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ABSTRACT
| ﬁaés tr;nsfef to a rotating disﬁ électrodé is calculated at large
times after.a‘cénceﬁt:ation step,drva_flux sﬁep at'thg sgrface. Radial
dependence of”coﬁéentration is ignored. Further appliéatién.of‘results

to treat more complex boundary conditions is discussed. i

Key Words: Concentration step, flux step, boundary-value problem,

: time constant
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Introduction

Nonsteady-state methods sre commonly emnloyed in electrochemistry
for the study of electrode kinetics and'nass'transfer in electrolytic
»solutions. The transient beherior of an electrochenical system is
determined by a nﬁnber of procesSes‘of'varying complexity, which may

"occur,concurrently.at the electrodevsurface and the bulk solution. To
- name.a'few, these processes.include‘convective diffusion;nand the |
' -capacitive discharge of the electricldouble layer'&ue to a faradaic
reaction and/or transfer of charge through the bulk solution in the
presence of a nonuniform electric field. 2 3

The fundamental treatment of trsnsient diffusion et-electrode
surfaces has been of interest since the clessical study of the problem
eerly in the centurybbvaosebnrgh and Lash-Millert4< The rotating
 disk electrode‘hesebecome popnlsr for.convective'diffusion problems
because previous applications of this geometry have been qulte frultful

»

in the assessment of its hydrodynamlc conditlons, mass transfer

AL and the currentvdistribution in presence of an

9,10 hs,u Has

characteristics,
electric field and complex electrode kinetics.
solved for the first time the transient diffus1on equatlon for the S
disk geometry. Since convection is 1gnored in that treatment, the
, results are valid only for very short times. ‘Subsequent’enelytic'

efforts 2 13

w1th the con81defat10n of axial convection are alSO
limited to small timeVintervals due to}approximate,methods of analysis.

Fairly accurate numerical solutions are available for response to -




flux stepiaﬁd concentration stépll*"_l5 at the surface. 'Howeverg
analytiéiresﬁlﬁé are 5lways mOre.dééixablé fofpdesignICalculations,
dete:min%tion'of relaxation‘tiﬁes,.and investiga#idn of EOmplex ) .
béundér& conditidné involving eiéctrode kinetics éﬁ& ca?aéitive effects.v.
Krylov and Babakl6 have re;enfly atteﬁpted an exact solution of
the aﬁial convective-diffusién”equdtiop by a classical perturbation
expansion téchnidue; Théy have reported fésuits'for fhe concentrétiqﬁ
step-and flux.step cénditions. .Seiméﬂ;srderived independently the
same:solution'for_the concentr;tion étep.i These-results ﬁro#ide.
considerable improvements'over tﬁé previoﬁs anaiytic ﬁorkvbut are 
[étill confined to félatively shofﬁAtimes if a‘féésdnable:numBérgéf
terms are to be retained in thevseries expansion. The.purpose of
this papér is tbvcontribute to the past éffort by pfesenting'an
n‘élternative treatment for large times, so'th;t the results can,Be
employed ihterchangeably with the shért-timelééries of Krylov and.
" ‘Babak w"_ith'in‘ their ranges of applicability. o
In trgétiné_préblems of this kind, it is éommonly #séumed that:
the concent:aﬁién variationé in the'solutioﬁ are confined to a fhin
region near the électrode sufface (high Péclet numbefs).' Consequently,

the axial velocity component can be appfokimated Bys-g

vy = ~ay29¢9/v s S . _ R ()
where a = 0.51023, y is the axial distance from the electrode-surface,'

2 is the angular rotation speed, and Vv is the kinematic viscosity.

It is further assumedvthat the disk is uniformly_accessible, and thus



~ radial coﬁvection.can be ignoréd. One should realize, hoﬁévgf; that

the latter assuﬁption is ihtroducedihereiy as a ﬁ;thematical convenience.
It is w§l1 accepted by now ﬁhaf radial convectiqn becomes significant
- below fhe limiti.ng‘cﬁfrent.9 -Tﬁé egperimentél data of Nanis and Klein17
seém to indicate-tﬁat.this assumptién.may le#d fo appreciablé error
ésﬁecialiy during the transient Euild-gp»of:o&érpotential after a step

increase in the curreat.
. Theoretical Formulation
Without the radial terms, the-tfansient equation for'cqnvective

