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ABSTRACT 

Consistency with the hadronic sector of topological particle theory (TPT) 
limits the nonhadron spectrum to eight chiral gauge bosons, four gen
erations of isodoublet Dirac leptons (e, tt, T, >. plus neutrinos) and eight 
scalar neutral bosons H."" H." H",)., Iir ). plus their conjugates. These 
bosons H GG, change lepton generation and carry + 1 (-1) unit of a con
served lepton generation number Le (Le,). In TPT, particles are repre
sented by boundary segments of (abstract) orient able two-dimensional 
surfaces whose internal structure determines the details of the interac
tions. The surfaces corresponding to chiral Yang-Mills couplings are con
structed and supplemented by vertices involving leptons and H bosons; 
mutual consistency determines them almost uniquely. Feynman rules 
are developed and it is seen that lepton - H-boson couplings break the 
chiral gauge symmetry U(2)R x U(2)L' leaving U(I).m intact. Following 
the patterns of purely nonhadronic interactions, proposals are made for 
direct couplings between elementary hadrons and leptons or H bosons. 
They are found to break the symmetry between lepton generations. The 
dynamical aspects of this theory will be discussed in a supplementary 
paper. 
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1 Introduction: The Bootstrap Approach to 

Electroweak Interactions 

The continuing verification of its low-energy predictions has established the 

Glashow-Salam-Weinberg (GSW) model of electroweak interactions [1] as the stan

dard by which any new model must be judged. Independently of further devel-

opment of the experimental situation, however, theory is forced to go beyond the 

GSW model because it contains too many parameters which must be taken from ex-

periment. In particular, the Higgs mechanism for spontaneous symmetry breaking 

should rather be viewed as effective description of an unknown underlying dynamics 

operating presumably at TeV energies. The observed generation patterns of lep-

tons and quarks is another enigma in the framework of the GSW model for which 

ultimately a dynamical explanation has to be found. 

Due to the success of the GSW model, almost all attempts at answering those 

open questions were based on local quantum field theory (QFT) and gauge sym-

metries. It is interesting to observe, though, how arduous efforts to incorporate 

into particle physics a consistent quantum theory of gravitation led to the current 

interest in superstring theories. Two aspects are particularly relevant: String the-

ories describe extended objects in space-time, which have Regge behaviour built 

in from the beginning, and the consistency requirements of anomaly cancellation 

and unitarization (through loop diagrams) almost uniquely determine the internal 

symmetry group and fix the dimensionality of space-time (before compactification). 

Finite size of elementary excitations and self-consistency are also central in topo-

logical particle theory (TPT) of hadrons which - like the string theories - grew out 

of dual models of strong interactions [2] and their graphical representation through 

Harari-Rosner (HR) quark-line diagrams [3]. The topological complexity of the two-
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dimensional surfaces spanned by the HR quark lines (corresponding to the world 

sheet of the string) furnishes a small parameter in the sense of a l/N expansion 

[4,5]; a similar topological expansion can be defined for string models. 

Profound differences exist, however, between the two approaches with respect to 

their fundamental dynamical assumptions: Strings are extended objects even in the 

absence of interactions, and one may write string theories as conformally invariant 

two-dimensional local QFT on the string's world sheet. TPT, on the other hand, 

does not presuppose continuous space-time and the picture of a moving string does 

not apply. Instead a contraction principle is postulated which allows closed quark 

lines to be shrunk away under specified circumstances [6]. In conjunction with 

the unitarity equation, contractions create an infinite number of coupled nonlinear 

discontinuity equations which constitute a bootstrap system for elementary (non

polynomial) vertex functions [5,6]. Finite size and Regge behaviour (with curved 

trajectories) are seen as a consequence of the nonlinear and circular nature of boot

strap dynamics. Although neither the existence nor the uniqueness of a solution 

to these equations have been shown so far, different approximations [7,8] yielded 

encouraging and compatible results. 

The contraction principle not only controls the analytic structure of TPT vertex 

functions but also limits embellishments of the HR diagrams with additional lines 

[6]. TPT exploits this circumstance for a self-consistent determination of discrete 

hadron quantum numbers by associating the latter with the orientations of lines, 

patches and patch boundaries [6,9,10] (a short description is given in Sect.2). These 

considerations are thus completely different from the ones which determine internal 

symmetry groups in string theories. 

Over the past years many consistency requirements were recognized, analyzed 

and incorporated in TPT, leading to a coherent theory of hadrons. When its phe-
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nomenological consequences were investigated, the theory underwent a shift of en

ergy scale similar to that of string models when they were applied to gravity rather 

than to the strong interactions; in the case of TPT, the fundamental scale was in

ferred to be in the Te V range [11]. Leading components of the topological expansion 

create very small, parton-like bound states, some of which have masses in the GeV 

range. Higher-order components can then be treated as residual interactions among 

partons if the energies involved remain below the fundamental Te V scale. 

