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The Analytic Evaluation of Third and Fourth Derivatives 

for Hartree-Fock Wave Functions 

Jeffrey Farrell Gaw 

Department of Chemistry 

University of California 

Berkeley, California 94720 

ABSTRACT 

First and second derivatives of the energy with respect to nuclear 

perturbations.for Hartree-Fock wave functions have provided much 

information regarding the curvature and character of potential energy 

hypersurfaces. The introduction of analytic second derivatives not only 

allowed the calculation of quadratic force constants for molecular 

species that cannot be obtained through finite differences of energy 

gradients, but also increased accuracy and reduced computational time 

required to obtain these force constants. Third and fourth derivatives 

yield even more information concerning the potential energy surface by 

quantifying the anharmonicity. This work details the first 

implementation of the evaluation of analytic third derivatives with 

respect to nuclear perturbations for Hartree-Fock closed-shell 

molecules. 
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The calculation of analytic third derivatives divides neatly into 

two calculations: The first is the contribution from the perturbation of 

the basis set; and the second is the contribution from the perturbation 

of the molecular orbital coefficients. The perturbation of the basis 

set yields first, second, and third derivative atomic orbital 

integrals. These are calculated using Hermite gaussian functions and , 
Rys quadrature. Details of the algorithms are presented. 

The perturbation of, the molecular orbital coefficients leads to 

first- and second-order coupled perturbed Hartree-Fock equations. These 

are reduced to first-order results. The ensuing energy equation 

coupling the two contributions is presented along with details 

concerning its evaluation. 

Results comparing analytic cubic force constants in normal 

coordinate space to those derived from experimental data for the water 

molecule are reported. Agreement is excellent. Initial timing 

information indicates that the analytic evaluation of third derivatives 

is computationally less expensive than the calculation through finite 

differences of analytic second derivatives. 
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Preface 

The analytic evaluation of energy derivatives requires an intimate 

knowledge of the evaluation of derivative atomic orbital integrals and 

the coupled-perturbed Hartree-Fock equations. Each of these subjects is 

complicated enough to warrant an entire thesis itself. Nevertheless, 

this thesis attempts to explain and provide the necessary information 

for the analytic evaluation of derivatives from "scratch~. 

The first chapter begins not with the theoretical background to the 

analytic solution of the derivative energy equations, but rather with 

experimental results. The reason for this is quite clear: The 

evaluation of cubic and quartic force constants, to be generally useful, 

must relate to something concrete. Chapter I outlines how this is 

accomplished. Chapter II details integral evaluation while chapter III 

deals with derivative irttegrals. The fourth chapter derives and 

presents the derivative energy equations providing computational remarks 

to the equations derived. Finally, the fifth chapter ties all the 

chapters together with the analytic calculation of the cubic force 

constants for the water molecule. 
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I. EXPERIMENTAL AND THEORETICAL BACKGROUND 

1.1 INTRODUCTION 

The effective rotational constants B~~) ( ~ = a,b,c) and the 

vibrational energies GO(v1, v2 ' ••• vn ) are two physical data directly 

derived from rotation and rotation-vibration spectroscopy. As the 

effective rotational constants are measured in a particular vibrational 

state, analysis over many states shows their dependence on a set of 

vibrational quantum numbers vr • 

B(~) = 
v 

I a(~) (v + g /2) 
r r r 

r 

y(~) (v + g /2) (v + g /2) + ••• 
rs r r s s 

(1.1.1) 

where gr is the degeneracy of the vibrational state vr ' and gs is the 

degeneracy of vs. The B~~) are the equilibrium rotational constants 

defined by 

B (~) = .-)i_2 __ 
e 2hc I~ 

(1.1.2) 

where I~ is the equilibrium moment of inertia about principal axis ~. 

The constants a(~) and y(~) describe the interaction of rotation and r rs 

vibration and are experimentally obtained by a least-squares fit of the 

data. 
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The vibrational energies are given by 

= I 
r 

oP v 
r r 

o 
x rs 

v v 
r s (1.1.3) 

with the expansion coefficients OJ~ and x~s found by a least-squares fit 

of the data. In the above observed vibrational energies, the expansion 

of the vibrational energy equation is truncated beyond second-order 

terms in the vibrational quantum numbers. In the absence of resonances 

this expansion is given by 

I OJ r 
(v + g /2) + I I r r x 

rs 
(v + g /2) (v + g /2) 
rr s s r 

(1.1.4) 

The wr are the zero-order frequencies and the >ers are the anharmonic 

constants. The truncation beyond second'-order implies that x~s = xrs • 

The observed w~ are related to the zero-order frequencies by 

W~ = wr + xrr + 1/2 I >ers gs 
r*s 

whereas the observed fundamentals v are given by r 

vr = wr + xrr (l+gr ) + 1/2 I Xrs gs 
r*s 

(1.1.5) 

(1.1.6) 

The experimental determination of these quantities is no trivial task. 

The anharmonic force constants are known only for a few relatively small 

polyatomic molecules. The advent of high resolution vibrational 
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spectroscopy has recently allowed the determination of wr and xrs for as 

large a molecule as formaldehyde 1. 

The basic theory on anharmonicity in polyatomic molecules is well 

known. See for example, the work of Nielsen 2, Cyvin 3, Kuchitsu 4,5, 

Oka 6 Morino 7, Watson 8,9 and Mills 10. The theoretical evaluation of 

the anharmonic constants xrs and the rotation-vibration interaction 

constants a(~) begins with a series expansion of the potential energy r 

function and a perturbation treatment of the rotation-vibration energy 

using the cubic and quartic terms in the potential series as the 

perturbation. In a review article of 1950, Nielsen 2 presented 

expressions for the xrs and a~~) constants correct through second-order 

in perturbation theory. The formulae expressed the anharmonic and 

interaction constants in terms of force constants and a number of 

complicated geometrically dependent quantities, all within normal 

coordinate space. It is the calculation of the anharmonic and 

interaction constants from ab initio force constants that is the goal of 

this work. 

Previous theoretical determinations of the anharmonic and 

interaction constants utilized a number of methods to obtain the 

necessary fDrce constants. These methods include: the assumption of an 

analytic form of the potential that is mixed with experimental 

quantities so as to correctly describe the potential surface; the 

utilization of the experimental frequencies and interaction constants to 

iteratively solve for the force constants 11; the fitting of ab initio 

energy points to a polynomial 12; and the utilization of finite 

differences of ab initio energy gradients to calculate quadratic, cubic 

and quartic force constants 13 In this study, however, analytic first, 

3 



second, and third energy derivatives of Hartree-Fock wave functions -

the force constants themselves - will be calculated. No experimental 

data will be used. These force constants, along with the f.unctions 

dependent on the geometry of the molecule, can then be used to determine· 

the anharmonic and interaction constants. 

In this chapt~r, the results of second-order perturbation theory of 

the complete rotation-vibration Hamiltonian will be presented for a 

potential energy function expanded as a power series. The question of 

the appropriate internal coordinates and the coordinate frame for the 

representation of the force constants will also be discussed. 

1.2 RESULTS OF SECOND-ORDER PERTURBATION THEORY 

The rotation-vibration Hamiltonian of Watson 8 is given by Mills 10 

as 

H ". L 1/2 lJ~B ;i2 ( J a 
a, B 

'fa) (J a - 'fa) + 1/2 L P; 
r 

The lJaB' with a and B running over x, y, and z, are the elements of the 

lJ tensor, which are related to the inverse moments of inertia (see 

reference 14 for details on its form); J a are the components of the 

total angular momentum; 'fa are the components of the vibrational angular 

momentum; and Pr is the rth normal mode conjugate momentum. The 

potential is given by 

4 
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V/hc = 1/2 I Ar Q~ + 1/6 I 
r rst 

~rst QrQsQt + 1/24 I 
rstu 

+ •••••• (1.2.2) 

where the Ar' ~rst' ~rstu are the quadratic, cubic, and quartic force 

constants. These force constants are the second, third, and fourth 

derivatives of the potential with respect to the normal coordinates. 

Mills 10 replaces Pr and Qr with their dimensionless equivalents, 

and 

p = P / y1/2 ~ r r r 

where 

resulting in the potential being rewritten as 

r rst 
'rst qrqsqt + 1/24 I 

rstu 

+ •••••• 

(1.2;3) 

(1.2.4) 

(1.2.5) 

It is for this form of the potential that the analytic force constants 

will be evaluated. 

Much has been written on the intricacies of the terms that are a 

result of the perturbation treatment of the rotation-vibration energy. 

Nielsen's work 2 is perhaps the backbone for most recent treatments, 

however, we have found the work of Mills 10 the.most enlightening. In 

5 



the following, the formulae derived by Mills 10 for the anharmonic 

constant xrs and the rotation-vibration interaction constant a~~) for 

the asymmetric top are presented to illustrate the uses. of the third and 

fo~rth order force constants. The degeneracies of the vibrations for 

symmetric top increase the· complexity of the formulae. As a result, the 

formulae lack the simple illustrative power of the asymmetric top and 

are not given here. The formulae for the symmetric top may be found in 

Mills 10, Nielsen 2, and Morino, Kuchistu, and Yamamoto 7 

The rotation-vibration int-eraction constant about the principal 

axis b, a~b) is given by 10: 

28
2 3( a(b~») 2 ( 3ti + 2 ) 

l;(b) )2 
w 

_a(b) { L r + L ( r s =-r w 4 I 'r, s 2 2 
r ~ ~ s w w 

r s 

+ 'If (--L)1/2 (bb) 
w 

L ~rrs 
r } (1.2.6) a 
3/2 h s s w 
s 

where the sum over ~ is over a, b, and c (the principal axes) while the 

sums over s are over all normal modes. w is the harmonic force r 

constant and ~rrs the cubic force constant; both are in wavenumber 

units. The Coriolis coupling constant l;(~) in 1.2.6 , may be reduced r,s 

with the zeta sum rule 

s 

L ( r.(~) ) 2 
r,s 

(1.2.7) 

where A(~8) and a(~8) are the expansion coefficients for the moment of rr. r 

inertia expressed in terms of normal coordinates. 

I ~8 "" I~8 + L 
r 

( ~8) 
a 

r 
Q + L L A (~8) 

r rs 
r s 

(1.2.8) 
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The coefficients are the derivatives of the moment of inertia with 

respect to normal coordinates. The A~;8) and a~~8) are the geometrical 

quantities alluded to in the introduction. 

The anharmonic constant XrS ' for r equal to s, is given by 10. 

x rr 
= 1/16 cjl - 1/16 \' cjl2 

rrrr L rrs 
s 

2 8 w -
r 

3 i 
s 

2 
- w 

s 
) } 

(1.2.9) 

where cjlrrrr is the quartic force constant defined by equation 1.2.5. 

When rand s are not equal, the anharmonic constant is given by: 

L ( cjlrrt cjltss ) 
x = 1/4 cjl - 1/4 rs rrss w 

t t 

( 2 2 2 ) 
2 

w - w - w 
-1/Z I t r s 

cjlrst w 
II 

t t rst 

A(r;(a) )2 B( r;(b»2 C(r;(c»2 
w w 

+ ( + + ) ( r + s ) 
r,s r,s r,s w w 

s r 
(1.2.10) 

where 

II = (w + w + w ) (w - w - w ) (-w + w - w ) (-w - w + w ) 
rst r s t r s t r s t r s t 

(1.2.11) 

These formulae are valid when there are no resonances. Resonances 

occur when two vibrational states are nearly degenerate, resulting in 

the denominator of terms in 1.2.6, 1.2.9, and 1.2.10 approaching zero. 

Methods are available to treat such occurrences 10 
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1.3 FORCE CONSTANTS AND COORDINATE SYSTEMS 

The calculation of cubic and quartic force constants in an internal 

coordinate reference frame is complicated by the property that the 

nuclei are moving along arcs, not infinitesimal displacements along a 

rectilinear coordinate frame. This means that instantaneous values of 

the internal coordinate displacements must be obtained. Therefore, the 

traditional linear transformation between internal coordinates and 

cartesian displacement coordinates given below 14 

(I.3.1) 
n 

must be expanded to 15,11 

R = L n 
i 

B~ oXi + 1/2 1 
i,j 

Bij \ Bijk 
oXi ox. + 1/6 L oXi ox. o~ + ••• 

n J i,j,k n J 
(1.3.2) 

where the Bni • Bij and Bijk are the first, second, arid third derivatives . n' n 

the nth internal coordinate with respect to oxi • Such a set of Rn that 

describe the actual motion of the nuclei has been introduced by Hoy, 

Mills, and Strey 15. 

The potential energy function in terms of these true internal 

coordinates is given by 

V/hc = 1/2 1 f1j R R. + 1/6 L fijk R R. ~ + 
i,j 

1 J i,j, k 1 J 

+ 1/24 I f ijkl R R. ~~ + ••• (1.3.3) 
i,j ,k,l i J 

8 

v 



~~ 

,~ 

In order to use the formulae presented in section 1.2, the force 
ij iOk ijkl 

constants f f J , and f calculated in terms of the true internal 

coordinates ~ must be transformed using a non-linear transformation to 

cartesian coordinates. The force constants with respect to cartesian 

coordinates are then linearly transformed to normal coordinate space. 

Hoy, Mills, and Strey 15 have developed an alternative to the 

approach outlined above. In their technique, the force constants in 

terms of internal coordinates Ru are directly transformed to normal 

coordinate space by the L tensor. The elements of the Ltensor are 

given by the non-linear transformation from internal coordinates Rn to 

normal coordinates Qr. 

R = L 
n 

+ 1/2 
r r,s 

r rs rst 

Lrs Q Q n r s + 1/6 L 
r,s,t 

L rst Q Q Q + 
n r st··· 

(1.3.4) 

where the Ln , Ln ' and Ln are the first, second, and third derivatives 

of Rn with respect to normal coordinates. 

Substituting equation 1.3.4 into 1.3.3 and comparing the result to 

equation 1.2.2, Hoy et ale 15 found that 

~ = A = L fij Lr L~ 0 
rs r i,j i J rs 

~ = L f ijk Lr L~ Lt + L fij (L rs Lt + Lrt L~ + L st L: rst i J k i j i J i J i ,j ,k i,j 

~ ,. L f
ijkl 

Lr LS Lt LU + L f
ijk ( L rs L: LU 

rstu 
i,j ,k,l 

i j k 1 i,j,k 
i J k 

+ L rt L~ LU + L ru L~ Lt + Lst L: LU + LSU 
L: Lt + L

tu 
L: ~) i J k i J k i J k i J k i J 
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+ I fij ( Lrs Ltu + L
rt L~U + Lru Lst ) 

i,j i j i J i j 

+ I fij ( L
rst L~ + L

rtu L~ + L
stu 

L: + L rsu L: ) 
i,j i J i J i J i J 

(1.3.5) 

This set of equations·irtdicates that the cubic force constant in 

normal coordinate space contains cubic' and quadratic force constant 

contributions from the internal coordinate represeritation; similarly for 

the quartic force constant ~rstu. This illustrates how quadratic 

potential surfaces in internal coordinates ~ can actually contain a 

large portion of the information concerning the higher force constants 

when transformed to normal coordinates. Pulay, Meyer, and Boggs 17, for 

example, found that the CP144 force constant in methane is comprised of 
ij . iOk 

roughly 75 percent f and the remaining 25 percent f J • 

In the analytic calculation of the force constants, derivatives of 

the energy - the potential field under which the nuclei interact - are 

taken with respect to cartesian coordinates. These force constants are 

linearly related to the normal coordinate force constants, and thus the 

entire problem of choice of internal coordinates and the non-linear 

transformation of these coordinates is completely avoided. 

The second derivative of the energy produces a set of cartesian 
ij 

coordinate force constants, fx' that are easily transformed to normal 

coordinates. The procedure is outlined as follows 14: First the force 

constants are mass-weighted and then diagonalized. The eigenvalues are 

the frequencies Ar , and the eigenvectors form the mass-weighted Lxm 

matrix L~m,i. In this notation, the subscript i refers to a particular 

cartesian coordinate and the superscript r refers to a particular normal 

10 
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coordinate. In the subscript xm, the x is used to indicate that the L 

matrix is for cartesian coordinates and the m is used to indicate that 

it is also masss-weighted. The mass-weighted L matrix is transformed xm 

to the Lx matrix by 

= I 
i 

-1/2 Lr 
mi i xm, (1.3.6) 

The ~ matrix is similar to the first component of the L tensor, except 

that the L matrix is between cartesian and normal coordinates rather 

than internal and normal coordinates. It is then used to generate the 

normal coordinates Qr from the cartesian coordinates. 

Note that for the L matrix Xm 

r 
Lr Q x,i r 

r,s 
L

r 
L

S
. xm,i xm,J 

whereas for the Lx matrix 

r,s 

The Lx matrix produces the frequencies Ar by 

A :a 
r I 

i,j 

(1.3.7) 

(1.3.8) 

(1.3.9) 

(1.3.10) 

ijk 
For third derivatives, the cartesian force constants fx ,are 
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linearly transformed to the normal coordinate representation by 

4>rst = L 
i,j ,k 

(1.3.11) 

The fourth derivatives of the cartesian force constant are treated 

similarly. This linear relationship between the cartesian coordinate 

force constants and the normal coordinate force constants allows the 

unambiguous calculation of the 4>'s. The 4>'s in turn are combined with. 

geometrical data to produce the anharmonic constants xrs and rotation

vibration interaction constants a~E;). 

The calculation of the cartesian force constants is ~ lengthy 

process that necessitates the solution to the Schrodinger equation using 

the Born-Oppenheimer approximation to separate electronic and nuclear 

motions. The solution to the electronic problem, using ab initio wave 

functions, requires calculation of the integrals described in chapter 

II. the calculation of the force constants - the derivatives of the 

electronic and nuclear energies - requires the evaluation of derivative 

integrals described in chapter III. The derivative integrals must then 

be combined to produce the derivative energies, the force constants 

themselves. This process is described in chapter IV. Finally, in 

chapter V, the r~sults of-an actual cubic force constant calculation are 

discussed and compared to experimental data. 

12 
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II ATOMIC ORBITAL INTEGRALS 

11.1 INTRODUCTION 

The n electron Hartree-Fock wave function is the antisymmetrized 

product of n one-electron molecular spin orbitals (MSO). Each MSO -Is a 

product of a spatial function ~n and a spin function an or Bn. In order 

to better describe the molecular orbitals of a molecule, linear 

combinations of atomic orbitals X (LCAO) are used to build the spatial 
lJ 

function ~n. 

~n = L 
lJ 

The self-cons is tent-field (SCF) method, as presented by 

(11.1.1) 

Roothaan 18,19, proceeds to find the best ~n - in the variational sense 

- by iterating through a set of equations known as the Roothaan 

equations (see reference 18 for closed-shell, and 19 for open-shell 

molecular system). The best ~n is made up of the variationally 

optimized molecular orbital coefficients, Cn , and a series of fixed 
lJ 

atomic orbitals, XlJ. 

The atomic orbitals were orginally approximated by modifying the 

exact wavefunction for the hydrogen atom; such orbitals are called 

Slater-type orbitals (STO) given by 

* n -1 * 
XlJ a r exp ( -Z * r / n ) YI(e,~) (11.1.2) 

n 

13 



* where n is an effective principal quantum number and YI(S,.) is a 

spherical harmonic in real form. The resulting integrals are not 

particularly simple to evaluate. This difficultly, coupled with the 

large number of integrals involved in a molecular calculation, has led 

to the demise of the STO as the basis function for atomic orbitals.' 

Integrals over gaussian functions are easier to solve than those 

over STO,· making. the gasussian functions the primary basis function for 

the one-electron atomic orbitals X~. There are, however, a few 

deficiencies with gaussian functions: The nuclear cusp is not correctly 

described, and the gaussian function incorrectly tails off at large 

distances. In order to correct for these deficiencies, it is common 

practice to use a number of gaussians as the basis function, with varied 

exponents akand weights ck' in a specific linear combination. Such a 

basis set is called a contracted basis s~t (see reference 20 for more 

details concerning the contraction of basis sets): 

Xl! = L 
k 

(II.I.3) 

Many types of gaussians have been used with great success in 

quantum calculations: simple gaussian lobes 21, spherical gaussians 22 

ellipsoidal gaussians 23, cartesian gaussians 24, trigonometric 

gaussians 25, and Hermite gaussians 26 (See the review article by V.R. 

Saunders 22 for more details). In this chapter, the atomic orbital 

integrals involved in a molecular calculation will be examined for 

atomic orbitals where cartesian gaussians are employed as the basis, as 

well as for atomic orbitals where the cartesian gaussian basis has been 

expanded in terms of Hermite gaussians. Hermite gaussians will prove to 
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be ideally suited for the calculation of derivative integrals. 

11.2 CARTESIAN GAUSSIANS 

Since the introduction of cartesian gaussians by Boys in 1950 24, 

the gaussian type function. has become the primary basis function for the 

one-electron atomic orbitals used in the evaluation of molecular 

integrals. The unnormalized cartesian gaussian on center A is given by 

G(a,A,n,l,m) = G(a,A) = (II.2.I) 

where xA' YA' and zA are components of the vector rA=r - A, with r being 

the position vector of an electron and A a nuclear center. The angular 

momentum of an atomic orbital is approximated by the products of xA' YA' 

and zA and their associated powers n, 1, and m. When n, 1, and mare 

zero, G(a,A) simply describes a s-type orbital. Any higher angular 

momentum gaussian can be obtained by applying the following equation to 

a s-type orbital 27: 

where 

and 

n
Ax 

1 m
Az G(a,A,n,l,m) = M M Ay M G(a,A,O,O,O) 

n
Ax 

M = ° if nAx < ° 
= 1 if n Ax = ° 

3 
3Ax 

n - 1 
MAx +nAx 

) 

1 m 
with M Ay and M Az being similarly defined. The total angular 

momentum of the cartesian gaussian G(a,A) is defined by 

(11.2.2) 
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(11.2.3) 

Note that the' three-dimensional cartesian gaussian may be split along 

each of its coordinates; thereby a result for the x-coordinate can be 
, 

generalized for the y and z coordinates. In this manner, the x-

coord~nate normalization constant is 

( 2a/~ )1/4 ( 4a )n/2 
N ( a ) = ..... ---"-=-----'--.,-----'-'--~ 

n ( (2n _ 1)!! ) 1/2 
(11.2.4) 

Products of gaussians, referred to as overlap or charge 

distributions', reoccur in quantum chemistry With every integral. One of 

the most utilized properties of gaussians is the product rule 24,28 It 

states that the product of two gaussians G(a,A) and G(b,B) is itself a 

gaussian G(p,P). The new gaussian is located at a point P with exponent 

p along the line connecting the centers A and B weighted by a constant 

KAB • 

G(a,A) G(b,B) = KAB G(p,p) (n.2.S) 

where 

p = a + b 

p = ( aA + bB ) I P 

AB=A-B 

KAB .. 
-2 

eXp ( -ab AB I p ) (n.2.6) 

Products of cartesian gaussians naturally include products of the 

monomials 
n . n' 

xA and xB ' as well as those for the y and z coordinates. 

16 
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The standard treatment, as given by Taketa et ale 29, is to recognize 

that 

and expand the products as polynomials in (xp + PA )n and 
x 

PB x 
n' ) . 

= k L fk(n,n' ,PA ,PB ) x 
k x x 

where fk(n,n',a,b) is the coefficient of xk in the expansion 

(11.2.7) 

(11.2.8) 

(x+a)n (x+b)n'. The end result is that a polynomial over two centers 

has been reduced to a polynomial about a common center. Equation 11.2.8 

is then substituted into the integral formulae, resulting in integrands 

that are averaged cartesian gaussians multiplied by a polynomial also 

based on the averaged positions. 

