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The Analytic Evaluation of Third and Fourth Derivatives

for Hartree-Fock Wave Functions
Jeffrey Farrell Gaw

Department of Chemistry
University of California

Berkeley, California 94720

ABSTRACT

First and second derivatives of the energy with respect to nuclear
perturbations for Hartree-Fock wave functions have proQided much
information regarding the curvature and character of potential energy
hypersurfaces. The introduction of analytic second derivatives not only
allowed the calculation of quadratic force constants for molecular
species that cannot be obtained through finite differences of energy
gradients, but also increased accuracy and reduced computational time
required to obtain these force constants. Third and fourth derivatives
yield even more iﬁformacion concerning the potential energy surface by
quantifying the anharmonicity. This work details the first
implementation of the evaluation of analytic third derivatives with
respect to nuclear perturbations for Hartree~Fock closed—-shell

molecules.



The calculation of analytic third derivatives divides neatly into
two calculations: The first is the contribution from the pe;turbation of
the basis set; and the second is the contribution from the perturbation
qf the molecular orbital coefficients. The perturbation of the basis
set yields first, second, and third derivative atomic orbital ~
integrals. Thes; are calculated using Hermite gaussian functions and
Rys quadrature. )Details ofvthe algqritﬁms are presented.

The pertufbation of;the molecular orbital coefficients leads to
first- and second-order coupled perturbed Hartree—Fock equations. These
are reduced‘to first-order results. The ensuing energy equation
coupling the two éontributions is presented'along with details
concerning its evaluation.

Results comparing analytic cubic force constants in normal
.coordinaﬁe_Space to thoée derived from experimental data for the water
molecule are reported. Agreement is excellent. Initial timing

information indicates that the analytic evaluation of third derivatives

-

is computationally less expensive than the calculatibn through finite

differences of analytic second derivatives.
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Preface

The analytic evaluation of energy derivatives requires an intimate
knowledge of the évaluation of derivative atomic orbital inﬁegrals and
the coupled—pertufbed.Haptree-Fock equations. "Each of these subjects is
complicated enough to warrant an entire thesis itself. Nevertheless, -
this thesis attempts to explain aﬁd'provide the necessary information
for the analytic eyaluation of derivatives from "scratch”.

The first chapter begins not with the.theoretical backgroﬁnd to the
analytic solution of the derivative'energy equations, but rather with
experimental results. The reason for this is quite clear: The
evaluation Qf cubic and quartic force constants, to be generally useful,
must relate to something concréte. Chapter Ivoutlines how this is
accomplished. Chapter II details integral evaluation while chapter IIi
deals with derivative integrals. The fourth chapter derives and
presents the derivative energy equations providing computational remarks
to the equations derived. Finally, the fifth chapter ties all the
chapters toggther with the analytic calculation of the cubic.force

constants for the water molecule.



I. EXPERIMENTAL AND THEORETICAL BACKGROUND
I.1 INTRODUCTION

The effective rotational constants ng) ( £ = a,b,c) and the
vibrational energies GO(VI’ Vo ...vn) are two physical data directly
derived from rotation and rotation-~vibration spectroscopy. As the
effective rotational constants are measured in a particular vibrational
state, analysis over many states shows their dependence on a set of

vibrational quantum numbers Ve

&) _ (8 _ (&)
B> =B ) a ™ (v_+ g /2)

\4 e
r

+ Z X Y,(,:) (vr + gr/2) (vS + gs/2) + eee (I.1.1)
r’s

where g. is the degeneracy of the vibrational state v and g_. is the
r s

r?

degeneracy of Ve The Bég) are the equilibrium rotational constants

defined by
2
(g _ K

g

where Ig is the equilibrium moment of inertia about principal axis &.
The constants aﬁg) and Ygg) describe the interaction of rotation and
vibration and are experimentally obtained by a least-squares fit of the

data.



The vibrational energies are given by

Go(vl, V2, ...Vn) = G(Vl, Vz, ...Vn) - G(0,0,...O)

=) o v+ 7 xo v_v,_ ' (I.1.3)
r r rs r. s
r T?S -
with ﬁhe expansion cdefficiénts w? and xo found by a least—-squares fit

T rs
of the data. In the above observed vibrational energies, the expansion
of thevvibrational'energy equation is truncated beyond second-order

terms in the vibrational quantum numbers. In the absence of resonances

this expansion is' given by

'G(VI’ V2r 'T’VH) - E Y (vr; gr/Z) + §>§ xrsv(vr+ gr/Z) (vs+vgs/2)
| | (I.1.4)

The w. are the zero-order frequencies and the X, are the anharmonic

constants. The truncation beyond second-order implies that xgs’= Xpgo

The observed wo

r are related to the zero-order frequencies by

0 _ : g
wo = w. o+ x.. +1/2 )} X.g 8¢ (I.1.5)
' r¥s
whereas the observed fundamentals V. are given by
voo= e+ x . (l+g) + 1/2 ] x.o g (I.1.6)

r¥s

The experimental determination of these quantities is no trivial task.
The anharmonic force constants are known only for a few relatively small

polyatomic molecules; The advent of high resolution vibrational
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spectroscopy has recently allowed the determination of w. and Xrg for as
large a molecule as formaldehyde 1,
The basic theory on anharmonicity in polyatomic molecules is well

known. See for example, the work of Nielsen 2, Cyvin 3, Kuchitsu 4’5,

Oka 6, Morino 7, Watson 8,9 and Mills 10. The theoretical evaluation of
the anharmonic constants x_ . and the rotation-vibration interaction
constants agg) begins with a series expansion of the potential energy
function and a pertursation treatment of the rotation-vibration energy
using the cubic and quartic terms in the potential series as the
perturbation. In a review article of 1950, Nielsen 2 presented
expressions for the Xpg and agg) constants correct through second-order
in perturbation theory. The formulae expressed the anharmonic and
interaction constants in terms of force constants and a number of
complicated geometrically depen&ent quantities, all within normal
coordinate space. It is the calculation of the anharmonic and
interaction constants from ab initio force constants that is the goal of
this work.

Previous theoretical determinations of the anharmonic and
interaction constants utilized a number of methods to obtain the
necessary force constants. These methods include: the assumption of an
analytic form of the potential that is mixed with experimental
quantities so as to correctly describe the potential surface; the
utilization of the experimental frequencies and interaction constants to

iteratively solve for the force constants 11; the fitting of ab initio

l 12_

energy points to a polynomia ; and the utilization of finite

differences of ab initio energy gradients to calculate quadratic, cubic

and quartic force constants 13. In this study, however, analytic first,



second, and third energy derivatives of Hartree-Fock wave functions -
~the force constants themselves - willjbe calculated. No experimental

daCa will be used. These force constants, aloﬁg'with thé functions

dependent on the geometry of the molecule, can then be used to determine’

the anharmonic and interaqtion const;nts.

In this.chaptgr, the results of second—-order perturbation theory of
the complete rotation-vibration Hamiltonian will be presen;ed for a
potentiai eﬁergy function expanded as a power series. The question of
the appropriate internal coordinétes and the coordinate frame for the:

repfesentacion of the force constants will also be discussed.

1.2 RESULTS OF SECOND-ORDER PERTURBATION THEORY

The rotation—-vibration Hamiltonian of Watson 8.iS»given by Mills 10
as
H=31/2u K (3 -n)(J,-n)+1/2 5 0% +vQ)
af a a’ 8 B’ r r
a, B r ‘
(10201)

The Hago with a and B running over x, y, and z, are the elements of the
U tensor, which are related to the inverse moments of inertia (see

reference 14 for details on its form); J are the components of the

a

total angular momentum; T, are the components of the vibrational angular

th

momentum; and P.is the r normal mode conjugate momentum. The

potential is given by



- 2
V/he = 1/2 L AL Qp 4 1/6 1 @5 QQgQy + 1/26 1 &, Q04Q.Q,
r rst rstu
+ ce s (1'2.2)
where the Xr, Qrst’ °rstu are the quadratic, cubic, and quartic force

constants. These force constants are the second, third, and fourth

derivatives of the potential with respect to the normal coordinates.

Mills 10 replaces P. and Q, with their dimensionless equivalents,
ar = 2o
and
- 1/2 .
P =P,/ Y/ R (I.2:3)
where
Y = AT f=amew /R (1.2.4)

resulting in the potential being rewritten as

V/he = 1/2 Jw. a2 + 1/6 [ .0 aqgqc * 1/26 §  b.opy 909699,
r rst rstu
+ esceee (1.2.5)
It 1s for this form of the potential that the analytic force constants
will be evaluated.
Much has been written on the intricacies of the terms that are a
result of the perturbation treatment of the rotation-vibration enérgy.
Nielsen's work 2 is perhaps the backbone for most recent treatments,

10

however, we have found the work of Mills the .most enlightening. In



the following, the formulae derived by Mills 10 for the anharmonic
constant x . and‘the,rqtation—vibration interaction constantvaﬁg) for
“the asymmetric top are presenfed to illustrate the uses of the third and’
fourth ordér force constants. The degeneracies of the vibra;ions for
symmetric top increase the'éomplexity of the formulae. lAs a result, the
formulae lack the simpie iilustrative power of the asymmetric.top and
ére not given he?e, The formulae for the symmetric top may be found in
Miils 10, Nieisen 2, and Morino, Kuchistu, and Yamamoto 7. |

| The rotafion—?ibratioﬁ interaption constant about the principal

axis b, aib) is given by 10:

(bE)y 2 2 2
a2 3( al””’) ) ‘ ( 30 + w® )

= Ll = £1 (P 3

r 3 g s -

) ) r S

WIPINY (bb) “r o
+ 7 () g bers % 372 } (1.2.6)
S

where the sum over £ is over a, b, and ¢ (the principal axes) while the
sums over s are over all normal modes. W, is the harmonic force

constant and ¢rr the cubic force constant; both are in wavenumber

S

units. The Coriolis coupling coustant ngg in I.2.6 , may be reduced
. . ’

with the zeta sum rule

(B 32
(e 2 ey o Lag )
Lle g ) =8y - g——‘* - (1.2.7)

where Agss) and agEB) are the expansion coefficients for the moment of

inertia expressed in terms of normal coordinates.

_ e - _(EB) -y, (E8) |
IEB 158 + E a Q + % 3 AS Q,Q (1.2.8)

‘I



The coefficients are the derivatives of the moment of inertia with
respect to normal coordinates. The Agss) and agEB) are the geometrical

quantities alluded to in the introduction.

The anharmonic constant X for r equal to s, is given by 1o:
2' 8 w_ - 3 W
Xre © 1/16 ¢rrrr - 1/16 z ¢’rrs { 2 2 }
s w (4w - w )
(10209)

where ¢

rrrr 1S the quartic force constant defined by equation I.2.5.

When r and s are not equal, the anharmonic constant is given by:

¢rrt: ¢tSS

w
t t

x =1/4 ¢ - 1/4 )

rs rrss

: 2 ( “i - “i ~ “ﬁ )
-1/2 g 4’rst wt A

rst
P (A2 4 a2 b o2 ) (4 =)
r,s r,s r,s w w_
(102010)
where
Arst = (mr + w_ + mt) (wr - u, - wt) (-mr + W, = mt) (-mr - o + mt)
(1.2.11)

These formulae are valid when there are no resonances. Resonances
9 occur when two vibrational states are nearly degenerate, resulting in
the denominator of terms in I1.2.6, I.2.9, and 1.2.10 approaching zero.

Methods are available to treat such occurrences 10.



I.3 FORCE CONSTANTS AND COORDINATE SYSTEMS

" The calculation of cubic and quartic force constants in an internal
coordinate reference frame is complicated by the property that the »

nuclei are moving along arcs, not infinitesimal displacements along a

L

rectilinear coordinate frame. This means that instantaneous values of
the internal coordinate displacements must be obtained. Therefore, the

traditional linear transformation between internal coordinates and

cartesian displacement coordinates given below14
. n
Ry Y By 8x_ | (1.3.1)
n
-
must be expanded to 15,11
R =1 BLox +1/2 § B ex 6x +1/6 ] plik Sx, 6x; Bx * e
1 1,3 1 1,3,k
. (Io3o2)
where the B%, Bij, and Béjk are the first, second, and third derivatives
the n®P internal coordinate with respect to Gxi. Such a set of R, that
describe the actual motion of the nuclei has been introduced by Hoy,
Mills,'and Strey 15.
The potential energy function in terms of these true internal
coordinates is given by ' x

. . . v
V/he = 172§ ¢4 R, R, +1/6 § gtk R R +
1,3 J 1,1,k J
, - 1jk1
+ 1/24 ) £ Ry Ry R R+ oee. (1.3.3)

i’j’k’l



In order to use the formulae presented in section 1.2, the force
ij ijk ijkl
constants f , f , and f calculated in terms of the true internal
coordinates Rh nust be transformed using a non-linear transformation to
cartesian coordinates. The force constants with respect to cartesian
coordinates are then linearly transformed to normal coordinate space.

h Hoy, Mills, and Strey 15

have developed an alternative to the

approach outlined above. 1In their technique, the force constants in
terms of internal coordinates R, are directly transformed to normal
coordinate space by the L tensor. The elements of the L tensor are

given by the non-linear transformation from internal coordinates R, to.

normal coordinates Qr'

N : rst
R = % L-Q + 1/2 | L Q. Q f 1/6 g L% Q. Q Q *+ .
(1.3.4)

r rs rst
where the L, L, » and Ln are the first, second, and third derivatives

n
of R, with respect to normal coordinates.

Substituting equation I.3.4 into 1.3.3 and comparing the result to

equation I.2.2, Hoy et al. 15 found that

o = = ] gtd L; L? 5.,
i,
IR S SR R A AR TR S o L§ + " Ly Ly Ly )
- 1,3,k 1,]
5 ey " Y glikl LI Lj L; L; + 7 glik g LIS Lt LE
1,3,k,1 1,3,k
rt S u ru S t st r u su r t tu r S
oL Lyl o+ LT Lo Lo+ L Lol o+ LU LoLe o+ LS LTy )



10

+ ] £ (L:S L§" + Lft L;;u + L;u L?t- )
1,3 :

+ F gl (LTSt LY TR LS o pSEU LT 4 LTSULh)
: i j i j i j i j -
'i:j : 3
(1-305)
This set of equations indicates that the cubic force constant in - #
‘normal coordinate space contains cubic' and quadratic force constant
contributions from the internal coordinate representation; similarly for

therquartic force constant ¢ This illustrates how quadratic

rstu® _
potential surfacés ih internal cdotdinates,Rﬁ can actually contain a
large portioh of the informacion'concetning the higher force consténts
when tranéformed to normal coordinates. Pulay, Meyer, and Boggs 17, for
ei;mple, found that the ¢144 force constant in methane.is comprisedvof

' B % | : o 1jk
roughly 75 percent f "and the remaining 25 percent f .

In the analytig calculation of the force constants, derivatives of
the energy — the potential field under which the nuclei interact - are
taken with respect tovcartesiaﬁ ;odrdinates. Thgse forée constants are
linearly related to the normai coordinate force constants, and thus the
entire problem of choice of internal coordinates and the non-linear

transformation of these coordinates is completely avoided.’

The second derivative of the energy produces a set of cartesian

. ij ‘
coordinate force constants, fx, that are easily transformed to normal
» a
cootdinates.‘ The procedure is outlined as follows 14: First the force '
constants are mass-welghted and then diagonalized. The eigenvalues are v

the frequencies kr, and the eigenvectors form the mass—weighted Lem
matrix LY

em. 1 In this notation, the subscript i refers to a partiéular
’ .

cartesian coordinate and the superscript r refers to a particular normal



11
coordinate. In the subscript xm, the x is used to indicate that the L
matrix is for cartesian coordinates and the m is used to indicate that
it is also masss-weighted. The mass—weighted Lxm matrix is transformed

to the L matrix by

r _ -1/2 _r
Lx’i— E m, Lxm,i (1.3.6)

The Ly matrix is similar to the first component of the L tensor, except
that the L matrix is between cartesian and normal coordinates rather
than internal and normal coordinates. It 1is then used to generate the

normal coordinates Qr from the cartesian coordinates.

_ r
ox, = ) Let O (1.3.7)
r
Note that for the L matrix
Xm
r s )
L L . =6, . (I.3.8)
r?s xm,1 “xm,j ij
whereas for the Lx matrix
R AR | (1.3.9)
x,i "x,j i ij

r,s

The Lx matrix produces the frequencies Ar by

- r .ij ,r
A ) Ly £ Ly (1.3.10)
i,]

ijk
For third derivatives, the cartesian force constants f , are



linearly transformed to the normal coofdinate representation by
(1.3.11)

The fourth deriyati?es of the cartesian force constant are treated
-similarly. This lineér relationship between the cértesian ébérdinate
force constants and the norﬁal coordinate force constants allows the
'unambiguéus.calcul;tion.of'the‘¢'s. The ¢'s in turn are comBined with,
geometrical data to produce fhevanharmonic constants X .. and rotation-

‘vibration interaction constants aga).

‘The calculation of the'éartesian force constants is a lengthy
process that necessitates the solutipﬁ ﬁovthe Schrodinger equation ﬁéing
the:Born—Oppenheimer approximation to separate electronic and nuclear
motions. The solution to the éiectronic probiem, usihg ab initio wave
functions, requires calculation of the 1nfegrals described in chapter.
II. The calculation of the force constants - the derivatives of thé
electronic and nuclear énergies - requires the evaluation of derivafive
integrals described in chapter III. The derivative intégfals must then
be combined to produce the dgrivative energies, the force constaﬁts
themselves. This process 1is described in cﬁaptér Iv. Einally, in
chapter V, the results of ran actual cubic force constant calculation are

discussed and compared to experimental data.

12



IT ATOMIC ORBITAL INTEGRALS
IT.1 INTRODUCTION

The n electron Hartree-Fock wave function is the antisymmetrized
product of n one-electron molecular spin orbitals (MSO). Each MSO is a
product of a spatial function ¢, and a spin function a, or Bn; In order
to better describe the molecular orbitals of a molecule, linear

combinations of atomic orbitals xu (LCAO) are used to build the spatial

function ¢n'
o= L C) x | (11.1.1)

The self-consistent-field (SCF) method, as presented by

18’19, proceeds to find the best ¢, - in the variational seuse

Roothaan
- by iterating through a set of equations known as the Roothaan
equatioﬁs (see reference 18 for closed-shell, and 19 for open-shell
molecular system). The best ¢n is made up of the variationally
optimized molecular orbital coefficients, Cz , and a series of fixed
atomic orbitals, Xy

The atomic orbitals were orginally approximated by modifying the

exact wavefunction for the hydrogen atom; such orbitals are called

Slater—type orbitals (STO) given by

n -1 *
X =T exp ( -2 £/ n) Y1(9,¢) (11.1.2)
n

13
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where n* is an effective principal quantum number and ?1(6,¢) is a
spherical harmonic iﬁkreal form. The resulting integrals arevnot'
particularly simpie to évaluate. This difficultly, coupled with the
large number of integrals involved iﬁ a molecular calculation, has led N
to the demise of the STO as the'basis function for atomic orbitals. -

Integrals over gaussian functions are easier to solve than those
over STO, méking the gasussian functions the primary basis function for
the ;ne;electron atomic orbitals xu_. There are, however, a few
~ deficiencies with‘gaussian»functions: The nqclear cusp is not correctly
described, and the gaussian function incorrectly tails off at large
diStahces. " In order to correct for these deficiencies, it is common
praétice to uséla nﬁmber 6f.gaussians as the basis function, with varied
exponénts a; -and wéighﬁs'ék, iﬁ a specific linear combination. Such a
- basis set is called a contracted basis set (see reference 20 for more

details concerning the contraction of basis sets):

‘ 2
X, = E ¢, eXp (_-akr ) (I1.1.3)

Many typés of gaussians have been used with great success in

21 22

quantdm calculations: simple gaussian lobes , spherical gaussians “<,
ellipsoidal gaussians 23, cartésian gaussians 24, trigonometric
gaussians 25, and Hermite gaussians 26. (See the review article by V.R. .

Saunders 22 for more details). 1In this chapter, the atomic orbital
integrals involved in a molecular calculation will be examined for
atomic orbitals where cartesian gaussians are employed as the basis, as
well as for atomic orbitals where the cartesian gaussian basis has been

expanded in terms of Hermite gaussians. Hermite gaussians will prove to
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be ideally suited for the calculation of derivative integrals.

IT1.2 CARTESIAN GAUSSIANS

Since the introduction of cartesian gaussians by Boys in 1950 24,
the gaussian type functionyhas become the primary basis function for the
one—electron atomic orbitals used in the evaluation of molecular

integrals. The unnormalized cartesian gaussian on center A is given by

n 1 m 2
Xy Yy 2, €Xp ( arA) (11.2.1)

G(a,A,n,1,m) = G(a,A) =
where Xps Ypo and z, are components of the vector T\=T - A, with r being
the position vector of an electron and A a nuclear center. The angular
momentum of an atomic orbital is approximated by the products of Xps Yp»
and z, and their associated powers n, 1, and m. When n, 1, and m are
zero, G(a,A) simply describes a s-type orbital. Any higher angular
momentum gaussian can be obtalned by applying the following equation to

a s—type orbital 27:

n 1 m )
G(a,A,n,1,m) = M X M A v A% 4.4,0,0,0)
n
where M Ax- 0 {f 0, <0
=11ifn, =0
and
n, + 1 n n, -1
Ax Ax 9 Ax
M =1/2a (M sty M ) (11.2.2)

1 m
with M Ay and M Az being similarly defined. The total angular

momentum of the cartesian gauésian G(a,A) is defined by



A =n, +1 + m (11.2.3)

Note that the three—dimensional cartesian gaussian may be split along
each of its coordinates; thereby a result for the x-coordinate can be
éeneralized for the y and z cobrdiﬁates. In this manner, the x-

coordinate normalization constant is

_ (2a/n )M ((4a )2

N (a) .
n ( (2o - 1)1t )%

Products of gaussians, referred to as overlap or charge
distributions), reoccur in quantum chemistry with every‘integral. One of

24,28 o,

the”most'utilized properties of gaussians is the_product rule
states that the product of two gaussians G(a,A) and G(b,B) is itself a
gaussian G(p,P). The newvgaussianvisbldcatéd at’a.point P with exponent

p along the line connécting the céﬁters A and B weighted bf a constant

KAB.

G(a,A) G(b,B) = Kag G(p,P) (II1.2.5)
where |
p=a+b
P=(aA+bB )/ p
B-a-8

Kpg = exp ( -ab AB- / p ) (11.2.6)

Products of cartésian gaussians naturally include products of the

1

monomials x: and x; , as well as those for the y and z coordinates.

(IT1.2.4)

16
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The standard treatment, as given by Taketa et al. 29, is to recognize

that

X) = xp + Px - Ax = xp + PA

and expand the products as polynomials in (xp + FX; )1 and

— ]
+ n-,
(xp PBx )

—_— K
= L
X, Xg E ?k(n,n ,PAx,PBx) x (11.2.8)

k in the expansion

where fk(n,n',a,b) is the coefficient of x
(x+a)? (x+b)n'. The end result is that a'polynomial over two centers

has been reduced to a polynomial about a common center. Equation 11.2.8
is then substituted into the integral formulae, resulting in integrands

that are averaged cartesian gaussians multiplied by a polynomial also

based on the averaged positions.

IT.3 HERMITE GAUSSIANS

30 used

In cont;ast to the above method, McMurchie and Daviéson
Hermite gaussians to expand the product of monomials and thus reduced
the integrals from cartesian gaussians to integrals over Hermite
gaussians. The following closely follows the work of McMurchie and

30 22

Davidson and Saunders ; however, the notation of Saunders is

generally employed.



The Hermite gaussian is defined as

3 3 1,3
Ma,A,n,1,m) = ( 55— )" ( - ) (5 )™ exp (-ari)
X y z

(I1.3.1)

Like the cartesian guassian, the Hermite gaussian is separable into
three ‘components along the x,y, and z coordinates. The Hermite gaussian
for the x coordinate is related to the Hermite Polynomial of order n for

the x coordinate by

n/2 i/2

Ax(a,A;n) = a Hn[av xA] exp ( -axi )
= A (a,A,0) exp ( -ax; ) (11.3.2)

where the Xx is the scaled Hermite Polynomial of order n. Similar

definitions hold for the y and z coordinates.

