 0 

' ' v - cp (6 
0 

co) = V(9 132 mV 

have 

It is interesting to note that b.cl>
0

(r = 0) is larger than b.V and can be 

59 detected with relative ease with a double-probe reference electrode. 
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The negative value of f1(V - <I> ) indicates that this quantity (which we 
0 

would have called the electrode overpotential if a faradaic reaction 

were present) actually increases at the center of the disk as the 

charge redistributes itself in the double layer to effect a final 

uniform and nonzero charge distribution. The change in V - <I> during 
0 

the transient process is also moderately small compared to its absolute 

value, so that the double-layer capacity C can be assumed to be inde-

pendent of the potential in this range without much error. 

In reality, it is impossible to have a perfect ideally polarizable 

electrode. One can approximate it by maintaining its potential by an 

. 41 
external source. If the current is interrupted, the potential of a 

real electrode will decay more or less slowly to its open-circuit 

41 potential due to the reduction of impurities present in the solution. 

Thus if an electrode reaction is possible either owing to the presence 

of impurities or a reactant in the solution, the characteristic times 

for decay are 

T 
e 

r C 
0 

KJ 

for the electrode potential, and 

1 
T = -:---

s 4.12+J 

r C 
0 

K 

for the potential in the solution. Even if Tafel kinetics might 

{7-33) 

(7-34) 

govern the electrode reaction soon after interruption, linear kinetics 

~ill take over at large times as the overpotential decays, and the 

above time constants will become prevalent. Thus, if J is small, let 

us say 0.005, then the electrode potential will decay with a time 

.. 
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constant T = 106 msec whereas the potential in the solution will 
e 

decay much more rapidly, with the time constant T = 0.13 msec. 
s 

If, however, J is of order unity or larger, this effect is rather 

appreciable and has to be accounted for. One possib.ility is to measure 

T and T simultaneously by a disk electrode-double probe reference 
s e 

electrode set-up appropriately hooked up to a dual-beam oscilloscope. 

By subtracting the reciprocals of the two time constants, we obtain 

1 
T 

s 

1 4.12K 
-=~~-
T r C 

e o 

which is independent of the exchange current density. 

If the electrode reaction is mass-transfer controlled, the 

(7-35) 

characteristic times depend on additional parameters such as the diffusion 

coefficient of active species and the diffusion-layer thickness. For 

the situation where one is concerned about the reduction of impurities 

at the disk after the interruption of current, a reasonable estimate 

of the faradaic current can be obtained from 

nFDi 

s. 
1 

(7-36) 

where 6 is the Nernst diffusion layer thickness. Assuming a highly 

reversible reaction controlled by diffusion and the capacitive effect 

of the double lay~r, the capacitive current is 

an 
i =C__£ 

c at (7-37) 
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where nc is the concentration overpotential given by equation 3-12. 

Since the net current is zero, 

(7-38) 

When we combine these four equations and integrate, we obtain a 

characteristic time constant for this case (compare to equation 6-35): 

t
0 

thus depends inversely on the concentration of impurities, which 

has to be kept as small as possible. Consider the reduction of a 

bivalent ion (n/si = 

c~ = 10-9 mole/cm3 • 

-5 2 -3 
2) with D = 10 em /sec, o = 10 em, and 

Then, TD = 0.2 msec. 

(7-39) 

In case the capacitive effect can be ignored, and a purely mass-

transfer-controlled electrode process in considered, the appropriate 

2 
time constant is proportional to o /D, or more exactly, 

where ~ is the angular frequency of rotation of the disk and AD is a 

constant characteristic of the diffusion process. Determination of 

this constant requires a detailed analysis of the transient mass 

transfer problem at a disk electrode as discussed in chapter 6 and 

(7-40) 

appendix B. With the simplifying assumption of a radially independent 

concentration distribution, we obtained AD 2.581 for a step change 

of fltix (see chapter 6). Using this value for AD, Sc = 1000, and 

i • 
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n = 250 radians/sec, we obtain TD = 51 msec. Nanis and Klein report 

experimental relaxation times (defined as the time required for the · 

overpotential to decay to 99 percent of its initial value) of 50 to 

0.5 seconds for rotational Reynolds numbers between 130 and 8500, 

respectively, in 0.005 M ferrocyanide-ferricyanide redox system in 

2M KOH solution. 
' 

The above discussion suggests that the effects of the double 

layer and mass transfer can be controlled according to the needs of 

the experimenter by proper design of the electrochemical system and 

the experimental method. It is possible to reduce mass transfer 

effects by choosing a system where the relaxation times due to mass 

transfer are of a much larger scale than the relaxation times associated 

with the diffuse double layer. The magnitude of the effect is also 

important as well as its duration. Note that while the time constant 

in equation 40 becomes smaller as n increases, the amplitude of the 

corresponding concentration disturbance would decrease. In other words, 

the other extreme where the concentration effects would become 

negligible is the well-stirred solution case, one of our assumptions 

in treating the theoretical problem. 

7.6. Experimental Measurement 

We have performed some experiments in an attempt to test our 

theoretical results. These experiments were rather crude, preliminary 

runs executed with limited equipment in a limited amount of time, and 

thus the results are not in any way conclusive. Some of our 

\ experience, which is still at a somewhat primitive stage, is summarized 

below. 



-122-

The electrolytic cell (see figure 6) consisted of a large, 7-gallon 

capacity pyrex tank equipped with a mechanical stirrer, a tube with a 

fritted glass end for bubbling nitrogen into the solution, and a 

counter electrode of platinum foil (0.00025 in. thick, ~1000 cm
2 

in 

area) pasted on the container wall. The cell was filled with 0.01 molar 

KCl solution. The solutions were prepared by weighing dried KCl crystals 

(Baker Reagent) into a known volume of distilled water (conductivity -

-7 -6 -1 -1 
10 to 10 ohm -em ). No temperature control was used; owing to 

the large volume of the electrolyte, temperatures remained remarkably 

stable (within 0.02°C during experimental runs. The conductivity of 

102 the solution was assessed by interpolation from published data at 

the measured concentration and temperature. 

A few types of reference electrodes were tried such as platinum 

or copper wires extended to position in the solution in sealed glass 

jackets and calomel electrodes (commercial types purchased from 

Corning Glass Works) connected to Luggin capillaries. Platinum and 

copper wires provide to the oscilloscope strong signals, which can be 

detected easily by standard preamplifier units employed with 

oscilloscopes. The calomel electrode should be a better choice for 

this experiment since it is reversible to the chloride ion. On the 

other hand, the resistance of the calomel electrode along with the 

resistance of the Luggin capillary is probably comparable to the 

input resistance of the oscilloscope preamplifier; hence, a more 

sophisticated amplification may be necessary to register a strong 

enough signal and minimize the noise. However, not much attention 

was paid to the proper measurement nor the magnitude_of the potential, 

.. 
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Figure 7~6. Electrolytic cell. 



-124-

other than making sure that the hydrogen overpotential was not exceeded, 

because the main purpose of the present effort was to measure the 

time constants of the transient potentials in the solution and at the 

disk rather than the potentials thermselves. 

The disk electrodes used were made of copper (CDA Copper No. 110) 

and mercury (Ballard's, triple distilled) with lucite insulating planes. 

The copper electrode (r = 2.54 em) was polished with successively finer 
0 

grades of sandpaper and finished with 1 micron diamond paste. The 

mercury electrode (r = 2.17 em) was prepared by machining a circular 
0 

compartment in lucite with slanted walls (see figure 7) in order to 

offset the contact angle and attain a reasonably flat mercury surface. 

Mercury was chosen as an electrode metal because accurate and reliable 

41 103 data are available for its double-layer capacity. ' 

Figure 8 shows the electronic circuitry. The current source was 

obtained from Electronic Instruments, Inc. (Model C612). Transient 

potential signals were observed on a Tektronix, Type-555 Dual Beam 

Oscilloscope with Type-D Plug-in Units. A high-gain operational 

amplifier (Type-0 Plug-in Unit) was used occasionally to improve weak 

signals from the calomel electrodes. The test pulser {USAEC No. 91315) 

and the interrupter (IMRD No. 02191) were built in the Lawrence 

Berkeley Laboratory. The pulser generated regular and delayed signals 

to trigger the interrupter and the oscilloscope, respectively. The 

pulser-interrupter system could be operated continuously to generate 

pulses at a certain frequency or manually to provide a single pulse 

whenever necessary. The performance of the interrupter circuit is 

demonstrated by figures 9 and 10. Duration of the pulse is about 2 msec, 

. . 

. ;. 
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Figure 7-9. Interrupter signal with a 100 ~ resistor in place 
of the electrolytic cell (I=lO rnA; 0.5 V/division, 
vertical; 1 msec/division, horizontal). 

XBB 739-5609 

Figure 7-10. Interrupter signal with a 100 ~ resistor in place 
of the electrolytic cell: expanded time scale 
(I=lO rnA; 10 V/division, vertical; 20 ~sec/division, 
horizontal). 
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the shortest that could be obtained with the given equipment. The 

step increase in the signal in figure 9 corresponds to the instant 

when the current is switched on. If this portion of the trace is 

expanded horizontally (time axis), a sharp spike becomes visible 

(figure 10). This is due to a discharge of electrons as the circuit 

is being closed. The spike reaches a height of about 40 volts when 

a current of 10 mA is passed across a 100 n resistor. The step 

decrease in the signal when the current is interrupted appears to be 

clean of sparks. 

The oscilloscope traces were normally photographed on Polaroid 

transparencies using a Tektronix Type C-12 camera. These were then 

analyzed with the aid of a Jarrell-Ash Recording Microphotometer. This 

instrument measures the intensity of a very narrow light beam transmitted 

through a transparent photograph. It is also equipped with a traveling 

stage, which moves in the longitudinal and transverse directions, and 

vernier scales in each direction for measuring the position of the 

stage. The transparencies were placed on the stage and traced to 

measure the coordinates of the potential decay curves. Readings were 

taken at intensity maxima along the curves at regular intervals of the 

time coordinate. These points were plotted on a semi-logarithmic 

graph paper as suggested by figure 3 or 5 and time constants calculated 

from slopes of the linear portions of the curves. 

Figures 11 to 14 show typical oscilloscope traces observed during 

a regular experiment; these were obtained with a mercury-disk electrode. 

Figure 11 and 12 depict the potential of the disk as measured with 

respect to the upper and lower reference probes, respectively. The 

i ... 
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Figure 7-11. The transient response of the mercury disk with 
respect to the upper probe for charging and 
decay (1=10 rnA; 1 msec/division, horizontal). 

XBB 739-5611 

Figure 7-12. The transient response of the mercury disk with 
respect to the lower probe for charging and 
decay (1=10 rnA; 1 msec/division, horizontal). 
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Figure 7-13. The double-probe response to charging and decay 
of the double-layer capacity (I=lO rnA; 1 msec/ 
division, horizontal). 

XBB 739-5610 

Figure 7-14. The double-probe response to decay of the double
layer capacity: expanded scale (I=lO rnA; 0.1 msec/ 
division, horizontal). 
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signal of the lower probe has been multiplied by -1. The sum of these 

two signals is shown in figure 13 and represents the double-probe 

potential. Figure 14 shows the decay part of the same signal on a 

expanded scale and is more suitable for final analysis to calculate 

the desired time constants. The overshoot of voltage when the current 

is turned on is due to the sparking effect discussed above. 

The t:i:JBe constants obtained from both the single-probe and double-

probe traces generally turned out to be much smaller than those calculated 

from equations 33 and 34 assuming a small J value relative to A1 • For 

example, with the mercury-disk electrode, double-probe traces gave a 

time constant of about 250 ~sec whereas the value calculated from 

equation 34 for C = 20 ~f/cm2 and small J is about 7.5 msec. The time 

constant from the single-probe measurement was very close to the 

double-probe result; but, it was generally larger than the double-

probe measurement, the difference ranging from as low as a few micro-

seconds up to about 50 microseconds. These time constants yielded 

2 double-layer capacities between 5 to SO~f/cm , which are within the 

. 103 
correct order of magnitude for a mercury surface. The time constants 

measured with the copper disk were even worse in reproducibility; the 

-1 values fluctuated in the range 10 tlo 10 msec. Nonetheless, the 

2 2 calculated capacities varied between 10 to 10 ~f/cm , again within 

the correct order of magnitude. 66 

It appears from these results that impurities are present in 

the solution, and these react with the disk electrode either with a 

high exchange-current density or by a mass-transfer-controlled process. 

For the former case, the time constants for decay of the potential in 
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the solution and the disk electrode are given by equations 33 and 34. 

These equations yield time constants, which become smaller and at the 

same time closer in value to one aaother, with larger values of the 

parameter J. If the rate of discharge of impurities at the electrode 

surface is limited by mass transfer, equation 39 gives a better 

extimate of the time constant. The value calculated in the numerical 

example following that equation is in fact fairly close to the present 

experimental results for mercury. 

The mercury-disk electrode is superior to the copper disk in 

obtaining more reproducible results because the mercury surface can 

be regenerated by cathodic polarization, whereas the copper surface 

is altered irreversibly during an experimental run. The situation can 

be improved for the mercury electrode by operating at cathodic potentials 

at all times. This can be accomplished by interrupting the current 

from a higher cathodic level to a lower one instead of altogether 

breaking the circuit. If the current is interrupted by breaking a closed 

circuit, as was the case in the present experiment, the electrode 

potential decays to its open-circuit potential with respect to the 

reference electrode being used. This potential is usually low enough 

to cause considerable adsorption of impruities ort the mercury surface, 

thereby altering its differential capacity significantly. 

It also seems quite possible that vigorous bubbling of nitrogen 

through the solution was not adequate in deaerating the large volume 

of electrolyte used. Presence of oxygen in the solution could have 

complicated the electrokinetic behavior of the disk electrode appreciably. 

Further purification of the water from ionic and organic impurities by 
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repeated distillation may also be necessary. Ionic impurities can be 

removed by reducing them on an auxiliary electrode which can later be 

removed from the solution. Other electrochemical purification 

hni i d b P 92 tee ques are rev ewe y arsons • . . 
The bulky design of the present electrolytic cell was decided 

upon in order to amplify the effect of double-layer charging, so that 

this effect could be observed with relative ease. Smaller designs 

may however prove to be more feasible for improving the purification 

and deAeration of the electrolytic solution. 
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VIII. THE TRANSIENT RESPONSE OF A DISK ELECTRODE 
UNDER POTENTIOSTATIC CONTROL 

In the previous chapter, we developed a model for treating the 

transient response of a disk electrode in the absence of concentration 

gradients near the surface. We will report here a mathematical 

analysis developed for the same model but with the electrode potential 

. 93 put under control instead of the current. The results could be 

relevant to .some electroanalytical applications of the disk electrode; 

for instance, interrupter methods under potentiostatic control are 

alrea~ in common use. 89 , 90 

The problem was formulated with certain assumptions in chapter 7 

and will not be repeated here. The only difference in the present 

formulation lies in the fact that the electrode potential is set at 

zero time as a step to a given value V and maintained at that value 

thereafter. Our purpose here is therefore to simulate the transient 

decay of the cell current from an initial value I corresponding to 
0 

the primary distribution to a final steady-state value I~. 

