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PSEUDOPOTENTIALS AND TOTAL ENERGY CALCULATIONS: APPLICATIONS TO 
CRYSTAL STABILITY, VIBRATIONAL PROPERTIES, PHASE TRANSFORMATIONS, 
AND SURFACE STRUCTURES 

ABSTRACT 

Steven G. Louie 

Department of Physics, University of California, and 
Lawrence Berkeley Laboratory, Berkeley, CA 94720, U.S.A. 

A review of the applications of the pseudopotential method 
and total energy techniques to the electronic and structural proper
ties of solids is presented. With this approach, it has recently 
become possible to determine with accuracy crystal structures, 
lattice constants, bulk moduli, shear moduli, cohesive energies, 
phonon spectra, solid-solid phase transformations, and other static 
and dynamical properties of solids. The only inputs to these 
calculations, which are performed either with plane wave or LCAO 
bases, are the atomic numbers and masses of the constituent atoms. 
Calculations have also been carried out to study the atomic and 
electronic structure of surfaces, chemisorption systems, and inter
faces. Results for several selected systems including the covalent 
semiconductors and insulators and the transition metals are discussed. 
The review is not exhaustive but focuses on specific prototype 
systems to illustrate recent progress. 

I. INTRODUCTION 

In the past decade, it has become possible to compute with 
good accuracy a number of electronic and structural properties 
for simple solids and their surfaces without resorting to empirical 
means. Among the quantities obtainable from these calculations 
are crystal structures, lattice constants, bulk moduli, shear 
moduli, cohesive energies, phonon spectra, electron-phonon and 
phonon-phonon interactions, solid-solid phase transformations, 
and other static and dynamical properties. This development has 
opened up many exciting possibilites for the study qf condensed 
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matter since one is now in a position to predict properties of systems 
which were formerly inaccessible to theory or experiment. Possible 
applications are numerous--prediction of new materials; determination 
of the structure of surfaces, interfaces, and defects in solids; 
study of phase stability at high pressure; study of alloy stability; 
and so forth. 

Several factors have contributed to the present success of 
ab initio calculations for real materials systems. These include 
the development of approximations to the density functional formalism, 
refinements in band structure calculational techniques, invention 

·of the ab initio pseudopotentials, and development of techniques 
for calculating total energies. Equally important, of course, 
is the availability of modern high speed computers. 

This set of lectures reviews some of the many recent theoretical 
accomplishments in this area. 1 Experimental results are discussed 
only in so far as they bear on a theoretical result. In addition, 
in order to limit the scope of this review, emphasis will be placed 
on a few theoretical techniques--primarily the pseudopotential 
approach. Specific prototype systems are considered to illustrate 
the accomplishments of the theory for semiconductors, insulators, 
and transition metals. Some details of the calculations and results 
will be given, but the reader should. go to the original papers 
for more specifics. 

The organization of the lectures is as follows. A brief 
review of the theoretical techniques is given in Sec. II. This 
includes a discussion on the density functional formalism, generation 
of ab initio pseudopotentials, and techniques for band structure 
calculations. The bulk systems are discussed in Sec. III. The 
static structural properties are presented in Sec. IIIA. These 
results establish the accuracy of the calculations. Examples 
will be given for semiconductors, insulators, and transition metals. 
The vibrational properties are discussed in Sec. IIIB. Phonon 
frequencies are calculated using the frozen phonon technique. 
Complete dispersion curves along symmetry directions in the Brillouin 
zone are obtained from calculated force constants. Calculations 
of anharmonic terms and phonon-phonon interaction matrix elements. 
are also presented. In Sec. IIIC, results for solid-solid phase 
transitions are presented. The stability of group IV covalent 
materials under pressure is discussed. Also presented is a calcula
tion on the temperature- and pressure-induced crystal phase transi
tions in Be. In Sec. IV, we discuss the application of pseudopoten
tial calculations to surface studies. Si~icon and diamond surfaces 
will be used as the prototypes for the covalent semiconductor 
and insulator cases while surfaces of niobium and palladium will 
serve as representatives of the transition metal cases. In Sec. V, 
the validity of the local density approximation is examined. The 
results of a nonlocal density functional calculation for Si and 
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Ge are presented. Finally, Sec. VI presents a summary and conclu
sions. 

II. THEORETICAL TECHNIQUES 

In this section, we briefly summarize the major theoretical 
techniques employed in contemporary pseudopotential calculations.2 
The approach involves the use of ab initio pseudopotentials3-7 to 
com~ute the electron-core interactions and local density function
alsB-14 for evaluating electron-electron interactions. Several 
different basis sets2•l5,l6 can be used to solve the electron · 
wave equation. The particular choice is determined by the system 
of interest. Finally, the total energies and forces are calculated 
using a momentum space scheme. 17 

A. Density Functional Formalism 

One major difficulty in ab initio calculations of the properties 
of electronic systems is an adequate treatment of the many body 
electron-electron interaction. The most commonly used approach 
for conden~e~ matter systems is t§at of the density functional 
formalism. • Hohenberg and Kohn established that the electronic 
energy of a system of interacting electrons in an external potential 
Vext is a functional of the electron density. This is usually 
written in the form 

(1) 

The first term is the kinetic energy of noninteracting electrons 
of the same density; the second term gives the energy of interaction 
with the external potential; the third term is the electrostatic 
or Hartree energy; and the last term contains the rest, the exchange
correlation energy which is an universal functional of n. Further, 
the total energy is minimized for the correct ground state density, 
i.e. 

~~ = 0 (2) 

.... 
at the physical n(r). Given the energy functional, the problem 
of finding the ground state energy is reduced to solving a set 
of effective one electron equations with a local potential, the 
Kohn-Sham equations9 (in atomic units): 

{- t 72 + Vext(;) + VH(;) + ~xc[n]}~i(;) = Ei~i(;) (3) 

The exchange-correlation part of the effective potential is given 
by ~xc • cExc/Cn and the density n is obtained from the one-particle 
wave functions 
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where N is the number of electrons in the system. 

This formalism, therefore, reduces the many-body problem to 
an effective single-particle problem which in principle gives 

(4) 

the exact ground state energy. The central difficulty is specifica
tion of Exc·' The most widely used approach is the local density 
approximation (LDA)9: 

LDA J -+- -+- hom -+-E = dr n(r) £ (n(r)) 
XC XC 

(5) 

where c;~gm(n) is the exchange-correlation energy density of the 
homogeneous electron gas of density n. Several parameterizations 
of electron gas data are in common use.l0-14,18 The procedure 
in a typical calculation is: (1) Determine V ext from the constituent 
elements and an assumed geometry. (2) Calculate the electron 
energies and wavefunctions and determine n(t). (3) Evaluate the 
total energy E[n]. 

B. Ab Initio Pseudopotentials 

In the pseudopotential approach, Vext is replaced by an ionic 
pseudopotential which combines the nucleus and the core electrons 
into one inert entity, and the self-consistent field equations 
(Eqs. 3 and 4) are carried out only for the valence electrons. 
The ionic pseudopotentials, unlike the all-electron potentials, 
are nonsingular by construction near the nuclei leading to smooth 
valence electron wavefunctions which greatly facilitate the calcula
tions. Moreover, since the core electrons which do not influence 
the properties of the solid phase are removed from the problem, 
much higher numerical precisions can be achieved. Systems involving 
heavy atoms are not much more complicated than those with light 
ones. Table I depicts the precision requirements for calculating 
various cohesive and structural quantities. The only disadvantage 
of the pseudopotential approach is that the potential is nonlocal, 
i.e., angular momentum dependent. This, however, only imposes 
a small inconvenience in the calculations. 

Several simple schemes3-l have been formulated to extract 
ab initio ionic pseudopotentials from atomic calculations. The 
basic procedure is to generate a potential by inversion of the 
Kahn-Sham equation. Angular-momentum-dependent screened atomic 
pseudopotentials, vi, are first constructed with the constraints 
that: (l) the valence eigenvalues from the all-electron calculation 
and those from the pseudopotential calculation agree for a chosen 
prototype configuration and (2) the all-electron wavefunctions 
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Table I. Precision requirement for various structural 
quantities. 

Precision requirement 
cohesive energy 
lattice constant, bulk modulus 
phonon frequencies 

0.01 Ry/atom 
0.001 Ry/atom 
0.0001 Ry/atom 

Total crystal energy (referred to dissociated entities) 
all-electron calculation --1000 Ry/atom 
pseudopote~tial calculation --10 Ry/atom 

and the pseudowavefunctions agree beyond a chosen core radius, 
rc. With these constraints, it can be shown that the potentials 
have two centrally desirable properties. The electrostatic potential 
produced outside rc is identical for the all-electron and the 
pseudocharge distribution; the scattering properties of the all
electron atoms are reproduced with minimum error as the electronic 
eigenvalues move away from the prototype atomic levels. These 
two properties ensure a good transferability of the pseudopotentials. 
The final bare-ion pseudopotentials, V~on• are extracted from the 
neutral potentials by subtracting from each neutral vi the Coulomb 
and exchange and correlation potentials due to the pseudovalence 
charge density. 

In Fig. 1, the ionic pseudopotential for Si generated using the 
Hamann-Schluter-Chiang scheme3 is depicted. It is evident that 
much of the strong attractive Coulomb point ion potential near the core 
is reduced in the pseudopotential formalism. A comparison of 
the all-electron wavefunction with the pseudowavefunction is illus
trated in Fig. 2. It should be remarked that the exact form of 
the pseudopotential in the core region is nonunique since the 
potential is only required to reproduce the scattering properties 
of the ion core outside of a certain radius. The different generation 
schemes produce very different looking potentials. This feature 
can, in fact, be well utilized in tailoring the form of the ionic 
pseudopotential to suit the particular techniques used in a band 
structure calculation. Figure 3 s2ows an Si ionic pseudopotential 
generated using the Kerker scheme. Identical values were obtained 
from the two potentials for quantities of interest. 

The ab initio pseudopotentials together with the local 
density approximation have proven to yield excellent results as 
will be illustrated by the examples in this review. The ~asic 
assumptions in their construction are the frozen-core approximation 
and a decoupling of the core charge in the determination of the 
exchange-correlation potential seen by the valence electrons. 
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Fig. 1. Nonlocal ionic pseudopotential for Si generated using the 
Hamann-Schluter-Chiang scheme Ref. 3). The potentials for 
angular momentum 1 = 0, 1, and 2 are shown. The dash line 
represents the Coulomb point ion potential. 
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Fig. 2. Comparison of the 35 pseudowavefunctions and all-electron 
wavefunction for Si. 
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Fig. 3. Nonlocal ionic pseudopotential for Si generated using the 
Kerker scheme (Ref. 4). 

Since the local density exchange-correlation functionalsl0-14 are 
nonlinear in the charge density, the second assumption is not 
strictly valid when there is a large overlap between the valence 
and core charge densities or when spin-density-functional calculations 
are performed. However, this problem can easily be eliminated 
by the use of nonlinear ionic pseudopotentials7 where the core 
charge density is explicitly carried along in a calculation for 
the purpose of evaluating the exchange-correlation potentials 
and energy densities. 

C. Basis Sets 

To solve the Kohn-Sham equations with pseudopotentials, the 
standard approach is to expand the electron wavefunctions by a 
plane wave set in reciprocal space lattice vectors. The electron 
structure is obtained by diagonalization of the Hamiltonian matrix. 
This basis set has been mostly employed for semiconductor studies 
because of the relatively smooth pseudopotentials and delocalized· 
electron wavefunctions of these systems. There are several advantages 
for using plane waves. The Hamiltonian matrix elements are simple 
to evaluate. Test of convergence in the basis expansion can be 
done by simply increasing the number of plane waves used. Moreover, 
the calculation of Hellmann-Feynman forces is the less involved 
in a plane wave basis. 