. v
The product of monomials: x: xg in the cartesian gaussian.charge

distribution can be expanded in terms of Ax(p,P,t) where the expansion
is about the averaged gaussian.
, t=n+n'

n L
xg = czo e (n,n',t) }x(p,p,t) (11.3.3)

<0
A

where ex(n,n',t) are the linear expansion coefficients. Basically, this

1

states that a polynomial in xp ( x: xg is a polynomial in x_, see

p

equation II1.2.7) can be written as a linear combination of scaled

Hermite Polynomials which themselves are in terms of Xpe To

successfully utilize equation II.3.3, a general equation for the

18

Y
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production of the expansion coefficients e, must be derived. Since the
Ax are scaled Hermite Polynomials, we begin with the recursion

relationship for a Hermite Polynomial of order N and argument €,

€ HN(e) = N HN_l(e) + 1/2 HN+1(e) (11.3.4)
The mononial product
t=n+n'
n+l n'
X, X = CEO ex(n,n',c) X, Ax(p,P,t) (11.3.5)

is easily expanded with the recursion relationship. Equations II.2.7

and II.3.4 give

X, Ax(p,P,t) = 1/2p Ax(p,B,t+1) + PA_ Ax(p,P,t) +t Ax(p,P,t-l)

(I1.3.6)
Substituting this back into II.3.5 yields
n+l n' t=ntn’
X, E e (n,n',t) ( A (p,P,t+1)/2p +
X x
t=0
+ ’fxx A (p,B,t) + t A (p,P,t-1) ) (11.3.7)

Equation 1I.3.7 is generalized as to obtain a general recursion

relationship for the expansion coefficients, ex(n,n',t).
ex(n+1,n',t) = ex(n,n',t-l)/Zp + ?K; ex(n,n',t)

+ (t+1) e (n,n',t+1) (11.3.8)
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Similar recursion relationships hold for the e_ and e, expansioh

y
coefficients. Using theée recursion relations, any monomial product can
be expanded. The overlap, or charge distribution, for example is now

written as

G(a,A,n,1,m) G(b,B,n',1',m') v
o t=n+n 2
_=,KAB ) ex(n,n',t) exp (-pxP ) kx(p,P,t)
t=0 - :
u=1+1"' 2 :
x ] e (1,1',u) exp (-pyy) A_(p,P,u)
y . P y
u=0
v=m+m' 2 .
x 2 e (mym',v) exp (-pz_) A (p,P,v) (11.3.9)
v=0 z P z :

By defining

E(t,u,Q) = E(n,n',l,l',m,m',t,u,v)

= ex(n;n',t)'ey(l,l',u) ez<m,§',v) ' (11.3.10)
ché charge distribuéionwof equation II.3.9 reduces to

I1.3.9 = K,z 1 E (t,u,v) A (p,P,t,u,v) ~  (II.3.11) |
t,u,v o
The shorthand notation of E(t,u,v) will be used repeatedly in the
forthcoming sections.
All of the atomic integrals contain at least one charge

distribution, and thus each integral contains products of expansion
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coefficients. By including the constants: KAB’ normalization constants

anm’ and N v+, and contraction coefficients C of A and it of B in

n'l'm
the generation of the expansion coefficients, many multiplications can
be eliminated, reducing the total number necessary for a given block of

integrals. This property will become more evident in the cases of two-

electron replusion integrals. Thus,

ex(0,0,0) = KAB Ck(A) ck'(B) anm Nn'l'm'

e,(0,0,0) = e,(0,0,0) = 1 (11.3.12)

The value of ey and e, are the result of equations I1.3.2 and II.3.3

which imply that for n and n' equal to zero ey is equal to one since
HO(aI/ZxA) is equal to ome. |

In the following sections, the use of Hermite gaussians will be
examined for each of the types of integrals involved in a molecular SCF
calculation. For the sake of clarity, sums over contraction
coefficients will be omitted: As stated above, normalization constants,
K,g» and contraction coefficients are assummed to be premultiplied into
the e coefficients.

The formulae presented for the zeroth order integrals, as well as
the derivative integrals presented in chapter III, have been implemented
in a series of integral programs. These programs evaluate integrals in
terms of blocks, as do most recent integral packages. A block of
integrals refers to the entire collection of integrals for a given
interaction of shells, where a shell is defined as a group of gaussian

primitives with a given exponent, centered on the same nuclear

position. As an example, the block of integrals for the nuclear
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attraction interaction between two different p shells (angular momentum
equal fo one) is made up of nine integrals:. Vp,p,, Vpxpy’ VPP, Ypypx,
prpy, prpz, szpx, szpy, and szpz' Many of the intermediaries
needed for the evaluation of these integrals are the same, énd much -
computer time may be savgd by evaluating the integrals as a block. At

the conclusion of section II.6. the use of intermediaries for this case

is explicitly examined.
II.4 OVERLAP INTEGRALS
The overlap integral, which can be considered a charge

dis;fibution, is' reduced from two centers to one center using the

Gaussian product rule of equation II.2.5.

Sw = ] g, at = [ ota,n) G(b,B) dt = _e{v‘KAB G(p,P) dr

(I1.4.1)
Expanding the chafgevdistribution about the point P in terms of Hermite

gaussiansvleadé to

t=n+n'

Suv = 'z ex(n,n',t) f Ax(p,P,t) dx
, t=0 —o0
u=l+1"' ®
x Z e (1,1',u) f A _(p,P,u) dy «
u=0 y _§ y bl
v=m+m' @ , ¥
x ) ez(m,m',v) f Az(p,P,v) dz (11.4.2)
v=0 -

The x integral is over Hermite Polynomials, as are the y - and z

integrals. Examining it more closely,



< 2.t
f Ax(p,P,t) dx = f exp ( —pxP) p

/2 1/

2
Ht(p xP) dx

(I1.4.3)
Due to the orthogonal properties of the Hermite Polynomials, the
integral reduces to
a

] A (p,P,t) dx = 0 if t#0

= (/)% £ e=0 (I11.4.4)

This reduces the summation in equation II.4.2 to a single term giving

)3/2

Sy ex(msn',0) e (1,1%,0) e (m,m',0) (n/p (11.4.5)

uv

If the constant factor ("/p)3/2

is placed in the e, expansion
coefficient, along with the normalization constants, contraction

coefficients, and KAB’ more multiplication steps can be eliminated.
II.5 KINETIC ENERGY INTEGRALS

The operator for the kinetic energy is

2 2
dy 9z

all

T=-1/2 (
3x2

where the partials are with respect to the electronic position. The
straight application of the operator on the cartesian gaussian G(b,B)

yields

23
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- - -]

T .=/ X,T X, dt = =1/2 { 42 ( / 6(a,A,n,1,m) G(b,B,n'+2,1',m") dT +

uv -—00 -0’

] Q0 .
J6(a,A,n,1,m) G(b,B,n',1'+2,m')dT + [G(a,A,n,1,m) G(b,B,n’,1',m"+2)dT)

- 2b((2n'41) + (21'+1) + (2u'+1)) [ G(a,A,n,1,m) G(b,B,n',1',m') dt

- -] .
+ n'(n'-1) f G(a,A,n,i,m) G(b,B,n'-2,1',m") dt

-
. oo :
+1'(1'-1) [ ¢(a,A,n,1,m) G(b,B,n',1'=2,m") dT
‘ I
+ m'(n'-1) [ G(a,A,n,1,m) G(b;B,n",1",m'-2) dt } (I11.5.2)
—= .

This 1s qoﬁhing more than a linear combination of overlap
integrals. Usiﬁg.the‘résulté of seétion II.ﬁ, the'above expression
reduces to a‘sum’of.products of expansion coefficients. Overlap and
kinetic energy integfals‘are thus convenientl} solved at the same time,
prqvided thevtable of expansion coefficients is created large enough by
incrgasing the limits of generation in equation I1.3.8. The final
formula is

T, = -1/2 (7002 | 4b2‘( e (n,n'42,0) e (1,1',0) e (m,u',0)

| + ex(n,n',O) ey(l,l'+2,0) ez(m,m',O)

+ e (a,n',0) ey(l,l',O) e (m,m'+2,0) )
-2b ( 2(n'+1'+n") + 3 ) e (n,n',0) ey(l,l',O) e (m,n',0)
+ n'(n'-1) ex(n,n'—Z,O) ey(l,l',O) ez(m,m',O)

+ 1'(1'-1) ex(n,n,O) ey(l',l'-Z,O) ez(m,m',O)



t 't ' ' L
+ m'(m'-1) ex(n,n ,0) ey(l,l ,0) ez(m,m 2,0) }

(I1.5.3)
II.6 NUCLEAR ATTRACTION INTEGRALS
P
The nuclear attraction integrals (NAI), are
h ]
.7 -1
Vi —_i X,, g r, X, dt (I1.6.1)

where r, = |r - Cl, with r being the electronic position vector and C
being the position vector of nucleus C. The summation over C is over
all nuclear positions in the molecular system. For ciarity sake it is
usually dropped during the derivation of the solution to the NAI, and
replaced in the final formula. This practice will be observed here.

The NAI has no simple closed form, unlike the overlap and kinetic energy
integrals presented in the previous sections.

24

Boys introduced a.solution for the NAI that employed a modified

error function F(z) for s-type orbitals.

"z 2
F(z) = [ exp (- v°) dv
0
- 1/2 (g )2 ere(v/z) (11.6.2)

This function F(z) is a member of a class of integrals Fm(z) that are

w closely related to the incomplete gamma function 28, 31.

2m

1
F (2) = f v exp (--zv2 ) dv (I1.6.3)
n 0

25
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: Boys'.SOlutidnvfor s—type orbitals about the averége gaussian G(p,P) is
obtained by employing. a gaussian transformation to recast rc-l, with the
final result being
Yoy =%KAB'FO(p 'P—GZ}) ' (I1:6.4)

The solution of the- NAI for orbitals of higher angular momentum has
been approached in'a numbér of ways. One method is that pointéd out by
Boys, na@ely to abply equation I1.2.2 to the NAIvsdlution for s-type
orbitals. The'derivatiQe of F0<z) with respect to é nuclear coordinate 
is a.lingarlcombination of Fo(z) and Fl(z). Byvthe épplication of
equation iI.Z.Z for L greater than zero, the NAI solution for any
. angular momentum fgnctipnican be qbtained.
29

Anoéher method is that presented by Taketa et al. . Using the

charge distribution described at the end of section I1.2, the products

.

of xz x; and the ochér-monomial products are described by equations

I1.2.7 and II.2.8. .A fourier transformation is then used to recast the

_

c operator.' Integration over x, y, and z yields an integral over

Hermite Polynomials. Ihe soiution of this last integral is a 11near»
combination ovam(ij. lThevadvantagé of this method over repeated
-differentiation of the s-type orbital solution lies in the generation: of
ﬁhe linear coefficients through a series of siﬁpie summation formulae.

A third approach is through the Hermite gaussian formalism.

t=n+n' u=1+1"' v=m+m'
Viy = ) e (n,n',t) ) ey(l,l',u) ) e (m,m',v)
t 1 v

o
x [ A(p,P,t,u,v) rzl dr
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= z E (t,u,v) f A (p,P,t,u,v) rzl dr (11.6.5)

t,u,v ~e

Again, all constants are kept in the ey expansion coefficients. The

operator is recast with a gaussian transformation

-l / (11')—1/2 s—'l/2 exp (-s ri ) ds (I1.6.6)
0

Rewriting the integral portion of equation 1I.6.5 and substituting

equation 11.6.6 for the operator gives

: -1
1,1, = _i A (p,P,t,u,v) r_~ dr

= (17)-1/2 f f s—l/z A (p,P,t,u,v) exp(-sri) ds dr
- ()
' (11.6.7)

Utilizing equation II.3.l1, I, is rewritten as (note that the s-l/2 is

dropped from the following derivation, but returned in equation I1.6.12)

Ix=_£ g A (p,P,t) exp( -s(x—cx)2 ) ds dx

2 ) t exp( —p(x-Px)2 -s(x—Cx)z ) ds dx (I1.6.8)

[ (L)% exp(-pp? -sc?) exp(-x(p+s) + 2x(pP_ + sC_)) ds dx
(11.6.9)
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The integnal'ovér x is a standard integral whe;e the solution is of the

. form 28{

f exp ( -kza + 2Bx ) dx = (ﬂ/a)l/Z exp ( 82/ a ). (11.6.10) s

Perfdrming the x integratidn'and eXpanding the squares results in

7 S\1/2 9 e 2
1, - g (v/(p+)) / ( -si;v)‘..exp ( -ps/(p*s) (P- C )" ) ds
' (I1.6.11)
,Following éimilér steps for-Iy and Iz yields '
Voo = ] E(t,u,v) L LI
. t,u,v
= T ECe,u,w) ()72 [ (w/prs) )2 ST
t,u,v g 0
3\t 3 yu[; 3 v
~ () () ()
X y z
x exp ( -ps/(p+s) PCZ ) ds (11.6.12)

2

where ?EZ= P-C « In order to solve the remaining integral, the

following.variable transformation is made:
2 _ . - et
w = s/(p+s) (I1.6.13)
resulting in 2 (pZ/s)-llz(p+s)3/2 dw = ds . (11.6.14)

Note that as s * 0, w * 0 and that as s + @, w + 1 .



Substitution gives

1

- ] 3 3 2 =32

v =2n/p ) E(t,u,v) [ ( ———-)t( T )u ( = )v exp (-pw~ PC") dw
uv 3P P ap
0 X y z

(1I.6.15)

This solution relates back to the solution for the s-type orbitals found

by Boys. Letting pEEQ = z, equation 1I1.6.15 reduces to

1
Vo= 2mp DECuw) [ (=) ()0 (3 ) e (-’ ) aw
0 X y z
=2 DECuw (5= )5 (5= )% (5 )" Fo@
X y z

(I1.6.16)
where Leibniz's rule has been used to move the differential operators
out from under the integral. Instead of taking partials with respect to
an actual nuclear position A, as the straight application of equation
I1.2.2 indicates, partials are being taken with respect to the average
position, P. These relate back to the Hermite Polynomials.

With the aid of equations II.3.1 and II.3.2, equation II.6.16 can
be recast in terms of Hermite Polynomials, where f =t + u + v

/2

= 1/2
PCxw) Hu(p

1
\'% = 2n/p Z E(t,u,v) pf/2 f dw exp(—zwz) wf Ht(p1

uv 5 PCyw)

1/2

x Hv(p PCzw) (11.6.17)

McMurchie and Davidson 30 defined R®(t,u,v) as

1
[ aw exp(-zwz) whou (P1
0 t

£/2 /2 /2

RS(t,u,v) = p FC_w) Hu(pl PC )

29
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/2

_ .
x H (p~'° PC_w) (11.6.18)

where the superscript c indicates that R is for a specific nuclear

center C. Bringing the summation over C back into the formula results «
in
c
Vo = 27/p I E(t,u,v) ] R°(t,u,v) (I1.6.19)
t,u,v C

The evaluation of an entire block of integrals requires a table of
R®(t,u,v) for a particular maximum of t, u , and v. McMurchie and
Davidson 30 found that this. table can be generated more easily through a

" general Rg(t,u,v) defined as

' D : .
R§(t,u.V) = o2 (<2p) [ aw exp (-zw?) Wit “t(P;/z PC_w)
0
/2 5= oy 1/2 == | !
x Hu(p PCyw) Hv(p PCzw) (II.6.20)

The general Rg(t,u,v) reduces to R€(t,u,v) via
c,. c
Ro(t,u,v) = R(t,u,v)

R§(0,0,0) = (-2p)3 Fj(z) (I1.6.21) .

%

By applying the recursion relations for Hermite Polynomials presented in
equation II.3.4, a recursion relation for the general Rg(t,u,v) is

obtained. In the x coordinate, this recursion relation is



c - _ 5= gf c _
Rj(t+l,u,v) = PCx Rj+l(t,u,v) + t Rj+1(t l,u,v)
(I1.6.22)
Similar formulae are easily derived for the y and z coordinates. The

end result is that ch(t,u,v) can be generated from the recursion

30 provide a

variety of formulae for the evaluation of Fj(z), as does Shavitt 28, for

relation plus the appropiate Fj(z). McMurchie and Davidson

various values of j and ranges of z.
Another approach to the solution of equation II.6.17, and the
method adopted in the present series of integral programs, is through

Rys quadrature, as introduced by Dupuis, Rys, and King 32. In the

29 30

method of Taketa et al. » and in that of McMurchie and Davidson , &
specific Fj(z) 1s evaluated, and then a table of Fj(z) are produced by
recursion relations. The members of this table are then combined in a
linear manner to obtain the actual value of the integral. Rys
quadrature approaches the problem radically differently. Equation
11.6.17 1is solved by a linear combination of the numerical values of the
integrand evaluated at the zeroes of the Rys polynomials. A brief
review of quadrature and Rys polynomials follows. See references 33 or
34 for more details cbncerning the nature of quadrature.

If a set of polynomials Pi(x) is orthogonal to a weight function
W(x) along a specified interval a,b

b

[ W) P (x) P

) (x) dx = hisij (I1.6.23)

A

then any integral along this same interval with the same weight function

W(x) but including a function of x, f(x),

31
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o

= [ W(x) f(x) dx ' (11.6.24)

[+

can be approximated by a quadrature formula of the form

2 w, (x) £(x ) (I11.6.25)

Y—O Y L
where the sum is over Nfl quadrature points (roofs) with vy being the
weight factor of the N- order polynomial along the 1ntervai (a,b), and
f(xY) the valuevof the function f(x) evaluated at the Y root of the |
polynomial P (x) vThe nuﬁber of quadrature points determines the
accuracy of the summation in equation II. 6.25. The summation becomes
exact when the poLynomial is of order less than or equal t§'2N+I, wherg
‘N is the limit of summation in equation II.6.25'33'3A.

The adVantage of quadracﬁre becomes clear when there is no simpie
closed_form for an integral. Many orthogbnal polynomials have simple
fdrmulée'for the evaluation of weights and_roots (see references 34 and
35), making the acéurate solution of the intégral in question traétable.
| In the case of Rys quadrature, Dupuis, Rys, and King 32 36,37
introduced a set of even polynomials, R, of order 2n, orthonormal on the
intefval'o to 1, with respect to the weight function w(x)=exp(—zw2) (see
reference 36 for more details ébncerning the nature and properties of
Rys polynomials).

1

g exp (szz) Rn(wg,z) Rm(wz,z) dw = Gnm (11.6.26)

If it is possible to express equation II.6.16 as an integral with



the weight function of exp(—zwz) and the remainder of the integrand as a
polynomial in w2 of degree n, then a quadrature formula based on Rys

polynomials can be obtained. By bringing thevpartial dériyatives under
the integral sign of Fo(z) and performing the differentiation, equation
11.6.16 becomes (this procedure is explicitly carried out in the case of

the more complicated two—electron repulsion integrals discussed in

section I1.7)

! 2 2 2 2
vuv = 2%/p Z E(t,u,v) [ Pt(w ) Pu(w ) Pv(w ) exp (-zw~ ) dw
t,u,v 0
(11.6.27)

where Pt(wz) is a polynomial of degree t in wl. This can indeed be

solved by Rys quadrature. Knowing that quadrature is possible, equation

22,38 advocates

I1.6.17 can be rewritten along the lines that Saunders
for the two-electron repulsion integrals (section II.7). We define a

scaled Hermite Polynomial

—— — t —
Gt(B’PCx) B Ht(B PCx) (I1.6.28)

where 8 = pl/zw. Scaled Hermite Polynomials G, and G, are defined as

in G however they are directed along the y and z coordinates.

t’

Equation I1.6.17 becomes

! ,
2 — — ——
Vi, = 27/p Y E(t,u,v) é dw exp(-zw") G _(8,PC ) Gu(s,Pcy) G,(B8,PC )

(11.6.29)
As this is still a polynomial in wz of order t, u, and v, Rys quadrature

is performed, producing

33
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vuv = 2n/p ) E-(t’u’.V) YEOWY Gt(ei’ﬁx) Gu(ev’ﬁy) GV(BY’FEZ)
| (11.6.30)
where wY are the weights and G, GQ, and G, are evaluated at the roots
6f the Rys polynomials (indicated by the Y subscript on B). With the
integrals calculatéd in blocks; the méximuﬁ value of t, u, and v for
that block is passed to the quadrature scheme. The maximum value.ﬁf t,
o u, and v is the sum ofvthe total'angular momentum about nuclear centéer A
and nuclear center B. ' A block of>1ntegrals contains, however, integrals
other than that for the maximum value of t, u, and v and thus a table of
Gt’ Gu, and Gv is-ﬁeéded to solve all the integrals of a given block. A
simple recursion Scbeme based on that of the Hermite Polynomials,

equatioﬁ.II.3.4, is réduiréd. Thé recursion relation for G, 1s givén by
, G, (2,b) = 2% (b G, (2:0) = £ 6 (a,0)) (11.6.31)

The quadrature becomes exact when
t < 2& +1 (I1.6.32)
Remeﬁber that t, u, and v are all eﬁual at this stage of the caiculation

and that t=23, + XB‘ In equation II.6.25, the summation over N is

governed by the value of t. Naturally, it is desirable to obtain an

L

accurate solution to 11.6.25 using the minimum value of N (which is
equivalent to the minimum number of quadrature points N', where

N'=N+1). Equation I1.6.32 is rewritten as



N'>[ t/2 ] +1 (11.6.33)

where [ t/2 ] indicates that decimals are rounded up to the nearest
integer.

Equation 1I1.6.30 can be simplified by recognizing that it is really

N
v = 3 2n/pw_{ ) e(n,',t) G (8 ,PC )
uv y=0 Y ¢ X ty X

x ey(l,l',u) cu(sY,pcy)

u
x E e, (m,m',v) G (8 ,PC)) } (11.6.34)
which further reduces to
N
vV = ) X_Y_ 2z (11.6.35)

where X: signifies that the 27%/p and the weights have been
incorporated into the Gt‘ It is just as convenient to write equation
[1.6.35 in terms of Y going over N' quadrature points as going over the
N orders of the polynomial. The above equation 1is ideally suited to
solving integrals by blocks, as the table of X:, YY , and ZY generated
by performing the summations in II.6.34 will be used repeatedly.
Returning to the example of a block of p shells presented in section
I1.3 , the repeated use of intermediaries is clearly illustrated.

Equations II.6.34 and II.6.35 show that
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* _ x '
XY(s,s) = Xy(0,0)
X (p, X (1,0)

Y(p.S) = Y( ,0)
“x *
XY(s,p)i= XY(O’I)

* *
XY(p;P) = XY(I,I)

with similar definitions for the

shells equation II.6.35 becomes

36

v, 2n/p ex(0,0,0) Gt(By’O)

wYZﬂ/p ( e (1,0,0) Gt(BY,O) +

ex(l,O,l) Gt(BY’l) )

wYZn/p ( e (0,1,0) GC(BY,O) +

e (0,1,1) G (B.,1) )

w2m/p ( e (1,1,0) 6.(8,,0) +
e (1,1,1) G (B,1) +
e (1,1,2) Gt(BY’z) )
(11.6.36)

YY and z, . For this block of p

o = 1 { X (p.p) Y (5,8) 2 (5,8 }
Vp_p_ = Y(p,p) Y(s,s) ZY s,S)

Y

vpp, = I [ X (p,s) Y (s,p) 2 (s,9) |

X y Y
* .
vp p, = 5 { X (p,s) Y (s,8) 2 (s,p) }
= I [ xs,p b (11.6.37)
prpx = XY(S,P) YY(P,S) ZY(S,S) eDe

Y

Note that many'of the same intermediaries are used repeatedly. This

reuse of intermediaries for blocks of integrals will be central to the

algorithms employed in the two—-electron repulsion integrals (ERI). As

will become evident with the ERI, much of the results of this section



37

can be directly carried over for its evaluation.
I1.7 TWO-ELECTRON REPULSION INTEGRALS

The evaluation of the two-electron repulsion integrals (ERI) is the
bulk of most ab initio calculations. Without any reduction due to
symmetry, the total number of integrals is proportional to n4 where n is
the number of gaussian primitives used in the basis set. For large
molecules and small molecules with a large basis set, the evaluation of
the integrals can become a significant step in the overall
calculation. As a result, much attention has been focused on the
algorithms used for the evaluation of the ERI. In this section, two
algorithms based in the Hermite gaussian formalism will be examined,

30, and that of Saunders38. Recently

that of McMurchie and Davidson
Hegarty and Van Der Velde 39 have presented an algorithm that is based
in Hermite gaussians, but allows more factorization than the McMurchie

30 algorithm. Their algorithm, however, is sufficiently

and Davidson
closely related to the McMurchie and Davidson scheme for the purpose of

this discussion, and will not be included in the section. The ERI,

I .
(uv|p0) = f_mf X, (1) x,(1) rI; X,(2) x(2) dt) dr,

(I1.7.1)
is an integral over the positions of two electrons, with Tyo equal to
the distance between the electrons, and is hence six—dimensional.

The solution of the ERI begins by applying the gaussian product
rule, equation II.2.5, to the gaussians approximating the orbitals of

electron 1}, xu and Xy » reducing it to a single gaussian about a point



P. The same is done to xp and Xg » except that the averaged gaussian
is about a point Q. The monomial products are then expanded in terms of

Hermite gaussians, equation IIL.3.3.