11.3 HERMITE GAUSSIANS 

In contrast to the above method, McMurchie and Davidson 30 used 

Hermite gaussians to expand the product of monomials and thus reduced 

the integrals from cartesian gaussians to integrals over Hermite 

gaussians. The following closely follows the work of McMurchie and 

Davidson 30 and Saunders 22; however, the notation of Saunders is 

generally employed. 
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The Hermite gaussian is defined as 

A(a,A,n,l,m) = ( a 
3A 

x 
(II.3.1) 

Like the cartesian guassian, the Hermite gaussian is separable into 

three ,components along the x,y, and zcoordinates. The Hermite gaussian 

for the x coordinate is related to the Hermite Polynomial of order n for 

the x coordinate by 

where the A x is 

definitions hold 

The product 

A ( A') n/2 H [ 1/2 uxa, ,n - a n a xA 
2 exp ( -ax
A ) 

the scaled Hermite Polynomial of order n. 

for the y and z coordinates. 

of monomials 
n n' 

in the cartesian xA xB 

(II.3.2) 

Similar 

gaussian. charge 

distribution can be expanded in terms ofAx(p,P,t) where the expansion 

is about the averaged gaussian. 

t=n+n' 
= L e (n,n' ,t) A (p,P,t) 

t=O x x 
(II.3.3) 

where ex(n,n' ,t) are the linear expansion coefficients. Basically, this 

n n' states that a polynomial in xp ( xA xB is a polynomial in xp ' see 

equation 11.2.7) can be written as a linear combination of scaled 

Hermite Polynomials which themselves are in terms of xp. To 

successfully utilize equation 11.3.3, a general equation for the 
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production of the expansion coefficients ex must be derived. Since the 

A are scaled Hermite Polynomials, we begin with the recursion 
x 

relationship for a Hermite Polynomial of order N and argument e:, 

The mononial product 

... 
t=n+n' 

L e (n,n' ,t) xA AX(p,P,t) 
t=O x 

(II.3.4) 

(II.3.5) 

is easily expanded with the recursion relationship. Equations 11.2.7 

and II.3.4 give 

= 1/2p A (p,P,t+l) + PA A (p,P,t) + t X (p,P,t-l) 
x x x x 

(11.3.6) 

Substituting this back into 11.3.5 yields 

t=n+n' 
L e (n,n' ,t) ( X (p,P,t+l)/2p + 

t=O x x 

+ PA X (p,P,t) + t X (p,P,t-I) ) 
x x x 

(r1.3.7) 

Equation 11.3.7 is generalized as to obtain a general recursion 

relationship for the expansion coefficients, ex(n,n' ,t). 

+ (t+l) ex(n,n',t+l) (11.3.8) 
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Similar r~cursion relationships hold for the ey and ez expansion 

coefficients. Using these recursion relations, any monomial product can 

be expanded. The overlap, or charge distribution, for example is now 

written as 
!", 

G(a,A,n,l,m) G( b , B , n' , I ' , m' ) 

t=n+n 
2 = KAB L e (n,n',t) exp (-px ) A (p,P,t) 

t=O x P x 

u==l+l' 
2 x L e (l,l',u) exp (-PYp) A (p,P,u) 

u=O y y 

v=m+m' 
2 x L e (m,m' ,v) exp ( -pzp) A (p,P,v) (11.3.9) 

z z v=O 

By defining 

E(t,u,v) = E(n,n',l,l',m,m',t,u,v) 

(II.3.10) 

the charge distribution of equation 11.3.9 reduces to 

II.3.9 = KAB L E (t,u,v) A (p,P,t,u,v) (11.3.11) 
t,u,V 

The shorthand notation of E(t,u,v) will be used repeatedly in the 

forthcoming sections. 

All of the atomic integrals contain at least one charge 

'distribution, and thus each integral contains products of expansion 
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coefficients. By including the constants: KAB , normalization constants 

Nnlm , and Nn'l'm" and contraction coefficients ck of A and ck' of B in 

the generation of the expansion coefficients, many multiplications can 

be eliminated, reducing the total number necessary for a given block of 

integrals. This property will become more evident in the cases of two-

electron replusion integrals. Thus, 

ex(O,O,O) = KAB ck(A) ck,(B) Nnlm Nn'l'm' 

ey(O,O,O) = ez(O,O,O) = 1 (n.3.12) 

The value of ey and e z are the result of equations 11.3.2 and 11.3.3 

which imply that for nand n' equal to zero ex is equal to one since 

HO(a1/ 2xA) is equal to one. 

In the following sections, the use of Hermite gaussians will be 

examined for each of the types of integrals involved in a molecular SCF 

calculation. For the sake of clarity, sums over contraction 

coefficients will be omitted. As stated above, normalization constants, 

KAB , and contraction coefficients are assurnmed to be premultiplied into 

the ex coefficients. 

The formulae presented for the zeroth order integrals, as well as 

the derivative integrals presented in chapter III, have been implemented 

in a series of integral programs. These programs evaluate integrals in 

terms of blocks, as do most recent integral packages. A block of 

integrals refers to the entire collection of integrals for a given 

interaction of shells, where a shell is defined as a group of gaussian 

primitives with a given exponent, centered on the same nuclear 

position. As an example, the block of integrals for the nuclear 
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attraction interaction between two different p shells (angular momentum 

equal to one) is made up of nine integrals: VPxPx' VPxPy' VPxPz , VPyPx' 

VpyPy. VpyP z • VPzPx ' VpzPy, and Vpzpz. Many of the intermediaries 

needed for the evaluatio~ of these integrals are the same, and much 

computer time may be saved by evaluating the integrals as a block. At 

the conclusion of section 11.6. the use of intermediaries for this case 

is explicitly examined. 

I 1.4 OVERLAP INTEGRALS 

The overlap integral, which can be considered a charge 

distribution, is reduced from two centers to one center using the 

Gaussian product rule of equation 11.2.5. 

GO GO GO 

S = f ~ X", dT = f G(a,A) G(b,B) dT = f KAB G(p,P) dT 
IJ'" -GO -GO -GO 

(11.4.1) 

Expanding the charge distribution about the point P in terms of Hermite 

gaussians leads to 

t=n+n' GO 

SIJ'" = I e (n,n' ,t) f A (p,P,t) dx x x 
t=O -

u=l+l' GO 

x I e (l,l',u) f A (p,p,u) dy 
u=O y -GO Y 

v=m+m' GO 

x I e (m,m' ,v) f A (P.p,v) dz 
v=0 z _GO Z 

(II.4.2) 

The x integral is over Hermite Polynomials, as are the y and z 

integrals. Examining it more closely, 
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J A (p,P,t) dx x 
-00 

00 

= J exp ( -px;) pt/2 Ht(pl/2xp) dx 
-00 

Due to the orthogonal properties of the Hermite Polynomials, the 

integral reduces to 

J A (p,P,t) dx = x o 

= (1f/ p) 1/2 if t=O 

(11.4.3) 

(II.4.4) 

This reduces the summation in equation 11.4.2 to a single term giving 

( )3/2 S = e (n,n' ,0) e (1,1' ,0) e (m,m',O) 1f/p 
~v x Y z 

(II.4.5) 

( .. /p)3/2 If the constant factor" is placed in the ex expansion 

coefficient, along with the normalization constants, contraction 

coefficients, and KAB , more multiplication steps can be eliminated. 

11.5 KINETIC ENERGY INTEGRALS 

The operator for the kinetic energy is 

+ ) (11.5.1) 

where the partials are with respect to the electronic position. The 

straight application of the operator on the cartesian gaussian G(b,B) 

yields 
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00 00 

T"o; = f x T X dT = ~1/2 { 4b
2 

( f G(a,A,n,l,m) G(b,B,n'+2,1',m') dT + 
.. v _00 lJ v -00' 

00 00 

fG(a,A,n,l,m) G(b,B,n',1'+2,m')dT + fG(a,A,n,l,m) G(b,B,n' ,1',m'+2)dT) - -
00 

2b(2n'+1) + (21'+1) + (2m'+1») f G{a,A,n,l,m) G(b,B,n',l',m') dT -
00 

+ n'(n1 -1) f G(a,A,n,l,m) G(b,B,n'-2,1',m') dT 
_00 

00' 

+ 1'(1'-1) f G(a,A,n,l,m) G(b,B,n',1'-2,m') dT 
-00 

00 

+ m'Cm'-1) f G(a,A,n,l,m) G(b.B,n',I',m'-2) dT } (II.S.2) 
_00 

This is nothing more than a linear combination of overlap 

integrals. Using the results of section 11.4, the above expression 

reduces to a sum of. products of expansion coefficients. Overlap and 

kinetic energy integrals are thus conveniently solved at the same time, 

provided the table of expansion coefficients is created large enough by 

increasing the limits of generation in equation II.3.8. The final 

formula is 

{ 4b2 ( e (n,n'+2,0) e (1,1' ,0) e (m,m' ,0) 
x y z 

+ e (n,n' ,0) e (1,1'+2,0) e (m,m' ,0) 
x y z 

+ e (n,n',O) e (1,1' ,0) e (m,m'+2,0) ) 
x y z 

- 2b ( 2(n'+1'+m') + 3 ) e (n,n' ,0) e (1,1' ,0) e (m,m' ,0) 
x y z 

+ n'(n'-1) e (n,n'-2,0) e (1,1',0) e (m,m',O) 
x y z 

+ 1'(1'-1) e (n,n,O) e (1',1'-2,0) e (m,m' ,0) 
x y z 

24 
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+ m'(m'-l) e (n,n' ,0) e (1,1' ,0) e (m m'-2 0) 
x y z" } 

11.6 NUCLEAR ATTRACTION INTEGRALS 

The nuclear attraction integrals (NA1) , are 

v 
~v J X~ L 

-~ C 

(11.5.3) 

(11.6.1) 

where rc = Ir - Cl, with r being the electronic position vector and C 

being the position vector of nucleus C. The summation over C is over 

all nuclear positions in the molecular system. For clarity sake it is 

usually dropped during the derivation of the solution to the NAI, and 

replaced in the final formula. This practice will be observed here. 

The NA1 has no simple closed form, unlike the overlap and kinetic energy 

integrals presented in the previous sections. 

Boys 24 introduced a solution for the NAI that employed a modified 

error function F(z) for s-type orbitals. 

rz 2 
F(z) = J exp (- v ) dv 

° 
2 1/2 ( (11.6.2) 

This function F(z) is a member of a class of integrals Fm(z) that are 

closely related to the incomplete gamma function 28, 31 

1 
F (z) = J 

m ° 
2m 2 v exp (-zv ) dv (11.6.3) 
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Boys' solution for s-type orbitals about the average gaussian G(p,P) is 

obtained by employing a gaussian transformation to recast -1 rc ,with the 

final result being 

V .. l!... K FO(p peZ ) 
lJV P AB 

(II.6.4) 

The solution of the- NAI for orbitals of higher angular momentum has 

been approached in a number of ways. One method is that pointed out by 

Boys, namely to apply equation II.2.2 to the NAI solution for s-type 

orbitals. The derivative of FO(z) with respect to a nuclear coordinate 

is a. linear combination of FO(z) and F1 (z). By the application of 

equation 11.2.2 for nAx greater than zero, the NAI solution for any 

angular momentum function ,can be obtained. 

29 Another method is that presented by Taketa ~ ale • Using the 

charge distribution described at the end, of section II.2, the products 

of and the other monomial products are described by equations 

11.2.7 and II.
c

2.8. A fourier transformation is then used to recast the 

r c- 1 operator. Integration over x, y, and z yields an integral over 

Hermite Polynomials. The solution of this last integral is a linear 

combination of Fm(z). The advantage of this method over repeated 

. differentiation of the s-type orbital solution lies in the generation of 

the linear coefficients through a series of simple summation formulae. 

A third approach is through the Hermite gaussian formalism. 

v ,. 
lJV 

t:an+n' u=l+l' v=m+m' 
L e (n,n',t) 

x 
t 

CD 

L e (1,1' ,u) 
1 y 

x f A(p,P,t,u,v) r-1 dr 
c 

-CD 

L e (m,m' ,v) 
z 

v 

26 

., 



." 

= E (t,u,v) 
t,u,v 

00 

J -1 A (p,P,t,u,v) r dr 
c 

_00 

(II.6.S) 

Again, all constants are ~ept in the ex expansion coefficients. The 

operator is recast with a gaussian transformation 

-1 
r == 

c 

GO 

J (~)-1/2 s-1/2 exp (-s r2 ) ds 
o c 

(II.6.6) 

Rewriting the integral portion of equation 11.6.5 and substituting 

equation 11.6.6 for the operator gives 

I I I x y z 

00 GO 

= (~)-1/2 J J 
_GO 0 

GO 

= J A (p,P,t,u,v) 
-00 

-1 
r 

c 
dr 

-1/2 2 s A (p,P,t,u,v) exp(-sr ) ds dr 
c 

(11.6.7) 

Utilizing equation 11.3.1, Ix is rewritten as (note that the s-1/2 is 

dropped from the following derivation, but returned in equation 11.6.12) 

GO GO 

f f A (p,P,t) exp( 
2 ) I == -s(x-C ) ds dx 

x x x 
-GO 0 

00 00 

.. f f (;p ) t exp( 2 2 ) ds dx (11.6.8) -p(x-P ) -s(x-C ). 
0 

x x 
_GO X 

Expanding the squares results in 

GO GO 

I = f x 
-GO 

f 
o ( ~P 

x 
)t exp(-pp2 -sC2) exp(-x2(p+s) + 2x(pP + sC ») ds dx x x x x 

(II.6.9) 
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The integ~al over xis a standard integral where the solution is of the 

. form 28. 

00 

f exp ( _x2a + 2Bx ) dx = (1f/a)I'12 exp ( B2/ a) (II.6.10) 

Perforlliirtg the x integration and expanding the squares results in 

00 

Ix = f (.1f/(p+s) )1/2 (;p )t exp ( -ps/(p+s) (P
x
- C

x
)2 ) ds 

o X· 

Following similar steps for Iy and I z yields 

V}..lV = 
t,u,v 

E(t;u,v) I 
x 

I 
Y 

I z 

00 . 

r .(1f)-1/2 f ( / )3/2 ~1/2 = I..E(t,u,v) 1f (p+s) s 
t,u,v 0 

x 

x exp ( -ps/(p+s) PC2 ) ds 

(II.6.11) 

(11.6.12) 

-2 I where PC - P - C In order to solve the remaining integral, the 

following variable transformation is made: 

w2 .. s/(p+s) (11.6.13) 

resulting in (11.6.14) 

N6te that as s + 0, W + 0 and that as s + 00, W + 1 • 
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Substitution gives 

1 a a a 2-2 V~V = 2n/p L E(t,u,v) J ( ap- )t( ~ )u ( ~ )V exp (-pw PC) dw 
o x Y z 

(II.6.1S) 

This solution relates back to the solution for the s-type orbitals found 

by Boys. Letting PPC2 
= z, equation 11.6.15 reduces to 

V~V 
1 a a a 2 = 2n/p L E(t,u,v) J ( ap- )t ( ~ )u ( ~ )V exp (-zw ) 
o x y z 

dw 

2n/p L E(t,u,v) (:P )t (:P )u (:P )V FO(z) 
x y z 

(11.6.16) 

where Leibniz's rule has been used to move the differential operators 

out from under the integral. Instead of taking partials with respect to 

an actual nuclear position A, as the straight application of equation 

11.2.2 indicates, partials are being taken with respect to the average 

position, P. These relate back to the Hermite Polynomials. 

With the aid of equations 11.3.1 and 11.3.2, equation 11.6.16 can 

be recast in terms of Hermite Polynomials, where f = t + U + v 

x H ( 1/2pC w) 
v p z (II.6.17) 

McMurchie and Davidson 30 defined RC(t,u,v) as 
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x H ( 1/2 PC w) 
v P z (II.6.18) 

where the superscript c indicates that R" is for a specific nuclear 

center C. Bringing the summation over C back into the formula results 

in 

v = 2Tr/p 
IJV 

I E(t,u,v) 
t,u,v 

(11.6.19) 

The evaluation of an entire block of integrals requires a table of 

RC(t,u,v) for a particular maximum of t, u , and v. McMurchie and 

Davidson 30 found that this table can be generated more easily through a 

general Rj(t,u,v) defined as 

x H ( 1/2 PC w) H (p1/2 PC" w) 
u P y v z (11.6.20) 

The general Rj(t,u,v) reduces to RC(t,u,v) via 

c c RO(t,u,v) = R (t,u,v) 

(11.6.21) 

By applying the recursion relations for Hermite Polynomials presented in 

equation 11.3.4, a recursion relation for the general Rj(t,u,v) is 

obtained. In the x coordinate, this recursion relation is 
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c R.(t+1,u,v) = 
J 

+ c 
t Rj +1(t-1,u,v) 

(11.6.22) 

Similar formulae are easily derived for the y and Z coordinates. The 

end result is that RCj(t,u,v) can be generated from the recursion 

relation plus the appropiate Fj(z). McMurchie and Davidson30 provide a 

variety of formulae for the evaluation of Fj(z), as does Shavitt 28, for 

various values of j and ranges of z. 

Another approach to the solution of equation 11.6.17, and the 

method adopted in the present series of integral programs, is through 

Rys quadrature, as introduced by Dupuis, Rys, and King 32. In the 

method of Taketa et ale 29, and in that of McMurchie and Davidson 30, a 

specific Fj(z) is evaluated, and then a table of Fj(z) are produced by 

recursion relations. The members of this table. are then combined in a 

linear manner to obtain the actual value of the integral. Rys 

quadrature approaches the problem radically differently. Equation 

11.6.17 is solved by a linear combination of the numerical values of the 

integrand evaluated at the zeroes of the Rys polynomials. A brief 

review of quadrature and Rys polynomials follows. See references 33 or 

34 for more details concerning the nature of quadrature. 

If a set of polynomials Pi(x) is orthogonal to a weight function 

W(x) along a specified interval a,b 

b 

f (11.6.23) 
a 

then any integral along this same interval with the same weight function 

w(x) but including a function of x, f(x), 
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b 
I = J W(x) f(x) dx 

a 

can be approximated by a quadrature formula of the form 

N 
I =1 w (x) f(xy ) 

y=o y 

(11.6.24) 

(II.6.25) 

where the sum is over N+l quadrature points (roots) with Wy being the 

weight factor of the N- order polynomial along the interval (a,b), and 

f.(x y ) the value of the function f(x) evaluated at the y root of the 

polynomial P (x) • Y . The number of quadrature points determines the 

accuracy of the summation in equation 11.6.25. The summation becomes 

exact when the polynomial is of order less than or equal to 2N+l, where 

N is the limit of summation in equation II.6.25 33,34 

The advantage of quadrature becomes clear when there is no simple 

closed form for an integral. Many orthogonal polynomials have simple 

formulae for the evaluation of weights and roots (see references 34 and 

35), making the accurate solution of the integral in question tractable. 

In the case of Rys quadrature, Dupuis, Rys, and King 32,36,37 

introduced a set of even polynomials, Rn of order 2n, orthonormal on the 

interval 0 to 1, with respect to the weight function W(x)=exp(-zw2) (see 

reference 36 for more details concerning the nature and properties of 

Rys polynomials). 

122 2 J exp (-zw ) R (w ,z) R (w ,z) dw o n m 
IS 

nm 
(II.6.26) 

If it is possible to express equation 11.6.16 as an integral with 
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the weight function of exp(-zw2) and the remainder of the integrand as a 

polynomial in w2 of degree n, then a quadrature formula based on Rys 

polynomials can be obtained. By bringing the partial derivatives under 

the integral sign of FO(z) and performing the differentiation, equation 

11.6.16 becomes (this procedure is explicitly carried out in the case of 

the more complicated two-electron repulsion integrals discussed in 

section II. 7) 

v = 2Tf/p 
JJV 

L E(t,u,v) 
t,u,v 

where Pt (w2) is a polynomial of degree t in 

dw 

(II.6.27) 

2 w • This can indeed be 

solved by Rys quadrature. Knowing that quadrature is possible, equation 

11.6.17 can be rewritten along the lines that Saunders 22,38 advocates 

for the two-electron repulsion integrals (section 11.7). We define a 

scaled Hermite Polynomial 

G (a,PC ) = at H (a PC ) 
txt x (11.6.28) 

where B = p1/2w. Scaled Hermite Polynomials Gu and Gv are defined as 

in Gt , however they are directed along the y and z coordinates. 

Equation 11.6.17 becomes 

V
JJV

" 2Tf/p L E(t,u,v) 
1 2 J dw exp(-zw) G (a,PC ) G (a,PC ) G (a,PC ) o t x u y v z 

(n.6.29) 

As this is still a polynomial in w2 of order t, u, and v, Rys quadrature 

is performed, producing 
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N 
V = 2 Tr / p L E ( t , u , v ) L w G (S ,PC ) G (S , PC ) G (S ,PC ) 
~v y=O Y t y x u y y v y z 

(II.6.30) 

where Wy are the weights and Gt , Gu ' and G" are evaluated at the roots 

of the Rys polynomials (indicated by the y subscript on S). With the 

integrals calculated in blocks; the maximum value of t, u, and v for 

that block is passed to the quadrature scheme. The maximum value of t ,. 

u, and v is the sum of the total· angular momentum about nuclear center A 

and nuclear center B. A block of integrals contains, however, integrals 

other than that for the maximum value of t, u, and v and thus a table of 

Gt , Gu ' and Gv is needed to solve all the integrals of a given block. A 

simple recursion scheme based on that of the Hermite Polynomials, 

equation 11.3.4, is required. The recursion relation for Gt is given by 

. (11.6.31) 

The quadrature becomes exact when 

t < 2N + 1 (11.6.32) 

Remember that t, u, and v are all equal at this stage of the calculation 

and that t=AA + AB• In equation 11.6.25, the summation over N is 

governed by the value of t. Naturally, it is desirable to obtain an 

accurate solution to 11.6.25 using the minimum value of N (which is 

equivalent to the minimum number of quadrature points N', where 

N'=N+l). Equation 11.6.32 is rewritten as 

34 



• 

.. 

N' ) [ t/2 ] + 1 (II.6.33) 

where [ t/2 ] indicates that decimals are rounded up to the nearest 

integer. 

Equation 11.6.30 can be simplified by recognizing that it is really 

N 
V :::I L 

lJ'" y=O 

x 

x 

which further reduces to 

* 

2Tf/p W { L e (n,n' ,t) G (6 ,PC ) 
Y x t Y x t 

I e (1,1' ,u) G (6 ,PC ) 
u Y u Y Y 

1 e (m,m',v) G (6 ,PC) } z v y z 
v 

V = 
lJ'" 

N 

I 
y=o 

* X Y Z 
Y Y Y 

where Xy signifies that the 2Tf/p and the weights have been 

(II.6.34) 

(II.6.35) 

incorporated into the Gt • It is just as convenient to write equation 

11.6.35 in terms of y going over N' quadrature points as going over the 

N orders of the polynomial. The above equation is ideally suited to 

* solving integrals by blocks, as the table of X , Y , and Z generated 
y y y 

by performing the summations in 11.6.34 will be used repeatedly. 

Returning to the example of a block of p shells presented in section 

11.3 , the repeated use of intermediaries is clearly illustrated. 

Equations 11.6.34 and 11.6.35 show that 
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* X (1,0) 
y 

* X (s,p) = y 

* X (p;p) = y 

w 2~/p e (0,0,0) G (8 ,0) 
y x t y 

( e (1,0,0) G (8 ,0) + x t y 

eO,O,!) 
x 

G
t

(8y ,l) ) 

= w 2~lp y ( e (0,1,0) G (8 ,0) + x t y 

e (0,1,1) 
x 

G
t
(8y ,1) ) 

= w 2~/p ( e (1,1,0) G (8 ,0) + 
y x t y 

e
x
(l,l,l) G

t
(8y ,1) + 

e
x

(1,1,2) G
t
(8y ,2) ) 

(II.6.36) 

with similar definitions for the Yyand Zy 

shells equation II~6.3S becomes 

For this block of p 

I { * } VPxPx = X/p,p) Y (S,8) Z (s,s) 
y 

y y 

I{ * } Vp P :01 X/p,s) Y (s,p) Z (s,s) 
x y y 

y y 

I { * } VPxPz = X (p,s) Y (s,s) Z (s,p) 
y 

y y y 

I { * } VpyPx = Xy(s,p) Y (p,s) Z (s,s) (II.6.37) y y 
y 

Note that many of the same intermediaries are used repeatedly. This 

reuse of intermediaries for blocks of integrals will be central to the 

algorithms employed in the two-electron repulsion integrals (ERI). As 

will become evident with the ERI, much of the results of this section 
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can be directly carried over for its evaluation. 