For systems with highly localized electrons such as the transi-
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tion metals and large-gap insulators, a plane wave basis set would 
not be suitable. Other more judicious choices of basis funiSions 
have to be used. One approach is to use a mixed-basis set. The 
electron wavefunction is expanded in a combined set of plane waves 
and Bloch sums of atom-centered Gaussian orbitals. The mixed
basis set is most suitable for efficient description of systems 
with both highly localized (atomic-like) electrons and delocalized 
(plane wave-like) electrons. 

Another approach is to ~e a linear combination of atomic
like orbitals (LCAO) basis. 10 This is probably the most efficient 
basis for calculating the total energy of complex systems. For 
some elements, with suitable choices of Gaussian orbitals centered 
on each atom, the number of basis functions per atom needed to 
obtain an accurate charge density can be reduced by one or more 
orders of magnitude as compared with a plane wave expansion. For 
example, instead of requiring N - 300 plane waves to describe 
the carbon pseudowavefunction in diamond, only 12 Gaussian orbitals 
are needed for each atom. Since, in general, ~he computer memory 
required in a calculation is proportional to N and the time required 
to N3 , this represents orders of magnitude of savings. Moreover, 
with the LCAO approach, results can be more easily interpreted 
in terms of the chemical bonds. Other factors also contribute 
to the numerical efficiency of this method. With the potential 
also expanded in Gaussians, all the matrix elements consist of 
integrals of Gaussians and polynomials. These integrals can be 
evaluated in closed form. The essential matrix elements are wavevector 
independent. Thus, once these elements have been determined, 
they may be stored and retrieved as necessary for the wavevector 
in question. Furthermore, with the LCAO basis, there are several 
simplified levels of self-consistency19,20 that may be carried 
out for those complex systems for which full point by point self
consistency would not be practical. 

D. Total Energy Expressions 

Once the single particle wave equation has been solved, the 
total energy of the system may be evaluated. It is usually cast 
in the form 

E total 

N 
" 1 f -+- -+- -+- f -+- -+-= ~ Ei - 2 VH(r)n(r)dr - ~xc[n]n(r)dr 
i=l 

f -+- -+-
+ ~ (n]n(r)dr + Ei i xc on- on 

(6) 

where the sum is over all occupied states, Ei are the one-electron 
eigenvalues, n is the self-consistent charge density, Exc is the 
exchang~-correlation energy density, and ~xc is the exchange correla-
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tion potential. Eion-ion is the electrostatic interaction energy 
among the bare ions. 

The expression in Eq. 6, however, does not have the variational 
property given by Eq. 2 unless n is the exact fully self-consistent 
charge density. This is because the sum of electron eigenvalues, 
the first term on the right of Eq. 6, contains information on 
both the input charge and the output charge of a particular iterative 
cycle in the calculation. Thus, Etotal is not a functional of 
a single density. For many applications, an alternate expression 
which makes explicit use of the density-functional variational 
principle is desirable. Consider a situation where an initial 
charge density nin (e.g., from the superposition of atomic charge 
densities) is used and the single particle equation is solved 
to obtain a new charge density n. One can showl6 that the total 
energy can be written as 

which· is accurate to second order in ~n = n- n. In Eq. 7, all 
contributions from nin (and, hence, from the input screening poten
tial) are explicitly removed from the energy expression. The sole 
function of nin is to provide a way for obtaining a good approxima
tion to n. Often, it is possible to obtain accurate ground-state 
properties by using the superposition of atomic charge for nin and 
only solve the Kohn-Sham equation once to obtain n. In this fashion, 
many self-consistent cycles may be eliminated in obtaining an accur
ate solution for the total energy. 

To evaluate the total energy terms in Eq. 7 for periodic 
or quasiperiodic systems, it is most convenient to use the formalism 
of Ihm et al.l7 This formalism expresses the energy in momentum 
space and involves the Fourier transform of the potential and 
charge density. The energy per atom is written as (for the case 
of an elemental solid with one atom per unit cell) 

Etotal = ~ L e:n,k - na L [V~n(G) + ll~~(G) ].n(G) 
• • n,k G#O 

+ ~ na ~ VH (G)n(G) + na ~ Exc [G]n{G) 

G#O G 

+ YEwald + CllZ (8) 
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where 

YEwald 

a;l z = r! f ( v ion + ; ) d 
3 
r. 

a 

Here na is the atomic volume in the crystal, N is the number of 
atoms in the crystal, and the sum of the f!rst term is over all 
occupied bands. We use atomic units, and G denotes the reciprocal 
lattice vectors. 

III. BULK PROPERTIES 

In this section, we describe the applications of the density 
functional pseudopotential scheme to the bulk properties of solids. 
Since this is a very active area, only specific prototypical calcu
lations are featured to illustrate major subareas. The results 
on semiconductors were calculated using the plane wave method 
whereas results on transition metals and insulators were obtained 
either using.the mixed basis approach or the LCAO approach. 

The total energy must be computed very precisely if it is 
to be used to calculate structural and other ground-state properties. 
An estimate of the precision requirements for the total energy 
for calculation of the cohesive energy, the lattice constant or 
bulk moduli, and phonon frequencies are given in Table I. A·major 
advantage of the pseudopotential method as mentioned in the previous 
section is that the energies of the core electrons which are of 
the order of -103 to -10~ Ry per atom are removed from the total 
energies of both the isolated atoms and those of the solid state. 
This leads to a major enhancement in the precision of a calculation. 

A. Static Structural Properties 

Calculations have been carried out for a number of solids. 
The first applications were to the semiconductors. 21 •22 However, 
for the purp~~e of illustration here, we first discuss the results 
for diamond. The calculation was carried out using the LCAO 
basis with three Gaussian exponents for each of the s, Px• Py• 
and pz orbitals totaling 12 basis functions per carbon atom. The 
calculated total energy as a function of volume E(V) is present 
in Fig. 4. The points are the computed values, and the curve 
is a fit of the results to the Murnaghan23 equation of state. 
The minimum and curvature of E(V) near the minimum determine the 
lattice constant and bulk modulus. The cohesive energy can be 
evaluated by comparing the energy for the solid including a zero-point 
motion contribution and the isolated pseudoatom ground-state energy. 
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Fig. 4. Total energy vs. volume for carbon in the diamond structure. 
The continuous curve is the Murnaghan equation of state fit 
to the calculated points. (from Ref. 16) 
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Fig. 5. Total energy curves for various assumed crystal structures 
of Si as a function of volume normalized to the observed 
volume. The dashed line is the common tangent between the 
diamond and white tin phases. (from Ref. 21) 

11 



Table II. Ground-state properties of diamond. (after 
Ref. 16) 

Ground state Experiment Theory 
LCAO Plane 

waves 

Cohesive energy 
(in eV) 7.37 7.84 8.10 
Lattice constant 
(in A) 3.567 3.560 3.60 
Bulk modulus 
(in Mbar) 4.42 4.37 4.33 
Pressure derivative 
of bulk modulus 4 3.54 

Further, by fitting the calculated points to an equation of state 
such as the Murnaghan form: 

B V 
0 

E(V) = ---
B'(B'-1) 

0 0 

E(V ) 
0 

we obtain both the equilibrium bulk modulus B0 and its pressure 
derivative B~. The results16 are compiled in Table II together 
with the experimental values and results from a self-consistent 
plane wave calculation. 24 There is excellent agreement between 

(9) 

theory and experiment and between the two theoretical calculations. 
The LCAO total energy was evaluated using the variational expression 
(Eq. 7) with n obtained from a potential generated using superposition 
of carbon sp 3 atomic charges. This and the fact that only 12 
basis functions per ato~ were used account for the slight difference 
in the cohesive energy between the two calculations. We note 
that because of the localized nature of the carbon bond in diamond 

l2 

approximately 250 plane waves per atom were used for the plane ~ 

wave basis. 

In Fig. 5, the total energy of Si is given a~ 1 a function 
of volume for seven different crystal structures. As expected 
and consistent with experiment, the diamond structure has the 
lowest energy. Since these curves were generated with the atomic num
ber and several assumed crystal structures as the only input, the 
method can be used to predict crystal structures and to study 
solid-solid structural phase transformations. The calculated 
structural results2l for Si and Ge in the diamond structure are 



Table III. Comparison of calculated and measured 
static properties of Si and Ge. (from 
Ref. 21) 

Lattice Cohesive Bulk 
COn§tant energy modulus 

(A) (eV/atom) (Mbar) 

Si 
Calculation 5. 451 4.84 0.98 
Experiment 5.429 4.63 0.99 

Ge 
Calculation 5.655 4.26 0.73 
Experiment 5.652 3.85 0. 77 

Table rJ. Static properties for some III-V 
semiconductors. (from Ref. 22) 

GaAs GaP AlAs AlP 

0 

a(A) 
th 5.570 5.340 5.641 5.420 
exp 5.653 5.451 5.662 5.451 

B (1010Nm -2) 
0 th 7.25 8.97 7.41 8.65 

exp 7.48 8.87 7.70 8.60 

summarized in Table III. Agreement with experiment to within 
1% is found for the lattice constants; the cohesive energies and 
bulk moduli are given to around 10%. 

Structural calculations have not been limited to the group 
IV elements. The plane ~~ve calculations have b7e~5e16ended to 
the III-V semiconductors and the simple metals ' ' like Be, 
Na, and Al. Some results for these crystals are listed in Tables IV 
and V. In the case of Be, it was possible to calculate the Poisson 
ratio and the c/a ratio. Using the LCAO approach, these calculations 
have also been extended to study the transition metals. Some 
representative results27 are presented in Table VI for the cases 
of Mo and W. The transition metals are much more difficult to 
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Table V. Static structural properties of Al and Be. (after Refs. 
25 and 26) 

Aluminum 

Theory 
Experiment 

Beryllium 

Theory 
Experiment 

Poisson ratio 

Theory 
Experiment 

0 

a(A) 

4.01 
4.02 

0 

a(A) 

2.25 
2.2858 

-o.o5 

B (x 1012 dyne cm-2) 
0 

0 

c(A) 

3.57 
3.5842 

o. 715 
o. 722 

c/a 

1.58 
1.567 

-o.o1 - -o.os 

1.368 
1.14- 1.27 

deal with because of their much stronger potentials and their very 
localized electrons. The LCAO method, nevertheless, yields results 
as accurate as those of the semiconductors which are considered 
state-of-the-art. Similar calculations have also been carried 
out using the mixed basis method.28 

The accuracy of the results for all the materials mentioned 
are, therefore, comparable and, in general, in very good agreement 
with experiment. For special cases like Na,7 which has a small 
cohesive energy and low electronic density so that correlation 
effects are important, the results are sensitive to the choice . 
of the LDA exchange-correlation potential. For most systems, 
the use of different exchange-correlation potentials only results 
in a few percent change in the computed values. In addition to 
the structural properties, the LDA pseudopotential calculations 
provide very accurate valence charge densities n(t). This is 
illustrated by Fig. 6 in which the calculated charge density of 
graphite29 is compared with the experimental density obtained from 
x-ray measurements.30 

B. Vibrational Properties 

Given the capacity to evaluate total energy for arbitrary 
crystal structures, it is clear that we should be able to probe 
energy changes with atomic positions and, therefore, be able to cal-
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Table VI. Comparison of calculated and measured 
static properties of Mo and W. (from 
Ref. 27) 

Mo 
Calculation 
Experiment 

w 
Calculation 
Experiment 

Lattice 
constant 

<1) 

3~09 
3.15 

3.12 
3.16 

Cohesive 
energy 

(eV/atom) 

7.16 
6.82 

8.56 
8.9 

Bulk 
modulus 

(Mbar) 

2.86 
2. 7 3 

3.43 
3.23 

Fig. 6. Contour plots of valence-electronic-charge density for gra
phite: (A) Present results and (b) results from analysis 
of 0 x-ray data. Contour values are given in units of 0.1 
e/A3. Atomic positions are denoted by filled circles. Two 
planes are shown--one containing an a axis and the other con
taining the c axis and both intersecting at 90° along a C-C 
bond. In (a), the dashed circle denotes the pseudopotential 
radius. (from Ref. 29) 
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culate lattice vibrational properties. 