In its original form the bootstrap idea arose from experience with strong interac

tions, resting heavily on analyticity, and had little to say about (discrete) quantum 

numbers. When incorporation of topological ideas widened the scope of the boot

strap approach, electroweak interactions emerged as a valuable testing ground for 

the new concept. (Through Stapp's work on the infrared problem associated with 

the massless photon [12], the difficulties it poses in a framework based on the an

alytic S matrix also began to appear in a more positive light, see below.) But by 

which means may one hope to bootstrap the electroweak particles?l 

As a first step the topological building blocks of hadrons were seen also to ac

commodate the presently known gauge bosons and leptons as well as a comparable 

number of not yet observed states [13-16], namely four gauge bosons (Wl, ZOI 

and Z°lt), a fourth lepton generation and a set of eight generation-changing scalar 

bosons. Section 3 adapts those early proposals to the recent changes in the under-· 

lying structure of TPT [9]. 

At the next stage, topological and/or dynamical principles have to be found 

which are capable of determining the interactions of nonhadrons with themselves 

(SectsA and 5) and with hadrons (Appendix A). The observed strength of elec

troweak interactions is not compatible with the strong-interaction mechanisms found 

1 TPT does not presently attempt to incorporate a quantum theory of gravity. 
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in low-complexity diagrams, nor is the masslessness of the photon. Electroweak 

vertex topologies will thus have to possess a higher degree of complexity and to 

guarantee absolute conservation of the electromagnetic current. The absence of du

ality dissolves certain topological consistency requirements operative at the strong

interaction level, but it is likely that new considerations limiting the complexity of 

electroweak surface structures will be found to eliminate the remaining ambiguities 

in the present proposals. 

Elementary nonhadrons in TPT are massless, and the theory does not con

tain elementary Higgs bosons to spontaneously break symmetries and give masses. 

Also, electroweak interactions are presumably too weak to form massless scalar 

bound states which could dynamically accomplish that. The capacity of-elemen

tary baryons and hexons to break electroweak symmetries was recognized in earlier 

work by Chew, Finkelstein and Poenaru [17,18]. In particular, a preliminary anal

ysis of the gauge-boson spectrum [19] showed that its lower half is almost identical 

to that of the GSW model while the other half will acquire TeV masses. Appendix 

A considers the topological aspects of extending those ideas to leptons and elec

troweak scalar bosons, based on which [II] and [20] discuss the spectrum of leptons 

and scalar bosons semi-quantitatively. The latter become very massive (on the or

der of the fundamental scale mol. The huge mass ratios of leptons are reproduced 

as a consequence of weak chiral-symmetry breaking and absolute conservation of 

all lepton-generation numbers; the fourth-generation charged lepton oX is expected 

somewhere between mWL and mo, maybe detectable at the SSC. TPT thus appears 

capable of reproducing the low-energy successes of the GSW model and also makes 

predictions which may be tested in the foreseeable future through high-precision 

measurements at low energies (J1. and p decay, e.g.) and at ultra-high energies (oX 

lepton). 
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The major conceptual problem which has to be left open here concerns the 

principle that determines the values of the (unrenormalized) electroweak coupling 

constants. (All nonhadron masses may be rigourously calculated in terms of elec

troweak coupling constants as soon as adequate nonperturbative techniques have 

been developed for the strong interactions.) The order-of-magnitude equality of the 

fundamental strong-interaction coupling constant2 go with the electric charge hints 

towards an intimate connection between the two [21]. (In [II], a model based on 

assumptions different from the present ones will be briefly discussed to illustrate 

one possible approach to this fundamental problem.) 

The answer to that question is most certainly related to the reason for the 

existence of nonhadrons. The results of [II] very strongly suggest that a consistent 

topological theory of nonhadrons is not possible without hadrons, but conversely 

there is no obvious inconsistency in the hadronic sector that would require the 

existence of electroweak particles. 

Chew has repeatedly called attention to the fact that a fully consistent bootstrap 

theory has to incorporate a theory of measurement [22]. Thereby meaning must be 

given to macroscopic space-time and classical objects. It was conjectured that exact 

masslessness and the vector nature of the photon are essential for this purpose, the 

latter allowing macroscopic objects to be electrically neutral. The former property 

entails arbitrarily soft interactions of photons with charged particles whose identities 

are not changed thereby - a hallmark of ideal classical measurement. Another 

consequence is the so-called infrared catastrophe which has been shown by Stapp 

[12] to amount to the classical electromagnetic field associated with the quantum 

process under consideration and so to provide an essential link between micro- and 

2The weight of leading orders in the topological expansion is very substantially enhanced by the 

high multiplicities of closed quark and diquark loops. 
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macro-world. No equally plausible reason has been found why electrons are needed 

in the theory, but it is conceivable that measurement apparatus depends on the 

large-scale structures (atoms, molecules, solids) which become possible with light 

charged particles that do not interact strongly. 

6 

t 

2 Basic Notions of TPT 

This section summarizes the central notions and rules of TPT for the reader's 

convenience, as they will be extensively used in this paper. Full accounts of the 

many consistency considerations that determine these rules are given in Ref.[lO] 

and also in Refs.[6,9,23]. 