11.7 TWO-ELECTRON REPULSION INTEGRALS 

The evaluation of the two-electron repulsion integrals (ERI) is the 

bulk of most ab initio calculations. Without any reduction due to 

symmetry, the total number of integrals is proportional to n4 where n is 

the number of gaussian primitives used in the basis set. For large 

molecules and small molecules with a large basis set, the evaluation of 

the integrals can become a significant step in the overall 

calculation. As a result, much attention has been focused on the 

algorithms used for the evaluation of the ERI. In this section, two 

algorithms based in the Hermite gaussian formalism will be examined, 

that of McMurchie and Davidson 30, and that of Saunders38 • Recently 

Hegarty and Van Der Velde 39 have presented an algorithm that is based 

in Hermite gaussians, but allows more factorization than the Mcl1urchie 

and Davidson 30 algorithm. Their algorithm, however, is sufficiently 

closely related to the McMurchie and Davidson scheme for the purpose of 

this discussion, and will not be included in the section. The ERI, 

(~vlpa) = f f X~(1) Xv(1) 
-~ 

(11.7.1) 

is an integral over the positions of two electrons, with r 12 equal to 

the distance between the electrons, and is hence six-dimensional. 

The solution of the ERI begins by applying the gaussian product 

rule, equation II.2.S, to the gaussians approximating the orbitals of 

electron 1, X~ and Xv ' reducing it to a single gaussian about a point 
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P. The same is done to X and X ,except that the averaged gaussian 
p 0 

is about a point Q. The monomial products are then expanded in terms of 

Hermite gaussians, equation 11.3.3. 

GO 

(\Jvl po) = J J ( G(a,A,n,l,m) G(b,B,n' ,1' ,m') 

x 

x 

-GO 

G(c,C,i,j ,k) G(d,D,i' ,j' ,k') ) dTl dT2 

n+n' 1+1 ' m+m ' 
:a L e (n,n',t) L e (l,l',u) L e (m,m',v) 

x y z 
t u v 

i+i' j+j' 
L ex(i,i',t') L ey(j,J',u') 
t' u' 

GO 

k+k' 
\ e (k k' v') l. z ' , 
v' 

X J J A(p,P,t,u,v) 
-GO 

(11.7.2) 

where KAB and KCD have be incorporated into the appropriate ex expansion 

coefficients. Using the shorthand notation introduced in equation 

11.3.10, the above equation can be rewritten 

(\Jvlpa) = L E(t,u,v) L E(t',u',v') 
t,u,v t',u',v' 

GO 

x f f A(p,P,t,u,v) 
_GO 

(II.7.3) 

Proceeding along the lines used to reduce the NA1 in section 11.6, the 

-1 
r

12 
operator is transformed by a gaussian transformation, resulting in 

L E(t,u,v) L E(t',u',v') 
t,u,v t' ,u' ,v' 
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... ... 
x J J J 

2 -1/2 exp (-sr12 ) s A(p,P,t,u,v) A(q,Q,t' ,u' ,v') ds dT
1

dT2 
o 

(II.7.4) 

By following much the same steps as those for the NAI, except that 

equation II.6.10 is applied twice, the ERI reduces to 

(~Vl po) 

( 3 
x 

3P x 

where 

and 

2 (lr)5/2 (pq)-1(p+q)-1/2 L E(t,u,v) L 

)t ( 3 
3P y 

)u ( 

t,u,v 

3 )V ( 3 )t' ( 3 
ap- 3Q 3Q z x 

z = ( pq/ (p+q) ) PQ2 

PQ2= I P _ Q I 2 

1 
F (z) 

m = J 2m 2 w exp (-zw ) 
o 

t' , u' 

)U' ( 
y 

dw 

E(t',u',v') 
, v' 

3 t' FO(z) 3Q z 
(IL7.5) 

(II. 7 .6) 

(II.7.7) 

(II.7.8) 

Equation II.7.5 connects the solution of the ERI to the solution of the 

ERI for s-type orbitals introduced by Boys, in the same way that 

equation II.6.16 connects the general NAI solution to that for s-type 

orbitals. It can be further reduced by noting that as z depends only on 

P - Q, 

= (-1) ( _3 - ) FO(Z) 
3Q 

x 
(11.7.9) 

By repeatedly applying equation II.7.9, equation II.7.5 reduces to 

(~vlpo) ~ 2 (lr)5/2 (pq)-l (p+q)-1/2 L E(t,u,v) L E(t' ,u' ,v') 
t,u,v t',u',v' 
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x (_l)t'+u'+v' (~p )t+t' (~p )u+u' (~p )v+v' FO(Z) 

x y z 
(II.l •. lO) 

As Saunders points out, and McMurchie and Davidson allude to, placing 

the constants 1/2 5/4 -1 2 w pinto E(t,u,v) during its generation and 

t'+u'+v' 1/2 5/4 -1 (-1) 2 w q into E(t',u',v') during its production, a 

saving of multiplication time can be achieved. Modifying the generation 

of the ex expansion coefficients, and utilizing equations 11.3.1 and 

11.3.2, the ERI becomes 

(~vlpa) = (p+q)-1/2 2 E(t,u,v) 
t,u,v 

2 E(t',u',v') 
t',u',v' 

a 
f/2 

x 
1 
f wf exp(-zw2) H

t
+

t
,(a

1/ 2 wPQ ) H (a
1/ 2 wPQ ) . x u+u' y o 

x H (1/2 wPQ ) 
v+v' a z dw (II.7.1l) 

where f = t+t'+u+u'+v+v' and 
-1 

a = pq(p+q) • 

The introduction of w in equation 11.7.11 is from equation 11.7.8. 

Comparing the above equations to 11.6.17 and 11.6.18, it is clear that 

it can be rewritten in terms of RC(t,u,v) where PCk (k is equal to a 

cartesian coordinate) of equation 11.6.18 is replaced by PQk' Doing 

this produces 

( lIvlpa) = (p+"q)-l/2 \' E(t,u,v) \' ~ L L E(t' ,u' ,v') R(t+t' ,u+u',v+v') 
t,u,v t',u',v' 

(II. 7 .12) 

It is at this point that the method of McMurchie and Davidson30 and that 
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of Saunders 38 diverge. The McMurchie and Davidson algorithm solves the 

ERI as it is given in the above equation, whereas Saunders requires some 

additional definitions and reworking of equation 11.7.12. 

Saunders 22,38 defines a scaled Hermite Polynomial similar to 

equation 11.6.28. 

(I1.7.13) 

where 1/2 B = a w (11.7.14) 

Gu+u ' and Gv+v ' are similarly defined along the y and z axes. 

Equation 11.7.11 can now be rewritten 

(~vlpa) = (p+q)-1/2 1 E(t,u,v) L E(t',u' ,v') 
t,u,V t' ,u' ,v' 

x 

1 

f 
o 

2 exp (-zw ) 

(II.7.1S) 

To be sure that it is possible to solve this with Rys quadrature, the 

partial derivatives of equation 11.7.10 are brought under the integral 

sign of FO(z) giving: 

(~vlpa) = (p+q)-1/2 L E(t,u,v) 
t,u,v 

L E( t ' ,u' , v' ) 
t',u',v' 

1 
x f 

a 
( a )t+t' (a )u+u~ (a )v+v' exp (-zw2 ) ap ap- ap- dw 

x y z 
(11.7.16) 

Taking the partial derivative with respect to Px ,where ~ pq/ (p+q) , 

yields, 

41 



1 2 2' 2 2 
= f (-2~w (p -Q ) ) t+t exp( -~(p -Q) w ) o x x x x 

dw 

(11.7.17) 

Similar results are obtained for the partial derivatives with respect to 

Py and Pz • It is clear that the pre-exponential factor in the integrand 

is a polynomial of order t+t' in w2 • Thus equation 11.7.10 has the form 

(~Vlpo) = (p+q)-1/2 L E(t,u,v) E(t',u',v') 
t,u,v t',u',v' 

x (11.7.18) 

which according to section II.6, fits the requirements to be solved by 

Rys quadrature. 

Once the Rys roots and weight factors are calculated, and a table 

of Gt +t " Gu+u " and Gv+v ' are obtained through recusion relations 

similar to equation II~6&31, quadrature is performed, yielding 

N' 
(~VI po) = I (p+q) -1 / 2 

y=l 
w 

Y 
E(t,u,v) 

t,u,v 
I E(t',u',v') 

t' ,u' ,v' 

x G , (8 , PQ ) G , (8 , PQ ) G , (8 ,PQ ) 
t+t y x u+u Y y v+v Y z 

(11.7.19) 

where N' is the number of quadrature points and is found from 

N' > [ t+t'/2 ] + 1 , (I1.7.20) 

with [ t+t'/2 ] indicating that the sum of angular momentum about all 

four centers is divided by two and rounded up if it is not an even 
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multiple of two. 8y is as given in equation 11.7.14 except the roots 

of the Rys polynomial are used instead of w. Equation 11.7.19 can be 

factored along each of its components, yielding 

= L 
t 

e (n,n' ,t) 
x 

(II. 7 .21) 

with similar definitions for XYy and XZy. By placing the weights in 

Gt +t , along with (p+q)-1/2, more savings in multiplication time may be 

realized. Doing so leaves the ERI solution as a very simple equation 

Equation 11.7.21 is also conveniently broken down to 

where 

* XXy = L 
t' 

* e (i i' t') YX 
x " y 

* -e (n,n',t) G ,(8 ,PQ ) 
x t+t Y x 

(II.7.22) 

(II.7.23) 

The asterisks are used to indicate that the Gt +t , has the weights and 

(p+q)-1/2 premultiplied into it during its generation. A similar set of 

equations for the y and z coordinates is easily derived (without the 

asterisks). 

The algorithms are presented in appendix A.1, in a detailed, almost 

Fortran 77-like, language. Note that the algorithms are presented so 

that they match the equations used throughout chapter II (and those in 

chapter III). Additional definitions required to understand the 

algorithms are at the beginning of the appendix A.1. The following 
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discussion concerning the efficiency of the algorithms uses these 

definitions. 

In the McMurchie and Davidson algorithm30 , an intermediate array I 

contains, for a given Ishell and Jshell, all possible interactions for 

all Kshells and Lshells. This is illustrated Figure 11.7.1. 

The array lis the salient feature of the McMurchie and Davidson 

method. By forming it over all Kshells and Lshells for a particular 

Ishell and Jshell, integrals over highly contracted basis sets can be 

efficiently calculated. If a batch of integrals is more highly 

contracted on the Ishell and Jshell than on the Kshell and Lshell, then 

the algorithm should be flipped looping over Kshell and Lshell in the 

first step. 

Saunders 22,38 and Hegarty and Van Dei" Velde 39 have examined the 

cost of the McMurchie and Davidson algorithm using two different 

approaches. Saunders counts the times a loop is executed as the angular 

momentum of the shell goes to infinity" while 'Hegarty and Van Der Velde 

have counted the number of multiplications encountered for specific 

blocks of integrals. Saunders' method best shows the differences 

between the two algorithms. In this approach, the depth of contraction 

of a shell is given by K (size of Ifns, etc in appendix A.l, or the 

length of the sum in equation 11.1.3), and the total number of members 

of a given shell with a total angular momentum of A is given by 

(A + 1) (A + 2)/2. The test case for the algorithm is a case of four 

shells of equal contraction depth K, with the same total angular 

momemtum. 

The McMurchie and Davidson algorithm divides neatly into two 

blocks. The first block is the inside loop of figure II.7.l. The cost 
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Figure 11.7.1 

The McMurchie and Davidson Integral Evaluation Algorithm 

Loop over Ishell, Jshell, and contractions on both shells 

Zero I 

Loop over Kshell, Lshell and contractions on both 

shells 

I is computed and expanded about the 

members of Kshell and Lshell 

I is expanded about the members of Ishell and Jshell 
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of this loop over the members of Kshell and Lshell and the calculation 

of I is 

times. As). + GO , this limits as K4). 10. The outer loop, the second 

block of the algorithm, has a cost of 

where N is the total number of atomic orbitals. ·For a single block of 

integrals, N = ()'+1)(A+2)/2 . and the cost becomes 

K2 {(A+l)(A+2)/2 }4 (2A+0 3 

. which, as A + GO 

The Saunders algorithm is illustrated in Figure 11.7.2. Notice 

that the Saunders· algorithm does not have a K2 loop as does the .. 

McMurchie and Davidson algorithm. In its favor, however, is the 

splitting of the integrand along each of the axes, allowing for multiple 

use of common intermediates. In section 11.6, the intermediaries of a 

block of p shells for the NAI were examined. The use of intermediaries 

for the ERI is analogous to that of the NAI presented in section 11.6. 

There are three blocks to Saunders' algorithm that represent the 

bulk of the computation for the test block of integrals. The first 

block is the computation of YX, YY, and YZ. The cost for this loop over 

the angular momentum on Ishell and Jshell and the computation of YX, IT, 

and YZ is 

which limi ts as K4 ).5. as A + GO. The second block is the computation of 

xx, XY, and XZ which loops over the angular momentum on Kshell, Lshell, 

and t'. The cost of this is 
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F i gu re II. 7 • 2 

The Saunders Integral Evaluation Algorithm 

Loop over Ishell, Jshell and contractions on both shells 

Loop over Kshell and Lshell and contractions on both 

shells 

Loop over the number of quadrature points 

loop over angular momentum on Ishell and Jshell 

Loop over sum of angular momentum on Kshell 

and Lshell 

looping over t 

compute YX, YY, and YZ 

Loop over angular momentum on Kshell and 

Lshell 

looping over t' 

compute XX, XY and XZ 

Expand XX, XY, and XZ about the members of all 

the shells 
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K4 (2).+1) ).4 (2),) 

which limits as K4 ).6. The third block is the expansion of XX, XY, and 

XZ about all the centers for all the shells and costs 

K4 (2).+1) { ().+1)()'+2)/2 }4 

which limits as K4 ).9. Note that all three blocks are within the loop 

over Rys quadrature points. 

The costs for both algorithms are collected in Table II. 7.1. The 

table makes it clear that the McMurchie and Davidson algorithm will 

excel for heavily contracted basis sets, but expand rapidly for higher 

angular momentum functions. The Saunders algorithm pays heavily for 

contraction, but this deficiency is overcome for higher angular momentum 

functions. 

For a third and fourth derivative integral package, the dependence 

on ). needs to be as small as possible as the fourth derivative of a ).=2 

function (a d orbital) necessitates ).=6 functions. Thus, the Saunders 

algorithm was used as a base for the developement of the codes for 

first, second, third, and fourth derivatives. The actual form of the 

derivative integral algorithm, and the form of the derivative integrals 

themselves are discussed in the next chapter. 
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Table II. 7.1 

Costs of the Algorithms in Terms of the Total Angular Momentum ~ 

and Contraction Depth K as ~ Goes to Infinity 

McMurchie and Davidson Saunders 

Note that the McMurchie and Davidson algorithm is divided into two 

blocks, while the Saunders algorithm is divided in three. These blocks 

represent the most costly portions of each algorithm. 
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III DERIVATIVE ATOMIC ORBITAL INTEGRALS 

111.1 INTRODUCTION 

The first derivative with respect to a nuclear perturbation ak 

(where a is the nuclear position and k the cartesian coordinate) of the 

Hartree-Fockclosed-shell ~nergy expression is given by 

where 

L ESCF = ak 
~ E 

do 
=2 L 

i 

a 
_ (ijlij) k 

~ L L hU = 

lJ v 

("iii jj) ~ = L L L L 
lJ v P 0 

ak 
Sii = L L 

lJ v 

do 
+ L 

i 

do 
- 2 L 

i 

Ci Ci 
lJ v 

do a 
L {2(Uljj) k 
j 

ak 
Sa e:

i 

h~ 
lJV 

Ci Ci Cj Cj 
(lJVI po) 

~ 
lJ ' v P 0 

C
i 
lJ 

Ci 
v 

a 
Sk 

lJV 

(III. I..!) 

(III.1.2) 

(IIL1.3) 

(IIL1.4) 

The summation limits in equation 111.1.1 are all doubly occupied 

molecular orbitals, whereas the limits in equations 111.1.2 through 

111.1.4 are all atomic orbitals. The Ci are the molecular orbital 
lJ 

coefficients that are variationally optimized (see section 11.1), and 

e: i is the orbital energy. Details of these equations will be discussed 

in chapter IV however, these equations are presented here as they 

illustrate the use of the derivative atomic orbital integrals. 
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The one-electron derivative atomic orbital integral, equation 

111.1.2, is given by 

(111.1.5) 

with the two-electron and overlap derivatives defined similarly. This 

set of equations illustrates that an nth order derivative energy 

expression will involve nth order derivative atomic orbital integrals. 

As the derivatives are taken with respect to cartesian coordinates, 

certain derivatives are equivalent. (i.e. d2/dAxdAy is equivalent to 

a2/dAydAx)' In order to minimize the computational effort, only the 

unique cartesian derivatives are evaluated. Table 111.1.1 lists the 

number of unique degrees of freedom for the various order of 

derivatives. 

Until recently, most quantum chemists believed that even analytic 

second derivative energies were computationally more expensive than 

those calculated by finite differences in analytic first derivatives, 

let alone higher derivatives. This was in part due to problems arising 

from the large number of degrees of freedom, plus the difficulty in 

evaluating the derivative integrals. The work of Thomsen and 

Swanstr~m 40 on the H20 molecule supported this view. Their second 

derivative calculation used a near Hartree-Fock limit basis set on the 

oxygen and hydrogen, and took roughly 30 hours on the CDC 6400 computer, 

the derivative integrals taking roughly 10 hours. The dismay that the 

timings created is succinctly expressed by P. Pulay 41: " ••• the analytic 

calculation of the second (and by the same token the third) derivative 

is not practical." 

51 



Table IlLI 

Number of Unique Degrees of Freedom for Various Orders of 

Derivatives 

N- = number of atoms ' 

N3N = 3 (N) 

Degree ofDeriv~tive 

I 

2 

3 

4 

NDER 

Number of Degrees of.· Freedom 

N3N 

(N3N) (N3N+I) / 2! 

(N3N) (N3N+I) (N3N+2) / 3! 

(N3N) (N3N+I) (N3N+2) (N3N+3) / 4! 

(N3N) (N3N+I) (N3N+2) ••• (N3N+NDER-I)/NDER! 
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In a landmark paper of 1979, Pople, Krishnan, Schlegel, and 

Binkley 42, demonstrated that it was possible to obtain second 

derivatives of SCF wave functions at the cost of only four to five times 

that of a single gradient calculation. Since this work, researchers 

using second derivative methods have repeatedly shown that the 

calculation of analytic second derivatives for Hartree-Fock wave 

functions is generally much faster and more accurate than second 

derivatives calculated through finite differences of first 

derivatives. Three techniques used for reducing computational times 

are: (a) the incorporation of translational 43 and rotational 44,45 

invariance of the integrals, (b) the use of Rys polynomials in the 

derivative integral evaluation 32,42,46,47, and (c) the implementation 

of the iterative method of solving the coupled-perturbed Hartree-Fock 

equations (CPHF) 42 In this chapter, formulae will be derived for the 

derivative atomic orbital integrals that occur in derivative energy 

studies taking advantage of points (a) and (b). CPHF equations will be 

discussed in Chapter IV. 

111.2 TRANSLATIONAL AND ROTATIONAL INVARIANCE 

The property that the integrals, in any basis, are invariant to 

translation was first used in derivative calculations by Komornicki ~ 

ale 43 in 1977. Since its introduction, translational invariance has 

become the primary computation-saving method in the calculation of 

derivative integrals. Translational invariance states that for an 

integral I, the sum of the derivatives with respect to all the centers A 

in I for a particular cartesian coordinate k, are zero: 
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I (III.2.1) 
A 

The immediate consequence is that not all of the derivative 

integrals are independent. For a two center integral, the derivatives 

with respect to each center are equal, but of opposite sign. Thus only 

one derivative integral need actually be calculated, since the oth~r is 

generated by multiplying the calculated derivative integral by minus 

one. Note also that the derivative of a one center integral is zero. 

The use of translational invariance greatly reduces the number of 

integrals to be calculated. Table 111.2.1 shows the number of degrees 

of freedom that must be calculated so as to use translational invariance 

to eliminate the calculation of all the derivatives on one ~enter of a 

multicenter integral. The total number of degrees of freedom are given 

in parentheses of table III.2.1. The number of integrals eliminated due 

to translational invariance is easily found by multiplying the 

difference· in these two degrees of freedom by the number of members 

within a particular block. 

The integrals are also invariant to rotation 48. Vincent, Saxe, 

and Schaefer 44,45 have pursued the use of rotational invariance in 

first and second derivative calculations, as have Page, Saxe, Adams, and 

Lensfield 49 Vincent et ale have found the time savings to be on the 

order of fifty percent; however, the coding of the rotational invariance 

is a non-trivial matter and is presently limited to p-type orbitals. 

The code of Vincent et ale for the calculation of first and second 

derivative integrals expanded from roughly 5,400 lines to 34,000 once 

54 

." 



Table III.2.1 

Number of Degrees of Freedom for Derivatives on Various 

Degree of 
Derivative 

1 

2 

3 

4 

Centers Using Translational Invariance 

2 Centers 3 Centers 

3 (6) 6 (9) 

6 (21) 21 (45) 

10 (56) 56 (165) 

15 (126) 126 (495) 

4 Centers 

9 (12) 

45 (78) 

165 (364) 

495 (1365) 

Numbers in parentheses are the total number of degrees of freedom. 
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rotational invariance was included. As a result, rotational invariance 

has not been included in the present series of programs. Table 111.2.2 

lists the translational invariance relations used in this study, and is 

located at the end of the chapter. 

111.3 DERIVATIVE OVERLAP INTEGRALS 

The derivative of the atomic overlap integral is 

~. 

SjJV = 

CD 

~~ {_! XjJ Xv dT } 

CD ~ 

=_CD1 (.~~ XjJ) Xv dT +_I XjJ (~~ Xv) dT 

(III-3.t) 

If XjJ and Xv are on the same center, then 
ak S is zero by jJV 

translational invariance, and need not be calculated. Therefore, for 

the purpose of this section, it will be assumed that is located on 

nuclear center A, and that Xv is located on nuclear center B. As a 

result, the second term in the above equation immediately drops out. 

The derivative of the atomic orbital is simply the derivative of 

the cartesian gaussians that approximate the orbital itself. Thus, with 

k equal to x, 

= - n 
n-l 2 n+l 2 x
A 

exp( -axA ) + 2a xA exp( -axA ) 

- n G(a,A,n-l,l,m) + 2a G(a,A,n+l,l,m) (III.3.2) 

Substituting this back into equation 111.3.1 for the Ax derivative 

,. 



results in 

a 
S x 

lJ V 
- n J G(a,A,n-l,l,m) G(b,B,n' ,1' ,m') dT 

-co 

co 

+ 2a J G(a,A,n+l,l,m) G(b,B,n' ,1' ,m') dT (IlI.3.3) 

Using the results of section 11.4, the above integrals each reduce to a 

single term, giving 

a 
S X ::: (If/p)3/2 { -n e (n-l,n' ,0) e (1,1' ,0) e (m,m' ,0) 

lJV x y z 

+ 2a e (n+l,n',O) e (1,1',0) e (m,m',O) } 
x y z 

(IIl.3.4) 

First, second, third, and fourth derivativei forcariesian gaussian~-are 

listed in table 111.3.1. 

The second derivative of the overlap integral with respect of Ak 

and Ak is obtained by integrating the charge distribution of the second 

derivative of the cartesian gaussian on A ( from table 111.3.1 ) and the 

undifferentiated cartesian gaussian on B. This is not one, but three 

separate charge distributions. As with the first derivative, section 

11.4 indicates that each distribution reduces to a single term. For 

axax 
SlJV ,the result is 

a a 
S x x 

lJV 
( )3/2 { 2 If/p 4a e (n+2,n' ,0) e (1,1' ,0) e (m,m' ,0) 

x y z 

- 2a (2n+l) e (n,n' ,0) e (1,1' ,0) e (m,m',O) 
x y z 
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+ n(n-l) e (n-2,n',0) ~ (1,1',0) e (m,m',O) } x y . z (II1.3.5) 

Third and fourth derivatives on the same center are easily obtained by 

applying the formulae of table IIl.3.1 and the results of section 11.4, 

as was done above. 