diffusiqn :eéds.‘

5 ) | . _ , S
e +t v .m— = D— . . : - (2)
ot y oy : ay2 A o :
We introduce the diménsionless variables
1/3 . 2/3 L - o L
= D. (& - , : S
e ® & . @
» | _1/3 o ,‘“_"'3' ,.L,. RN
' : Y] : .
t=y G5 »/; @
cw~é : e : ‘
Q = = (concentration step) , -~ - (5)
or ,
o Cx~C o R R
- 0 = Gl - (flux step) - . ' (6)

z=0 -




~ Equation 2 thus becomes

. . " . » .. : ) 2.. . . . . .
R Q)
o o R

Consider the build-up case after a step increase in the concen-

 tration or flux. The boundary-édnditions are

©=0 as vi.;.*f“ :

6 0 a 6

"o
o

) =1 at ) C”;,o;:é,>.o (éoncghtféfioh'Sﬁép);”‘(9’_

or

It i$ possible to express O 'in terms of a steady-state and a transient

part, :
. "

0=0° _o¢ (build=wp) , . - an

- -5o--that each part satisfies equation.7 separately.’ The boundary: - -
‘conditions for O are

0% = ¢ as L > -  ‘4. _ . an

0°% =1  at =0 (conceﬁfration step),y
or | } (13)

20°%/0z = -1 at £ =0 (flux step) .

These yield the solutions
. _ | . -
ss 1 R
"7 = —— e © dx (concentration step), (14)

S .

3
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e L3 - S
‘O o= e dx (flux step)’ . : (15)
where ;hekintegrél.cén be found as a tabulated fuﬁction of C;ls The

transient part df‘concentratipn satisfies the conditions
0 =0 - as L e : - -

S o Th . - -‘(16) :
v =06 at  8=0, L

0? = 0  ' at . =0, 6?>‘0 (éoﬂcentration step), _ (17)

900z =0 at £ =.0,0>0 (fluxstep) . - -. -~ (18) -

The calculation of transient overpotential decay after a step
decrease in the surface concentration or flux may also be of interest. 7v

 However, it-is sfraightforward to show that- -

0 = of . (decay)., - - - a9

and- therefore abseparatg formulation is*not"pecéssafyvéontraryrtq
the analysis giﬁen by Nanis and Klein.l7‘

_ Thé solutién to Qt can be derived coﬁﬁéniéntly'in terms of.a
bouﬁdary—value problemigince equation 7 ié sepafaﬁle,‘and the conditions
ié to 18 are homogeneous in.the C-cﬁdrdiﬁate. -Le; Qs_gxpfess Gt in‘.

the form



where Zn'is“an eigenfunction, and A isfthe eigenvalue associated
with it.' Substitut1on 1nto equatlon 7 and conditions 16 to 18 yields
the Sturm—Liouville system

"- . L}

Z _+3czz- +AZ =0,
- n . n

, nn
Z () =0, .
Afn,, S U N (2. .
_ Zn(O)_= o, Zh (0) =1 (concentration step),
or : : Zn () =0, “Zn(O) =1 . (flux step) .
This system has.been solved here numerically by a methodHCOmmonly
_employed 1n this 1aboratory._19 2; .The coefficients Bn age.given by .
| ss C3
0 Z (C)dC _
B o= o, )

f e Z (C)dC
%
'h nhd'oe?eieyelueteqhhyyngne;icelhinteéretion;.n”'”
- Table 1 lists the eigenvalues and the coefficients Bﬁ after they
" have been extrapolated to zero mesh'size. The first three-eigen-
functions are plotted in figures 1 and 2 for concentration step and
flux step, respectively. The results are compared with the short
time series of Krylov and Babak in figures 3 and 4. Ihe‘two series.
match quite well over a certain fange of 8 for each csse even though
only_three_tefms were used of.each'series to plot these figures;

| | 1,14,15 .

Agreement with previous numerical calculations is also quite

satisfactory.



Table 1.' Thetfirst tgnheigenvalues~and the related coefficienté Bn_of
the eigenfunctions.

- concentration step. flux>step

o . S ' : B - A Lo B
S n n _ n : n

0 .. '7.71644439 .  1.12818046. . . 2.58078493 - 0.663516066

1 . 18.1596045 10.90505798 12;3q99728;j-‘ 10081564022 -

20 31.1962389 - 0.7907692 . 24.4331401 0.034457046 .