2.1 The Topological Expansion 

The fundamental hadronic vertex functions of TPT are represented by single

vertex Feynman graphs F which are then embedded in a two-dimensional bounded 

surface E (classical surface Ec in papers before 1985). E is globally oriented and at 

this stage also planar; a cyclic ordering is thereby imposed on the legs leaving the 

vertex (Fig.l). F divides the boundary BE of E into segments which correspond to 

the quark lines of HR graphs. The global orientation of E naturally leads to the 

identification of mesons with quark-antiquark states. 

Multi-vertex surfaces are obtained from simpler surfaces by connected sum 

El #E2 = E 1,2: Certain Feynman lines of El and E2 are linked and correspond

ing portions of BE adjacent to the new internal Feynman line(s) are identified and 

erased3 (Fig.2).The global orientations of the initial surfaces have to match so that 

the resulting surface is again globally oriented. Before and after the plug each ex

ternal Feynman line is unambiguously associated with exactly one portion of BE 

which is characteristic of the particle type and designated by 1r. 

The surfaces associated with tree diagrams are always planar, but more com

plicated surface topologies can arise with Feynman loops. This complexity may 

completely be characterized by a set of integer-valued indices gi in the case of 

3Chirality switches (see Sect.2.3) provide for an exception. 
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two-dimensional surfaces. When properly defined, the indices are zero for the 

disk-like topologies' associated with fundamental vertex functions (the so-called 

"zero-entropy" level) and satisfy the inequalities 

(1,2) > (1) + (2) 
gi - gi gi (1) 

or at least 

g!1,2) 2: max{g!1), g!2)} (2) 

where g!1,2) is the i-th index associated with E1 #E2• Three such indices are gh 

the genus of the infinitesimally thickened Feynman graph, satisfying the "strong" 

entropy property (1); g" the genus of the full surface E minus g1 (also satisfying 

(1))5; and 

g2 := g1 + b - 1, (3) 

essentially measuring the number of disconnected boundary components b contain-

ing end points e of the Feynman graph (g2 only satisfies (2)). 

The physical significance of an expansion in increasing topological "entropy" 

rests on the observation that higher-entropy terms have fewer closed quark loops 

(and hence less numerical weight) than terms with lower entropy [4,5]. The multi

plicity of a closed Feynman loop can reach 32·31 in TPT at the fundamental level of 

the strong interactions; an expansion in "lost quark loops" is expected to converge 

fairly rapidly while a Feynman-Dyson expansion in the coupling constant would be . 

hopeless. 

Only surfaces with g1 = g4 = 0 can be plugged into other such surfaces with

out necessarily creating a surface with higher complexity. From this fact results 

4The surface E with the Feynman graph and additional lines - to be discussed below - will often 

be referred to as a "topology'. 

5 g4 = 0 holds for all topologies containing mesons only. Multi-feathered baryon surfaces may have, 

and electroweak topologies always have, g4 > O. 
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the possibility for a bootstrap system of nonlinear dynamical equations which are 

expected to determine the fundamental single-vertex functions [5,7,8]. The role of 

the topological expansion in determining the order of summation of electroweak 

amplitudes and the consequences thereof will be discussed in [II]. 

2.2 Multi-Feathered Surfaces and Junction Lines 

The representation of amplitudes involving baryons requires three-feathered sur-

faces [24]; the line of contact between the feathers is called a junction line (JL). 

It correlates the global orientations of the feathers as shown in Fig.3. When cut 

along the JL, this figure decomposes into three independent sheets; such need not 

be the case in more complicated situations where E may be multi-feathered but 

only one- or two-sheeted - the term "feather" will then be used in connection with 

the neighbourhood of the JL while the term "sheet" refers to the global structure 

of E. 

One of the three feathers is set apart by its carrying the Feynman graph (sheet 

or feather #1); F is not allowed to cross a JL. Consistent plugging rules require 

that the remaining two feathers be distinguishable; this is achieved by means of so-

called colour lines (Ie lines) - introduced by Finkelstein [25]- which are oppositely 

directed on feathers #2 and #3 (see Fig.3) [9]. Ie lines maintain their orientations 

but the quark content (flavour, spin, etc.) may be permuted at plugging points [25]. 

Despite its threeness topological colour is quite different from the colour degree of 

freedom on which QCD is built; e.g., no SU(3)c symmetry group is associated with 

the former, and there are no elementary coloured gauge bosons in TPT. 
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2.3 Quantum Numbers from Topological Orientations 

In order to give a topological meaning to electric charge and isospin, Finkelstein 

introduced a set of lines which closely parallel the Feynman graph and colour lines 

in strong-interaction topologies [26]j they are shown in the simple situation of Fig.3. 

Finkelstein lines associated with JL's are designated by TJ, all others by TV'. Follow

ing B2: in the sense of the global orientation from a Feynman-line or colour-line end 

point, the first Finkelstein-line end encountered is given a - label, its other end a + 

label. If T is intrinsically oriented from - to + it is said to carry one unit of electric 

charge ("c"), and no electric charge ("n") when directed from + to -. Hadronic TJ 

lines are always charged and contribute -e to the total charge of baryons [6J. 

TV' lines induce a further segmentation of B2:. The following boundary units may 

be defined (FigA): 

1. <p units: They touch a Feynman-line end point e or colour-line end point eo 

on one side and a TV' end point on the other side (including the latter}j no JL 

end point j intervenes. They carry the same ± label as their TV' end point. 