(wleo) = [/ [ ( 6(a,A,n,1,m) G(b,B,n',1",m")

x rzé 6(e,C,1,3,k) G(d,D,1',j',k') ) dr, dr,
n+n' 1+1' o'
= 2 ex(n,n',t) Z ey(l,l',u) Z ez(m,m',v)
t u v .
1+1i' j+3 k+k'
x Je (1,i',t') Ve (j,j',u") ) e (k,k',v')
t' X u' y v' z
a0
: . -1 P ' ’
x f f A(p,P,t,u,v) T, A(q,Q,t',u",v") d‘rldr2
o .

(11.7.2)

where KAB and KCD have be incorporated into the appropriate e, expansion
coefficients. Using the shorthand notation introduced in equation

I1.3.10, the above equation can be rewritten

(uvlpo) = Z E(t,u,v) 2 E(t',u',v")
t,u,v t',u’',v’

x f f A(p,P,t,u,v) tIé A(q,Q,t',ﬁ',v') drldr2

(11.7.3)

Proceeding along the lines used to reduce the NAI in section I1.6, the

12 operator is transformed by a gaussian transformation, resulting in

r

/2 ) E(t,u,v) )} E(t',u',v')

(w]p0) = (M}
t,u,v t',u',v'

38



x f_@ f g exp (-srfz) s

-1/2 A(p,P,t,u,v) A(q,Q,t',u',v') ds d‘rldr2

(11.7.4)
By following much the same steps as those for the NAI, except that

equation I1.6.10 is applied twice, the ERI reduces to

5/2 -1/2

2 E(t,u,v) z E(t',u',v")
t,u,v t',u',v’'

(uv'po) =2 (ﬂ) (PQ)—I(P+Q)

() (B () () () () R

3P _ ® 3P _ 3Q, 3q, Q,
(11.7.5)
where z = ( pq/ (p+q) ) 562 (11.7.6)
Q= | p-q| 2 (I1.7.7)
T L 2 2
and Fm(z) = f woh exp (~zw") dw (1I1.7.8)
0 . .

Equétion II.7.5 connects the solution of the ERI to the solution of the
ERI for s—-type orbitals introduced by Boys, in the same way that
equation II.6.16 counnects the general NAI solution to that for s-type

orbitals. It can be further reduced by noting that as z depends only on

P-qQ,

3 3
(5 ) Fo@ = -1 ( 3Q
X X

) Fo(2) (I1.7.9)
By repeatedly applying equation II.7.9, equation II.7.5 reduces to

wooa) = 2 (1>2 (pa)™ (p+a)™% I ECe,uv) T ECe,ut,v0)

t,u,v t',u',v'
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t'+u'+v' 3 t+t' 3 utu' 3 v+v'
(-1) ( 9, ) ‘( 33; ) ( 3P, )

Fy(z)
(1I1.7.10)
As Saunders points out, and McMurchie and Davidson allude to, placing

the constants 21/2 ﬂ5/4 p-l

t'+u'+y'.2l/2 “5/4 q-l

into E(t,u,v) during its generation and
(=1) into E(t',u',v') during its production, a
saving of multiplication time can be achieved. Modifying the generation

of thevex_expansiOn coefficients, and utilizing equations II.3.l and

I1.3.2, the ERI becomes

- : £/2
(uv'po) = (p+q) 1/2 Z E(t,u,v) z E(t',u',v') a /
t,u,v t',u',v’'
: } of exo(ozd) 1 (a2 BT u . (al/? 45T )
) expiTzv t+e' Cox? Tutu' T y
x H_ ,(a'/? wPQ) aw (.11.7.11)
v+v! z
where f = t+t'+utu'+v+v' and a = pq(p'l-q)_1 .

The introduction of w in equation II.7.1l1 is from equation 11.7.8.
Comparing the above equations to II1.6.17 and 11.6.18, it is clear that

it can be rewritten in terms of R®(t,u,v) where 56# (k is equal to a

cartesian coordinate) of equation II.6.18 is replaced by Fak . Doing

this produces

(uv|p0) = (p*'-q)“l/2 Y E(t,u,v) J E(t',u',v') R(t+t',utu’',v+v')
t,u,v _ t',u',v'

(11.7.12)

It is at this point that the method of McMurchie and Davidson30 and that



of Saunders 38 diverge. The McMurchie and Davidson algorithm solves the
ERI as it is given in the above equation, whereas Saunders requires some
additional definitions and reworking of equation II1.7.12.

Saunders 22,38 defines a scaled Hermite Polynomial similar to

equation 11.6.28.

t+t'

where B = Gl/zw = (pq(p+q)—l)l/2w (I1.7.14)
Gy4y' and G o+ are similarly defined along the y and z axes.

Equation II1.7.11 can now be rewritten

1
Z E(t,u,v) Z E(t',u',v') | exp (—zwz)
t,u,v t',u',v' 0

(uv|po) = (p+q)—1/2

Goypr(Bs PQ ) G, (B,PQy) Gy (BsPQ)  dw (I1.7.15)
To be sure that it is possible to solve this with Rys quadrature, the
partial derivatives of equation I1.7.10 are brought under the integral

sign of Fy(z) giving:

(wlpn) = (p+ra) V2 T E(t,u,v) I ECe,ut,v0)
tyu,v t',u',v'

1
9 t+t', 3 utu', 9 vtv'! 2
x [ (5= )7 (55 )70 (5= )7 exp (maw® ) aw
0 X y z

(I1.7.16)

Taking the partial derivative with respect to P_ , where §& = pq/(p+q) ,

yields,
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1 _
9~ yt+t! 2 2y t+t" 2 2
( apx ) FO(Z)-__g (-2&w (Px Qx) ) exp( E(Px Qx) wo ) dw
(11.7.17)
Similar results areﬂobtained for the partial derivatives with respect to

Py and Pz. It is clear that the pre—exponential factor in the 1ntegtand
2

is a polynomial of order t+t' in w“. Thus equation II1.7.10 has the form

(woloo) = (p+ra) 2 T ECt,uw) ] E(eT,ut,v')
t,u,v t',u',v'

2 2
v+v'(w') exp (-zw~ ) dw (11.7.18)
which according to section 1I.6, fits the requirements to be solved by
Rys quadrature.
Once the Rys rQOCS'and welght factors are calculated, and a_table
°f'Gc+t" Gu+u" gnd Gv+v' are ob;ained through recusion relations

similar to equation II.6.31, quadrature is performed, yielding

N 12
(uvlpo) = ) (p+q) vy 1 E(t,u,v) ) E(t',u',v")
=1 - t"b" t',‘u'?v'
X Gripr(BpPQ) Gy b (BLL,PQ) G (B,PQ) (11.7.19)

where N' 1is the number of quadrature points and is found from

N'> [ t+t'/2 ] + 1, (11.7.20)

with [ t+t'/2 ] indicating that the sum of angular momentum about all

four centers is divided by two and rounded up if it 1is not an even
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multiple of two. SY is as given in equation I1.7.14 except the roots
of the Rys polynomial are used instead of w. Equation II1.7.19 can be

factored along each of its components, yielding

X_ =) e (n,n',t) ) e (1,1',t') G

(B_,PQ.)  (II.7.21)
Yo o Y x

t+t'!

with similar definitions for XYY and XZy. By placing the weights in
)‘1/2

Gt+t' along with (p+q , more savings in multiplication time may be

realized. Doing so leaves the ERI solution as a very simple equation

, |
(wv|pa) = [ xx_ XY xz (11.7.22)
o1 Y TY Ty

Equation I11.7.21 is also conveniently broken down to

XX = ) (1,i',¢") YX.
v T L STt Y

*

t+t,(BY,PQx) (11.7.23)

*
where YX = X e (n,n',t) G
Y t X

The asterisks are used to indicate that the G has the weights and

)-1/2

t+t!
(ptq premultiplied into it during its generation. A similar set of
equations for the y and z coordinates is easily derived (without the
asterisks).

The algorithms are presented in appendix A.l, in a detailed, almost
Fortran 77-1like, language. Note that the algorithms are presented so
that they match the equations used throughout chapter II (and those in

chapter I11). Additional definitions required to understand the

algorithms are at the beginning of the appendix A.l. The following
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discussion concerning the efficiency of the algorithms uses these
definitions.

30, an intermediate array 1

In the McMurchie and Davidson algorithm
contains, for a given Ishell and Jshell, all possible interactions for
all Kshells and Lshells. This is illustrated Figure II.7.1. .

Thé.array 1 1is the salient feature of the McMurchie and Davidson
method. By forming it over all Kshells and Lshells for a particular
Ishell and Jshell, integrals over highly contracted basis sets can be
efficient1y cal§u1ated. If a batch of 1ntegrais is more highly
contracted on the Ishell and Jsheil than on the Kshell and Lshell, then
the algorithm should be flipped‘looping over Kshell and Lshell in the
firstvstep.

,.Saundgrs 22,38 and Hegarty and Van Der Velde 39‘have examined the
cost of the McMurchie and Davidson algorithm using two different
approaches. Saunders counts the times a»loop is executed as the angular
momgngdm of the shell goés to infinity, while‘Hégarty and Van Der Velde
have counﬁed the nﬁmber of multiplications encountered for specific
blocks of iﬁtegrals.‘ Saunders' method best shows the differences
between.the two algorithms. In this approach, the depth of contraction
of a shell is given by K (size of Ifns, etc in appendix A.l, or the
length of the sum in equation II.l1.3), and the total nuhber of members
of a given shell with a totalvangular momentum of A is given by
(A +1) (A + 2)/2. The test case for the algorithm is a case of four
shells of equal contraction depth K, with the same total angular
momemtum.

The McMurchie and Davidson algorithm divides neatly into two

blocks. The first block is the inside loop of figure I1.7.l. The cost



Figure II.7.1

The McMurchie and Davidson Integral Evaluation Algorithm

Loop over Ishell, Jshell, and contractions on both shells
Zero I
Loop over Kshell, Lshell and contractions on both
shells
I is computed and expanded about the
members of Kshéll and Lshell

I is expanded about the members of Ishell and Jshell
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of this loop over the members of Kshell and Lshell and the calculation

of I 1s
K* [ o+ O+2)/2 12 (2x+1)3 aa)?
4,10

times. As A + @ | this limits as K The outer loop, the second

block of the algorithm, has a cost of

K2 { (M1)(2+2)/2 12 N2 (2a+1)?
where;N is the total number of atomic orbitals. ‘For a single block of
integrals, N = (M1)(X+2)/2 . and the cost becomes

k2 { (wDOw2)/2 14 (1)

. which, as X > @ 1im1tsvas k2all,

The Saunders algorithm is illustrated in Figure II.7.2. Notice
that the Saunders-algorithm does not have a K2 loop as does the . .
McMurchie‘and Davidson algorithm.’ In its favor, howeQer, is the -
splitting of the integrand alopg each of the axes,vallowing'for multiple
dse of commdn intermédiates. In section II.6, the intermediaries of a
block of pvsheils for the NAI were examined. The use of intermediaries
for the ERIfis analogous to that of the NAIL preéented in section IIl.6.

There are three block; to-Saunders' algorithm that represent the
bulk of the computation for the test block of integrals. The first
block is the computation.of YX, YY, and YZ. The coét for this loop over
the angular momentum on Ishell and Jshell and the computation of YX, YY,
and YZ ié

ka1 A2 @20 (20

which limits as K4X5~as A + o, The second block is the computation of

XX, Xy, and XZ which loops over the angular momentum on Kshell, Lshell,

and t'. The cost of this is
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Figure I1I1.7.2

The Saunders Integral Evaluation Algorithm

Loop over Ishell, Jshell and contractions on both shells
Loop over Kshell and Lshell and contractions on béth
shells
Loop over the number of quadrature points
loop over angular momentum on Ishell and Jshell
Loop over sum of angular momentum on Kshell
and Lshell
looping over t
compute YX, YY, and YZ
Loop over angular momentum on Kshell and
Lshell
looping over t'
compute XX, XY and XZ
Expand XX, XY, and XZ about the members of all

the shells
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K 2x1) 2 (23
which limits as K*A®. The third block is the expansion of XX, XY, and
XZ about all the centers fér all the shells and costs
K4 2am1) { +)(42)72
which limits as.Kakg. Note that all three blocks are within the loop
over Rys_quadtature points.

The costs for both algorithms are cdllected in Table 1I.7.l. The
table makes it clear that the McMurchie and Davidson algorithm will
excél for heavily contracted basis sets, but expand raﬁidly for highe;
angular momentum fuﬁctions. fhe Saunders algorithm pays heavily for
contraction, but this defiéiency is overcome for higher angular momentum
functions. . |

For a third and fourth derivative integral package, the dependence
on A needs to be as small as possible és the fourth derivative of a A=2
function (a d orbital) necessitates A=6 functions. Thus, the Saunders
algorithm was uséd as a base for the developement of the codes for
first, second, third, and fourth derivatives. The actual form of the

derivative integral algorithm, and the form of the derivative integrals

themselves are discussed in the next chapter.

»



Table II.7.1

Costs of the Algorithms in Terms of the Total Angular Momentum A

and Contraction Depth K as X Goes to Infinity

McMurchie and Davidson ~ Saunders
k4210 k425
k2all k4126

k429

Note that the McMurchie and Davidson algorithm is divided into two
blocks, while the Saunders algorithm is divided in three. These blocks

represent the most costly portions of each algorithm.
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II1 DERIVATIVE'AIOHIC ORBITAL INTEGRALS
III.1 INTRODUCTION

The fifst'derivative with respect to a nuclear perturbation ay
(where a 1s the nuclear position and k the cartesian coordinate) of the

Hartree-Fock closed-shell energy expression is given by

a do ak do do ak
hy + L1 {2ai]59)

d |
dAy : ¢ i 1]

ak do a,
- i1 - 2] Siy & (II1.1.1)
i
‘where | . ' hak = 3 zu ct ¢t h'ak - (I11.1.2)
ii b UV uv

(III.I.B)

S - (I1T.1.4)

The summation limits'in equation III.l.l afe all doubly occupied
molecular orbitals, whereas the limits in equations III.1.2 through
ITI.1.4 are all atomic orbitals. The Ci are the molecular orbital
coefficients that are variationally optimized (see section II.l), and

€ is the orbital energy. Details of these eduations will be discussed

in chapter 1V howevef, these equations are presented here as they

11lustrate the use of the derivative atomic orbital integrals.



The one-electron derivative atomic orbital integral, equation

III.1.2, is given by

hEa 2 { [ x,( T+ V) x, dt (III.1.5)

uv aAk

with the two—electron and overlap derivatives defined similarly. This

set of equations illustrates that an nth

order derivative energy
expression will involve nth order derivative atomic orbital integrals.

As the derivatives are taken with respect to cartesian coordinates,
certain derivatives are equivalent. (i.e. az/anaAy is equivalent to
32/3Ayan)' In order to minimize the computational effort, only the
unique cartesian derivatives are evaluated. Table III.l.l lists the
number of'unique degrees of freedom for the various order of
derivatives.

Until recently, most quantum chemists believed that even analytic
second derivative energies were computationally more expensive than
those calculated by finite differences in analytic first derivatives,
let alone higher derivatives. This was in part due to problems arising
from the large number of degrees of freedom, plus the difficulty in
evaluating the derivative integrals. The work of Thomsen and

Swanstrdm 40

on the Hy0 molecule supported this view. Their second
derivative calculation used a near Hartree-Fock limit basis set on the
oxygen and hydrogen, and took roughly 30 hours on the CDC 6400 computer,
the derivative integrals taking roughly 10 hours. The dismay that the
timings created 1is succinctly expressed by P. Pulay 41: "essthe analytic
calculation of the second (and by the same token the third) derivative

is not practical.”
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Table III.1

Number of Unique Degrees of Freedom for Various Orders of

N° = number of atoms

N3N = 3 (N)

Degree of Derivative

Derivatives

Number of Degrees of . Freedonm

NDER

‘N3N

(N3N) (N3N+1) / 2!
(N3N) (N3N+1) (N3N+2) / 3!

(N3N). (N3N+1) (N3N+2) (N3N+3) / 4!

(N3N) (N3N+1) (N3N+2) ...(N3N+NDER-1)/NDER!

A



In a landmark paper of 1979, Pople, Krishnan, Schlegel, and
Binkley az’ demonstrated that it was possible to obtain second
derivatives of SCF wave functions at the cost of only four to five times
that of a single gradient calculation. Since this work, researchers
using second derivative methods have repeatedly shown that the
calculation of analytic second derivatives for Hartree—Fock wave
functions 1is generally much faster and more accurate than second
derivatives calculated through finite differences of first
derivatives. Three techniques used for reducing computational times
are: (a) the incorporation of translational 43 and rotational 44,43
invariance of the integrals, (b) the use of Rys polynomials in the

32,42,46,47

derivative integral evaluation , and (¢) the implementation

of the iterative method of solving the coupled-perturbed Hartree-Fock

equations (CPHF) 42

« In this chapter, formulae will be derived for the
derivative atomic orbital integrals that occur in derivative energy
studies taking advantage of points (a) and (b). CPHF equations will be

discussed in Chapter 1V.
II1.2 TRANSLATIONAL AND ROTATIONAL INVARIANCE

The property that the integrals, in any basis, are invariant to
translation was first used in derivative calculations by Komornicki et
al. 43 4n 1977. Since 1its introduction, translational invariance has
become the primary computation—saving method in the calculation of
derivative integrals. Translational invariance states that for an
integral I, the sum of the derivatives with respect to all the centers A

in I for a particular cartesian coordinate k, are zero:
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z ( ng )I1=0  (I11.2.1)

The immediate consequence 1is that not all of the derivative
integrals are independent. For a two center integrel, the derivatives
wieh'respeccﬁto each cenfer are equel, but of oppesite sign. Thus only
one derivative integral need actually be calculated, since the other is
generated by multiplying the calculated derivative integral by minus
one. Noﬁe also ﬁhatvthe derivatiQe of a one center integral is Zero.
The use of translational'invefiance greatly reduces the numbervof
integrals to be calculated. Table II1.2.1 shows the number of degrees
of ffeedom that must be celculated'so as to usevtranslatidnal'1qvariance.
vto eliminate the ealeeletion of all the defivatives 6n one center of a
" multicenter integral.' The total number of degrees of freedom are.giveﬁ
in parencheees of teble-III.Z.l. fﬁe number of in;egrals eliminated due
to frahslational invariancevis.eesily found by multiplying the
v difference'in chesevtwo degrees of freedom by the number of members
‘within a particular block.

The integralé are also inVariaht to rocation‘ae. Vincent, Saxe,
and  Schaefer 44,45 have pursued the use of rotational invariance in
first and second derivative calculations, as have Page, Saxe, Adams, and
Lensfield 49. Vincent et al. have found the.time savings fo be on the
order of fifty percent; however, the coding of the rotational invariance
is a non-trivial matter and is presently.limited to p—type orbitals.

The code of Vincent et al. for the calculation of first and second

derivative integrals expended from roughly 5,400 lines to 34,000 once

L]



Table III.2.1

Number of Degrees of Freedom for Derivatives on Various

Centers Using Translational Invariance

Degree of

Derivative . 2 Centers 3 Centers 4 Centers
1 3 (6) 6 (9) 9 (12)
2 6 (21) 21 (45) 45 (78)
3 10 (56) 56.(165) 165 (364)
4 15 (126) 126 (495) 495 (1365)

Numbers in parentheses are the total number of degrees of freedom.
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rotational invariance was included. As a result, rotational invariance
has not been included in the present series of programs. Table III.2.2
lists the translational invariance relations used in this study, and is

located at the end of the chapter.

III.3 DERIVATIVE OVERLAP INTEGRALS

*

The derivative of the atomic overlap integral is

% 3 *
Suv = W {;l X, X, dt }
T3 T2
=-“I ( -a—A-k— xu ) x\) dT +-Qf x]J ( ﬁ‘k‘ x\’ ) dT
(I11.3.1)
. _ a :
If Xy and X, are on the same center, then Suv is zero by

translational invariance, and need not be calculated. Therefore, for
"the purpose of tﬁis section, it will be assumed that xu . is located on

is located on nuclear center B. As a

nuclear center A, and that Xy

result, the second term in the above equation immediately drops out.
The. derivative of the atomic orbital is simply the derivative of
the cartesian gaussians that approximate the_orbital itself. Thus, with

k equal to x,

3 n-1 2 n+l : 2
BA* p= T n X, exp( -ax, ) + 2a X, exp( -ax, )
= - n G(a,A,n-1,1,m) + 2a G(a,A,n+1,1,m) (I11.3.2)

Substituting this back into equation II1I.3.1 for the Ax derivative



results in

a -]
Sut = ~-n f G(a,A,n-1,1,m) G(b,B,n',1',m') dt
-—C0
w _
+ 2a [ G(a,A,n+1,1,m) G(b,B,n',1',m') dt (II1.3.3)

Using the results of section II.4, the above integrals each reduce to a

single term, giving

a 3/2
Suﬁ = (ﬂ/p) { -n ex(n-l,n',O) ey(l,l',O) ez(m,m',O)

+ 2a ex(n+l,n',0) ey(l,l',O) ez(m,m',O) } (I11:3.4)

First,_second, third, and fourth derivatives for cartesian gaussiané“are
listed in table III.3.l.

The second derivative of the overlap integral with respect of Ay
and A 1s obtained by integrating the charge distribution of the second
derivative of the cartesian gaussian on A ( from table III.3.l ) and the
undifferentiated cartesian gaussian on B. This is not one, but three
separate charge distributions. As with the first derivative, section

I1.4 indicates that each distribution reduces to a single term. For

a,a
Sxx

uv , the result is

a a

X 3/2 2
Suv X - (w/p) / { 4a ex(n+2,n',0) ey(l,l',O) ez(m,m',O)

- 2a (2n+1) ex(n,n',O) ey(l,l',O) ez(m,m',O)
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+ n(n-1) e _(n-2,n',0) e'y(l_,l',O) e (mm',0) } (I1I.3.5)

Third ana foufth’derivatives on the same center are easily obtained by
applying the formulae of table III,3.1 and the results of section.II.4,
as was done above.

ﬁp to this point, translational invariance has only been used to
avoid the éalculatioq of a derivatiie equal to zero for one center -
integrals. Table IIl1.2.2 indicates that translational invariance can
also bé used to evaluate the derivative of the overlap distribution with
respect to center B, while only calculating the derivative with respect

to center A.

b, b a
g kk _ %k

uv Uuv
Sbkbkbk I &
uv RS TV
b, b, b, b, a, a,a,a
s Kkkk _ o kikkk (111.3.6)

uv HV

When derivatives of order two or greater contain derivatives with
respect to mixed cartesian coordinates, then the separability of the
cartesian gaussian along each of the axes dictates that the total

derivative is the product of the derivatives along each individual
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Table III.3.1

Derivatives with Respect to An of a Cartesian Gaussian

Degree of Derivative

Centered on A

Expression

G(a,A,n)
2a G(g,A,n+1) - n G(a,A,n-1)

4a% G(a,A,n+2) - 2a (2n+l) G(a,A,n)

+ n(n-1) G(a,A,n-2)

8a3 G(a,A,n+3) - 12a2 (n+1) G(a,A,n+1)

+ 6an2 G(a,A,n-1) - a(n-1)(n-2) G(a,A,n-3)

16a% G(a,A,n+4) - 8ad (4n + 6) G(a,A,n+2)
+ 12a2 (n2 + (n+1)2) G(a,A,n)
- 2a (2n(2n2 - 3n + 1)) G(a,A,n-2)

+ n(n-1)(n=-2)(n-3) G(a,A,n~4)
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a_a

axis. For the case of Sut y , this results»in
a_a : ' v
x 3/2
S v Y= (n/p) { n1 e (n-1,n',0) ey(l—l,l',O) e (m,m',0)

- - t 1 1]
Zna.ex(n l1,n',0) ey(1+1,l ,0) ez(m,m ,0)
- 2la ex(n+l,n',0) ey(1—1,1'70) e (m,n',0)
+4a’ e (w+1,0',0) e (1+1,1',0) e, (m,m',0) }  (IIL.3.7)

Equation III1.3.6 can now be generalized for cartesian coordinates

X, ¥, and z indicated by the generic k, j, i, and h.

b b, a,
S kj _ Sak i
HV uv
Sbkbjbi . Sakajai
uv “uv
b, b.b,b a,a.a.a »
k'j 1 h _ k' j ih

The translational invariance relations given in Table III.2.2 also
indicate that the mixed center derivétives, whether the cartesian
coordinates be the same or different, are equivalent to derivatives

evaluated on one center.