1. Phonon Dispersions. The frequency and eigenvector of 
an individual phonon mode can be obtained using the frozen phonon 
technique.l6,25,28,31-35 In this approach, the usual Born-oppenheimer 
approximation36 is made. The electrons are assumed to be in the 
ground state defined by the instantaneous ionic configuration. In 
!he calculation, the crystal is distorted with atomic displacements 
ut corresponding to a particular phonon mode (For simplicity, we 
specialize to the case of one atom per unit cell), for example, 

(10) 

~ 

where Ri is the equilibrium position of the ith atom, u0 is the 
amplitude of~the distorted wave, and ok is the phase factor. If the 
wave vector k is commensurate with the bulk reciprocal lattice, 
the resultant deformed lattice is just another crystal with reduced 
symmetry. The energy difference per atom between the two crystals 
can be calculated as a function of the displacement amplitude u0 
and fit to the expansion 

1 2 1 3 1 4 
~ • 2! K2 uo + J! K3 uo + 4! K4 uo + (11) 

K2 as shown below is related to the phonon frequency 

~ ~ K2 (12) 

for a zone center or zone boundary phonon and 

(13) 
~ 

for a phonon mode of arbitrary k. 
K4 are the anharmonic terms which 
interactions. 

The higher order terms K3 and 
give rise to the phonon-phonon 

Thus, from Eqs. 12 and 13, the phonon frequency can be evaluated 
from the curvature of the calculated energy vs. displacement curve 
for small displacements. These results can be extended to 
the case of compounds and to general wave vectors where the lack 
of symmetry requires the calculation and diagonalization of the 
dynamical matrix to obtain the phonon frequencies and polarization 
vectors. Moreover, this approach allows a detailed investigation 
of the role of core-core, electron-core, electron kinetic, and 
electron-electron energies to determine the vibrational frequencies 
of the solids examined. This kind of information has been valuable 
in analyzing and understanding phonon anomalies in semiconductors 
and transition metals. 

Figure 7 illustrates the changes in the crystal total energy 
. + as a function of the ampl1tude for a k = 0 optical phonon frozen 
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Fig. 7. Frozen-phonon energy vs. bond displacement. (from Ref. 16) 

into the diamond crysta1. 16 The atomic motions for this phonon 
mode are particularly simple. The motion may be taken to be a 
constant volume uniaJti.al distortion of the diamond crystal along 
the (111) direction. From the quadratic term of the curve in Fig. 7, 
the zone center optical phonon frequency was obtained to within 
1% of the experimental value. Compared to the structural properties 
calculations, the only additional input is the ionic masses. The 
calculated phonon frequencies for some selected phonon modes are 
presented in Table VII and Table VIII for diamond35 and Si3l respec
tively. As seen in Table VIII, phonon mode Gruneisen parameters 
have also been obtained. It is probably fair to say that phonon cal
culations using this ab initio approach give results which are more 
accurate than most empirical fits. In addition to obtaining accurate 
frequencies, the calculations are of great value because they allow 
detailed analysis of the electronic response to lattice distortions 
and, hence, the mechanisms causing phonon anomalies. 28 The calcula
tions also provide microscopic information not obtainable otherwise 
and provide benchmarks for the validity of phenomenological models. 

The frozen phonon technique has been applied with equal success 
to the metals.25,28 The only added complication in these calculations 

~ 

is that a large number of k-points in the Brillouin zone is needed 
to sample over the Fermi surface for convergent results because 
of the small energies involved. 

It is also possible to obtain whole phonon dispersion curves 
along some direction in k-space from the ab initio calcula
tions.35,37,38 This can be done in two equivalent ways. One way ~s 
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Table VII. Frozen phonon calculations of phonon frequencies for 
selected modes of diamond. (from Ref. 35) 

-1 -1 -1 Mode w (em . ) w (em ) .!lw(cm ) theory expt. 

LTO(f) 1346.5 1332 15 
LO(k ... 1/3 to X) 1353.3 
LO(k = 2/3 to X) 1328.2 
LOA(X) 1219.5 1185 34 

TO(X) 1173.9 1069 104 
TA(X) 772.1 807 -35 

Table VIII. Total energy calculations of phonon energies and 
Gruneisen parameters for a few phonon frequencies 
of Si. (from Ref. 31) 

Phonon frequencies (THz) 

F calc. 
F expt. 
Deviation 

Gruneisen parameter 

ycalc. 

y expt. 

LTO(f). 

15.16 

15.53 

-2.4% 

0. 92 

0.98 

TA(X) 

4.45 

4.49 

-0.9% 

-1.50 

-1.40 

TO(X) 

13.48 

13.90 

-3.0%. 

1. 34 

1.50 

LOA(X) 

12.16 

12.32 

-1.3% 

0.92 

-0.90 

by computing the Hellmann-Feynman forces on atoms resulting from dis
placing a plane of atoms. This is done by considering a supercell of 
N layers and, thus, obtaining the first N nearest neighbor force 
constants. Results 38 for Si in the [100] direction of the Brillouin 
zone calculated this way are given in Fig. 8. Another equivalent 
way which does not involve the Hellmann-Feynman forces directly 
is to perform several frozen phonon calculations along a k-direction 
for a given branch. Given the calculated frequencies, one can invert 
the dynamical matrix to obtain the planar force constants up to 
several nearest-neighbor planes until convergence is achieved. 
Results35 for the longitudinal branches of diamond in the [100] 

18 



-;:;- 12 
:t: .... 
~ c: 
Q) 
:l 
CT 

! 8 
c: 
0 c: 
_g 
0.. 

4 

02 0.4 06 0.8 

Fig. 8. Calculation of phonon dispersions for Si in the [100] direc
tion using Hellmann-Feynman forces. The dashed line is the 
result when plane waves up to an energy of 6 Ry are used; the 
solid line is for 10 Ry. The triangles and dots represent 
measured points. (from Ref. 38) 

direction obtained using this scheme are given in Fig. 9. 

2. Anharmonic terms and phonon-phonon interactions. As seen 
from Eq. 11, in addition to the phonon frequencies, the frozen 
phonon calculations yield higher order anharmonic terms and, hence, 
information on phonon-phonon interactions. They are extremely 
valuable information since these terms are often not directly measur
able and cannot be reliably gotten from phenomenological models. 

To illustrate the kind of useful information that can be ob
tained, we consider here in some detail one example--calculation of 
the optical phonon-phonon interactions35 in diamond. This will serve 
both to illustrate the power of the method and to shed some light 
into the phenomenon of two-phonon Raman anomaly in diamond. 39 It 
was observed that the two-phonon Raman spectrum of diamond has 
an anomalous sharp p:rk (not seen for Si and Ge) at 2667 cm-1 which 
is at an en~rgy 3 em higher than twice the optic~0 Rronon frequen
cies at f. Despite a number of theoretical works, ' the nature 
and origin of this peak is still a mystery. One particularly intrigu
ing expl28ation was the two-phonon bound state theory by Cohen and 
Ruvalds. They proposed that a two-phonon bou,d state is formed 
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Fig. 9. Calculation of phonon dispersions for diamond in the [100] 
dire.ction by extracting force constants from frozen-phonon 
results. Only the longitudinal modes are plotted. The 
squares are frozen-phonon results. The triangles and dots 
represent measured points. (from Ref. 35) 

giving rise to a split-of£ level at the anomalous peak position if 
the optical phonons near the Brillouin zone center interact through 
a positive quartic anharmonic interaction ~ 

k·x-k· 
-+ -+ 
k -k 

which is greater than certain critical value. For 15 years, this 
theory was neither confirmed nor disproved because of the lack of 
information on the optical phonon anharmonic terms. 

In the following, we summarize a calculation on ~ for the 
optical phonons at k = 0. For simplicity, we again specialize 
our discussion to one basis atom per unit cell and later generalize 
to the case of the diamond structure. The total energy of the 
crystal is expanded in a series in the atomic displacements t from 
the equilibrium positions. 

E = E + (T + E2') + E3 + E4 + ... 
tot o 

(14) 

where 
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T = kinetic energy 

E = constant 
0 

++ -+ -+ 
~mn e-m e-n 
ij "'i "'j 

• -+-+ with i,j, ••• =cartesian ~ndices and m,n, ••• =real space lattice 
vectors. If we denote the eigenvectors of the harmonic part, T + E;, 
by 

- -+ -+-+ 
Q

mk 1 ,..k ik •m 
U ... IN ei.A e (15) 

where A is the polarization index, then the normal mode coordinates 
a's are given by 

-+ - -+ 

~~ =L: Qmk k 
~ iA a .A (16) 

k.A 

The energy terms in Eq. 14 may be written as 

(17a) 

(17b) 
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and 

(17c) 

The ~'s are then the generalized elastic constants. The third and 
fourth order ¢'s are directly proportional to the matrix elements for 
the three- and four-phonon processes respectively. 

For example, since the a's are the normal mode coordinates, 

(18) 

Therefore, 

(19) 

Also, the kinetic energy is given by 

... ... ... 
T = ~ L: •k •*k =~L: ci(k,A.) k *k 

a A a A aA. aA. (20) 

kA. kA. 

Equating E2 = T mode by mode, one obtains 

w(k,A.) =~K(~,A) (21) 

For the purpose of understanding the two-phonon bound state pro
blem, we are interested in the k ~ 0 phonons and their interactions. 

000 0000 ' We, therefore, need to calculate ¢A>.' A" and ¢ 'A>t>..'T).."' where 1\ denotes the 
various optical modes. For example, ¢~~~" gives the amplitude for the 
process 

. + >." 

AAA· 
d ~oooo h . an '"'A.XA." A."' t e ampl~tude for 

A." X>."' 
A. >.' 
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Here, we will focus on calculating only+these k = 0 terms. Generali~ 
zation to other cases involving finite k's can be done straightfor~ 
wardly. 