8.1. Analysis 

The potential in the solution can be expressed in terms of a steady 

state and a transient contribution as given by equation 7-3. A detailed 

analysis of the steady-state problem is given in section 4.1. The 

treatment given in that section for the ideally polarizable electrode, 

ss however, does not apply for the present situation; ~ vanishes in the 

absence of an electrode reaction since no net current is associated 

with the working electrode at steady state when the potential is fixed. 
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In terms of the rotational elliptic coordinates n and ~' the 

transient part of the potential can be expressed as 

~t 
-::o 

v (8-1) 

where Ti is a dimensionless potential independent of time, Ai is an 

eigenvalue characteristic of the potential Ti, and e and J are the 

dimensionless time and exchange current density, respectively. Since 

t 
<P satisfies Laplace's equation, the funct:fons Ti also satisfy 

(8-2) 

The boundary conditions associated with Ti are 

ari -an = 0 at n = 0 (on the insulating portion of the disk) 

Ti • 0 as ~ + ~ (far from the disk) (8-3) 

Ti well behaved at n = 1 (on the axis of the disk) 

and 

ari 
-at+ AinTi = 0 at ~ = 0 (on the disk electrode) , (8-4) 

which is obtained by a direct substitution of equation 1 into the 

boundary condition on the disk electrode. 

Equations 2 to 4 constitute an eigenvalue problem, which can be 

solved in a straightforward fashion (see section 7.2). The solution 

to equation 2 satisfying the conditions 3 is 

00 

Ti = I: Bi,np2n(n) M2n(~) 
n=O 

(8-5) 
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Substitution into equation 4 for each i and.inversion of the resulting 

set of linear equations with the normalization condition B = 1 yield i,o 

the numerical values of the eigenvalues Ai and the coefficients B i,n 

(see table 1 and appendix E). The first four eigenfunctions·are plotted 

with respect to the radial position on the surface of the disk in 

figure 1. 

The functional behavior of Ti has much the same significance ,o 

as the corresponding eigenfunctions Ui of the galvanostatic problem 
,o 

in depicting the nonuniform state of charge and the pattern of local 

current flow on the surface of the disk during the transient process. 

One may note, in fact, that T in figure 1 are quite similar to the i,o 

corresponding curves for Ui given in figure 7-1 for i > 0. The ,o 

eigenvalues Ai also become more similar in numerical value to Ai of 

the galvanostatic series with increasing i. 

An important departure from the galvanostatic case is clearly that 

~t does include a net current in the present situation. This additional 

contribution is contained, for example, in the first eigenfunction T , 
0 

which unlike U is nonzero. The fact that T exhibits no extremum 
0 o,o 

points nor any zeroes suggests that it persists the longest during 

the decay process and is therefore associated with the largest time 

constant. 

The eigenfunctions T i,o satisfy the orthogonality relationship 

0 
if i ., j I 1 

nT1 T. dn = I (8-6) 
,o J ,o - .!___ t M2n (0) B2 if i = j 0 Ai 4n + 1 n,i 

n=O 

. -
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Table 8.,..1. The first six eigenvalues and the related coefficients B of 
~h~ eigenfunctions. 

n, i 

Ao AI A2 A3 A4 As 

1.15777 4.31680 7.46018 10.6023 13.7441 16.8858 
.. 

n i=O i=l i=2 i=3 i=4 i=S 

0 I.ooooo 1.00000 1.00000 1.00000 1.00000 1.00000 

1 0.39451 -3.30704 -3.20144 -3.08673 -3.00260 -2.94030 

2 -0.01974 -3.09447 2.69232 3.87544 4.20749 4.29990 

3 0.01259 -0.52802 6.45944 0.65745 -2.15584 -3.53764 

4 -0.00657 -0.10223 2.64610 -8.32547 -5.09803 -1.69133 

5 0.00393 0.02410 0.63787 -6.16121 . 7.06426 8.21141 

6 -0.00256 -0.01843 0.03554 -2.27051 9.75697 -2.49615 

7 0.00178 0.01289 0.03502 -0.43176 5.33233 -11.5222 

8 -0.00129 -0.00946 -0.02056 -0.10618 1.62964 -9.36731 

9 0.00097 o. 00718 0.01605 0.01863 0.40730 -4.07287 

10 -0.00075 -0.00559 -0.01255 -0.02158 0. 02998 -1.27763 
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Figure 8-1. Behavior of the first four eigenfunctions on 
the surface of the disk electrode (pote~tiostatic 
case). 
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From the initial condition 

~ = v at e = 0+ ' ~ = 0 (8-7) 

the coefficients Ci can now be calculated from the equation 

2.:\i 
c = ----------~--~-------

i Loo MZn(O) B2 
TI(Ai+J) 4 1 n + n,i 

(8-8) 

n=O 

The current is given by 

00 -6(1. +J)] L Cie i 

i=O 
(8-9) 

The ratio ~/10 is a knoWQ. quantity once the value of J is specified 

and can be obtained directly from the steady-state analysis. Some 

calculated values are given in table 4-2 (reciprocal of 4r
0

KReff). 

Figure 2 shows current versus time traces for various J values. 

Each curve is characterized by a time constant for decay given by 

1 
't = 1.16+J 

r C 
0 

K 
(8-10) 

The analysis can be generalized by superposition to incorporate 

an arbitrary time dependence of the applied potential V(6). The current 

is then given by 

I - ... 4r K 
0 

00 

v(e) + L ci <~\+J) 
i=O 

(8-11) 
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Figure 8-2. Current traces at various J values for decay 
(or charging) of the doubie-layer capacity. 
The slope of each curve at large times is 
related to A. 1+J. 
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8.2. Frequency Dispersion in Capacity Measurements 

The alternating-current impedance of an electrode is often 

interpreted in .terms of an equivalent circuit consisting of a 

capacitor and a resistor in series (figure 3). With this kind of a 

representation, the measured values of the effective resistance and 

capacity for a smooth electrode may become frequency dependent in 

61 situations where faradaic reactions are important or for certain 

electrode geometries, such as the dis~which exhibit different current 

61 94 distributions with different frequencies. ' As discussed by 

94 Bauer!!_!!., electrode geometries such as concentric spheres, 

concentric cylinders, and infinite parallel planes should be free of 

the frequency-dispersion effect· since they have a uniform current 

distribution independent of the frequency. We can also add to this 

8 cathegory the spherical electrode and its hemispherical-cap variety 

discussed in chapter 5. As reviewed by Bauer et al. , Grahame observed 

the frequency dispersion effect in his experiments with a growing 

mercury drop at the tip of a capillary. However, the cause must have 

61 been the shielding effect of the blunt capillary tip which distorts 

the spherical equipotential surfaces, so that the current distribution 

becomes nonuniform. 

61 Newman has given a rigorous analysis of the frequency-dispersion 

effect in capacity measurements at a disk electrode. According to 

this treatment, the electrode potential and the potential in the 

solution can be expressed as 

V = V ejWt 
0 

(8-12) 
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Figure 8-3. Equivalent circuit for impedance measurements at 
an electrode (from reference 61). 
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~ = V ejWt U(r,z) 
0 

respectively, where V is the amplitude and w the frequency of the 
0 

applied potential, and U is a complex potential determined by the 

solution of Laplace's equation: 

00 

U • JE: BnP2n(n) M2n(~) 
n•O 

(8-13) 

(8-14) 

The complex coefficients B are determined from condition 7-1, which 
n 

gives 

I 

M2m(O) J Bn = 
4m + 1 a o,m 

(M = 0,1,2, ••• ) 

where n • WCr /K is the dimensionless frequency. B are obtained 
o n 

(8-15) 

numerically from equation 15 by carrying a finite number of terms in 

the series. 

The impedance is given by61 

Z = V/I = l/4r KB 
0 0 

In terms of the resistance and capacity of the equivalent circuit, 

this is 

Therefore, we obtain 

= B /(B
2 + B2 ) or or io 

(8-16) 

(8-17) 

(8-18) 
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and 

C/Ceff "" (7T/4) nB i/(B2 + B2 ) o or oi (8-19) 

where B
0
r and B

0
i are the real and imaginary parts of B

0
, respectively. 

The tilde over Reff serves to distinguish between the effective direct 

current resistance defined in section 4.1 and the present alternating-

current resistance. 

An indirect method of calculating Ref£ and Ceff is to use equation 7-28 

by setting 1(6) = I ejwt or equation 8-11 by substituting V(8)=V ejwt. 
. 0 0 

The results obtained by this method should be identical with Newman's 

results and provide a good way of checking the validity of the theory and 

results presented in chapter 7 and the previous section of this chapter. 

Hence, B and B i can also be expressed in terms of the coefficients or o 

c1 and Ai as follows: 

B or 

00 

= 1 + 4r ~R L 
o eff i=l 

Ci(Ai + J)2 

ct. + J)2 + n2 
i 

(A + J)2 + n2 
. i 

(8-20) 

(8-21) 

In terms of the results of chapter 7, one can also derive the expressions 

(8-22) 

and 

(8-23) 

. . 
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The results are compared in table 2 for various values of Q and J. 

The first 20 terms were used in both the galvanostatic and potentiostatic 

series. The results obtained from the former compare quite well with 

the more accurate calculations of Newman at low frequencies, whereas 

the agreement is very poor at high frequencies. Better agreement is 

obtained at high frequencies by the potentiostatic series; however, the 

accuracy is not as good as would be expected at low frequencies. This 

is probably due to the fact that the error introduced by truncating the 

series in equations 20 and 21 is amplified when these ~quations are 

substituted into equations 18 and 19 to calculate the effective resistance 

and capacity. The truncation error is introduced only once when the 

galvanostatic series are used for the same calculation via equations 22 

and 23. This reasoning leads us to speculate that the potentiostatic 

series are probably more accurate than the galvanostatic series over a 

moderate time range. The present results indicate, however, that 

numerical difficulties are inevitable for very short times (or high 

frequencies)because a large number of terms are required in both the 

galvanostatic and potentiostatic series to attain a reasonably accuracy. 

A separate treatment of the potential at short times overcomes these 

difficulties as discussed in the next chapter. 
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Table 8-2. The effect of frequency and exchange-current density on 
the effective resistance and capacity of the equivalent 
circuit as calculated from the galvanostatic and 
potentiostatic series and compared to Newman's results. 

,,. .· 
! 

Galvanostatic Potentiostatic Newman's 
Series Series Results61 .. 

4roKReff C/Ceff 4roKReff C/Ceff 4r 
0
KReff C/Ceff 

J~~~:O.l 0.1 7.441 0.50009 7.358 0.464 7.44572 0.50009 

1.0 1.198 0.9987 1.204 0.987 1.20335 0.99906 

10.0 1.052 1.53 1.029 1.218 1.03478 1.23430 

100.0 1.'021 15.7 1.001 1.563 1.00462 1. 73404 

Ja:l 0.1 2.326 0.00997 2.304 0.0097 2.33106 0.00997 

1.0 1. 702 0.508 0.693 0.498 1. 70571 0.50658 

10.0 1.062 1.44 1.041 1.192 1.04657 1.20762 

100.0 1.022 15.0 1.002 1.561 1.00480 1.73084 
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IX. THE SHORT-TIME RESPONSE OF A DISK ELECTRODE 

Series expressions were obtained in chapters .7 and 8 for the 

potential and the current under galvanostatic and potentiostatic 

control, respectively. Those results are readily applicable to 

describe the long-time response of the disk and determine the relaxation 

time of the overpotential after a step change in the applied current 

or the current decay after a step change in the pqtential. However, a 

large number of terms need to be included in the series to express 

the short-time behavior accurately. This can be accomplished more 

efficiently by deriving an asymptotic solution to the problem valid 

at small times. A similar problem is encountered in connection with 

the steady-state distribution for large values of the exchange-current 

density. This situation resembles closely the present problem from 

a mathematical standpoint and has been treated in section 4.2. 

9.1. Mathematical Model 

Shortly after the cell current is turned on,the current distribution 

on the •urface is given by the primary distribution everywhere except 

at a small region near the edge of the disk. Since the primary current 

density is infinite at the edge, the double-layer capacity is charged 

more rapidly in this region than at other parts of the disk, so that 

the current density is reduced to a finite value. On the insulating 

plane of the disk, the current density vanishes, as expressed in 

equation 2-12. Furthermore, at the surface, the passage of current 

is primarily due to the charging of the electric double layer; hence, 

equation 3-35 applies. Charge transfer may also occur by means of a 
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faradaic reaction. This effect is small at short times as long as 

the exchange current density is ~ot too large (see section 4.2), and 

it is neglected here. Diffusion is also neglected. 

Let us now introduce the stretched variables appropriate to the 

edge region: 

(9-1) 

n = n/18 , (9-2) 

where n and s are the rotational elliptic coordinates, and 8 is the 

dimensionless time defined by equation 7-6. ~ is the uniform potential 
0 

in the solution just outside the double layer corresponding to the 

primary distribution (see sections 2.2 and 4.1). If the electrode 

potential is kept at a constant value V, then 

the electrode is under galvanostatic control, 

~ = V. If, however, 
0 

~ • I/4r K. With this 
0 0 

difference in mind, the present analysis applies to both galvanostatic 

and potentiostatic cases unless stated otherwise. Equation 1 represents 

a separation of variables, such that ~ is a function of n and ~ only. 

Substitution of the stretched variables into Laplace's equation 

and the boundary conditions and subsequent simplification as 8 is 

made to approach 0 yields a set of equations, which are identical to 

equations 4-15 through 4-18, except for the condition at the surface 

which reads for the present case 

a~ -= 1 -z - nljl-
2 

-2 n 
2 

at ~ = 0 (9-3) 

... 
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These results indicate that the inner region is of order r e in the 
0 

original, cylindrical coordinate system. Moreover, the dimensionless 

potential is of order 18, and the dimensionless current density, given 

ay 

ir /K~ "' - (V - ~ )/2~9 
0 0 0 0 

(9-4) 

is of order 1/le. 

9.2. Numerical Method and Results 

One possible way of solving the system of equations 4-15, 4-17, 

33 63 4-18, and 9-3 is by finite difference methods ' as in the case of 

the steady-state problem for large exchange-current densities. This 

scheme did not prove to be straightforward in converging to a stable 

solution due to the complex nature of the present surface condition, 

equation 3. The problem for the potential at the surface can also be 

expressed (see appendix H) in terms of the integral equation, 

co 

~ <n> = !J o· 'IT 
(9-5) 

0 

In order to bring the problem into a finite domain, this integral 

equation can be written in the form 

n1 C; ~o -2 

-1) dii. ~0 
1 Jns lnln! 

Tl* a~o =-
'IT 2 an 

0 * 

l/n4 ' (9-6) 
a~ 1 f s ln 

.. 1 1 1 0 
dx* + 2TI ---- 3/4 ax* ~ rx X* 

0 
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where 

and n is a convenient breaking point. Equation 6 can now be 
s 

integrated for the entire range of n, whereas equation 5 has to be 

(9-7) 

truncated at some point with the possibility of neglecting an important 

contribution to the integral. Numerical solution of this integral 

equation (see appendix ·H) turned out to be more efficient than the 

finite difference technique in obtaining results for the present 

problem. 