3, b,



aibkbj akajai
S =S
Hv uv
Sajaiahbk _ Sahbkbjbi . Sakajaiah
uv uv uv

a a,b.b a,a.a.a
1'h 3k | gk jih (II1.3.9)

SLI\) Hv

Since mixed center derivatives are equivalent to derivatives on one
center, many derivative integral packages do not store them. The one
center derivatives are stored instead and expanded to the mixed centers

when used in the derivative energy program.

III1.4 DERIVATIVE XINETIC ENERGY INTEGRALS

Since the kinetic energy operator acts only on electronic
coordinates, the application of a nuclear displacement will only affect

the atomic orbitals. The first derivative is

th-%;k-{jxu'rxvdf}
=_7 ( %K; xu ) T X, dt + ? xu T ( %K; Xy, ) dt (III.4.1)

Again, the derivative of an atomic orbital is the derivative of the
cartesian gaussians used to approximate fit. Tables III.2.2 and III.3.1,
utilized 1n the previous section, provide the necessary relations for
the derivative evaluation. As kinetic energy integrals are either over

one or two nuclear centers, translational invariance dictates that the
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derivative of any one center kinetic energy integral is zero,vand hence
need not be'calculéted. As a résult, the xu orbital is assumed to be
"located on nuclear center A, while the Xy orbital is assumed to be on
B. The kinetic energy operator is assumed to operate on gaussian
G(b,B), as in section II.4,

a,

For k equal to x, Tuv is given by

% 32 {2 (L. e O : :
T = =-1/2 (n/p) , { 4v° (-n ( ex(n-l,n +2,0) ey(l,l ,0) ez(m,m ,0)

uv
‘_ ' (1 . I |
+ e (a-1,n",0) e (1,1'+2,0) e (m,u',0)
+ e (n-1,n',0) ey(l,l',O) ez(m,g'+2f0) )
+ 2a ( ex(n+1,n'f2,0) ey(l,l',O) ez(m,m',O)
+ ex(n+1,n',0) ey(1,1'+2,0)vez(m,m';0)
. A L} | S
| + e (n+1,n",0) ey(;,1 ,0) e, (m,m'+2,0) ) )
- 2b ( 2(n'+1'+m') + 3 ) ( -n ex(n-l,n',O) ey(l,l',O) ez(m,m',O)
+ 2a ex(nf},n',o) ey(l,l',O) ez(m,m',O) )
+ n'(n'-1) ( -n e*(n—l,n'-Z,O) ey(l,l',O) ez(m,m',O)
f'Za'ex(n+1,n'—2,0)‘ey(l,l',Q) ez(m,m',Q) )
+ 1'(1'-1) ( -n ex(n-l,n',O) ey(l,l'—Z,O) ez(m,m',O)
+ 2a ex(n+l,n',0) ey(l,l'-Z,O) ez(m,m’,O) )
+ m'(m'-=1) ( -n ex(n—l,n',O) ey(l,l',O) ez(m,m'QZ,O)
+ 2a ex(n+l,n ,0) ey(l,l ,0) ez(m,m -2,0) ) }

(I111.4.2)

" Although equation I11.4.2 looks formidable, it is nothing more than a

linear combination of derivative overlap integrals, and the results of
section IITI.3 can be directly applied.

Again, only the derivatives on one center need be evaluated, as



derivatives on the second center, including mixed derivatives of both
centers, can be calculated by translational invariance. Equatiouns

II1.3.5 - III.3.7 of the derivative overlap integrals directly apply,
except that derivatives are for kinetic energy integrals, rather than

+

overlap integrals.
I1I.5 DERIVATIVE NUCLEAR ATTRACTION INTEGRALS
The nuclear attraction operator acts on the distance between an

electron and a nuclear center, and is thus affected by a nuclear

perturbation. The first derivative is given by

% 2 DA |
Vv = 32; { _i Xy % T, Xy 4T |
T - < 3 -
=-£ ( aAk Xu ) g rcl xv dr + _i xu ( 3;; E rcl ) Xv dt
+Ix, 1 rzl ( ng: X, ) dt (III.5.1)
-0 c

The first and third terms of the above equation are the derivatives ofv
the cartesian -gaussians, both of which have been encountered in the
previous two sections. The second term, a Hellmann-Feynman—-like term,
vanishes unless A is equal to c. This term would be the one-electron
Hellman—-Feynman term if the kinetic energy operator were included in

III.5.1. For A equal to c and k equal to x, this term gives

-1

o ) xv dt

)
3 g ol . 3a_
—i Xu ( aAk E rC ) Xv dt --i XU ( acx r
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=[x x_ r~ x,6 drt (II1.5.2)

This is the electric field integral. 1Its evaluation is accomplished by

0

returning to section I1.6, the zeroth order NAI section. From section

I1.6, the general solution for the NAI is equation I1.6.16

VuQ =2n/p -} E(t,u,v) ( gp )E ( gP ) (‘%F— M Fy(2)
t,u,v X y z
| (II1.5.3)

=2 N2 2 : 2y
where z=p PC p( (Px Cx) (Py Cy) (sz CZ) )v
Rewriting equation III.5.2 in terms of the above equation, remembering

that A is now equal to C, yields

* 3 -1 . o .3 3
/ X, ( 3¢ Yo ) x, dt = 27/p ) E(t.u,v)'(-sg—v)'( 3 )
g X . LaU,V v T x X
x (- (2 F () | (I11.5.4)
aPy _ 3P 0 T

where xu and Xy have been reduced to an averaged gaussian about P.

Since z depends only on P - C, then

( %E‘ ) Fy(2) = = %3" ) Fy(2) (II1.5.5)
x X ) :
Equation IIl1.5.4 now becomes
- ? 1 N 3 yt+l 3
- u
/ X, ( 3C Fe ) x, dt = -27/p L E(t,u,v) 3P ) ('5;‘ )
- X t,u,v X y

3
x| a5, )M Fo(2)
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=-2n/p J E(t,u,v) RE(t+l,u,v) (II1.5.6)
t,u,v
where Rc(t+1,u,v) is defined as in equation II.6.18. Again the
superscript c is used to designate that this RS(t+l,u,v) is for a
specific nuclear center C.
In a similar manner, electric field integrals in the y and z

cartesian coordinates can be derived{ The results are

3 -1 c
f xu ( W rc ) Xv dt = -2w/p 2 E(t,u,v) R (t,u+1,v)
it y t,u,v
7 X (_ﬁ__ f—l ) x, dt = -27/p Z ECt,u,v) RE(t,u,v+l)
u aC c v »Y Rl
- z t,u,v
' (111.5.7)
Higher derivatives of the operator are also possible since
(2= )™ F(2) = (D" (2= )" F (2) (II1.5.8)
aC 0 aP 0 *
X X
Mixed cartesian derivatives are easily found as well, since
] ] ) ]
(3 ) (5 ) Fp@ = (5= ) (55 ) Fp@
X y X y
(III.S'g)

Before equations I11.5.6 - 11.5.9 and table III.3.1 are applied to
the evaluation of the NAI derivative integral, it is beneficial to break
the problem into three classes and examine a specific case from each
class. The first class is comprised of derivatives with respect to one
of the nuclear centers on which Xy and X, are located. We will consider

the general case of derivatives with respect to A where Xy is located



66
on nuclear center A‘and Xy 1s located on nuclear. center B. The second
class includes derivatives where Xy and X, are located on thg same. .
center an@ the derivatives are takén with respect to this center. The
specific case of interest will be when Xy and X, are located on center A
aﬁd the derivatives are with respect to A. The third class cdhtains
deriQaciVes that are takén with respect to centers on other than where
Xy and X, are loca;ed. The specific case will be Xy locatedvon C and
X, on D, while the derivatives are taken with respect to A.

In order to simplifyvﬁotétion, dirac notation will be employed.
Derivatives are denotéd’by»superscripts of the apprdpriate.cartesian ’
coordinates, and atomic orbitals are represented by lu or v witﬁ a

-1

subscript denoting the nuclear center. The operator r.” is denoted by

VC; As an example, consider

k
f ( BAk u) X “ dt = < My ' 1 Ve 'ng_>
c : c
' (111.5.10)
Case 1 : X on A X, on B
a k - k
VW=<uA|(Z:Vc ' v+ <y |-VA | vp>
(II1.5.11)
For k equal to i:
a t=n-1+n' u=1l+1"' v=m+m'
Vut = 2n/p { -n z e (n-1,n',t) z e (l 17,u) X e (m,m',v) z Rc(t,u,v)
t=0 u=0 v=0 2 ‘ c
t=n+l+n' C u=1+1' v=m+m'

+2a) e (n+1 n',t) ) e (1 1',u) ) e (m m',v) } R “(t,u,v)
t=0 u=0 v=0 c
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v=1+1" v=m+m'

t=n+n'
e (m m',v) R (t+1 u,v) }

- 2 e (n n',t) Z e (l 1',u) Z
t=0 u=0 v=0
(I11.5.12)

Case 2 : both x and x,. on A
123 v

' k k
LI =<uA|XVc|vA>+<uA|ZVc|vA>
C C
+<u, | ve | vo> (II1.5.13)
SHAl YAl A
For k equal to x:
a_ t=n+n'-1 t=n+n'+1
Vuv 2n/p{l ] ~=(n+n’ )(e (n-1,n",t) + e (n,n'-1 ,t) )+ ) (2a+2b)
t=0 t=0
u=1+1" - v=om'
(e (n+l,n',t) + e (n n'+l t))] l e (1 1',u) z e (mym',v) Z Rc(t,u,v)
u=0 v=0 2 c
t=n+n' u=1+1"' v=m+m’'
-7 e (n,n',t) ) e (1 1',u) Z e (m m',v) R (t+1 u,v) }

t=0 u=0 v=0
(III.5.14)

Case 3 : x on C and x.on D
ny v

a, : Kr ‘
Vo = < | vy | vy (111.5.15)
For k equal to x:
a t=n+n' u=1+1" v=mt+m’
via=-2n/p ) e (n n',t) J e (1 1',u) ) e (mym',v) R (t+1 u,v)
uv
t=0 u=0 v=0

(I11.5.16)

Equations similar to these are readily produced for the higher

derivatives; they involve higher deivatives of the gaussians (Table
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111.3.1) and larger limits“for RA. The only drawback to these formulae
is the amount of Qork needed to solve them. Equations III.5.11 -
I11.5.16 take no advantage of trénslational invariance.
The NAI is at most a three center integral. For a specific three
center case, section iII.Z and the translational inQariance relations of

Table 1I1.2.2 yield

< u: [ VC:I vg >+ <y | V: ‘ v >+ < uA_| VC_I v: >=0
(II11.5.17)
All three of the quantities in III.5.17 are not independent, one of them
can be calculated by knowing the other two. Choosing the electic field
integral to be the dependent integral, .

A I Vc ' vB>__ < uAA| Vc ‘ Vg 2

B
- (I11.5.18)

( uA'I Vt | v > = P

This means that the formglae for the NAI deriyatives can now be
rewritten purely in terms of derivatives on u ahd V.

Returning to the three general cases, and substituting equation
III.5.18 for the electric field integral (qote that this substitution

requires that V,_ in equatidn ITI.5.18 be changed to V,) one obtains:

Case 1 :

% k k
Vo= <u, | CEA Vo vg > =< v, | v
' (II1.5.19)
Case 2 : v
a K | K U
Vo = < Hy | CZAVC | vy >+ <uy | CEAVC | v >

(1I1.5.20)



Case 3 :

>-<un | v, l vg > (1I1.5.21)

k
§v ¢l val c
The most obvious advancége to the above set of equations over
equations IIL.5.11 through III.5.15 1is that their solution involves

less work. The summations are more restricted and the electric field

integral is never explicitly solved.

b
Translation invariance relations that relate Vuv to Vut are not
simple due to the summation over all centers inherent in the rzl

operator. If translational invariance is used to eliminate the electric
field integral, then maximum use is already being made of translational

invariance, and no more is possible. Assuming this to be the case, the

b
only way to obtain Vut is by direct evaluation. This has a hidden
b
benefit. Vut is given by
bk k k
Voo =< | D ov [ vg> < v | v

C+*B
(I11.5.22)

Note that the second term in III.15.19 is calculated in the summation of

I11.5.22, and that the second term in III1.5.22 is calculated in the

summation in IIT.5.19. By calculating < u, l Va l v% > and placing it
3. by k 3y by

in both Vv and Vuv and by placing < u, | Vg l vg > in Vi and Vuv when

it is calculated, then the two derivatives are calculated for the price

k k
of < uy l ) V. ' vg > plus < u, I 2 Ve ' Vg >. This is clearly

c?A c#B ayp b

superior to equation III.5.11, which for V and V k

uv uv is comprised of

both of these terms including the missing term in the summation, and
< ’ vk ' Vp > and < M I vk | vy >. The use of translational
A A B A B B 7°

invariance to eliminate the electric field integrals produces formulae
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that will require the least amount of work.

For second, third, aﬁd fourth derivatives, using translational
invariance to eliminate the integrals of the derivatives of the operator
yields the set of equations that require the minimum amount of
computation. For each degree of differentiation, n, a new translational
invariance relation ;ust be obtained. The simplest method to obtain it
is to differentiate the translational invariance relation of degree
n-1, For second.derivatives, the new translational invariance relation
is obtained by differenciating‘eqqation I1I1.5.18 with resbect to Cj.

Cug [V v s s vl e s, v S

(II1.5.23)
The terms on the right of the above equation are also found from
equation III.5.18. For the first term, the equation is first redefined
in terms of the derivative with respect to C4, mot Ck.( k > j in “

equation 111.5.18). Then the derivative with respect of Ak is taken

resulting in

N RS R B A TR Sl I e
(I11.5.24)
The second term on the right in equation III.5.23 begins as did equation
I11.5.24 ( k + j in equation III.5.18), but then it is differentiated
with respect to Bk’ yielding
<%|vi|§>=—<ﬁ|vc|¢>-<u | v | v

A A

(II1.5.25)

Substituting both of these into equation I111.5.23 produces



k

]
N Vo D

<uy , vckj | vg > =< uzj | v, | vg > + < u | v, | 2

3 k kj
+ <y | v, | vp >+ <m, | v, | v
Naturally, if the cartesian coordinates k and j are equal, then the
middle two terms of the above equation are the same. Using these

relations, all the second derivatives for the three general cases are

straightforwardly derived.

Case 1:
a a
v k'j =

v <u§jI(Z;vc'vB>+<ui'V§'vB>+<“A|V:j'\’B>"

k | i
* < uy | vy | vy (II1.5.27)
Substituting for the terms with derivatives on the operator with

equations III1.5.24 and III.5.26 as well as a modified III.5.24 where

k - j yields

%?3 ki | ¥ ki
Vot = < uy C;};AVCI“B>—<HAIVAI\’B >
(I11.5.28)
Similarly,
3, Kk 3 k| o] T
VT <y | g Ve lvg >+ < [ vg [vg > v < [ v v

Using equation II1.5.24 and modifying equation IIL1.5.25 ( k = j ),
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a b .
kK'j k Jy - kj - kj
Vo T < | Tv o g > - fvg fvg > - <y vy |y
C#A,B
(II1.5.29)
The second derivative with respect to A, and Cj is given by
a, ¢ '
k™j k 3
VW ,<uA|Vc|vB>
Using equation III.5.24, it reduces to
a, c
.S B kj - k 3
Vo =< [ Vel g g g [
(III.5.30)

Case 2 @

a, a . . 3
SRR PN R RIN B AR

k I k
+ <y g v | vi >+ < ui | g v | v
+ < ux I Vi r Va >»+ < My I Vi l vi >

| Vi

A Vi | ”: >

+ ¢ | v, >+ <

N
+ < My l Vij | v, >

Using equations III.5.24 to II1.5.26, the above reduces to

a a, . , .
A N R A RS R IR A

e C#A C#A
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The second derivative with respect to A, and Bj is given by

akbj )

Vuv

TALIERESINEARY

This easily reduces to

akbj )

uv

v -<u§j|VB|vA>-<u§|VB|vAj>

k

-<uA|vB|v:j>-<ui|vB|vA>

Case 3:

.aka. .
v J=<uC|v§j|vD>

This is reduced directly by equation I11.5.26, yielding

Vi]:aj=<“1c§jIVA"’D>+<“‘<§|VA|‘%>
+ < ug I VA I vg > + KL uc l VA | v:j >

The derivative with respect to Ap and Bj is

a, b
\'4 k73

=0 .
pv

Similar sets of equations can be derived for the third

(I1I.5.31)

(I1I.5.32)

(I11.5.33)

(I1I.5.34)

and fourth
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derivatives of the NAI. Table IiI;Sbl lists the first and second
derivative results already described above. Table III.5.2 contains the
third dérivatives, whereas Table III.5.3 contains the fourth
derivatives. These tables are located at the end of the chapter:

The algorithm for the evaluation of the derivatives of the overlap,
kinetic energy, and the nuclear attraction integrals is located in the

appendix A.2.
II1.6 DERIVATIVE TWO-ELECTRON REPULSION INTEGRALS

Derivatives of the ERI are much more straightforward than those of
the NAI because the riz—l operator of the ERI is independent of nuclear
coordinates. There are two general methods for taking the ERI

derivatives; the first is the addition and subtraction of integral

blocks introduced by ﬁupuis and King 32’50; and thé second 1is the

differentiation of the'quadrature formula first introddced by Saxe,

Yamaguchi, and Schaefer 46

47

, and later reintroduced by Schlegel, Binkley,
‘and Pople™’. Bdth methods tage full advantage of translational
invariance. |

For the ERI, as for the NAI, it is advantegous to evaluate the
derivatives of the integral with respect to all centers in the integral
at one time. Although this requires more memory for the storage of
intermediate arrays, many of the imtermediaries can be used repeatedly,
saving the computational cost of recomputing them. It is thus necessary
to know which derivatives need to be taken. Using the translational

invariance relations of table III.2.2, the derivatives of one center of

a multicenter ERI can always be neglected and calculated from the
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derivatives with respect to the remaining centers. In the discussion
that follows concerning the two general approaches to ERI derivatives,
the use of translational invariance is neglected. It is brought back
into the discussion when the actual method employed in the programs for
the ERI dervative evaluation is discussed.
The first general ERI derivative method, that of Dupuis and

King 32+50

uses the property that the first derivative of a cartesian
gaussian G(a,A,n) is a linear combination of G(a,A,n+l) and G(a,A,n-1)
where n is the angular momentum of the gaussian along the axis of the
derivative. (See table III.3.1 for a list of the derivatives of
gaussians). In this way, the first derivative with respect to the
center A of a block of (pplpp) integrals is a linear combination of
(sp'pp) and (dp‘pp) blocks of integrals. The second derivative 1is a
combination of (pp|pp) and (fplpp) blocks, and the third and fourth
derivatives are combinations ofv(gplpp), (dplpp), (SP|PP) and (hP’PP),
(fp’pp), (pplpp) blocks, respectively. The major drawback of this
method is that large amounts of storage can be required for the handling
of these blocks.

The second method, that of differentiation of the quadrature

formula, begins with the ERI as developed by Dupuis et al. (see

references 32, 36, and 37 for details). It is given by
1 —2 2
(uv]pa) = [ P, (t) exp (-pq/(p+q) PQ” t“) dt (III.6.1)
0

where PL(t) is a polynomial of degree L in e2. Note the similarity of
the above equation to I1.7.18. The ploynomial is split along each axes

resulting in
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[,

2

(uvlpc) [ 1 exp (-pq/(p+q) 562 t“ ) de - (I11.6.2)

o

The constants p .and q. as wéll as 562 are as defined in section II.7.

Rys quadrature on III.6.2 yields

=z

(uv|po) = ] wy L(e) T () T () ~ (III.6.3)

-

Saxe et al. 46 differentiated the equation II1.6.2 resulting in

a

k r 2 3 ==
(uv[po) © = <uv|po> = [ {50 - e () T(pa/(pre) TTC)}
0 k

o R

x exp ( -pa/(p+q) PR ¢ ) dt (I11.6.4)

2, however, it is now of

The integrand still‘contains a polynomial in t
degree L+l. As a result, the integral can still be solved by Rys
quadrature as the polyhomial fits the quadrature requirements. (See
section I1.6 for a.diécussion of the requirements of Rys quadrature).
For k equal to x, equation III.6.4 becomes
(uvlpo)a" = NEI w, 8L (£ ) I (c ) I (t)
Y Y XY y v z Y

where
] 2 d —2
Sl = g L(e) - € L)) (pa/(p+a) PQ°)
(I11.6.5)
This equation differs sightly from that of Saxe et al. in that an

exponential of weighted positions, which in their notation is
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exp(-Gx - Gy - Gz), has been incorporated into the definition of I, Iy,

and Iz. This is done to make the notations of Dupuis, Saxe, and
Schlegel match.

In order to find the GIx for a given derivative integral, the
recursion relations of Rys et al. 37 are themselves differentiated.
This leads to a series of recursion relations much like those used for
zeroth order integrals; except they are explicitly for derivatives.
Second derivatives are found by differentiating equation I111.6.4 a
second timevand differentiating the derivative recursion relations to
obtain the necessary second derivative recurrence relations. Third and
fourth derivatives would be found similarily. The drawback to this
method is the complexity of the resulting recursion relations.

47

Schlegel, Binkley,vand Pople avoid the derivative recursion

relations altogether by casting derivatives in terms of derivatives of

the basic Ix’ 1 and Iz for a (ss|ss) block of integrals. They begin

y’
with equation II1.6.2 and differentiate leading to

ax N+1 3
(uv|po) * = g (3&: I(t) ) I(t) I, (c)

(I11.6.6)

Noting that any gaussian can be made by the appropriate application of

equation I1.2.2 on the s—-type gaussian, they obtained the solution for

%X_ IX(O,O,O,O) . In this notation, the indices of I_ are n, n', i, {i'
X

while those of Iy are 1, 1', j, j' and 1, are m, m', k, k' - the

components of the total angular momentum of the four shells. The

derivative of the (ss'ss) block is proportional to
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3

o2 R
aA I (0,0,0,0) (Cat™ + 8) Ix(0,0,0,0) :

(I11.6.7)
where a and B are constants and functions of A . The details of the
differentiation are not important for this discussion, rather what 1is
importaqt"is ﬁhac the derivative of Ix is proportional to a function of
A, and the undifferen;iated I.. .Using equation II.2.2 to make this
.general (any I can Be'c:eatéd by the appropiate use of the M operatofs)

yellds,.

l L . L}
"ax | PBx ox IDx 3

! =
1C,1D)_ M M M M aA I (0,0,0,0)

1]
Ix(nA,nB,

3A
D
Applying the above leads to the calculation of I (n +1 nB,iC,iD) and
1 (nA 1 nB, C’ib); these are one-dimensional integrals of higher and
 lower angular-momentum functions. vBy means of reexamining the

"Ax - 47 , :
definition of M » Schlegel et al. found that for A, a linear

n .
function of Ax’ the M Ax~operator obeys the following relation:

n ~ n : n, -1
M A= An ™ v /2 gzﬁ M AX (I11.6.9)
' LI .
where a is the exponent of the gaussian on which M operates. Since

‘the derivative of Ix(0,0,0,0) is proportional to a linear function of

A,, equation 1I1.6.7 can be rewritten as
2
(at" +B)YI=A1 (II1.6.10)
X X

Applying equation I111.6.9 to III1.6.10 to produce I111.6.8 yields



79

a__ t | e * $ 1
an Ix(nA,nB,ic,iD) = A Ix(n,n ,i,1")

+ n/2a 24 Ix(n-l,n',i,i') + n'/2a 3 A Ix(n,n'-l,i,i')

3A aBx
X
3 A 3 A
+ i/2a -aTx' Ix(n,n',i-l,i') + 1'/2a 3_1): Ix(n,n',i,i"—l)

(I11.6.11)
The result is that equation III.6.8 is now written without any angular
momentum functions higher than the zeroth order ERI. Schlegel et

47

al. provide formulae for the evaluation of the first and second

derivatives of I, I and Iz. Equation III.6.11 implies that the

y?
limits of summation in the derivative integral evaluation need not
increase (loops that depend on the angular momentum). The number of
quadrature points does increase by one for each degree of
differentation.

In the present series of derivative integral programs, thé
quadrature formulae are not differentiated. In light of the above
discussion, this may seem surprising. The reason for this is that the
integral algorithm of Saunders 22,38 lends itself to derivatives in a
very straightforward way that avoids both the calculation of derivative
recursion relations and the determination of the various derivative
linear functio?s A of equation I1II.6.11.

As shown in appendix A.l, the Saunders algorithm loops over shells
such that Jshell < Ishell, Kshell < Ishell, and Lshell < Kshell (or
Jshell if Kshell 1is equal to Ishell). The result 1is that specific

combinations of the nuclear centers will occur in the calculation of the

ERI and its derivatives. By coupling this with the translational
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invariance relations of Table III.2.2, it is easy to decide the
derivative that 1is best produced through translational invariance.
Table II1I.6.1 lists the various combinations of nucleaf centers and the
derivatives that are taken sb as to use translational invariance to
eliminate all the derivatives with respect to a particular center.

