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AbstracL A system of di.t!usion equations modeling free convection near a 

wall is solved by a grid free random walk method that involves creation of the 

vorticity at the boundary. We prove that the pointwise error and the least 

squares error of the computed solution tend to zero in probability as the time 

step tends to zero and the number of particles in the random walk increases. 

Key words. convergence, random walk, vorticity. 
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Introduction. The purpose of this paper is to prove the convergence of a 

random method for solving a coupled system of di.fiusion equations. The equa­

tions describe free convection of an incompressible fluid. The flow is parallel to 

a hot vertical wall and is caused by the uneven heating of the fluid. This problem 

is of interest because it involves creation of vorticity at the boundary. The 

mathematical solution can be written doWn explicitly and this fact allows us to 

estimate the rate of convergence for the random method. both for the expected 

value and for the variance. 

The algorithm was presented by Ghoniem and Sherman in their survey 

paper on random methods as an illustration of the basic approach, {see [9] ). 

We regard the free convection problem as a model for more complicated prob­

lems in fluid dynamics. In increasing order of complexity we have random 

methods for the reaction-di.ffusion equation. the Prandtl ~oundary layer equa­

tions and the Navier-Stokes equations, {see Chorin (5,4,3]). The basic idea in all 

three cases is to use a fractional step method. In the first step we solve·the non­

linear part of the equations by a deterministic method and in the second step we 

simulate the di..tfusion part of the equations by a random walk technique. If the 

problem involves boundaries we must also satisfy the boundary conditions. This 

is done in an intermediate step by creating vorticity at the boundary. 

The analysis of the convergence of random methods is less advanced than 

the understanding of the underlying di.fierential equations. In addition, the 

methods have been applied to physical problems that are so complicated that 

they- at present -defy analysis. A good example is turbulent combustion, {see 

Ghoniem, Chorin and Oppenheim [8]). However, Yarchioro and Pulvirenti [14] 

have proved that in two dimensions the random vortex method converges weakly 

to a weak solution of the Na\o"ier-Stokes equations. A similar statement for the 

Prandtl boundary layer equations can be found in Benefatto and Pulvirenti [1]. 

For the reaction-dit!usion equation Hald (19] has proved convergence of an 
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inefficient version of Chorin's method, whereas Brenier [2] has generalized 

Choi"in' s method to nonlinear advection-diffusion equations and proved the con­

vergence of a deterntinistic version of the algorithm. The convergence of the 

random methods is not really in doubt but because of the statistical error it is 

difficult to check the dependence on the various parameters carefully, (see Mil­

inazzo and Satfman [15] and Roberts [16]). 

This paper is organized as follows. In section one we discuss the physical 

problem. give the d.ifierential equations and write the solution down explicitly. 

One of the terms in the solution can be interpreted as coming from the creation 

of vorticity at the boundary. In section two we present the numerical method. 

Since the ordering of the intermediate steps in a fractional step method is arbi­

trary we have several choices. Here we follow Ghoniem and Sherman [9] as their 

choice leads to a simple proof. but the other versions have similar accuracies. 

To prove that the random method converges we must establish two facts. First 

that the expected value of the computed solution tends to the exact solution as 

the time step tends to zero. and secondly that the variance goes to zero as we 

use more and more particles. By approximating the gradient of the solution by 

a finite number of particles (or vortex sheets) and following these we in et!ect 

reduce the variance of the computed solution. which we obtain via integration. 

This idea i.s due to Chorin. It is stated in [5], but used implicitly in the random 

vortex method [3]. 

In section three we will prove the convergence of the method, but only 

pointwise. Our estimates are very crude, but uniform in space and time as long 

as our final time is bounded. In the proof we use only elementary probability 

theory. Two interesting questions remains. namely: '1s the estimate of the vari­

ance of the correct order of magnitude?" and "What happens as the viscosity and 

the thermal d.ifiusivity tend to zero?" In section four we will show that the vari­

ance of the solution does not go to zero just b~cause the time step goes to zero, 

\,' 
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even though the number of computational elements at a fixed time increases. 

