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ABstract
An asymptotic treatment of the transient response of a disk
electrode is given for short times. Results are 6btained'by
expressing the potential in terms of an inéegral equation at the
surface. A similar formulation is used also to calculate the steady-

state current distribution for large exchange current densities.
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Introduction

The authors have recently réportedl’2 a thebrétiéal study of
‘the transiént beﬁavior of a disk electrqde in the presence of faradaic
and qapacitive effecfs. SerieS‘éxpressions were obtained for thé
potential and the current under galvanoséatic and poteﬁtiostatic
control, respectively. Those results are readily‘épplicable to
describe the long-time response of the disk and détetmine‘the reiaxa;i&n
time of tﬁe overpotential éfter a step.change in the applied current
or the current decay after a stép change in the potential. However,
a large number of terms need to Be included in the series to expres;
the short time behavior accurately. This can be accomplished more
efficiently by deriving anvasymptofic solution to the problem valid
at small times. |

Shortly after the cell c#rrent is switched on?»thevcurreht'
distribution_on the surface is given by the pfimary distribution3’4
everywhere except at a small region near the edgé'of the disk. Since
the primgry current density is infinite at the edge, the doﬁble;layér_
capacity is éhgrged more.rapidly iﬁ this region ;han.at other parté

of the disk, so that the current density is reduced to a finite value.

1

" From a mathématical standpoint, we have'a_singular—perturbation
problem at hand. A similar problem at high ftequéncies for the
alternating—curreﬁf.distribufion on a disk electrode has been treated
eérlief.sv We follow here the s;me guidelineé in the mathematical
formulation as:dQVeloped'in that paper. Another problem of tﬁe same

~

type 1s encountered for larée values of the exchange-current density.6



-The singular nature of this problem has been recognizéd;5 howe&er
its consequences wére not of immediate interest. It nevertheless
conforms with the contéxt'of the presént paper,.and an analysis is;
outlined in Aépendix II, thereby rendering moré compieté the overall

treatment ‘of the secondary current distribution at a disk electrode.

Mé;hematiéal Model

_Thé potential in the solution satisfies Laplace's equation,

Vo =0. . - o @

The current density vanishes on the insulating plane of the disk,

which implies

== =0 at z=0,r > L v (2)

Away from the edge region, the potential in the solution is given
by the primary distribution, oP | Furthermore, at-the surface, the
passage of current is primarily due to the charging of the electric

double -layer,

-

iz—Ka-:C-'-—alt-:——— ?t z=0,r_<_ro, c (3)

where V is the potential of the electrode, K 1is the conductivity
of the solution, and C 1is the double-layer capacity. Charge
transfer may ‘also occur by means of a faradaic reaction. This effect

is small at short times as long as the exchange-current density is not




too large, and it is neglected here. The othervextreme, where the
»fa;adaic reaction dominates over the double-layer charging, is
discussed in Appendix II. Diffusion is also néglected. The tfansiént
response of a rotating-disk electrode under'mas$—ﬁransfer—controiied

7,8

situations has been treated elsewhere.

Analysis and Results
In terms of the rotational elliptic coordinates, the potential
distribution outside the edge region with the couhter electrode

placed at infinity is given by3
oP/oP = 1~ 2 pante , ' (4)
o i ’

Qhere Qg is the potential in the solution adjaéent to thg electrode
éurfacé corréspbnding to the primary distributibn} If the electio&e
potential is kept at a constant value V , theﬁ ®£_= v . 1f, ﬁowever,
‘the electrode is under galvanoétafic control, @2 = I/4roK . With

this difference in mind, the preseﬁf analysis applies to both

" galvénostatic and potentiostatic cases unless stated otherwise. For -

small & , equation 4 can be approximated by -
o/e° = 1 - 2¢/m (5)

which may be regarded as the outer solution for the potential, with
which the potential in the edge region must match. Forvinstancé, in

the inner region, the potential approaches equation 5 asymptotically



as & > o and also as t - 0 . -The rotational elliptic-coordinate
system reduces. to parabolic coordinates in the edge region,5 and
Léplace's equation.éan be expressed as
2 2 .
2_9.+.f112 =0 . (6)

an? a2

Let us now introduce the stretched variables appropriate to

the edge regioﬁ:

. - ¢
§ = (¥ . W
2/8 ( oP ) '
° . .
n=n/B,E=8E/B, | (8)

where 0 = Kt/roC is the dimensionless time. Equation 7 represents
a separation of variables, such that 5 is a function of n and E
only. When the basic equations are transformed into the stretched

coordinates, the problem reads-

2— 2= - '
244280, 9
- oF |
3% 1-: 10° 9% .
=5 -2 at E=0, - ao)
14 on ‘
2.0 a =0, (11)
an
- - _2 =2

¢ +& as N +E& > o, (12)




These results indicate that the inner region is of order roe in the
original, éylindrical coordinate system. Moreover, the dimensionless
potential is of order Y8 , and the dimensionless current density,

\

given by

ir0 V-9 .
o ___o 13)
kP 2@‘;9

is of order 1//8 .