Up to this point, translational invariance has only been used to 

avoid the calculation of a derivative equal to zero for one center 

integrals. Table 111.2.2 indicates that translational invariance can 

also be used to evaluate the derivative of the overlap distribution with 

respect to center B,while only calculating the derivative with respect 

to center A. 

bk -S~ 
S\lV = 

\lV 

bkbk ~ak 
S = S 

\lV \lV 

bk bkbk "'S~~~ S = 
IJV \lV 

bkbkbkbk akakakak (111.3.6) S\lV = S\lV 

When derivatives of order two or greater contain derivatives with 

respect to mixed cartesian coordinates, then the separability of the 

cartesian gaussian along each of the axes dictates that the total 

derivative is the product of the de~ivatives alorig each individual 



Table 111.3.1 

Derivatives with Respect to An of a Cartesian Gaussian 

Degree of Derivative 

o 

1 

2 

3 

4 

Centered on A 

Expression 

G(a,A,n) 

2a G(a,A,n+l) - n G(a,A,n-l) 

4a2 G(a,A,n+2) - 2a (2n+l) G(a,A,n) 

+ n(n-l) G(a,A,n-2) 

8a3 G(a,A,n+3) - 12a2 (n+l) G(a,A,n+l) 
, 

+ 6an2 G(a,A,n-l) - n(n-l)(n-2) G(a,A,n-3) 

16a4 G(a,A,n+4) - 8a3 (4n + 6) G(a,A,n+2) 

+ 12a2 (n2 + (n+l)2) G(a,A,n) 

- 2a (2n(2n2 - 3n + 1» G(a,A,n-2) 

+ n(n-l)(n-2)(n-3) G(a,A,n-4) 
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axis. For the case of 

a a 

a a 
S x Y , this results in 

1l'J 

S x Y = (,~/p)3/2 
1l'J 

{ nl e (n-l,n' ,0) e (1-1,1' ,0) e (m,m' ,0) 
x Y z 

- 2na e (n-l,n' ,0) e (1+1,1',0) e (m,m' ,0) 
x Y z 

- 2la e (n+l,n' ,0) e (1-1,1' ,0) e (m,m' ,0) 
x Y. z 

+ 4a 
2 e (n+ 1 , n' ,0) e (1+ 1 , 1 ' ,0) e ( m, m ' ,0 ) } 

x Y z 
(III. 3.7) 

Equation 111.3.6 can now be generalized for cartesian coordinates 

x, y, and z indicated by the generic k, j, i, and h. 

bkb. <i<a. 
S J = S J 

1l'J 1l'J 

bkb. bi <i<a.ai S J = _ S J 
1l'J 1l'J 

bkb.bibh aka.a.ah S J = S J ~ (III.3.8) 
1l'J 1l'J 

The translational invariance relations given in Table 111.2.2 also 

indicate that the mixed center derivatives, whether the cartesian 

coordinates be the same or different, are equivalent to derivatives 

evaluated on one center. 

<i<bj <i<aj 
Sll'J = - S 

1l'J 

a
j 

a
i 

b
k ~a.ai 

S = - S J 
1l'J 1l'J 
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(III.3.9) 

Since mixed center derivatives are equivalent to derivatives on one 

center, many derivative integral packages do not store them. The one 

center derivatives are stored instead and expanded to the mixed centers 

when used in the derivative energy program. 

111.4 DERIVATIVE KINETIC ENERGY INTEGRALS 

Since the kinetic energy operator acts only on electronic 

coordinates, the application of a nuclear displacement will only affect 

the atomic orbitals. The first derivative is 

T<i< 
uv 

GO 

= ~~ {_! Xu T Xv dT } 

GO GO 

= _~ ( ~~ Xu ) T Xv dT + 1 ~ T ( :~ Xv ) d T (III.4.1) 

,. 

Again, the derivative of an atomic orbital is the derivative of the 

cartesian gaussians used to approximate it. Tables 111.2.2 and 111.3.1, 

utilized in the previous section, provide the necessary relations for 

the derivative evaluation. As kinetic energy integrals are either over 

one or two nuclear centers, translational invariance dictates that the 
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derivative of anyone center kinetic energy integral is zero, and hence 

need not be calculated. As a result, the Xu orbital is assumed to be 

located on nuclear center A, while the Xv orbital is assumed to be on 

B. The kinetic energy operator is assumed to operate on gaussian 

G(b,B), as in section 11.4. 

For k equal to x, T~ is given by 

a 
Tu~ =.-1/2 (If/p)3/2 { 4b2 (-n ( e

x
(n-1,n'+2,0) e/l,l' ,0) ez(m,m' ,0) 

+ e (n-1,n',0) e (1,1'+2,0) e (m,m',O) 
x y z 

+ e (n-1,n',0) e (1,1' ,0) e (m,m'+2,0) ) 
x y z . 

+ 2 a ( e ( n+ 1 , n '+ 2 ,0) e (1,1',0) e ( m, m' ,0) 
x y z 

+ e (n+ 1 , n' , 0 ) e (1, 1 ' + 2 , 0 ) e. (m, m' ,0) 
xy z 

+ e (n+1,n' ,0) e (1,1' ,0) e (m,m'+2,0) ) ) 
x y . z 

- 2b ( 2 ( n '+1 '+m') + 3 ) ( -n e ( n -1 n' 0) e (1 l' 0) 
x " y" 

e (m m' 0) z ' , 

+ 2a e (n+1,n',0) e (1,1',0) e (m,m',O) ) 
x y z 

+ n'(n'-l) ( -n e (n-1 n'-2 0) e (1 l' 0) e (m m' 0) . x' , y" z" 

+ 2a e (n+1,n'-2,0~ e (1,1',0) e (m,m',O) ) x < y z . 

+ 1'(1'-1) ( -n e (n-1,n' ,0) e (1,1'-2,0) e (m,m' ,0) 
x y z 

+ 2a e (n+1,n',0) e (1,1'-2,0) e (m,m',O) ) 
x y . z 

+ m'(m'~l) ( -n e (n-1 n' 0) e (1 l' 0) e (m m'-2 0) x " y" ·z' , 

+ 2a e (n+1,n' ,0) e (1,1' ,0) e (m,m'-2,O») } 
x y z 

(III.4.2) 

Although equation 111.4.2 looks formidable, it is nothing more than a 

linear combination of derivative overlap integrals, and the results of 

section 111.3 can be directly applied. 

Again, only the derivatives on one center need be evaluated, as 
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derivatives on the second center, including mixed derivatives of both 

centers, can be calculated by translational invariance. Equations 

111.3.5 - 111.3.7 of the derivative overlap integrals directly apply, 

except that derivatives are for kinetic energy integrals, rather than 

overlap integrals. 

111.5 DERIVATIVE NUCLEAR ATTRACTION INTEGRALS 

The nuclear attraction operator acts on the distance between an 

electron and a nuclear center, and is thus affected by a nuclear 

perturbation. The first derivative is given by 

ak 
00 

:: _a_ { J L -1 
d't' V Xu r Xv IlV a~ c 

_00 c 

00 00 

= -L ( ~~ Xu ) I -1 
d't' + J ( ~~ I -1 ) d't' r Xv Xil 

r Xv c c c -00 c 

(III.5.l) 

The first and third terms of the above equation are the derivatives of 

the cartesian 'gaussians, both of which have been encountered in the 

previous two sections. The second term, a Hellmann-Feynman-like term, 

vanishes unless A is equal to c. This term would be the one-electron 

Hellman-Feynman term if the kinetic energy operator were included in 

111.5.1. For A equal to c and k equal to x, this term gives 

c 



(III.5.2) 

This is the electric field integral. Its evaluation is accomplished by 

returning to section 11.6, the zeroth order NAI section. From section 

11.6, the general solution for the NAI is equation 11.6.16 

= 2~/p .. I E(t,u,v) 
t,u,V 

( a )t (. a )U (a )V ap- ap- ap 
x y z 

where z=p pcz = p ( (p _ c ) 2 _ (P _ C ) 2 _ 
x x y y 

FO(z) 

(IIl.5.3) 

Rewriting equation 111.5.2 in terms of the above equation, remembering 

that A is now equal to C, yields 

00 

f XlJ ( ~C 
-00 x 

r -1 ) X dT = 
C V 

2~/p I E(t,u,v) (~c ) (~p )t 
t,u,V x x 

(III.5.4) 

where X and X have been reduced to an averaged gaussian about P. 
lJ v 

Since z depends only on P - C, then 

Equation 111.5.4 now becomes 

00 

f XlJ ( 
a -1 

) Xv dT r ac c 
-00 x 

x 

= 

= _ ( a ap 
x 

-2~/p I E(t,u,v) 
t,u,V 

( a 
)V FO(z) ap 

z 

(rrI.5.5) 

( a )t+l ( a )U ap ap 
x Y 
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= - 2Tf/p I E(t,u,v) 
t,u,v 

c R (t+1,u,v) 

where RC(t+1,u,v) is defined as in equation 11.6.18. Again the 

(III.5.6) 

superscript c is used to designate that this RC(t+1,u,v) is for a 

specific nuclear center C. 

In a similar manner, electric field integrals in the y and z 

cartesian coordinates ~an be derived. The results are 

GO 

f Xu ( 
3 -1 ) -2Tf/p I E(t,u,v) c 
ac- r Xv d"C = R (t,u+1,v) c 

-GO y t,u,v 

GO 

f Xu ( 
3 -1 ) d"C -2Tf/p I E(t,u,v) c 
ac- r Xv = R (t,u,v+l) 

c 
_GO z t,u,v 

Higher derivatives of the operator are also possible since 

( 3 )n ac 
x 

Mixed cartesian derivatives are easily found as well, since 

) FO(z) ) ( 3 
3P 

Y 

(IlI.5.l) 

(III.5.8) 

(III.5.9) 

Before equations 111.5.6 - 11.5.9 and table 111.3.1 are applied to 

the evaluation of the NAl derivative integral, it is beneficial to break 

the problem into three classes and examine a specific case from each 

class. The first class is comprised of derivatives with respect to one 

of the nuclear centers on which Xu and Xv are located. We will consider 

the general case of derivatives with respect to A where Xu is located 
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on nuclear center A and Xv is located on nuclear center B. The second 

class includes derivatives where XJ,I and Xv are located on the same 

center and the derivatives are taken with respect to this center. The 

specific case of interest will be when XJ,I and Xv are located on center A 

and the derivatives are with respect to A. The third class contains 

derivati~es that are taken with respect to centers on other than where 

XJ,I and Xv are located. The specific case will be XJ,I located on C and 

Xv on D, while the derivatives are taken with respect to A. 

In order to simplify notat'ion, dirac notation will be employed. 

Derivatives are denoted by superscripts of the appropriate cartesian 

coordinates, and atomic orbitals are represented by J,I or v with a 

subscript denoting the nuclear center. The operator r~1 is denoted by 

Vc. As an example, consider 

-1 
r X dT = 

C V 

Case 1 Xli on A X", on B 

For k equal to x: 

I I 
c 

v 
c 

a t=n-1+n' u=l+l' v=m+m' 

(III.5.10) 

(III.5.11) 

V x = 2n/p { -n I e (n-1,n',t) I e (l,l',u) I e (m,m',v) I RC(t,u,v) 
J,lV t=O x u=O Y v=0 z C 

t=n+l+n' u=l+l' v=m+m' 
+ 2a I e (n+1,n',t) I e (l,l',u) I e (m,m',v) I RC(t,u,v) 

t=O x u=O Y v=O z C 
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t=n+n' v=l+l' v=m+m' 
- L e (n,n',t) L e (l,l',u) L e (m,m' ,v) RA(t+l,u,v) } 

t=O x u=O Y v=O z 
(III.S.12) 

Case 2 both X~ and X~ on A 

(III.S.13) 

For k equal to x: 

a 
V x 

t=n+n'-l t=n+n'+l 

~'" 
= 2w/p{[ L -(n+n')(e (n-1,n' ,t) + e (n,n'-l,t»)+ L (2a+2b) 

t=O x x t=O 

u=l+l' v=m+m' 
(e (n+l,n' ,t) + e (n,n'+1,t»)1 L e (l,l',u) L e (m,m' ,v) L RC(t,u,v) 

x x u=O y v=O z C 

t=n+n' u=l+l' v=m+m' 
- L e (n,n',t) L e (l,l',u) L e (m,m' ,v) RA(t+l,u,v) } 

t=O x u=O Y v=O z 
(III.S.14) 

Case 3 x~ on C and X~ on 0 

(III.S.IS) 

For k equal to x: 

a t=n+n' u=l+l' v=m+m' 
V x = -2n/p L e (n,n',t) L e (l,l',u) L e (m,m',v) RA(t+1,u,v) 
~'" t=O x u=O Y v=0 z 

(III.S.16) 

Equations similar to these are readily produced for the higher 

derivatives; they involve higher deivatives of the gaussians (Table 

67 



III.3.l) ~nd larger limits for RA. The only drawback to these formulae 

is the amount of work needed to solve them. Equations IIl.S.ll -

111.5.16 take no advantage of translational invariance. 

The NAl 1s at most a three center integral. For a specific three 

center case, section 111.2 and the translational invariance relations of 

Table 111.2.2 yield 

< ~~ I Vc I vB > + < ~A I V~ I vB > + < ~A I Vc I V~ > = 0 

(III.S.l7) 

All three of the quantities in IIl.S.17 are not independent, one of them 

can be calculated by knowing the other two. Choosing the e1ectic field 

integral to be the dependent integral, 

v 
c 

(III.S.18) 

This means that the formulae for the NAl derivatives can now be 

rewritten purely in terms of derivatives on ~ and v. 

Returning to the three general cases, and substituting equation 

111.5.18 for the electric field integral (note that this substitution 

requires that Vc in equation 111.5.18 be changed to VA) one obtains: 

Case 1 

Case 2 

V~ = 
~v 

V 
c 

< ~Ak I L V I vA > + < ~A I L V 
C*A c C*A c 

(III.S.19) 

(III.S.20) 
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.. 

.. 

Case 3 

- < ~~ I VA I Vo ) - < ~c I VA I v~ > (III.S.21) 

The most obvious advantage to the above set of equations over 

equations 111.5.11 through 111.5.15 is that their solution involves 

less work. The summations are more restricted and the electric field 

integral is never explicitly solved. 

Translation invariance relations that relate V~ 
b

k to V are not 
~v ~v 

-1 simple due to the summation over all centers inherent in the rc 

operator. If translational invariance is used to eliminate the electric 

field integral, then maximum use is already being made of translational 

invariance, and no 

only way 

more 
b

k 
V 
~v 

is possible. Assuming this to be the case, the 

is by direct evaluation. This has a hidden 

benefit. 

to obtain 
b

k 
V ~v is given by 

V 
c v~ > - < ~~ I VB I vB > 

(III.S.22) 

Note that the second term in 111.15.19 is calculated in the summation of 

111.5.22, and that the second term in 111.5.22 is calculated in the 

summation in 111.5.19. By calculating < ~A I VA I v~ > and placing it 

k I I ak bk placing < ~A VB vB) in V~v and V~v when 

it is calculated, then the two derivatives are calculated for the price 

of < ~~ I I Vc I vB > plus < ~A I I Vc 
k vB >. This is clearly 

c*A c*B ak bk superior to equation 111.5.11, which for V~v and V~v is comprised of 

both of these terms including the missing term in the summation, and 

< ~A I V~ I vB ) and < ~A I V~ I VB)· The use of translational 

invariance to eliminate the electric field integrals produces formulae 
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that will require the least amount of work. 

For second, third, and fourth derivatives, using translational 

invariance to eliminate the integrals of the derivatives of the operator 

yields the set of equations that require the minimum amount of 

computation. For each degree of differentiation, n, a new translational 

invariance relation must be obtained. The simplest method to obtain it 

is to differentiate the translational invariance relation of degree 

n-l. For second,derivatives, the new translational invariance relation 

is obtained by differentiating equation 111.5.18 with respect to Cj • 

k 
\l

B 
> 

(III.5.23) 

The terms on the right of the above equation are also found from 

equation 111.5.18. For the first term,the equation is first redefined 

in terms of the derivative with respect toC j , not Ck ( k + j in 

equation 111.5.18). Then the derivative with respect of Ak is taken 

resulting in 

k < lJA v 
c 

v 
c vi> 

(III.5.24) 

The second term on the right in equation 111.5.23 begins as did equation 

111.5.24 ( k + j in equation 111.5.18), but then it is differentiated 

with respect to Bk , yielding 

v 
c 

Substituting both of these into equation 111.5.23 produces 

\I~j > 

(III.5.25) 
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.. 

k" 
= < IJ J 

A 

v 
c 

v 
c 

v 
c 

k" \/ J > 
B 

(III.5.26) 

Naturally, if the cartesian coordinates k and j are equal, then the 

middle two terms of the above equation are the same. Using these 

relations, all the second derivatives for the three general cases are 

straightforwardly derived. 

Case 1: 
akaj k" 

/ L / \/B > + < IJj Vk 
/ \/B > + < 11 A I Vkj 

/ \/B > . V = < IJ J V 
IJ\/ A C c A A A 

+ < IJ~ I Vj 
A I \/B > (III.5.27) 

Substituting for the terms with derivatives on the operator with 

equations 111.5.24 and 111.5.26 as well as a modified 111.5.24 where 

k - j yields 

~aj 
= < kj I L V \/B > - < IJA I VA I kj > V IJA \/B IJ\/ 

C*A 
c 

(IIl.5.28) 

Similarly, 

~bj 
'" < k I L V \/j > + < k Vj 

/ \/B > + < IJA I vB
k

/ ) > V IJA IJA IJ\/ 
C c B B B 

Using equation 111.5.24 and modifying equation 111.5.25 ( k - j ), 
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(III.S.29) 

The second derivative with respect to Ak and Cj is given by 

Using equation III~S.24, it reduces to 

(III.S.30) 

Case 2 
akaj k· I I V I v > + < ~ I I V 

k· 
V = < lJ ] v ] > lJV A C c A A C c A 

+ < k I V I vi > + < lJJ I I V k > lJA C c A 
C c vA 

+ < k 
lJA vj 

A I vA > + < lJA I Vk 
A 

) 
A > 

+ < lJj Vk > + < lJA I Vj k > A A vA A vA 

+ < lJAI Vkj 
A I vA > 

Using equations 111.5.24 tol11.S.26, the above reduces to 

aka. k· k· 
V ] = < lJA] I I VA I vA > + < lJA I I VA I vA] > 

lJV C*A C*A 



.. 

+ < ~Ak I L v I vJA > 
C*A c 

+ < ~j 
A I L V 

C*A c 

The second derivative with respect to Ak and Bj is given by 

This easily reduces to 

Case 3: 
~a. 

V J 
~v 

< I V
kj 

~C A 

This is reduced directly by equation 111.5.26, yielding 

The derivative with respect to Ak and Bj is 

(III.5.31) 

(III.5.32) 

(111.5.33) 

(III.5. 34) 

Similar sets of equations can be derived for the third and fourth 
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derivatives of the NAl. Table IIl.S.1 lists the first and second 

derivative -results already described above. Table 111.5.2 contains the 

third derivatives, whereas Table 111.5.3 contains the fourth 

derivatives. These tables are located at the end of the chapter. 

The algorithm for the evaluation of the derivatives of the overlap, 

kinetic energy, and the nuclear attraction integrals is located in the 

appendix A.2. 

111.6 DERIVATIVE TWO-ELECTRON REPULSION INTEGRALS 

Derivatives of the ERI are much more straightforward than those of 

the NAl because the r 12- 1 operato: of the ERI is independent of nuclear 

coordinates. There are two general methods for taking the ERI 

derivatives; the first is the addition and subtraction of integral 

blocks introduced by Dupuis and King 32,50; and the second is the 

differentiation of the quadrature formula first introduced by Saxe, 

Yamaguchi, and Schaefer 46,' and later reintroduced by Schlegel, Binkley, 

and Pople47 • Both methods take full advantage of translational 

invariance. 

For the ERl, as for the NAI, it is advantegous to evaluate the 

derivatives of the integral with respect to ~ll centers in the integral 

at one time. Although this requires more memory for the storage of 

intermediate arrays, m.any of the imtermediaries can be used repeatedly, 

saving the computational cost of recomputing them. It is thus necessary 

to know which derivatives need to be taken. Using the translational 

invariance relations of table 111.2.2, the derivatives of one center of 

a multicenter ERI can always be neglected and calculated from the 
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derivatives with respect to the remaining centers. In the discussion 

that follows concerning the two general approaches to ERI derivatives, 

the use of translational invariance is neglected. It is brought back 

into the discussion when the actual method employed in the programs for 

the ERI dervative evaluation is discussed. 

The first general ERI derivative method, that of Dupuis and 

King 32,50 uses the property that the first derivative of a cartesian 

gaussian G(a,A,n) is a linear combination of G(a,A,n+1) and G(a,A,n-1) 

where n is the angular momentum of the gaussian along the axis of the 

derivative. (See table 111.3.1 for a list of the derivatives of 

gaussians). In this way, the first derivative with respect to the 

center A of a block of (pplpp) integrals is a linear combination of 

(spjpp) and (dplpp) blocks of integrals. The second derivative is a 

combination of (ppjpp) and (fplpp) blocks, and the third and fourth 

derivatives are combinations of (gplpp), (dplpp), (splpp) and (hplpp), 

(fpjPp), (pplpp) blocks, respectively. The major drawhack of this 

method is that large amounts of storage can be required for the handling 

of these blocks. 

The second method, that of differentiation of the quadrature 

formula, begins with the ERI as developed by Dupuis ~ ale (see 

references 32, 36, and 37 for details). It is given by 

1 
(~vjpo) = J PL(t) exp (-pq/(p+q) PQ2 t

2
) dt 

o 
(III.6.1) 

where PL(t) is a polynomial of degree L in t 2 • Note the similarity of 

the above equation to 11.7.18. The ploynomial is split along each axes 

resulting in 
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(lJVlpo) 
1 

= J I I I exp (-pq/(p+q) PQ2 t 2 ) dt 
o x Y z 

(III.6.2) 

The constants p ,and q as well as 
-2 
PQ are as defined in section 11.7. 

Rys quadrature on 111.6.2 yields 

N 

I 
y 

w I (t ) I (t ) I (t ) y x y y y z y (III.6.3) 

Saxe ~ al. 46 differentiated the equation 111.6.2 resulting in 

x exp ( -pq/(p+q) PQ2 t 2 ) dt (III.6.4) 

The integrand still contains a polynomial in t 2 , however, it is now of 

degree L+l. As ~ result, the integral can ~till be solved by Rys 

quadrature as the polynomial fits the quadrature requirements. (See 

section 11.6 for a discussion of the requirements of Rys quadrature). 

For k equal to x, equation 111.6.4 becomes 

where 

a N+l 
( lJVI po) x = I 

y 

01 (t ) .. 
x y 

w 01 (t ) I (t ) I (t ) y x y y y z y 

- t
2 

Ix(t y ) ~A (pq/(p+q) pQ2) 
x 

(III.6.S) 

This equation differs sightly from that of Saxe et ale in that an 

exponential of weighted positions, which in their notation is 
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exp(-Gx - Gy - Gz ), has been incorporated into the definition of Ix' I y ' 

and I z • This is done to make the notations of Dupuis, Saxe, and 

Schlegel match. 

In order to find the 01 for a given derivative integral, the 
x 

recursion relations of Rys et ale 37 are themselves differentiated. 

This leads to a series of recursion relations much like those used for 

zeroth order integrals; except they are explicitly for derivatives. 

Second derivatives are found by differentiating equation 111.6.4 a 

second time and differentiating the derivative recursion relations to 

obtain the necessary second derivative recurrence relations. Third and 

fourth derivatives would be found similarily. The drawback to this 

method is the complexity of the resulting recursion relations. 

Schlegel, Binkley, and Pople 47 avoid the derivative recursion 

relations altogether by casting derivatives in terms of derivatives of 

the basic Ix' I y ' and I z for a (sslss) block of integrals. They begin 

with equation 111.6.2 and differentiate leading to 

a N+l 
(~vlpa) x = L 

y 
(~A 

x 
I (t ) ) I (t ) I (t ) x y y y z y 

(111.6.6) 

Noting that any gaussian can be made by the appropriate application of 

equation 11.2.2 on the s-type gaussian, they obtained the solution for 

a 
~ Ix(O,O,O,O). In this notation, the indices of Ix are n, n', i, i' 

x 
while those of Iy are 1, 1', j, j' and I z are m, m', k, k' - the 

components of the total angular momentum of the four shells. The 

derivative of the (sslss) block is proportional to 
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« (at2 + a ) I (0,0,0,0) 
x 

(III.6.7) 

where a and a are constants and functions of~. The details of the 

differentiation are not important for this discussion, rather what is 

important is that the derivative of Ix is proportional to a function of 

~ and the undifferentiated Ix. Using equation 11.2.2 to make this 

general (any Ix can be' creat~d by the appropiate use of the M operators) 

yeilds, 

I (0,0,0,0) x -

(II1.6.8) 

Applying the above leads to the calculation of I x(nA*1,nS,ic,ii»-and 

I x (nA-1,ns,ic,ii»; these are one-dimensional integrals of higher and 

lower angular momentum functions. By means of reexamining the 

definition of M
nAx

, Schlegel et al. 47 found that for A, a linear 
n Ax function of Ax' the M -operator obeys the following relation: 

3 A 
3A 

x 

n -1 
MAx (III.6.9) 

nAx where a is the exponent -of the gaussian on which M operates. Since 

the derivative of Ix(O,O,O,O) is proportional to a linear function of 

Ax' equation 111.6.7 can be rewritten as 

2 ( at + B ) I = A I 
x x 

(III.6.10) 

Applying equation 111.6.9 to 111.6.10 to produce 111.6.8 yields 
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A I (n,n' ,i,l') 
x 

a A 
+ n/2a ~ 

a A 
l x(n-l,n' ,1,i') + n'/2a aBx l x(n,n'-I,i,i') 

x 

+ i/2a :cA 
I x(n,n',i-l,i') + i'/2a !nA 

l x (n,n' ,i,i'-I) 
x x 

(111.6.11) 

The result is that equation 111.6.8 is now written without any angul~r 

momentum functions higher than the zeroth order ERI. Schlegel ~ 

ale 47 provide formulae for the evaluation of the first and second 

derivatives of Ix' l y ' and l z • Equation 111.6.11 implies that the 

limits of summation in the derivative integral evaluation need not 

increase (loops that depend on the angular momentum). The number of 

quadrature points does increase by one for each degree of 

differentation. 