This is not as surprising as it sounds. It corresponds to the fact that a finite 

dit!erence scheme will not converge unless both the mesh length and the time 

step tend to zero. ?mally in section 5 we use nonunifor:m bounds for the 

expected value and for the varlaJ?.ce to estimate the global error of the com­

puted solution in a least squares sense. We can then study the effect of the 

viscosity and cill!usivity. 

1. The di1ferential equations. In this section we will present the cill!erential 

equations for a one dimensional model of free convection and give the 

mathematical solution. We consider an incompressible ftuid in the half space 

:: >O and assume that the velocity u and the temperature T depend only on the 

distance z to the wall {at z=O). Our cill!erential equations are {see [9]) 

1.tc = VU:: + g{J'T 

T, =aT=. 

(1.1) 

(1.2) 

Here v is the kinematic viscosity, g is the acceleration due to gravity, {J' is the 

coefficient of thermal expansion of the tluid and a is the coefficient of thermal 

cill!usivity. The first equation is derived from the Navier-Stokes equations in a 

gravitational fteld while the second is a simplitled version of the equation for 

beat transfer, {see (13, p. 189 and p. 213]). To complete the description of (1.1) 

and { 1.2} we need the initial conditions 

u(z,O);;;; 0, T(z,O} = 0 

for O<z <..... For t >0 we adopt the boundary conditions 

u(O,t)::: 0 

T(O,t) = 1 

u{z,t) ... o as z ... a 

T(z,t} ... o asz ... o. 
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Throughout this paper we assume that g {3'= 1. This simplifies the writing. 

The solution of the heat equation (1.2) with the appropriate initial and boundary 

conditions is 

(1.3) 

We can now find the solution of the inhomogeneous equation ( 1.1). By using 

Duhamel's principal and the Green's function for the heat equation on a half line 

and with a Dirichlet boundary condition at the origin (see Hellwig [ll,p. 25 and 

p. 53 ]), we obtain 

t • 8 -(z-v)B/4~C-.) 
u (: ,t) = .[ .[ ( v'41111(t -s) 

e -(~+v)2t.w(c-> 
v'4rrv(t -s) ) T(y ,s) d:y ds · (1.4) 

This formula shows that the velocity u is positive throughout the tluid. To 

analyze the solution further we introduce the vorticity ~ and the heat tlux q by 

- -
u(:.t) = J ~(y,t) riy T(:.t) = f q(y,t) d:y . 

• • 
Thus -t and -q are the gradients of u and r. Let rp(% ,a2) be the normal density 

with mean 0 and variance a2, Le. rp=(21Ta2)-V 2exp( -:.~:2/ 2a2). Since 

a .. rp(:-y)=-avrp(:-y) it follows from (1.4) that 

t -
t(:,t) = Jfa11 [rp(:-y,2v(t-s))+rp(:+y,2v(t-s))] T(y,s) d:y d.s. 

0 0 

After integrating by parts we arrive at 

' t 
~(= ,t) = -J2.;(: ,2v(t -s)) d.s + J2.;(: ,2a.s +2v(t -s )) ds . {1.5) 

0 0 

Here we have used the identity 

rp(: -z ,a+b )+rp{: +z ,a+b) = {1.6) 
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-
f[~P(.:z:-y,a.)+ip(.:z:+y,a.)] [~P(y-z,b}+ip(y+z,b)] d.y 
0 

with z =0. This follows from the fact that the convolution of two .normal densities 

with means z ,z and variances a.,b is the normal density with mean .:z: +z and 

variance a.+b, (see [7,p. 45]). Finally, by integrating both sides in equation (1.5) 

with respect to z we get 

It turns out that the expected value of the computed velocity is a discre­

tized version of the right hand side of (1.7). Moreover, the numerical method 

reveals that the first term in the solution is due to the creation of vorticity at 

the boundary. After several changes of variables in (1.7) we find that 

u(.:z:,t)=tf (.:z:/V201 ,11/ c;t). where! can be given explicitly. This result is close 

but not "identical to Dlingworth's form of the solution, (see [12]). It shows that 

the maximum of u is a linear function of· time and depends only on the· Prandtl 

number 11 I a. . 