2. 6 units: Starting at a TV' end point without including it, they stretch to the 

midpoint of a quark line and never contain a j. Their ± label is opposite to 

that of the adjacent <p unit. 

3. Y units: From a point j three legs spread out and end, respectively, at a 

Feynman-line end e with accompanying TV' end point or at the end points eo 

of two colour lines with opposite directions (see also Fig.3). As for <p units 

the ± label is inherited from the corresponding TV' end point. 

Each component of B2: can be built from the above defined units whereby 

± labels consistently alternate. It follows from FigA that only the following se-
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quences (from left to right in the sense of the global orientation of 2:) may occur: 

<p-<p+, <p-6+j <p+<p-, <p+Y-j 6+6-j 6-<p+j Y+Y-, Y+<p-. Fig.S shows the particle 

portions 11' of elementary hadrons. (Hexons are baryonium-like states required by 

duality.) 

Feynman, colour and Finkelstein lines also create a patching of 2:. Patches 

whose patch boundary does not contain <p, Y or 6 units are called "white" and 

are not given any orientations. In all other cases one orients patches and patch 

boundaries independently. If the orientation agrees with the one induced by the 

global orientation of 2:, it is called 0 or U, respectivelYj otherwise, P or D. Patches 

with hadronic Y units along their boundaries are invariably oriented U and their 

boundaries 0, for reasons of dynamical consistency at the zero-entropy level. 

All strong-interaction surfaces built from zero-entropy topologies by connected 

sum share a few important properties: 

1. Except for "white" patches, all patch boundaries contain exactly one pair (+ 

and -) of boundary unitsj only one kind of unit occurs in a given patch. 

2. Only "white" patches and patches with <p units may locate along Feynman 

lines. 

3. There is always a "white" patch or a patch with <p units between two patches 

with Y or 6 units. 

Anticipating a future role for Feynman lines in the accurate topological represen

tation of momentum and of Lorentz transformations, patches adjacent to F and 

generally patches with <p units are called spinor patches while all other patches are 

called scalar, their orientations supposed invariant under Lorentz transformations. 

It is generally true in TPT that the Feynman lines separate spinor patches from 
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one another whereas all other lines in E separate spin or patches from scalar patches 

[9]. 

In line with the distinction between spinor and scalar patches is the interpreta

tion of spinor-patch orientations as spin up {U} and spin down {D), and of spinor

patch-boundary orientations as ortho {O} and para {P} chirality. The latter corre

spond to projection operators (1 ± "Y5)/2 acting on Dirac four-spinors. According 

to Stapp's analysis in terms of M functions [27] the topological orientations U and 

D can be interpreted as physical spin only in a Lorentz frame in which the two 

particles sharing the patch in question have collinear momenta. While this circum

stance is of little immediate concern to the questions under study in this paper ,it 

will playa central role in all attempts at a topological understanding of the Lorentz 

invariance of the theory. 

In the same paper Stapp showed that the S matrix requirement of Hermitian 

analyticity requires both smooth, chirality- and spin-preserving plugs and chirality

reversing plugs where the spin orientation mayor may not change. When chirality 

reverses, the pair of'P units of aE must not be erased; they form an internal compo

nent of aE, called a gauge hole (Fig.6) because of its similarity to, and connection 

with, gauge-boson 1T's6 (see Sect.3). It can be shown [28] that a chiral switch on 

a quark line corresponds to an operator p. "Y/ma in Dirac space where PI' is the 

momentum of the Feynman line along which the switch occurs; ma is the common 

mass of all elementary hadrons. 

As mentioned above, the orientations of scalar patches associated with hadronic 

Y units are frozen at U and O. All four combinations (U,O), (U, P), (D,O) and 

(D, P) are allowed for scalar patches with 0 units. Being invariant under Lorentz 

6The word belt is used to designate 8E without internal (gauge hole) components; the belt consists 

only of particle portions 'If,. 
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transformations, they lead to four internal quantum numbers - quark generations 

- which are separately conserved in strong interactions. 
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3 N onhadronic Boundary Portions 

Extension of TPT from strong to electroweak interactions requires nonhadrons 

to be represented by portions 11" of aE which must be different from hadronic 1I"'S 

but also consist of <p,6 or Y boundary units; new boundary units would entail 

arbitrariness. A Feynman-line end point may occur only between <p+ and <p-, Y+ 

and Y- or <p± and y'f. It will be seen below that nonhadronic 1I"'S consist of exactly 

these combinations of boundary units, no addition of 6± or (<p±6'f) units occurring. 

3.1 Gauge Bosons 

The vector nature of gauge bosons requires them to consist of a pair of <p units; 

they can be distinguished from mesons only if no 6 units are added. Earlier proposals 

[26,15,23] did not recognize the difference between <p and 6 units and sought to 

distinguish gauge bosons from mesons by means of an additional closed surface EQ • 

Two considerations allow inference that a gauge boson should occupy a closed, 

disconnected portion of aE (Fig.7): (i) The minimal coupling in gauge theories, 

,·a ---+ ieA·" (4) 

finds its topological counterpart in a substitution principle replacing gauge holes 

(Fig.6) by a Feynman line and a gauge-boson 11". (ii) Open gauge-boson 1I"'S pre

vent satisfactory gauge-boson-hadron couplings (single 6 units occur which cannot 

unambiguously be attributed to any particle). Also it will result from SectA that 

(chiral) Yang-Mills couplings can be much better represented with closed 1I"'S. 