In a frozen-phonon calculation, instead of traveling waves 

(22) 

standing waves of the form 

(23) 

+ 
are considered. For the case of diamond and k = 0, a standing wave 
consisting of a linear combination of the optical modes is used. We 
may choose the three polarization vectors to be x, y, and z. Then, 
the atomic displacements for the two carbon atoms in the unit cell are 
of the form 

+ 
i:m + ++ 
!;, (1) = u cos(k•m) 

+ 

tnC2) + ++ = -u cos(k•m) 

+ where u .. (u,u,u). 
X y Z 

The frozen wav~ is equivalent to having 

= {/2N
0

2N uA for k = 0, A = x,y,z 

otherwise 

and the various energy terms (per atom) in Eq. 17 become 

= 31' {¢000 u u u + ¢000 u u u + ···} . xyz X y Z XXX X X X 

E4 
l 1 ~ 0000 0 0 0 0 ·- ¢>-X>-">-"' a A a.A' aA, a .A"' 4! (2N) 2 >-XX'>-"' 

1 { 0000 } =- ¢ uuuu + ... 4! XXXX X X X X 

(24) 

(25) 
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Comparing the above expression with a general Taylor's series expan
sion for Etotal• we see that the ~'s are simply the various order 
derivatives of Etotal with respect to the ui's, for example, 

a2E ~oo = E 
XX = dX2 XX 

~3E 
~000 = a • E 
~ ~ ~ a ' etc. xyz oxoy z xyz 

The symmetry of the diamond crystal structure dictates that many of 
the ~·s are zero. One can easily show that the only terms up to 
fourth order not required by symmetry to vanish are the following: 

E = E = E : K 
XX yy ZZ 

E = y xyz 

E =E =E :a. 
xxxx yyyy zzzz 

E = E = E - a xxzz yyzz xxyy· 
(26) 

All other terms that are not related to the above terms by permutation 
of the indices are zero. As noted before, K gives the optical 
phonon frequency; y gives the amplitudes for three-phonon processes; 
and a. and a give the amplitudes for the bare four-phonon processes. 

. ~ 

To obtain K, y, a., and 8, several u's of different magnitudes 
and directions are used to calculate the total energy of distorted 
crystals. Figure 10 illust2ates t~e calculation of K, a., and 8· 
Plotted are curves for ~E/u vs. u for 0 along the (001), (110), 
and (111) directions. (For the (111) direction, the plotted values 

~ 

are those averaged over positive and negative u's. This is to 
remove the third-order component in the energy. There is no third
order contribution for the other two directions because of symmetry.) 
The intercept at u = 0 is the value for K. The slopes of the curves 
correspond to a., a./2 + 38/2, and a./3 + 28 for the (100), (110), 
and (111) directions respectively. Also, by plotting ~E/u2 vs. 
u for the (111) direction, one extracts the value for the third
order term y. The calculated results are summarized in Table IX. 

The theoretical value for a. is negative whereas for 8 it is 
positive and small compared to the magnitude of a.. This implies 
that the phonon-phonon interaction of the form 
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Fig. 10. Plots of ~/u2 vs. u2 for k ~ 0 frozen-optical phonons in 
diamond (see text). (AE is energy/cell.) (from Ref. 35) 

Table IX. Bare harmonic and anh~r
monic parameters for k = 0 
optical phonons in diamond 
(see text). (from Ref. 35) 

2K 
2T 

22.36 

2y 
3T 

-24.49 -28.98 

is attractive, but interaction of the form xxy 
X y 

is weakly repulsive. 

28 
4T 

2.08 

The parameters a and 6, however, only describe the direct 
four-phonon terms. To address the two-phonon bound state question, 
we have to consider other possible four-phonon diagrams of comparable 
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strength. They may be obtained using perturbation theory. Diagrams 
up to order y 2 are given in Fig. 11. These are phonon-phonon interac
tions via an exchange of a third phonon. It turned out that because 
of symmetry the diagrams in Fig. 11 do not effect processes of 
the type xx ~ xx. Therefore, a remains unchanged. However, processes 
of the type xy ~ xy or xx ~ yy will have other contributions in 
addition to the direct term. Thus, the parameter is renormalized. 
For scattering of the type xy ~ xy, four additional diagrams contri
bute (c-f in Fig. 11) leading to a renormalized value 

2 
s· = s-~ 3K 

(27) 

and for scattering of the type xx ~ yy, also four additional diagrams 
contribute (a-d in Fig. 11) leading to a renormalized value 

2 
s" = s -~ (28) 

There are now three effective four-phonon interactions of the types 

XXX xxy :x: a 13' 13" 

X X X . y 

The values for a, 6', 8" are tabulated in Table X. Note that all 
parameters are now negative. 

C a) (b) (c) 

t 

(d) (e) ( f ) 

Fig. 11. Diagrams for phonon-phonon scattering via exchange of 
another phonon. 
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Table X. Renormalized fourth
order anharmonic 
parameters for k a 0 
optical phonons in 
diamond (see text). 

2a 
4T 

-28.98 

28' 
4T 

-11.33 

2S" 
4T 

-38.16 

This work contributed in two major ways. First, the calculation 
shows that it is now possible for the first time to calculate from 
first principles phonon-phonon interaction parameters that are 
inaccessible from experiment. Second, since all the effe~tive 
four-phonon terms (direct plus mediated processes up to y ) are ... 
attractive for the k = 0 optical phonons in diamond, the formation 
of the two-phonon bound state is unlikely in this system. 

C. Structural Phase Transformations 

In this subsection, we describe several examples of applications 
of the total energy pseudopotential method to structural phase 
.transformations induced either by pressure or temperature. 

By calculating the total energy of an element or compound at 
various crystal structures, one can determine the relative stability 
among the structures considered. For example, in Fig. 5, the total 
energy for Si as a function of volume for seven common crystal 
structures is displayed. 21 The diamond structure curve has the 
lowest energy minimum. Hence, it is the stable structure for Si 
as found in experiment. At small volumes which can be achieved 
under pressure, the diamond structure energy is no longer the lowest. 
A solid-solid structural phase transition to a lower energy structure 
should occur. 

Near the experimental equilibrium volume, the theoretical 
curves (Fig. 5) show that Si in the hexagonal diamond (homopolar 
wurtzite) structure has energy closest to the cubic diamond curve. 
However, since the hexagonal diamond curve lies higher in energy 
than cubic diamond over the whole range of volumes, no pressure
induced transition is predicted. This is again consistent with 
experimental observations. On the other hand, at volume smaller 
than 0.82 of normal volume, the 6-Sn structure has lower energy 
than the cubic diamond structure. Therefore, a structural transforma
tion should occur as a function of pressure. 
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At zero or low temperatures, the critical pressure at which 
Si transforms from the diamond structure into the 6-Sn structure 
can be calculated by examing the enthalpy 

H = E + PV 

for the two structures. 
the enthalpy of the two 

= - (E2 - E1) p v - v . 
2 1 

(29) 

The transition occurs at a pressure when 
phases is equal, that is, when 

(30) 

From the defintion of P, we see that the diamond-8-Sn transition 
occurs at the volume where the first common tangent (Gibbs line) 
can be drawn between the diamond curve and the 6-Sn curve. In 
Fig. 5, the Gibbs line is given by the dashed line. Thus, the 
points 2 and 3 label the transition volumes between the structures 
and the-slope of the Gibbs line provides the transition pressure. 
A calculation of the energetics of Ge in various crystal structures 
showed that Si and Ge behave very similarly under pressure. Both 
materials transform to a metallic 6-Sn phase at a pressure around 
100 kbars. The theoretical results21 (Table XI) are in excellent 
agreement with experiment particularly for the transition volumes. 
These results are remarkable considering that the only input to 

Table XI. Comparison of the calculate~ ~nd mea
sured transition volumes (Vt' ) of the 
di~mo~d and 6 phases, their ratios 
(Vt/vt), and the transition pressures 
(Pt) for Si and Ge. Volumes are nor
malized to the measured zero-pressure 
volumes. (from Ref. 21) 

pt 
(kbar) 

Si 
Calculation 0.928 0.718 0.774 99 
Experiment 0.918 0.710 0. 773 125 
Deviation 1.1% 1.1% 0.1% -20% 

Ge 
Calculation o. 895 o. 728 0.813 96 
Experiment 0.875 0.694 0.793 100 
Deviation 2.3% 4.9% 2. 5% -4% 
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Fig. 12. Total energy versus volume (normalized to the experimental 
·volume) for six structures of carbon. Vertical arrows 
denote the minimum energy in each structure. (from Ref. 24) 

the calculations are the atomic numbers and an assumed set of crystal 
structures. 

Carbon24,42-44, on the other hand, behaves differently under 
pressure among these three group IV covalent elements. Fig. 12 
shows that carbon remains in the diamond structure over a very 
large volume (and pressure) range. No transition to the 6-Sn 
structure or to another structure was predicted. This is consistent 
with observations that diamond remains un~han~ed up to megabars 
pressure range. More recent calculations 2- 4 , however, showed 
that diamond will transform to a BC-8 structure, a structure of 
distorted tetrahedrons ~th eights atoms per unit cell, at. about 
12 Mbars. Hence, carbon is predicted to be stable in the open 
diamond structure up to extremely high pressure at least for the 
structures considered. Comparing Si and Ge with diamond, the extra
ordinary stability of carbon in the tetrahedral structure is probably 
atjributable to the large bond-bending restoring forces of the 
sp carbon bond which may be traced back to the lack of d states 
nearby the sp complex. The diamond structure is, of course, only 
a metastable state of carbon whose lowest energy phase is that 
of graphite. The energy difference between these two phases is 
extremely small, and at present, it is not completely clear how 
the graphite-diamond transition occurs. Calculations of the kind 
discussed here should help in understanding such transitions. 

Several calculations along the same line have also been performed 
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Table XII. Transition pressures and structures for III-V 
semiconductors. (after Ref. 22) 

Transition Pressure (kbar) Structure 

Theory Exp. Theory Exp. 

GaAs 160 160-190 { 8-Sn orthorhombic? 
rocksalt 

NiAs 

GaP 217 200-240 { s-sn s-sn 
rocksalt 

AlP 93 140-170 {rocksalt fcc? 
NiAs 

AlAs 76 {rocksalt 
NiAs 

.for the III-V semiconductors 22 and metals25,45,46 under pressure. 
For the metals, high pressure phase transitions were predicted 
by comparing the total energies for the fcc, bee, and hcp phases, 
and the results are consistent with experiment and with those using 
other techniques. 47 For the III-V compounds, several high pressure 
phases were calculated to have approximately the same energy. Hence, 
at present, for some of the III-V compounds, it was not possible 
to decide the appropriate high-pressure phase, but the pressure 
of the transition was predicted (Table XII), and agreement with 
experiment was found in cases where data is available. 

Another important class of studies is to investigate temperature
induced structural transitions. This has been performed for the 
metal Be. 48 At ambient pressure, Be transforms from a low temperature 
hexagonal close-packed (hcp) structure to a high temperature body
centered cubic (bee) si§ucture at approximately 1530 K before it 
melts at about 1560 K. This transition is interesting in several 
respects: there is a large entropy difference between the two 
phases at the transition, and the bee phase exists only for a very 
small range of temperature. The structural transition temperature 
decreases with increasing pressure. Furthermore, although the 
face-centered cubic (fcc) phase is calculated to have a lower energy 
than the bee phase at zero temperature and zero pressure, the transi
tion is from hcp to bee. 

In order to study structural phase transitions at finite 
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temperature and pressure, the Gibbs free energy G(P,T) must be 
considered.48 The most stable crystal phase at a given T and P 
is the one with the lowest Gibbs free energySO 

G(P,T) = H - TS = E + PV - TS 

where E is the internal energy and S is the entropy and both 

(31) 

are dependent on T. Within the adiabatic approximation, G(P,T) 
of a crystal can be separated into two contributions, a static 
lattice part Gst and a vibrational part Gph· Gst includes the 
electronic energy and the static Coulomb ~teraction between the 
ions fixed at their equilibrium positions. Gph includes b_oth the 
zero-point motion and the phonon contribution. 