2. 'lbe random method. In this section we present the numerical method 

following Ghoniem and Shennan [9]. The basic idea is to approximate the gra­

dients of u and T by a finite number of particles and let these particles undergo 

random walk. Thus we solve the differential equations 

(2.1) 

(2.2) 

We begin with the heat equation (2.2). At time t =0 we place N particles at 

the origin. We assume that ea:::h particle has mass 11 N. In each step we let the 



6 

particles jump by an amount which is drawn from a Gaussian distribution with 

mean 0 and variance 2~t. If a particle lands at a point x <0 we reflect it across 

the wall to I x I . In probability language this is called a reflecting barrier and 

corresponds to a Neumann boundary condition for the differential equations. To 

describe the process mathematically we let XJ' be the position of the j'th parti­

cle at time t =nllt. Let ~X~ be a collection of independent normal distributed 

random variables with mean 0 and variance 2~. Then 

(2.3) 

with Xl=O for j =1, · · · ,N. We denote the approximations to the heat flux and 

the temperature by Q and 9 ("'tP,U.17=heat). To express these approximations we 

let o be the Dirac delta function and let H be the Heaviside function. Here 

·H(x )= 1 if X;;J!:0 and 0 otherwise. At t =nllt we set . 

Q(x,t) = Nt f o(XJ'- x) 
i=l 

9(x,t) = ~ f H(XJ'- x). 
i=-1 

(2.4) 

Thus for each (x ,t ), Q is a random measure and 9 is a random variable. The 

temperature at a point x is the number of particles to the right of x times the 

mass ot a single particle. Note that our definition of the Heaviside function 

ensures that the approximate temperature distribution satisfies the boundary 

condition at x =0 exactly. 

The complete fractional step method for (2.1) and (2.2) consists of four 

intermediate steps 

We have already discussed the first step. The last three constitute a fractional 

step method for solving (2.1). Here J;; ~=0 is shorthand for the creation of vorti-

\.· 



.. 

...... 

7 

city at the boundary. At time t =nl!..t we approximate the vorticity~ by nN vor­

tex sheets of strength l!..t IN and an equal number of strength -MIN. Here a 

vortex sheet of strength s is a plane parallel to the wall such that the velocity 

decreases by the amount s when we cross the sheet in the direction of increas-

ing values of :z:. The velocity u.(:z: ,t) is approximated by the total strength of the 

vortex sheets in the interval [:z: ,<»). Thus u.(O,t )=0. Note the change in language: 

We use particles to calculate the temperature and sheets to calculate the velo­

city. We simulate the difiusion ~' =v~~ by a random walk. The displacements 

are drawn from a Gaussian distribution with mean 0 and variance 2v6t. If a vor-

tex sheet lands at :z: <0 we retlect it back into the tluid. Next we solve ~: =q by 

Euler's method, Le. 

t(:z:,t+At) = ~(:z:,t) +At q(:z:,t). 

At the position of each heat particle we introduce a vortex sheet of strength 

Ill IN. The velocity u. at :z: =0 will therefore be Ill. To satisfY the boundary con­

dition u. =fa-t=O we create N vortex sheets of strength -l!..t IN at the ~- This 

completes the description of the algorithm. Note that we have no sheets in the 

beginning of the first step and in the end of the last step we have N sheets at the 

origin. 

To describe the solution of (2.1) more precisely we let YJ"·" be the position 

at time t =nflt of one of the N vortex sheets that were created at the origin at 

time m.flt. Similarly we let zr.ra be the positions at time nM of one of the N 

vortex sheets that were introduced into the tlow at time m.l!..t. Thus YJ"·"'=O and 

we set Zf·"'=X]" for j = 1. · · · .N and m. = 1, · · · .n. Let ~ YJ be a collection of 

independent normal distributed random variables with mean 0 and variances 

2vflt . Then 

(2.5) 
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(2.6) 

for n>m. Let n be fixed. Since the Y's are independent we conclude that all 

the ij·" are independent. Moreover, the class ~ lj·"~ is independent of the class 

~Z}"·"~. However, two random variables ZJ"·" with the same j but di.fferent m 's 

are not independent, because the two vortex sheets were spawned by the same 

heat particle, albeit at cillferent times. We illustrate the dependence in Figure 1. 