It is readily seen that gauge bosons form isoquartets (isotriplet plus isosinglet). 

It turns out that only the 0-P+ and P- 0+ states, corresponding to right-handed 

and left-handed vectors, are able to interact consistently and hence are admissible. 

14 

3.2 Leptons 

As mentioned above, leptonic 1I"'S have to consist at least of one <p and one Y 

unit with opposite ± labels. Assuming that there are no spin-3/2 leptons, options 

reduce to Y±<p'f and Y±(<p'f6±). In the latter case the scalar patch associated with 

the 6 unit would yield four lepton generations exactly parallel to the four quark 

generations. However, it will be seen below that Y units in nonhadrons also carry 

a four-valued generation degree of freedom. Thus phenomenological considerations 

as well as the precedent of the gauge bosons, where 6 units are also absent, very 

strongly favour the Y±<p'f structure shown in Fig.S. 

In contrast to hadrons where all Y orientations have to be frozen for the sake 

of consistency (see Sect.2.3), leptons will never be involved in contractions so that 

there is no reason to freeze all Y orientations here. An exception is the orientation 

of TJ where the absolute conservation of the electric current does not allow "c": In 

order to maintain its massless ness the photon must be able to couple to any charged 

Finkelstein line wherever there is a gauge hole to which the substitution (4) can be 

applied. (This rule follows from the graphical proof of the Ward identity in QED 

by straightforward extension to the present situation.) It will be seen in Sect.5 that 

gauge bosons are not able to couple consistently to the TJ in a lepton, and Appendix 

A will present semihadronic topologies where Finkelstein lines connect a leptonic Y 

to a hadronic <po Such topologies will break the Ward identity unless nonhadronic 

TJ'S are frozen at "n". 

The orientation of a spinor patch has been associated with spin7, the corre

sponding patch-boundary orientation with chirality [91. These notions are inti

mately connected with the Poincare group, and correspondingly spinor patches are 

7More precisely, this orientation depicts the spin component along the +z direction in a frame where 

both particles sharing that patch have collinear momenta along z. 
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located either along a Feynman line or to the right of a colour line. Scalar patches 

being detached from the "influence" of the Feynman graph, their orientations do 

not undergo Lorentz transformations (freezing those orientations for hadronic y's 

would otherwise break Lorentz invariance!) and cannot be interpreted as spin and 

chirality [16] but represent internal degrees of freedom, i.e., lepton generations in 

the present case. In anticipation of the symmetry breaking pattern discussed in the 

sequel to this paper [II] they are numbered in the following way: 

G=1: (OD)y, G=2: (PD)y, G=3: (PU)y, G=4: (OU)y. (5) 

Lepton-generation number may be defined as the number of neutral Y+ minus the 

number of neutral Y- with the respective patch and patch-boundary orientations 

within a particle's 7r: 

La := N(y,tG) - N(Yn-a)· . . (6) 

It should be remarked at this point that an outgoing electron, say, is represented 

by a cp-Y+ boundary segment where Top carries one unit of electric charge away 

from the electron. This situation is opposite to the convention for outgoing quarks 

which are represented by a 6-'1'+ segment, corresponding to a spinor u(p, s) in 

the usual way. Thus, if one wants to adhere to traditional spinor assignments, 

a charge conjugation transformation must be applied to all nonhadronic 'I' units 

(including those on gauge bosons and gauge holes). As discussed in Appendix 

D of Ref.[9], the C operation turns '1'- into '1'+ and reverses the topological spin 

orientation without changing chirality. A '1'- unit with 0 chirality, say, appears 

in incoming right-handed quarks, outgoing left-handed antiquarks, incoming right

handed antileptons, outgoing left-handed leptons or in both incoming and outgoing 

left-handed gauge bosons. 

In summary, the present proposal entails four generations of isodoublet Dirac 
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leptons, as did all previous proposals. What has changed in the course of time is 

the set of orientations that make up lepton generation. The following sections will 

show that the consistency considerations recognized by now have removed many 

arbitrary features of the earlier proposals. 

3.3 H Bosons 

The contraction principle (or planar duality) operative at the low-entropy levels 

of strong interactions requires the existence [30,6] of hexons as a consequence of the 

existence of elementary baryons. Subjecting a hexon's 7r to the same truncation that 

transforms a baryonic 7r into a leptonic 7r results in a Y-Y+ belt portion with two 

JL's and two TJ lines frozen at n, see Fig.9 (the parallelism between hadronic and 

nonhadronic belt portions was first stressed in Ref.[15]). No compelling theoretical 

raison d'etre for such particles has been found yet, but their important role in 

symmetry breaking and creation of lepton masses [20 and II] is a strong advocate 

in their favour. 

