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Abstract 

LBL-l896 

An asymptotic treatment of the transient response of a disk 

electrode is given for short times. Results are obtained by 

expressing the potential in terms of an integral equation at the 

surface. A similar formulation is used also to calculate the steady-

state current distribution for large exchange current densities. 
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Introduction 

I 2 The authors have recently reported' a theoretical study of 

the transient behavior of a disk electrode in t~e presen~e of faradaic 

and capacitive effects. Series 'expressions were obtained for the 

potential and the current under galvanostatic and poterttiostatic 

control, respectively. - Those results are readily applicable to 
, . 

describe the long-time response of the disk and determine the relaxation 

time of the overpotential after a step change in the applied current 

or the current decay after a step change in the potential. However, 

a large number of terms need to be included in the series to express 

the short time behavior accurately~This can be accomplished more 

efficiently by deriving an asymptotic solution to the problem valid 

at ,small times. 

Shortly after the cell current is 'switched on, the current 
I 

distribution on the surface is given by the primary distribution3,4 

everywhere except at a small region near the edge of the disk. Since 

the primary current density is infinite at the edge, the double-layer 

capacity is charged more rapidly in this region than at other parts 

of the disk, so that the current. density is reduced to a finite value. 

From a mathematical standpoint, we have a singular-perturbation 

problem at hand. A similar problem'at high frequencies for the 

alternating-current. distribut'ion on a disk electrode has been treated 
, 5 

earlier. We follow here the same guidelines in ,the mathematical 

formulation as developed in that paper. Another problem of the same 

I 6 
type is encountered for large values of the exchange-current density. 
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- 5 
-The singular nature of this problem has been recognized; however 

its consequences were not of immediate interest. It nevertheless 

conforms with the context of the present paper, and an analysis is 

outlined in Appendix II, thereby rendering more co~plete the overall 

treatment 'of the secondar~ current distribution at a disk electrode. 

Mathema'tical Model 

The potential in the solution satisfies Laplace's equation, 

The current density vanishes on the insulating plane of the disk, 

which implies 

a~ 
~ = 0 at z = 0 , r > r 

o 

(1) 

,(2) 

Away from the edge region, the potential in the solution is given 

by the primary distribution, ~p. Furthermore, at-the surface, the 

passage of current is primarily due to the charging of the electric 

double layer, 

i C 
a(V-- iP) 

at at z = 0 , r < ro (3) 

where V is the potential of the electrode, K is the conductivity 

of the solution, and C is the double-layer capacity. Charge 

transfer may'alsu occur by means of a faradaic reaction'. This effect 

is small at short times as long ,as the exchange-currentdensity is ,not 

I 
, i , 

i 

, ! 

· , · , · 

} ; 
" , 
, 



, 
! 
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too large, and it is neglected here. The other extreme, where the 

faradaic reaction dominates over the double-layer charging, is 

discussed in Appendix II. Diffusion is also neglected. The transient 

response of a rotating-disk electrode under mass-transfer-controlled 

situations has been treated elsewhere. 7,8 

Analysis and Results 

In terms of the rotational elliptic coordinates, the potential 

distribution outside the edge region with the counter electrode 

placed at infinity is given by3 

~P/~p 
o 

2 -1 
1 - - tan ~, 7T 

(4) 

where ~p is the potential in the solution adjacent to the electrode 
o 

surface corresponding to the primary distribution~ If the electrode 

potential is kept at a constant value V, then If, however, 

the electrode is under galvanostatic control, ~p = I/4r K 
o 0 

With 

this difference in mind, the present analysis applies to both 

galvanostatic and potentiostatic cases unless stated otherwise. For 

small E" equation '4 can be approximated by 

1 - 2~/7T , (5) 

which may be regarded as the outer solution for the potential, with 

which the potential in the edge region must match. For instance, in 

the inner region, the potential approaches equation 5 asymptotically 
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as ~ ~ 00 and also as t ~ 0 . -The rotational elliptic coordinate 

system reduces to parabolic coordin~tes in the edge region,S and 

Laplace's equation can be expressed as 

(6) 

Let us now introduce the stretched variables appropriate to 

the edge region: 

(7) 

nile , ~ (8) 

where e = Kt/r C is the dimensionless time. Equation 7 represents 
o 

a separation of variables, such that ~ is a function of n and ~ 

only. When the basic equations are transformed into the stretched 

coordinates, the problem reads 

(9) 