On the other hand, the classes ~zr.n ~. · · · .~z.»'.n~ are mutually independent. If 

::: and U denote our approximations to the vorticity and the velocity then 

:::(z,t) = ..L f< -flt ~ o(}J'·" -:) +flt ~ o<zr·" -:) > 
N j=l rn=l rn=l 

U(z,t) = .L f ( -M f: H(lj.n -:) + flt f; H(Zj·"- :) ). (2.7} 
N i=1 rn=l rn=l 

This shows that the computed velocity U at (: ,t) is really the number of 

vortex sheets to the right of % times the strength of a single vortex sheet. Here 

the vortex sheets are counted as + 1 if they were introduced into the flow and as 

-1 if they were created at the origin. Since the random variables with a fixed n 

but cillferent j 's are independent we see that U is an average of N independent, 

identically distributed random variables. Thus instead of using N heat particles 

with mass V N we may as well use one particle with unit mass and average over 

N trials. We can therefore assume that N=1 and this simplifies our analysis con­

siderably. 

3. Pointwise convergence. In this section we will prove the convergence of 

the random method for the temperature and for the velocity. Because of the 

dependence between some of the particles we shall be satisfied with very crude 

estimates for the expected value and for the variance (here denoted by E and 

va:r ). 

, .. 

\/· 
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THEOREM 1. Let u(z,t) a:nd. T(x,t) be the solution of(1.1) a:nd. (1.2) with 

gf3'=1. Let U(z,t) a:nd. 9(z,t) be the ra:nd.om solutions given by (2.7) a:nd. (2.4). 

If (z ,t) is fized. a:nd. t =n~t >0 then 

IE9- Tl = 0 lEU -u IsM 

va:r9 :S 4~ 

Remark. The factor t 2 in the variance corresponds to a factor t in the stan­

dard deviation. Since the maximum velocity is a linear function oft we expect 

that the error bound is at least proportional to t. By using Chebyshev's inequal­

ity (see [7,p.149]) we can estimate the error in probability. For each Jc > 1 and 

each (z ,t) the inequalities 

lc 
l9(z,t)- T(z,t) I :S V4N 

let I U(z,t) -u(z,t) I :S ~t+ ..J3N 

are satisfied with a probability greater than 1-/c - 2• If lc =3 the bounds should 

hold in roughly 8 out of 9 trials. Note that our estimates do not depend upon the 

viscosity or the ditiusivity. A similar phenomenon has been observed by Sethian 

and Ghoniem [17] in their simulation of two dimensional viscous fiow over a half 

step. The amount of work for our algorithm is roughly Nt2/ M 2• Thus we get the 

smallest error bound for the computed velocity if N is proportional to t 2/ ~t 2 • 

To obtain high accuracy in a particular run we need that N is large. If we only 

have a few particles then there is no point in taking small time steps . 

Proof. We begin with the convergence for the temperature. This is the easi-

est part of the proof. We assume that N=l and drop the subscript j. We will 

show that the probability that a heat particle lies in the interval [O,z] at time 

m.~t is 
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z 

P(X"'~:z:) = J 2rp(y ,2a.m!lt) dy. 
0 

(3.1) 

This is proved by induction. For m = 1 xm = I X I . Thus (3.1) follows from the 

symmetry of the density function for X. We assume next that (3.1) holds for 

some m~l. It follows from (2.3) that the density for _xm+I is h(:z: )+h( -:z: ), where 

h is the density for X"'+ X. Since X"' and X are independent we have 

-
h(:z:) = J rp(:z:-y,a.)2rp(y,b)d.y 

0 

where a. =2a.m.~ and b =2~, {see [7.p. 7]). By using (1.6) with z =0 we see that 

the density function for X"'+t is 21!'(:z: ,a. +b). This completes the induction. 

We can now prove that the temperature converges. Let t =nt:.t be fixed and 

consider the random variable H(X"--: ). It. is one if X"Ci!:% and zero otherwise. 

Thus 

E H(X"-:) = P(X"~). va:r H(X" -:z:) = P(X"Ci!=Z )P(X" <:z: ). (3.2) 

S'mce 9 consists of N independent random variables and the variance of 

H(X"-:z:) is always less than 1/4 we conclude from (2.4), (3.1) and (1.3) that 

1 J:l.. • 2 e -vz/4a.& 
E9(:z: ,t) = N· ~ f ...r;;;m;:[ d.y = T(:z: ,t) 

j=l : 41T'a. 