One possible way of solving the system of equations 9'to 12
is by finite-difference mgthods.9 This séheme did not prove to be
straightforward in converging to a stable solution dué to the complex
néture of the surface boundary condition, equation 10. The problem
for fhé potential at the surface can also be expressed (see Appendix I)

in terms of the integral equation,

© - =2
_ iy 33
5, - ;}fzn 75 - 7] |5 8, - = 2 -1fdh, . ae

- In order to bring the problem into a finite domain, the integtél can

be written in the form

s : - =2
== [ | 2 (L B dn
¢, =7 iy = Nl 5 ¢, - - - 1)dn,
0 - N |
A : (15)
1/ng _




where

3= G- UR/m, x = 1A, | (16)

and 'ns is a convenient breaking point. Equatioﬁ 15 can now be
integrated for the entire range of ﬁ , whereaslequation 14 has to
be truncated at some point with the possibility of neglecting an
important contriﬁution to the integral. _Numerical solution of this
integral equation 10 turned out to be more efficiEnt than the finite
difference technique in obtainihg results . for thevpresent problem.
The results are shown in figﬁre 1. The shape of the curves is
also chafacteristic of the current distributiﬁn near the edge since

the dimensionless potential ¢o is proportional to the current

density as indicated by equation 13. The current distribution approaches

the pfimary distribution toward the center of the disk. However,
it remains finite and much more uniform than the primary distribution
in the edge region; the finite capacity of the electric double layer
does not allow it to become infinite. |

| The electrode potential for the galvanostatic case‘or the
’ applied current for the ﬁotentiostatic case is given by

. P _ '
(galvanostatic) V/(DO 1 1 V- |
‘=[————2 dn . (17)
oP
0 .o

(potentiostatic) 1 - I/4roK®g
/
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Figure 1. The surface potential distribution at short times

near the edge of a disk electrode



".Substitution,offfheiStreched'vérisbles_snd lnrégrarionfy1elds;é

an=-Lomo+a, s -

b e o

o The.integral'is"broken up'thiS'Way“as a'convenienCefin“numerical

' calculatlon since the flrst 1ntegra1 does not converge as' b+ ® and

the second';ntegrsl as b +'0. Equation 19 ‘was 1ntegratedlo fo ffd'

the wholebrange ofl'ﬁ- GSing the numerical-solution obtalned from: h

equation 15, and the value of A was thus found to ‘be 0 841 ;*

: Equatlon 18 is" plotted in’ flgure 2 using thlS value and compared t0‘7f'”

o prev10us calculations.l’g: The 1ong—t1me series approach the presentw'

' short—tlmebsolutlonlas an'asymptote for smallrvalues of‘ Sjg

|
i

’VCOncluslons.;
 The present work demonstrates once more: tne efflciency and
: ‘convenlence of the 51ngular perturbatlon method in. obtaininé asymptoticidﬁ;:
'solutions to problems whlch w0u1d otherw1se be laborious to’ solve
numerically.. In.electroanalytical applications;:onevusually focuses.
f?};éttentionftotthe conditions at rhé elecrrodeﬂsurface;'and7the conditlonslﬁf

“in the bulk,csn_beiaccountedsfor5edequately by,uslngathe'expressiona

T
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Figure 2. Comparison of the short-time solution and the longtime

series

1,

for the transient response of a disk
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for thelprimary.dietrlbutlon, equationlﬁ. Iherefore;'eXpreseing‘;
the'surface“potentlal'ln terme:ot ao iotegral'eqeatlon‘prOVldee, =
’additlonai!economyiin the numerical morklsince'tﬁe.bulk Of»ihe -
_sdlution.does not enter the calculations explicltly;

The resulte reported above are universally appllcable elnce
‘fno parameters eppear in the problem, and numerlcal calculations
need nOt be%repeated.' Furthermore;lthe“resultS“are 1ndependent ofc
the dlsk geometry because the formulatlon is conflned to a small -
region near.the edge.: Hence, they can also be made to apply under
simllar conditlons to any electrode geometry embedded in an i

insulating plane.