In the work of Lam et al., 48 the Gibbs free energies for the 
hcp, fcc, and bee structures were calculated. Several approximations 
were use'd to make the calculation tractable. First, the temperature 
dependence of Gst is neglected. The justification is that electronic 
excitations are negligible compared with phonon excitations at 
temperatures which are small compared to the Fermi temperature of 
the metal. Hence, 

(32) 

which is just the zero temperature enthalpy and is calculated using 

10 

P !Mbarl 
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Fig. 13. Static lattice energy differences, fcc-hcp (A) and bcc
hcp (B), as functions of normalized volume (full curves) 
and energy differences with zero-point energy included 
(broken curves). (from Ref. 48) 
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the ab initio total energy method as discussed (Fig. 13). Second, 
the contributions to the pressure from the phonons is recognized 
to be very small compared with that from the static lattice energy 
and is, therefore, neglected in the calculation of Gph" Thus, 

(33) 

where E~h is the zero-point energy. This is just the expression 
for the Helmholtz free energy which can be evaluated within the 
harmonic approximation using51 

~w. [ · ( ~w.)] G (T) = L --2:. + k T L: ln 1 - exp - _l 
ph . 2 B . kBT 

~ ~ 

(34) 

where wi is the phonon frequency. Finally, since a completely 
ab initio calculation of the full phonon spectrum was not practical, 
the above expression was evaluated in the following way. An approxi
mate phonon spectrum was obtained by representing the phonon frequency 
with a finite Fourier series. The coefficients of the series were 
determined to give_ the correct sound velocities calculated from 
the elastic constants. For the hcp phase, experimentally determined 
elastic constants were available and were used. The elastic constants 
for the fcc and bee phases were computed by calculating the static 
lattice energy for the appropriate distortions of the lattice (Table 
XIII). 

The calculated differences in Gibbs free energy for the three 
structures at P = 0 are presented in Fig. 14. At zero temperature 
and zero pressure, the most stable phase is the hcp phase as observed 
experimentally. As the temperature increases, the Gibbs free energy 
for the bee phase decreases relative to the hcp value and becomes 
the lowest one at temperature approximately equal to 1500 K. The 
observed transition is at about 1530 K. The high temperature bee 
phase is, thus, stabilized by the large entropy term, -TS h" The 
origin of this large entropy is associated with the presegce of 
low-energy (soft) phonon modes. These soft phonon modes exist 
in the bee phase because the C11-c12 elastic constant is anomalously 
small in this phase (see Table XIII). Also, the calculation showed 
that although the fcc Gibbs free energy is lower than that of the 
bee phase at T = 0 and P = 0, its phonon free energy is considerably 
larger than that of the bee phase. Therefore, the fcc phase is 
never stabilized by temperature. 

These total energy methods should be applicable to the study 
of other solid-solid structural transitions such as the w-phase 
of Zr. A goal in the future in this area would be to attempt to 
predict crystal structures and to suggest experimental studies which 
might give rise to new·materials with desirable properties. For 
example, as mentioned above, although graphite has a lower energy, 
diamond does exist. One aim would be to understand transitions of 
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Table XIII. Elastic constants 
of Be (1012 dyne 
cm-2). (after 
Ref. 48) 

HCPt FCCt BCCt 

ell 2.95 2.20 1.20 

cl2 0.26 0.63 1.10 

C44 1.71 1.86 1. 70 

tExperimentally determined elas
tic constants from Silversmith 
and Averbach (1970). 

tCalculated elastic constants. 
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Fig. 14. Differences in the Gibbs free energy (A: fcc-hcp; B: bcc
hcp) as a function of temperature at P = 0. (from Ref. 48) 

this kind and attempt to predict others. 

IV. SURFACES AND CHEMISORPTION SYSTEMS 

Research in the properties of surfaces and related systems 
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represents a major area in condensed matter science. The present 
interests in these systems are generated both by their fascinating 
fundamental properties and by their practical importance in fields 
such as catalysis and device applications. However, despite a 
great deal of activity in the past decades, an understanding of 
the electronic and structural properties of surfaces of real materials 
remains a challenge for both theory and experiment. In this section, 
we discuss several representative examples of surface studies using 
pseudopotential methods. 

Among the goals for theoretical work in this area are: determin
ation of the geometric structures, understanding of the nature 
of surface electronic states and chemisorption bonds, theory for 
mechanisms for surface atomic rearrangements (relaxations and recon
structions), prediction of chemisorption energetics, and analysis 
of spectroscopic and other experimental data. Y~st of the past 
studies have been centered on the search for surface states and 
characterization of their properties. However, with the advance 
of the total energy methods such as those described in the previous 
sections, recent work begins to address the questions of surface 
geometries and energetics. 

One major constraint in theoretical surface calculations is 
the lack of tr~nslational symmetry because ~f the surface. This 
can be overcome in two ways. One approach5 is to match extended 
electronic wavefunctions from the bulk crystal to decay states 
representing the surface. Another 53 is to use a thin slab of the 
crystal to model two surfaces. Further, if a supe~cell geometry 
is employed with the slabs, standard band structure techniques 
may be used. The slab approach is most common and is the method 
employed for the studies discussed in this section. Another con
straint in surface studies is the requirement of somewhat detailed 
self-consistency in the calculations because of the asymmetrical 
rearrangement of charge near the surface. Quantities such as work 
~unctions, atomic rearrangements, and surface state energies are 
sensitive to such charge rearrrangements. 

A. Surfaces of Semiconductors and Insulators 

Theoretical research in this area has been focused mainly 
on the group IV and the III-V materials. In this subsection, for 
illustration purposes, we describe in some detail two surfaces, 
the (lll) surfaces of silicon and diamond, and briefly mention others. 

The (111) surfaces of the tetrahedral elements C, Si, and 
Ge are found to undergo a remarkable variety of surface reconstruc
tions.54 A possible common denominator is the apparent occurrence 
of a 2x1 reconstruction on all three surface§. The similarity 
of the angle-resolved photoemission results5)-5 7 suggests that 
a common structure may be responsible. 
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Si (111) SURFACE 
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~ SURFACE "HEALS" 
NEAR DANGLING BOND REGION 

Fig. 15. Total valence electron charge density for the Si(lll)-(lxl) 
surface. A (110) plane is shown with the top of the dia
gram representing the semiconductor surface. The cores are 
shown as shaded discs, and heavy lines represent bonds. 
Charge density contours are normalized to e/Q where n is 
the bulk unit cell. (from Ref. 53) c c 

The Si(lll) surface is probably the most studied semiconductor 
surface. Yet, the details of the atomic and electronic structure 
are still considered open subjects. Experimental interest remains 
high because it is possible to cleave Si in vacuum and produce 
clean surfaces which can be studied with a host of techniques. 
Theoretically, this surface is considered to be the prototype semi
conductor surface. 

In the 1970's, the ideal lxl Si(lll) surface was studied using 
the self-consistent pseudopotential method.53 The charge density 
was found to smooth out and "heal" the cut bonds (Fig. 15). A 
dangling-bond surface state band with wavefunctions highly localized 
at the cut bonds was found to lie in the semiconductor energy gap. 
Since there is one broken bond per surface unit cell and each has 
one electron, the surface dangling-bond band is half full leading 
to a metallic surface. Experimentally, however, Si(lll) is semicon
ducting. The nonmetallic nature is generally believed to be associ
ated with reconstructions or movements of the atoms at the surface. 
Low energy electron diffraction (LEED) measurements show that Si(lll) 
reconstructs into a metastable 2x1 pattern when cleaved and into 
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a stable 7X7 pattern upon annealing. Laser-annealed surfaces, on 
the other hand, show a !Xl pattern; however, the surface may not 
be well ordered and the exact interpretation is controversial. 

Because of the complexity of the 7x7 geometry, most theoretical 
research has been directed to the 2x1 reconstruction. Until recently, 
the commonly accepted model for this surface was a buckling model54 
in which alternate rows of surface atoms are raised and lowered. 
This model has two inequivalent atoms per surface unit cell and, 
hence, should give rise to a semiconducting surface if the displacement 
were large enough. Calculations53 using the buckling model as 
input gave results consistent with this picture. The correctness 
of the buckling model, however' has been challenged. Angle-resolved 
ph~toemission measurements55-5 give an energy dispersion curve, 
E(k), for the surface states which is in disagreement with theory 
constrained to a buckled 2x1 reconstruction. Recently, total energy 
and force calculations58 •59 also show that the buckling model 
is unfavorable. 

In the ab initio surface calculations, as in the bulk cases 
discussed in-sec. III, the exact geometry is no longer a required 
input. The surface structure is determined by minimizing the total 
energy with respect to the coordinates of atoms in the first several 
layers for a given topology. An equivalent approach is to calculate 
the Hellmann-Feynman forces on each atom and move the surface atoms 
until all forces are zero. In either approach, the calculation 
must be done iteratively sinc'e when atoms are moved. new forces 

Side View of 2 x 1 Buckling Distortion 

+0.10 
~F~ = -0.3 

~F§ = -0.3 ~FX = +0.3 

5 6 

Displacements in a.u. 
Restoring forces in 10-2 Ry/a.u. 

Fig. 16. Side view of a 2x1 buckling distortion used to test the 
stability of the ideal 1x1 Si(lll) surface~ (from Ref. 58) 
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Fig. 17. Energy as a function of relaxation of the surface layer, 
the antiferromagnetic 2x1 and the paramagnetic 1x1 states 
of Si(111). The zero of energy is the ideal paramagnetic 
surface. (from Ref. 63) 

develop on their neighbors. Several cycles are usually needed 
to achieve a minimum energy, zero force structure. When this approach 
was used for Si(lll),58 the surface was found to resist buckling. 
Forces developed on a buckled surface to restore the atoms back 
to a relaxed 1x1 configuration (Fig. 16). 

A possible state in which the surface behaves electronically 
semiconducting and yet remains in the 1x1 geometry is one with a gap 
arising from electron-electron interaction. An antiferromagnetic 
phase for the 1x1 Si(111) surface has been predicted5S,b0-6Z but not 
observed. The most recent calculation63 placed the antiferromagnetic 
phase at a lower energy than the paramagnetic phase (Fig. 17) 
for the ideal geometry, but with relaxation, it is difficult to 
determine whether the occurrence of this state is feasible. As 
seen in Fig. 17, the difference in total energy between the paramagne
tic and the antiferromagnetic phases is very small. Alsob it is 
sensitive to the approximations used in the calculations. 3 

Since the 1x1 geometry is predicted to be stable with respect 
to buckling, this suggests that the observed 2x1 structure may 
result from a distortion of a different k~nd. Motivated by the 
angle-resolved photoemission data, Pandey 4 suggested that the 
2xl structure is a TI-bonded chain geometry. A schematic ball and 
stick model of the ideal and the TI-bonded chain structures are 
shown in Fig. 18. The characteristic six-fold ring geometry of 
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Fig. 18. Geometry of ideal 1x1 Si(lll) surface with six-fold rings 
(upper). Then-bonded chain geometry with five-fold and. 
seven-fold rings (lower). 

the ideal 1x1 structure and its decomposition into five-fold and 
seven-fold rings for the 2x1 n-bonded chain surface are depicted. 
It is evident that the two structural models have very different 
topologies. Thus far, the n-bonded chain geometry gives the lowest 
calculated total energy among the various models proposed in the 
literature.59 This geometry is stabilized by the dangling bonds 
moving into near-neighbor positions where they can participate 
in n bonding. It has also been shown that at least one path existed 
going from the ideal geometry to the n-bonded chain with a barrier 
of only -0.01 ev.59 The cleaving process could easily supply enough 
energy for this transition to occur. The resulting chain geometry 
is lower in energy by -0.2 eV than the relaxed ideal (1x1) geometry. 