The results are shown in figure 1. The shape of the curves is 

also characteristic of the current distribution near the edge since 

the dimensionless potential $ is proportional to the current density 
0 . 

as indicated by equation 4. The current distribution approaches the 

primary distribution toward the center of the disk. However, it 

remains finite and much more uniform than the primary distribution in 

the edge region; the finite capacity of the electric double layer 

does not allow it to become infinite. 

The electrode potential for the galvanostatic case or the applied 

current for the potentiostatic case is given by 

(galvanostatic) 

(potentiostatic) 

V/~- 1 
0 

l-I/4r K~ 
0 0 

(9-8) 

.... 
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-- Primary distribution 

Short -time solution 

XBL738-3743 

Figure 9-1. The surface potential distribution at short times 
near the edge of a disk electrode. 



-152-

Substitution of the stretched variables and integration yields (see 

appendix G) 

il (v-~ · . ~o) dn = 
0 0 

1 
-- 8ln8 + A8 1T . (9-9) 

where A is given by equation 4-20. The numerical solution obtained 

from equation 6 was integrated according to equation 4-20 for the 

~ole range of n, and the value of A was found to be 0.841. Equation 8 

i is plotted in figure 2 using this value and compared to the results of 

chapters 7 and 8. The long-time series approach the present short-

time series as an asymptote for small values of 8. The potentiostatic 

series appears to be more accurate than the galvanostatic series for 

the same number of terms. The same conclusion was reached in section 8.2 

after comparing the results obtained from those series with the more 

. . 61 
accurate calculations of Newman concerning the frequency dispersion of 

the alternating-current impedance of a disk electrode. 

The present work demonstrates once more the efficiency and 

convenience of the singular-perturbation method in obtaining asymptotic 

solutions to problems which would otherwise be laborious to solve 

numerically. In electroanalytical applications, one usually focuses 

attention to the conditions at the electrode surface, and the conditions 

in the bulk can be accounted for adequately by using the expression 

for the primary distribution. Therefore, expressing the surface 

potential in terms of an integral equation providesadditional economy 

in the numerical work since the bulk of the solution does not enter 

the calculations explicitly. 

. . 
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Comparison of the short-time solution and the 
long-time series1,2 for the transient response 
of a disk electrode. 
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The results reported above are universally applicable since no 

parameters appear in the problem, and numerical calculations need not 

be repeated. Furthermore, the results are, in a sem e, independent 

of the disk geometry because the formulation is confined to a small 

region near the edge. Hence, they can also be made to apply under 

similar conditions to any electrode geometry embedded in an insulating 

plane. 

.. 

.. ; 

·. 
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X. CONCLUSIONS AND RECOMMENDATIONS 

Generalized schemes for treating current-distribution and mass-

transfer problems in electrochemical systems have been reviewed. 

Mathematical relationships are set forth for expressing convective 

transport in the electrolyte and faradaic and nonfaradaic processes 

at the electrode surface. A method for obtaining solutions to these 

equations, simultaneously with the solution of Laplace's equation 

for the potential in the electrolyte, is discussed to determine the 

steady-state_.and transient behavior of electrochemical system&. Specific 

applications are presented for the rotating-disk and -spherical electrodes. 

The steady-state current and concentration distributions below 

the limiting current have been calculated for a rotating spherical 

electrode. Mass transfer is assumed to be restricted to a thin 

diffusion layer near the electrode surface so that the current dis-

tribution can be obtained by solution of Laplace's equation in the 

bulk and the convective diffusion equation in the diffusion layer. The 

two solutions are matched according to the conditions at the electrode 

surface including complex electrode kinetics. Analogous solutions for 

the disk electrode are reviewed and compared with the results for the 

sphere. 

Numerical results for the sphere indicate that the current dis-

.· tribution becomes more nonuniform with increasing aass-transfer 

limitations, and that the exchange-current density is not an important 

parameter in contrast to the results for the disk. Furthermore, the 

current distribution is shown to reach a uniform distribution below a 

certain current level, suggesting the possibility of operating at 
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uniform flux below the limiting current even if the concentration 

distribution may be nonuniform. The disk electrode exhibits a uniform 

flux and concentration at the limiting current, and this property 

makes the disk a convenient tool for mass-transfer studies. The 

spherical electrode, on the other hand, may be more suitable for 

kinetic studies since it can have uniform current and potential dis

tributions near the ·surface below the limiting current at high rotation 

speeds. 

The spherical electrode also exhibits a uniform secondary-current 

distribution. Since its primary distribution is uniform as well, the 

transient response of a sphere to changes in the applied current or 

potential in the absence of mass transfer constitutes an elementary 

problem. The transient behavior of a rotating sphere in the presence 

of convective diffusion, hawever, appears to be difficult to treat 

analytically due to the complex dependence of its shear stress dis

tribution on position at the surface. The problem may be worth 

investigation, but there seems to be no immediate interest in it at 

pEesent. 

The treatment of transient diffusion to a rotating disk has drawn 

significant attention in the past. Analytic solutions are obtained 

at large times for the transient convective diffusion equation for the 

disk in the absence of radial concentration gradient~ considering a 

step change in the concentration and a step change in the flux at the 

surface. These solutions are .shown to match available results for 

short times with the suggestion that the series for short times and 

long times can be employed interchangeably for nonsteady-state 

, ... 

.. 

•. 

·. 
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calculations. The results are extended to investigate the effect of 

double-layer charging on transient mass transfer in the presence of a 

highly reversible electrode reaction. The effect is shown to be small 

under the present assumptions. A method is proposed to calculate the .. 
transient behavior of a disk in the presence of radial convection as 

well as faradaic and nonfaradaic effects at the electrode surface. 

The formulation can be extended, if needed, to apply at moderate times 

by adding more terms to the regular perturbation expansions. The 

numerical method, even though straightforward, seems to require lengthy 

computations. 

The transient behaYior of a disk electrode due to double-layer 

charging and a faradaic reaction has been worked out theoretically 

in the absence of mass-transfer effects. Both galvanostatic and 

potentiostatic cases have been considered. For either case, the 

analysis leads to a boundary-value problem, which yields analytic 

solutions in terms of a new set of eigenfunctions. These equations 

are extended to account for arbitrary variations in the applied 

current or potential by employing the superposition integral. The 

results demonstrate the effect of a faradaic reaction and a nonuniform 

current distribution on the double-layer charging and decay at a disk .. 
electrode. The overall treatment of the problem allows the determination 

.· of accurate time constants characteristic of decay due to a faradaic 

reaction and due to redistribution of charge in the double layer in 

the presence of a nonuniform current distribution. 
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' . 
The theoretical results seem to promise practical uses in the 

measurement of double-layer capacities at solid surfaces and estimation 

of exchange-current densities. Design criteria are discussed for 

possible applications. A preliminary experiment is conducted, and 

double-layer capacities are obtained for copper and mercury electrodes 

within the correct order of magnitude. Improvements for the experimental 

design are suggested to increase accuracy and reproducibility. The use 

of smaller cell and electrode dimensions and employment of more 

sophisticated purification procedures to reduce the content of 

impurities in the solution to a minimal level would probably be necessary. 

Series solutions for the secondary distribution and transient 

response of a disk electrode prove to become inadequate for large 

exchange-current densities and at short times, respectively. A 

singular-preturbation analysis is given to obtain asymptotic solutions 

for such cases. The ~esults show that the potential distribution for 

each case resembles the primary distribution closely except in a small 

region near the edge where the current distribution remains finite 

and much more uniform than the primary distribution. 

.. 

.. 
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APPENDIX A. Evaluation of the Integral Equation for 
Concentration in an Axisymmetric Diffusion Layer 

Equation 2-62 can be combined with Faraday's law to obtain an 

explicit expression for the current density: 

i .. 
n 

dcRo. 
dX 

x=x 
0 

dx 
0 

[ f x ]1/3 
9DR x tR.Jd'iS dx 

0 

(A-1) 

where the symbols have their meanings as defined in sections 2.4 and 4.3. 

In dimensionless form, this can be written as 

where 

RTK i I z; 
co n = cp(r;) 

r ZF 
0 

d0 
0 

~ l;=l;' 

' dl; 

0 

r; = (r/r ) 3 (disk) , 
0 

r; "" f 8 
sin8IB(e) sine d8 (sphere) 

0 

cp(r;) = Nr;113 tr(!) (disk) 

cp(z;) "" N{B(S) sin8tr(i) (sphere) 

(A-2) 

(A-4) 

. I (A-5) 

and N is given by equation 4-22 for the disk and equation 5-l for the 

sphere. 

.. 
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We define the dimensionless overpotentials 

E a ZFn /RT, 
s s 

E = ZFn /RT 
c c 

ZFn/RT = E = E + E s c 

so that equations 3-13 and 3-17 can be expressed as 

respectively, where J is given by equation 4-21, and 

a ... a /'1., 
a a= a /Z c .. 

(A-6) 

(A-7) 

(A-8) 

(A-9) 

(A-10) 

By combining equations 6 to 10, equation 2 can be expressed in the form 

R(0 ) • cj>(f;) 
0 J

r; 

0 

where 

Equation 11 is now in a suitable form for numerical analysis • 

.-69 
The method used was devised by Acrivos and Chambre for solving 

(A-ll) 

(A-12) 

integral ~quations of this type. The manner by which equation 11 is 

broken into a finite-difference form and integrated is explained clearly 

by those authors and will not be repeated here. One should note, 

however, that the right-hand side of equation 11 has a nonzero limit 
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as ~ ~ 0, and this has to be taken into account in the finite-

difference formulation. At x = 0, equation 1 reduces to 

RTK i (0) 
· 00 n N 
-r z'---F = o -- Il - e (O)J 

o r(;) 0 
(A-13) 

where o _a 1 for a disk, and · cS = 1.15247 for a sphere. 

The following numerical procedure was employed: 

1. The current density or the concentration was specified at the 

center of the disk or pole of the sphere. As an initial guess, this 

was assumed to apply to the whole electrode. Equivalently, one has 

the option to specify the electrode potential V or the current level 

i /(i ) However, this choice requires an additional iteration ave lim ave· 
. 49 

loop in the numerical procedure. 

2. The overpotentials were determined from equations 8, 9, and 7. 

3. Equation 11 was solved to obtain a new concentration dis-

tribution at the surface. The current was calculated from equation 12. 

4. The coefficients B were calculated from equation 2-16 for 
n 

the disk and 2-26 for the sphere by setting V = RT/ZF. The Gaussian 

numerical integration technique was employed. 

at the surface ~ was then computed. 
0 

The potential distribution 

5. The electrode potential was determined according to equation 3-23 

by using the values of n and ~ at r or 6 equal to zero. A new over
o 

potential distribution was then calculated from the same equation. 

6. The steps 3 through 5 above were repeated until no significant 

changes occurred in the calculated quantities. 

.. 

.. 
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A listing of the computer program for the sphere is given below. 

The first input card in the. main program reads the number of mesh 

points LMAX needed to divide the ~ domain into LMAX-1 equally spaced 

increments as required by the Acrivos and Chambre method. NMAX is the 

number of terms carried in the series for ¢ . IH is the total number 
0 

of Gaussian abscissae and weight factors used in step 4 above. The 

next two cards read the Gaussian abscissae X(I) and the corresponding 

weight factors W(I). The final input card reads the parameters 

for the problem. The key to notation is as follows: 

C(l): 

AN: 

TPLUS: 

ALPHA: 

BETA: 

GAMMA: 

EXCH: 

DAMP: 

0 (0) 
0 

N 

y 

1/J 

A damping factor for speeding up the 

iteration procedure. A value of 1 

corresponds to no damping and 0 to 

100% damping. 

A blank input card terminates the program. The output prints 0 , 
0 

i/i , and E as a function of cos8 along with the coefficients B • 
ave n 

The current level i /(i1im) (= AVG in program notation) is also ave ave 

printed. SUBROUTINE THETA solves equation 11 by the method of Acrivos 
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and Chambre. FUNCTION P(N,X) computes the Legendre polynomials of 

order N and argument X. SUBROUTINE ZETA has been written to transform 

between equally-spaced ~and e coordinates and to aalculate ~(~). 

FUNCTION GRAND(T) calculates the dimensionless shear stress B(8) on 

the rotating sphere. 

. . 

.. 
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C CURRENT DISTRIBUTION ON A ROTATING SPHERE WITH AN INTEGRAL 
C EQUATION FOR THE DIFFUSION LAYER 

DIMENSION Bc 21 I tCC 201 I tCUR C 201 I tEC 201 I ,PPC 21 t201 I tRC 201 I tAA 
112001tBB(2001tXC401tWC401tCUGC401tPGC21t401tZGC401tZIGC2011 

COMMON LMAXtZMAXtZIGtiMoXoZGoR 
COMMON EtCUR,C tTPLU~tAN,EXCH,ALPHA,BETAtGAMMAtTAF,AAtBBtCltC2 

ltEX 
101 FORMAT C6H ERRORti4l 
102 FORMAT 13H N=tFlOe4t10H , TPLUS=tF8e4t6H ' V=tF10,5t8H , AVG=, 

1F10.6/41HO R C CUR ETA/C4F11.511 
103 FORMAT C3I41 
104 FORMAT (9E8.4l 
105 FORMAT C7H1ALPHA=tF8,4t9H t BETA=tF8,4t10H t GAMMA=tF8,4t9H ' E 

1XCH=tF8.41 
107 FORMAT C2HOB,F9,5t5F11•5/C6Fll•51l 
108 FORMAT C6El2,91 

READ l01t LMAXtNMAXtlH 
EX= z,0/3,0 
DO 29 L=1tLMAX 
A= L 
AACLI= 2•0*A**EX - CA+1.0l**EX - CA-1,0l**EX 

29 BBCL!= A**EX - CA-1.0I**EX 
IM=2*IH 
IHP1= IH + 1 
READ 108t CX(IIti=IHP1tiMI 
READ 108t CW(IIti=IHPltiMI 
DO 33 I= 1, I M 
IF CI-IHI 3lt31t32 

31 I R = I M- I+ 1 
Xfl): 0,5- o.5*XCIR! 
W(ll• W(IRI 
GO TO 33 

32 XCII• 0.5 + Oe5*X(JI 
33 CONTINUE 

CALL ZETA 
DO 34 N=1tNMAX S DO 34 1=1tiM 

34 PGCNtll= PC2*N-z,Xtiii 
DO 1 L=1tLMAX 
DO 1 N=1tNMAX 

1 PPCNtl!= PC2*N-2t RCLII 
DZ=ZMAX/FLOATCLMAX-11 
EX= le0/3,0 
cz:s 1·119846152 

3 READ 104t C(lltANtTPLUStALPHAtBETAtGAMMAtEXCHtDAMP 
C1= C2*(1,0-CC111 
IF CCCIII 4t4t5 

4 STOP 
5 JCOUNT= 0 

TAF= 1,0 
IF (EXCH-4001 7,7,~ 

6 TAF= 0,0 
EXCHa leO 

7 ETAC=ALOGCC(111 + TPLUS*C1.0-C(lll 
CUR(ll=- (1,0-CC111*AN*EXCH*l•11984652/CC11**GAMMA*1el5247 
ETAS:. -ALOG(TAF-CURClii/RETA 
IF CCUR(111 8t10t8 

8 DO 9 J=ltlOO 
F= TAF*EXPCALPHA*ETASI-EXPC-BETA*ETASI 
FP= TAF*ALPHA*EXPCALPHA*ETASI+BETA*EXPC-BETA*ETASI 
IF CABS(CURCli-FI- O.OOOOOOl*ABSCCUR(llll 10tl0t9 

9 ETASa ETAS+ (CUR(li-FI/FP 
10 CURC11= 1.11984652*AN*C1,0-C(lll*l•l5247 
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11 EILI= ETAC + ETAS 
Bill= 0.0 
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PRINT 105, ALPHA,BETAtGAMMAtEXCH 
12 BOLD= Bill _ 

JCOUNT= JCOUNT + 1 
CALL THETA 
DO 16 J=1tl~ 
LI = ZG ( J I /DZ + 1 

16 CUG!II= CURILII+(CURILI+JI-CURILII I*IXIII**2-RILI1**21/IRILI+ll**2 
1-RCLII**21 

V= EC11 
DO 15 N=1tNMAX 
BINI= 0.0 
DO 14 I=1tiM 

14 arNI= BCNI + CUGIII •PGINtli*WIII 
BCNI=-Oe5*BINI*C4*N-31/12*N-11 

15 V= V + B(NI*PP!Nt11 
DO 18 L=2tLMAX 
PHI= V 
DO 17 N=1tNMAX 

17 PHI= PHI - B!NI*PP(NtLI 
18 ECLI= ECLI + DAMP*(PHI-E!Lll 

JERR= 1 
IF (JCOUNT-1001 19t19t20 

19 IF (AB$(8(11-BOLDI - OeOOOOOl*ABS(A(llll 2lt2ltl2 
20 PRINT 101, JERR 
21 AVG= -Bili/AN/le11984652/le5/ZMAX**I2e/3el 

DO 22 L•ltL~AX 
22 CUR!LI• -CURILI/B!ll 

RAT1• CUR!li*AVG 
RAT2• (V-Erll 1/8(11 
PRINT 102t ANtTPLUStVtAVGt!R(JitC!JitCURIJI,EIJI,J=ltLMAXI 
PRINT 107t IAIIItf•1tNMAXI,TAFtRAT2tRAT1 
PRINT 103t JCOUNT 
GO TO '3 
END 

.. 