In the present series of derivative integral programs, the 

quadrature formulae are not differentiated. In light of the above 

discussion, this may seem surprising. The reason for this is that the 

integral algorithm of Saunders 22,38 lends itself to derivatives in a 

very straightforward way that avoids both the calculation of derivative 

recursion relations and the determination of the various derivative 

linear functions A of equation 111.6.11. 

As shown in appendix A.l, the Saunders algorithm loops over shells 

such that Jshell ( Ishell, Kshell ( l~hell, and Lshell ( Kshell (or 

Jshell if Kshell is equal to Ishell). The result is that specific 

combinations of the nuclear centers will occur in the calculation of the 

ERl and its derivatives. By coupling this with the translational 
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invariance relations of Table 111.2.2, it is easy to decide the 

derivative that is best produced through translational invariance. 

Table III. 6 .1 lists the various combinations of nuclear centers and the 

derivatives that are taken so as to use translational invariance to 

eliminate all the derivatives with respect to a particular center. 

Consider the case of a four center integral where derivatives with 

respect to nuclear. center 0 are being calculated from translational 

invariance. This represents the most difficult case of Table 111.6.1. 

The zeroth-order ERI '1's given by equation II.7.22 

* XX XY XZ 
Y Y Y 

(lIl.6.12) 

where 

* * XX = 
Y 

L e (i i' t') YX (t') x ' , (III.6.13) 
t' 

* YX (t') (III.6.14) 

The asterisk is used to signify that an additional factor of (p+q)-1/2wy 

has been incorporated in the generation of Gt +t ,. XY, XZ and YY, YZ are 

defined similarily to the x-direction analog, however, the (p+q)-1/2w y 

is not included. See section 11.7 for more details concerning these 

equations. 

In the following, explicit formulae for the first and second 

derivatives of the atomic orbital'integrals will be derived. Third and 

fourth derivatives are simply an extension of these two derivatives. 

The first derivative with respect to a general nuclear center S, 

for the x direction, is given by: 
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Table nI.6.1 

Combinations of Centers and Derivatives for the ERI (~vlpa) 

notation: AAB indicates a third derivative that is a second derivative with respect to center A and 
a first derivative that is a first derivative with respect to center B. 

. Centers on which the 
orbitals are located 
~ v p a 

A A B C 

A A B B 

A B C C 

A B B C 

Translation invariance 
used to elminate all 
derivatives with respect 

to center 

A 

A 

C 

B 

Degree of Derivative and the necessary 

1 2 

B,C BB,CC, 

BC 

B BB 

A,B AA,BB, 

AS 

A,C AA,CC, 

AC 

derivatives 
3 

BBB,CCC 

BBC,BCC 

BBB 

AAA,BBB 

AAB,ABB 

AAA,CCC 

AAC,ACC 

4 

BBBB,CCCC,BBBC 

BBCC,BCCC 

BBBB 

AAAA,BBBB,AAAB 

AABB,ABBB 

AAAA,CCCC,AAAC 

AACC,ACCC 

co ..... 



A B A B B 

A B C B B 

A B A C A 

A A A A 

A B C D D 

" 

A AA AAA 

A,C AA,CC AAA,CCC 

AC AAC,ACC 

B,C BB,CC BBB,CCC· 

BC BBC,BCC 

all derivatives are zero 

A,B,C AA,BB AAA,BBB 

CC,AB CCC,AAC, 

AC AAB,ABB 

BBC,BCC 

AAAA 

AAAA,CCCC,AAAC 

AACC,ACCC 

BBBB,CCCC,BBBC 

BBCC,BCCC 

AAAA,BBBB,CCCC 

AAAB,AABB,ABBB 

.AAAC ,AACC ,ACCC 

BBBC,BBCC,BCCC 

(Xl 
N 



.. 

a 
as 

x 
(lJ"l po) 

For the case of S equal to A: 

where 

a * aA xx == XXFA == 
x y 

I a * e (i i' t') - YX (t') 
x " aA y 

t' x 

t=n+l+n' * a * ~ YX (t') m YXFA = 2a 
x y 

I e (n+l,n' ,t) Gt +t , 
t x 

t=n+n'-l * 
- n I e x(n-1,n',t) Gt +t , 

t 

= 2a YXFAI - n YXFA2 

(III.6.15) 

(III.6.16) 

(III.6.17) 

Note that this is the application of Table 111.3.1 to the gaussian 

centered on nuclear center A. The acronyms, XXFA, YXFA, YXFAl, and 

YXFA2 are for the benefit of the derivative integral a~gorithm that 

appears in appendix A.3. The acronyms are meant to indicate precisely 

what derivatives are being taken: i.e., XXFA is the XX array!..irst 

deri vati ve wi th respect to center !!., while YXFAI is the YX array for the 

First derivative with respect to.!., component number 1... In all of the 

above equations, as in those that follow, if an index for the expansion 

coefficients is less than zero ( n-1 < 0 ), then the entire summation is 

ignored. 

For S equal to B, the result is: 

a * \' as xx = XXF B = L. 
x y t' 

a * e (i i' t') --- YX (t') x " aB y 
x 

(III.6.18) 
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where 

o * YX (t') oB
x 

y 

- n' 

t=n+n'+1 
* 2b L e (n,n'+1,t) Gt +t , 

t x 
YXFB 

t=n+n'-1 
* \ e (n n'-1 t') G Lx' , t+t' 

t 

= 2b YXFB1 - n' YXFB2 

For S equal toC, the result is very different: 

t '=i+1+i' * o . * - XX = XXFC = oC y 
2c L e (i+1,i',t') YX (t') 

t' x x 

- i 
t'=i-1+i' 

* \ e (1 .... 1 i' t') YX (t') Lx' , 
t' 

= 2c XXFC1 - i XXFC2 

(III.6.19) 

(III.6.20) 

* Note that the YX (t') has a larger index than that of equation II1.6.13. 

The second derivative with respect to Sx of equation rrI.6.12 is 

given by: 

02 
~o-S "'""o""-S- ().lVI po) = 

x x 

N+2 
\ (0 * ) 
L ~o"""'S "'""o""-S- XXy 
y x x 

XY 
Y 

xz 
y 

For S equal to A, equation I11.6.21 yields: 

0
2 * L e x (l,l' ,t') oA oA YX (t') 

t' x x 

where 

. (rrI.6.21) 

(rrI.6.22) 
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t=n+2+n' 
YXSA = 4a2 * L ex(n+2,n',t) Gt +t , 

t 

t=n-2+n' 
- 2a(2n+1) 

t=n+n' * 
L ex(n,n',t) Gt +t , + n(n-l) 
t 

* L ex (n-2,n' ,t) Gt +t , 
t 

= 4a2 YXSAI - 2a(2n+l) YX + n(n-l) YXSA2 

For S equal to B: 

aB aB x x 

(1II.6.23) 

where the result can be directly written down in analogy to equation 

1II.6.23 

a2 * ~a-B-:a""'B- YX (t') = YXSB = 4b2 YXSBI - 2b(2n'+1) YX + n'(n'-I) YXSB2 
x x 

For S equal to C: 

a2 * 
ac ac XXy = XXSC 

x x 

t'=i+2+i' * 
= 4c2 L e (i+2,i',t') YX (t') 

t' x 

(III.6.24) 

t'=i+i' * t'=i-2+i' * 
\ e (i i' t') YX (t') + i(i-l) \ e (i-2 i' t') YX (t') - 2c(2i+l) 
I. x " I. x " 
t' t' 

- 4c2 XXACI - 2c(2i+l) XX + i(i-l) XXSC2 

(1II.6.25) 

The evaluation of the second derivative also leads to mixed center 

derivatives. Using the general nuclear centers S, and T, the second 
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derivative is given by: 

3S 3T 
x x 

(1JVI pa) = 
N+2 
L 
y 

Table 111.6.1 indicates that three cases of mixed center 

(III.6.26) 

derivatives are needed; S equal to A and T equal to B; S equal to A and 

T equal to C; and S equal to Band T equal to C. For the first case, S 

equal to A and T equal to B, equation 111.6.26 yields 

where 

- 2an' 

3A 3B 
x x 

* XX = XXSAB == L 
Y t' 

3
2 * e ( ii' t') ~--=-- YX 

x " 3A aB y 
x x 

3
2 * t=n+n'+2 * 

\ e (n+1,n'+1,t) G ~--=--"-- YX (t') = 4ab 3A aB y 
x x 

L x t+t' 
t 

t=n+n' t=n+n' 

(III.6.27) 

* I e x(n+1,n'-1,t) Gt +t , - .2bn * L e (n-1,n'+1,t) G , x . t+t 
t 

+ nn' 

t 

t=n+n'-2 
* \ e (n-l ri'-l t) G Lx' , t+t' 

t 

a 4ab YXSABI - 2an' YXSAB2 - 2bn YXSAB3 + nn' YXSAB4 

(III.6.28) 

For the second case, S equal to A and T equal to C, the derivative 

is given by 

~2 t'=i+i'+l 
o * \ a * aA ac XXy Z XXSAC = 2c L ex(i+l,i' ,t) aA YX (t') 

x x t' x y 

- i 
t'=i+1'-1 

\ 3 * 
L ex(i,i'-l,t') 3Ax YXy(t') 
t' 
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• 

= 2c I e (i+l,i',t') YXFA - i L 
t' x t' 

e (i-l i' t') YXFA 
x " 

(nI.6.29) 

where YXFA is as defined by equation 111.6.17. This reduces to 

XXSAC = 2c XXSACI - i XXSAC2 

Finally, for S equal to Band T equal to C: 

XXSBC = 2c L e (i+l,i',t') YXFB 
x 

- i I 
t' 

t' 

e (i-l,i,t') YXFB 
x 

= 2c XXSBCl - i XXBC2 

(In.6.30) 

(nI.6.31) 

The extension of these formulae to third and fourth derivatives is 

straightforward. Table 111.6.1 shows the necessary combinations of 

derivatives needed to completely ignore the derivatives with respect to 

one center, and build it later through translational invariance. 

In all of these formulae, for each degree of differentiation the 

summation limits of t and t' increase. This means that the limits of 

the indices of the expansion coefficients and the G arrays must 

increase. Producing these expansion coefficients of higher indices 

requires little computational effort as the coefficients are generated 

through an efficient recursion relationship based on Hermite 

Polynomials, equation 11.3.8. By requiring G arrays of higher index, 

additional Rys roots and weights are needed. This requirement is common 
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to all derivative integral packages that are based on Rys quadrature. 

(See equations 111.6.5 and 111.6.6). As the G arrays are generated 

through a simple recursion relation, equation 11.6.28, the calculation 

of elements of the G array of 'larger indices is trivial. This method 

completely eliminates the need for differentiating the recurrence 

relations,as is necessary in the method of Saxe et a!., as well as the 

need with differentiating the A functions, as is necessary with the 

method of Schlegel et ale 

The method used here is related to the method of Dupuis et·al. in 

that the integrals of differentiated gaussians are evaluated, however, 

instead of working with entire blocks of integrals, as does Dupuis et 

al., sums and differences of one-dimensional integrals are evaluated. 

This does not require more storage space. The second derivative of a 

(pplpp) block of integrals (one degree of freedom), will only require 

the amount of storage space necessary to store a zeroth order (pplpp) 

block. 

The amount of necessary storage space is complicated by the 

evaluation of all the derivatives of a block of integrals at once. If 

an integral block over N+l centers has lMEM members, then the second 

derivative block taking derivatives with respect to N centers has 

lMEM*(N3N)*(N3N+l)/2 members where N3N equals the number of derivative 

centers N multiplied.by three. This amount includes all second 

derivatives; mixed center and same center derivatives. The sizes for 

first, third, and fourth derivatives are found similarly (Table 

111.1.1). This type of storage requirement is common to all derivative 

programs that evaluate all derivatives at once. It will only become 

serious for cases of high derivatives on blocks of large angular 
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momentum functions where each function is on a separate center. This 

problem can be overcome by solving the first, second, and third 

derivatives at one time, and then rerunning the derivative integral 

program for the fourth derivatives. 

The algorithm for the simultaneous evaluation of first and second 

derivatives of the ERr is given in appendix A.3. Many of the terms used 

are defined in appendix A.I; the remaining correspond to terms used 

throughout the past two chapters. Restrictions of the loops are the 

same as those given for the zeroth order ERr in appendix A.I unless 

stated otherwise. 
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Table III.2.2 

The Use of Translation Invariance to Calculate Derivatives 

of One Center in a Multicentered Integral 

notation: a, b, c, d represent nuclear centers 

k, j, i, h represent cartesian coordinates 

ak represents the derivative with respect to center a with 

cartesian coordinate k 

One Center Integrals: I( a) . 
. \ 

all derivatives are zero 

Two Center Integrals: I(a,b) 

solving for derivatives with respect to b 

First derivative: k k b := - a 

Second derivatives: 



.. 

Third derivatives: 

Fourth derivatives: 

val = akaja i 

bkaj a i = - val 

bkbjai = val 

bkbj bi = - val 

val = akaj aiah 

bkajaiah = - val 

bkbj aiah = val 

bkbjbiah = - val 

bkbjbibh = val 

Three Center Integrals: I(a,b,c) 

solving for derivatives with respect to c 

First derivative: 

Second derivatives: 

Third derivatives: 
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ckcj c i = _ akaj a i _ bkbj bi - akaj b i _ akaibj 

_ ajaibk - akbjb i - aibkbj - ajbkb i 

Fourth derivatives: 

ckcjciah = _ akajaiah _ ahbkbjb i _ akajahbi _ akaiahbj 

_ akahbjbi _ aiahbkbj _ ajaiahbk - ajahbkb i 

ckcjcich = akajaiah + b~jbibh + akajaibh + akbjbibh 

+ akaJahbi + aibkbjbh + akaiahbj + ahbkbjb i 

+ ajaiahbk + ajbkbibh + akajbibh + akaibjbh 

+ akahbjbi + aiahbk~ + ~jahbkbi + ajaibkbh 

Four Center Integrals I(a,b,c,d) 

solving for derivatives with respect to center d 

First derivative: k k k k d=-a-b-c 
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Second derivatives: 

kJ kJ Jk ok da =-aa -ab -aJc 

Third derivatives: 

dkdJ a i = akaJ a i + aibk~ + aickcJ + akai~ + aJ aibk + akaicJ 

+ aJ aick + aibkcJ + aibJ c k 

kOi kJi kOi kOi ki O °ik kOi 
d dJ d = - a a a - b bJ b - c cJ c 0- a a bJ - aJ a b - a aJ b 

- aib~J ~o i aJbkb i _ k ° i k i ° ° i k - a Jb - a aJc - a a cJ - aJa c 

- aickcJ k ° i - a cJc - aJ ckci _ bkbicJ ° i k - })Jb c - bkbJc i 

- bickcJ - bkcJ c i _ bJ ckci - aibkcJ _ ai~ck _ akbicj 

- a j bick - ak~ c i - aJ bkc i 

Fourth derivative: 

dkdJdiah = _ akaJaiah _ ahbkbJb i _ ahckcJc i _ akaiahbj 

_ aJaiahbk _ akaJahbi _ aiahbkbJ _ akahbJbi _ aJahbkb i 
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hbi k j ace 

dkdJdidh = akaJaiah + akaJaibh + akaJaich + ahbk~bi 

+ bkbjbibh + bkbJbich + ahckcJci + bhckcjc i + ckcjcich 

+ akaiahbJ + akai~bh + akaibJch + aJaiahbk + aJaibkbh 

+ aJaibkch + akaJahbi + akaJbibh + akaJbich + aiahbkbJ 

+ aibkbJbh + aibk~ch + akahbjb i + akbjbibh + a.kbjbich 

+ aJ ahbkb i + a j bkbibh + aJ bkbich + akaJahci + akaJ bhc i 

+ akajcich + akaiahcj + akaibhcj + akaicjch + ajaiahck 

+ aJ a1bhck + a j aickch + aiahckcJ + aibhckcJ + aickcj c h 

+ akahcJci+ akbhcJci + akcJcich + aJahckci + aJbhckc i 

+ aJ ckcich + ahbkbicJ +bkbibhcj + bkbicj c h + ahbkbj c i 

+ bkbjbhci + bkbJcich + ahbjbick + bjbibhck + bjbickch 

+ ahbickcj + bibhckcj + bickcj c h + ahbkcj c i + bkbhcj c i 

+ bkcjcich + ah~ckci + ~bhckci + ~ckcich+ aiahbkcj 

+ aibkbhcj + aibkcj c h + aiahbj c k + aibJ bhck + aibj ckch 

+ akahbicj + akbibhcj + akbicjch + aJahbick + ajbibhck 

+ ajbickch + akahbjc i + ak~bhci + akbjcich + ajahbkc i 

dkdjaibh = akajaibh + aibkbjbh + aibhckcJ + akaibjbh 

+ akaicJ c h + a j aibkbh + aibkbhcj + aJ aibhbk + aibj bhck 
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Table III .S.1 

First and Second Derivatives of the NAI Using Translational 

Invariance 

First Derivatives 

Translational Invariance Relation: 

Case 1: X\oI on A and X" on B 

ak 
< lJ~ I L Vc I vB > - < lJA I VA I vk ) V lJV = B 

c1:A 

bk < lJA I L Vc vk > - < lJ~ I VB I v > VlJV = B B 
.c;tB 

Case 2: X\oI and Xv on A 
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Case 3: X}.I on C and Xl! on D 

V:~ = - < ~~ I V A I vD > - < ~C I VA I V~ > 

Second Derivatives 

Translational Invariance Relations: 

< ~ A I v~j I VB > = < ~~j I V C I VB > + < ~~ I V C I 4 > 

+ < ~1 I V c I V~ > + < ~A I V c I v~j > 

< ~ A I vi; I V~ > = - < ui I V c I V~ > - < ~ A I V c I v~j > 

Case 1: 

aka. 
~~j I 1 VA I VB > + < ~ A I V A I vkj V~V J = < B > 

c:#A 

akbj 
V~V = < ~~ 1 Vc I ~> - < ~~j I VB I VB > 

c:#A,B 

- < ~A I VA I vkj 
B > 

akcj k· k· 
V ~ V = - < ~ AJ I V c I VB > - < ~ A I V c I '1 > 



Case 2: 

Case 3: 

eke. k 
V J < "Aj lJV = .. 

+ < lJl I vel v~ > + < lJ A I V c I v~j > 

- < lJl I V c I \i~ > - < lJ A I V c 

Vakbj = 0 
lJV 
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Table IlLS.2 

Third Derivatives of the NAI Using Translational Invariance 

Translational Invariance Relations: 

- < ~1 i I V C I \I~ > - < ~ I V c I \I~i > 

< ~ A I V ~ \I~j > = - < ~ A I V c I \I~j i > - < ~ i I V c I \I~j > 

Case 1: 
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vel vB > ,... < l.I~j 1 vel v~ > 

- <1.I~1 1 Vc 1 4 > - < 1.I~ 1 Vc 1 41 > 

- < 1.I1
1 I· vel v~ > - < ~ 1 vel v~1 > 

- < 1.I 11 Vc 1 v~j > - < 1.I A 1 vel v~j 1 > 

.. 
akbJ. C 1 k1 1 1 ,j > k 1 1 ,j1 

V l.IV = - < l.IA V C "B - < l.IA V C vB > 



Case 2: 

Case 3: 

+ < u~j I L v c I Vl > + < ul I L v c I v~j > 
c*A c*A 

+ < U~i I L Vc I vi > + < u~ I L Vc I vii > 
c*A c*A 

+ < uli I L Vc 
c*A 

v~ > + < u1 I L V c I V~i > 
c*A 

- < 1Jl i I vel v~ > - < u1 I V c vki > A 

vkji > A 

- < 1J~i I V A I vb > - < 1J~ I V A I vbi > 
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Table III.S.3 

Fourth Derivatives of the NAI Using Translational Invariance 

" 

Translational Invariance Relations: 

< IJ A I v~j ih I vB > :os < lJ~j ih I vel vB > + < lJ~j i I vel v~ > 

+ < lJ~j h I vel V~ > + < lJ~j I vel v~i > 

+ < lJ~h I vel vi i > + < IJ~ I vel vi ih > 

+ < ~ ih I vel V~ > + < ~ i I vel v~h > 
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< ~~ vg I vii > = - < ~~h I Vc I vii > - < ~~ I Vc I vlih 
> 

.. 

< ~ A I vg I v~j i > = - <~~ I V c I v~j i > - < tl A I V c I v~j ih > 

Case 1: 

L Vc v~ > - < ~~j ih V B I vB > 
c1l:A,B 

+ < ~A I V A I v~j ih > 

V:~bjbibh= < tl~ L Vc I viih > - < tlA I VA I v~jih> 
c1l:A,B 
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- < lJ~h I vel 4 i > - < IJ~ I vel 4 ih > ' 

+ < vii h I v c I v~ > + < ~ i I vel v~h > 
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akaj b 1c h lJ~j h I Vc I V :::I - < lJV v1 > B - < lJ~j I Vc I v1h > B 

akbj bi ch lJkh I Vc I '-i1 
> - < lJ~ I Vc I vilh> V :::I - < lJV A 

akbj c 1c h 
VlJV = < lJ~lh I Vc I '-i>+< lJ~l I Vc I vi

h 
> 

+ ~< lJ~hl v civil > + <lJ~ I V c I '-i Ih > 

Case 2: 

aka . a l a h lJ~j ih 
I L lJkj 1 

I L I vh > ·v J =< < Vc vA> + < V lJV A c A 
c*A c*A 

+ < lJ~ I L Vc I v~jl > + < lJA I L Vc I v~jlh > 

c*A c*A 

+ < lJkjh 
A I L Vc v1 ) A + < lJ~j I L Vc v1h > A 

c*A c*A 

+ < lJi
h 

I L Vc I v~j > + < 1 
lJA I L Vc vkjh > A 

c*A c*A 

+ < lJ~lh 
I L Vc I {> + < lJ~l I L Vc I {h> 
c*A c*A 

+ < lJ~h I L Vc I {1 > + < lJ~ I 1 Vc I {lh > 

c*A c*A 

+ < lJl
1h I L Vc vk > A + < ul1 

I L Vc vkh > A 
c*A c*A 
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+ < ~lh I L Vc vki ) A + < ~ I L Vc vkih ) A 
c~A c~A 

akajaich ~~jih I Vc I vA ) - < ~~ji I Vc I vh ) V = - < 
~v A .. 

- < ~~jh I Vc I vi ) A - < u~j I Vc I vhi ) 
A 

- < U~h I vel vl i ) - < u~ I vel vl ih ) 

- < ui ih I V c I V~) - < ui i I vel V~h) 



Case 3: 

" 

+ < lJt ih I V A I v~) + < uti I V A I v~h) 



IV DERIVATIVE ENERGY EQUATIONS 

IV.1 INTRODUCTION 

In the previous chapter the derivatives of atomic orbital integrals 

were presented without specific reference to the nature of the wave 

function for which the derivatives of the energy were being 

calculated. As such, the derivative integral algorithms are valid for 

any arbitrary wave function. In this chapter, however, the discussion 

of the derivative energy equations is limited to Hartree-Fock closed

shell wave functions. 