Fig.9( a) shows the belt of the surface that would correspond to the free propaga

tion of a Y- Y+ particle (called H boson for the shape of its 7r) if one simply used the 

truncated hexon-7r. Boundary, colour lines, T lines and JL's run parallel; the colour 

lines appear particularly redundant. Investigation of the detailed structure of the 

full surfaces for propagation and interactions of H bosons reveals a certain lack of 

complexity. If, however, the belt portion of a single H is closed on itself, the colour 

lines acquire a more important role in that they link disconnected boundary com

ponents on the same feather (Fig.9(b)). This boundary structure also shows close 

resemblance to the gauge-boson 7r of Fig.7 - a similarity that will acquire deeper 

significance in SectA through the matching complexity (genus) of gauge-boson and 
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H-boson topologies8 . 

Not having rp units in their 1r, H bosons are scalars (in TPT pseudoscalars can 

only be built from a rp-rp+ pair). The TJ orientations are frozen at n for the same 

reason as in leptons, so H bosons are electrically neutral and will, in particular, not 

couple to the photon whose Tv> orientations are c. 

Lepton-generation degrees of freedom are associated with the Y units of H 

bosons, characterizing them as Haa' (G,G' = 1, ... ,4). Haa' carries -1 unit of La 

and + 1 unit of La', the total lepton number being zero. 

The total number of H-boson states requires further discussion. In connection 

with problems of chiral symmetry breaking in an intermediate proposal [16], J. 

Finkelstein was the first to suggest that only one half of the combinations GG' are 

realized as physical H particles. The subsequent development of the phenomeno

logical aspects of the theory [20, II] has given strong support to this idea, but the 

underlying topological reason or dynamical origin of such a suppression of states has 

not fully been elucidated yet. There is, however, a striking parallelism between H's 

and gauge bosons where the scalar /pseudoscalar combinations 0- 0+ and P- P+ 

do not appear. Given the important role of chirality in the dynamics of massless 

particles, it appears reasonable to suppose that an as yet unrecognized topological 

principle is at work requiring the two halves of massless bosons to have opposite 

patch-boundary orientations9• Under this assumption only the following H-boson 

8 It is clearly not possible to close leptonic 1f'S on themselves because they contain an odd number of 

ends (two ends of Y legs, one <p end) in agreement with Fermi-Dirac statistics. There is, however, 

the option of connecting two Y legs belonging to the same lepton, forming a tadpole-like structure 

as in an early proposal [29\. According to the rules of Ref. [9\ this is not admissible because + and 

- units would no longer alternate along the belt. 

9This principle appears to manifest itself in a rule that requires tangency points between Feynman 

lines and Finkelstein or colour lines to be accompanied by a reversal of (0, P) labels on the cor-
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states are allowed: H12 and H21 , H13 and H3b H24 and H42 , H34 and H43 . Fig.9(b) 

in conjunction with Appendix D of Ref. [9] shows that Haa' and Ha'a are related by 

charge conjugation, i.e., HG'G = (HGG,)t in a notation borrowed from field theory. 

In view of the present ignorance in this matter it is reassuring that all the results 

in [II] would still hold if H bosons were required to have opposite scalar patch 

orientations rather than opposite patch-boundary orientations, but it is crucial that 

they are "off-diagonal" in one of these two variables. 

responding patch boundaries if the latter are independent. The same reversal of (0, P) labels is 

required to occur where exactly two r or colour lines impinge on aE at the same point, separat

ing independent patch-boundary components. Such a rule immediately excludes 0-0+ or P- p+ 

scalars (see Fig.7), exhibits the chiral nature of the couplings in Figs.10-12 and reduces the num

ber of physical H-boson states (see Fig.9(b)). No constraints arise, however, for lepton quantum 

numbers. It appears likely that the number of such tangency points will be relevant to the general 

definition of a chiral-complexity index 93. 
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4 Kinetic-Energy Topologies of N onhadrons 

This section concentrates on the detailed surface structures describing the prop

agation of leptons and H bosons; interactions pose somewhat different questions 

and will be dealt with separately in the following section. Electroweak topologies 

differ fundamentally from their strong-interaction counterparts in that they show 

intrinsic complexity even at the level of elementary vertices; also, there are explicit 

kinetic-energy vertices. Because Yang-Mills topologies reveal the necessity of those 

features most clearly, they will be given a preliminary discussion here, the results 

of which are then applied and adapted to leptons and H bosons. 

4.1 Gauge-Boson Topologies 

In TPT, spin is always accompanied by the chiral degree of freedom which 

is eliminated by summation in strong interactions but shows up in the physical 

spectrum of nonhadrons because of the assumed masslessness of their elementary 

counterparts. There are thus right-handed (VR' P-O+) and left-handed (VL' 0- P+) 

vector bosons for which self-interactions according to chiral Yang-Mills theory are 

assumed: 

-1 T~ [(8["vllt + igLVi; vllt) (8["v;1 + igL vI" V;I) 
(7) 

t 

+ (8["vvi+igRVi:vvi) (8["v;l+igRvk v;I)] , 

where VL and VR are 2 x 2 isospin matrix fields lO
• It has not been possible to find 

consistent representations for interactions of scalar / pseudoscalar bosons (0- 0+ and 

P-P+) which will therefore be ignored in the following. The isospin trace may be 

immediately recognized as a Chan-Paton factor [30]' corresponding in the topology 

to a ring of Finkelstein lines as in HR diagrams and hadron surfaces. 