APPENDIX ‘I
.Iptegral'Representation'for the Potential at Short Times
It is possible to eolve'Laplace's_equation by superpOSing,,f-
'Isolutioné due to'current'soorces‘oﬁ an electrode. 'For a disk, tﬁie
R _ v . .
is given by
i(r J)Kmr dr, N F
@(r z) = ' : ' : - (20)
o o\/ +(r+r*)2 B

where K(m) ‘is the complete elliptic integralvof:the‘first kind,
m/2

'0\,l—msiﬁ2a -

K(m) =

12. ; o

ey
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and

: 4rr*. ' . o
m = — .o - (22)
22 + (r + r*)2 . '

After codverting into the rotational elliptic coordinates3_and
substituting equation 3, one obtains

vV-90o\ o
o 2 K(m) 9 o -
_—= ;]'_J n*dn* t4 v (23)
0 ' '

36 P
1+ Vl - ni <l>o

wheré fhe assumption n << 1 has'ﬁeen introduced for the edge region,
| The aésumption cannot:be applied,tq the dummy variablé Ny because»
the integratidnvhas to be carried o§er_the entire surface of the disk.
Define | ‘

. 'n' . -
2 K(m) K3 V- Qo ’

ndn, . (24)
™ ‘{ 30 p J * % _
0 1_+V1 ‘—-ni : % '

F(”,nl) =

The potential distribution in the outer region is épproximated by

equationHS. Substitution .into equation 3 and'intégration gives

o _ g;g_ o :
—2=ts. e

" Hence, for the outer region, equation 24 can be written as



-12- -

Fi,n') = F(n,1) - — | | —REL—— an, - f k@
LS R VA - n2 01 +\/1g.jni
, : o .
The first integral in the braékets.cprrequﬁds to the primary -
.distributidn;ﬂ Prdofﬁ
Let us write eQuatioﬁ 20 for the»primary distribution by
replacing K 'withl.¢p and i ﬁith'the primary ¢urrent'&en51tyt3-
S
2 [ 1 - 0.5

_ K(m)r*dr*l’
- 2 : T + f  :
0 "ro,yrl —_(r*/ro)z- S

o | an
40P L | o
f ko) d”* :

\,i -n +\li - n*

' Thus, indepgndént of the value of n , we have

TT

\/i - n + \,1 - n*

For small values of n' ,‘the'éecondvintegral in»eqﬁa;ion 26

cén be approximated by -

f _Klm) dn;k_:’?ff tndan-n(mdre) . @)
o l’*FV_l—@T]i.'- o -

dn,| . (26)

0 | " L

P
i
[
i
i
)
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Equation 26 for the outer region therefore reduces to

SR = RO -1+ (ke L @0

ndn, . (31)

Both n and n*v are small in the inner fegion.' Therefore,

16 _ . 16/9

(32)

1
lim K@@m) = 1lim < gn
; 2 - 2 -
n,n,>0 ~ n,n,~0 L=m ™ n? - Rl
Eqﬁatioﬁ 31 can now be broken up into several parts:
/
- - - 2 ' - -
F(,n') = —2[9— Jﬂn (16/6)G(n,)dn,
™
0
- ‘ -
2 2 - -
—fln Ifix = A7 6(n,)dn,
0
o . ﬁ'_ . .
. 16 6. ' 16/6 -
f —16/6._ 2 G(n*)dn* f Rn—_—z—/—_—z—dn* » (33)
ﬁ | o - Ihe -1l -

where



. 14—

EURES $o(ﬁ*)-~—§-;%2._;;, -1 e

In the original unstretched coordinate,Systém, the first ihtegfa1 

can be expressed as

R.n'.(lG/G)fG‘(ﬁ'*)dﬁ*’ - Ao (16/9)f<" -g% '+_'1>dn
L » (pp g_ :
0 s
 ,r

_ . N )
_ (35).
- 4n (16/6) [ ./.Znirdr -1

/B 4Kr @ 0

_fn (15/9) I\
) N\ akr 0P .__'
‘0.0 ‘

= Under.galvandstatic con;roi; I“=‘4kr°¢§ , and the integral is

identically zero. For potentiostatic contfol, the current is'given‘
by equation 18, and the integral is therefore of order vB and - -

" still small compared to the second integral,bwhich is ofvorder'unity.i

For large ﬁ‘ , the last integral in equation 33vcén be apprpximated_py-

‘Equation 33 for the inner region thus becomes at large. ﬁ',

Jﬂbln ——léig—~j dﬁ*wz ﬁ"Zn lﬁ f-_! anﬁ'z +;Zﬁlv.i 1_: (36) con




«15~

(=}
- - 2/8 - I TR
F(n,n") = - ‘2_6 fzn lni - nzl’ G(n,)dn,
o
0 .