This limitation is not severe, as the closed-shell molecule 

represents perhaps the largest class of polyatomic molecules for which 

detailed experimental anharmonic constants are available for comparison 

(e.g., H20, NH3 , HCN, H2CO). The potential use of these derivative 

energy equations is not limited by restricting the discussion to a 

single determinant (non-correlated) wave function. The studies of Pulay 

et ale 17,51,52 that evaluate higher than second order force constants 

through finite differences of energy gradients show that cubic and 

quartic force constants do not change significantly in the transition 

from a Hartree-Fock wave function to a correlated wave function. This 

is in direct opposition to the results for quadratic force contsants 

which are found to change significatntly in going from the Hartree-Fock 

wave function to the correlated wave function 53. The single 

determinant wave function therefore represents an important class of 
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wave functions for the analytic evaluation of cubic and quartic force 

constants. 

In this chapter, the derivative energy equations with respect to 

nuclear perturbations for first, second, and third derivatives of the 

Hartree-Fock closed-shell electronic wave function will be derived. All 

formulae will be derived within the molecular orbital basis. It is 

important to recognize that this is not the first set of derivations of 

the energy derivatives. The contributions of the many researchers in 

the calculation of the first derivative have been collected and 

summarized by Pulay 41,54. The second derivative, being a more recent 

development" is best reviewed through the original papers • These 

include the works of Gerratt and Mills 55, Thomsen and 

SwanstrtSm 40,56, Pople, Krishnan, Schegel; and Birikley 42, Takata, 

Dupuis and King 50, and Saxe, Yamaguchi, and Schaefer 46. Third

derivative equations were first developed by Moccia in 1970 57, and more 

recently byPulay 16 and Simons and JtSrgensen 58. 

The first derivative energy equation derived in this chapter 

matches those previously published, while the second derivative differs 

in its form from previous derivations. The difference is that the 

second derivative presented here is symmetric in its permutation of the 

derivative degrees of freedom. As the third derivative formulae 

presented in this chapter are derived within the molecular orbital 

framework, they differ radically from the results of Moccia 57 and 

Pulay 16 whose equations are in the atomic orbital basis. It is 

believed that the present equations based in the molecular orbital basis 

are inherently computationally more tractable. Like the second 

derivative, the third derivative is presented in a highly symmetric form 
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where all terms have a permutation of derivative degrees of freedom. 

All the derivative energy formulae presented in this chapter are 

derived for a non-orthogonal finite basis set. This is the type of 

basis set most commonly used in quantum chemistry. Recently, however, 

J~rgensen and Simons 59 have advocated the use of symmetry 

orthogonalized atomic orbitals. They have presented specific equations 

for the first and second derivatives of the energy with respect to 

nuclear perturbations for a variety of wave functions 59, and very 

general equations for third and fourth derivatives 58. Within the 

symmetry orthogonalized atomic orbital formalism, all geometrical data 

is concentrated within the integrals and none is present in the 

molecular orbital coefficients. This is in contrast to the traditional 

approach where both the integrals and the molecular orbital coefficients 

display a geometrical dependence. J~rgensen and Simons can thus avoid 

the solution of the coupled-perturbed Hartree-Fock (CPHF) equations. It 

appears that this will reduce the total computational effort. A closer 

look reveals that although computational effort is reduced in one area 

(no CPHF), it is greatly expanded in another (the derivative 

integrals). This does not seem to be a distinct advantage. 

All derivatives in this chapter are for nuclear perturbations 

within the Born-Oppenheimer approximation. Naturally this includes 

derivatives of the nuclear repulsion energy. Since these can be derived 

in a straightforward manner they are not presented here. All of the 

derivative energy equations have been coded and tested by finite 

differences of the energies and of energy derivatives. Unfortunately, 

the fourth derivative of the Hartree-Fock electronic energy has yet to 

be completely tested and hence is not included in this chapter. The 
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results of the calculation of the cubic force constants of the water 

molecule are presented in chapter V. 

As will soon become apparent,. the indices of the various matrices 

in the energy equations are very important and must be handled with 

extreme care. The convention employed thoughout this chapter is as 

follows: i, J, and k correspond to doubly occupied molecular orbitals; 

m, r, and s correspond to all molecular orbitals, both occupied and 

unoccupied (virtual); and q corresponds to virtual orbitals. Greek 

subscripts are used to label atomic orbitals, as was done in chapters II 

and III. 

IV.2 FIRST DERIVATIVE 

In the molecular orbital (MO) basis, the Hartree-Fock closed shell 

electronic energy is given by 

do 
E = 2 L 

i 

do 
L 
i 

do 
L 
j 

[ 2(iiljj) - (ijlij) ] 

(IV.2.1) 

where the summations are over all doubly occupied molecular orbitals. 

The MO integrals, hii and (Uljj) are the transformed one-electron and 

two-electron atomic orbital integrals of chapter II. For the one-

electron atomic orbital integrals the transformation is a two index 

transformation given by 

(IV.2.2) 

The two-electron transformation is similar, however, the transformation 
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is over four indices, not two. In the discussion that follows of the 

derivative energy equations, it is often more convenient to work in 

terms of the Fock matrix. The Fock matrix follows from the Fock 

operator defined by Roothaan 18. 

do 
eim == him + L [2( im ljj) - (ij Imj) ] 

j 
(IV.2.3) 

Once a self-consistent set of molecular orbitals are achieved, then the 

Fock matrix is diagonal. The elements of the Fock matrix are the 

lagrangian multipliers which are the molecular orbital energies. The. 

total electronic energy in terms of the lagrangian multipliers is 

(IV.2.4) 

The first derivative of equation IV.2.1 with respect to a nuclear 

coordinate a (note that this convention differs slightly from that used 

in chapter III in that the cartesian coordinate k is assumed to be 

incorporated into the nuclear coordinate a) is given by 

L E ==2 
3a 

do 3 
L 3i hU + 
i 

do 
L 
i 

do 
L 
j 

[ 2(iiljj) - (ijlij) ] 

(IV.2.S) 

The one-electron derivative is given by 

all all' 
L L {( L Ci 

) Ci h + 3a 1J \I lJ\I 
\I 

C
i ( L Ci ) h 
lJ 3a \I lJ\I 

(IV.2.6) 
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The first and second terms of IV.2.6 contain the first order change of 

the molecular orbital coefficients, while the third term is a 

transformation· of a derivative atomic orbital integral. 

The first order change of the molecular orbit.l coefficients has 

been given by Gerratt and Mills 55 as 

all 
L (IV. 2.7) 
m 

Using this notation, the one-electron derivative is rewritten as 

.!...h 
all all all 

i 
all ·i = L L ( L ua em e h + L e ua em h 

Cla 11 mi 11 'J 11'J 11 mi 'J 11'J 
11 'J m m 

+ ci i h
a ) e 

11 .'J 11'J 

all a all a a 
= L Um! hmi + r Umi him + hi! (IV.2.R) 

m m 

Since the one-electron integrals, him and hmi' are symmetric, equation 

IV.2.8 reduces to 

all 
L 
m 

U
a 

h mi im 
(IV.2.9) 

Applying the same steps that were used to obtain the derivative of 

the one-electron irttegrals, the derivative of the two-electron integrals 

is given by 

~a [ 2(iiljj) - (ijlij) ] = 
all 

4 L 
m 
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all a a a a 
- 2 I (Umi (mjlij) + Umj (imlij) ) + 2(iiljj) - (ijlij) 

m 

a a 
=2(iiljj) - (ijlij) + 

all a 
2 I U mi [ 2 ( mi I j j) - (mj I i j) ] 

m 

all 
+ 2 I 2(iilmj) - (imlij) ] (IV.2.10) 

Since i and j run over the same set of orbitals (doubly occupied), the 

terms involving the Ua can be combined giving 

d a a aa [ 2(iiljj) - (ijlij) ] '" 2(iiljj) - (ijlij) 

all 
+ 4 I 

m 
[ 2 (mil j j) - (mj I ij) ] (IV.2.11) 

The total first derivative of the electronic energy is the sum of 

equations IV.2.9 and IV.2.11. 

~E 
do a do do a a 

:z 2 I hii + I I { 2(iiljj) - (ij lij) } da i i j 

do all a a do 
+ 4 I I Umi { him + I 2 ( mi I j j) - (mj I i j) } 

i m j 
(IV.2.12) 

Using the Fock matrix formalism of equation IV.2.3, the total first 

derivative is further reduced to 

~ E = 
da 

do 
2 I 

i 

do do a a 
I I2(iiljj) - (ijlij) 
i j 

(a) 
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do all 
+ 4 L L (b) 

i m 
(IV.2.13) 

As the Fock matrix is diagonal for a converged wave function (the 

condition of self-consistency), the first derivative is rewritten as 

a' 

a' 
= E + 

do 
4 L 

i 
(IV.2.14) 

where E is the derivative atomic orbital, contribution to the gradient, 

given by line (a) of IV.2.13. 

To obtain U~i' the orthonormality condition 

all all 
L L 
lJ v 

15 
rs 

(IV.2.IS) 

is directly differentiated fo~ r equal to s equal to i. The result, 

upon performing the transformation to molecular orbitals, is 

all a a all a 
L .Umi Smi + S11 + L Umi Sim = 0 
m m 

(IV.2.16) 

This can be reduced by using two properties of the overlap matrix. 

First, the overlap matrix is symmetric, and as a result IV.2.16 

rearranges to give 

all 
- 2 L (IV.2.17) 

m 

Second, the overlap matrix is a unit matrix and thus the sum on the 

right of IV.2.1l reduces to a single term leaving 
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.. 

.. 

(IV.2.18) 

Substituting this into the gradient of the electronic energy yields 

.!...E 
3a 

a' 
= E 

do 
- 2 L 

i 
(IV.2.19) 

This result is in accordance to Wigner's theorem of perturbations, 

namely, that the wave function of nth order is sufficient to produce 

properties of the 2n+l order 60 

IV. 4 .2. I COHPUTATIONAL REMARKS 

Since the first derivative of the electronic energy has no explicit 

CPHF response, it can be calculated within the derivative atomic orbital 

integral programs described in chapter III. The one-electron term of 
, 

Ea can be calculated by performing the two index transformation of the 

derivative atomic orbital integrals given by equation IV.2.2 and then 

summing down the diagonal. It can also be found by multiplying by a 

density matrix factor and summing over all atomic orbitals. The density 

factor is defined by 

so that 

DlJV = 

do 
2 L hU = 2 

i 

do 
L 
i 

all all 

L L 
lJ v 

o 
lJV 

h 
lJV 

(IV.2.20) 

(IV.2.21) 
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We use the density matrix factor method. 

As the two-electron integrals are calculated in blocks, the density 

factor for the two-electron contribution to Ea ' is also calculated in 

blocks. If all the values of the block of density factors fall below a 

given threshold, then the entire block of derivative integrals need not 

be calculated. As only the unique two-electron integrals and their 

derivatives are evaluated ( (~vlpa) = (pat~v) = (v~lpa) etc.), the 

density factor takes on the following form: 

where 

D~vpa = ( 16 D~v Dpa - 4 D~p Dva - 4 D~a Dvp ) f~v fpa f~p,va 
(IV.2.22) 

f~v = 1/2 if ~ = v 

= 1 otherwise 

f = 1/2 if p = a pa 

= 1 otherwise 

f~p,va = 1/2 if ~ = p and v = a 

~ 1 otherwise 

The MO derivative overlap matrix multiplied by the lagrangian 

multiplier can be calculated in the atomic orbital basis by using the 

atomic orbital lagrangian given by 

WlJV = (IV.2.23) 
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Thus the term is given by 

do all all 
L L L (IV.2.24) 
i lJ v 

The computational procedure is outlined below: 

(1) Evaluate the Hartree-Fock equations and obtain a well-converged SCF 

wave function. 

(2) Calculate the one-electron derivative contributions to Ea ' and 

evaluate the overlap contribution using equation IV.2.24. 

(3) Calculate the density factor for two-electron integrals. If all 

the density factors are below a given threshold, then the entire 

block of integrals is ignored. Evaluate the block of derivative 
, 

integrals and calculate its contribution to Ea by multiplying the 

derivative integrals by the appropriate D\JvPo. 

(4) Sum the contributions to Ea ' together and add the overlap 

contribution. 

IV.3 SECOND DERIVATIVE 

The second derivative of the electronic energy for the Hartree-Fock 

closed-shell wave function is obtained by taking the second derivative 

of equation IV.2.l3 with respect to a nuclear coordinate b. 

a2 do a a do do a a a 
aaab E 

,.. 2 L ail hi! + L L ab ( 2(iiljj) - (ijlij) ) 
i i j 

do all a a a 
+ 4 L L { ( ab Umi 

) E:
im 

+, U
a ( ab E: im ) } (IV.3.1) 
mi 

i m 
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The first two terms are reduced by the same steps that obtained 

equations IV.2.9 and IV.2.11, resulting in 

0
2 do ab do do ab . ab . 

oaob E 2 L hi! + L L ( 2(iiljj) - (ij I ij) ) 
i i j 

do all b a 
+4 L L Umi Eim 

i m 

do all o a a 0 
+ 4 L L { ( 3b Umi.) Eim + Umi ( 

ob 
Eim ) } 

i m 
(IV.3.2) 

where Ea 
. im is the derivative Fock matrix given by 

a a 
2(imljj) - (ijlmj) ) (IV.3.3) 

This matrix is not diagonal, in contrast to the Fock·matrix given by 

equation IV.2.3. 

The first of the final two terms of IV.3.2 is evaluated by noting 

that it is still restricted by the lagrangian multiplier Eim• Knowing 

that Eim is diagonal 

all b a ab 
= - L { Umi Smi - 1/2 Sii } Eii (IV.3.4) 

m 

The final term of equation IV.3.2 is the derivative of the Fock matrix, 

which is not equivalent to equation IV.3.3. It is obtained by direct 

differentiation of the Fock matrix 



121 

do all 
I L 

b 
Uri [ 2 ( rm I j j) - (r j I mj) ] 

r r j r 

... 
b 

+ Urm [ 2(irljj) - (ijlrj) ] 

4(imlrj) - (irlmj) - (ijlmr) ] } 

b all b all b 
= Eim + L Uri Erm + L Urm Eir 

r r 

do all b 
+ L L Urj [ 4( im lrj) - (ir I mj) - (ijlmr) ] 

j r 
(IV.3.5) 

The lagrangian multipliers, Eir and Erm are diagonal, and the sums over 

them reduce to a single term each. By defining 

Aim,rj = 4(imlrj) - (irlmj) - (ijlmr) (IV.3.6) 

the derivative of the Fock matrix is finally reduced to 

(b) b b b do all a 
Eim = Eim + Umi Emm + Uim Eii + L L Urj Aim,rj 

j r 
(IV. 3.7) 

(b) 
The derivative of the Fock matrix, Eim, like the Fock matrix itself, is 

diagonal. 

Substituting IV.3.4 and IV.3.7 into equation IV.3.2, the second 

derivative becomes 



a2 ab' do all b 
L 

a 
aaab E = E + 4 L Umi e:im 

i m 

do all b a do ab 
- 4 L L Umi Smi e:a - 2 LSa e:li 

i m i 

do all a b do all a b 
+ 4 L L Umi e: im + 4 L L Umi Umi e:mm 

i m i m 

do all a b 
+ 4 L I Umi Uim e:a 

i m 

do all all do a b 
+ 4 L I I I Umi Urj Aim, rj 

i m r j 
(IV.3.B) 

ab' 
where E is the second derivative atomic orbital contribution, the 

first line of equation IV.3.2. Collecting like terms yields 

a2 ab' do all a b b a 
aaab E = E + 4 I I { Urn! e: im + Umi e:im } (a) 

i m 

do all b a do ab 
- 4 I I Umi Srni e:a - 2 ISH e:a (b) 

i m i 

do all a b a b 
+ 4 I I { Umi Urni e:mm + Umi Uim e:11 } (c) 

i m 

do all all do a b 
+ 4 I L I I Umi Urj Aim, rj (d) 

i m r j 
(IV.3.9) 

The first order change in the molecular orbital coefficients, the 

U!i and the U~i in the above equation, ~re obtained through the coupled

perturbed Hartree-Fock (CPHF) equations of Gerratt and Mills 55. This 

is done by finding solutions to the Fock equations at a perturbed 

geometry in terms of the solutions of the Fock equations at the 
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unperturbed geometry, i.e., the Fock equations are expanded in a taylor 

series. Pople and co-workers 42 have given an iterative solution to the 

CPHF equations which has been generally recognized 61 as the cornerstone 

of analytic derivative evaluation. Techniques in CPHF theory have been 

extended by the work of Osamura and co-workers: large molecular systems 

through the introduction of the atomic orbital-based CPHF 62; and for 

general open/closed shell systems through a unified formalism 63 

where 

The CPHF equation for closed-shell molecules 42 is 

a 
BO,rs 

vir 
- L 

q 

do 

L 
i 

do a 
L Uqi 
i 

a = BO rs , 

do a 

L Sij 
j 

[ 2(rslij) - (rilsj) 

(IV.3.IO) 

(IV.3.ll) 

Expanding the orthonormality condition, equation IV.2.1S, in a 

taylor series and collecting terms of first order in the expansion 

parameter yields 

(IV.3.I2) 

The importance of this term cannot be understated; it allows the 

reduction of both the second and third derivative expressions to simple 

symmetric forms. 

Note that the second component of the term (c) of equation IV.3.9 

can be rearranged using equation IV.3.l2. 
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do all do all 
L L L L 
i m i m 

(IV.3.l3) 

When this is substituted back into equation IV.3.9, and similar terms 
'0 

combined, the second derivative is given by 

a2 ab' do all a b b a 
aaob E = E + 4 L L { Umi Eim + Umi Eim 

i m 

do all a b b 
- 4 I ISmi { Umi + Uim } EU 

i m 

do ab do all all do a b 
- 2 L S11 Eii + 4 r L I I Umi U . Aim, rj rJ 

i i m r j 

(IV.3.l4) 

Using equation IV.3.12, the above reduces to the final form for the 

second derivative. 

0
2 ab' do all a b b a 

dadb E = E + 4 I L { Umi Eim + Umi Eim } (a) 
i m 

do ab 
- 2 I Su EU (b) 

i 

do all a b 
+ 4 I I Smi Smi E1i (c) 

i m 

do all all do 
+ 4 \' L I I 

a b (d) 1.0 Umi Urj Aim,rj i m r j 

do all a b a b 
Eii } (e) 

+ 4 L L { Umi Umi Emm - Uim Uim 
i m (IV.3.lS) 
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IV.3.2 COMPUTATIONAL REMARKS 

Unlike the first derivative, the second derivative to the 

electronic energy contains a CPHF response and can only be calculated by 

solving the CPHF equations of IV.3.10 and IV.3.ll. Techiques for the 

solution of the CPHF equations include the iterative method of Pople et 

42 62 ale , the general open/closed shell formalism of Osamura et ale 

and the atomic orbital-based solution of Osamura et ale 63. 

The Eab ' of equation IV.3.15 is calculated in the same manner as 
, 

the Ea for first derivatives, except second derivative atomic orbital 

integrals are evaluated. Term (b) of IV.3.15 can also be calculated in 

the atomic orbital basis using the atomic orbital lagrangian of 

IV.2.23. In doing so (N3N) (N3N+l) /2 transformations of the second 

derivative atomic orbital overlap integrals to the MO basis are avoided 

where N is the number of atoms. Term (c) is not usually calculated in 

the atomic orbital basis as the first derivative overlap matrices are 

needed in the MO basis for the CPHF solution (equation IV.3.ll). 

The derivative Fock matrix, £tm' can be partially formed in the 

atomic orbital basis within the derivative integral program. The 

contribution of each two-electron integral to the derivative Fock matrix 

can be empirically established and multiplied by a density factor to 

produce a half-transformed two-electron derivative Fock matrix. 

all all do 
Cj Cj Ta = I I I { 2(~vlpo)a - (~plvo)a } 

~v p 0 p 0 j 

all all 
= L I 0 { 2(~vlpo)a _ (~plvo)a } 

p 0 
po 



( IV. 3 .16) 

The T~\I for each degree of freedom can thEm be transformed to the 

two-electron contribution for each derivative Fock matrix bya simple 

two .index transformation. This avoids the necessity of a four index 

transformation that would occur N3N times; once for each unique degree 

of freedom. Instead, N3N·two-index transformations must occur. 

By using these techniques, the four index transformation· of the 

first derivative two-electron integrals as well as the four index 

transformation ·of the second derivative two-electron integrals, and the 

two index transformation of the second derivative overlap matrix are 

completely avoided. The techniques will also cut down on the necessary 

storage space as the first derivative and second derivative two-electron 

integrals need never be stored. 

The computational steps for the simultaneous calculation of first 

and second derivatives of the energy with respect to nuclear 

perturbations are as follows: 

(1) Calculate a set of well-converged molecular orbital coefficients by 

solving the Hartree-Fock equations. 

(2) 
, b' 

Calculate the one-electron derivative contributions to Ea and Ea 

and solve term (b) of IV.3.1S using the atomic orbital 

lagrangian. S~v' and h~v must be stored externally. 

(3) Calculate the density factor for the two-electron integrals. If 

all members of D~vpa for the block of integrals fall below the 
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threshold, no derivative integrals are calculated. Otherwise both 
, 

first and second derivative integrals are evaluated forming Ea and 

Eab '. The half-transformed two-electron contribution to the 

derivative Fock matrix, T~v (equation IV.3.16) is also formed. 

T~v is stored externally as are Ea ', and Eab '. 

(4) The zeroth order integrals used in step (1) are transformed. 

(5) S~v' h~v ' and T~v are transformed and etm is formed. 

(6) CPHF equations are solved (equations IV.3.10 and IV.3.11). Ua is 

stored externally. 

(7) The remaining parts of equation IV.3.15 are evaluated. 
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IV.4 THIRD DERIVATIVES 

Like the first and secorid derivatives, the third derivative is 

obtained by directly differentiating the closed-shell Hartree-Fock 

energy expression. Beginning with equation IV.3.1S and differentiating 

with respect to a nuclear coordinate c, the following expression is 

obtained: 

33 

3a3b3c E = 
do 

2 L .L hab + 
i 3c ii 

(a) 

(b) 

do all ~ ~ b ~ 

i
\· \ { ( Tc sal1ll.")- sb

mi 
a (a b) Sa" (a ) } + 4 I.. I.. a €U + Smi k S mi € U + m1 S rid k € ii 

m 
(e) 

(d) 

do all 
3 Ua) Ub ( .L Ub ) + U

a 
Ub 

( :e €mm) + 4 L L { ( € + Ua € 
3e m1 mi mm mi 3e mi mm mi mi i m 

- ( 3 Ua) ac im Ub 
im €ii - Ua 

im ( ;c U~m) €U - Ua Ub 
im im ( ;c €ii) } 

(e) 
do all all do 

{ (.L Ua ) U
b

" 
a- ( .L Ub ) + 4 L L L L Ai " + Umi Ai " 3e mi rJ m, rJ 3e rj m, rJ i m r j 

(f) 

(IV.4.1) 

To obtain the simplest solution to the third derivative in the 

above equation, each group of terms (a) through (f), will be exaimined 
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and reduced to as simple a form as possible. 

Beginning with term (a) which contains the derivatives of the 

second derivative MO integrals, note that it is analogous to the first 

terms found ~n the gradient and second derivative derivations. Its 

solution will involve third derivatives of the MO integrals, plus a 

first order change in the MO coefficients with respect to a nuclear 

perturbation c multiplied by the second derivative Fock matrix. 