10 As long as interactions with hadrons are disregarded, the nonhadronic sector of TPT may be treated 
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According to (7), VL and VR do not interact directly with each other; this implies 

that chiral reversals take place as one passes from the cp- unit of one particle to its 

neighbour's cp+ unit. The same pattern will be found in the lepton kinetic energy 

and the lepton-gauge-boson vertex and already indicates the intrinsic complexity 

of elementary electroweak vertices. In Fig.lO the chiral reversals are economically 

achieved through tangency points between the Feynman graph F and the Finkelstein 

linesll (the precise location of those points does not appear to be important): Each 

cp belongs to a different patch-boundary component, and one may postulate the rule 

that chiral orientations always reverse at tangency points of T and I or Ie lines if the 

patch-boundary components involved are independent. (See footnote 9 in Sect.3.) 

Tangency points are not new to TPT: When they occur in plugs of hadronic Y units 

they are inconsequential because they separate "white" patches. Colour-switching 

hadron plugs lead to tangency of I and/or Ie lines, no chiral reversal need occur 

there. Finally, tangency points of T lines and 8E occur when gauge holes are created. 

The Lagrangian (7) contains two quartic terms with different correlations of 

gauge-boson polarizations which have to be represented by two different topologies. 

Going into a frame of reference in which the particles with matching polarization 

indices have collinear momenta shows that spinor patches have to be united as 

indicated in Fig.l0 by means of dotted circles with numbers. Such handles create 

patches with uniform spin orientations, but with two cp units on independent patch

boundary components; the chiralities of the two cp units in the same patch are indeed 

like the perturbation expansion of local QFT because vertex functions are free of singularities. The 

Feynman rules given in Sect.6 imply, however, that the model is nonrenormalizable - the softening 

of loop effects through hadron-nonhadron interactions is essential in TPT and makes electroweak 

particles extended objects at the mo scale. 

11 A different proposal has been made by Dougherty ]311 in which patches are (nonorientable) Mobius 

strips and the topological representations of chirality and spin are interchanged. 
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opposite because an odd number of tangency points separates them. 

These spin-correlating handles (SCR) are a new feature of the theory; like colour 

switches in strong interactions they lead to entropy g4 > 0 (the Feynman graphs in 

Fig.lO are planar, gl = 0, but E has genus g4 = 8). SCR's must be regarded as a 

consequence of zero mass (requiring chiral switches) and are indicative of the lack of 

duality in electroweak interactions12• It is to be expected that SCR's and tangency 

points will also be central to lepton and H-boson topologies. Presently it is an open 

question whether SCR's are truly fundamental entities in TPT or whether they are 

ultimately a consequence of strong-interaction dynamics. 

Applying the substitution principle (4) in the reverse sense produces Fig. 11 from 

Fig.l0 (there will also be the cyclic permutations of A, B and C). As a novel feature 

the gauge hole does not touch an intermediate momentum line but the vertex; by 

convention it associates with the momentum of the particle which precedes it in the 

cyclic sequence. That such asymmetry be required by the Yang-Mills amplitudes 

is puzzling but one may hope for better understanding as soon as momentum finds 

an adequate topological representation. 

4.2 The Need for Kinetic-Energy Topologies 

One may apply the reversed substitution principle once again, to the particle 

opposite to the gauge hole in Fig.11, and obtain Fig.12. (It turns out that gauge 

holes are always separated by a momentum line in elementary topologies.) It is 

readily identified with the kinetic-energy terms in (7). 

The true novelty for TPT in Fig.12 conceals itself behind the simple opera-

12This conclusion is not in contradiction with the derivation of Yang-Mills amplitudes from the 

zero-slope limit [32) of dual models by Neveu and Scherk because they did not consider the chiral 

doubling which is so prominent here. 
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tion that led to it: There are. no kinetic-energy topologies in strong interactions 

where propagators are created by plugging together two topologies along one or 

more matching particle portions. Each intermediate Feynman line corresponds to 

a factor (p2 - m~ - iet1, and there are numerator factors depending on the way 

in which the connected sum was done (chiral switches, colour switches) [281. If the 

same procedure is applied in a gauge-boson plug, the two 1I"'S of the intermediate 

particle must not be identified because of chiral switching. Instead they touch at 

the Feynman graph and at a further point where the Finkelstein lines connecting 

the vertices are pinched, forming a pair of gauge holes. There is thus no correlation 

of spins across the plug line; as in the hadronic case the newly created gauge holes 

have to be interpreted as p."Y operators. This can be shown to amount to an unusual 

choice of gauge and is unwanted at this stage. 