(37)

"Finally, the matching condition,

lin F(n,n') = lin F(,A") (38)
1 B . .
has to be satisfied. Substitution of equations 30 and 37 gives,

after cancellihg_the métching’terms,

L2 =2y = = |

3y =3

o' T
which is identical to equation 14.

APPENDIX II

_.Current Distribution on a Disk Electrode at

- Large Exchange-Current Densities
. ' . ) - . ] . : 6 :
Previous numerical calculations for the rotating disk have
shown that the secondary current distribution approaches the primary

distribution as the exchange—curfent density goes to infinity. For.



| —16—

large but finite exahange‘cﬁrrent'depsities, thé current distribution -

ép?roximétéé-CIOSély‘thé pfimary_diStribﬁﬁion 6n.tﬁéydisk eicept'f

~ near thé eagé, wﬁere thé'#éra&aicvimpedance iS'lérgeuendugh.tO'force’

‘the currentvdensityvto fémain finite. | |
Wﬁen.the cﬁ:rent~deqsity is smali.cqqpa;ed t§ the ekchaﬁge; v

" current dehsity- 1 << libl) . qﬁe ﬁéyvéssume lineaf kinetics;6' Iﬁe_

-dimenéionless,'exchange?curreng‘density één thenfbe*defiﬁed as

irPF
)

J=(a + qc) Rl ° - (40)
where ;aa"and ac are the kinetic parametérs‘Of'the general kinetic
expression for an'eléctrode reaction.ll' The condition at the electrode

surface can be expressed by

=3 -0) @E<r)y. | )

b=5(1-9) 4, @)
RendLE=84. Gy

Substitution into Laplacefs'equation and the boundary conditions

gives a system identical to equations‘9, 11, and‘12, and the condition'

at the surface becomes
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ol m. )
3E i o |

The fiﬁitefdifference method by successive overrelaxations was
Successful in this case in obtaining a stable solution. The results
are plotted in figure 3.

The steady-state current or potential can be calculated from

oP 1 , .
1--2-1- 1-——- dn=—1—2nJ+A (45)
s v 4r KV o : J? ,
: 0

'where A has the same form as equation 19 and the numericalvvalue

of 0.708. The quantity V/@E can be charactefized as afdimensioﬁless;
éffecti?e directfcurrent résistanceS 4ro|<Reff and is fixed once J
is'specified. A few values'were reported earlier,l’5 and these are

reproduced in table 1 along with some additional results. These

results are compared with the present asymptotic solution in figure 4.
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'.Table 1. The effective cell resistance at different

values of the parameter J

J AroKReff
0.1 13.81194
0.2 7.44458
0.5 3.62161
1 2.34368
2 1.69962
5 1.30375
10 1.16459
20 1.09002
50 1.04072
100 1.02231
200 1.01217
500 1.00543
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Noménciature
A 'gonstant defined in equation 18
C double-layer capacity, f/cm2
F . Faraday's constant, coulomb/equivalent‘.

F(n,n') function defined by equation 23

G(ﬁ*) function defined.by‘equation 33

i . current density, A]cm2
I total current, A
J . dimensionless parameter for linear electrode kinetics
K(m) complete elliptic integral of thé first kind
T - radial position from axis of disk, cm |
r, radius of disk, cm
Reff -"effective direét-current rgsistance, loﬁﬁ
t | time, sec
\'/ electrode poteﬁtial, A
z distanée.from plané'of_disk, .cm ‘
K | conductivi;y of tﬁe solution, ohm—l - cﬁfl
n rotational elliptic coordinate.
6 o dimensionless potential in the solution
) ’ éotential in the solution, V
_Qo potentiél in the solution adjacent to thetelecgrode, v .
oP potential in the solution corresponding to the primary

distribution, V

& ' rotational elliptic coordinate

0 dimensionless time
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