- -2 -
2.t = 1 n~ _ !L ~ 
a~ 2 2 an 

at o , (10) 

2.i 0 - 0 ... at n "" , (11) 
an 

~ ~ 
_2 _2 

-+ as n + ~ -+ 00 . (12) 
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These results indicate that the inner region is of order r a 
o 

in the 

original, cylindrical coordinate system. Moreover, the dimensionless 

potential is of order vB, and the dimensionless current density, 

given by 

is of order 1/18. 

v - ~ 
o 

One possible way of solving the system of equations 9 to 12 

is by finite-difference methods. 9 This scheme did not prove to be 

(13) 

straightforward in converging to a stable solution due to the compleX 

nature of the surface boundary condition, equation 10. The problem 

for the potential at the surface can also be expressed (see Appendix I) 

in terms of the integral equation, 

00 

~ocTi) = ~ f ~n Iii; - n21 
o 

(14) 

In. order to bring the problem into a finite domai~, the integral can 

be written in the form 

::i; = TIl Ins 
'+'0 I 2 -2, 

~n l'i* - n* (:. 
o 

1/ 4 

+-1.. I 1 1 
~n ----

2TI 
IX* Ix 

0 

(15) 

a~' 
1 0 

3/4 ax* dx*, 
~ . 
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where 

if = (i - 1/~)/~ , x 
o 0 

(16) 

and is a convenient breaking point. Equation 15 can now be 

integrated for the entire range of n, whereas equation 14 has to 

be truncated at some point with the possibility of neglecting an 

important contribution to the integral. Numerical solution of this 

10 
integral equation turned out to be more efficient than the finite 

difference technique in obtaining resu1ts,for the present problem. 

The results are shown in figure 1. The shape of the curves is 

also characteristic of the current distribution near the edge since 

the dimensionless potential ¢o is proportional to the current 

density as indicated by equation 13. The current distribution approaches 

the primary distribution toward the center of the disk. However, 

it remains finite and much more uniform than'the primary distribution 

in the edge region; the finite capacity of the electric double layer 

does not allow it to become infinite. 

The electrode potential for the galvanostatic case or the 

applied current for the potentiostatic case is given by 

(galvanostatic) v/~p - 1 ( 

(potentiostati.) 1 _01/4< K~P( 
o 0/ 

dn • (17) 
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Short -time solution 
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XBL738-3743 

Figure 1. The surface potential distribution at short times 
near the edge of a disk ele~trode 

4 
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Substitution of the· stretched variables arid integration,yields,' 

5 where 

,[1 (V - <PO) .. · .. dn _ 
. . '. " <pP ' 
0,' 0 

1 
.7T S .tIl, e + AS , ,{lSL . 

(19) 

The. integral is 'broken up' this way as a c;onvenience in numerical 

calculation since thE! first integral does not' converge asb + 00 'and 

the second integral as b -+ 0 . 'Equation19waslntegtat~lOfor 

the whole range of" n using the numerical solutt'on obtained from 

equation15, and the value of A was 'thus found to be '0.841 • 

Equation'18 is plotted in figure'2 usirigthis value and comPClred to 

previous caleula't ions. 1:. 2 The long-time .series appiroach thepr~sent 

short-time solution as an asymptote for small values of 8 

Conclusions 

The present,work demonstrates once .more, the efficiency and 

c'onvenience of the singular-perturbation method in obtaining as~ptotic 

solutions to problems whichwould'btherwise be laborious'to'solve 

numerically. In electroarialytical applications,Dne usually focuseE! 

attention to the conditions at the electr,odesur'face, and the conditions, ' 

:in the bU'lk. can be accounted for ,adequate'ly by, using. the 'expression 

..•. 

.' ' 

" 
" 

f"" . . ~ 

; ';i: 
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A Galvanostatic series I 

• Potentiostatic series 2 

- Short-time asymptote 

A 

A 

• 
0.9L---------~------~------~--------~ 

2 5 10 20 50 

1/ e 
XBl738 -3746 

Figure 2. Comparison of the short-time solution and the longtime 

series1 ,2 for the transient response of a disk 
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for the. primary distribution, equation 4. Therefore, expressing 

the surface potential in terms of an integral equation provides 

additional economy in the numerical work since the bulk of the 

solution does not enter the calculations explicitly. 