. : 
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SUBROUTINE THETA 
C SUBPROGRAM FOR CALCULATING CONCENTRATION 

DIMENSION EC2011tCURC20lltAC2001tBC2001tTHC2011tZIGC2011 
DIMENSION XC401tZG(40ltRC2011 . 
COMMON NZ T 1 , Z MAX, l IG tIM, X, l G t R 
COMMON EtCURtTH tT~PNtEXCHtALtBEtGAMtTAFtAtBtC1tC2tEX 

101 FORMAT (17HO~OT CONVERGED ATtl41 
NZT= NZTI-1 
DEVM = 0.0001 
DZ = leO/NlT S DZ=DZ*ZMAX 
S= THC11 
DO 60 NZ = 2tNZT1 
Z = (NZ - li*DZ 
SUM = OeO 
IF C~Z eLEe 21 GO TO 42 

C CALC• SUMCTHCJI*A(KI I 
DO 40 J=3tNZ 
K = NZ - J + 1 

40 SUM = SUM + TH(J-11*ACKI 
42 ETA= ECNZI 

NJ = NZ - 1 
DO 56 N=1t20 
XI = TAF*S**(GAM- ALI*EXPCAL*ETAI*EXPCAL*T*CS- leOII 
DX1 = X1*C!GAM- ALliS+ AL*TI 
X2 = S**CGAM + BEI*EXPC-BE*ETAI*EXPCBE*T*Cl•O- Sll 
DX2 = X2*CCGAM + BEI/S- BE*TI 
C3 = l.;O*C2*ZIGCNZI/DZ**f1e/3el 
X3= C3*CTH( 11*BCNJI +SUM- SI+Cl*ZIGCNZl/Z**C1•/3el 
DTH= S- CCXI-X21/PN + X3 *EXCHI/C(DX1-DX21/PN- C3*EXCHI 
CURCNZI= PN* X3 
IF CABSCS-DTHI - DEVM*ABSCDTHII 60t60t56 

56 S = DTH 
PRINT lOlt NZ 

60 THCNZI = DTH 
RETURN 
END 

FORTRAN II FUNCTION P!NtXI 
C CALCULATION OF LEGENDRE POLYNOMIALS 

Pl= leO 
P2= X 
IF tN-11 lt2t3 

1 P= Pl 
RETURN 

2 P= P2 
RETURN 

3 NM1= N - 1 
DO 4 NU=1tNMl 
P=CX*FLOATFC2*NU+li*P2-FLOATFCNUI*P11/FLOATFCNU+ll 
Pl= P2 

4 P2= P 
RETURN 
END 



-168-,. 

SUBROUTINE ZETA 
DIMENSION Xf40l,ZG(401,ZIGf201l,XZf201l,XX(40l 
COMMON LMAX,ZMAX,ZIG,JM,X,zG,XZ 
N=lOl S ZMAX=Oe417077493 
DZ=ZMAX/FLOATfLMAX-11 S zsDZ $ XZ(ll=l·O $ J=2 
GRAND3=GRAND(Oe0) S SUM=O•O $ XOLD=OeO $ IMPl=IM+l 
T30LD=Oe0 $ SUMOLD=OeO 
DO 3 M=l,IMPl $ IF(M.NE.IMP1l DT=(X(MI-XOLD)/(N-11 
IFfM.EQ.JMPl) DT=f1e-XOLDl/(N-1l S DO 2 1=3,N,2. 
T2•XOLD+DT*fl-2l S T3=T2+DT S GRANDI=GRAND3 
GRAND2=GRAND(T2l S GRAND3=GRANDfT3l 
SUM=SUM+(GRAN01+4•0*GRAND2+GRAND3l*DT/3.0 
IFfSUMeLEeZl GO TO 15 

12 K.sLMAX-J+1 
XZ(K.l=T30LD+(T3-T30LDI*(Z-SUMOLDJ/(SUM-SUMOLDJ 
JaJ+1 S Z=Z+DZ $ IFCJ.NE.LMAXJ GO TO 13 S XZ(JJ=O.O $ GO TO 15 

13 IFfSUM.GT.ZJ GO TO 12 
15 SUMOLD=SUM 

2 T30LD=T3 S IFfM.EQ.IMP1l GO TO 3 
XOLD=XfMl $ ZGlMl=SUM 

3 CONTINUE$ DO 4 M=1tiM S MM=IM-M+l S XXlMMI=XlMJ 
4 ZGfMJ=SUM-ZG(MMl S DO 5 M=l•LMAX 
5 ZIGfMJ=GRAND(XZCM )I$ DO 6 M=ltiM 
6 XfMJ=XX(MJ 

RETURN S END 

FUNCTION GRANDfTl 
X•T 
AC=ACOS(XJ 5 X=1.0-X*X S IFCX.GteOel GO TO 1 
GRAND=O.O S RETURN 

1 RX=SQRT(X) 
B=Oe51023*AC-0.1808819*AC**3-0e040408*X*RX 
GRAND=SQRTfB*RXIS RETURN S END 

.. 
' 

io. i 
- ! 

.. 
i 
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APPENDIX B. A Method for Calculating the Time Constant for 
the Transient Response of a Disk Electrode · 

in the Presence of Mass Transfer, Nonuniform 
Electric Field, and Double-Layer Charging. 

For a thin diffusion layer on the surface of a disk, the transient 

convective diffusion equation is 

(B-1) 

where the concentration and the diffusion coefficient are those of 

the limiting reactant; the concentration variations of the other species 

are not considered. The velocity components are expressed by 

equation 2-52. Equation 1 can be transformed into the dimensionless 

form 

where 

0 = c /c 
R R00 

The boundary conditions are 

0 = 1 as ' + co 

a0/ar = 0 at r = 0 

(B-2) 

(B-3) 

(B-4) 

(B-5) 

(B-6) 

(B-7) 
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Another condition has to be specified at the surface. The initial 

condition will be left as arbitrary. Since the present analysis seeks 

the purpose of obtaining a characteristic time constant for large 

times, an initial condition does not have to be specified. 

For large e, the solution to the convective-diffusion equation 

satisfying the conditions 6 and 7 can be expressed as 

00 

-A e 
D L 2m 0 = 1 + ke A (r/r ) Z (~) 

m o m 
(B-8) 

m=O 

where k is a dimensionless constant, AD is an eigenvalue, Zm are 

functions yet to be determined, and A are coefficients in the series for 
m 

Z • Substitution back into equation 1 gives 
m 

with the boundary condition, 

and a normalizing condition, 

Z = 0 as ~ + oo 
m 

Z = 1 at ~ = 0 
m 

(m = 0 , 1 , 2 , • • • ) 

Let us assume that an excess amount of supporting electrolyte 

(B-9) 

(B-10) 

(B-11) 

is present, and the electrode reaction is reversible and fast. The 

third necessary condition to solve the diffusion-layer equations can 

be expressed as (see equation 3-32) 

dCR 
D-

Ray 
0 y= 

/i - C anc) \n dt 
(B-12) 

. . 

. ' 
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The concentration overpotential is given by equation 3-12 which can 

be linearized at large times and combined with equation 8 to read 

-A e co 

ke D ~ A (r /r ) Zm 
L..J m o nF (B-13) 

m=O 

At large times, the potential distribution in the solution can 

be expressed by (see equations 2-13 and 7-7) 

<!> = -

-A e 
ke D 

CXl 

E 
n=O 

B P
2 

(n) M
2 

(~) 
n n n 

Application of Ohm's law (equation 2-8) gives the current density, 

Substitution of equations 8, 13, 15 and 14 into equation 12 yields 

after some arrangement 

CXl 00 

~ E BnP Zn (n) M;n (0) = E Am (l-n
2

)m [NZ~ (0) + PAD)] 

n=O m=O 

where N is given by equation 4-22, and 

p = 
r en 
·O 

K 
00 

(~)1/3 (j) 2/3 

(B-14) 

(B-15) 

(B-16) 

(B-17) 

is the dimensionless capacity. Application of orthogonality property 

of the Legendre polynomials gives 

00 

B = 4~ + l ~A [NZ' (0) + PAD] L 
n M (O) £..J m m m,n 

2n m=O ., 

(B-18) 
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where 

1 = 11 

n (1 m,n 
0 

But, since ~contains no net current, B = 0 (see section 7.3), and 
0 

for n = 0, equation 18 reduces to 

00 

' L A !NZ (0) + PA ]/(m + 1) = 0 m m -l> 

The electrode potential can be expressed as 

V=n +~ c 0 

sRRT -A 8 
=- -- ke D 

nF 

(B-19) 

(B-20) 

(B-21) 

Substitution of equations 13 and 14 and ,again due to the orthogonality 

property of P
2
n(n), we obtain the result 

00 

B "" (4n + 1) (1 - ~A L ) 
n ~ m m,n 

(n>O) (B-23) 

m=O 

Combining this with equation 18 yields 

L
ao [NZ~(O) +pAD ] . 

A L , + 1 = 1 
m m,n M (O) 

m=O 2n 

(n>O) (B-24) 

ao 

Am 
1 

... 1 
m+ (n=-0) (B-25) 

From here on, the problem involves a numerical solution of 

equations 9 to 11, 20, 24, and 25 once the parameters Nand P are specified. 

Equation 9 has to be solved numerically n times considering that the 
max 

series in n and m are both truncated at n , or a power series solution 
max 

.. 
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has to be worked out. Moreover, the numerical solution can only be 

obtained by an iterative procedure, which may be somewhat demanding in 

the couq>utation time. Because of this, and since there seems to be 

no immediate inter.est in the numerical results, a numerical analysis 

has not been pursued. The numerical work, however, should be 

straightforward. One possible method of solution is to guess AD' and 

' calculate Z (0) by solving the set of equa~ions 9 to 11. Then, 
m 

equations 20 and 24 can be solved for the coefficients A • This procedure 
m 

can be repeated until the coefficients satisfy equation 25. After 

~ is calculated, the desired time constant can be obtained from 

equation 7-40. Another method, which would simplify the iteration 

procedure significantly, is to specify~ and N (or P) and back 

calculate N (or P). In this way, one needs to solve the set of 

differential equations B-9 only once; the desired parameter N (or P) 

and the coefficients A can then be obtained iteratively from equations 20, 
m 

24, and 25. It is possible to perform a parametric stu~y by this method 

and map out ~ as a function of N and P. Afterwards, the results can 

be interpolated easily to calculate AD for specified values of P and N. 
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APPENDIX C. Computation of the Transient Convective 
Diffusion to a Disk Elec*rode in the Absence 

of Radial Convection 

The ~umerical problem involves the solution of the system of 

equations 6-27. We added to this system another equation 

dA /dr;. = o 
n 

(C-1) 

and obtained solutions to this nonlinear, coupled set of differential 

equations by employing the numerical method developed by NewmanlO,ll,SO 

for equations of this type. The coefficients B were computed by 
n 

numerical integration using Simpson's rule. Calculation of ~ss also 

involves numerical integration; Simpson's rule was used for r;. ~ 1.375, 

and Gauss-Laguerre integration proved to be more accurate for larger 

values of r;.. 

The error due to the finite-difference approximation of the 

differential equations is O(h2),80 where his the mesh size. The 

numerical results were thus corrected to zero mesh size by extrapolating 

2 linearly with respect to h • Another source of error is due to the 

fact that the r;. axis is unbounded at one end and has to be truncated 

for numerical calculation. The maximum value set for r;. was increased 

for several successive calculatioas until the results did not change 

significantly. 

The key to notation on the input cards for the computer program 

is as follows: 

.. 



. '. 141r' 

Z(I) ,W(I): 

NJ: 

H: 

MODE: 

N.AMBDA: 

AMBDA: 

I 
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abscissae and weight factors for 8-point Gauss

Laguerre integration 

number of mesh points. A value of zero terminates 

the execution of the program 

mesh size 

chooses between the boundary conditions for a 

concentration step (MODE=!) or a flux step (MODE=2). 

A blank card terminates operation with a specified 

set of NJ and H; the next card should be blank 

to terminate execution or define new values for 

NJ and H. 

subscript for the eigenvalue of interest and the 

corresponding coefficient B in the series such 
n. 

as 0,1,2,3, ••• 

first guess for an eigenvalue. A value of zero 

terminates calculation in a specified MODE; the 

next card should be blank or set a new MODE. 