{3.3) 

Our estimate for the variance is .the best possible uniform bound. In fact ·we 

have equality at the point :z: where P(X"Ci!:Z )=P(X" <:z: ). On the other hand it is a. 

severe overestimate if :z: I~ is either very small or very large. 

We will now discuss the approximation of the velocity. We observe first that 

it is not essential in the derivation of (3.1) that all X's have the same density. 

What matters is that the X's are independent and normal distributed. Under 

this assumption the variances are additive.. By using this observation we 
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conclude from (2.5) and (2.6) that 

• II# 

P(Y"'·n~) = j2 rp(y,2v(n-m)M) d.y 
0 

II# 

P(zm·n~) = j2 rp(y,2a.mtlt + 2-v(n-m)tlt) d.y. 
0 

(3.4) 

(3.5) 

Here we have suppressed the subscript j as the distributions do not depend on 

j. The first result holds for m.=l, · · · ,n-1, the second for m.=l, · · · ,n. In 

addition yn.n =0. We can now calculate the expected value of the velocity. Let 

z>O and t =ntlt where n~2. By using (2. 7) and {3.2) with ym.n and zm.n instead 

of X" we conclude from (3.4) and (3.5) that 

(3.6) 

The sums in (3. 6) approximate the integrals in the exact solution ( 1. 7}. Since 

the Yj'·n are created at the origin we can now understand why the first term in 
C.re.ntion .:.+ 

(1. 7) must be regarded as due to the vcTti,\t, at the boundary. To estimate the 

error in the expected value of U we let J (s) and g(s) be the integrals in (3.6) as 

functions of s =mt:J. Note that we suppress the dependence on z. By using a 

change of variables we see that 

- 2 e-va/2 
9 (s) = J:rl2(o.-..,);+2ve ....t21f d:y. (3.7) 

We consider the two cases ~a and v>a separately. In the first case J is a 

decreasing function of s while g is increasing. This implies that the first sum in 

' (3.6) is a lower Riemann sum for the integral fa J (s )ds while the second sum is 

' an upper Riemann sum for the integral fog(~)d.s. We remember now that the 
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error in approximating an integral by a Riemann sum is less than the mesh 

length times the total variation of the funct;ion. But our functions are monotone. 

Hence 

Os E U -us 6.tf(O)+M(g(t)-g(O)) = Mg(t) 

where we have used that f (O)=g (0). If v>a then g is a decreasing function of s. 
t 

The second sum in {3.6) is therefore a lower Riemann sum for fog (s )d.s. Conse-

quently 

-Mg(O) < -~(g(O)-g(t)) s E U-u s 6.tf(O). 

By combining our estimates and using that O<g <1 we conclude that 

IE U(:.t:,t)-u(z,t) I s 6.t max (g(O),g(t)) < M. (3.8) 

To complete the proof we must estimate the variance of the computed velo­

city. For simplicity we set N=l and drop the index j. Since the ym.n are mutu­

ally independent and independent of the ZW'-" it follows from (2. 7) and _Cauchy­

Schwarz inequality that if :z >0 then 

va.rU(:z,t) = va.r-6.t~1 

H(Y"'-"-z) + va.rM f; H(zm.n-:z:) 
m=l m=l 

s M 2 ):\a.rH(Y"'·"-z) + M 2 n ~ varH(Z"'·"-:r:). {3.9) 
m=l m=l 

By using that the variance of a zero-one random variable is less than 1/4 we con­

clude that varUs5t2/ 16 if N=L If N>1 then U consists of N independent, 

identically distributed random variables and in this case var U (z, t) is less than 

5t2/ (16N). The proof simplifies if n=l. Note that our estimates also hold at 

:z =0 because the computed temperature and the computed velocity satisfy the 

boundary conditions exactly. This completes the proof. 
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4. Improvements and limitations. Our bound for the variance of the ran-

dom velocity does not tend to zero as the time step tends to zero. This is not 

due to an imperfect technique. In this section we Will show that all the covari-

ances of the zm.n are positive and this excludes cancellation in the expression 

for the variance. The problem can be circumvented by modifying the algorithm, 

but the modification is not in the spirit of random solution of di!Ierential equa-

tions. 