The results'reported above are universally applicable SihC~ 

no parameters appear in the problem, and nUmerical ca1cu1atioris. 

need not be repeated. Furth~rmore, the results are independent o·f 

the disk geometry because the formulation is confined toa small 

region near .. the edge. Hence, they can also be made to apply under 

similar conditions to any electrode geometry embedded in an 

insulating plane. 

APPENDIX'! 

Integral Representation for the Po'tentia1 at Short Times 

It is possible to solve Laplace's equation by superposing 
.. 

solutions due to current sources on an electrode. Fora disk, this 

. . b 11 
~s gl.ven y . 

~(r,z) 
2 

=- (20) 

where K(m) is the complete elliptic integral of the first kind,12 

TI/2 

K(rn) f da 
o ~"""'i' ;;;l==m;;;s-=l.-=· n;;;;:2=-a 

(21) 

, l 
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and 

4rr*, 
m (22) 

After converting into the rotational elliptic coordinates3 and 

substituting equation 3, one obtains 

(23) 

where the assumption n« 1 has been introduced for the edge region. 

The assumption cannot be applied to the dwmny variable n* because 

the integration has to be carried over ,the entire surface of the disk. 

Define 

F(n,n') (24) 

The potential distribution in the outer region is approximated by 

equation '5. Substitution into equation 3 and integration gives 

v - 4>0 2 e 
= (25) 

4>P 1f n 
o 

Hence, for the outer region, equation 24 can be written as 

!' 
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~V 
n' 

dn~l~ (26) 
K(rn) 

, 

f K(m) " 
F(n,n') = F(n,l) - dn* -

+ -VI 2 
+"1 

2 1f .01 - n* 0 1 ~ .n* 

( 

The firstiritegra1 in the brackets corresponds to the primary 

distribution. Pr~of:. 

Let us write equation 20 for the ·primary distribution :by , 

replacing 4> with, 4>P and ,i 
. , 3 

with the primary current density: 

Thus, 

4>P 
o 

I 14Kr o 

44>P 1 

, 0.,5 

.' 2 
(r*/r ) , 

, 0, 

r + r. 

of K(m) 
= 1T2 ' ~v-;:=, =n:;2 =+~ .. -;,I 1'=, ==:;2 d n* 

o 1 ~ ~ - n* 

independent of the value of n , we have 

1 

~J -.j 
K(m) , 

dn* = 1 . 
2 +~1 2 1T 0 1 -n "" n* 

For small values of n' , the second integral in equation 26 

can be approximated by 

n' n' f __ K...:,(,-m.<....) -- dn* ~f 

o 1 + ~1 -::n; 0 

n 4 )('n - dn n . 

(27) 

.(28) 

(29) . 

! . , 

- , 
i 

, i 
, , 

. ! 
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Equation 26 for the outer region therefore reduces to 

F (11,11' ) (30) 

In the inner region, equation 24 can be expressed in the form 

F(11, n') 

Both 11 and 11* are small in the inner region. Therefore, 

lim 
11.n*-+O 

K(m) = 1. 1. 16 = 0.... 16/8 
~m -2 tn l-m IV-' 2 2· 

O , ~ - n-*' 11,11*-+ 'I 

Equation 31 can now be broken up into several parts: 

00 

-f R.n 
,_2 _2, 
11* - 11 G(n*)dn* 

0 

00 n' 

J R.n 16/8 
G(n*)dn* +f R.n 16/9 

,_2 -2, ,_2 -2, 
n' 

. 11* - 11 0 n* - 11 

where 

dn.~ . 

(31) 

(32) 

(33) 
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- 1 . 

In the original unstretched coordinate system, the first ~ntegra1" 

can be expressed as 

00 

R-n(16/8) J G·6i*)dn*,= -

o 

_ 1, , 

R-n (16/8) 'J (2- ,a~1 ' ) +,1 dn /8 2~P a~ ~=O o 0 

Under ga1vanostatic control, 

= R-n (16/8) ( 1 p f 21Tirdr - ~ 
16 4Kr~, 0 o 0 

-.~ .. = R-n (16/8) ,( I 

18 4Kr ~p 
00 

I = 4Kr ~p , and the integral is 
00, 

(34) 

(35) , 

identically zero. For potentiostatic control, the current is given 

by equation 18, and the integral is therefore of order ,/8 and 

still small compared to the second integral, which is of order unity. 