A set of input cards have to be read in twice with different 

values of NJ and H for each time in order to obtain results which are 

automatically extrapolated to zero mesh size by the computer. 
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PROGRAM TRNDIFCINPUTtOUTPUTl 
c 
C TRANSIENT DIFFUSION TO A DISK-- RESPONSE TO A STEP CHANGE IN 
C CONCENTRATION OR FLUX 
c 

c 

DIMENSION AC2t21eBC2t21•CI2t 8021tDC2t51tGC21eXC2e21tYC2e21t 
1 SS ( 8 0 2 I t AA ( 2 • 1 0 I • BB ( 2 t 10 I • Z ( 8 I t W ( 8 I 

COMMON AtBtCtDtGtXtYtNJtNtHtMODEtAMBDA 

C STEADY STATE DISTRIBUTION 
c 

c 
c 
c 

C1=1e11984652 S NZ=8S READ 109tCZCIItWCII,I•1tNZI 
1001 PRINT 102 S ICHECK•O S HH=O.O 

DO 1100 l=lt2 S DO 1100 J=1t10 S AACitJI•OeO· 
1100 BBCitJI=O.O 

1 READ 1~ltNJtH S IF(NJ.EQ•OI STOP 

2 
61 

62 
63 

3 
35 

4 
41 
42 
43 
45 

5 

6 
7 

8 
9 

10 

11 

13 
14 

ICHECK=ICHECK+1 S HHO=HH S NM1=NJ-1 
PRINT I03t~J S ZMAX=H*(NJ-21 S H=H/2e0 
N•2*NJ-3 S SSUM =OeO S GRAND3=le0 
J=l S DO 2 1=3tNt2 S J=J+1 S T2=H*CI-2l 
IFCT2•GTe1e375l GO TO 61 S T3=T2+H S GRAN01=GRAND3 
GRAND2=EXPC-T2**31 S GRAND3=EXPC-T3**31 
SSCJI=SSUM +CGRAND1+4eO*GRAND2+GRAND3l*H/3eO S SSUM=SSCJI 
SS(J):t.O-C1*SSCJI 
H=2•0*H S HH•H*H 
DO 63 I=JtNM1 S T3=H*CI-ll S SS(II•O,O S DO 62 L=1tNZ 
SSCII=SS(II+WCLI*1e0/C1•0+ZCLI/T3**31**C2.0/3eOI 
SSCII=C1/3•0*EXP(-T3**31/T3/T3*SSCII 

TRANSIENT DISTRIBUTION 

READ 10ltMODE S IFCMODEI 35t35•4 
GO TO (lt261eiCHECK 
GO TO (4lt42ltMODE 
PRINT 104 S GO TO 43 
PRINT 105 
READ 10ltNAMBDA,AMBDA S IFCAMBDAI 3t3t45 
CALL GUESS S JCOUNT=O S N=2 
COLD•CC2ell 
JCOUNT=JCOUNT+1 S J=O S DO 6 1•1tN S DO 6 K=ltN S Y(leKI•OeO 
XCitKl=O•O 
J=J+l S DO 8 l=ltN S G(I}=OeO S DO 8 K=1•N 
A(ltKI=OeO S B(leKI=OeO 
DCitKI=O,O S IFCJ-11 9,9,13 
GO TO (10t111tMODE 
XC1tll=le0 S BC1ell=-le0 S GC11•2eO*H 
BC2t21=-le0 S DC2t21=le0 S GO TO 12 
BCltll=-1,0 S XC1t11=1.0 
DC2tll=H $ GC21•H S BC2•21=-1e0 S DC2t21=le0 
CALL BANDCJI S GO TO 7 
IFIJ-NJI 14tl5tl5 
ZETA=H*(J-21 S AC1tll=l•O/H/H-le5*ZETA*ZETA/H S AC2t21=-1e0 
BCltli=CC2tJ)-2,0/H/H S BC1t2l=CI1tJl S BC2e21=1•0 
DC1tll=le0/H/H+1e5*ZETA*ZETA/H S G(li=CC1tJI*CC2tJl 
IF(J.GT.31 GO TO 12 S AC2•2l=O.O S IFCJ.EQ,21 GO TO 51 
BC2t2l=O.O S AC2tl1=1e0 S IFIMODE.EQe21 G!21=1.0 S GO TO 12 

51 DC2t21=-1,0 
12 CALL BAND!Jl S GO TO 7 
15 B!ltll=1•0 S ~12t21=le0 S Af2e21=-l•O 

CALL BAND(Jl 
IFCABSCCC2tli-COLDI-0.00000l*ABSICC2tllll 18tl8t16 

16 IFCJCOUNT-201 5t~t17 
17 PRINT 106 

.. 
... 

I 
• I 

• I 
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C CALCULATION OF COEFFICIENTS IN SERIES 
c 

18 SUMl=OeO S SUM2=0e0 S GO TO fl9t20ltMOOE 
19 GRAND3~0e0 S GRAN06•0e0 S GO TO 21 
20 GRAND3=le0 S GRAND6=le0 
21 00 23 1=3tNMlt2 S T2=H*fi-2l S T3=T2+H S GRAN01=GRAND3 

GRAND2=EXPfT2**31*Cfltl I S GRAND3=EXP(T3**31*Cf1tl+11 
GRAN04=GRAND6 S GRAND5=GRAND2*Cfltl I S GRAND6=GRAN03*Cf1tl+ll 
GRANDZ=GRANDZ*SSfl-11 S GRAND3=GRAND3~SSfii 

•· SUMl=SUMl+fGRAN01+4.0*GRAND2+GRAND3I*H/3eO 

c 

23 SUM2=SUM2+fGRAND4+4.0*GRAND5+GRAND61*H/3eO S SUM=SUM1/SUM2 
AK=fCfltNJ-21-CfltNJll/2e0/H*EXPfT2**31 
JF(~ODE.EQ.21 SUM=SUM/Cl 
P~INT 107tNAMBDAtCf2tlltSUMtAK 

C LINEAR EXTRAPOLATION TO INFINITE NUMBER OF MESH POINTS 
c 

c 

GO TO (24t251tiCHECK 
24 AA(MODEtNAMBDA+li•Cf2tll S BBfMOOEtNAMBDA+li=SUM S GO TO 43 
25 IFfAAfMODEtNAMBOA+1leEQeOe0l GOTO 43 

AA(M00EtNAMBOA+li=(AAfMOOE,NAMBOA+li*HH-C(2tli*HHOJ/(HH-HHOI 
BB(MODE,NAMBOA+li=(BB(MOOE,NAMBDA+11*HH-SUM *HHOJ/(HH-HHOI 
GO TO 43 

C OUTPUT 
c 

26 PRINT 108tZMAX S DO 27 l=ltlO 
27 IF(AAfltlleGTeOeOI GO TO 28 S GO TO 30 
28 PRINT 104 S DO 29 I=1t10 S J=I-1 
29 IFfAAfltlleGT.OeOI PRINT 107tJtAAfltlltBBfltll 
30 DO 31 I=1t10 
31 IF(AAf2tlleGT.O.OJ GO TO 32 S GO TO 1001 
32 PRINT. 105 S DO 33 I=1tl0 S J=I-1 
33 IF(AAf2tiieGTe0eOI PRINT 107tJtAAf2tlltBB(2,ll S GO TO 1001 

101 FORMATfl4tE8.41 
102 FORMATC1H11 
103 FORMATf///6Xt*JMAX=*tl41 
104 FORMATf/6Xt*CONCENTRATION STEP*/f9Xt*N*t7Xt*LAMBDA*t6Xt*COEFF*l I 
105 FORMAT(/6Xt*FLUX STEP*/f9Xt*N*t7Xt*LAMBDA*t6Xt*COEFF*II 
106 FORMATf6Xt*NEXT RUN DID NOT CONVERGE*! 
107 FORMATfl10t5E15e8l 
108 FORMATf1Hlt///6Xt*JMAX=INFINITY ZMAX=*tF8e51 
109 FORMATC4E18e121 

END 
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SUBROUTINE GUESS 
c 
C FIRST GUESS FOR THE TRANSIENT DISTRIBUTION 
c 

c 
c 
c 

DIMENSION AC2t21tBf2t21tCf2t 8021tDf2,51tGC21tXC2t2ltYf2t21 
COMMON AtBtCtDtGtXtYtNJt NtHtMODEtAMBDA 
J•O S N=1 
DO 10 I=1tN S DO 10 K=1tN S Y(ItKI=O.O 

10 X(ItKI=O•O 
11 J•J+1 S DO 12 I=1tN S GCJraOeO S DO 12 K•ltN 

A(ItKI=OeO S BCitKI=OeO 
12 DCitKI=OeO S IF(J-11 11t13tl7 
13 GO TO C14tl51tMODE 
14 BClt11=-1eO S X(1t11•1.0 S Gf11•2.0*H S GO TO 16 
15 8(1,11=-1.0 S Xf1tll=1e0 S DC1t11=2e0*H S GC11=2e0*H 
16 CALL BAN~CJI S GO TO 11 
17 IFCJ-NJ) 18tl9t19 
18 ZETA=H*IJ-11 S Af1tll=1e0/H/H-1e5*ZETA*ZETA/H 

BC1tli•AMBDA-2.0/H/H S D(1tli=1•0/H/H+1.5*ZETA*ZETA/H 
CALL BANDCJI S GO TO 11 

19 BClt11=1eO S CALL BANDCJI S DO 20 1=1tNJ 
20 CC2tii=AMBDA S ~ETURN SEND 

SUBROUTINE BANDCJI 

SOLUTION OF COUPLED ORDINARY DIFFERENTIAL EQUATIONS 

DIMENSION Af2t2ltBf2t2ltCI2t 802ltDI2t51tGf21tXf2t2ltYf2t21t 
1ECZt3t8021 

COMMON AtBtCtDtGtXtYtNJtN 
101 FORMAT f21H DETERM=O AT J=tl41 

I F ( J- 2 I 1 t 6 t 8 
1 NP1=N+1 

DO 2 I •1 tN 
DCit2*N+11=G(II 
DO 2 L•1 tN 
LPN=L+N 

2 DlltLPNI•XCitll 
CALL MATINVCNt2*N+1tDETERMI 
IF CDETERMI 4t3t4 

3 PRINT 101tJ 
4 DO 5 K=1tN 

ECKtNP1t1l=D(Ko2*N+11 
DO 5 L=1 tN 
EfKtLtl 1=-DfKtU 
LPN=L+N 

5 XfKtLI=-DfKtLPNI 
RETURN 

6 DO 7 I= 1 tN 
DO 7 K•1tN 
DO 7 L=1tN 

7 D(ItKI=DCitKI+AIItLI*XfLtKI 
8 IFCJ-NJ) llt9t9 
9 DO 10 I=1tN 

DO 10 L=ltN 
GCII•GCII-YfitLI*EfLtNP1,J-21 
DO 10 M=ltN 

.• -

.. 

-. 
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10 ACitLl=ACitL)+YCI•M>*ECM,L,J-2) 
11 DO 12 J=1tN 

DC I ,NP1 )=-GC t) 
DO 12 L=1tN 
DCitNPl)=DCI,NP1)+ACltLl*EfLtNP1•J-1) 
DO 12 K=1tN 

12 B(I,Kl=BCitK)+ACitLl*~CLtK,J-1) 
CALL ~ATINVCNtNPltOETER~) 
IF CDETERM) 14tl3tl4 

13 PRINT 101,J 
14 DO 15 K=ltN 

DO 15 M=1tNPl 
15 ECKtMtJl=-DCKtM) 

IFCJ-NJ> 20tl6t16 
16 DO 17 K=1tN 
17 CCK,Jl=ECKtNPltJ) 

DO 18 JJ=2•NJ 
~=NJ-JJ+1 

DO 18 K=1•N 
CCK,Ml=ECKtNP1t~) 

DO 18 L=1tN 
18 CCKtMl=CCKtM)+ECKtLtMl*CCLtM+1l 

DO 19 L=1tN 
DO 19 K=1tN 

19 CCKtll=CCKt1)+XCKtLl*C(L,3) 
20 RETURN 

ENO 
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SUBROUTINE MATINVfNtMtDETERM) 
c 
C MATRIX INVERSION 
c 

DIMENSION Af2t2ltBf2t2ltCC2t 802ltDC2t5ltiDC2) 
COMMON AtOtCtD 
DETERM=leO 
DO 1 I= 1tN 

1 10(1)=0· 
DO 18 NN=1•N 
BMAX=O. 
DO 6 I= ltN 
IF CID(I)l 2t2t6 

2 DO 5 J=1tN 
IF ( IDCJ)) '3t3t5 

3 IFCABS (8(I,J))-8MAXI 5•5•4 
4 B~AX=A~S fBfTtJI) 

I ROW= I 
JCOL=J 

5 CONTINUE 
6 CONTINUE 

IF fBMAXl 7,7,8 
7 DETERM=O• 

RETURN 
8 IDfJC0L)=1 

IFCJCOL-IROWI 9t12•9 
9 DO 10 J=ltN 

SAVE=BCIROW•J) 
BCIROW,Jl=BCJCOLtJ) 

10 BCJCOL,J)=SAVE 
DO 11 1<=1•~ 
SAVE=D(IROWtKl 
DCIROW,Kl=DCJCOLtKl 

11 DCJCOL,Kl=SAVE 
12 F=1e/B(JCOLtJCOL) 

DO 13 J=1tN 
13 BCJCOL,JlaBCJCOLtJ)*F 

DO 14 K=1tM 
14 D(JCOL,K)=OCJCOL,K)*F 

DO 18 I= 1 tN 
IFCI-JCOLJ 15t18tl5 

15 F=B(ItJCOL) 
DO 16 J=ltN 

16 B({,J)aBCitJ)-F*BCJCOLtJl 
DO 17 K=ltM 

17 DCitK)=nCitK)-F*DCJCOL,K) 
18 CONTINUE 

RETURN 
END 

. : 

.. 
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APPENDIX D. Numerical Solution of the Integral Equation 
for the Transient Concentration on a Rotating 
Disk in the Presence of Double-Layer Charging 

We wish to solve the integral equation 

I/~ _q 
f(4/3) + 0 

0 

' d8 (D-1) 

The 8 axis can be broken into n - 1 intervals of size 68 and equation 1 max 

thus written in the finite-difference form as follows: 

I/IL g_ 0o,k - 0o,k-l 
f(4/3) + t:.e 0 k 

o, (D-2) 

' ' 
k 

""(0 LJ o,j J 
(j-1)68 

0o,j-l) . · H(8 - 8 ) d8 = f(8) , 

j=2 (j -2)68 

where 

ae 
' c H(e - 8 > = ~ 

l;=O ' 
(D-3) 

8=8-e 

Forward differences haye been used for the time derivatives , hence 

the error associated with the finite difference approximation is 

O(A8). The error can however be reduced to 0[(68) 2] by averaging the 

coefficient of the derivative between the mesh points k and k-1. Let us 

also define 

-f
6 

G(8) H(x) dx (D-4) 

0 
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' where x • 6 - 6 • For small 6, H(x) is given by equation 6-16, 

H(;x) = -1//ii'X- Jx/4 

therefore, equation 4 becomes 

For large 8, equation 4 can be broken up as follows: 

e e 
G(S) • f [H(x) - H(ClO}] dx - f [H(x) - H(ClO)] dx + 8H(Cl0) 

0 0 

This can be evaluated by substituting the results of the long-time 

solution (section 6.3) to obtain 

where 

G(8) = JQO 
0 

[H(x) - H{ClO)J 
ClO -A e 

dx + ~ B e n /A - 6/f(4/3) L...J n n 
n=O 

JQO [H(x) - H(ClO}] dx = const. 

0 

(D-5) 

(D-6) 

(D-7) 

(D-8) 

(D-9) 

* The constant term can be calculated by picking a convenient time 6 

for switching from the short-time to long-time series. Equations 6 and 

. * 8 can be equated at 8 and solved for the constant term: 

const •• -2~ + e*tr(4/3) 
*2 ClO -:A e* 

36 /8 - ~ B e n /A. L...J n n 
(D-10) 

n=O 

= -0.336 

.. 