Consider the case of a four center integral where derivatives with
respect to nﬁclea:hcenCer D are being calculated from translational
invariance. This repfesenCS the most difficult case of Tablé III.6.1.

The zeroth-order ERI is given by equation I1I.7.22

N
. * . .
(uv|po) = § XX XY_ XZ (I11.6.12)
Yy Uy Ty
Y
where
* ' *
XK= Le (4,1%,e7) YX (') (111.6.13)
t'
x"(e') = e (x{ a',t) 6. (8., PQ.) (III.6.14)
x ' t+e' Ty x * _

t

The asterisk is used to signify that an additional factor of (p+q)'l/2wY

has been incorporated in the generation of G XY, XZ and YY, YZ are

t+e'”
defined similarily to the x-direction analog,vhowever,'the (p+q)-1/2wY
is not included. See section II.7 for moré details concerning these
equations. |

In the following, explicit formulae for the first and second
derivatives of the atomic orbital’ integrals will be derived. Third and
fourth derivatives are simply an extension of these two derivatives.

The first derivative with respect to a general nuclear center S,

for the x direction, is given by:



Table III.6.1

Combinations of Centers and Derivatives for the ERI (uv|pc)

notation: AAB indicates a third derivative that is a second derivative with respect to center A and
a first derivative that 1s a first derivative with respect to center B.

Translation 1invariance

. Centers on which the used to elminate all Degree of Derivative and the necessary
orbitals are located derivatives with respect derivatives
u v p g to center 1 2 3 4
A A B C A B,C BB,CC, BBB,CCC BBBB,CCCC, BBBC
BC BBC,BCC BBCC,BCCC
A A B B A B BB BBB BBBB
A B C c C A,B AA,BB, AAA,BBB AAAA ,BBBB,AAAB
AB AAB,ABB AABB,ABBB
A B B c B . A,C AA,CC, AAA,CCC AAAA,CCCC,AAAC
AC AAC,ACC AACC,ACCC

18



A,C AA,CC

AC
B,C  BB,CC
BC

‘all derivatives

A,B,C AA,BB
CC,AB
AC

AAA

AAA,CCC
AAC,ACC

BBB, CCC -

BBC,BCC

are zero

AAA,BBB

CCC,AAC,

AAB,ABB
BBC,BCC

AAAA

AAAA,CCCC,AAAC

AACC,ACCC

BBBB,CCCC,BBBC
BBCC,BCCC

AAAA ,BBBB, CCCC
AAAB,AABB,ABBB

'AAAC,AACC,ACCC
BBBC, BBCC, BCCC

{8



3 NeL o .
5 (uv|po) = | (35 XK ) XY Xz (I11.6.15)
x Y X
For the case of S equal to A:
% *
%X‘ XX_ = XXFA = ) e METAN LD %K" YX_(t')
b Y t' X Y
(I11.6.16)
where
3 t=n+l+n'
3A YX (t') = YXFA = 2a g e (n+l,n',t) Gt+t,
t=n+n'-1
-n Y e (n—l n',t) Gt+c'
t
= 2a YXFAl - n YXFA2 (111.6.17)

Note that this is the application of Table III.3.1 to the gaussian
centered on nuclear center A. The acronyms, XXFA, YXFA, YXFAl, and
YXFA2 are for the benefit of the derivative integral algorithm that
appears in appendix A.3. The acronyms are meant to indicate precisely
what derivatives are being taken: i.e., XXFA is the XX array First
derivative with respect to center A, while YXFAl is the YX array for the
First derivative with respect to A, component number 1. In all of the
above equations, as in those that follow, if an index for the expansion
coefficients is less than zero ( n-1 < 0 ), then the entire summation is
ignored.

For S equal to B, the result is:

a——xxY = XXFB = [ e (1,1',t') 4 X (£ (IT1.6.18)
X t'
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where

3 * t=n+n'+1 *
— : ' = = ]
55 ¥X, (¢') = YXFB 2b ) e (n,n'+1,t) G __
X t
t=n+n'-1 *
-n' g ex(n,n'—l,t') Gt+t'
= 2b YXFBl - n' YXFB2 (I1I.6.19)
For S equal to C, the result is very different:
_ t'=1i+1+1" v
3 % *
—— XX_ = XXFC = 2c ) e_(i+l,i',t') ¥X (t')
aC Y : , X
. X : t
t'=1i-1+1"" *
-1 ) e (1-1,1",t") ¥YX (t')
t L

= 2¢c XXFCl - i XXFC2 : (III.6.20)

Note that the YX*(tf) has a larger index than that of equation IIT.6.13.

The second derivative with respect to Sx of equation III1.6.12 is

given by:
2 ' N+2 '
3 : 3 *
s e = 1 (§ga Xy ) xry x2
X X : Y x X :
- (III.6021)
For S equal to A, equation III.6.21 yields:
33———— XX = XXSA = ) (1,1',¢t) 33—-—— vx*(e")
3A_0A Y , Exthet e 3A_9JA
X X : t X X
(111.6.22)

where



2 t=n+2+n"'
U YX*(t') = YXSA = 4 2 Z (n+2,n',t) G*
3A A 'y = a Cx e t+t!

X X t

t=n+n' * t=n-2+n"' *
- 2a(2n+1) E e (n,n',t) G, + n(n-1) E e (n-2,n',t) G__
= 4a% YXSAl - 2a(2n+1) YX + n(n-1) YXSA2
(I11.6.23)

For S equal to B:

2 2

xx" = Y e (1,1i',t") ___
?
Y cr X BBxan

3
d9B_3dB
X X

*
YX (t')
where the result can be directly written down in analogy to equation

IT11.6.23

a2

4B 3B
X X

*
X (t') = YXSB = 4b% YXSBL - 2b(2n'+1) YX + n'(n'~1) YXSB2

For S equal to C:

2 t'=1+2+1i"

a * 2 ] L * L
3¢ 3¢ XXY = XXSC = 4c 2 ex(i+2,i ,t') ¥YX (')

X X t!

t'=i+i" * t'=1-2+1"' *
- 2c(2i+1) ) e (1,1',t") ¥X (t') + 1(i-1) ) e (1-2,1",t") ¥YX (t")
t! t'
= 4c? XXACL - 2c(21+1) XX + 1(i-1) XXSC2

(IT11.6.25)
The evaluation of the second derivative also leads to mixed center

derivatives. Using the general nuclear centers S, and T, the second
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derivative is given by:

2 N+2 2

( po(3 XX ) XY
uv'po) = L QSXBTX y X y XZY (I11.6.26)

a____
39S aT
X X
Table III.6.1 indicates that three cases of mixed center
derivatives are needed; S equal to A and T equal to B; S equal to A and

T equal to C; and S equal to B and T equal to C. For the first case, S

equal to A and T equal to B, equation III.6.26-yie1ds

2 : : 2

& xx" = xxsaB = I e R AN D T %
3A 3B Y ’ . ’ aA aa Y
i X X - t
where
a2 ' t=n+n'+2
WYX (t') = 4adb E e (n+l,n'+1,t) Gt+t'
t=n+n' t=n+n'
- ' - - -
2an E e (n+1 n'-1,t) Gt+t' 2bn g e (n-1,n'+l,t) Gt+t'
t=n+n'-2
. -
+ nn g ex(n l,n'-1,t) Gt+t'

= 4ab YXSABl - 2an' YXSAB2 - 2bn YXSAB3 + nn' YXSAB4
(111.6.28)
For the second case, S equal to A and T equal to C, the derivative

is given by

2 tl=1i+1"+1
S xx" - xxsac = 2 } e (1+1,i',t) 2 yx*en)
3A 3C Y ¢ 'e aA Y
X X t
T=i+{'-1
-1 Y e RET A NS ) YX (c )

t'



= 2¢c ) e (1+1,1',t') YXFA - 1 ) e (1-1,1",t") YXFA
t! t'
(I11.6.29)

where YXFA 1s as defined by equation III.6.17. This reduces to
XXSAC = 2c¢ XXSACl - i XXSAC2 (I11.6.30)

Finally, for S equal to B and T equal to C:

a2

*
——— = = ' A
3B_3C_ XX, = XXSBC = 2c L e (1+#1,1',t") YXFB

t'

- 1] e (i-1,i,t') YXFB
t'

= 2c¢ XXSBCl! - i XXBC2 (III.6.31)

The extension of these formulae to third and fourth derivatives is
straightforward. Table III.6.1 shows the necessary combinations of
derivatives needed to completely ignore tﬁe derivatives with respect to
one center, and build it later through translational invariance.

In all of these formulae, for each degree of differentiation the
summation limits of t and t' increase. This means that the limits of
the indices of the expansion coefficients and the G arrays must
increase. Producing these expansion coefficlents of higher indices
requires little computational effort as the coefficients are generated
through an efficient recursion relationship based on Hermite
Polynomials, equation II.3.8. By requiring G arrays of higher index,

additional Rys roots and weights are needed. This requirement is common
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to all derivative'integrai’packages that are based on Rys quadrature.
(See equations I11.6.5 and II1.6.6). As the G arrays are generated
through a simple recursion relation, equation II.6.28, fhe calculation
of elemeﬁts of the G array of larger indices is trivial. This method
completely eliminates the need for differentiating the recurrence
relations, ‘as is necessary in the method of Saxe et al., as well as the
need with differéntiating the A functions, és is neceséary wi;h the
method of Schlegel et al.

The method used here is relaﬁed to the method of Dupuis et al. in
fhat the iﬁtegrals_bf diffetentiated gaussiaﬁs are evaluated,.hoﬁever,
instead of working with entire Elocks‘of integrals, as doesvDupuis_gg
al., sdmsvand diffefences of one~dimensional inCegrals_a;e evaluated.
This does not require more sfofage space. ‘The second derivative of a
: (pplpp) block of‘integrals (6nevdegreévof freedom), will only require
the amount of storage space neceséary ﬁo sfo:e é zeroth order (pplpp)
block. |

The amount of necessary stofage space is C§mplicated by the
: evaluation.of éll the derivatives of a block of intégrals at once. If
an inCegral block over N+1 centérs has IMEM members, then the second
derivative block taking derivapives with respe¢t to N ceﬁters has
IMEM*(N3N)*(N3N+1)/2 members where N3N equals the number of derivative
centers ﬁ multiplied by three. This amount includes all second
derivatives; mixéd_center and same center derivatives. The sizes for
first, third, and foqrth derivatives are found similarly (Table
ITI.1.1). This type of storage requirement is common to all derivative
programé that evaldéte all derivatives at once. It will only become

serious for cases of high derivétives on blocks of large angular



momentum functions where each function is on a separate center. This
problem can be overcome by solving the first, second, and third
derivatives at one time, and then rerunning the derivative integral
program for the fourth derivatives.

The algorithm for the simultaneous evaluation of first and second
derivatives of the ERI is given in appendix A.3. Many of the terms used
are defined in appendix A.l; the remaining correspond to terms used
throughout the past two chapters. Restrictions of the loops are the
same as those given for the zeroth order ERI in appendix A.l unless

stated otherwise.
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Table II1.2.2

The Use of Translation Invariance to Calculate Derivatives

.0f One  Center in a Multicentered Integral

notation: a, b, ¢, d represent nuclear centers
k, j, 1, h represent cartesian coordinates
ak represents the derivative with respect to center a with

cartesian coordinate k

One Center Integrals: I(a) -

\

all derivatives are zero

Two -Center Integrals: I(a,b)

solving for derivatives with respect to b

First derivative: b = - a

Second derivatives: val = akaj
bkad = - val

bkpd = val



Third derivatives: val = akajai
bkajai = - vyal
b¥pdal = val
b¥pdbl = - val

Fourth derivatives: val = akajaiah

bkajaiah = - val
bkbjaiah = val
pEpIpiahl = < val

bpdbiph = val

Three Center Integrals: I(a,b,c)

solving for derivatives with respect to ¢

First derivative: cT = - a -

Second derivatives: ckaj = - akaj - ajbk

cked = akad + pkbd + adbk + akpd

Third derivatives:

ckajai = - akajai - ajaibk

ckajbi = - akajbi - ajbkbi

ckcjai = akajai + aibkbj + ajaibk + akajbj
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ckedeld = = a¥adal - pkpdp! - akadpl - akalpd

- atalpk - akpdpl - alpkpd _ Jdpkpt

Fourth derivatives:

ckajaiah = - akajaiah - jaiahbk
ckcjaiah = aka'jaiah + aiahbkbj + ajaiahbk + akaiahbj

ckcjciah = - akajaiah - ahbkbjbi - akajahbi - akaiahbj

akahbjb1 - aiahbkbj - jaiahbk - ajahbkbi
ckcjcich = akajaiah + bkbjbj_'bh + akajaibh + akbjbibh

+ akajahbi + aibkbjbh + akaiahbj + ahbkbjbi

+ ajaiahbk + ajbkbibh + akajbibh + akaibjbh

+4a’kahbjb1 + aiahbkbj +»a¥jahbkbi + ajaibkbh

ckalalph = - akaialph -_ajaibkbh

ckcjaibh = akajaibh + aibkbjbh + ajaibkbh + akaibjbh

Four Center Integrals : I(a,b,c,d)

solving for derivatives with respect to center d

First derivative: d"=-~-a" ~-b" -¢
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Second derivatives:

dkaj = - akaj - jbk - ajck

dkdj = akaj + bkbj + ckcJ + akbj + ajbk + akcj + ajck + bkcj + bjck

Third derivatives:
dkajai = - akajai - jaibk - ajaick

dkajbi = - akajbi - ajbkbi - ajbick

dkdja1 = akajai + aibkbJ + aickcj + akaibj + a.jaibk + akaicj
o adalck + albfed | 1.9 K
dkdjdi = - akajai - bkbjbi - ckcjci‘— akaibj - alalpk - akajbi
- aibkbj - akbjbi - ajbkbi - akajc1 - akai i ajaick
- aickcj - akcjc1 - a.jckci - bkbicj - bjbick - bkbjci
- bicked - bkcjci - bjckci - alpked - alpick - akplcd

- ajbick - akbjc1 - a.jbkci

Fourth derivative:

dkajaiah = - akajaiah - ajaiahbk - a.jaiahck

dkdjaiah = akajaiah + aiahbkbj + aiahckcj + akaiahbj + ajaiahbk

akaiahcj i h k

ih k
+ aja ac + aiahbkcj + aa bjc

dkdjdiah = - akajaiah - ahbkbjbi - ahckcjci - akaiahbj

- ajaiahbk - akajahb1 - aiahbkbj - akahbjbi - ajahbkbi



- akajahci - akalaled - ajaiahck - aiahckcj - akahcjcvi

- ajahckc1 - ahbkbicj - ahbjbick'— ahbkbjci - ahbickcj

- ahbkcjci - ahbjckci - aiahbkcj - aiahbjck —vakahbicj
- ajahbick - akahbjci - éjahbkci

d'kdjdidh = akajaiah + akajaibh + akajaich + ahbkb-jbi

+ bkbjbibh bkbjbich + ahckcjci + bhckcjci + ckcjcich

+

akaiahbj
ajéibkch
alpkpiph
ajahbkbi

k

a aj CiCh

ajaibhck

akahcjci'

alckelch
bpiplet
“afplcked
bkcjcich
aibkbhcj
akahbicj

ajbickch

akaibjbh
akalabpl
aibkbvjch
albkpip?
akalah

‘a cj

ajaickéh
akbhcjci
abkplcd
blfbjcich
plphcked
atpdcked
alpkedch

akbibhcj

+

+

+

+

v%b

akalpich
akadplph

alpkpich

akaibhci

alahcked

akedcteh

ibhcj

ahbjbick
bickcjch
bjbhckci
alahpick

akbicjch

akahbjc1 + akbjbhci

+

+

+

ajéiahbk
akajbich
akpipiph
akajéhci
akalcdeh

aibhckcj

Jahek i

va (o C
pipled
biplphck
aPpked et
bjCkCiCh )
aibjbhck
a.jahbick

akbjcich

+ ajbkbhci + ajbkcich

+

+

+

+

+

+

ad alpkpt

alalpkpd
a‘kbjbich
akajbhci

adalahck

aickcjch
ajbhckci
ahbkbjci
bjbickch
bkbhcjci
aiahbkcj
aibjckch
alpiphck

ajahbkc1

dkadalph = akadalph & alpkpdph & alphcked & akalpdph

+ akaicjch + ajaibkbh + aibkbhcj + a.jaibhbk + aibjbhck

dkajbich = - akajbich - ajbkbjch - ajbickch



d€adplph = -

akaj bibh -

alpkpdnh - adpip

hck
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Table TII.5.1
First and Second Derivatives of the NAI Using Translational

Invariance

First Derivatives

Trénslational Invariance Relation:

<y | VE | vg> = -« uk | vo | vg> - < wy | Ve | v% >

Case 1: y, on A and y, on B~

a o i .
Vut =< uk l_l Ve | vg > = < uy | Va [‘v§_>
cC#A - :
b :
Vu‘:):(uAIEVc|v§>-<“k|VB|VB>
v .C¥B

C k }
Vu% = < uk | Vo | vg> =< uy | vo | vg>

Case 2: x, and x, on A
a : : k
Vut =< uk | L v lvg>+<u, | ) vol vg>
C#A c#A

(o
vE = - I vg > -y [ Vg | V>



Case 3: x,  on C and x,, on D

ax

vuv

=< vyl yp> = <ug | vy | vED>

Second Derivatives
Translational Invariance Relations:
<uAlVléj|vB>=<u§j |VC|vB>+<uk|VC|\%>

s L vg | > e, [ vg | Ve

Case 1:

a,a. . A .
u§J=<“§JllAVAI"B>+<“A|VA|"I§J>
c#

v

a,b . . .
Vut I =< uk L ve | v> -« uk? | vg | vg>
Cc¥A,B

a3, C . R
vk e oI v [ vg> < v | v

97



Case 2:

Case 3:

98
. Ckcj kj Kk
Vyv 7 = <y | ve | vg> + < ug | v | v% >

+ <_U1 I VC | v% > + < N l VC [ ng >

v kA

IR “E? [ L ve bog>+<u i) vl “E? >
c#A ) cFA -

RS DR 2N IS SIS A R S
c#A c#A

ac 3 . . . . v.'
v =g fvg vy > =< g vl

. o | i
—<w Ve > -y [vg | v

Vv © = uv

a, a. . Kk . .

s [ > g [ vy |V

vakbj

wo - =0



Table III.5.2
. Third Derivatives of the NAI Using Translational Invariance
Translational Invariance Relations:
(uAIVléji|VB>;r<u§ji|VCl\)B>~<vu§‘j | ve | vi>
Sl Pug g -l ve vt
<t [y > — <] [ vg | k>

—<u§IVC|v%j>—<uAIV¢Iv%ji>

[
|
/N

< u%?bl Vé | vg > = u%?i | v | vg> =< u%? | ve v% >

|
|
N

<Uk|"%|‘%>' “,jikIVCI":L>‘<U§|VC|V113j>

<l I vEPvs> = -l fvg > -] | vg | ovikS

My | Ve | v%ji > =X uk | Ve I v%J >

]
|
A

<up | VE ] VE >
Case 1:

a a.a . , .
Vut 312 ¢ u%?i ') ve |l vg> =<y | v, | v%Ji >
c#A
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a,a;b . ) .
iji=<u}§3|2_Vcl_v%>—<ukJi|VB|vB>-

Y
c#A,B '

+<uA|VA|v§ji>

a,. b.b . . : .
AR R S I R A Y e R S T A7 I
c#A,B

< uSt [vg | vy >

Vakaj Ci

BRI T v | vy - <l [ g | v

a,c.c - '
v k% 1=<u§ji |_Vc | vg > + < ukJ | ve | “ri;>

HV

+ < ukilv_’clv%>+< ui]vclv%i)”

'V:§CjCi= - < ul;‘jvi | vo | vg > - < “1§3 | VCVI v%;)
- <kt | v, I'Q{',>.-<vu§|§¢|‘v§1>
-<u£1 | ve | v%>—< uilvc | v‘1§1>
—<u§|vc I'v%j>-< “A'VC | v%iiﬂ}

AP C B [ uklvc'.l vil >
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Case 2:
apa:a . _ ‘
Vuv ax “ili I z Ve | Va2t <y | z Ve | “kji >
c#A C#A
oy Vclvi>+<ui|2 VCIv§j>
c#A c#A
s<ut 1Y ve P> sk LY v [y
c#A c#A
st LY ove bk e 1Y v | VES
c#A c#A
a,a.c . .
S Tug Ik - <k g |t
—<uii|vc|vk>-<uilvclvﬁi>
apcscy apa;cy
Vuv .- Viv .
cpeicy apa;cy
Case 3:
aya:a . .
Vul\‘,31=—<uléJiIVA|vD>-<uléJIVAIin)>

-<ugt vy I > = <ug L vy | vht>



102

St v P> — <k vy vt

<
a,a;b
k i _
vydt=o0
a, b;b
vEIlog

v



Table I11.5.3

Fourth Derivatives of the NAI Using Translational Invariance

Translational Invariance Relations:

<uAIVIéjih|vB>=<uAJih|VCIvB>+< ujilvclv%>

+

CukIP v >+l g | VB
ekt Py p o> et v | WS
+<Cugl L vg | o>+ g [ vg | vt

+uftP v [ vE> + ot | vg | VKR

+
A\

+ < uih I Ve | ki

"1"’0 | "lﬁih>

rcudt v R el g | IS

kji

+ < ug | Ve | Vg xjih

>+ < uy | Ve | Vg
<u§jilvg|v8>=-<u§jihlvclv3>-< ukJilvcl\)B

| Vg ] vﬁ >= - uth | vo l “B > =< u | ve v%i >
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<ult P vB | vh> = -« kihlvclv§>~< va|v>

' k iih
TV o e - R g | o - < g |
<l VB> = ccdP v | > - cdt fve | vt

|
A

< IVclv > <P | ove | el wd | ove | Vst

cul VR Wk > =l v | T > - | v | g
: . ) .h
<uA|V2|v%ji>=-<,uR|VC_lv%jj')—(uAI-VCIv%_Ji>

Case 1:
a,a.a;a . ‘ v
ARt e I S N R N IR I Tl
c#A
apa:a;b . ' ' X ]
Vg3 =< “kJil Love [ vg> - <ugth | Vg | vg>

c#¥A,B

a,a.;b;b : . ,
v LI Y v R e IR v | vy
‘ c#A,B .

+<uy v, | v%jih >

abbb . » ih kiih
ICIR LUl E u | ot -y [y IR
c#A,B

- < kIR yn | g



aka aich . kii

v,y R i B VR Ty el I IRV
a, a Cic

u‘Cj el e g > <t [ ve | vgo

+<ujh|Vc|vB>+<uA IVCIv >

aijCiCh
uV

-<u§_jhlvclvj§>—<u}§‘j _IVC|v§i>
kIR [yl vl > - <kt v | S

- < ukh |vc|vﬂi>-<uA|vC|vy“‘>

il\(,c cich=<u§jihlvclVB>+<111,§31|VCIVB
+ uijhlvclv§>+<u§jlvclvgi>
+ <t g | o> <t e g
+<uA |Vc|v§1>+<uAIVCI\%1h>
+<u-yh|vc|v§>+<u-11|vcl\)§h>
ccudl [ ug | k> v <l | g | kRS

T P BV S T Sl I [V
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s v [V > el v | VIR
R e I g [ | I

aabyc : ' '

TRV

~apb.b,ec N ' :
VIR L kR oy s - v | vt

a, b:c,c N
s TP e Ut P ve Lo s gt [ ve v

TR B2 IR SRRt S BN IR L
Case 2:

apa.a;a, | . - ‘ . o :
VORI LI ) v v el L v )
o c#A . ' c#A '

+.< uR | 2 v | vkji >+ <y | ) v | vkjih >
© c#A ‘ c#A ‘

TR L I N AR B, SRR, S B D S B L
c#A C#A

+

+ < uih | EA v | vk? >+ < ui | EA v. | vEJh >
c c

+

TRE el I R 2 R* IR IR ol N S 2 B
c*A v c#A

sy v s e 1Y v |
c#A C#A

+

+ < u%}h | EA vo | vk > + < uii I EA v | vih >
c c
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e 1Y v R ) 1) v
C#A c#A

a,a.a,c j

vu5j1h=—<u§jih|"c|"A>‘<“‘§Jilvcl\’2>

kI g i - <l v | VT
-<cukth oy o> -kt v | VR
—<u‘§h|vclv1‘i>-<u§‘|vcl\%ih>
ot [ ve k> -t | vg |V
<t v o s - | v | VRS
-<uih[VC|v§j>-<uilvc|v§jh>

-<u2|vc|v§ji>—<uA|VC|vkjih>

vakajcich - Vakajaich
uv uv

vaij Cich - Vakaj aiCh
uv Hv

Vckcjcich L Vakajaich
uv uv



108

Case 3:

a8, a:a;48 . .
k i“h kjih kji » h
Vu“ 3 = < uCJ I VA I VD > +K< NCJ I VA I \)D >

h

+ < uéjh.| v, | v% > + < uéj | vo i vDi >

+ < uéih | vy | v% > + < u%i | v, | v%j >

+

cCukh v, ot el v, vt

st vy k> et v, | WER D

+

el vy okt >+l | v, | ouktRS

el [y, VRS el | v, | vkIRD

sl [ Lot w g [ [

a,a.a;b
k“j91"h _
Vuv =0

apa:bsb
k%j"1%h _
Vuv _ 0

uv
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IV DERIVATIVE ENERGY EQUATIONS
IV.l INTRODUCTION

In the previous chapter the derivatives of atomic orbital integrals
were presented without specific reference to the nature of the wave
function for which the derivatives of the energy were being
calculated. As such, the derivative integral algorithms are valid for
any arbitrary wave function. In this chapter, however, the discussion
of the derivative energy equations is limited to Hartree—~Fock closed-
shell wave functions.