For large Ti' ~ the last integral in equation 33 clm be approximated by 

Ti' 

J R-n· ~6/8 2 dn*, :::::Ti' R-n 186 -Ti' R-n Ti,2 +2Ti' • 
I~* - ~ 1 -

(36) 

o 

Equation 33 for the inner region thus be~omes at large n' 

" ," 

•••• ' •. r 

.. ~, 

, : 

, I 

, . i 
.,' I 

; 

I 

, I 
, ., 

i 
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00 

nl 

16/9 --
2 2 G(n.)dn. 

1- - I n. - n 

Finally, the matching condition, 

lim F (n, n I) = 
nl-+O 

lim F(n,n ' ) 
nl-+O 

has to be satisfied. Substitution of equations 30 and 37 gives, 

after cancelling the matching terms, 

00 

4i 0 (n) = ; J in In; .,. n21 G(n.)dn. 
o 

which is identical to equation 14. 

APPENDIX II 

Current Distribution on a Disk Electrode at 

Large Exchange-Current Densities 

Previous numerical calculations for the rotAting disk6 have 

(37) 

(38) 

(39) 

shown that the secondary current distribution approaches the primary 

distribution as the exchange-current density goes to infinity. For 



,..,16,.. 

large but finite exchange current densities, the current distribution 

approximates closely the primary distribution on the disk except 

near the edge, where the'faradaic impedance is'large enough to force 

the current density to remain finite. 

When the current density is small compared to the exchange

current density (i·« I io I) , one may assume linear kinetics. 6 The 

dimensionless, exchange-current density can then be' defined as 

J = (ex . + ex ) 
a c 

i r F 
,0 0 

RTK (40) 

where ex and ex are the kinetic parameters of the general kinetic . a c 
11 

expression for an electrode reaction. The condition at the electrode 

surface can be expressed by 

J(V - ~ ) 
o 

(r < r ) 
- 0 

The stretched variables appropriate' for this problem are 

n nlJ , ~ = ~IJ . 

Substitution into Laplace's equation and the boundary conditions 

(41) 

(42) 

(43) 

gives a system identical to equations 9, 11, and 12, and the condition 

at the surface becomes 
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(44) 

~=O 

The finite-difference method by successive overre1axations was 

successful in this case in obtaining astable solution. The results 

are plotted in figure 3. 

The steady-state current or potential can be calculated from 

t P 
o 

1 - - = V 1 - """'4r.....::
I
;;""K-V -1 (1 
o 0 

_ to) dn = .1... tn J + ! 
V. '/TJ J ' 

where A has the same form as equation 19 and the numerical value 

(45) 

of 0.708. The quantity v/tP can be characterized as a dimensionless, o 

effective direct-current resistanceS 4roKReff and is fixed once J 

is specified. 
1 S A few values were reported earlier,' and these are 

reproduced in table 1 along with some additional results. These 

results are compared with the present asymptotic solution in figure 4. 
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Primary di stribution 

Numerical solution 
for large J 
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Figure 3. The surface potential distribution for large values of . 
the kinetic parameter J near the edge of a disk electrode 
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Table l. The effective cell resistance at different 
values of the ~arameter J 

J 4roKRef£ 

0.1 13.81194 

0.2 7.44458 

0.5 3.62161 

1 2.34368 

2 1. 69962 

5 1. 30375 

10 1.16459 

20 1.09002 

50 1. 04072 

100 1. 02231 

200 1. 01217 

500 1.00543 

,: I 
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Nomenclature 

constant defined in equation 18 

double-layer capacity, 2 f/cm 

F Faraday's constant, coulomb/equivalent 

F(n,n') function defined by equation 23 

G(n • .) function defined by equation 33 

i current density, 

I total current, A 

2 A/cm 

J dimensionless parameter for linear electrode kinetics 

K(m) complete elliptic integral of the first kind 

r radial position from axis of disk, cm 

r radius of disk, cm 
o 

Reff effective direct-current resistance, ohm 

t time, sec 

v electrode potential, V 

z distance from plane of disk, em 

K conductivity of the solution, -1 -1 ohm - cm . 

n rotational elliptic coordinate 

dimensionless potential in the solution 

potential in the soluti~n, V 

~ potential in the solution adjacent to the electrode, V 
o 

~p potential in the solution corresponding to the primary 

distribution, V 

rotational elliptic coordinate 

a dimensionless time 

• 
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