One can also compare the calculated surface state dispersion 
with experimental results for confirmation once a minimum ener~y 
structure is determined. The theoretical surface state bands5 •64 

were found to be in good agreement with angle-resolved photoemission 
data (Fig. 19). The agreement of the k-dependent of the surface 
state energies with experiment is impressive considering that only 
the atomic number and some geometical restrictions went into the 
theory. The absolute position of the experimental points in Fig. 19 
has been shifted up rigidly by 0.3 eV for ease of comparison. This 
kind of discrepancy arises from using local density functional 
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Fig. 19. Calculated electron energy dispersion curve for Si(111) 
in the energy optimized n-bonded chain structure. The 
experimental points have been shifted upwards by 0.3 eV 
so that the theory and experiment are aligned at the 
J point. (after Ref. 59) 

theory which is well-known to give excellent ground-state properties 
but too small excitation energies. Calculations for the 2x1 
Ge(111) surface65 also showed that the n-bonded chain geometry 
has the lowest energy and a surface band dispersion similar to 
Si. We should note that agreements between theory and experiment 

:+ 
for E(k) for a low energy structure are necessary conditions for 
determining surface reconstructions but not sufficient conditions. 
Other geometries may give similar E(k) curves, and at present, 
there are no certain tests to determine that a given structure 
corresponds to the absolute minimum and not a local minimum in 
energy. 

Total energy calculations have also been carried out to 
study a variety of proposed reconstructions on the diamond (111) 
surface.l9,66 For this case, the LCAO basis was used because 
of the localized nature of the carbon electron wavefunctions. 
Both a 1xl phase obtained by polishing and a 2x2/2xl phase obtained 
by annealing to above -1000 C were observed by LEED. (LEED cannot 
distinguish between a true 2x2 or disordered domains of 2xl for 
this surface; the similarity of the angle-resolved photoemission 
to that of Si and Ge suggests the latter.) No surface states 
were observed in the gap for the lxl diamond surface. However, 
recent experiments have shown that this is a hydrogen-terminated 
surface. The 2x2/2xl surface, on the other hand, is believed 

39. 



Table XIV. Calculated total energies of C(lll) lxl 
and 2x1 surface reconstruction models. 
(from Ref. 66) 

Surface model 

Ideal lXl 
Relaxed 1 x1 o 

Buckled (~z = ± 0.26 A) 
Chadi ~-bonded molecule 
Seiwatz single chain 
Ideal Pandey ~-bonded chain 
Relaxed Pandey ~-bonded chain 

Same with ±2% dimerization 
Same with ±4% dimerization 
Same with ±6% dimerization 

Fully relaxed Pandey chain 

Energy 
eV/(surface atom) 

0.00 
-0.37 

0.35 
0.28 
1.30 

-0.05 
-0.47 
-0.46 
-0.43 
-0.38 
-0.68 

to be hydrogen free and clean, and unlike Si and Ge whose 2x1 
phases are metastable, the diamond 2x2/2xl structure appears 
to be thermodynamically stable. 

Similar to the case of the Si(lll) surface, many mog51s67-70 
have been proposed for the 2xl diamond surface. Results 
of the total energy calculation for these models are summarized 
in Table XIV. The energy per surface atom for the ideal lxl 
model is used as a zero of energy. Relaxing the first two surface 
bonds (Fig. 20(a)) lowers the energy by 0.37 eV. Four topologically 
distinct 2x1 models have been tested: the buckling model,5 4 

the Pandey ~-bonded chain model, 67 the Chadi molecule model,71 
and the Seiwatz single-chain model. 72 As in Si, buckling of 
the lxl surface is found to raise the energy. Of the other three 
models, the Pandey chain model 73 clearly has the lowest energy. 
The Chadi molecule model, in second place, has not been relaxed 
further because the calculated surface state dispersion is inconsis
tent with angle-resolved photoemission data. 55 

The energy of the Pandey chain model shown in Fig. 18 was 
minimized by adjusting the four surface-most bond lengths to 
give the "relaxed •: structure of Fig. 20 (b) lowering the energy 
to -0.47 eV. A surprising feature of the resulting geometry 
was the 8% lengthening of the subsurface interlayer bond. The 
surface chain bond, on the other hand, was only contracted by 
4% to a value approximately midway between that of graphite and 
diamond. Contrary to some speculations,67 dimerization of the 
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( a ) 

(b) 

Fig. 20. Illustration of bond length changes (with respect to 
bulk) which occur upun relaxation of (a) lXl and (b) 
2x1 Pandey chain models for the diamond (111) surface. 
(from Ref. 66) 

chain does not lower the surface energy. However, the structure 
can be further relaxed by allowing the atoms below the first 
two layers to move. This further relaxation relieves some of 
the bond angle strains on the third layer atoms. The final geometry 
has an energy lowered by an additional 0.21 eV per surface atom. 

It is instructive to compare the diamond results with those 
of Si where the ideal and relaxed Pandey chain models have energies 
(per surface atom) of -0.22 and -0.36 eV respectively compared 
to the ideal 1x1 surface. In diamond, the ideal Pandey model 
is less favorable, but relaxations are more important. This 
can be attributed to the highly directional nature of the carbon 
sp 3 bonds which implies that bond angle variations are more costly. 
(The ratio of the bond-bending force constant to the bond-stretching 
force constant is twice as large in diamond than that in Si.) 
Evidently, the large bond angle distortjons in the third layer 
are more costly in diamond and the relaxations which relieve 
bond angle strains more important. This is consistent with the 
8% expansion of the diamond subsurface interlayer bond which 
can be ascribed to bond weakening resulting from bond angle 
distortion. 
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Fig. 21. Calculated surface bands (solid lines) and resonances 
(dashed lines) for the 2x1 diamond (Ill) surface for 
fully relaxed Pandey chain model. The bulk projected 
band structure (shaded) and the experimental data of 
Ref. 55 (black dots) are shown for comparison. (from 
Ref. 66) 

Figure 21 shows the calculated surface band structure for 
the fully relaxed Pandey chain model. Experimental angle-resolved 
photoemission data are shown for comparison. The dispersion 
of the calculated surface band is in good agreement with experiment. 
However, the calculated band is too high by a rigid shift of -1 eV. 
As mentioned before, such a shift is also observed for the surface 
bands of Si and Ge (by 0.3 and 0.8), and a correlation effect 
may perhaps be invoked to explain this discrepancy.59,65 

From these calculations, it is, therefore, fair to conclude 
that, taken both total energies and spectroscopic 'data into considera
tion, a Pandey n-bonded chain topology is most likely to be the 
correct structure for the 2xl phase of the (111) surfaces of 
diamond, Si, and Ge. 

The methods described here have been applied to the other 
faces of the group IV elements such 9g the Si(100) surface74 •75 

and to other semiconductor surfaces. 1 One important application 
which we have not discussed is the study of chemisorption, both 
on the geometry and energetics of adsorbates on surfaces. Fig
ure 22 iJGustrates the result from a study of Al on the GaAs(110) 
surface. Energy surfaces for Al atoms adsorbed on the surface 
were determined and comparisons made between various possible 
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Fig. 22. Three-dimensional plot of the total energy for an Al 
atom adsorbed on the GaAs(110) surface. Two favorable 
paths for the surface migration of Al atoms are indicated 
as 1 and 2. It is clear in the figure that channel 
1 follows the valleys and channel 2 traces plateaus. 
Corresponding atomic positions for the first two surface 
layers are also illustrated. (from Ref. 76) 

adsorbate sites. Another important application is to use the 
total energy methods to calculate microscopic interaction parameters 
among the various structural units on a surface. These parameters 
can then be used in the study of statistical, temperature-dependent 
properties of the surface employing techniques such as the renormali
zation group method. This kind of analysis has recently been 
done for the structural properties and phase diagram of the Si(100) 
surface.75 Yet, another area which we have not discussed is defects 
on surfaces. It is likely that total energy studies will be 
applied in the near future to determine the lowest energy reconstruc
tions near defects such as steps. 

B. Surfaces of Transition Metals 

In recent years, research in metal surfaces has been focused 
primarily on the transition metals because of their richness 
in phenomena and their technological importance. Compared to 
the semiconductor surfaces, transition metals surfaces are much 
more difficult to treat theoretically owing to the coexistence 
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of the localized d-electrons and the delocalized sp electrons. 
As a consequence, the theoretical study of these surfaces has 
lagged somewhat behind that of semiconductor surfaces. Virtually 
all work has been done only on the electronic properties. Ab 
initio determination of surface structures via total energycalcula
tions similar to those discussed in the previous subsection is 
yet to be done. From the electronic structure calculations, 
one can, nevertheless, still gain much insight in.to the nature 
of these surfaces and, in many cases, provide .detailed explanations 
of experimental observations. Our discussion here will, thus, 
be limited to surface electronic structures. 

Several methods 77- 83 have been developed to calculate the 
surface electronic structure self-consistently for transition 
metal systems. All of these involve modeling the surfaces by 
thin slabs (or by repeated slabs in the case of the supercell 
approach) and expanding the electron wavefunctions in some basis 
sets. In conjunction with pseudopotentials, the mixed basis 
or the LCAO basis are most commonly employed. With basically 
the surface geometry as input, these calculations yield the 
work function, surface states, adsorbate states, surface charge 
densities, densities of states, and often information on preferred 
sites of adsorption. Surface states are shown to be important 
in the interpretation of spectroscopic measurements, and chemisorption 
studies give valuable information concerning the nature of the 
surface chemical bond. 

We discuss below the Nb(001) and Mo(001) surfaces as examples 
of bee transition metal surfaces and the Pd (111) surface as an 
example of an fcc transition metal surface. As an illustration 
for chemisorption, we consider the case of hydrogen on the Pd(111) 
surface. Except for the case of the Nb(001) surface which was 
done with a plane wave basis, the calculations were performed 
using the mixed basis method in a repeated slab geometry with 
slab size usually 7 to 11 atomic layers thick. 

The calculated surface energy band structure for the Nb(001) 
··surface77 is presented in Fig. 23 along high symmetry directions 
in the two-dimensional Brillouin zone. The vertical and horizontal 
crosshatching shows the allowed bulk states (the projected band 
structure) of various symmetries. The dash curves are the surface 
bands (either bona fide or strong resonance). These results 
demonstrated, in a fully self-consistent calculation, that transition 
metal surfaces support a variety of surface states. The surface 
states can have different angular momentum character and exist 
over a wide range of energies and over different portions of 
the two-dimensional Brillouin zone. 

The characters of the surface states shown in Fig. 23 are 
mainly atomic d-like and are highly localized in the surface 
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Fig. 23. Surface bands (dashed curves) and the projected band 
structure for the Nb(OOl) surface. (from Ref. 77) 
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Charge density distribution of a Tl (see Fig. 23) surface 
state at k = (3/8,1/4)2n/ac (with ac the bulk crystal 
lattice constant) plotted on (a) the (110) plane and 
(b) the (100) plane. Charge density is given in relative 
units. (from Ref. 77) 
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region. The charge density (square of the wavefunction) of one 
of the prominent surface states is presented in Fig. 24. This 
state is associated with the band labeled Tl in Fig. 23 which 
extends over a large region in the two-dimensional Brillouin 
zone and has very flat dispersion. As seen in Fig. 24, states 
in the Tl surface band are d3z2-rz-like and are highly localized 
on the surface layer with practically no overlap between neighboring 
surface atom consistent with the weak k-dependent of this band. 