We begin with a reexamination of (3.9). The variance of the sum of the 

dependent random variables in (3.9) is equal to 

M 2 f: var H(zm.n-z) + 2flt2 '2:1 f: cov ( H(z'-n-x)H(Z""·n-x) ), (4.1) 
m=t l=l m=l+l 

·(see [6,p. 216]). We denote the covariances _by C'·m.n. Let r=LM, s=mt.t and 

t =n.M. We will show that 

C'-"'.n = C(2a.r,2v(t-r),2a(s-r)+2v(t-s)) 

where C is a continuous positive function. This implies that the double sum in 

( 4.1) tends to the double integral 

' ' zJ Jc(2ar,2v(t-r),2a(s-r)+2v(t-s)) ds rb-. 
Q 'I' 

(4.2) 

This expression is positive. Since the first sum in (3.9) and the first sum in (4.1) 

are O(M) we conclude that the variance of the computed velocity tends to the 

expression in (4.2) times 1/ N as the mesh length tends to zero. We are there­

fore lead to 

OBSERVATION 1. The bounds for the va.ria:nces in. Theorem 1 ha:ve the 

con-act dependence on. thsz number of particles. 

The calculation of the covariances C'·m.n can best be understood by an 

example. Let 
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zm = 1 1 x + Vd + v21 · 

where the 1'; and the ~ are independent normal distributed random variables 

with mean 0 and variances II.& and b,. We assume that X has density 2~(x ,c) for 

x~O. If a 1 =a2=b 2=21/~t and 2b 1 =c =~t then we have the situation indicated in 

Figure 1 with Z' =z2·4 and Z"' =ZM. Finally we introduce the functions 

F,(z) = E H( I I z+Ytl +Y2I-z) 

F m ( z) = E H ( I I z + Vd + V2l -x) 

(4.3) 

which we shall evaluate explicitly. Note that Fi and Fm are positive. Since X. 1'; 

and ~ are independent it follows from the definition of the covariance that 

- - -ct·m·" = J2rp(z)Fi,(z)Fm(z)d.z- fzrp(y)Fi,(y)d:y Jz~(z)Fm(z)d.z 
0 0 0 

--= 2J J rp(y)rp(z)[Fi,(y)-F,(z)][Fm(y)-Fm(z)] d:yd.z. (4.4) 
0 0 . 

Here we have suppressed c in ~(z ,c). We will show that Fi and Fm are increas-

ing functions of z. The product [ .. ][ .. ] in (4.4) is therefore positive and this 

implies that ct.m-">0 as claimed. Since the Y's are independent we can com­

pute the expected value in (4.3) as 

--
--

We attack the innermost variable first. Let z+y 1=77 1• By splitting the integral 

into 77 1>0 and 771 <0 we find after a change of variables that 

- -
F,(z) = J J H{l77t+Y21-x)[~('77t-Zl,al)+~(771+z,a1)]~(y2,a2) d77td.Y2· 

-o 

Next we interchange the order of integration, set 77 1 +y2=772, split the integral 

into 772>0 and 112<0 and get 

--

~1. 
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By interchanging the order of integration, using the definition of the Heaviside 

function and (1.6), we obtain 

-
F,(z) = j[~(7J-z,a)+~(ry+z,a)] d.7J (4.5) 

~ 

where a=a 1+a2. Since z and z are positive (4.5) implies that Fz(z) is an 

increasing function of z. The same result holds for Fm(z). Equation (4.5) gives 

the general result. If we return to the original variables then it follows from 

{2.3) and {2.6) that zLn and Z"'-" depend on J(i if l<m. Consequently F,(z) is 

given by (4.5) with a=2v(n-l)M. For F"'(z) the variance a is replaced by 

b=2a(m-l)~t+2v(n-m)~t. Finally (3.1) shows that c=2alM. By combining 

these observations we can interpret the double integral in { 4.4) as the evaluation 

of a positive function· at the grid points of a two dimensional gri9- This com-

pletes the proof of Observation 1. 

Our analysis shows that the variance of the computed velocity would be of 

the order ~tIN if the vortex sheets were independent. This can be arranged. 