This limitation is not severe, as the closed-shell molecule
represents perhaps the largest. class of pdlyatomic molecules for which
detailed experimental anharmonic constants are available for comparison
(e.g., H,0, NH5, HCN, H,CO ). The potential use of these derivative
energy equations is not limited by restricting the discussion to a
single determinant (non-correlated) wave function. The studies of Pulay

17,51,52

et al. that evaluate higher than second order force constants

through finite differences of energy gradients show that cubic and

quartic force constants do not change significantly in the transition

from a Hartree-Fock wave function to a correlated wave function. This

is in direct opposition to the resuits for quadratic force contsants

which are found to change significatntly in going from the Hartree—-Fock
53

wave function to the correlated wave function . The single

determinant wave function therefore represents an important class of
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wave functions for the analytic evaluation of cubic and quartic force
constants.

In this chapter, the derivative energy equations with respect to
nuclear perturbations for fifst, second, and.fhird derivatives of the
Hartree;Fock closed-shell eleetronic wave function will be derived. All
formulae will be derived within the molecular orbital basis. It 1is
important to recognize that this is not the first set of derivations of
the energy derivativesk The contributions of the many researchers in
the calculation of the first derivetIVe have been coliected and

summarized by Pulay 41'54.

The second derivative, being a more recent
development, 1is beet'reviewed thfough:the original papers. 'These
include the works of Gerratt and Mills 55, Thomsen and

Swanstrém 40 56, Pople, Krishnan, Schegel; and Binkley 42, Takata,

50

Dupuis and King , and Saxe, Yamaguchi, and Schaefer 46. Third-

derivative equations were first developed by Moccia in 1970 57, and more

16 2nd Simons and'Jérgensen 58,

recently by Pulay
The'first derivative energy equaﬁion derived in this chapter
matches those previously published while the second derivacive differs
in its form from previous derivations. The difference is that the
second derivative presented here 1s.symmetric in its permutation of the '
derivative degrees of freedom. ‘As the third derivative fermulae
presented in this chapterbare derived within the molecular orbital

framework, they differ radically from the results of Moccia 57

16

and
Pulay whose equations are in the atomic orbital basis. It is
believed that the present equations based in the molecular orbital basis

are inherently computationally more tractable. Like the second

derivative, the third derivative is presented in a highly symmetric form



where all terms have a permutation of derivative degrees of freedom.

All the derivative energy formulae presented in this chapter are
derived for a non-ortﬁogonal finite basis set. This is the type of
basis set most commonly used in quantum chemistry. Recently, however,
Jérgensen and Simons 59 have advocated the use of symmetry
orthogonalized atomic orbitals. They have presented specific equations
for the first and second derivatives of the energy with respect to

59, and very

nuclear perturbations for a variety of wave functions
general equations for third and fourth derivatives 58. Within the
symmetry orthogonalized atomic orbital formalism, all geometrical data
is concentrated within the integrals and none is present in the
molecular orbital coefficients. This is in contrast to the traditional
approach where both the integrals and the molecular orbital coefficients
display a geometrical dependence; Jérgensen and Simons can thus avoid
the solutionvof the coupled—perturbéd Hartree-Fock (CPHF) equations. It
appears that this will reduce the total computational effort. A closer
look reveals that although computational effort is reduced in one area
(no CPHF), it is greatly expanded in another (the derivative

integrals). This does not seem to be a distinct advantage.

All derivatives in this chapter are for nuclear perturbations
within the Born-Oppenheimer approximation. NatLrally this includes
derijatives of the nuclear repulsion energy. Since these can be derived
in a straightforward manner they are not presented here. All of the
derivative energy equations have been coded and tested by finite
differences of the energies and of energy derivatives. Unfortunately,
the fourth derivative of the Hartree-Fock electronic energy has yet to

be completely tested and hence is not included in this chapter. The
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results of the calculation of the cubic force constants of the water
molecule are presented in chapter V.

. As will soon become apparent, the indices of the various matrices
in the energy equations are very important and must be handled with
extreme care. The convention employed thoughout this chapter is as
follows: 1, §, and k correspond to doubly occupied molecular orbitals;
m, r, and s correspond to all molecular orbitals, both occupied and
unoccupied_(virtual); and q corresponds to virtual orbitals. Greek
subscripts are used to label atomic orbit#ls, as was done in chapters 11

and III.
IV.2 FIRST DERIVATIVE

In the molecular orbital (MO) basis, the Hartree-Fock closed shell

electronic energy is_given by

do do do
E=2 ] ny+ I L[ 2041]33) - @i]id) ]
i i 3

(1v.2.1)
where the summations are over all doubly occupied molecular orbitals.
The MO integrals, h;; and (iiljj) are the transformed one-electron and
two-electron atomic orbital integrals of chapter I1. For the one-
electron atomic orbital integrals the trénsformation is a two index

transformation given by

all all i '
hy = E é C, Cyh, (IV.2.2)

The two-electron transformation is similar, however, the transformation



is over four indices, not two. In the discussion that follows of the
derivative energy equations, it is often more convenient to work in
terms of the Fock matrix. The Fock matrix follows from the Fock

operator defined by Roothaan 18:

= h

€im im

do
+ I [ 201m|19) - 3|mi) |
b
(Iv.2.3)
Once a self-consistent set of molecular orbitals are achieved, then the
Fock matrix is diagonal. The elements of the Fock matrix are the
lagrangian multipliers which are the molecular orbital energies. The.
total electronic energy in terms of the lagrangian multipliers is
do
E= ] (hy +e) (IV.2.4)
i v
The first derivative of equation IV.2.1 with respect to a nuclear
coordinate a (note that this convention differs slightly from that used
in chapter III in that the cartesian coordinate k is assumed to be

incorporated into the nuclear coordinate a) is given by

3 do 3 do do 3
35 E =2 f 3@ Pt t L jX 37 [ 2011]39) - (if1) ]
(1Iv.2.5)
The one-electron derivative is given by
11 all’
) a IR SR 1,93 i
3% hyg = E g {(Ta'Zcu)C hy + cu(—azc )hw
i 1 ]
+C, C ( 37 Mo )} (IV.2.6)
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The first and second terms of IV.2.6 contain tﬁe first order chanéé of
the molecular ofbital coeffiéiehts, while the third term is a
transformation of a derivative atomic orbital integral.

The first order change of the molecular orbital coefficients has

55

been given by Gerratt and Mills as
all
3 i _ a _.m
57 Cu = E Ut Cu (1v.2.7)

Using this notation, the one—electron derivative is rewritten as .

3 all 511( all | ail A m

—h, = v ., ¢®cth_ +)Y ciud® ¢"hn

da 11 " v o mi "u "V v o u mi v uv

i 1 .a
+C,C hy, )
all , all 2
= L Upg b+ L Uy byt by (1v.2.8)
' m - " m :

Since the one-electron integrals, hi and hmi’ are symmetric, equation

m

IV.2.8 reduces to
—h,, =2 ) U h,__ +h,, (IV.2.9)

Applying the same steps that were used to obtain the derivative of
the one-electron integrals, the derivative of the two-electron integrals
is given by

aLl

%; [ 2(11]33) - (13]1) 1 = & % ( U:i (mi]13) + U:j (11]|mj) )



all 4 a ' a a
= 2§ (ugy (mifi3) + Uy (imf13) ) + 2(11[39) " - (13]1))
m
a a all 4
=2041|33) - (3|1 + 2 [ vy [ 2(mi|33) - (mi[1]) ]
m

all 4
+ 2 ] U 0 2(itfm) - (dm|13) ] (IV.2.10)
m

Since 1 and j run over the same set of orbitals (doubly occupied), the

terms involving the U? can be combined giving

3 . _ a a
33 | 2(11]39) - (3]13) 1 = 2(11|33) - (13]1)

all , '
+ 4 ) ug [ 2(mi]35) - (mif13) ) (IV.2.11)
m

The total first derivative of the electronic energy 1is the sum of

equations IV.2.9 and 1IV.2.1ll.

do do do
] a a a
3 E= 2 D oy + D1 {2t - Aifip |}
1 i3
do all , a do
+6] Louy {n_+ T 2mi]3p) - (mifig) }
i m i

(1Iv.2.12)
Using the Fock matrix formalism of equation IV.2.3, the total first

derivative is further reduced to

do do do
%; E= 2) hii + 71 2(ii|jj)a - (ijlij)a (a)
i i ]
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do all , ,
+ 4L 1 Uy e , (b)
i m :

(1Iv.2.13)
As the Fock matrix is diagonal for a converged’wave function (the
condition of self-consistency), the first derivative is rewritten as

a' do 4
T E=E + 4 % Uy €54 (IV.2.14)

a' :
where E is the derivative atomic orbital contribution to the gradient,
given by line (a) of 1V.2.13.

To obtain U?i, the orthonormality condition

all all _ s
E g Cy Sy Gy = 8¢ (IV.2.15)

is directly differentiated for r equal to s equal to i. The result,
upon performing the transformatioh to molecular orbitalé, is
all 4 ' a all
Z .Umi Smi + Sii + 2 Umi Sim =0
m m .
(1v.2.16)

This can be reduced by using two properties of the overlap matrix.
First, the overlap matrix is symmétric, and as a result 1V.2.16

rearranges to give

a all 4
Sig = -2 L Uy Sy (IV.2.17)
- _

Second, the overlap matrix is a unit matrix and thus the sum on the

right of IV.2.17 reduces to a single term leaving



a

a

S

Substituting this into the gradient of the electronic energy yields

3 a' do 4
i

This result is in accordance to Wigner's theorem of perturbationms,

h

namely, that the wave function of nt" order is sufficient to produce

properties of the 2n+l order 60.

IV.4.2.1 COMPUTATIONAL REMARKS

Since the first derivative of the electronic energy has no explicit
CPHF response, it can be calculated within the derivative atomic orbital
integral programs described in chapter II1I. The one-electron term of
Ea' can be calculated by performing the two index transformation of the
derivative atomic orbital integrals given by equation IV.2.2 and then
summing down the diagonal. It can also be found by multiplying by a
density matrix factor and summing over all atomic orbitals. The density

factor is defined by

do ¢ 1
D,, = ) c, C, (IV.2.20)
i
so that
do all all
2 ] hy, =2 D) Dy hy (IV.2.21)
i H \Y
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We use the density matrix factor method.

AS the two—electron integrals are calculated in blocks, the density
. factor for the two—-electron contribution to Sa' is also_calculated.in
blocks.» If all the values of the block of density factors fall below a
given threshold, then the entire block of derivative integrals need not
be calculated. As only the unique two—-electron integrals and their
: defivacives are evaluated ( (uv‘pc)v= (poluv) = (vu'pc) etc.), the

density factor takes on the following form:

4D D, -4D D ) v Eoo Fup, vo

(IV.Z.ZZ)

Duvos = ( 16 D)y Do = 4 Dyp Dyg uo vp
whereb
fap = 1/2 if u = v

= ] otherwise

‘fpo =1/2'if p=o0

= ] othefwise

f 1/2 if u = p and v = ¢

up,ve -

= ] otherwise

The MO derivative overlap matrix multiplied by the lagrangian
multiplier can be calculated in the atomic orbital basis by using the

atomic orbital lagrangian given by

o= ) ¢t cle (1v.2.23)
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Thus the term is given by

(1)

(@)

(3)

(4)

%o a a%l a%l
S €, = S w (1Iv.2.24)
\Y
h if 14 u v MV U

The computational procedure is outlined below:
Evaluate the Hartree-Fock equations and obtain a well-converged SCF
wave function.

1
Calculate the one-electron derivative contributions to E? and

"evaluate the overlap contribution using equation 1IV.2.24.

Calculate the density factor for two—electron integrals. If all
the density factors are below a given threshold, then the entire
block of 1ntegrals'is ignored. Evaluate the block of derivative
integrals and calculate its contribution to Ea' by multiplying the
derivative integrals by the appropriate Duvpc‘
Sum the contributions to Ea' together and‘add the overlap

contribution.

IV.3 SECOND DERIVATIVE

The second derivative of the electronic energy for the Hartree-Fock

closed~shell wave function is obtained by taking the second derivative

of equation IV.2.13 with respect to a nuclear coordinate b.

a2 do 3 a do do 3 a a
(TR LT jz 35 O 2a1|39) - dili9))
do all

+ 43 1 {( %3 ud e o+ 0l gE'eim )} v.3.)
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The first two terms are reduced by the same steps that obtained

equations IV.2.9 and 1IV.2.1l, resulting in

2  qb- ap do do'. ab b L
T E 2 % By +E §(2<11|jj) - @i )

do all
b a
+4 1 ] Unt €im
i ‘m
do all
] a a b ]
+a 1 I{( 3;'Um1) €im ¥ Umt ('SE €a) |
1 m :
(1Iv.3.2)
where.e?m is the derivative Foék matrix given by
a a  do a a
€4 = Nyp * Z ( 2(im|3)) - Wjjmi) ) (1v.3.3)
. . . i C

This matrix is not diagonal,.in contrast to the Fock matrix given by
equation IV.2.3.

The first of the final two terms of IV.3.2 is evaluated by noting
thaﬁ ic is still.restriccéd by the lagrangién multiplier €; . Knowing

that €im 18 diagonal

3 a 3 .a
( 3b Umi ) “im (12558, ) ey
aEl{ b 2 /2 ab'} (IV.3.4
== Uni Smi = 1/2 Sqq 1 &4y -3.4)
m

The final term ofvequation IV.3.2 is the derivative of the Fock matrix,
which is not equivalent to equation IV.3.3. It is obtained by direct

'differenciation of the Fock matrix



3 (b) b 4o b b
b eim = &m = him + % { Z(imIJJ) - (ijlmj) }
j
all a;l do all b
+ z Uri hrm + 2 Urm hir + } z { Uri [ 2(rm|jj) - (rjlmj) ]
r r r

b
+u_ [ 2(ir|33) - 3]eD) ]

b
+U_; [ 4(im|rj) - dr|m}) - Lj|me) ) }
rj

b all b all b
= e1m + 2 Uri erm + Z Urm €ir
r r

do all
+ 1 L vy UbUn|ry) - Girfmy) = (13]mr) ]
j r

(Iv.3.5)

The lagrangian multipliers, € r and €rm are diagonal, and the sums over

them reduce to a single term each. By defining

Aj,ry = 4Un|ri) = (ir|ni) - (13]mr) (IV.3.6)
the derivative of the Fock matrix. is finally reduced to
(b) b b b do all a
fin = “tm ¥ Pnt fom T Utm Cpa Z LUrs Apm,rg
J r
(Iv.3.7)

(b)
The derivative of the Fock matrix, €,., like the Fock matrix itself, is
diagonal.

Substituting IV.3.4 and IV.3.7 into equation IV.3.2, the second

derivative becomes
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32 E - Eabl .4 (§0 a%l b a
3adb Uni €im
i m
do all b a . do ab
=4 L L Uy Spyoegy -2 LSy eqy
i m i
do all ' do all
a b a b
+ 4 2 Z Umi eim + 4 X z Umi Umi €nm
i m i m
do all a b
4] LUpg Upp gy
i m

do all all do a b
+4) L L Luy Ury Atm,rj (IV.3.8)

i m r j

~ab’' v . ’
where E is the second derivative atomic orbital contribution, the

first line of equation IV.3.2. Collecting like terms yields

. a2 abl do all a b b a . .
3235 E=E + 4 z _X { Uni €4m ¥ Uni Sim } : (a)
i m
=40 L Uy Spg €5 - 2L Sg5 gy (b)
i m : i
do all a b a b
+ 4 z z { Umi Umi emﬁ + Umi Uim €14 } ' ()
i m
do all all do a b
*4 D 1 1 T Ugy Upy A (d)
i m r j

(Iv.3.9)
The first order change in the molecular orbital coefficients, the

Ugi and the Ugi in the above equation, are obtained through the coupled-
perturbed Hartree-Fock (CPHF) equations of Gerratt and Mills 55, This

is done by finding solutions to the Fock equations at a perturbed

geometry in terms of the solutions of the Fock equations at the



unperturbed geometry, i.e., the Fock equations are expanded in a taylor
series. Pople and co-workers 42 have given an iterative solution to the
CPHF equations which has been generally recognized 61 as the cormerstone
of analytic derivative evaluation. Techniques in CPHF theory have been

extended by the work of Osamura and co-workers: large molecular systems

through the introduction of the atomic orbital-based CPHF 62; and for
general open/closed shell systems through a unified formalism 63.
The CPHF equation forvclosed-shell molecules 42 is
vir do
U:s (Egg = Epp) - D) U:i Arg,qf = B(a),rs
K . (1Iv.3.10)
where
2 a a .do do a . .
BO,rs = €. = Spg €gg 2 2 Sij [ 2(rs|iJ) - (ri'SJ) ]
v (Iv.3.11)

Expanding the orthonormality condition, equation IV.2.15, in a
taylor series and collecting terms of first order in the expansion

parameter yields

u_+U.__+S =20 (Iv.3.12)

The importance of this term cannot be understated; it allows the
reduction of both the second and third derivative expressions to simple
symmetric forms.

Note that the second component of the term (c) of equation IV.3.9

can be rearranged using equation IV.3.12.
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do all , do all a a . b
Lol Uy Upegg = Lol U - sp b ugn ey
i m i m

(1Iv.3.13)
When.this is substituted back into equation 1v.3.9, and similar terms

combined, the second derivative is given by

2 | ' do all
3 ab a b b a
Y E DA Upy €1q *+ Upg €4 |
- m
do all |
b b
-4 Z X Smi { Umi + Uim } €11
i m '
“do ' ‘do all all do ' '
ab > a5 a b
m2lsgpeg e Lo L L L U Upg Ay o
i v : i m r j :
do all a' b a b
+ 6L L {ug Upg egm = Uiy Ugp €11 }

i m
o (IV.3,L4)

Using equation IV.3.12, the above reduces to the final form for the

second derivative.

a2 _ ab' do all _ -b‘v a v
dadb E=E +4 2 Z {.Umi €im + Umi €im } (a)
i m :
do ab
-2 0 Sy ey (b)
i .
do all a b
+ 41 LSy Spp €y (o)

i m

do all all 4o

: E E E Unt Urj Aim,rj

do all b a b
. a - (e)
+ 4 l 2 { Uni Uni €mm Uim Uim €11 }

i m (IV.3.15)
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IV.3.2 COMPUTATIONAL REMARKS

Unlike the first derivative, the second derivative to the
electronic energy contains a CPHF response and can only be calculated by
solving the CPHF equations of IV.3.10 and IV.3.l1l. Techiques for the
solution of the CPHF equations include the iterative method of Pople et
, the general open/closed shell formalism of Osamura et al. 62,

and the atomic orbital-based solution of Osamura et al. 63.

al. 42

The Eab' of equatién IV.3.15 1is calculated in the same manner és
the Ea' for first derivatives, except second derivative atomic orbital
integrals are evaluated. Term (b) of IV.3.15 can also be calculated in
the atomic orbital basis using the atomic orbital lagrangian of
1v.2.23. in doing so (N3N) (N3N+1) /2 transformations of the secoﬁd
derivative atomic orbital overlap integrals to the MO basis are avoided
where N is the number of atoms. Term (c) is not usually calculated in
the atomic orbital basis as the first derivative overlap matrices are
needed in the MO basis for the CPHF solution (equation IV.3.1ll).

The derivative Fock matrix, egm, can be partially formed in the
atomic orbital basis within the derivative integral program. The
contribution of each two-electron integral to the derivative Fock matrix
can be empirically established and multiplied by a density factor to

produce a half-transformed two—electron derivative Fock matrix.

all all do

2, 1 L1 el cd {20]en? - uefva)® |
P 0 ]
all all

oo 1 20uv[00)? = (up|vo)? |
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= { 20w[3D? - i|vp* } (IV.3.16)

The fzv for each degree of freedom can thén be transformed to the
two—electron contribution for eacﬁ derivative Fock mafrix by a simple
two index transformatibn. This avoids the necessity of a fouf index
transformation that would occur N3N times; once for each unique degree
of gfeedom. Instead, N3N two-index transfofmatiohs must occur.

By using these techniques, ghe four index transformation of the
firsﬁ derivative two-électroﬁ integrals as.well as. the four index
transformation of the second”derivatiVe two-electron integrals; and the
two index transformation of the second derivative overlap matrix are
completely avoided. The techniques will élso.cut down on the necessaryv
stqfage space as the first derivative and second derivative two—electron.

integrals need never be stored.

The computational steps_for the simultaneous calculation of first
"and second derivatives of the energy with respect to nuclear

~ perturbations are as follows:

(1) Calculate a set of well-converged molecular orbital coefficienﬁs by
solving the Hartree-Fock equations.

(2) Calculate the one-electron derivative contributions to Ea' and Eab'
and solve term (b) of IV.3.15 using the aﬁbmic orbital
lagrangian. Sﬁv , and hﬁv must be stored externally.

(3) Calculate the density factor for the two—-electron integrals. If

all members of D for the block of integrals fall below the

HVpo



(4)
(5)
(6)

(7)

threshold, no derivative integrals are calculated. Otherwise both
first and second derivative integrals are evaluated forming Ea' and
Eab'. The half-transformed two-electron contribution to the
derivative Fock matrix, Tﬁv (equation 1IV.3.16) 1is also formed.

a a' ab’'
Tuv is stored externally as are E® , and E .

The zeroth order integrals used in step (1) are transformed.

Sa

uv hiv , and Tiv are transformed and e?m is formed.

CPHF equations are solved (equations IV.3.10 and IV.3.11). U2 is
stored externally.

The remaining parts of equatiom IV.3.15 are evaluated.
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IV.4 THIRD DERIVATIVES

Like the first and second derivatives, the third derivative is
obtained by directly differentiating the closed-shell Hartree-Fock
v energy expression. Beginning with equation IV.3.15 and differentiating

with respect to a nuclear coordinate c, the following expression is

obtained:
3 . do do do :
) . 9 .ab 3 .7 ab _ ab
3asbdc & = 2 12 e Mgt g jZ TRERASEIEED (131 )
| - (a)
: do all ' : o : o .
o : g 3 .a b, .. a 3 b 9. b a b 3 _a v
* 4 % J% { ( dc Umi)eim'f Umi( dc eim)'+ ( ac” mi)eim *+ Umi( ac eim) }
1 (b)
do all : ' o e B
* 4 % g U (52 Sma) St ®11 * Smil 32 Sut) 1 * Sy Sme( 5 egg) |
' _ ()
do . . ]
- 3 ab ab 3
'2%{(3‘6511)611+811‘(32511)} (d)
do all
- 3 a b a 3 b a b 9
e % E { ( dc Umi)_umi €am * Umi ( dc 'mi) €mm mi Umi ( dc mm)
a b a ) b a b 3
= (32 Y1) Yin Si1 ~ Yim (32 Un) €11 7 Yim Vim (32 €10)
| (e)
do all all do .
] a b a ] b
ol L L D Cgpud) ol e, v vn (gsu)) A
i m r j
a b 3
* U Uy (52 Aimri) } (£)
(Iv.4.1)

To obtain the simplest solution to the third derivative in the

above equation, each group of terms (a) through (f), will be exaimined
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and reduced to as simple a form as possible.
Beginning with term (a) which contains the derivatives of the
second derivative MO integrals, note that it is analogous to the first
terms found in the gradient and second derivative derivations. Its
solution will involve third derivatives of the MO integrals, ﬁlus a
first order change in the MO coefficients with respect to a nuclear

perturbation ¢ multiplied by the second derivative Fock matrix.

do abc do do abce abc
Iv.4al (a) =2 L hyy + 5 I [ 2041]39) - (13]13) ]
i i j
do all
ab
+4 ) 7 Ui Sim
i m
abe’ do all c ab
= E +4 1 1 Uy g4p (IV.4.2)
i m

The sums of the third derivative MO integrals are represented by Eabc'.
The next term in the equation IV.4.1, (b), contains both

b as well as derivatives of the derivative Fock

derivatives of U? and U
matrix. To evaluate the derivative of U2 and Ub, we begin with the
second derivatives of the MO coefficients. Using the first derivative

given by equation 1IV.2.7

3 i 3 a m
e S sl Ly eyl
all . . oallall _
- E (goua) e+ 5 g v uS c (1V.4.3)

By analogy to the work of Gerratt and Mills 55, Osamura and

Yamaguchi 64 defined
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32 i all ac .m o
5252 Cp ~ _g Uy C, | _(Iv.4.4)

Substituting IV.4.4 into equation IV.4.3 yields

all ac .m all 3 a o all all a c .
z Umi Cu = z ( EZ'Umi) Cu * E z Umi Urm Cu

(1v.4.5)
In the'lasc term both m and r run over all orbitals, and as a result the

‘labels,may*be interchanged, yielding

1 4 . o allall
( 5 U ) c, + » E- us, uc_ ¢

al
ac .m _ - 2 »
mi ri mr u

m r

mi u
(IV.4.6)

It is clear that for a specific value of m and i, the above yields

3_p? =3 - ail v?, S : (IV.4.7)
3¢ mi mi c ri “mr .