Calculation for the Mo(OOl) surface84 yielded a surface 
electronic structure qualitatively similar to that of the Nb 
surface. Surface states of a variety of character are found 
to exist in roughly the same energy ranges and positions in k-space. 
It is found that the existence of some of these states are sensitive 
to the details of the self-consistent potential. The calculated 
surface states have been successfully used to interpret many 
of the surface sensitive spectral features observed in angle-resolved 
photoemission experiments. 

One important prototypical study in this area is that on 
the Pd(lll) gu~face and the interaction of hydrogen with this 
surface. 78 •8 ' 7 This system is of great interest because of 
its fundamental impor~ance in chemisorption theory and in technologi
cal areas such as catalysis, hydrogen storage, and hydrogen 
embrittlement. 

The calculated surface state bands for the clean Pd(lll) 
surface are shown in Fig. 25 together with that of a monolayer 
of hydrogen adsorbed on the surface three-fold sites.78,86 The 
computed work function of 5.8 eV agrees well with the measured 
value of 5.6 eV. There is a significant surface charge rearrangement 
in going to self-consistency so that the ad hoc constraint of 
atom-by-atom neutrality used in many non-self-consistent calculations 
is likely too rigid. Figure 25 shows that, as in the case of 
bee metals, many surface states exist with most of them d-like 
and highly localized. An interesting exception is the surface 
state at -2 eV above the Fermi level which is sp-like and penetrates 
some distance into the bulk. 

The calculation also yielded valuable information on the 
symmetry and orjgin of the individual surface states. Knowing 
the symmetry of the surface state wavefunctions would greatly 
facilitate the identification of these states in experiment by 
use of selection rules. High resolution angle-resolved photoemission 
measurements87,88 have recently been performed to search for 
the surface states predicted in Fig. 25. The agreement between 
experiment and theory is very good for both the energy positions 
and the wavefunction symmetry of the states (Table XV). Furthermore, 
it is shown89,90 that one can understand the surface states on 
other (111) surfaces for the nearby elements in the Periodic 
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Fig. 25. Localized states at. the Pd(lll) surface. Dash curves 
are for states of the clean surface, and solid curves 
are for states of the H-covered surface with H in the 
three-fold centered C-site. (after Refs. 78 and 86) 

Table in terms of the Pd(lll) results using a rigid-band interpreta
tion. 

The surface states strongly affect the spectroscopic properties 
of the surface. Figure 26 shows the calculated local density 
of states (LDOS) for the fourth layer from the surface, the second 
layer from the surface, the surface layer, and a region one layer 
thick beyond the surface layer for the Pd(lll) surface. The 
LDOS gives the energy spectrum for electrons in a particular 
region Qi and is definPd 

N. (E) 
~ 

(35) 

where k 11 is the wavevector parallel to the surface, n is the 
band index, and ~ is the electron wavefunction. As seen from 
the figure, the fourth layer LDOS is virtually identical to the 
bulk Pd DOS, but the surface layer LDOS is very different. It 
is enhanced in the region from 0 to -2 eV below the Fermi level 
EF and is noticeably narrower. This enhancement arises from 
the existence of the many surface states near EF (Fig. 25). 
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Table XV. Localized states on the Pd(ll1) 
surface. (Energies are in eV 
measured relative to EF.) Experi-
mental data from Refs. 87 and 88. 
(after Refs. 78 and 86) 

Clean H-adsorbed 

Theory Expt. Theory Expt. 

r 1.9 1.7 -1.3} 
-1.4 -1.2 

-o. 2 -0.3 -3.2 -3.1 
-2.0 -2.2 -7.5 -7.9 
-4.1 

R -1.0 -o. 3 -0.8 -1.0 
-1.9 -2.1 -2.8 -2.8 
-3.0 -6.3 -5.9 

M -1.0 -0.6 
-3.8 -4.1 

-6.8 -6.4 

Most importantly, these results explain a characteristic 
adsorbate-independent reduction of photoemission signal from 
0-2 eV below EF observed when diffe§Ing adsorbate species are 
chemisorbed on the Pd(l11) surface. • 2 (Similar effects are 
seen in Ni and Pt.) It is interpreted78 that this reduction 
is largely due to the removal (shifting to lower energies) of 
surface states and resonances by the adsorbates since angle-integrated 
measurements basically probe the surface LDOS. Figure 27(a) 
shows the difference between the layer 4 LDOS and that of the 
surface layer. The negative parts of the curve correspond to 
regions where there are excess state density at the surface. 
This is to be compared with the curves in Fig. 27(b) which are 
the observed differences in photoemission intensity between the 
clean and the adsorbate-covered surfaces. The deficit can, therefore, 
clearly be associated with the removal of surface states. The 
efffect is adsorbate-independent because the states involved 
are characteristic of the substrate. This picture has since 
been confirmed in detaig by a direct calculaticn of H chemisorbed 
on the Pd(lll) surface. 6 

Experimentally, hydrogen dissociates as the molecule adsorbs 
on the Pd(l11) surface and forms a (lxl) monolayer at low tempera-
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Fig. 26. Calculated local density of states for (a) layer 4, (b) 
layer 2, (c) layer 1 (the surface layer), and (d) a region 
one layer thick beyond the surface layer for the Pd(lll) 
surface. (from Ref. 78) 

ture. 91 ,92 The exact structure, however, is not determined. 
In.the calculations,86 three possible structural models were 
considered for monolayer coverage: (A) H on top of every surface 
Pd atom; (B) H on a three-fold site over a hole in the second 
layer; and (C) H on a three-fold site over an atom in the second 
layer. The H-Pd bond length was fixed at the sum of the Pd metallic 
and the H covalent radii. 

The calculated densities of states were compared with angle
integrated photoemission data to distinguish the three possibilites. 
The first possibility, site A, was ruled out as the preferred 
site. The two three-fold sites B and C produce very similar 
spectra which agree well with the experimental data and are essenti
ally indistinguishable from one another. 

The calculated surface band structure for H on site C is 
shown in Fig. 25. The H adatoms induce extensive changes in 
the surface electronic structure of the clean Pd(lll) indicating 
a strong surface chemical bond. The two most striking H-induced 
features are the narrow H-Pd bonding adsorbate band which appears 
about 2 eV below the Pd bulk d bands, and the 4 eV wide anti-bonding 
H-Pd band just above EF in a gap in the projected band structure 
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Fig. 27. (a) Calculated difference in LDOS between layer 4 and 
the surface layer for the Pd(lll) surface. (b) Adsorbate
induced differences in photoemission intensities from 
Ref. 92. The dash curves indicate the estimated attenua
tion if uniform attentuation of the d-band were to 
occur. (from Ref. 78) 
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Fig. 28. Charge density contour plots for adsorbate states at 
Rat (a) -6.3 eV and (b) 4.1 eV [H/Pd(lll) at C sites]. 
The charge densities are given in relative units and 
plot ted for a (1 To) plane. (after Ref. 86) 
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Fig. 29. Calculated LDOS for (a) bulk Pd and (b) Pd(lll) surface 
with and without a monolayer of H in the C site. (from 
Ref. 86) 

near K. The intrinsic surface states of clean Pd(lll) are strongly 
affected by H adsorption--some disappear and contribute to the 
H-Pd adsorbate states, some have their character intact but move 
to lower energies, and some change their character. 

An examination of the charge distribution of the H-Pd adsorbate 
states shows that the wavefunctions of these states are almost 
completely localized on the H atoms and the fi.rst Pd layer (Fig. 28). 
The strong bonding at the surface is predominantly from the interac
tion between the Pd 4d and the H ls orbitals. The highly localized 
nature of the H-substrate interaction explains the virtually 
identical surface band structures for the sites B and C. 

The calculated surface density of states is presented in 
Fig. 29 together with the bulk density of states. The bonding 
Pd-H band appears as a distinct peak at -6.5 eV. The reduction 
of the amplitude of the density of states near EF is primarily 
due to removal of intrinsic surface states from this energy region. 
This can also be seen in Fig. 25 which shows that near,EF all 
intrinsic surface states are shifted to lower energies confirming 
the interpretation given above on the universal reduction of 
photoemission intensity in this region. Another important result 
from the calculation is the absence of a well-defined peak correspond
ing to anti-bonding H-Pd states as would be predicted by simple 
chemisorption models.93,94 This is a band structure effect. 
Because of the symmetry of the surface, the anti-bonding states 
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Fig. 30. Comparison of the calculated H-induced photoemission 
difference spectra with the experimental difference 
curve. (from Ref. 86) 

can only exist in a l~ted portion of the two-dimensional Brillouin 
zone. The large band width of these states also contributed to their 
invisibility in the spectrum. 

The theoretical difference spectra ~ for the three chemisorp
tion geometries are presented in Fig. 30 together with the experi
mental curve. The theoretical ~N's are evaluated frg~ the LDOS 
with final-state and matrix element effects ignored. As seen 
in the figure, the most prominent feature (structure (d)) in 
the experimental curve is well reproduced in all three theoretical 
curves. This structure as discussed above mainly results from 
the removal of surface states/resonances from this particular 
energy region; it is, hence, insensitive to the nature of the 
adsorbate or to its position. The comparison clearly rules out 
the case with H on each Pd atom. The spectra for sites B and 
C, on the other hand, are very similar and reproduce remarkably 
well the experimental spectrum. These results, therefore, show 
that hydrogen prefers a three-fold site and interacts strongly 
with the Pd d-states. 

In addition to the low-temperature angle-integrated photoemis
sion data,9 2 the surface state dispersions for H on Pd(lll) have been 
measured recently by high resolution angle-resolved photoemission 
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Fig. 31. Calculated and measured surface states for the H(1x1) 
Pd(111) surface at low temperature phase. The shaded 
regions are the calculated projection of the bulk bands. 
The heavy lines are calculated surfa.ce states or reson
ances; the circles are data. The open circles indicate 
experimental peaks with some uncertainty. (after Ref. 87) 

techniques at temperatures ranging from nitrogen to above room 
~emperature.87 The predicted surface band structure is shown 
to be in excellent agreement with the low temperature data. 
A comparison between theory and experiment is shown in Fig. 31. 
(Also, see Table XV.) The only possible discrepancy is for states 
near M at which experiment also has a larger uncertainty. These 
calculations, which have treated both the clean and the adsorbate
covered surfaces in equal footing, give, as a consequence, a 
comple.te and very accurate description of the chemisorption process 
at low temperature. 

The situation at higher temperature is, however, more complex. 
Experiments indicate that there appear to be two H/Pd(111) phases 
with the more stable high temperature phase showing no sign of 87 
ariy H-induced features, at least in near normal emission spectra. 
Although the exact H coverage is not certain, these results suggest 
a structural transformation with the H moving from the low-tempera
ture three-fold sites into some other positions as the temperature 
rises. The same phenomenon is also observed for H on the (111) 
surfaces of Ni and Pt. At present, there is no satisfactory 
model for the high temperature phase. Total energy calculations 
on these systems would help in clarifying the situation. 
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V. BEYOND LOCAL DENSITY APPROXIMATION 

In the previous sections, we have seen that pseudopotential 
local density calculations give impressive results for a variety 
of ground-state properties. There are, however, some systematic 
discrepancies. The cohesive energy is quite generally overestimated, 
a result usually attributed to the failure of the local density 
approximation (LDA). Also, when the eigenvalues from the Kahn-Sham 
equations are interpreted as quasiparticle energies, the minimum 
gaps for s9~~99nductors and insulators are consistently underestimated 
by 30-50%. 