• I 



.. 
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This method provides a smooth transition from one series to the other. 

Equation 2 can now be written in the form 

k 

f(6) • !6 E (eo,j 
j=2 

(k-j+l) 1':.6 

- eo,j-1) f H(x) dx 

(k-j) 1':.6 
(D-11) 

k 
1 ~ . 

• 1':.6 ~ (0
0
,j - eo,j-l){G[(k-j+l) 1':.6] - G[ (k-j) t:.e]}, 

j=2 

which becomes, after some rearrangement, 

where 

A = G{/':.6)/1':.6 

b1 = {G(1A8)- G[(1-l) 1':.8]}/1':.8 , 

d1 ... {G[ (1+11 t:.8] - 2G{1t:..8) + cr (1-1) 1':.8]} 1 1':.6 • 

The algebraic solution to equation 12 can be expressed as 

where 

e = 12 + 1 2 - ~ e · ~ .. )1/2 
o ,k ~-1 , 2 f:.k-1 AA8 o ,k-1 

[ 

. . 1 ] 1 I/IL 
t:.~, = A f(4/3) + Q/1':.8 + b1 - E d1-j+l 0o,j • 

}=2 . 

Equation 16 can now be used to calculate 0 at the mesh points 
0 

(D-12) 

(D-13) 

(D-14) 

(D-15) 

{D-16) 

(D-17) 

k = 2, 3, 4, ••• , each time using the values of 0 at smaller values 
0 

of k, which have already been calculated. The value of 0 1 of course 
o, 

corresponds to the. initial condition and has been set equal to unity here. 
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A listing of the computer program follows. The key to the input 

notation is 

LMAX: 

NMAX: 

TMAX: 

TS: 

number of terms used in the long-time series 

number of mesh points 

the upper limit desired for e 
e* 

WL(L) ,AA(L): eigenvalues and coefficients in the long-time series 

for concentration step 

WR(l.), BB (L) : eigenvalues and coefficients in the long-time series 

for flux step 

CUR: I/~ 

QO: Q 

nT: ae 

Setting CUR•O terminates the execution. The initial value of A.e should 

-4 be a small number, such as 10 , because (o0c/o~)~=O goes to infinity 

as 1//19, and hence the contribution to the integral may be significant 

at small times. The program first computes the surface concentration 

in the interval e = 0.0001 to e = 0.001 (smaller e can be used if 

desired}. The mesh size is then increased by a factor of 10, and the 

calculation is repeated for the interval 0.001 to 0.01 using the results 

of the previous cycle as the first (NMAX-1)/10 points. A similar 

method was 

a stagnant 

84 employed by Hsueh 

85 diffusion cell. 

to calculate the transient response of 

-. 
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PROGRAM CAPEFFIINPUTtOUTPUT) 
c 
C TRANSIENT DIFFUSION TO A DISK IN PRESENCE OF THE CAPACITIVE EFFECT 
c 

DIMENSION C!l011tCC!1011,B!1011tDfl011tGf1011,WLI101tAAI101tWRI101 
1tBB ( 10 I 
PI=3,141592654 S C1=0e8929795116 S Cll1=1e0 
READ 101tLMAXtNMAXtTMAXtTS 
READ 102tiWLfLitL=1•LMAXI S READ 102tiAA(LltL=1tLMAXI 
READ 102t(WR(LitL=1tLMAXI $READ 102tiBBILitL=1tLMAXI 

1 READ 103tCURtOOtDT S IFICUReLEeOeOI STOP $ JBEGIN=2 S Q=Cl*QO 
AK•TS/Cl-2eO*SORTCTS/PII-3.0/8eO*TS*TS S DO 2 L=1tLMAX 

2 AK=AK-AAILI/WLILI*EXPI-WLILI*TSI 
3 PRINT 104tCURtOOtDT S DO 6 1=1tNMAX S T=II-1l*DT 

IFCT.GTeTSI GO TO 4 S X=2•0*SORTIT/PII $ Y=3.nt8e0*T*T 
GIII=-X-Y S CCIII=X-Y S GO TO 6 

4 Glll=AK-T/Cl S CCIII=C1 S DO 5 L=ltLMAX 
GIII=GII)+AAILI/WLfLI*EXPC-Wlfll*TI 

5 CCIII=CC(II-~BILl*EXPf-WRILI*TI 
6 CCIII=le0-CC!Il/C1*CUR S A=GI2l/DT*C1 S NM1=NMAX-1 S DO 7 1=1tNM1 

Blll=fGII+11-GIIli*Cl/DT S IFfi.EQ.NMll GO TO 7 
DCII•CGCI+21-2.0*G(I+ll+GIIl)*C1/DT 

7 CONTINUE $ DO 10 J=JBEGINtNMAX S JM1=J-1 
DEL=CUR+Q/DT+BIJMll 
IFIJ.EQ.21 GO TO 9 S DO 8 Jz2,JM1 

8 DEL=DEL-CCII*DfJ-11 
9 DEL•DEL/A 

10 C(J)•Oe5*CDEL+SQRT!DEL*DEL-4eO*O*C(JMli/A/DTII 
DO 11 1•1tNMAXt2 S T•II-li*DT S IF(TeGTeTMAXI GO TO 1 

11 PRINT 105tTtC(l)tCCIIl S DO 12 K=1tl1 S J=K*l0-9 
CCUO=CCCJI 

12 CCKI=CIJI S JBEGIN•l2 S DT=IO.O*DT S GO TO 3 
101 FORMATC214t2E8e41 
102 FORMAT(6El2e8l 
103 FORMAT(9E8e41 
104 FORMATC1Hlt6Xt*I/ILIM=*•F5.3t6Xt*O=*•F7e5t 6Xt*DT=*tE7el//(12Xt*T* 

lt14Xt*C*t14Xt*CC*II 
105 FORMAT(3F15e51 

END 
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... 

APPENDIX E. Calculation of the Transient Response 
of a Disk in the Absence of Mass Transfer 

The transient response of a disk electrode can be calculated 

once the eigenvalues and the corresponding coefficients in the series, 

discussed in chapters 7 and 8, are determined. We wish to solve the 

nonlinear set of equations 

n 
max 

E 
n=l 

a B = 1/2 o,n n,i 

[
a + oA,n 
m,n i 

M~(O)] 
4m + 1 

B = a n,i o,m 

(m=l,2, ••• ,n ) max 

for the galvanostatic problem and the analogous set 

~a B = 2/ rrA
1 

- 1/2 l.J o,n n,i 
n•l 

~ [ + om,n M~ {0) ] B ... - a 
~ am,n , Ai 4m + 1 n,i o,m 
n•l 

(m=l,2, ••• , n ) max 

(7-13) 

(7-14) 

(E-1) 

(E-2) 

for the potentiostatic problem. The fact that B i. = 0 is implicit 
o, 

in equations 7-13 and 7-14, and that B i is normalized to unity, in o, 

equations E-1 and E-2, respectively. The following iterative scheme 

is used, utilizing the Newton-Raphson convergence method, to obtain 

numerical solutions: 

,. . 

j 
\. 
' 

• ! 
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1. An initial guess is made for Ai or Ai as close to the actual 

value as possible. A bad guess may converge to a different eigenvalue 

than the one desired, or convergence aay not be attained at all. However, 

the spacing between the eigenvalues appears to be approaching n with 

increasing order; if the value of an eigenvalue is known, a good guess 

for the next one can be obtained by adding or subtracting n. The same 

arguments also apply to Ai. 

2. Equation 7-14 or E-2 is solved by matrix inversion. We next 

solve the expression 

n 
max 

L 
' 

M2m(O)] 
4m + 1 

' 
= 

M2m(O) 

4m + 1 
(E-3) 

for the derivatives dBn,/dAi. A similar equation can be written for 

the potentiostatic case by differentiating equation 2 with respect to 

3. A correction term for the eigenvalue is calculated by expanding 

equation 7-13 or E-1 in the following manner: 

or n 
max 

Eao,n 
n=l 

Solving for aAi or ~Ai gives 

(E-4) 

(E-5) 

AA1)- "xi (1 - dv\) - 1/2 . 
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i 

= 

1/2 

n 
max 

E 
n=l 

n 
max 
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-~<a B o,n n,i 
. n= 

a dB 1 /dAi o,n n, 

n 

-t a B o,n n,i 

= --------------------------n 
max 

2/Trt..i
2+ ~a dB i/d/..i ~ o,n n, 

n•l 

The new value of the eigenvalue is thus 

A =A + M i,new · i,old i 

or 

/.. •/.. +tv.. 
i,new . i,old i 

(E-6) 

(E-7) 

' 
(E-8) 

(E-9) 

4. The numerical steps 3 and 4 are repeated until no significant 

change occurs in Ai or t..i. Convergence, of course, is very rapid 

because the problem has been linearized around trial values which 

become very close to the true solution. 

A listing of the computer program is reproduced below for performing 

these calculations for any number of eigenvalues desired. Results for 

the eigenvalues and the coefficients B i or B i are punched on cards as n, n, 

output for separate computations of the eigenfunctions, the coefficients 

ci and ci, the electrode potential for the galvanostatic problem, the 

current for the poltentiostatic problem, and other desired calculations 

.. 
• I 

I 
I 

i 
I 
! 
I 

.! 
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according to the formulae developed in chapters 7 and 8. The integral 

a is calculated according to equation 4-7, and a (equation 4-6) o,m m,n 

is obtained by Gaussian integration. 

Important symbols in the program have meanings as follows: 

NMAX: 

IH: 

IMAX: 

X(I) ,W(I): 

MODE: 

n 
max 

number of points used in Gaussian integration 

number of eigenfunctions required 

Gaussian abscissae and corresponding weight factors 

specifies the mode of operation for the galvanostatic 

problem GMODE=l) or the potentiostatic problem 

(MODE=2). A value of 0 terminates execution. 

The program calls the subprograms FUNCTION P(N,X) (appendix A) and 

SUBROUTINE MATINV (appendix C). 



c 
c 
c 
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PROGRAM SECLINCINPUTtOUTPUTtPUNCHI 

PROGRAM FOR SECONDARY CURRENT DISTRIBUTION ON A DISK ELECTRODE 
WITH LINEAR KINETICS 
DIMENSION XC961tWC961tRC45t961tPMC451tBC45t451t0(45t451tDC45t1lt 

1QOC451tBTC45t20I,AMBDAC201 
COMMON BtD 

C COMPUTATION AND INTEGRATION OF LEGENDRE POLYNOMIALS 

c 

103 FORMATC5141 
106 FORMAT C 1Hll . 
108 FOR~ATf2XtF19e16t2XtF19e161 
132 FORMATf4E18e61 

READ 103tNMAXtiH,IMAX S IHP1=1H+1 S IM=2*IH 
READ 108t fX(IItWCIItiaiHP1tiMI 
DO 3 1=1tiM S IFCI.LTeiHP11 GO TO 1 S XCI1=0.5+0e5*XCII S GO TO 2 

1 IR=IM-1+1 S XCII~0.5-0e5*X(IRI $ WCII=WC.IRI 
2 XX=SQRTC1.0-XCI1**21 .S DO 3 NN=1tNMAX S N=NN-1 
3 RCNNtii=PC2*NtXXI S DO 4 NN=1tNMAX S N=NN-1 

DO 4 L=1tNMAX $ QCNNtLI=OeS DO 4 l=ltiM 
4 QCNNtLI=OCNNtLI+RCLtii*XCII*R(NNtli*W(II 

DO 5 M=ltNMAX S DO 5 N=1tNMAX 
5 OCM,NI=OCMtNI/2. S Pl=3.141592654 $ 00(11=0•5 $ 00121=0.125 

PMC11=-2e/PI S PM(21=4e*PMC11 $ NXM1=NMAX-l S DO 10 N=2tNXM1 
QOCN+li=-OOCNI/FL0ATCN+li*CFLOATCNI-1e51 

10 PMCN+11=PMCNI*CFL0ATC2*NI/ FLOATCi*N-111**2 

C TRANSIENT DISTRIBUTION 
12 READ 103tMODE S IFCMODEeEO.OI STOP 

PRINT 106 S 1=0 $ AMBDAI11=4.1213 
IFCMODE.EOe21 AMBDAI11=1.1578 S DLAMDA=3.19 

15 1=1+1 S IFCI.GTeiMAXI GO TO 28 S IFCieEOell GO TO 20 
IFCieLTe31 GO TO 16 S DLAMDA=AMBDACI-11-AMBDACI-21 

16 AMBDAIII=AMBDACI-li+DLAMOA 
20 DO 22 M=1tNXM1 S DCMtli=Q0CM+11 

IFCMODE.EOe21 DCMt11=-0CMt11 S 00 21 N=1tNXM1 
21 BCMtNI=O(N+1tM+11 
22 BCMtMI=BCMtM)+PMCM+li/FLOATI4*M+11/AMBDACII S F=Oe5 

IFCMODEeEOe21 F=2•/PI/AM~DACII-F 
CALL MATINVCNXM1t1tDETERMI S DO 24 M=ltNXM1 S BTCMtii=DCMt11 
F•F-QOCM+11*BTCM,II 
DCMt11=DCMtli*PMCM+li/FLOATC4*M+11/AMBDACII**2 $DO 23 N=1tNXM1 

23 BCMtNI=QCN+ltM+11 
24 BCMt~I=BCMtMI+PMCM+li/FLOATC4*~+11/AMBDACII 

CALL MATINVCNXMlt1tDETERMI S DAMBDA=O.O 
IFC~DE.EQ.210AMBDA=2./PI/AMBDACII**2 S DO 25 N=1tNXM1 

25 DAMBDA=DAMBDA+QOCN+li*OCNtll S DAMBDA=F/DAMBDA 
A~BDAIII=AMBOACII+DAMBDA 

26 IFCABSCDAMBDAI.GTeleE-6*ABSCAMBDACIIII GO TO 20 S GO TO 15 
28 PRINT 132tCAMBOACIIti=l•IMAXI 

PRINT 132tCC~TCNtllti=1•1MAXItN=ltNXMll 
PUNCH 132tCAMBDACIItl=ltiMAXI 
PUNCH 132tCCBTCN,lltl=1•1MAXItN=l•NXMll 
GO TO 12 S END 

. I 

! 

• t 
I 
I 
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APPENDIX F. Numerical Solution of Laplace's Equation 
for the Edge Region of a Disk Electrode for Large 

Exchange-Current Densities 

We reproduce below a listing of the computer program, which was 

61 adapted from a program written by Newman and used in this work to 

solve the system of equations 4-15 to 4-18 by finite difference methods 

with successive overrelaxation. 33 , 63 The solution is first obtained 

for a coarse mesh size H, which is then reduced to finer mesh sizes by 

successive doubling. 33 The number of mesh points is kept constant, 

thereby shrinking the n and t axes at each doubling, so that a higher 

accuracy can be attained for the potential closer to the edge. 

The program has to be rerun for each doubling; consequtive runs 

may also be necessary to Eeach a desired level of accuracy. A disk 

file (TAPE 5) is therefore needed to store the calculated values of ~ 

each time execution is terminated, to be read again as the initial 

values for the next run. TERR is the desired error limit and MM the 

maximum number of iterations allowed for each run. 