The derivative of the derivative.Fock matrix is given by a analogy

to equation IV.3.7 as

3 a ac all c a all c .a
32'81m= eim + z Uri erm + z Urm eir
r - r
all do
- c a a a
+ ) ) Uy s (4(m|ri) - (rfm) - @j|mr) )
r j '

(1Iv.4.8)
Note that unlike IV.3.7, the second and third terms of the above cannot
be reduced to a single term each as e?m and e?r are not diégonal.

However, with the introduction of a derivative A matrix, Aim r
?



a a R a
Aim py = 4Un[rd)" - Grlmi)” - (13]mr)

(1v.4.9)
equation IV.4.8 can be given in a simpler form
3 a ac all ¢ a all ;4
7 fim” fim t ! Uri €rm* ) Urm €ir
r r
all do c a
+ 2 z Urj Aim,rj
r ]
(1v.4.10)

Terms (c) and (d) of equation IV.4.! involve derivatives of the
derivative overlap matrix and derivatives of the lagrangian
multiplier. Straight differentiation of the derivative overlap matrix

produces

3 a ac 2311 . 5 all .,
3¢ Smi = Spi * 2 Urm Seg * Z Uri Sar
r r
3 ab abc a{l c ab all ab
3c Spmi = Smt  * l Urp Spi t Z Uri Sar
r r
(IvV.4.12)

The remaining derivatives of the lagrangian multiplier in terms (c) and
(d) are given by equation IV.3.7.

All the components of term (e) of IV.4.l1 have been previously
defined: the derivative of the U matrix by equation IV.4.7, and the
derivatives of the lagrangian multiplier by IV.3.7. Term (e) points out
the necessity of carefully keeping track of U matrix indices as the term

b

contains both U:i U,y and U?m U?m and their derivatives. As shown by

equation IV.3.12 these terms are not equivalent, and the inadvertent
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switching of indices can be disastrous.
The only remaining undefined derivative in equation IV.4.1 occurs
in term (f), the derivative of the A matrix. Direct differentiation
yields

: ) . .
= 4(im|r§) - (ir|m§) - (1i]mr)

3¢ Atm,rj
all
c
+ 1 Uy { 4Csm|ry) - (sr|m)) - (sj|mr) |}
s .
all :
il
+ 1 v, {eUs|ri) - Urs) - (1j|sr) }
s
all , :
S ¢
+ 1 v { 4Cim]si) - (s|mi) - (13]ms) |}
s
all :
+ ) U:j { A(im':s) - (ir'ms? - (is|mr) }
-
c all c c
= A1m,rj + l { Usi Asm,rj + Usm Ais,rj + Usr Aim,sj
s

Cc
* Ugy Afnrs } (IV.4.13)

Substituting all of these reduced terms back into equation IV.4.1
and combining like terms results in ( in a few terms, labels that run

over the same set of orbitals have been interchanged)

' do all c ab b ac

3 abc
) { U, e _+1U €
32363 E E § mi “im mi “im

a
* Upy €y | A | (a)
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do all all
o - be b c a
+ 4 l l ( Umi - z Uri Umr) { eim

i m r
a all do a
*Upg famt L LUy Ay ) (b)
r ]
do all all
" ac a c b
+a] T(u - Tugu ) (e,
i m r
b all do b
+ Umi emm + 2 Z Urj Aim,rj ,} (c)
r J
do all all
be b c a
-4 ) P(ug - LTuU) U gy (d)
i m r
do all all
. ac a c b
-4 2 z ( Uim ~ z Urnm Uir) Uim €11 (e)
' i m r
do all all _ _ i e b
+4 ) L IT{uyuy e+ Uy Um €ip
i m r
b c a b c a
+ Umi Uri et‘m + Umi Urm eir} (f)

do all a%l 40 e b
+ol 1L Yoy Urj Afm,rj
i m r ]

b

o4 a a Cc
3 Amyeg * Vnt Urg Atmej L (g)

b
+ Umi Ur

do all all do all a b

c
* 4 X 2 I Z z { Umi Urj Usi Asm,rj
i m r j s

(h)



10 all a b (c) a b (c)
] LUy Uy e’ = U U gy
i m
a b (c)
*+ Sui Spi €44 (1)
_do all ac b a be .
+4 ) T Soi Smi * Smi St } €4 (i)
i m
do all all

c a b c a b
+ 4 Z 2 2 { Urm Sri Smi + _Uribsmr Smi
i m r

c a b c a b |
+ Urm smi Sri + Uri Smi Smr } €i1 » (k)
do
abe ab (e) :
—2) {8y ey + Sy ey | (1)
i - , 3
. go ail c ab |
-4 Uni Smi €11 (m)
i m
(IV.4.14)

Again each term can be reduced. By adding and subtracting
)} Ugm €45 t0 IVebo14 (b) and } U2 e  to IV.4.14 (c), the respective

terms simplify, yielding

' do all be 2ally o (a) all
Wabats () = 4 ) L (vup -tugug ) {ey - L oud e )
i m r S
(IV.4.15)
do all . ,. all = (b)  all
Weald ()= 4y Y (v -Fu o J{e - 1 U €l ]
i m r s _
(IV.4.16)

(a) (b)
Since €; =~ and g/ (the derivative of the orbital energy) and €4 (the

orbital energy) are diagonal, the above equations will reduce to an even
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simpler form.

, do all . (5) 2ally o (a)
.4.14 (b) = 6§ ) {ugy ey = DUy Uy ey

i m r
bc a all b a c
= Upg Ugg Sgq * LUy Ugp Upp Sqy ) (2)
r
do all - all
ac (b) a ¢ (b)
IV.b.ls (e) =4 ] J{uy ey =10y U ey
i m r
ac b all a c b
= Unt Utm €11 % L Upg Upp Upp Sq5 | (®)
r

(Iv.4.17)

As with the first order U? matrix, the diagonal elements of yac

have a special form. In expanding the orthonormality equation IV.2.15

64

to second order, Osamura and Yamaguchi defined the following

relationship in analogy to equation IV.3.12:

ac ac ac
Umr +U.* gmr =_0 (IV.4.18)
where
ac ac all a c a c a ¢ a c
for = Sar Lo Uns Urs * Urs Ups™ Sps Srs = Ses Sms}
s
(IV.4.19)
For a diagonal Uac, equation IV.4.18 immediately yields
ac ac

Substituting this into IV.4.17 and adding the terms (a) and (b) together

results in
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do all  po (a)  ac (b)

IV.4a14 (b¥e) = =2 ) J{ &y ey + &y &4 |} (a)
i m
do all be a ac b '
w6 L LU Uy gy - Upy Ugg ey (b)
i m
all b c (a) a c (b)
+ L0 -Upg Uy ey” - Uy Ugpo &g (c)
. _
b c a a c b _
+ Upg Upo Ugo g + Uy Up Uppegy )} (d)
' (IV.4.21)

Note that within each to the termsA(a), (b), and (c) of IV.4.21 the
basic quantities are displa&ed Qith a permutation of the derivatives a
and b. This is the type of symmetry'desited for the final equation,
only that the final eduatibn should show the permutatidn for all thtee
degrees of freedom a, b, and c.

Continuing the reduction.of the terms in IV.4.14, terms (d) and (e)-

are expanded resulting in

: do all ac b bec a
IV.bol4 (dve) = =4 ] J {u U +U U
i m ' '
all a c b b c a
-1 Urm Yir Uin ¥ Urp Uir Yinm )} €11
r
(IV.4.22)
Adding this to IV.4.21 yields
' do all
be (a) ac (b)
IV.4.14 (b+c+d+e) = -2 ) ] | Eiq €41 * Eqg €14 ! (a)
i m
do all
a be be b ac ac
-4l Lo Cug+ Uy ) ey v Uy (U + Upyg ) €y
i m »

(b)



b c (a) a c (b) all b c a
*Upg Upp €3 * Upg Uyp €55 = L ( Upg Upp Ugp (e)
r

a c b b c a
} (d)

* Upp Upp Upp *+ U Uy Ugp) gy
(IV.4.23)

where r has been replaced by m in term (c) of IV.4.21. Using equation

IV.4.18, term (b) of IV.4.23 reduces to (without the summations)

a be b ac
IV.4.23 (b) = { Uy &5+ Uyp Eyn b oggy - (IV.4.24)

This eliminates the remalning second order CPHF term leaving the
third derivative completely specified by the result of the first order

CPHF equations. This is in accord with Wigner's perturbation theorem

th

which states that an n order wave function is sufficient to determine

properties of order 2n+l 60. This result was first demonstrated for

third derivatives of the Hartree-Fock wave functions by Moccia 37 in

1970, and more recently by Pulay 16.
Though reduced to the results of the first order CPHF equations,

more terms must be collected before the final equation displays the

desired symmetry. Returning to IV.4.14, terms (f) and (h) are combined,

yielding
do all all ., . p all doy
V.4 14 (F+h) =4 L ) ) { Uni Upq (em*l 1 Usj Arm,sj )
i m r s ]
(a)
a ¢ p all do
* Unt Uenm ( € ¥ L § Usj Atr,s] ) (b)
s
all do

a a

b ¢
+ Umi Uri ( erm + z z Usj Ajs,mr ) (¢)
S
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* Upg Up (Egp + 1 D Ugy g pg )} | @
(IV.4.25)
where apprdpriate interchanging of labe1§ has occurred with term (h) in
IV.4.14. Note ﬁhat Arm’sjvis equivalgnt to Ajs,mr and that Air,sj is
equivalent to Ajs,rif' By tﬁe addition and subtraction of ) Ugr €gp and

2 Ugh érsito term'(a) of the above, term (a) is recasﬁ in terms of the
defivatiQe orbital'eﬁergy. Following a similar précedure for (b), (c),

and (d) yields IV.4.25 in terms of the appropriate derivatives of the-

orbital energies

do all all , . (b) b : b

W.4.l4 (£40) =4 1 1 ) Unt Ury ('erm Unr €mm ~ UYrm €rr )
. m r v - : v
- (a)
a c (b) b b
b c (a) a a
+ Upy Upy ( €m ~ Yor €mm Urm‘grr ) (¢)
b c (a) a . a v o .
* Unt Urp ( €ir ~ Upri €rr = Uir 844 )} (d)
(IV.4.26)

~ Use has been made of the diagonal property of the orbital energy in
reducing shms of lagrangian multipliers to single terms in IV.4.26.

Equation 1IV.4.26, however, does not take advantage of the diagonal
nature of the derivative of the orbital energies. Combining IV.4.26
with equation 1IV.4.23 and reducing the derivatives of the orbital
energies to their diagonal form yields

: do be (a) ac (b) .
IV.4.14 (brctdverf+h) = -2 ] { &/ efy” + &y ey | ()

i



do all =, e b ac
ta L DUy B+ gy By b oegy - (b)
i m
do all all a b a b

[
val 1 I{ucu_u+uu )} e,
i m r

(e)
do all all a b c b c
-4 Z Z Z { Umi ( Urm Uri + Uri Urm ) erf
i m r
b a c a c c a a
+ Umi ( Urm Uri + Uri Urm ) €rr + Uri ( Umi Umr + Umr Umi ) € mm }
(d)
do all
. a ¢ (b) b ¢ (a) »
+ 4 % Z { Umi Ui €om ¥ Yni Umi €om } (e)
m .
IV.4.27)
(a) (»)

When Ivt§'26 and IV.4.23 are combined note that the €;; and €;; terms
of IV.4.23 (c) cancel with the egi) and egg)Cerms of 1IV.4.26 because of
the diagonal character of the derivative of tﬁe orbital énergy. Also,
as both r and m run over the same set of orbitals, a Uﬁr component of
term (c) of IV.4.23 cancels with the last component of term (d) of
Iv.4.26.

Interchanging labels m and r in the last component of term (d) in

the above yields

do all all a b c b c
o427 (d) ==-4F 1 Y{ugy (U U +U,y U
i m r
b a c - a c c a b a b
+ Umi ( Urm Uri + Uri Urm ) + Umi ( Uri Urm + Urm Urm ) €rr

(IV04028)
Returning to equation IV.4.14 and substituting equation IV.4.27 with a
modified term (d) given by equation IV.4.28 results in a third

derivative expression nearly displaying the desired symmetry.
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33 abce' QO a%l c ab b ac
3o355c £ = E + 4 %_ D Ung €4p * Uy €4
m
a be
+ Umi e1m }
do be (a) ac (b)
-2 ] {8y egy + 8y ey |
i
.d° all bc - b ac
+46 L LUy &+ Usp Eip | oEgg
i m
do all a c (b) b ¢ (a)
+42 X{Umi Umi euxm +Umi Umiemm
i m
a b (c)
+ Umi Umi € mm }

do all all c

a ‘a
+ 4 z Z z { Uir ( Urm Uim + Uim Urm

i m r

do all all

. g a ‘ v
-6} L I Ung ¢ Urm Vet + Urg Upp )
i

m r

b a c a ¢ ‘¢ a b
+ Umi ( Urm Uri + Uri Urm ) + Umi ( Uri Urm + Urm Uri ) } €rr

b

b

do all a b a b __ ab
+ 1 L {4 Csyy sy = Upp Ugy) =~ 2 Sy
i m
do a{l ac b a be c ab
+42 Z{Smi Smi+smi Smi—Umi smi
i m
do all all

[od

a

. b a
+4 ) ¥ 1 Uy ( Soy Spy * Spy S

i m r

c a b
+ Uy ( Smi S

mr

+

a
Smr Smi ) | €11

c b c

b

(e)
} €11

} €11

b
ri )

(a)

(b)

(e)

- (d)

(e)

(£)

(g)
(h)

(1)
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do all all do a c b b c a
+ 4 l 2 Z 2 { Umi Urj Aim,rj + Umi Urj Aim,rj
i m r j

a b c
+U_, U_. .} ()

abc

(1Iv.4.29)

The symmetry of term (b) of equation IV.4.29 can be completed by

reducing term (g). Going back to IV.4.19, term (g) is rewritten as

do ab  (c)
IV.4.29 (g) = - 2 ] B4y €44 (1v.4.30)
i

The reduction of terms continues by using IV.3.12 to rewrite the

third component of term (h)

do all ac b a be c c ab
i m
do all .. a be c ab
=4 ) Y Smi Smi * Swi Smi * Smi Smi } €44 (a)
i m
do all c ab
+6 0 Lug sy ey . (b)
i r
(IV.4.31)

where the m in term (b) has been replaced by r. Combining term (b) of

IV.4.31 with term (e) of IV.4.29 yields

do all all c ab a b

IV.4.31 (b) + IV.4.29 (e) =4 [ [ Ju  { s+ U U
i m r

b

a
+ U U)oy (IV.4.32)
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With the aid of 1V.4.19, this can be recast as

do all all & ab

w.4.32 =45 1 I {u g, (a)
i m r

. c a b a b :

,+ Uir( Smr Sir f Sir Smr ) } €44 (b)
’ (1V.4.33)

Term (a) of the above, upon replacing r with m combines with
1V.4.29 (c) to complete the symmetry of that term. The second term,

(b), combines with equation IV.4.29 (1) to produce

do all all c a b

. a b
w.4.29 (1) =41 b I {u (8, 850+ Sip Sip )
i m r
(a)
a a b a b c a b
+ Uri( Sri Smr * Smr Spt ) + Urm ( Sri Smi * Smi Spy ) €11
(b)
(1Iv.4.34)

Since the derivative overlap matrix is symmetric, term (a) and the first
component of term (b) in the above can be combined. Using the

~ orthonormality condition equation IV.3.12, equation IV.4.34 reduces to

do all all
c a b a b
IV.4.34 = 4 z Z Z { —Sir ( Sar Sir ¥ Sir Spr )
i m r :

S,y )} ey (IV.4.35)

Expandiﬁg the Ugm term in the above with the orthonormality condition

results in
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do all a%l a b c

C a
.34 =-4F § L { S, Si. Sir* Sir Sur Sir
i m r

(a)
a b c a b c
+ Sri Smi Srm + Smi Sri Srm (b)
a b c a b c
+ Sri Smi Umr + Smi Sri Umr } €14 (c)
(1v.4.36)
The first component of term (c) of the above may be rewritten with
interchanged indices, r and m. Term (c) becomes
a b c a b c
IV.4.36 (c) = - Smi Sri Urm - Smi Sri Umr
a b c c
== Spr Sip ( Upp + Upp )
a b c
Smi Sri Srm (IV.4.37)
Substituting this back into IV.4.36 results in
do all all a b ¢ a b c
.36 =-41 [ L Stm Sir Smr * Sar Sim Sir
i m r
a b c
+8;. S Sin b €y (IV.4.38)

Including all of these latest terms in the third derivative energy
equation 1V.4.29, the final equation is obtained. Note that it displays
the desired symmetry of permuting the derivative degrees of freedom for

each term.



do all

a3 abe! ab’ b ac
: 3adbde = E 6L D Uy egn+ Upy €4
i m .
a be
+ Umi eim }
do pe (a) ac (b) ab (c)
-2 E Eyy €45 * By Sy * By €44 |
do all
: a be b ac c ab
S+ 4 E b { im Eim Uim Eim * Uim Eim } 11
doall . . () b ¢ (a)
+ 4 l z { Umi Umi €om Umi ni Smm
i m ' .
a b (c)
+ Umi'Umi €nm }
do all all

b c b ¢
-4 1 ] .z {vai (Upp Upg + Upy Upy )
: .

m r

b a c
+ Umi ( Urm Ur

do all all do a

b a
rm

b c

b

a

a c c a 1
i + Uri Urm ) + Umi ( Uri u + Urm Uri )} €rer

c b '
+ 4 Z z 2 z { Umj_ Urj Aim,rj + Umi Urj Aim,rj

i m r i

b

[od

a
* Unt Urg Am,rej }

be c ab

N a
+4 ) Ly Sps *Sny Sug * Smi Smi | gy

do all éc b
i m
do all al1l

a
-4 z z z { Sim Sir nr
i m r

a
+ S4p S

b

m

b ¢ a b
S * Smr Sim S

c
r Sim } €44

c
ir

(a)

(b)

(c)

(d)

(e)

(£)

(g)

(h)
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do abc
-2 Z Sii €44 (i)
i

(1Iv.4.39)

IV.4.2 COMPUTATIONAL REMARKS

The most computationally expensive term of in IV.4.39 (other than
the calculation of the third derivative integrals) is term (f). In this
term, N3N sets of four-index transformations of the two—-electron first
derivative atomic orbital integrals are required so that the A?m,rj
matrices can be assembled. If there is enough central storage space in
the computer, then all N3N derivative atomic orbital integrals can be
simultaneously transformed and term (f) directly evaluated. If however,
there is little cenfral memory or the ﬁumber of derivative integrals is
simply too large, then a procedure much like that uéed in the atomic

62

orbital basis CPHF solution of Osamura et al. , 1s best applied to the

evaluation of term (f) of IV.4.39.

do all all do a b e
E g z § Umi Urj Aim,rj

do all all do all all a b 1
=) L 1l L 1 ouyufec

. ct c; ci (uvlpc)c
i m r j u,v p,0 ]

H

_ ALt m ] C _ L1 .j .m LT c
¢, €€y Cy (ue|va)® - ¢l clce (uo|vo)® |
do all all a { all all do b ro j .r c
= % % uiv Uog Cu Gy {pic Z § Ups (2 ¢« Cj Co+ €3 Cy) (uv|pa) € -
’ ?

- ¢ c: cy + cg c; ) (ue|ve)® ) | (IV.4.40)
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By letting
all do b e i -
P =) 1 v, (ctcl+cichy | (IV.4.41)
po r 3 p @ p o -

equation IV.4.40 can be rewritten as

do all all _all

- a i .m c c
1IV.4.40 = % Lol owd e el Ioe { 2(uv[pn)® = (up[ve)© }
m M,V p,0 .
(IV.4.42)

The contribution of each derivative integral in the above is
empirically known by the indicies of the integral. This is much like
the production of Tiv described in section IV.3.2. The muitiplication

of the integrals and Ppa can be thought of as forming a half-transformed

Qu\)'

: all
NP S
oo

{ 2(uv|po)C - (up’vo)c } ' (IV.4.43)

The qu is then transformed by a two—index transformation and multiplied

and summed over U2.

do all a - all all o
IV.4.40 = ) ] U { ¥ I C, Cy Q } (IV.4.44)
i ] u v

As with the second derivative, the third derivative involves
derivative Fock matrices - only this time both first and second
derivativéé. The first derivative half-transformed Tﬁv is formed as in
equation IV.3.16 and the second derivative 1is formed likewise. The Tgv

and Tig are transformed.by a two index transformation and added to him

ab

and h?ﬁ to produce eim and €im
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The computational steps are:

(1) Calculate the zeroth-order integrals and solve the SCF equations to
obtain the unperturbed molecular orbital coefficlents. This wave
function must be well-converged.

(2) Calculate the one-electron contributions to Ea', Eab', and E2bc’,

Using the atomic orbital lagrangian, term (i) of equation IV.4.39

Sa

, Sab are stored externally.
HV uv y

is evaluated. hzv R hﬁg ,

(3) Calculate the density factor for the two—electron blocks of
integrals. If all the density factors are below a given threshold,
then the block of integrais is ignored. Otherwise evaluate the
derivative-two-electron integrals adding their contributions to
Ea', E3%' and E3PC', The half-transformed Tﬁv and Tﬁg are also
calculated and stored externally. (uvlpo)a must also be stored on
an external Aevice.

(4) Transform with a two index transformation: hﬁv . hig, Sﬁv , Sﬁg,
T2, and T3D.

(5) Solve the CPHF equations. The U2 matrices are stored on an
external device. Form the Eab and store them externally.

(7) Evaluate the remaining terms in IV.4.39. Use the techniques of

equations IV.4.40-1V.4.44 for the production of the derivative A

martix.

In the following chapter, the results of the application of
chapters II, III, and IV on the water molecule will be discussed. The
resulting second and third order cartesian force constants will be
transformed to normal coordinate space, allowing the rotation-vibration

interaction constant of chapter I to be calculated.
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V RESULTS OF THE THIRD—ORDER FORCE CONSTANT CALCULATION
V.1 INTRODUCTUION

The calculation of the energy for an_ig initiovwave function is a
calculatibn from first ﬁrinciples. Ihe description of the fofce field,
however, has of;en been clouded by the use of experimental dafa.and |
approximate means to describe the fiéld itself. fhis new de?elopment of
analytic cubic force constants coupled with the previously developed
analyticvquadratiCnfbrce coﬁstants returns the fofce field to first
principles.

Previous theoretical force fields have generally approximated cubic
and quartic force constants by sums and differences of energies and

17,52 4y relaxed 13,65

energy gradients calculated at experimental
geometries. In.this manner, the quadratic and cubic force constants in

terms of the gradient of the energy g; are g1Veh by

) V2 a,

o 13
Fri= { gi(ref - qu) - gi(ref + Aq 5

h|
Fijj = { 2 g.(ref) - g . (ref + Aq.) - g, (ref - 4q.) }'/ A2
i i i’ i i ]
(Vo].ol)
where ref refers to the reference geometry, Aqi the change in a
particular internal coordinate q> and Aj the step size of coordinate
j. The diagonal quartic force constants are calculated by either

fitting energy points to a fourth-order polynomial (Schlegengg



al. 13) or the quartic force constants of the morse oscillator are used

to approximate the quartic stretching force constants (Pulay et

al. 51. Non-diagonal quartic force constants are not calculated. Note

also that equation V.l.l gives only the diagonal and semi-diagonal cubic
force constants. It has been generally assumed that Fijk with i#j#k is
small and can thus be neglected.