The problem of·the cohesive energy, in principle, can be 
corrected with a better exchange-correlation functional. The 
band gap problem is more difficult because density functional 
formalism does not explicitly provide information on the excitation 
energies. The quasiparticle energies should, in general, be 
obtained from the one-particle Green's function.98,99 However, 
recently Sham and Schluter100 have shown that there is a formal 
relationship between the minimum gap Eg of an insulator and the 
Kahn-Sham gap Eg obtained from a difference in eigenvalues: 

= E + 6. g 

where 6. is the discontinuity in the functional derivative of 
the exchange-correlation functional across a gap. Since there 

(36) 

is not yet a calculation for 6. for a real material, there remains 
the important question of whether the discrepancy for the LDA 
results arises largely from inadequacies of the LDA or the neglect 
of 6.. 

It is, therefore, important from both practical and fundamental 
points of view to carry out the calculation beyond the LDA. 
In this section, we discuss one such calculation101 on Si and 
Ge using a generalized weighted density functional scheme. 

The usual LDA is based on an intrinsically metallic system, 
the limit of a nearly homogeneous electron density. A semiconductor 
differs from this limit in two respects--the charge density is 
localized in bonds and the electron spectrum has a gap which 
changes the screening properties qualitatively from those of 
the metals. Several schemes going beyond the LDA have been proposed 
for overcoming the first: gradient corrections,8,102 self-irorraction 
corrections,103 and the weighted density approximation (WDA). 
104-106 With the exception of the WDA calculations reported 
in Refs. 101 and 106, none of these schemes have been carried 
out fully for semiconductors. In particular, structural ~roperties 
have only been investigated beyond the LDA in one study. 101 

The semiconductor screening aspect of the problem has been addressed 
partially by calculating the exchange-correlation energy of a 
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model electron gas which reproduces the characteristic screening 
of a semiconductor arising from the gap, 18 but the resulting 
LOA exchange-correlation functional only gave small improvements 
for the spectrum of Si. 

In a complete formulation, both the inhomogeneity and the 
effect of the gap should be treated on an equal footing.101 
Table XVI summarizes the band energies at selected points for 
Si and Ge calculated using the WDA both with metallic screening 
and with semiconductor screening in the exchange-correlation 
functional. In this approach, the exchange-correlation energy 
of an interacting electron system is expressed in terms of the 
exchange-correlation hole charge ~c (in Ry units)105: 

+ + +, 

ff 
+ + n(r)n (r,r ) 

E [n] = drdr' xc 
XC I~ - ~,I 

(37) 

This hole arises from the exchange and dynamical Coulomb interactions 
between electrons which lead to a local depletion of electron 
density around a give electron. The exchange-correlation hole 
is related to a pair correlation function 

+ + + + + 
n (r,r') = n(r')G (r,r') 

XC n 

and the exchange-correlation hole must contain precisely one 
unit of charge 

f + + +, 
-1 = dr'n (r,r ) 

XC . 

In the LOA, Exc is approximated by replacing the exact Gn 
by the homogeneous electron gas result evaluated for the local 
density. The argument of the density prefactor in Eq. 38 is 
further changed to the local point t: 

n~A(~}') = n(;)Ghom(l~ - ;, I ;n(;)) 

The LOA exchange-correlation hole is, therefore, spherically 
symmetric and centered on the electron by construction. The 

(38) 

(39) 

(40) 

LDA is successful for ground-state properties despite these limita
tions because Exc depends only on the spherical average of the 
hole charge and because the sum rule (Eq. 39) is satisfied leading 
to some systematic cancellation of errors.107 

In the WDA,l05 a better description of the exchange-correlation 
hole is attempted. The proper density prefactor is retained, 
and cham is evaluated for a density averaged essentially over 
the size of the hole: 
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WDA(+ +,) n r,r 
XC 

The parameter n is determined at each point by requiring the 
sum rule (Eq. 39) be satisfied. The exchange-correlation hole 

(41) 

needs no longer remain centered on the electron and depends nonlocally 
on the charge density which may be highly inhomogeneous. 

Because simple formulations of Ghom are not available, the 
calculations101 were carried out with the analytic ansatz proposed 
by Gunnarsson and Jones108: 

(42) 

The parameters C and A are determined by demanding that G in 
Eq. 42 reproduces the homogeneous limit. Effectively G is constructed 
to have the same zeroth and inverse r moment as some Ghom In 
Table XVI, three sets of calculations are presented together 
with the experimental values. 109-111 The first column shows 
the results of LOA calculations with the Ceperley-Alder (CA) 
exchange-correlation data 14 which agree -well with previous calcula
tions. The second column (labeled WDA(CA)) shows the results 
for calculations where C(n) and A(n) are determined from usual 
ele·ctron gas data (CA). Results including semiconductor screening 
using the Levine-Louie (LL) model 18 are given in the third column 
(labeled WDA(LL)). For both Si and Ge, the discrepancy with 
experiment for the minimum gap is significantly reduced. The 
conduction band energies at X and L are consistently improved. 
However, the direct gaps are not substantially improved. As 
seen from Table XVI, the improved description of charge density 
inhomogeneity and that of electron screening both appear to play 
equally important roles. 

There is a clear qualitative difference between the LDA 
and the WDA. Figure 32 shows the exchange-correlation hole (Eq. 
38) for an electron at the antibonding site in Si. In the LOA, 
as discussed earlier, the hole is spherically symmetric and centered 
on the electron (Fig. 32(a)). In the WDA, the hole is shifted 
towards the bond charge by the proper density prefactor in Eq. 
41 (Fig. 32(b)). The exchange-correlation potential and, hence, 
the spectrum are affected. The effect on the structural properties 
is shown in Table XVII. The results for the WDA(LL) are, indeed, 
as good as the LOA results and compare favorably to experiment 
and results discussed in Sec. III. The importance of treating 
inhomogeneity and the effects of the gap on screening on an equal 
footing is again emphasized as the WDA(CA) does not give results 
as well as either the LOA or WDA(LL) . We also note that the 
cohesive energy in the WDA(CA) is underbound by -30%. The overestima
tion of cohesive energies found generally in LDA calculations 
is often attributed to underbinding in the atomic calculation. 
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Table XVI. Comparison of the calculated band energies 
at selected points to experiment for Si 
and Ge. Energies are reported in eV and 
relative to the valence band maximum. 
(from Ref. 101) 

.. 
LDA WDA(CA) WDA(LL) EXP.a 

Si 

Eg 0.56 0.71 0.90 1.17 

r 2s', v 0.00 0.00 0.00 0.00 

r 15,c 2.57 2.69 2.81 3.40 

r 2' ,c 3.29 3.27 3.34 4.2 

X 4,v -2.86 -2.80 -2.74 -2.9 

X 1,c 0.71 0.87 1. 06- 1.30c 

L3' -1.21 -1.18 -1.16 -1. 2±. 2 
~v 

2.1d L 1.55 1.62 1. 73 1,c 
3.9±.1b L 3.40 3.54 3~68 3,c 

Ge 

E 0.52 g 0.60 0.69 0.74 

r 2s', v 0.00 0.00 0.00 0.0 

r 2' ,c 0.74 0.74 0.78 0.89 

r 15,c 2. 58 2.71 2. 79 3. 25± .1 

X 4,v -3.03 -2.97 -2.92 -3.15±.2 

X 1 ,c 0.80 0.95 1.11 1. 3±. 2 
L , 

3,v -1.38 -1.35 -1.33 -1.4±.3 

L 0.52 0.60 0.69 0.74 
~ 1,c 

L 3,c 3.74 3.88 3.99 4.3±.2 

~ 

a 
Ref. 109 except where noted. 

b 
Ref. 110 

c 
Estimated from conduction band minimum and longitu-
dinal effective mass. 

d 
Ref. 111 



Fig. 32. 

(A) (B) 

Contour plot of the exchange-correlation hole charge 
for an electron at the anti-bonding site in the (1l0) 
plane of Si (electron location denoted by +) for the 
LDA (a) and for the WDA(LL) (b). The contour interval 
is 1.25 electrons per unit cell. (from Ref. 101) 

In the case of the WDA(CA), most of the change in the cohesive 
energy is due to an enhanced binding in the atom. There is a 
relative small change in the total crystalline energy as one 
goes from the LDA to the WDA(CA). The LL model is not directly 
applicable to isolated atoms, so the cohesive energy was not 
obtained. 

The above calculation, thus, demonstrates that by going 
beyond the LDA, a minimum gap in Si and Ge much closer to experiment 
can be obtained without degrading the description of structural 
properties in the solid state. However, for accurate quantitative 
Cohesive energies and excitation energies, much improvement is 
still needed in the theory. 

VI. SUMMARY AND CONCLUSIONS 

The aim of this article was to review some of the recent 
progress in calculating the electronic and structural properties 
of condensed matter using the ab initio pseudopotential density 
functional approach. Specific-;xamples have been given for a 
variety of properties and systems. These include the static 
structural properties, the vibrational properties, phonon-phonon 
interactions, solid-solid structural phase transitions, surface 
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Table XVII. Comparison of the calculated equilibrium struc-
structural properties to experiment for Si and 
Ge (after Ref. 101) 

Lattice 0 constant Bulk modulus Cohesive energy 
A (kbar) (eV) 

Si 

LDA 5.40 940 5.28 
Present work 

WDA(CA) 5.48 850 3.19 
WDA(LL) 5.39 940 

Exp. 5.43 990 4.63 

Ge 

LDA 5.60 730 4.67 
Present work 

WDA(CA) 5.68 620 2.64 
WDA(LL) 5.61 700 

Exp. 5.65 770 3.85 

electronic and geometric structures, and so forth. The method 
is shown to be equally applicable to semiconductors, insulators, 
simple metals, and transition metals. With basically the atomic 
number and atomic mass of the constituent elements as input, 
many of the above properties have been calculated to within a 
few percent of experiment. 

Currently, there is considerable activity in applying and 
extending these methods to study other systems and properties. 
Only a subset of the applications have been discussed here. 
Several important areas have been omitted. One area is defects 
in solids. Calculations in impurities, vacancies~ interstitials, 
line defects, and plane defects have been performed using similar 
methods. Another area is interfaces. Applications are being 
made to the metal-semiconductor interfaces (Schottky barriers), 
semiconductor-semiconductor interfaces (heterojunctions), and 
superlattices. The study of molecules and clusters is a third 
area. Also, since the method can be used to calculate electron-phonon 
couplings, phenomena such as resistivity, superconductivity, 
ultrasonic attentuation, and so forth, can now be studied using 
these ab initio methods. Results from research in all these 
areas have been impressive and very encouraging. 
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The use of the density functional formalism, however, restricts 
the applications to properties and phenomena related to the ground 
state (or differences in ground states). Excited states or quasi
particle energies, at present, cannot be justifiably extracted 
from these calculations. As discussed in Sec. V, the calculated 
energy band gaps for most semiconductors and insulators are too 
small by 30-50% compared to observed values when a local density 
approximation is used. Many workers are currently investigating 
modifications to the LOA or exploring other new avenues to extend 
these calculations to excited states. 

New ideas and refinements to present methods will surely 
contfnue to develop for this important field. However, even 
if one limits the studies to ground-state properties, future 
applications are numerous and exciting. With the availability 
of modern supercomputers, this general approach should have the 
power to predict the existence of new materials, novel properties 
and phenomena, and to extend the study of materials to physical 
situations (such as those at extreme pressures or at complex 
interfaces) which are difficult or impossible to examine experimen
tally. 
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