At the end of a run, ~ values are printed along with the total 
0 

number of iterations (JCOUNT) for that run and the number of mesh 

points Q[ERR) where the desired accuracy has not been reached. 

Execution stops when the desired accuracy is attained (KERR=O). 

Numerical integration is also performed to calculate the value of A 

(SADD in program notation) according to equation 4-20. 
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PROGRAM EDGEIINPUT,OUTPUTtTAPE 51 
DIMENSION'TR( 81t 8lltXfi011tYI1011 
COM"40N TRtXtY 

101 FORMAT fE8e4tl41 
102 FORMAT f1HOt216tF10e51 
103 FORMAT f1H1tE10.2t F10e6/IF10e3t F20e711 
104 FORMAT fE24e81 
105 FORMAT (F10e~t2E24.81 

REWIND 5 

DIVIDE H BY 1/2 AT EACH DOUBLING 
N= 81 S H=Oe20 S READ 101t TERRtMM S DO 1 J=1,N S XfJI=H*fJ-11 
YfJI•X(JI S 00 1 I•1tN 

1 TRfi,JI=YIJI +1.0/H/FLOATCN-11 S OMEG=le9 S NN:N-1 

C REMOVE NEXT CARD FOR FIRST RUN 
READ 151 lfTR(I,JI,I=ltNitJ•ltNI S REWIND 5 

c 
C REPUNCH NEXT CARD WITH LAST VALUE OF SADD WHEN DOUBLING 

SAD=O•O 
c 
C REMOVE NEXT SEVEN CARDS EXCEPT WHEN DOUBLING 

DO 15 IN=1•41 $ 1=4~-IN S YS=2*I -1 S TRIISt81J=TRIIt411 
DO 13 JN=1t40 S J=41-JN S JS=2*J-1 S TRfiStJSI=TRri,JI 

13 TRflS•JS+11=0•5*fTRIIStJSI+TRIIStJS+211 
IFIINeEOe11 GO TO 15 
DO 14 J=1t81 S TRIIS+ltJ!=0•5*1TRIIStJI+TRIIS+2tJII 

14 CONTINUE 
15 CONTINUE 

DO 9 M•1tMM S JCOUNT=M S KERR=O S DO 8 J=1tNNS DO 8 I=1tNN 
IF fleEOe11 GO TO 2 S IF CI.EQ.NI GO TO 3 
AR=TRII-1tJI+TRCI+1tJI S GO TO 4 

2 AR•2eO*TRf2tJI S GO TO 4 
3 AR•2.0*TRfN-1tJI 
4 If (JeEOeNI GO TO 5 S IF IJeEQell GO TO 6 

TNUR•AR+TRCI,J+li+TR(I,J-li-4.0*TR(I,JI S GO TO 7 
5 TNUR=AR+2e0*TRIItJ-11+2eO*H-4.0*TRfltJI S GO TO 7 
6 AR•AR+2.0*TR(It21 

TNUR•4•0*fAR/f4.0+2.0*H*XIIII-TRfitJII 
7 TNUR•OMEG*TNUR/4e0 

IFfABSITNURI.GT.TERR*ABSfTRfitJIIIKERR=KERR+l 
8 TRfi,JI=TRfltJI+TNUR 
9 IFfKERR.EQ.OI GO TO 10 

10 SUM=-Oe5*TRf1t11 S DO 11 l•2tNt2 
11 SUM•SUM+TRfl-ltll+2eO*TRIItll 

SUM=H/le5*fSUM+0.5*TR18ltlii-1•0*ALOGCXINI1 
SUM=SU~*Z.0/3.141592654 + SAO 
SADD=-Oe5*fTRI41t11-1eO/XI4111 S DO 16 I=42tNt2 

16 SADDaSADD+TR(l-1t11-1•0/XII-11+2eO*TRIItli-2•0/XIll 
SAOD=H/1e5*1SADD+Oe5*TR(8ltli-Oe5/Xf8lll 
SADD•SADD*2e013.141592654 + SAD S PRINT 104~ SADD 
Do· 17 I=41•N S DIFF=TRIItli-1.0/XIII 

17 PRINT 105, XflltDIFF 
PRINT 103, TERRtSUMtfX(IItTRIItllt l=ltNI 
WRITEI51 lfTRIItJI,I=1tN!tJ=ltNI S REWIND. 5 
PRINT 102t JCOUNTtKERRtOMEG $ STOP $ END 

.. 

• i 



.. 

{\ 
<.,) !j ;) : > 

~) 

-193-

APPENDIX G. Integration of the Potential at the Surface 
at Short Times or High Exchange-Current Densities 

The calculation of the current or the potential at short times 

(chapter 9) or the effective cell resistance in the presence of high 

exchange-current densities (section 4.2) requiresevaluation of the 

integral, 

where ~ is to be replaced by the electrode potential V in problems 
0 

involving high exchange-current densities or a potentiostatic process. 

Since the solutions obtained for ~ in these cases are singular
a 

perturbation expansions valid at two separate regions near the disk 

61 electrode, the integration is not straightforward. 

The potential distribution in the edge region is obtained by 

solving Laplace's equation for the boundary conditions prescribed for 

each problem as discussed in detail in section 4.2, appendix F, 

chapter 9, and appendix H. The potential in the outer region is given 

by equation 4-11 or H-3. The first approximation for the integrand 

in the outer region is obtained by substituting the outer solution 

into the boundary condition at the surface (equation 3-35): 

(V - ~ )/~ = 2Y/Tin 
0 0 

(G-1) 

where Y is the stretching variable which is equal to 8 or 1/J depending 

on the type of problem at hand. 
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Let us define, 

S(n)= r c;o) dn 

0 0 

(G-2) 

For the outer region, this becomes 

s(n) = S(l) JI (V-~0 ) - -- dn 
~ 

n o (G-3) 

= S(l) + (28/'IT) ln n • 

For the inner region, equation 2 can be expanded in the following manner: 

-

in v-~) 
( !II' 

0 
dii = l'i 

0 0 
lib (v-~ ) [Ti (v-~ ) ~ o dn + . .. ~p o - ;~ dn 

0 0 0 

~ dii I = (2/1r) Ylnn 

+ (2Y /Tr) I ~ b ~ 0 dii + 

The matching condition, 

- (Y/'IT) lnY 

11m s<n> = lim s<n> 
n+O 

gives the result 

S(l) = - (1/'IT) YlnY + AY 

(G-4) 

(G-5) 

(G-6) 

. : 

: 



where 

': v u '' u . - .. 
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1/n) dn - lnb J . (G-7) 

The integral has been broken up this way because the first integral in 

equation 7 is unbounded as b~ and the second integral as b~. The 

value of b should be picked so that ¢ deviates appreciably from the 
0 

primary distribution 1/n in the range ~~. The second integral then 

corrects for the small difference between ~ and 1/n at larger values 
0 

of n. 
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APPENDIX H. Integral Representation for the Potential 
at Short Times 

H.l. Mathematical Formulation 

The integral equation for the potential in the solution near a 

disk electrode is given by equation 2-21. After substituting 

equation 3-35 for the current density and converting into rotational 

elliptic coordinates, equation 2-21 can be.expressed as 

~0 2 
-=-

'IT ~ 
0 r 

0 

K(m) 
(H-1) 

1 + V1 - n2 
* 

where the assumption n << 1 has been introduced for the edge region. 

The assumption cannot be applied to the dummy variable n* because the 

integration has to be carried over the entire surface of the disk. 

Define, 

' ... 'IT2 In F(n,n ) K(m) (H-2) 

0 
1 + V 1 - n2 

* 

The potential distribution in the outer region is approximated by 

(see equation 4-11) 

(H-3) 

Substitution into equation 3-35 and integration gives 

= -
~ rr n 

(H-4) 

0 

.. 
\ 

·• I 

. ! 
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Hence, for the outer region, equation 2 can be written as 

- r -~~ [r K(m) F(n,n ) ... F(n,l) d11* 
1 +Vl- 112 

0 * 

r 

dn.J -r K(m) 

1 + .Jl - n2 
0 * 

The first integral in the brackets corresponds to the primary 

distribution. Proof: 

Let us write equation 2~21 for the primary distribution by 

replacing ~ with ~ and i with the primary current density (see 

equation 2-18): 

~ = I/4Kr 2 ro I 0.5 K{m) r*dr* 
=-

1Tr2 0 0 1TK 
~1- 2 r+r* 

0 (r*/r ) 0 0 

= 4*~ r K(ml 
dn* 1T2 

VI - 112 +VI- 112 
0 * 

Thus, independent of the value of n, we have 

4 fl K(m) 
1T2 0 v-;;::1=-=11=2 =+'--v--;1=:-::n=; 

(H-5) 

(H-6) 

(H-7) 
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' For small values of rt ' the second integral in equation 5 can be 

approximated by 

' r Jn 
K~m} dn ~ 

4 
n ' ( ln ~ , + 1) • ln n dn = 

1 +VI 
* 

- n2 0 * 0 

Equation 5 for the outer region therefore reduces to 

' 
- ' 4n ( 4 ) F{n,n ) = F(n,l) - 1 + --2-- In --, + 1 • 

7T n 

In the inner region, equation 2 can be expressed in the form 

-' 
[~ 0 <Ti.l ' 16 

In 
a¢ 

F (n, ii ) =-- K(m) - n. ~ J n.dn. 7T2 an 
0 n=n* 

Both n and n* are small in the inner region. Therefore, 

lim K(m) = 
n,n*40 

lim ..!. ln --.!.§. = ln 
n n 40 2 1-m 
' * 

16/8 

1
-2 -21 n - n* 

Equation 10 can now be broken up into several parts: 

216 I~~ ln(l6/9) r - - _, - -2 -2 F(n, n ) = -- ccn*> dn* - lnjn* - n j 7T2 
0 0 

G (ii*) dn* 

(H-8) 

(H-9) 

(H-10) 

(H-11) 

(H-12) 
' 

dTi·l· [.~ ln 16/8 
c<n*> dn* + Jn ln 16/8 

,-2 -2, ,-2 -2, n* - n n* - n 
0 n 

·~, 
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where 

- 1 (H-13) 

In the original unstretched coordinate system, the first integral can 

be expressed as 

= ln(l6/6) (___,;1;.;...__ 
16 4Kr tp 

0 0 

ln(l6/6) 

16 

1 

[ ( 2!_ *' + 1) dTl 0 2~ E.:=O 
0 

~ro 2Virdr - 1) • 

0 

ln(l6/6) ( I 

18 4Kr tp 
0 0 

(H-14) 

Under galvanostatic control, I= 4Kr ~'and the integral is identically 
0 0 . 

zero. For potentiostatic control, the current is given by equation 9-9, 

and the integral is therefore of order 18 and still small compared 
_I 

to the second integral, which is of order unity. For large Tl , the 

last integral in equation 12 can be approximated by 

r 16/6 _I 16 - I _12 I 

ln 
1
-2 ~2 1 

dTl ~ Tl ln e- Tl ln Tl + 211 (H-15) 
* 

0 Tl* - Tl 

-Equation 12 for the inner region thus becomes at large Tl 

- - _I 2/e 1 ( Injn!- r;21 c<n*> dn* + { ln 16/6 c <Ti*> dn* F(n,n ) =- -- ,-2 -2, 71'2 n*-n 
0 Tl 

- 2~·1 
(H-16) 

- I 

ln 16 + n 
I _12 

- Tl 6 ln Tl 
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Finally, the matching condition, 

' lim F(n,n ) = 
n '-+O 

- - _, 
lim F(n*,n ) _, 

n-+00 
(H-17) 

has to be satisfied. Substitution of equations 16 and 9 gives, after 

cancelling the matching terms, 

~ o <n> = ; J 00 

lnln~ - n2
1 ccn*> dn* 

·o 

which is identical to equation 9-5. 

H.2. Numerical Analysis 

(H-18) 

The evaluation of equation 18 for numerical solution may become 

I 
quite complicated algebraically; however, we will outline here the 

present method for the interested reader and try to keep the analysis 

as rigorous as possible. The bars over the stretched variables and 

the subscript o, which implies that a quantity is evaluated at the 

electrode surface, will henceforth be eliminated for simplicity in 

notation. 

where 

Equation 18 can be broken up as follows: 

II 

a(n) + b(n) + d(x) = n(n ¢ + 1/n ) for ~n 
s s s 

a(n) = n
8 
J n. 

0 

' = n(n¢ + 1/n) for n>n 
s 

(H-19a) 

(H-19b) 

(H-20) 
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b(n) = jn• 1nln! - n2 l (2~: - 1) dn. 

0 

(H-21) 

d(x) = tf'n! ln 

0 
I. 1 1 I 
.rx:; IX 

(H-22) 

' ~ = (~ - 1/n)/n (H-23) 

II 

~ = <~ - 1/n ) /n (H-24) s s 

x • l/n4 (H-25) 

This way, equation 18 can be integrated inside a finite domain. The 
II 

variable ~ is defined for convenience in the numerical solution of the 
f II 

integral equation because at the breaking point n , ~ = ~ . 
s 

Let j denote the mesh point at n = n and jj at n = oo or max s max 

~ = 0. We divide the n axis into j - 1 equally-spaced increments max 

of ~n and the x axis into jj - j equally-spaced increments of max max · 

l:ix, namely , 

n 
~n = s 

jmax - 1 

In finite difference form, the first integral in equation 19 can be 

written as 

2 

(H-26) 

(H-27) 

(H-28) 
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We define the functions, 

which can be integrated analytically to give 

j ~ (n; 

3 

h(n •• n>lns = 2) n* ~ - n + 66.n 

n3 n* - n 
+ 6Lln ln 

n* + n 

Note the limiting cases, 

f(n.,n> = - lim 
n*+n 

lnln; 

n2 
* --a 

n2 
- n

2
l +-8 

-
n3 
* 9Lln 

n n3 
s =--

JLln 

-

(H-29) 

(H-30) 

(H-31) 

ln n2 

(H-32) 

n n2 
* 

3Lln 

(H-33) 

(lnn2 - 1) 

In terms of these functions f and h, equation 28 becomes, after some 

rearrangement, 
jmax-l 

L fh [(j-l)Lln,nJ - h{ {j-2)6n,n] (H-34) a(n) a$* 1 [£(Lln,n) - f(O,n)] + 
' j=2 

+ f(jLln,n> - f[{j-l)Lln,nJ} + $* j [h(n .~- h(n -Lln,n>J , s s max 

; 
; . : 
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The second integral in equation 19 can also be evaluated analytically: 

b(n) 

and 

1 .., __ 
4n s 

n - n 
+ n ln s + I n n + n 4 s s 

(H-35) 

(H-36) 

The third integral can be written in finite difference form as follows: 

d(x) 

This can be transformed into the form, 

1 1 1 
ln--- 3/4 

v'x* IX x* 

d(x) • <I>~ j je{(jj - j - 1) Llx,x] - e( 1/n
8

4 ,x) l 
, max max max f 

(H-37) 

(H-38) 

jj -1 

+ .E $; ,j I e[ (jjmax - j + 1) l>x,x] - 2e[ (jjmax - j) l>x,x] 

j=jmax+l 

+ e[(jj - j - 1) Ax,x]~ + <1>: j. e(~x,x) max , J 
max 
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where 

e(x.,x) 1 
- 2Ax f x* lnl_!_- 1-1 

~ ix 
0 

(H-39) 

= ~ lx1/4 ln _!_- .LI 
1/4 1/4 

1/4 X* - X I . Ax * rx; rx - x 1n 1/4 1/4 
X* +X 

Note also that as x + ~' 

2 ( 1/4 . 1 + 2x*l/4) e(x.,x) = Ax x* ln vx,; 

and as x* + x, 

e(x,x) 2 1/ 4 ln !_ =axx rx 

(H-40) 

(H-41) 

Equation 19 can now be represented by the generalized expression, 

(k=l ,2'. • • ' jj -1) max 

II t 

where xj ... <t>. ,j for j <; jmax' xj = <t>. ,j for j ~ jmax' 0 j ,k is the 

Kronecker delta, and the coefficients Bj,k' ~,and Dk are given as 

follows: 

(H-42) 

(H-43) 

.. 
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Bj,k = h[(j-1) ~n,nkJ - hf(j-2) ~n,nkl 
l<j<j 

max (H-44) 

Bj k = h(n ,nk) + e[ (Jj -j -1) Ax,x.] , s maxmax k max 

(H-45) 

.. e[ (jj -j+l) 6.x,xk] - 2e[ (jj -j) 6.x,x. ] max max k 

(H-46) 
+ ef(jj -j-1) ~x,x.] max k 

= - rrn s 
(H-47) 

j <k<jj 
max max 

Dk = - b(nk) + rr/ns 

~jmax 

Dk = - b(nk) + rr/nk 
j <k<jj 
max max 

(H-48) 

(H-49) 

(H-50) 

Equation 42 represents a set of linear equations which can be solved . 

by standard methods for the unknowns X .• The equation including the 
J 

unknown Xjj has been dropped from this set because its coefficient 
max 

is infinite (the function e is undefined at x = 0). However, we know 

in advance that X should become zero as x ~ 0. 
jjmax 
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H.3. Computer Program 

PROGRAM SHORT calculates the potential ~0 at small times on the 

surface of a disk electrode, and integrates It according to equation 4-20. 