Although these methods have had success in reproducing the
experimentally obtained force contstants 17’51’52’13’65’66, the
calculation of analytic force constants reduces the errors inherent with
the point difference methods given by equation V.l.l. Analytic methods
also have the advantage that all the force constants are calculated.
This avoids any systematic error due to the droppingvof non-diagonal
cubic and quartic force constants that may indeed be small, but too
important to neglect.

Whether to use the theoretical minimum or the experimental minimum
geometry in the theoretical calculation of the force constants has been

41’54. To date, most

an area debated by theoreticans for many years
cubic and quartic force constant calculations have used experimental T,
structures. As these stu&ies have been used primarily to supplement and
expand experimental data, the use of the experimental r, structure is
reasonable. However, for analytic cubié force constants (and
evidentually quartic), the role of the force constants will be to help
define experimental data not necessarily to validiate it. This
predictive role is possible because the analytic calculations are not
restricted to molecular systems with straightforwardly defined internal

coordinates as gradients along these coordinates are not needed.

Instead, novel systems where there is little or no experimental data can
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be readily calculated. In such cases, the use of thé,theoretical
minimum is the only reasonable choice.

The most obviousvomission in this study of the Hartree~Fock
analytic force coﬁstants'iSJthe-neglect of electron éorrelation.. Tﬁe
effect of electrén correlation on quadratic force constants is
substantial Sj,'and most attempts to accurately describe potential .
surfaces have coancentrated on the inﬁerplay betﬁeen basis set size and
.correlation effects. The effects of electron correlation oﬁ cubic and
quartic force constants has‘beenvinvestigated by many
authors 17’12'52’67. Pdlay'gs;él: 17'52'ﬁave sﬁown that fdf NH3;'HF,
HCN, and CHE, the éontribution of electronléérrelacion to cubic and
quarticvforce constants 1is small. Equallyhimportanc is their.finding
tﬁat while the Hattree—Fock contribﬁﬁion'to’thesé_force constants 1is
sensitivé to the nuclear reference'framé, the electron correlation
contribution is not. These findings are also-Supborted by Rosenberg et
_313 67 in their study of the:watet molecule. For weakly 5onded systems,
for ekample the HF dimer andJHF trimer 68, neither the Hartree-Fock nor
electron correlation contributions to the higher force constants are
known. The analytic cubic force constant formalism presented in this
work, however; will allow ‘the Hartree-Fock question to be definitively
ansﬁered.
Basis set size and the stability of cubic and quartic force

52

constants has also been investigated by Pulay et al. They conclude

that basis sets on the order of triple-zeta plus two polarization
functions are necessary to correctly describe the core-core replusion
they feel is responsible for the large Hartree-Fock contribution to the

higher force constants. Unfortunately, time constraints have made it



impossible to address this question in the present study.
V.2 THE WATER MOLECULE

The water molecule was chosen as the test case for the analytic
energy derivative formulae - the force constants - presented in chapter
IV. The water molecule represents an ideal starting place for higher
analytic force constants as there 1is much'data, both experimental and
theoretical, concerning its potential surface 69’67’70’71.

The water molecule was completely optimized with analytic gradients
using the standard double-zeta (DZ) basis set of Huzinaga and
Dunning 72’73. The basis set for the oxygen atom is comprised of nine
s-type gaussian primitives contracted to four s-type functions and five
p-type gaussian primitives contracted to two p-type functions
([9s5p/4s2p]). For the hydrogens the basis set consisted of four s-type
gaussian primitives contracted to two s—type functions ([4s/2s]) scaled
by the standard factor of l.2. The total number of atomic orbitals is
thus fourteen. Although this is clearly not among the largest basis
sets employed on the water molecule (see reference 69 for an excellent
SCF study of the water molecule), it does represent a significant
challenge to the derivative integral and derivative energy programs.

For a triatomic molecule, there are 9 unique first derivative
degrees of freedom, 45 unique second derivative degrees of freedom, and
165 unique third derivative degrees of freedom. %or HZO’ many of these
unique degrees of freedom are equivalent; however, this will not be

taken advantage of in the calculation. The water molecule quite clearly

illustrates how the number of derivative two—electron integrals quickly
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escalates. The;e are a total of 4013 two-electron charge distribution
interactions for the C1 watér molecule; This is less than the number of
interactions for the zero-order integrals because no derivative
integrals are calculated if all the atomic orbitals are on the same
nuclear'centéf. When these 4013 interactions aré multiplied by the
total number of degrees of freedom for the Hzormolecule, the result is
that a total of 878,847vderivativeiintegrals must be evaluated. This
includes all first,»second,-and th;rd derivative integrals. As
mentioned in chapters‘III and IV, only the fifst derivative.two—electron
integrals have to be stored eiternally. The secqnd and third derivative
two-electron integrals are multiplied by a density factor and suhmed,
thus avoiding their storage. In the calculation of the quédratic'and
cubic forc¢ constants for H,0, the,computationél stepé outlined in
section 1IV.4.2 were folléwed.

The analyatic foréé constants in cartesian coofdihatev
representation were checked fo: accuracy by performing the appfopriate
lower-order analytic force constant calculatioﬁ at displaced cartesian
coordinates and then calculating the higher—order force constant with
the appropriate two-point difference formula. All one- and two-electron
derivative integrals were checked by finite differences of the
appropriate lower-order integrals evaluated aE'displaced geometries.
Table V.2.1 compares the computational time for calculating the third
derivatives of the energy with respect to cartesian coordinates by
finite differences of cartesian second derivatives and the analytic
evaluation of the third derivatives. Although the version of the';hird
derivative integral program used for this timing comparison has since

been improved, the timings indicate that the analytic evaluation of
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third derivatives 1s indeed computationally economical.
As explained in chapter I, the final force constants are given not

with respect to cartesian coordinates but rather with respect to normal
coordinates. The transformation to normal coordinate space (see section

I.3) reduces the third—-order force constant matrix from 165 elements to

a mere 27 elements. The theoretical quadratic and cubic force constants

in normal coordinate space are presented in table V.2.2. The

corresponding experimental force constants reduced to normal coordinate

space by Hoy, Mills, and Strej 15

are also presented in the table. Note
that only the non-zero force constants are given.

The agreement between theory and experiment is excellent. Although
the DZ basis set employed here does not have the flexibility that
polarization functions would add, it nonetheless does a remarkable job
describing the cubic stretching (deformation) constants. The poorest
agreement occurs with the ¢122 force constant. This type of deformation

will be better described at the DZ plus polarization level as the

bending coordinate is treated better at this level.
V.3 CONCLUSION

The results of this chapter indicate that for basis sets of
moderate size the analytic evaluation of cubic force constants is an
accurate and practical process for closed-shell Hartree-Fock wave
functions. Although calculations for larger molecules with more
sophisticated basis sets have yet to be performed, it is believed that
the results of this chapter will directly extrapolate to these larger

systems. The next step in analytic third derivatives is the evaluation
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of third derivative energy equations for open-shell Hartree-Fock wave
functions. As this will not require a new derivative integral program,
it is expected that open-shell cubic force constants will be forthcomingv
shortly. Third deri?atives of fhe multi-configurational wave functions,
wéve functions that treat the electron correlation problem, are also
within reach.

To calculate the anharmonic constants-presented in chapter I, the
fourth-order force constants éré needed. This requires a new derivative
integral‘program5 The design:of ;he derivativé integral algorithms
presented in chapter III allow facile extension to fourth deriv;tiveé.
Thé fourth derivative energy equations, althéugh no£ presented here, are
vderived_in a manner similar to the third-order equations. The success
of analytic third derivatives virtuallf guaranteesvthe success of
apélytic fourth derivatives. The complétion of this step will allow the

‘ab initio calculation of a rotation-vibration spectrum. .
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Table V.2.1

Timing Comparison of Third Derivatives from Finite Differences

of Second Derivatives and Analytic Evaluation

A single second derivative

calculation in C1 symmetry ' ~l minute

Number of necessary second
derivative points to obtain

the third derivative 2 9

entire third derivative

calculation ~9 minutes

analytic evaluation of third

derivative: entire calculation ~7 minutes

Timings are on the Gould 32/87/80 mini-computer. The third
derivative code has been substantially improved since this timing
comparison was made.

8 The second derivative code used for these calculations is the
highly optimized code of Saxe and Yamaguchi. Details concerning their

method may be found in reference 46.
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Cubic and Harmonic Force Constants with Respect to Harmonic Normal

Coordinates for H,0 in em L

notation: mode 1 is the symﬁetric stretch, mode 2 is the bend, and mode

3 is the asymmetric stretch.

*111
%112
%122
%133
%222

%233

Present Results

E)Sperimental'15

0.9513 A

112,52 °

4028.3
1710.6

4204.2

—1853.1
107.3
362.1

-1873.6

-404.4

294.1

0.9572 A

104,52 °

3832.0

1648.9

3942.5

-1815.1
106.2

335.0

"=-1855.8

-381.7

277.6
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A.1 THE MCMURCHIE AND DAVIDSON INTEGRAL EVALUATION ALGORITHM AND THE

SAIUNDERS INTEGRAL EVALUATION ALGORITHM

In the following section, both the McMurchié and Davidson and the
Séunders alogrithmlfor the solution of the ERI are presented. Though
the alogrithms are presented in a Fortran 77 like manner,vliberties have
been taken so tﬁat the algorithms match the equationé presented in
section iI.7. Before the two algorithms are presented, a number of

definitions are required:

(a) Nshell : the total number of shells

(b) 1Ishell, Jsheli, Kshell, Lshell : the shell in question

(c) 1fns, Jfns, Kfns, Lfns : the set of primitives (functions) that
make ﬁp a particular shell (a contfactioﬁ set)

(d) 'a,b,c,d : the exponets of a particular primitive

(e)» Tmax : AA + AB , the sum of the total angular momentums on Ishell
and Jshell

(f) T'max : AC + XD

(g) Kfirst, Klast, Lfirst, Llast, Jfirst, Jlast, Ifirst, Ilast : the
first and last members of the specified shell when all the members
of all the shells are grouped in a list 1 to Norbitals

(h) Norbitals : total number of atomic orbitals

(1) 1Int : an array that for a given atomic orbital, contains the x, vy,

and z angular quantum numbers (the n, 1, and m for that particular



-

orbital)

The McMurchie and Davidson algorithm is presented below:

For Ishell=]1,Nshell

. For Jshell=1,Ishell

« « Tmax is computed

. « For Ifns

e« o« o For Jfns

e o+« +« op=a+bhb

e« =+ =+ o generate the expansion coefficients

e« o o« o« 2erol

e« e o o For Kshell=1,Ishell

. . . . . For Lshell=l,Kshell (or Jshell if Kshell=Ishell)
e« o « ¢ o o T'max is computed- Maxt=T'max + Tmax

e« ¢ « o + o For Kfns

e« e o o o o o 1,j,k angular quantum numbers

e« + o o o o o For Lfns

e e s+ s+ s o o o 1',3',k' angular quantum numbers

e e o e o e e« e gq=c¢c+d

e o e s e o o« o generate the expansion coefficients
e« o e« + s « e o compute Fj(z) and R(Maxt,Maxt,Maxt)
e« e o « o s e o For p= Kfirst, Klast

e« o o + o o o o o For o= Lfirst, Llast

e o +» o o o o+ & o o Forv' =1, T'max

e e e e e e e & e e Dv'=ez(k,k',v')

e o e o o e s & e« s o Foru' =1, T'max
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end

. °
. e
e °
. °
. .
. .
. .
. ©
. .
. .
. .
. .
. .

.

Du'=ey(j,j',u')

For t'= 1, T'max

Dt'

=ex(i,i',t')
For v = 1, Tmax
. For u ; 1, Tmax

« . For t = 1, Tmax

. o . I(t,u,v,0,p) =
I(t,u,v,0,p) +
Dv'*Du’ *De '+
R(t+t',u+u’',v+v')

« .+ end for

. end for

end for

end for

end for

« < end for

. end for

end for

for

end for

end for

For p= 1,Norbitals

« For o=

For

.« Int(y) n,l,m angular quantum numbers for the

1,Norbitals

= Ifirst,

Ishell

Ilast

end for
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¢ o o o o o o o For v inrst, Jlast
e e e o e s o o o Int(v) n',1',m' angular quantum numbers for
the Jshell
e o e o o o o o o For v=1,Tmax
e e o s e & s e e s Dvnez(m,m',v)
e« o o o o s o o o o For u=1,Tmax
e e o & & 4 e e e e Du=ey(l,l',u)
e o o s e+ e e o o s o For t= 1,Tmax
e e s e e & s e e o o o Dt=ex(n,n',t)
c s e o s+ s & o e s e = (uvlpa) = (uv'pa) +
Dt*Du*Dv*I(t,u,v,d,p)
e o o o o o o o e o o end for
e o o o o o o s o o end for
e« o o o o o o o o end for
e« o o o « o o o end for
e+ e+ o o o+ o« o end for
e« e« o o « o end for
« e« s+ o o« end for
« o o« o end for
« e . eﬁd for
. < end for
. end for

end for



The Saunders alogrithm is given below:

For Ishell=l;Nshell
. XA is obtained

.« For Jshell=1,Ishell
o XB is obtained

. . Tmax is computed

. Int array is produced for u and v orbitals

« o For Ifns

« « o For Jfns

e« o o e p=a+b

« « « o generate the expansion coefficients

.~' . . . For KShell=l,IShell

o s o s e AC is obtained

o o o =« =« For Lshell=},Kshell (or Jshell if Kshell=Ishell)

e e e e e . A is obtained

T'max is computed Maxt=T'max + Tmax
Int array 1s produced for p and ¢ orbitals
For Kfns

For Lfns

q=c+d

generate the expansion coefficients

compute B and find the Rys roots and weights
calculate Gt’ Gu’ and Gv for t,u,v equal to maxt;
use the recursion relationships to fill out tﬁe G
arrays

For Iroot = 1,Nroots
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For Ino = O, AA

. For Jno = 0, XB

« o« 1IJ = Ino + Jno

. . For kI = 0, Ag + X

. . ..For t = l,iJ

e o o o tt'=kl + t, uu'= tt', and vv'=tt'

e o o o YX(k1)=YX(kl) + ex(Ino,Jno,ij)

*Gtt'

e o o o YY(k1)=YY(Kk1l) + ey(Ino,Jno,ij)

*Gyu?
e« « o YZ(k1)=YZ(kl) + e_(Ino,Jno,ij)
*G oy

«+ « o end for

. « end for

« « For Kno = 0, XC

e« o o For Lno = O,AD

e« o « « KL=kno+lno, u'=tmx, and v'=tmx

e e« o« o« For t'= 0,KL

« « o o« « XX(Lno,Kno,Jno,Ino)=
XX(Lno, Kno,Jno,Ino) +
e, (Kno,Lno, t')*YX(t')

e ¢« + « < XY(Lno,Kno,Jno,Ino)=
XY(Lno, Kno,Jno,Ino) +
ey(Kno,Lno,t')*YY(t')

e« ¢ « o« o« XZ(Lno,Kno,Jno,Ino)=

XZ(Lno, Kno,Jno,Ino) +

ez(Kno,Lno,t')*YZ(t')



end for

°
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. « o end for
. .« end for
-« end for

end for

end for

For u = Ifirst, Ilast

Int(u) produces n,l,m for u orbital
For v = Jfirst, Jlast

. Int(Q) produces n',1',m' for v orbital

« For p = Kfi:st, Klast

« o Int(p) produces i,j,k for p orbital

.« . Forvo = Lfirst, Llast

e o o Int(o) produces 1i',j',k' for ¢
orbital .

.« o (u]po) = (uv]|po) +
XK(n,n',1,1")*K¥(1,1%,1",3")
*XZ(m,m',k,k') |

« « o end for

« o end for

« « =« end for
«. o end for
. end for

end for

end for

. end for

end for
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« <« « end for

. « end for

. end for

end for



A.2 THE DERIVATIVE ONE-ELECTRON ALGORITHM

The following algorithm is for the evaluation of derivative one-
electron integrals. Definitions of terms in the algorthim are at the

beginning of aﬁpendix A.l. The algorithm is set up for fourth

170

derivatives, but can be easily modified for a more restricted case. See -

sectfons I11.3 through II1.5 for details of the equations.

iy
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Loop over Ishell
Loop over Jshell < Ishell
t = AA + XB
Loop over contractions on Ishell
Loop over contractions on Jshell

calculate the expansion coefficients where maximum angular
momentum index is tmax=t+4 (because of 4 derivatives)

p=a+b
calculate B

calculate tmax Rys roots and weights and fill the G arrays
where the maximum index is tmax

Loop over Ino = 0, AA
Loop over Jno = 0, XB
evaluate overlap and kinetic energy derivative
integrals : < " | v > for n=1,4
<u' | T | v> for n=1,4
expand about the two centers

Loop number of atoms Vc = ], natoms

Loop over number of Rys roots Iroot=1,[t/2] + 1 + 4 (due
to the fourth derivative)

Loop over Ino = 0, AA
Loop over Jno = 0, AB
evaluate derivative NAI integrals
<ut | ve | v> for n=1,4
< u I Vc I vl > for n=1,4

< um | V. I v® > for m=1,3 and n=1,3 such
that n+m=4

expand about the two centers of Ishell and Jshell

use translational invariance to complete the derivative in
accordance to table III.3.1-III.3.3
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A.3 DERIVATIVE TWO-ELECTRON INTEGRAL ALGORITHM

The following algorithm is for the simultaneous evaluation of all
first and second derivatives of a four center two—electron integral
using translational invariance to calculate the derivatives on center
D. Details concerning the acronyms may be found in section III.6. The
extensioﬁ to higher deriVétives is accomplished by changing the

appropriate limits of summation.
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Loop over Ishell and Jshell

Loop over Kshell and Lshell (skip if all four shells are on the same
center)

Loop over contractions on the four shells calculating the
expansion coefficients where the maximum index is A + 2

calculate the Rys roots and weights and fill the G arrays again
the maximum index for the array is Amax + 2

Loop over quadrature points Iroot=l,[t+t'/2] + 3

Loop over angular momentum on Ishell and Jshell (Ino=0,kA
and Jno=0,AB, 1J variable that lables an Ino, Jno pair)

Loop over t:'=XC + )‘D + 2
Loop over t = (0, Ino+Jno+2
If t € Inot+Jno : computé YX, YY, YZ
If t' € A+ 4
If t < Ino+Jno-2

compute YXSA2, YYSA2, YZSA2, YXSB2, YYSB2,
YZSB2, YXSAB4, YYSAB4, YZSAB4

If t < Ino+Jno

compute YXSAB2, YYSAB2, YZSAB2, YXSAB3,
YYSAB3,YZSAB3

compute YXSAl, YYSAl, YZSAl, YXSBl, YYSBI,
YZSB1, YXSAB1, YYSABl, YZSABI

Ift'<)‘c+)‘0+1
If ¢t € Ino+Jno-l

compute YXFAl, YYFAl, YZFAl, YXFBl, YYFBI
YZFB1

If t € Ino+Jno+l

compute YXFA2, YYFA2, YZFA2, YXFB2, YYFB2,
YZFB2



If t' < A + Ay +1

If
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YX=YX, YY=YY, YZ=YZ

YXFA=2aYXFAl - nYXFA2
!YFA=2aYYEA1 -
YZFA=2aYZFAL -
YXFB=2bYXFBl -
YYFB=2bYYFB1 -
YZFB=2bYZFBl -

t! <vxc + AD +2

YXSA=4a2YXSAl
YYSA=4a?yysal
YZSA=4a%YZSAl
YXSB=4b2YXSB1
YYSB=4b2YYSBL
YZSB=4bYZSBL

YXSAB=4abYXSAB1

nn'YXSAB4

YYSAB=4abYYSABI

nn'YYSAB4

nn'YZSAB4

nYYFA2 -
nYZFA2

n'YXFB2
n'YYFB2
n'YZFB2

2a(2n+1)YX + n(n-1)YXSA2
2a(2n+1)YY + n(n-1)YYSA2
2a(2n+1)YZ. + n(n-1)YZSA2
2b(2n'+1)YX + n'(n'~1)YXSB2
2b(2n'+1)YY + n'(n'-1)YYSB2
2b(2n'+1)YZ + n'(n'-1)YZSB2:
- 2an'YXSAB2 - 2bnYXSAB3 -

- 2an'YYSAB2 - 2bnYYSAB3 -

YXSAB=4abYZSABl - 2an'YZSAB2 - 2bnYZSAB3 - -

LoopfOVer angular momentum on Kshell and Lshell

(Kno=0,kc, an=0,XD

, KL 1s the variable that lables a

unique Kno, Lno pair)

Loop over t' = O;vKno+Lno+2

If t' < Kno+lLno

compute XX, XY, XZ, XXFA, XYFA, XZFA, XXSA,
XYSA, XZSA, XXFB, XYFB, XZFB, XXSB, XYSB,
XZsB, XXSAB, XYSAB, XZSAB

If t' < Kno+Lno-2

compute XXSC2, XYSC2, XZSC2

If t' <€ Kno+Lno-1

compute XXFC2, XYFC2, XZFC2, XXAC2, XYAC2,



XZAC2, XXBC2, XYBC2, XZBC2
If t' < Kno+Lno+l

compute XXFCl, XYFCl, XZFCl, XXACl, XYACI,
XZAC1, XXBCl, XYBCl, XZBCl

compute XXSCl, XYSCl, XZSCl

XXFA(LJ ,KL)=XXFA
XYFA(1J,KL)=XYFA
XZFA(1J,KL)=XZFA
XXFB(IJ,KL)=XXFB
XYFB( LJ,KL)=XYFB
XZFB(1J,KL)=XZFB
XXSA(LJ,KL)=XXSA
XYSA(LJ,KL)=XYSA
XZSA(1J ,KL)=XZSA
XXSB(LJ,KL)=XXSB
XYSB(1J,KL)=XYSB
XZSB(1J,KL)=XZSB
XXSAB(1J,KL)=XXSAB
XYSAB(1J,KL)=XYSAB
XZSAB(LJ,KL)=XZSAB
XXFC(IJ,KL)=2cXXFCl ~ 1XXFC2
XYFC(IJ,KL)=2cXYFCl - iXYFC2
XYFC(1J,KL)=2cXZFCl - 1XZFC2
XXSC(IJ,KL)=4c2XXSCl - 2¢(21+1)XX — 1(i-1)XXFC2
XYSC(IJ,KL)=4c2XYSCl - 2c(21+1)XY - 1(i-1)XYFC2
XZSC(1J,KL)=4c2XZSCl - 2c(21i+1)XZ - 1(1-1)XZFC2
XXSAC(LJ,KL)=2cXXSACl — 1XXSAC2
XYSAC(LJ,KL)=2cXYSACl - 1XYSAC2
XZSAC(LJ,KL)=2cXZSACl - 1XZSAC2
XXSBC(1J,KL)=2cXXSBCl - 1XXSBC2
XYSBC(IJ,KL)=2cXYSBCl - 1XYSBC2
XZSBC(LJ,KL)=2cXZSBCl - 1XZSBC2

Expand about the four shells generating the appropriate 1J,

and KL for the particular integral in question (Int array)
only indicating one type of derivative for each direction
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ax 4) 2%
(wv[po) ¥ = (uv|po) * + XXFA(LJ,KL)*XY(LJ,KL)*XZ(1J,KL)

a_a a_a
(uv|po) X X = (uv|pa) ¥ * +

XXSA(IJ,KL)*XY(1J,KL)*XZ(1IJ,KL)

a a_a
(uvlpc)ax Y o= (uv|pa) *Y 4+
XXFA(LJ,KL)*XYFA(IJ,KL)*XZ(1J,KL) -

.a_b_ a_b v
(uv|pa) * X = (uv|pa) * X +

XXSAB(IJ,KL)*XY(1J,KL)*XZ(1J,KL)

b a,b
(HV|90)ax Y = (uv|pa) ¥V +
XXFA(LJ,KL)*XYFB(1J,KL)*XZ(1J,KL)

a_.c a.c
(uv]po) XX = (uv|pa) X X +

XXSAC(IJ,KL)*XY(I1J,KL)*XZ(1J,KL)

S a,c, . oy ¢
(uv|pa) XY = (uvloo)ax Yo+
XXFA(LJ,KL)*XYFC(1J,KL)*XZ(1J,KL)

use translational invariance relations of table I11.2.2 to get
the derivatives with respect to nuclear center D
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