IV.4.1 (a) = 2 
do abc 
LhU 
i 

+ 

+ 4 

abc' 
= E 

do 

L 
i 

do 

L 
i 

+ 4 

do abc abc 
L [ 2(Uljj) - (ij I ij) 
j 

all c ab 
L Umi Eim 
m 

do all 

L L 
i m 

] 

(IV.4.2) 

The sums of the third derivative MO integrals are represented by Eabc ' • 

The next term in the equation IV.4.1, (b), contains both 

derivatives of Ua and Ub as well as derivatives of the derivative Fock 

matrix. To evaluate the derivative of Ua and Ub , we begin with the 

second derivatives of the MO coefficients. Using the first derivative 

given by equation IV.2.7 

a2 i a all 
--e = ac L ua em } aaac lJ mi lJ m 

all 
( .!.. Ua ) 

all all .. L em + L L ua UC e r 
ac mi lJ mi rm lJ m m r 

By analogy to the work of Gerratt and Mills 55 Osamura and 

Yamaguchi 64 defined 

(IV.4.3) 
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all 
L (IV.4.4) 
m 

Substituting IV.4.4 into equatio~ IV.4.3 yields 

all all 
(() Ua ) 

all all 
L uac em = L em + L L ua UC e r 

mi 1.I (}c mi lJ mi rm lJ m m m r 
(IV.4.5) 

In the last term both m and r run over all orbitals, and as a result the 

labels may be interchanged, yielding 

all all all 
L L L 
m r m 

(IV.4.6) 

It is clear that for a specific value of m and i, the above yields 

all 
L (IV.4.7) 
r 

The derivative of the derivative,Fock matrix is given by a analogy 

to equation IV.3.7 as 

() a ac all c a all c a 
(}c E = Eim + L Uri Erm + L Urm Eir im 

r r 

all do c a a a 
+ L L Urj ( 4(im!rj) ..., (ir! mj) - (ij! mr) ) 

r j 
(IV.4.8) 

Note that unlike IV.3.7, the second and third terms of the above cannot 

be reduced to a single term each as E~m and Etr are not diagonal. 

However, with the introduction of a derivative A matrix, Atm,rj 



a 
Aim, rj = 

a I a a 4(imlrj) - (ir mj) - (ijlmr) 

(IV.4.9) 

equation IV.4.8 can be given in a simpler form 

a a ac all c a all a a 
ac Eim= Eim + L Uri Erm+ L Urm Eir 

r r 

all do c a 
+ I I Urj Aim, rj 

r j 
(IV.4.l0) 

Terms (c) and (d) of equation IV.4.1 involve derivatives of the 

derivative overlap matrix and derivatives of the lagrangian 

multiplier. Straight differentiation of the derivative overlap matrix 

produces 

ac 
= Smi + 

all 

L 
all 

L 
r r 

abc +a~l c ab all 
= Smi L Urm Sri + I 

r r 

c a 
Uri Smr 

(IV.4.11) 

(IV.4.l2) 

The remaining derivatives of the lagrangian multiplier in terms (c) and 

(d) are given by equation IV.3.7. 

All the components of term (e) of IV.4.1 have been previously 

defined: the derivative of the U matrix by equation IV.4.7, and the 

derivatives of the lagrangian multiplier by IV.3.7. Term (e) points out 

the necessity of carefully keeping track of U matrix indices as the term 

contains both U~i U~i and Utm U~m and their derivatives. As shown by 

equation IV.3.12 these terms are not equivalent, and the inadvertent 
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switching of indices can be disastrous. 

The only remaining undefined derivative in equation IV.4.1 occurs 

in term (f), the derivative of the A matrix. Direct differentiation 

yields 

.LA I c I c I c 3c im,rj a 4(im rj) - (ir mj) - (ij mr) 

all c 
+ L Usi { 4(smlrj) - (srlmj) - (sjlmr) } 

s 

all c 
+ L Usm { 4(islrj) - (irlsj) - (ijlsr) } 

s 

all c 
+ L Usr { 4(imlsj) - (islmj) - (ijlms) } 

s 

all c 
+ L Usj { 4( im lrs) - (irlrns~ - (islmr) 

s 

c all c c c 
= Aim,rj + L { Usi Asm , rj + Usm Ai . + Usr Ai . s, r] m,s] 

s 

c 
Aim rs } + Usj , (IV.4.13) 

Substituting all of these reduced terms back into equation IV.4.1 

and combining like terms results in ( in a few terms, labels that run 

over the same set of orbitals have been interchanged) 

33 abc' do all c ab b ac 
E "" E + 4 L L { Umi e: im + Urni e:im 3a3b3c i m 

a bc 
} + Umi e: im 

(a) 



• 

do all 
+ 4 L L ( 

i m 

do all 
+ 4 L L ( 

i m 

do all 

all 

L 
r 

do a 

L Urj Aim, rj 
j 

do b 

L Urj Aim, rj 
j 

} 

} 

- 4 L L ( 
i m 

be all b e a 
Uim - L Urm Uir ) Uim Eii 

r 

do all 
- 4 L L ( 

i m 

do all all 

+ 4 L L L { 
i m t' 

all a e b 
L Urm Uir ) Uim Eii 
r 

a e b a e b 
Urn! Uri Erm + Umi Urm Eir 

b e abe a 
+ Umi Uri Erm + Umi Urm Eir } 

do all all 

+ 4 L L L 
do 

L { 
a c b 

Urn! Urj Aim, rj 
i m r j 

do all all 

+ 4 L L L 
do all 

L L { 
abc 

Urn! Urj Usi Asm,rj 
i m r j s 

U
a b e abe 

+miU·U A +U U U A rJ sm is,rj mi rj sr im,sj 
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(b) 

(e) 

(d) 

(e) 

(f) 

(g) 

(h) 



do all a b (c) a b (c) 
+ 4 L L { Um! Umi E - Uim Uim Eii mm 

i m 

a· b ( c) 
} + Smi Smi EU 

do all ac b a be 
+ 4 L L { Smi Smi + Smi Smi } Eii 

i m 

do all all c a b c a b 
+ 4 L L L { Urm Sri Smi + Uri Smr Smi 

i m r 

c a b c a b 
} Eii + Urm Smi Sri + Uri Smi Smr 

do abc ab (c) 
- 2 L { Su Eii + Sii EU } 

i 

do all ab 
L L c 4 Umi Smi Eii 
i m 

Again each term can be reduced. By adding and subtracting 

(1) 

(j) 

(k) 

(1) 

(m) 

(IV.4.14) 

L b Usm £is to IV.4.14 (b) and L U~m £ir to IV.4.14 (c), the respective 

terms simplify, yielding 

do all be a~l b c (a) all 
Ub IV.4.14 (b)'" 4 L L ( Um! - L Uri Umr ) { £im - L E. sm 1S 

i m r s 
(IV.4.15) 

do all all a (b) all b 
L L ( ac c ). { } IV.4.14 (c) - 4 Umi - L Uri Umr Eim - L Usm 

E
is 

i m r s 
(IV.4.16) 

(a) (b) 
Since £im and £im (the derivative of the orbital energy) and £is (the 

orbital energy) are diagonal, the above equations will reduce to an even 

134 

1; 



,. 

simpler form. 

do all bc (a) all b c (a) 
IV.4.14 (b) = 4 L L { Uu e: ii - L Uri Uir E:ii 

i m r 

bc a all b a c 
} - Umi Uim e:U + L Uri Uim Umr e:U (a) 

r 

do all ac (b) all a c (b) 
IV.4.14 (c) :: 4 L L { Ua e: a - L Uri Uir e:U 

i m r 

ac b all a c b 
E:ii } - Umi Uim e:U + L Uri Umr Uim (b) 

r 
(IV.4.17) 

As with the first order Ua matrix, the diagonal elements of Uac 

have a special form. In expanding the orthonormality equation IV.2.15 

to second order, Osamura and Yamaguchi 64 defined the following 

relationship in analogy to equation IV.3.12: 

ac ac ac 
U + U + t' :: 0 mr rm "mr ( IV. 4 .18) 

where 

s 
(IV.4.19) 

For a diagonal Uac , equation IV.4.18 immediately yields 

ac ac 
Ua :: -1/2 ~ii (IV.4.20) 

Substituting this into IV.4.17 and adding the terms (a) and (b) together 

results in 
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do all bc (a) ac (b) 
IV.4.14 (b+c) = - 2 L L { ~ii e:ii + ~ii e:li } (a) 

i m 

do all bc a ac b 
+ 4 L L { - Umi Uim e: li - Umi Uim e: li (b) 

i m 

all b c (a) a c ( b) 
+ L ( - Uri Uir e: li - Uri Uir e: li (c) 

r 

b c a a c b 
e: li ) } + Uri Umr U e:li + Uri Umr Uim im (d) 

(IV.4.21) 
. 

Note that within each to the terms (a), (b), and (c) of IV.4.21-the 

basic quantities are displayed with a permutation of the derivatives a 

and bo This is the type of symmetry desired for the final equation, 

only that the final equation should show the permutation for all three 

degrees of freedom a, b, and c. 

Continuing the reduction of the terms in IV.4.14, terms (d) and (e) 

are expanded resulting in 

do all ac b bc a 
IV.4.14 (d+e) ~ - 4 L I { Uim Uim + Uim Uim 

i m 

all a c b b c a 
- L ( Urm Uir Uim + Urm Uir Uim ) } e:li 

r 
(IV.4.22) 

Adding this to IV.4.21 yields 

do all bc (a) (b) 
IV.4.14 (b+c+d+e) - 2 I I { 

ac 
} = ~li e: li + ~li e:li (a) 

i m 

do all a bc bc b ac ac 
- 4 L L { Uim ( Uim + Umi ) e:ii + Uim ( Uim + Umi ) e: li 

i m 
(b) 



• 

to 

b c ( a) a c (b) all b c a 
+ Umi Uim E:li + Umi Uim E:li - L ( Uri Umr Uim (c) 

r 

a c b b c a 
+ Urm Uir Uim + Urm Uir Uim) E:li (d) 

(IV.4.23) 

where r has been replaced by m in term (c) of IV.4.21. Using equation 

IV.4.18, term (b) of IV.4.23 reduces to (without the summations) 

a bc b ac 
IV.4.23 (b) a { Uim ~im + Uim ~im } E:ii (IV.4.24) 

This eliminates the remaining second order CPHF term leaving the 

third derivative completely specified by the result of the first order 

CPHF equations. This is in accord with Wigner's perturbat{on theorem 

which states that an nth order wave function is sufficient to determine 

properties of order 2n+1 60 This result was first demonstrated for 

third derivatives of the Hartree-Fock wave functions by Moccia 57 in 

1970, and more recently by Pulay 16. 

Though reduced to the results of the first order CPHF equations, 

more terms must be collected before the final equation displays the 

desired symmetry. Returning to IV.4.14, terms (f) and (h) are combined, 

yielding 

do all all 
IV.4.14 (f+h) = 4 L 1 L { 

i m r 

a c b 
+ Umi Urm ( E:ir 

b c a 
+ Umi Uri ( E: rm 

all do b 
+ L L Usj 

s j 

all do a 
+ L L Usj 

s j 

b 
E:rm + 

all 

L 
s 

Air,sj ) 

Ajs,mr ) 

do b 
L Usj 
j 

Arm, sj ) 

(a) 

(b) 

(c) 
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all 

L 
s 

do a 
L Usj 
j 

Ajs,ri ) } (d) 

(IVo4.25) 

where appropriate interchanging of labels has occurred with term (h) in 

IV.4.14. Note that ~m,sj is equivalent to Ajs,mr and that Air,sj is 

equivalent to Ajs,ri.· By the addition and subtraction of L U~r Esm and 

L U~m Ers to term (a) of the above, term (a) is recast in terms of the 

derivative orbital'energy. Following a similar procedure for (b), (c), 

and (d) yields IV.4.2S in terms of the appropriate derivatives of the 

orbital energies 

do all all a ·c (b) b b 
IV.4.14 (f+h) = 4 L L L { Umi Uri ( Erm - Umr E. - Urm E:rr ) mm 

i m r 
(a) 

a c 
( 

(b) b b 
EU ) + Urn! Urm Eir -Uri Err - Uir (b) 

b c 
( 

(a) a a 
) + Umi Uri Erm - U E - Urm Err (c) mr mm 

b c 
( 

(a) a a 
EU ) } + Umi Urm Eir - Uri Err - Uir (d) 

(IV.4.26) 

Use has been made of the diagonal property of the orbital energy in 

reducing sums of lagrangian multipliers to single terms in IV.4.26. 

Equation IV.4.26, however, does not take advantage of the diagonal 

nature of the derivative of the orbital energies. Combining IV.4.26 

with equation IV.4.23 and reducing the derivatives of the orbital 

energies to their diagonal form yields 

IV.4.14 (b+c+d+e+f+h) = 
do 

- 2 L 
i 

be (a) 
E;U EU (a) 
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do all a bc b ac 
+ 4 L L f Uim ~im + Uim ~im } Eii (b) 

i m 

do a11 all c a b a b 
+ 4 L I I f Uir ( Urm Uim + Uim Urm ) } Eii 

i m r 
(c) 

do all all a b c b c 
- 4 I I I f Umi ( Urm Uri + Uri Urm ) Err 

i m r 

b a c a c c a b a b 
} + Um! ( Urm Uri + Uri Urm ) Err + Uri ( Umi Umr + Umr Umi ) Emm 

(d) 
do all a c (b) b c (a) 

+ 4 L L { Um! Umi E + Umi Umi Emm } (e) mm 
i m 

IV.4.27) 
(a) (b) 

When IV.4.26 and IV.4.23 are combined note that the Eii and Eii terms 
/ 

of IV.4.23 (c) cancel with the Ei~) and e:f~)terms of IV.4.26 because of 

the diagonal character of the derivative of the orbital energy. Also, 

as both rand m run over the same set of orbitals, a U~r component of 

term (c) of IV.4.23 cancels with the last component of term (d) of 

IV.4.26. 

Interchanging labels m and r in the last component of term (d) in 

the above yields 

do all all a b c b c 
IV.4.27 (d) ~ - 4 I I I { Umi ( Urm Urm + Uri Urm ) 

i m r 

b a c a c c a b a b 
+Um! ( Urm Uri + Uri Urm ) + Um! ( Uri Urm + Urm Urm ) Err 

(IV.4.28) 

Returning to equation IV.4.14 and substituting equation IV.4.27 with a 

modified term (d) given by equation IV.4.28 results in a third 

derivative expression nearly displaying the desired symmetry. 
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(}3 abc' do all e ab b ae 
E = E + 4 L L { Umi E:im + Umi E:im (}a(}b(}e 

i m 

a be 
} + Umi E:im (a) 

do be ( a) ae (b) 
- 2 I ~ii E:ii +~ii E:ii } (b) 

i 

do all a be b ae 
+ 4 I L { Uim ~im + Uim ~im E:ii (c) 

i m 

do all a e (b) b e (a) 
+ 4 I I{ Um! Um! E: + Um! UmiE:mm nun 

i m 

a b ( c) 
} + Umi Umi E: mm (d) 

do all all c a b a b 
+ 4 I I I { Uir ( Urm Uim + Uim Urm ) } E:li 

i m r 
(e) 

do all all a b e b c 
- 4 L L I { Umi ( U U i + Uri Urm ) rm r 

i m r 

b a e a c c a b a b 
} + Umi ( Urm Uri + Uri Urm ) + Umi ( Uri Urm + Urm Uri ) E: rr 

(f) 
do all a b a b ab (c) 

+ I I { 4 ( Smi Smi - Uim Uim) - 2 Sa } E:ii 
i m 

(g) 
do all ae b a be c ab 

+ 4 I L { Sm! Smi + Smi S - Umi Smi } E:ii (h) mi 
i m 

do all all e a b a b 
+ 4 L I I { Urm ( Sri Smi + Smi Sri ) 

i m r 

c a b a b 
) } E:ii + Uri ( Sm! Smr + Smr Smi (i) 



.. 

do all all do a c b b c a 
+ 4 L L L L { Umi Urj Aim, rj + Umi Urj Aim,rj 

i m r j 

a b c 
+ Umi Urj Aim,rj 

do abc 
- 2 L Sa Ea (k) 

i 
(IV.4.29) 

The symmetry of term (b) of equation IV.4.29 can be completed by 

reducing term (g). Going back to IV.4.l9, term (g) is rewritten as 

do ab (c) 
IV.4.29 (g) = - 2 L ~ii Eii 

i 
(IV.4.30) 

The reduction of terms continues by using IV.3.12 to rewrite the 

third component of term (h) 

do all ac b a bc c c ab 
IV.4.28 (h) = 4 L L { Smi Smi + Smi Smi + ( Uim + Smi ) Smi } Eii 

i m 

do all ac b a bc c ab 
= 4 L L { Smi Smi + Smi Smi + Smi Smi } Eii (a) 

i m 

do all c ab 
+ 4 L L Uir Sri Ea (b) 

i r 
(IV.4.31) 

where the m in term (b) has been replaced by r. Combining term (b) of 

IV.4.31 with term (e) of IV.4.29 yields 

do all all c ab a b 
IV.4.31 (b) + IV.4.29 (e) = 4 L L L Uir { Sri + Urm Uim 

i m r 

(IV.4.32) 
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With the aid of IV.4.19, this can be recast as 

do all all c ab 
IV.4.32 = 4 L L L { Uir ~ir (a) 

i m r 

c a b a b 
) } + Uir ( Smr Sir + Sir Smr e:11 ( b) 

(IV.4.33) 

term (a) of the above, upon replacing r with m combines with 

IV.4.29 (c) to complete the symmetry of that term. The second term, 

(b), combines with equ*tion IV.4.29 (i) to produce 

i m r 
(a) 

(b) 

(IV.4.34) 

Since the derivative overlap matrix is symmetric, term (a) and the first 

component of term (b) in the above can be combined. Using the 

orthonormality condition equation IV.3.12, equation IV.4.34 reduces to 

do all all c a b a b 
IV.4.34 = 4 L L L { -Sir ( Smr Sir + Sir Smr ) 

i m r 

c a b a b 
) } e:11 + Urm ( Sri Smi + Smi Sri (IV.4.35) 

Expanding the U~m term in the above with the orthonormality condition 

results in 
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do all all a b c a b c 
IV.4.34 :: - 4 I I L { Smr Sir Sir + Sir Smr Sir 

i m r 
(a) 

a b c a b c 
+ Sri Smi Srm + Smi Sri Srm (b) 

a b c a b c 
} £U + Sri Suii U + Smi Sri Umr (c) mr 

(IV.4.36) 

The first component of term (c) of the above may be rewritten with 

interchanged indices, rand m. Term (c) becomes 

a b c a b c 
IV.4.36 ( c) :: - Smi Sri Urm - Smi Sri Umr 

a b c c 
= - Smr Sir ( Urm + Umr ) 

a b c 
:: Smi Sri Srm (IV.4.37) 

Substituting this back into IV.4.36 results in 

do all all a b .c a b c 
IV.4.36 :: - 4 I I I { Sim Sir Smr + Smr Sim Sir 

i m r 

a b c 
} £U + Sir Smr Sim (IV.4.38) .. 

Including all of these latest terms in the third derivative energy 

equation IV.4.29, the final equation is obtained. Note that it displays 

the desired symmetry of permuting the derivative degrees of freedom for 

each term. 
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a3 abc' do all c ab b 
L L { 

ac 
aaabac E E + 4 Umi Eim + Umi Eim 

i m 

a bc 
} + Umi Eim (a) 

do bc (a) ac (b) ab (c) 
} - 2 L E;U EU + E;ii Eii +~ii Eli ( b) 

i 

do all 
~bc Ub E;ab + 4 L L { U~m + E;ac + UC 

} Eii im im im im im i m· 
( c) 

do all a c ( b) b c (a) 
+ 4 L L { Umi Um! E + Umi UmiEmm mm 

i m 

a b (c) 
} + Umi Um Emm (d) 

do all all a b c b c 
- 4 L L L { Umi ( Urm Uri + Uri Urm ) 

i m r 

b a c a c c a b a b )} + Umi ( Urm Uri + Uri Urm ) + Umi ( Uri Urm + Urm Uri Err 

(e) 
do all all do a c b b c a 

+ 4 L L L L { Umi Urj Aim, rj + Umi Urj Aim, rj 
i m r j 

a b c 
} + Umi Urj Aim,rj (f) 

do all ac b a bc c ab 
+ 4 L L { Smi Smi + Smi Smi + Smi Smi } Eli (g) 

i m 

do all all b b 
L L L { a c a c 

- 4 Sim Sir Smr + Smr Sim Sir 
i m r 

a b c 
} EU + Sir Smr Sim (h) 



do 
- 2 I 

i 

IV.4.2 COMPUTATIONAL REMARKS 

(i) 

(IV.4.39) 

The most computationally expensive term of in IV.4.39 (other than 

the calculation of the third derivative integrals) is term (f). In this 

term, N3N sets of four-index transformations of the two-electron first 

derivative atomic orbital integrals are required so that the Atm,rj 

matrices can be assembled. If there is enough central storage space in 

the computer, then all N3N derivative atomic orbital integrals can be 

simulta~eously transformed and term (f) directly evaluated. If however, 

there is little central memory or the number of derivative integrals is 

simply too large, then a procedure much like that used in the atomic 

orbital basis CPHF solution of Osamura ~ ale 62, is best applied to the 

evaluation of term (f) of IV.4.39. 

do all all do 
ub

. I L I L ua AC 
mi rJ im, rj 

i m r j 

do all all do all all 
U

b
. C

i 
Cj 

= L L I I L I ua { 4 Cm e r (llvjpa)c 
mi rJ II v P a 

i m r j Il,V p,a 

e i e r em e j (llPlva)c - e i cj em e r (llPlva)C} 
\.I p v a IJ p v a 

do all all 
C

i all all do 
U

b 
e

j + e j 
= L L I ua em { L I L ( 2 ( e

r cr ) (\.lvlpa)c-
mi II v rj P a P a i m \.l,V p,a r j 

(IV.4.40) 
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By letting 

equation IV.4.40 can be rewritten as 

do all all 
\ \ \ Ua ei em IV.4.40 = L. L. L. 
i 

mi IJ v 
m ll,V 

all 
L 

p,a 
p{ 2( lJVI pa)c pa 

(IV.4.41) 

(lJPlva)c } 

(IV.4.42) 

The contribution of each derivative integral in the above is 

empirically known by the indicies of the integral. This is much like 

the production of T~v described in section IV.3.2. The multiplication 

of the integrals and Ppc can be thought of as forming a half-transformed 

QllV· 

all 
L (IV.4.43) 

p,a 

The QlJV is then transformed by a two-index transformation and multiplied 

and summed over Ua • 

do all 
IV.4.40 = L L { (IV.4.44) 

i m 

As with the second derivative, the third derivative involves 

derivative Fock matrices - only this time both first and second 

derivatives. The first derivative half-transformed T~v is formed as in 

equation IV.3.16 and the second derivative ,is formed likewise. a The TllV 

and T~~ are transformed by a two index transformation and added to h~m 

and hab to produce £a a,nd £ab im 1m 1m • 
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The computational steps are: 

(1) Calculate the zeroth-order integrals and solve the SCF equations to 

obtain the unperturbed molecular orbital coefficients. This wave 

function must be well-converged. 

(2) Calculate the one-electron contributions to Ea ', Eab ', and Eabc ' • 

Using the atomic orbital lagrangian, term (i) of equation IV.4.39 

is evaluated. ha hab Sa Sab t d t 11 uv' uv' uv' uv are s ore ex erna y. 

(3) Calculate the density factor for the two-electron blocks of 

integrals. If all the density factors are below a given threshold, 

then the block of integrals is ignored. Otherwise evaluate the 

derivative two-electron integrals adding their contributions to 

'b' b ' b Ea ,Ea and Ea c. The half-transformed T~v and T~v are also 

calculated and stored externally. (uvlpa)a must also be stored on 

an external device. 

(4) a ab a ab Transform with a two index transformation: huv ' huv' Suv ' Suv' 

a ab 
Tuv and Tu v• 

(5) Solve the CPHF equations. The Ua matrices are stored on an 

external device. Form the ~ab and store them externally. 

(7) Evaluate the remaining terms in IV.4.39. Use the techniques of 

equations IV.4.40-IV.4.44 for the production of the derivative A 

martix. 

In the following chapter, the results of the application of 

chapters II, III, and IV on the water molecule will be discussed. The 

resulting second and third order cartesian force constants will be 

transformed to normal coordinate space, allowing the rotation-vibration 

interaction constant of chapter I to be calculated. 



V RESULTS OF THE THIRD-ORDER FORCE CONSTANT CALCULATION 

V.1 INTRODUCTUION 

The calculation of tha energy for an ab initio wave function is a 

calculation from first principles. The description of the force field, 

however, has often been clouded by the use of experimental data and 

approximate means to describe the field itself. This new development of 

analytic cubic force constants coupled with the previously developed 

analytic quadratic force constants returns the force field to first 

principles. 