45.7926549

61.6691473

78.6461928

. 96.5966836

115.424957

- 135.05591 -

0.718387

© 0.596032

 0.570071

- 0.548117

155,42872-' o

0.666834

0.627481

0.52920

138.3054830
53.5740271

©.70.0220380

- 87.5010784

1105.902059

125.140833

. 145.15016

© 0.01962199
' 0.0128965

0.0092267

0.0069829

" '0.0055048
. 0.0044645

-~ 0.0037089
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. Figure 1. The first three eigenfunctioﬁs for the

~ concentration-step case.
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Figure 2. "The first three eigenfunctions for the

flux—steﬁ case.,
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Figure 3. Comparison of the short-time and the longétime series for a concentration step.
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- Figure 4. Cdmparison of'the short~time and long-time series

for a flux step.
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Application of the superposition- integral makes p0381b1e the

- treatment of more complex boundary conditlons..

ey = [e, (0)-c,] ecce;c>

0. (8-0", )dd' , . (23)
lg=g* ¢ -

ver'eqhivaiemtly; :
w =T T

where the subscript o denotes conditions at the electrode surface, and

'Oc'and Gf. represent the coneentfatien—step’and”the fluxdstép'solutioné,”‘

DY

Do

'tespectively.' leferentlation of equation 23 yields an explicit

Texpression for the flux at the surface,

dc

S -aecl
=1 = Te(0)=c] me—
at =0 o’ . f ag:v CéO_
o feaco' %, | -
B S — . . -de' | . (25)
oy P Temeee Tl T
' a 16=6-6"

which may prove more useful for certain calculations.



Discussion and Conclugions

-

‘The results-enable‘the'assessment of time constants,

roexste L e

‘for build—up or decay of a concehtretion gradiene afeerba step chenge.
in the surface concentratlon or flux For a concentratlon step,»

B K = 0 45142 and for a flux step, Kv- 1 2623 These results are
accurate insofar as the radial dependence-of coneentration can be
ignored,‘sucﬁ-as"invheat—transfer‘studiesla end'méss transfef in
_noneieetrolytes; In:eiectrolytic mass trensfer; esuation 26 is
sufficienf for meking estimates, bufbcorrection for nenuniform current
distfibutioe.is;prebebly necessary for more accurafe calculations.

>A complete analysis of the convective diffusibn equatioﬁ_with radial
'vdependenee appears to be'vefy eomplicated eqd'rather demsndihg ip
nqmerical‘effor;,A Howevef,'an,asympﬁotic ealculetion for large times -
. ﬁ§j Be tfectaﬁle.fe”detetmiee the:necessary,timelébns¢en£s,22. o
- .Double—ieyer effects may Beeome importent'in trensieﬁt electrode

2,3 Delahay and coworkers 23,24 have d1scussed how to’ treat

precesses.
the conditions at an electrode surfece in the preSenee of mass
eraﬁsfer, fa;adaic.reactien; and aoﬁﬁie—layer cherging{ Eduationsv23
to 25 can be applied conveniéntly to treat these effeets.. In many
cases, one can express-the fluk'es a‘fupction;of the sufface concentra-.

tion, so that a numerical solution of'the integral equation 24 or 25

is necessary.zg The capacitive effect of the double layer has been
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investigated in a. solution w1th single reactant .and excess supporting
electrolyte22 and was found to be negliglble inlsituations where the
'1'transient process is mass transfer controlled. 17 These integral

: equations can also be used 1n a straightforward manner to calculate
the potent1a1 in current-controlled applications or, vice versa,

the~current'in potentiostatic cases.-
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- Nomenclature

a . 0.51023

. ' P . . AL
Bn’ coefficients in series for ©

o L 3
c concentration, mole/cm

: . ] . . 2
D ' diffusion coefficient, cm /sec.

K (/A ) (3/2)%3, constent defined in equation 26

- Se: V/D,'Séhmidt'humhet

t . time, sec
vy axial velocity, cm/sec
y. . axial distance from disk, cm
- . . - t
.z eigenfunctions in series for O
"Tn :
- - . At
An . elgenvalues in series for O
. 2
V. kinematic viscosity, cm/sec
9) angular rotation speed, radians/sec
. T.- characteristic time constant, sec-
.0 dimensionless time
0. . dimensionless concentration
C dimensionless. axial distance from disk
- Suffixes:-
¢ concentration step

f‘. flux step:

0o - evaluated at the électrode sufface.
ss sﬁeady state part

t _transient part

© evaluated far away from the disk
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