At the m. th time step we let the particles start at the origin and jump according 

to a Gaussian distribution with mean 0 and variance 2am~t. Those that land at 

z <O are retlected across the boundary. The costs for the two algorithms are 

identical. The modified version of the algorithm uses that we can simulate the 

solution of the heat equation by taking one large step instead of many small. 

However, to take one large step is contrary to the spirit of numerical solution of 

di.frerential equations. We will therefore not discuss this variant any further. 

--- -~~-------
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5. Convergence .in L2• Our estimates· in Theorem 1 say nothing about what 

happens at several points at the same time. From a practichl point of view we 

would like to know that the maximum error in the computed solution tends to 

zero in probability. I have been unable to obtain such a result. In this section 

we -will show that it is unlikely that the computed solution ditfers from the exact 

solution by a moderate amount on a large set or by a large amount on a 

moderate set. The error may still be large on a small set. To establish this 

result we need 

LEMMA 1. IJ a>O a:nd. b >0 then 

Proof. Let I 1 denote the first integral. Change the variable z to z =z -Va 

~· and set J (z }=fa exp{ -y2/ 2}dy where P=.../7i70. By interchanging the .order of 

·integration in I 1 we get 

To compute the double integral we integrate by parts. This yields 

The value of I 1 can now be computed. To evaluate the s_econd integral in Lemma 

1 we note that J.- _,.,..2~ = 1- r:l-lrZ,rp and use the value of I 1• This completes 
:/vfl Jo 

the proof. 

We will estimate the relative error in the computed solution. We must 

therefore find lower bounds for the L 2 norm of the temperature and of the velo­

city. Since T and t- 1u are functions of z/~ it follows that the L2 norms of 
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T and u. are proportional to (2at )11 4 and t (2at) 114. This simple argument does 

not give the value of the constants nor does it indicate the dependence on the 

Prandti number v/ a. By using Lemma 1 we can calculate the L2 norms expli-

citiy. 

LEMMA 2. Let u.(z,t) a:nd T(z,t) be the solution of (1.1) a:rpd (1.2) with 

g{J'=l. Then 

~ 

I u.l2 = 32 t 2 
a2 <v'2-1)(va+Vii)2+V2(va+Vii)...;a:+:ii+v'2(a.+v) 

1s-..11f ( va +Vii+ ...ra:+v)2( va + w)2 ( va +Vii+ v2VCX+v) 

Proof. We begin with the temperatUI"e. By using (1.3) and Lemma 1 with 

a=b =2at we find that 

from which the first statement follows. Let next u.=-A+B where A and B are 

the integrals in (1.7). We replace the variable t -s in A by s and shall compute 

lu 12 as J A2+B2-2AB. Fubini's theorem and Lemma 1 yield 

- c c - - -vl!/2 - -v!/2 J A2d.:z: = J cLsJ d.a J d.:z: f 2 ~ d.y f 2 ~ d.y 
o. o o o ~:tV'2W 2rr ~:tV2W 2rr 

2 c c . 
= _ ~ J d.s J d. a (../Vi +..fVU-vrliS""'""'":"'"+v-a~]. 

vrr 0 0 . 

A similar calculation can be carried out for J B 2 and J 2AB and by combining 

the results we get 

2 c c .1.. .1.. .1.. 
I u. 12= _ ~ J d.s J d.u[2(liS +{a-v)a+vt) 2 -{liS +va) 2 -((a-v)s +vt +{a-v)a+vt) 2 ] 

V1T" 0 0 
--- -· - --~- -· --

A.. A.. A.. A.. A..l 
(2v) 2 -2v 2 

_ (2a) 2 -2(a.+v) 2 +(2v) 2 l 
v2 {a-v)2 
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It is not obvious from this formula what h~ppens as a-v tends to zero or even 

that B u. I 2 is positive. The rest of the proof therefore consists in transforming 

the expression into a form which we can work with. Since v-1+(a.-v)-1= 
av-l(a-v)-1 it follows that 

a..Ja-1/VV ]. 
a-v 

By writing (a+v)2 as (a.-v)2+4av and using that a-v is equal to 

(..Ja-Vv)(..Ja+VV) we obtain 

a+vav'ii+v Jl 

va+Vii 

We can now put all terms in( .. ] over a common denominator. Since 2Viiii equals 

(..Ja+Vv)2-(....rci+ii)2 we can. express the nwnerator as {a.+v)2 times a fourth 

order polynomial in r-=(""ii+Vii)/v'a.+v. After factoring this polynomial we have 

{5.1) 

The formula in Lemma 2 can now be derived from {5.1) by rationalizing the 

numerator in (J'-1)2• This completes the proof. 