Previous theoretical force fields have generally approximated cubic 

and quartic force constants by sums and differences of energies and 

energy gradients calculated at experimental 17,52 or relaxed 13,65 

geometries. In this manner, the quadratic and cubic force constants in 

terms of the gradient of the energy gi are given by 

(V.l.l) 

where ref refers to the reference geometry, 6qi the change in a 

particular internal coordinate qi' and 6 j the step size of coordinate 

j. The diagonal quartic force constants are calculated by either 

fitting energy points to a fourth-order polynomial (Schlegel ~ 
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al. 13) or the quartic force constants of the morse oscillator are used 

to approximate the quartic stretching force constants (Pulay et 

al. 51. Non-diagonal quartic force constants are not calculated. Note 

also that equation V.l.l gives only the diagonal and semi-diagonal cubic 
ijk 

force constants. It has been generally assumed that F with i*j*k is 

small and can thus be neglected. 

Although these methods have had success in reproducing the 

experimentally obtained force contstants 17,51,52,13,65,66, the 

calculation of analytic force constants reduces the errors inherent with 

the point difference methods given by equation V.l.l. Analytic methods 

also have the advantage that all the force constants are calculated. 

This avoids any systematic error due to the dropping of non-diagonal 

cubic and quartic force constants that may indeed be small, but too 

important to neglect. 

Whether to use the theoretical minimum or the experimental minimum 

geometry in the theoretical calculation of the force constants has been 

an area debated by theoreticans for many years 41,54 To date, most 

cubic and quartic force constant calculations have used experimental re 

structures. As these studies have been used primarily to supplement and 

expand experimental data, the use of the experimental re structure is 

reasonable. However, for analytic cubic force constants (and 

evidentually quartic), the role of the force constants will be to help 

define experimental data not necessarily to validiate it. This 

predictive role is possible because the analytic calculations are not 

restricted to molecular systems with straightforwardly defined internal 

coordinates as gradients along these coordinates are not needed. 

Instead, novel systems where there is little or no experimental data can 
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be readily calculated. In such cases, the use of the theoretical 

minimum is the only reasonable choice. 

The most obvious omission in this study of the Hartree-Fock 

analytic force constants is- the neglect of electron correlation. The 

effeet of electron correlation on quadratic force constants is 

substantial 53, and most attempts to accurately describe potential 

surfaces have concentrated on the interplay between basis set size and 

correlation effects. The effects of electron correlation on cubic and 

quartic force constants has been investigated by many 

authors 17,12,52,67 Pu'lay ~ ale 17,52 'have shown that for NH
3

,HF, 

HCN, arid CH4 , the contribution of electron correlation to cubic and 

quartic force constants is small. Equally important is their finding 

that while the Hartree-Fock contribution to these force constants is 

sensitive to the nuclear reference frame, the electron correlation 

contribution is not. These findings are also supported by Rosenberg et 

al~ 67 in their study of the water molecule. For weakly bonded systems, 

for example the HF dimer and HF trimer 68, neither the Hartree-Foek nor 

electron correlation contribution~ to the higher force constants are 

known. The analytic cubic force constant formalism presented in this 

work, howeve'r, will allow 'the Hartree-Fock question to be definitively 

answered. 

Basis set size and the stability 6f cubic and quartic force 

52 constants has also been investigated by Pulay et ale They conclude 

that basis sets on the order of triple-zeta plus two polarization 

functions are necessary to correctly describe the core-core replusion 

they feel is responsible for the large Hartree-Fock contribution to the 

higher force constants. Unfortunately, time constraints have made it 
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impossible to address this question in the present study. 

V.2 THE WATER MOLECULE 

The water molecule was chosen as the test case for the analytic 

energy derivative formulae - the force constants - presented in chapter 

IV. The water molecule represents an ideal starting place for higher 

analytic force constants as there is much data, both experimental and 

theoretical, concerning its potential surface 69,67,70,71. 

The water molecule was completely optimized with analytic gradients 

using the standard double-zeta (DZ) basis set of Huzinaga and 

Dunning 72,73. The basis set for the oxygen atom is comprised of nine 

s-type gaussian primitives contracted to four s-type functions and five 

p-type gaussian primitives contracted to two p-type functions 

([9s5p/4s2p). For the hydrogens the basis set consisted of four s-type 

gaussian primitives contracted to two s-type functions ([4s/2s]) scaled 

by the standard factor of 1.2. The total number of atomic orbitals is 

thus fourteen. Although this is clearly not among the largest basis 

sets employed on the water molecule (see reference 69 for an excellent 

SCF study of the water molecule), it does represent a significant 

challenge to the derivative integral and derivative energy programs. 

For a triatomic molecule, there are 9 unique first derivative 

degrees of freedom, 45 unique second derivative degrees of freedom, and 
. 

165 unique third derivative degrees of freedom. For H20, many of these 

unique degrees of freedom are equivalent; however, this will not be 

taken advantage of in the calculation. The water molecule quite clearly 

illustrates how the number of derivative two-electron integrals quickly 
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escalates. There are a total of 4013 two-electron charge distribution 

interactions for the C1 water molecule. This is less than the number of 

interactions for the zero-order integrals because no derivative 

integrals are calculated if all the atomic orbitals are on the same 

nuclear center. When these 4013 interactions are multiplied by the 

total number of degrees of freedom for the H20 molecule, the result is 

that a total of 878,847 derivative integrals must be evaluated. This 

includes all first, second, and third derivative integrals. As 

mentioned in chapters III and IV, only the first derivative two""'electron 

integrals have to be stored externally. The second and third derivative 

two-electron integrals are multiplied by,a density factor and summed, 

thus avoiding their storage. In the calculation of the quadratic and 

cubic force constants for H20, the computational steps outlined in 

section IV.4.2 were followed. 

The analyatic force constants in cartesian coordinate 

representation were checked for accuracy by performing the appropriate 

lower-order analytic force constant calculation at displaced cartesian 

coordinates and then calculating the higher-order force constant with 

the appropriate two-point difference formula. All one- and two-electron 

derivative integrals were checked by finite differences of the 

appropriate lower-order integrals evaluated at displaced geometries. 

Table V.2.1 compares the computational time for calculating the third 

derivatives of the energy with respect to cartesian coordinates by 

finite differences of ~2rtesian second derivatives and the analytic 

evaluation of the third derivatives. Although the version of the third 

derivative integral program used for this timing comparison has since 

been improved, the timings indicate that the analytic evaluation of 
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third derivatives is indeed computationally economical. 

As explained in chapter I, the final force constants are given not 

with respect to cartesian coordinates but rather with respect to normal 

coordinates. The transformation to normal coordinate space (see section 

1.3) reduces the third-order force constant matrix from 165 elements to 

a mere 27 elements. The theoretical quadratic and cubic force constants 

in normal coordinate space are presented in table V.2.2. The 

corresponding experimental force constants reduced to normal coordinate 

space by Hoy, Mills, and Strey 15 are also presented in the table. Note 

that only the non-zero force constants are given. 

The agreement between theory and experiment is excellent. Although 

the DZ basis set employed here does not have the flexibility that 

polarization functions would add, it nonetheless does a remarkable job 

describing the cubic stretching (deformation) constants. The poorest 

agreement occurs with the ~122 force constant. This type of deformation 

will be better described at the DZ plus polarization level as the 

bending coordinate is treated better at this level. 

V.3 CONCLUSION 

The results of this chapter indicate that for basis sets of 

moderate size the analytic evaluation of cubic force constants is an 

accurate and practical process for closed-shell Hartree-Fock wave 

functions. Although calculations for larger molecules with more 

sophisticated basis sets have yet to be performed, it is believed that 

the results of this chapter will directly extrapolate to these larger 

systems. The next step in analytic third derivatives is the evaluation 

153 



of third derivative energy equations for open-shell Hartree-Fock wave 

functions. As this ~ill not require a new derivative integral program, 

it is expected that open-shell cubic force constants will be forthcoming 

shortly. Third derivatives of the multi-configurational wave functions, 

wave functions that treat the electron correlation problem, are also 

within reach. 

to calculate the anharmonic constants presented in chapter I, the 

fourth-order force constants are needed. This requires a new derivative 

integral progr~m. The design of the derivative integral algorithms 

presented in chapter III allow facile extension to fourth derivatives. 

The fourth derivative enetgy equations, although not presented here, are 

derived in a manner similar to ·the third-order equations. The success 

of analytic third derivatives virtually guarantees the success of 

analytic fourth derivatives. The completion of this step will allow the 

ab initio calculation of a rotation-vibration spectr~m. 
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Table V.2.1 

Timing Comparison of Third Derivatives from Finite Differences 

of Second Derivatives and Analytic Evaluation 

A single second derivative 

calculation in C1 symmetry 

Number of necessary second 

derivative points to obtain 

the third derivative a 

entire third derivative 

calculation 

analytic evaluation of third 

-1 minute 

9 

-9 minutes 

derivative: entire calculation -7 minutes 

Timings are on the Gould 32/87/80 mini-computer. The third 

derivative code has been substantially improved since this timing 

comparison was made. 

a The second derivative code used for these calculations is the 

highly optimized code of Saxe and Yamaguchi. Details concerning their 

method may be found in reference 46. 
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Table V.2.2 

Cubic and Harmonic Force Constants with Respect to Harmonic Normal 

Coordinates for H20 in cm- 1 

notation: mode 1 is the symmetric stretch, mode 2 is the bend, and mode 

3 is the asymmetric stretch. 

cjll11 

cjl1l2 

cjl122 

cjl133 

cjl222 

cjl233 

Present Results 

0.9513 A 

112~52 0 

4028.3 

1710.6 

4204.2 

-1853.1 

107.3 

362.1 

-1873.6 

-404.4 

294.1 

15 Experimental 

0.9572 A 

104.52 0 

3832.0 

1648.9 

3942.5 

-1815.1 

106.2 

335.0 

·-1855.8 

-381. 7 

277 .6 
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Appendices 



A.I 'DIE MCKURCHIE AND DAVIDSON INTEGRAL IN ALUATION ALGORITHM AND 'l'1IE 

SAUNDERS INTEGRAL IN ALUATION ALGORITHM 

In the following section, both the McM~rchie and Davidson and the 

Saunders alogrithm for the solution of the ERI are presented~ Though 

the alogrithms are presented in a Fortran 77 like manner, liberties have 

been taken so that the algorithms match the equations presented in 

section 11.7. Before the two algorithms are presented, a number of 

definitions are required: 

(a) Nshell: the total number of shells 

(b) Ishell, Jshell, Kshell, Lshell: the shell in question 

(c) lfns, Jfns~ Kfns, Lfns: the set of primitives (functions) that 

make up a particular shell (a contraction set) 

(d) a,b,c,d the exponets of a particular primitive 

(e) Tmax: AA + AB ' the sum of the total angular momentums on Ishell 

and Jshell 

( f) T' max: AC + \ 

(g) Kfirst, Klast, Lfirst, Llast, Jfirst, Jlast, Ifirst, Ilast the 

first and last members of the specified shell when all the members 

of all the shells are grouped in a list 1 to Norbitals 

(h) Norbitals: total number of atomic orbitals 

(1) lnt an array that for a given atomic orbital, contains the x, y, 

and z angular quantum numbers (the n, 1, and m for that particular 
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.. ' 

... 

orbital) 

The McMurchie and Davidson algorithm is presented below: 

For Ishell=I,Nshell 

• For Jshell=I,Ishell 

• Tmax is computed 

• For Ifns 

• For Jfns 

.p=a+b 

• generate the expansion coefficients 

• zero I 

• For Kshell=I,Ishell 

• For Lshell=l,Kshell (or Jshell if Kshell=Ishell) 

• T'max is computed Maxt=T'max + Tmax 

• For Kfns 

• i,j,k angular quantum numbers 

• For Lfns 

• i' ,j',k' angular quantum numbers 

• q = c + d 

• generate the expansion coefficients 

• compute Fj(z) and R(Maxt,Maxt,Maxt) 

• For p= Kfirst, Klast 

• For 0= Lfirst, Llast 

• For v' = 1, T'max 

• Dv' =e z (k , k' , v' ) 

• For u' = 1, T'max 
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. -

Du'=ey(j,J' ,u') 

For t'= 1, T'max 

Dt'=e (i i' t') x ' , 

For v = 1, Tmax 

For u = 1, Tmax 

For t = 1, Tmax 

I(t,u,v,o,p) 

I(t,u,v,o,p) + 

Dv'*Du'*Dt'* 

R(t+t',u+u',v+v') 

end for . 

end for 

end for 

end for 

end for 

end for 

end for 

end for 

end for 

end for 

end for 

end for 

For p= I,Norbitals 

For 0= I,Norbitals 

For IJ= IfiOrst, Ilast 

Int(~) n,l,m angular quantum numbers for the 

Ishell 
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• For V= Jfirst, Jlast 

• 

• 

m' , Int(\I) n' ,1' 

the Jshell 

For vm 1, Tmax 

• Dv-ez(m,m' ,v) 

For u-1,Tmax 

angular quantum numbers for 

• Du=e/l,l' ,u) 

• • 

For t= 1, Tmax 

.Dt"'ex(n,n',t) 

(~\llpa) - (~\llpa) + 

Dt*Du*Dv*I(t,u,v,a,p) 

end for 

• end for 

end for 

end for 

end for 

end for 

• end for 

• end for 

• end for 

• end for 

end for 

end for 
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The Saunders alogrithm is given below: 

For Ishell=1,Nshell 

• AA is obtained 

• For Jshell=1,lshell 

• 

• AB is obtained 

• Tmax is computed 

lnt array is produced for ~ and v orbitals 

• For lfns 

• For Jfns 

• • p= a + b 

• generate the expansion coefficients 

• For Kshell=1,Ishell 

• AC is obtained 

• For Lshell=1,Kshell (or Jshell if Kshell=lshell) 

• "0 is obtained 

• T'max is computed Maxt=T'max + Tmax 

• lnt array is produced for p and a orbi tals 

• For Kfns 

• For Lfns 

• q .,. c + d 

• generate the expansion coefficients 

• compute B and find the Rys roots and weights 

• calculate Gt , Gu ' and Gv for t,u,v equal to maxt; 

use the recursion relationships to fill out the G 

arrays 

For Iroot 1,Nroots 
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• For Ino = 0, AA 

• For Jno - 0, AB 

• IJ .. Ino + Jno 

• For kl - 0, AC + An 

• For t = 1,IJ 

• tt'= kl + t, uu'= ttl, and vv'=tt' 

• YX(kl)=YX(kl) + ex(Ino,Jno,ij) 

• YY(kl)=YY(kl) + ey(Ino,Jno,ij) 

• YZ(kl)=YZ(kl) + ez(Ino,Jno,ij) 

*G , vv 

• end for 

• end for 

• For Kno = 0, AC 

• For Lno = 0, An 

• KL=kno+lno, u'=tmx, and v'=trnx 

• For t'- O,KL 

• XX(Lno,Kno,Jno,Ino)= 

XX(Lno, Kno,Jno,Ino) + 

ex(Kno,Lno,t')*YX(t') 

• XY(Lno,Kno,Jno,Ino)= 

XY(Lno, Kno,Jno,Ino) + 

ey(Kno,Lno,t')*YY(t') 

• XZ(Lno,Kno,Jno,Ino)= 

XZ(Lno, Kno,Jno,Ino) + 

ez(Kno,Lno,t')*YZ(t') 
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• 

• 

• 

• 

end for 

end for 

end for 

o end for 

end for 

For ~ = Ifirst, Ilast 

Int(~) produces n,l,m-for ~ orbital 

• For v = Jfirst, Jlast 

• 

Int(v) produces n',l',m' for v orbital 

• For p = Kilrst, Klast 

Int(p) produces i,j,k for p orbital 

• For a = Lfirst, Llast 

Int(a) produces i',j',k' for a 

orbital 

(~vrpa) = (~vlpa) + 

XX( n, n ' , i , i ' ) *XY( 1,1', j , , j , ) 

*XZ ( m, m' , k, k ' ) 

end for 

. . . 

end for 

end for 

end for 

end for 

end for 

end for 

end for 

end for 

end for 
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• end for 

end for 

• end for 

end for 
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A.2 THE DERIVATIVE ONE-ELECTRON ALGORITHM 

The following algorithm is for the evaluation of derivative one

electron integrals. Definitions of terms in the algorthim are at the 

beginning of appendix A.l. The algorithm is set up for fourth 

derivatives, but can be easily modified for a more restricted case. See 

sections 111.3 through 111.5 for details of the equations. 
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.. 

Loop over Ishell 

Loop over Jshell ( Ishell 

Loop over contractions on Ishell 

Loop over contractions on Jshell 

calculate the expansion coefficients where maximum angular 
momentum index is tmax=t+4 (because of 4 derivatives) 

p=a+b_ 

calculate 8 

calculate tmax Rys roots and weights and flll the G arrays 
where the maximum index is tmax 

Loop over Ina = 0, AA 

Loop over Jno = 0, ~ 

evaluate overlap and kinetic energy derivative 
integrals: < ~n I v > for n=I,4 

< ~n T I v > for n=I,4 

expand about the two centers 

Loop number of atoms Vc = 1, natoms 

Loop over number of Rys ~oots Iroot=I,[t/2] + 1 + 4 (due 
to the fourth derivative) 

Loop over Ino = 0, AA 

Loop over Jno = 0, AB 

evaluate derivative NAI integrals 

< ~n I Vc I v > for n=I,4 

< ~ I Vc I vn > for n=1,4 

< ~n I Vc I vm > for m=1,3 and n=1,3 such 
that n+m=4 

expand about the two centers of Ishell and Jshell 

use translational invariance to complete the derivative in 
accordance to table 111.3.1-111.3.3 
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A.3 DERIVATIVE NO-ELECTRON INTEGRAL ALGORITHM 

The following algorithm is for the simultaneous evaluation of all 

first and second derivatives of a four center two-electron integral 

using translational invariance to calculate the darivatives on center 

D. Details concerning the acronyms may be found in section III.6. The 

extension to higher derivatives is accomplished by changing the 

appropriate limits of summation. 
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Loop over Ishell and Jshell 

Loop over Kshell and Lshell (skip if all four shells are on the same 
center) 

Loop over contractions on the four shells calculating the 
expansion coefficients where the maximum index is A + 2 

calculate the Rys roots and weights and fill the G arrays again 
the maximum index for the array is Amax + 2 

Loop over quadrature points Iroot=1,[t+t'/2] + 3 

Loop over angular momentum on Ishell and Jshell (Ino=O,AA 
and Jno=O,AB, IJ variable that lables an Ino, Jno pair) 

Loop over t'=AC + AD + 2 

Loop over t - 0, Ino+Jno+2 

If t < Ino+Jno : compute YX, YY, YZ 

If t < Ino+Jno-2 

compute YXSA2, YYSA2, YZSA2, YXSB2, YYSB2, 

YZSB2, YXSAB4, YYSAB4, YZSAB4 

If t < Ino+Jno 

compute YXSAB2, YYSAB2, YZSAB2, YXSAB3, 

YYSAB3,YZSAB3 

compute YXSA1, YYSA1, YZSA1, YXSB1, YYSB1, 

YZSB1, YXSAB1, YYSAB1, YZSAB1 

If t < Ino+Jno-l 

compute YXFAl, YYFAl, YZFAl, YXFBl, YYFBI 

YZFBI 

If t < Ino+Jno+l 

compute YXFA2, YYFA2, YZFA2, YXFB2, YYFB2, 

YZFB2 
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YX=YX, YY=YY, YZ=YZ 

YXFA=2aYXFA1 - nYXFA2 

YYFA=2aYYFA1 nITFA2 

YZFA=2aYZFA1 - nYZFA2 

YXFB~2bYXFB1 - n'YXFB2 

YYFB=2bYYFB1 - n'YYFB2 

YZFB=2bYZFB1 - n'YZFB2 

If t' ( AC +· An +2 

YXSA=4a2YXSA1 - 2a(2n+l)YX + n(n-l)YXSA2 

YYSA=4a2ITSA1 - 2a(2n+1)IT + n(n-1)YYSA2 

YZSA=4a2YZSA1 - 2a(2n+l)YZ. + n(n-l)YZSA2 

YXSB=4b2YXSB1 - 2b(2n'+l)YX + n'(n'-1)YXSB2 

ITSB=4b2ITSB1 - 2b(2n'+1)YY + n'(n'-1)ITSB2 

YZSB=4b2YZSBl - 2b(2n'+1)YZ + n'(n'-1)YZSB2 

YXSAB=4abYXSABl - 2an'YXSAB2 - 2bnYXSAB3 -

nn'YXSAB4 

ITSAB=4abYYSAB1 - 2an 'YYSAB2 - 2bnYYSAB3 -

nn'ITSAB4 

YXSAB=4abYZSABl - 2an'YZSAB2 - 2bnYZSAB3 -

nn'YZSAB4 

Loop: over angular momentum on Kshel1 and Lshell 
(Kno=O,Ac' Lno=O,Au' KL is the variable that lables a 
unique Kno, Lrio pair) 

Loop over t' = 0, Kno+Lno+2 

If t' ( Kno+Lno 

compute XX, XY, XZ, XXFA, XYFA, XZFA, XXSA, 

XYSA, XZSA, XXFB, XYFB, XZFB, XXSB, XYSB, 

XZSB, XXSAB, XYSAB, XZSAB 

If t' (Kno+Lno-2 

compute XXSC2, XYSC2, XZSC2 

If t' (Kno+Lno-l 

compute XXFC2, XYFC2, XZFC2, XXAC2, XYAC2, 
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XZAC2, XXBC2, XYBC2, XZBC2 

If t' < Kno+Lno+l 

compute XXFCl, XYFC1, XZFCl, XXAC1, XYAC1, 

.XZAC1, XXBC1. XYBC1, XZBC1 

compute XXSC1, XYSC1, XZSCI 

XXFA(IJ,KL)=XXFA 

XYFA(IJ,KL)-XYFA 

XZFA(IJ,KL)=XZFA 

XXFB(IJ,KL)=XXFB 

XYFB(IJ,KL)~XYFB 

XZFB(IJ,KL)=XZFB 

XXSA(IJ,KL)=XXSA 

XYSA(IJ,KL)=XYSA 

XZSA(IJ,KL)=XZSA 

XXSB(IJ,KL)=XXSB 

XYSB(IJ,KL)=XYSB 

XZSB(IJ,KL)=XZSB 

XXSAB(IJ,KL)=XXSAB 

XYSAB(IJ,KL)=XYSAB 

XZSAB(IJ,KL)=XZSAB 

XXFC(IJ,KL)=2cXXFCl - iXXFC2 

XYFC(IJ,KL)=2cXYFCl - iXYFC2 

XYFC(IJ,KL)=2cXZFC1 - iXZFC2 

XXSC(IJ,KL)=4c2XXSCl - 2c(2i+l)XX - i(i-l)XXFC2 

XYSC(IJ,KL)=4c2XYSC1 - 2c(2i+l)XY - i(i-1)XYFC2 

XZSC(IJ,KL)=4c2XZSC1 - 2c(2i+1)XZ - i(i-l)XZFC2 

XXSAC(IJ,KL)=2cXXSACl - iXXSAC2 

XYSAC(IJ,KL)=2cXYSAC1 - iXYSAC2 

XZSAC(IJ,KL)=2cXZSAC1 - iXZSAC2 

XXSBC(IJ,KL)=2cXXSBC1 - iXXSBC2 

XYSBC(IJ,KL)=2cXYSBCl - iXYSBC2 

XZSBC(IJ,KL)=2cXZSBC1 - iXZSBC2 

Expand about the four shells generating the appropriate IJ, 
and KL for the particular integral in question (Int array) 
only indicating one type of derivative for each direction 
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a a 
(lJvlpa)x = (IJvlpa) x + XXFA(1J,KL)*XY(IJ,KL)*XZ(IJ,KL) 

a a a a 
(lJv~pa) x x _ (~vlpa) x x + 

XXSA(IJ,KL)*XY(IJ,KL)*XZ(1J,KL) 

~a a a 
( ~vl pa) y =- (lJVI pa) x y + 

XXFA(1J,KL)*XYFA(IJ,KL)*XZ(1J,KL) 

a b a b 
(lJvlpa) x x "" (lJvlpa) x x + 

XXSAB(1J,KL)*XY(1J,KL)*XZ(1J,KL) 

I ~b I a b (lJV pa) Y co (lJV pa) x Y + 

XXFA(IJ,KL)*XYFB(IJ,KL)*XZ(1J,KL) 

a c a c 
(lJvlpa) x x = (lJvlpa) x x + 

XXSAC(1J,KL)*XY(1J,KL)*XZ(1J,KL) 

(\.lVI pa) axcy.:or (\.lVI pa) ~Cy + 

XXFA(1J,KL)*XYFC(1J,KL)*XZ(1J,KL) 

use ~ranSlational invariance relations of table 111.2.2 to get 
the derivatives with respect to nuclear center D 
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