It calls SUBROUTINE MATINV (see appendix C) to solve equation 42. One 

input card is required in order to specify j , jj , n , and b 
max max s 

(see equation 4-20). 



.. 

/ \ 
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C TRANSIENT RESPONSE OF A DISK AT SHORT TIMES 
DIMENSION BC10ltl01ltD(l0ltlltEC20tl01ltFf101,101ltGf101lt 

1HC101tl011 
COMMON BtD 
HP=3e141592654 S BB=1e39 S READ 101tJMAXtJJMAXtES 
SES=ES*ES $ JJMt=JJMAX-1 S JMl•JMAX-1 
JP1=JMAX+1 S JJMJ~JJMAX-JMAX S DE• ES/JM1 S DZ•1e0/JJMJ/ES**4 
DO 18 K=bJJMl S IFCK-JMAXI 1tlt2 

1 ETAS=fK-11*DE S SETAS=ETAS*ETAS S IFCKeEQ.11 GO TO 3 
ZS=leO/SETAS/SETAS S RZS=SETAS S RRZS=1e0/ETAS 
IFfKeNE.JMAXI GO TO 3 
GfKI~-2•0*ES*ALOGC2eO*ESI+ES/4.0*f2eO*AL0GCES1+7eOI S GO TO 4 

2 ZS=CJJMAX-KI*DZ S RZS=leO/SQRTfZSI S RRZS=ZS**Oe25 
ETAS=SQRTCRZSI S SETAS=RZS 

3 XL1=ALOGCABSCSES-SETASII S XL2=ALOGCABSff ES-ETASI/( ES+ETASIII 
GCKI=-0•25/ES*f3e0*SES+SETASI*XL1+ETAS*XL2+1•75*ES 
IFIKeNEe11 G(KI=G(KI+Oe25*SETAS*ALOGCSETASI/ES 

4. DO 1 J=1 tJMAX 
ETA=(J-11*0£ S SETA=ETA*ETA S IFIJeNE.KI GO TO 5 
IFIK.NE.11 GO TO 41 S HfJtKI=O•O S FfJ~KI=O.O S GO TO 1 

41 FCJtKI=ETAS*SETAS/3eO/DE*fALOGI2•0*ETASI-4e0/3eOI*ES 
H(J,KI=-FfJtKI S GO TO 7 

5 XL1=ALOG(ABSCSETA-SETASII S XL2=AL0G(ABSffETA-ETASI/(ETA+£TASII) 
6 HH=CSETA-SETASI/8e0*(XL1-1.0) 

FCJtKI=ICSETA*ETA*XL1~SETAS*ETAS*XL21/2e0-SETA*ETA/3eO-ETA*SETASI/ 
13e0/DE S HfJtKI=fHH-FfJtKII*ES S FfJtKI=fHH+FfJtKII*ES 

1 CONTINUE S DO i3 J=JMAX,jJMAX S Z=fJJMAX-JI*DZ 
IF(JeNE.JJMAXI GO TO 8 S Ef1tKI=O.O S GO TO 13 

8 RZ=1e0/SQRTCZI S RRZ=Z**Oe25 S IFfJeNEeKI GO TO 10 
ECJJMAX-J+1tKI=-2.0/DZ*RRZS*AL0Gf4.0*RZSI S GO TO 13 

10 IFCK.NE.11 GO TO 11 
EfJJMAX-J+ltKI=-2eO/DZ*RRZ*fALOGCRZI+2•01 S GO TO 13 

11 Xll=ALOGfABSfRZ-RZSII S XL2=ALOGfABSffRRZ-RRZSI/fRRZ+RRZSIII 
E(JJMAX-J+ltKI=-2•0/DZ*fRRZ*XL1-RRZS*XL21 

13 CONTINUES B(Kt11=Ff2tKI-Ff1tKI S DO 14 J=2tJM1 
14 B(K,JI:H(JtKI-HfJ-1 tKI+FCJ+1tKI-FCJtKI 

8(K,JMAXI=HCJMAXtKI-HfJMAX-1tKI+ECJJMJtKI-ECJJMJ+1tKI 
DO 15 J=JP1t-.,IJM1 

15 BCK,JI= EfJJMAX-J+2tKI-2.0*ECJJMAX-J+1tKI+EfJJMAX-JtKI 
BCK,JJMAXI= Ef2tKI S BCJJMAXtKI=O.O S IFfK-JMAXI 16t16t17 

16 BfKtKI=BfKtKI-HP*ES S D!Kt11=-GfKI+HP/ES S GO TO 18 
17 BfKtKI=BfKtK)-HP*F.TAS S DfKt11=-GfKI+HP/ETAS 
18 CONTINUE S D(JJMAXt11=0•0 S CALL MATINVfJJM1t1tDETERMI 

PRINT 102 S DO 19 J=1tJMAX S EC1tJI=fJ-11*DE 
19 B(J,11=ES*D!Jt11+1.0/ES S DO 20 JaJMAXtJJM1 

FC1,JI=IJJMAX-JI*DZ S EC1tJI=1•0/FC1tJI**0•25 
20 BfJt11=E(1,J!*DCJ,11+1.0/Ef1tJI 

PRINT 103tfE(l,JitBCJtlltJ=1tJJMll S SUM=O.O 
DO 21 I•3tJMAXt2 S SUM=SUM+OII-2t11+4.0*DCI-1t11+Dflt11 

21 JFfEf1tlleGE. BBI GO TO 22 
22 PRINT 104tEC1tll S SUMM=fle0/ES+SUM*DE/3•0*ES-AL0GfEfltiiii*2•0/HP 

J=I+2 S SUM=O.O S DO 23 I=JtJMAXt2 
23 SUM=SUM+Bfl-2t11-1eO/E(1,I-21+4eO*!B(I-lt1l-1eO/Eflti-111+B(I,ll-l 

leO/Efltll S SUM=SUMM+SUM*DE/3e0*2•0/HP SPRINT 105tSUMtSUMM 
PRINT 102 S DO 24 I=JMAX,JJM1 
Gfii=0Cit1l!Ff1tll S F(ltii=SQRTfFfltiii 

24 PRINT 106tFI1tlltGCII S SUM=O.O S DO 25 I•JPl,JJMl 
25 SUM=SUM+(Gfii+Gft-lii*(Ff1tl-11-Ff1tlll/2e0/HP 

PRINT 106tSUM S STOP 
101 FORMATC2I4tE8.41 
102 FORMATC1H1t5Xt*ETA*tl5Xt*PHI*I 
103 FORMAT(Fl0e3tF20e71 
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104 FORMAT(//6Xt*B=*tr8.3) 
105 FORMAT(6Xt*A=*tE13.6t6XtE13.6) 
106 FORMATC2E1~e6) 

END 

.. 
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NOMENCLATURE 

The numbers in parentheses refer to equation numbers. 

0.51023 

see equation 4-7 

see equation 4-6 

constant defined in equation 4-20 

coefficient in seri'es for concentration (B-8) 

constant defined in equation G-7 

dimensionless velocity derivative on the surface of a 

rotating sphere (2-43) 

coefficient in series for potential (2-13) 

coefficient in series for concentration (6-29) 

coefficient in series for Ui 

coefficient in series for U 

coefficient in series for Ti 

concentration of salt, mole/cm3 

concentration of species i, mole/cm3 

. 2 
double-layer capacity, f/cm 

apparent double-layer capacity in the equivalent circuit 

(figure 8-3), f/cm2 

t 
coefficient in the galvanostatic series for ~ (7-4) 

. t 
coefficient in the potentiostatic series for ~ (8-1) 

32/37T
2 

(7-26) 

2 diffusion coefficient of salt, em /sec (2-50) 

2 
diffusion coefficient of species i, em /sec 
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symbol for the electron 

dimensionless overpotential (A-7) 

dimensionless surface overpotential (A-6) 

dimensionless concentration overpotential (A-6) 

Faraday's constant, 96,487 C/equiv 

function defined by equation H-2 

dimensionless concentration on a sphere at high rotation 

speeds (5-3) 

dimensionless velocity components for the rotating 

disk (2-32) 

functions in se:des for the velocity components of 

the rotating sphere (2-40) 

functions in short-time series for concentration (6-10,11) 

2 gravitational acceleration, em/sec 

function defined by equation H-13 

current density, A/cm2 

capacitive current density, A/cm2 

faradaic current density, A/cm2 

2 normal component of the current density, A/em 

2 exchange-current density, A/em 

total current, A 

initial current, A 

final current, A 

limiting current, A 

.. 
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dimensionless exchange-current density (4-21) 

dimensionless exchange-current density for linear 

kinetics (4-2) 

undetermined constant in appendix B.· 

(1/A )(3/a) 213 , constant defined in equation 6-30 
. 0 . 

complete elliptic integral of the first kind 

see equation B-19 

see equation 2-22 

syuibol for the chemical formula of species i 

Legendre function of o~der 2n (see reference 7) 

number of electrons transferred by the electrode 

reaction (3-1) 

dimensionless limiting current density (4-22, 5-l) 

2 flux of species i, mole/em -sec 

pressure, dyne/em 2 

dimensionless dynamic pressure (2-34) 

dimensionless capacity (B-17) 
'• 

Legendre polynomial of order 2n 
. . 2 

dynamic pressure, dyne/em 

charge density on the metal side of the double layer, 

C/em
2 

dimensionless capacity (6-35) 

radial distance, em 

radius of disk or sphere, em 
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universal gas constant, 8.3143 J/mole-deg 

resistance, ohm 

homogeneous rate of production of species i, mole/cm3-sec 

apparent direct-current resistance of equivalent circuit 

(figure 8-3), ohm 

apparent alternating-current resistance of equivalent 

circuit (figure 8-3), ohm 

normal distance of surface from axis of cymmetry, em 

r 2ntv, rotational Reynolds number 
0 

stoichiometric coefficient of species i in electrode 

reaction 

function defined by equation G-2 

Schmidt number 

time, sec 

total period of charging, sec 

absolute temperature, °K 

2 mobility of species i, em -mole/J-sec 

t eigenfunction in the galvanostatic series for ~ 

complex, dimensionless potential in the solution (8-13) 

velocity, em/sec 

electrode potential relative to infinity, V 

amplitude of applied alternating potential, V 

potential with respect to a reference electrode of the 

same kind, V 

potential with respect to a reference electrode of a 

given kind, V 

.. 



I 

-. 

t) _.) 

v 

X 

y 

y 

z 

z 

z 

z 

z n 

z m 

Greek 

a ,a a c 

a,a 

a 

0 

0 

0 m,n 

T) 

T) 

T) 
c 

'I 
I • 
\ ~"" 

symbols: 

q 
•' ' I 

-213-

scaling factor for the potential, V 

distance along electrode from its upstream end, em 

variable defined in equation 9-7 

normal distance from the electrode surface, em 

stretching variable (G-1) 

axial distance, em 

'r:./126, similarity variable in short-time series for 

concentration 

charge number of species i 

stretched radial coordinate (2-41) 

-z+z_/(z+-z_) for a single salt,-n/sR with supporting 

electrolyte 

impedance, ohm 

eigenfunction in series for concentration (6-26) 

eigenfunction in series for concentration (B-8) 

transfer coefficients 

a /Z, a /Z, transfer coefficients 
a c 

-1 
velocity derivative at the electrode surface, sec 

Nernst diffusion-layer thickness, em 

constant defined in equatio~ A-13 

Kronecker delta 

rotational elliptic coordinate (2-14) 

total overpotential, V 

concentration overpotential, V 
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surface overpotential, V 

parabolic coordinate {4-14 or 9-2) 

exponent in composition dependence of exchange-current 

density 

2 surface concentration of species i, mole/em 

-1 .,.1 
conductivity, ohm -em 

eigenvalue characteristic of Ti 

eigenvalue characteristic of z n 

eigenvalue characteristic of ui 

eigenvalue characteristic of diffusion 

viscosity, g/em-sec 

electrochemical potential of species i, J/mole 

kinematic viscosity, cm2/sec 

number of species i formed due to dissociation of one 

mole of electrolyte 

frequency of applied potential, radian/see 

WCr /K, dimensionless ·frequency 
0 

angular rotation speed, radian/sec 

polar angle in spherical coordinates 

function defined by equation A-5 

stretched dimensionless potential in the solution 

(4-13 or 9-1) 

potential in the solution, V 

ohmic drop in the solution, V 

rotational elliptic coordinate {2-14) 

similarity variable for Lighthill transformation {2-55) 
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parabolic coordinate (4-14 or 9-12) 

density, g/cm3 

time constant for decay 

angle froa pole of sphere 

dimensionless time (6-2) 

dimensionless time for charging (7~6) 

dimensionless time for decay (7-16) 

dimensionless total period of charging 

dimensionless concentration 

dimensionless concentration for concentration step (6-14) 

dimensionless concentration for flux step (6-15) 

. t 
constant in series for V (normalized to unity) 

t 
eigenfunction in the potentiostatic series for ~ 

dimensionless axial coordinate (2-33) 

dimensionless axial coordinate (6-3) 

average 

limiting current 

reactant 

at the electrode surface 

far from the surface 

anion 

cation 
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superscripts: 

0 pure state 

p corresponds to primary distribution 
,.. I 

i 

ss steady-state part 

t transient part 

• ! 

--. 
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