The expression for I u. I 2 in Lemma 2 is too complicated to be usefUl. It is 

better to have a simple approximation. Since 1 <~....12 it follows that the last 

quotient in (5.1) is greater than 3/8 and less than 1{7-4"'1/'2). We can therefore 

estimate the L2 norm of u by 

~t: v'at +vt (1+p)-2(1+ ~ )-2 ~ I u.J 2 ~ 2·the lower bou.nd. {5.2) 
5vtr 1+ 

Here P=v/ a is the Prandtl number and we have simplitled p-1()'-1)2 by rational­

izing the numerator. The lower bound in {5.2) is best possible because we have 

equality for a=v. 
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THEOREM 2. Let u(z,t) and. T(z,t) be the solutions of {1.1) and. (1.2) with 

g{J'=l. Let U(z,t) a:n.d. 9(z,t) be the ra:nd.om. solutions given by (2.7) and. (2.4). 

Set {J=v/ a.. If t=nllt >0 and. k>1 then 

1 __ 1_~ P( I 9-T I ~-k-) 
k 2 . IT I VN 

1-.L~ P( I U-u I ~ (1+{3)(1+ 1+v'P ){ M...+ _k_)) . 
k 2 I u I v"'+P t VN 

Rema:rk. The factor that depends_ an the Prandtl number {J is an increasing 

function. It is always greater than 2 and less than 5 if {J~l. It is less than 20 if 

{J~1. 75. If 6t =tIn, N =n 4, k =n and {J~ 1 then we have 

P( I U-u.l >10 I u I /n ) ~ 1/n2 . 

It is surprising that our bound improves as t increases. If 6.t is small and t is 

comparable to 6.t then the absolute error is SID;all with high probability, but the 

relative error could be large. 

Proof. We begin with the temperature. Since T=E 9 it folloWs from 

Chebyshev's inequality {see (7,p. 149]) that 

To compute. the expected value we use Fubini's Theorem. (3.3) and Lemma 1 

with a. =b =2at. This yields 

E ( 1 e-E e 12
) = j va.r e d:r: = ! ~ ("'2-1) V2iii 

0 

= I TJ2 
...!2N 

Here we have used Lemma 2. Since the probability of an event is one minus the 

probability of the complementary event we have proved the first claim in the 

theorem. We will now study the velocity. Let t5 be a constant such that 

I E u -u I so I u. I . Then 
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Thus it follows from Chebyshev's inequality that 

We will choose the value of e such that _the right hand side is less than 1/ k 2 . To 

estimate the expected value we use Fubini's theorem and (3.9) with the extra 

factor 1/ N. By combining (3.2) with the distributions in {3.4) and (3.5) and 

using Lemma 1 we get 

E ( 19-E 91 2) ~ ~ !:lt2 Y;1 
..J21 rr (2--..12) ..J2v(n-m )£t 

m=l 

+ ~ !:lt2 n "'~ 1 ..J21 rr {2--../2) ..J2a.m£t +2v(n -m.)& 

5t2 2 
~ 4N ...;rr {2--../2) v'max{a.,v)t 

By inserting this result in (5.3) and using our lower bound (5.2) for I u 12 it fol­

lows that the last term in (5.3) is less thank-2 if 

1+~ k 
t = (1+.8> (1+ vm > ...m . 

To find a convenient choice of owe use the inequality (3.9). From definition {3. 7) 

and Lemma 1 with a.=b =2max{a.,v)t we conclude that 

~ llt 2 -v'271f (2--../2) ..J2max{a.,v)t . 

Combining this result with the lower bound for I u I 2 we obtain 

This completes the proof. 

,•· 

\.. 
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FIG. 1. Dependence between the vortex sheets 

that are introduced into the tlow. 
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