The only satisfactory alternative found so far consists in elevating the kinetic 

energy to the status of a (trivial) vertex intervening between nontrivial vertices and 

projecting onto the modes that are allowed to propagate. Between nontrivial and 

trivial vertices the nonhadrons propagate freely, no distinction being made between 

physical and unphysical modes. This concept translates into the topological rule 

that nontrivial vertex topologies are never plugged directly but only onto kinetic

energy topologies in a perfectly smooth way without any chiral switches, handles, 

etc. In analogy with the strong-interaction rules [281, those links correspond to 

factors (p2 - ie)-l. Denoting the kinetic-energy terms by KG,KH and K" respec

tively, one obtains the following analytic expression from the plugged topological 
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structures: 

)-#~#--< (smooth plugs) ) . < 
V1(p, ... ) K(p) V2(p, ... ) Vl~F(p2)K(p)~F (p2)V2 

In particular, for H bosons and gauge bosons, 

~F(p2) KH(P) ~F(p2) = (p2 _ if)-l p2 (p2 _ if)-l = (p2 _ if)-l, 

~F(p2) KG(p) ~F(p2) = (p2 - if)-1(_g,.vp2 + p,.Pv)(p2 - ift1 

-g,.v + p,.Pv/p2 
p2 - if 

(8) 

(9) 

When dealing with leptons, spinors appear explicitly. The plugs between kinetic-

energy and interaction surfaces do not involve chiral switching and must not project 

onto a subspace of all lepton states. From 

" 1 ± 15 ( ) _ 1 'f 15 1 1 ± 15 L..J -2-U p,S u(p,s)-- = -. N·--
• 2 2 2' 

where N is the normalization of the spinors, one sees that one must choose N = 

2# for massless particles for dimensional reasons. Then proceeding as before one 

obtains 

(#~F(p2))KI(P)(#~F(p2)) = j;2(p2 _ ift1 P (p2 _ if)-lj;2 

P 
= p2 - if . 

(10) 

From the point of view of local QFT the propagator rules developed here can 

hardly be understood, even though the results have the familiar form: In the graph

ical expansion of Lagrangian QFT the propagator lines correspond to the inverse 

of the kinetic-energy operator,there are no trivial vertices. In the present S matrix 
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framework, on the other hand, a propagator line represents a pole of S even where 

the notions of a Lagrangian and of a kinetic-energy operator do not exist, as is the 

case for the strong interactions. Where kinetic-energy topologies appear, they are 

an expression of additional complexity. 

4.3 Kinetic-Energy Topologies for Leptons and H Bosons 

Due to the circular nature of bootstrap theory all the consistency constraints 

that will eventually arise in interaction topologies should be anticipated in the con-

struction of kinetic-energy topologies for H bosons and leptons. Therefore guess-

work is unavoidable to some extent, but the following properties of E are most likely 

general: 

1. E is orientable; T lines always have a + and a - end; I lines separate spinor 

(or "white" spinor) patches while Ie and T lines separate spinor from scalar 

patches. 

2. No new topological elements beyond those used in hadron and gauge-boson 

topologies occur. 

3. Surfaces involving nonhadrons are noncontractible and show intrinsic com-

plexity. 

Three special properties are postulated for nonhadron topologies: 

4. Even in the presence of JL's, E is one-sheeted. 

5. "White" spinor patches are absent. 

6. All elementary nonhadrons have the same degree g4 of topological complexity. 
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(4.) and (5.) reflect the fact that electroweak topologies do not allow contractions. 

Postulate (6) prevents nonhadron ~'s from becoming too simple or too complicated; 

Yang-Mills vertices were seen to require g4 = 8. It has been noted at an early stage 

of TPT [6] that each JL in a single-sheeted ~ contributes two units of g4. 13 Hence, 

kinetic-energy surfaces will require three SCH's for leptons and only two for H 

bosons. No statement is made about the chiral-complexity index g3 because an 

adequate general definition for it is still lacking. 

If successful, requirement (6) may indicate some kind of Fermi-Bose symmetry 

(neither standard field-theoretical supersymmetry nor topological supersymmetry 

of zero-entropy M functions [33]) among gauge bosons, leptons and H bosons: Such 

symmetry is compatible with the topological expansion only if related topologies 

have equal complexity. 

In constructing the H kinetic-energy surface it is convenient to concentrate on 

feather #1 (carrying the Feynman graph) first. (9) requires two gauge holes which 

also eliminate the "white" spinor patches associated with hadronic JL's (Fig.13{a)). 

Two handles unite patches across Feynman lines so that spinor patches have a pair of 

t.p units along their boundaries and ~ will eventually acquire genus g4 = 8 when the 

remaining feathers are added. The spin correlations correspond to PA . PB according 

to the rules given in Sect.4.1. 

The patches a and (3 in Fig.13(a) each have two independent boundary compo

nents which, however, cannot be oriented at will because the gauge holes impose 

correlations. Such inconsistency can be removed by linking the two components. 

Tangency points between I and Ie lines - shown in Fig.13(c) - accomplish this task 

13Globally orient able surfaces with fewer sheets than feathers allow definition of closed paths which 

cross the JL twice and circumscribe a Mobius strip rather than a disk. In a single-sheeted E two 

independent Mobius strips occur for each JL, each strip corresponding to one unit of genus. 
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in an almost unique way14. Fig.13(b) explains how the "white" spinor patches { 

are eliminated by inserting feathers #2 and #3 into the "non-white" spinor patches 

a and (3. One may now note that the structure of Fig.13(c) is quite similar to that 

of the first term in Fig.12, the JL's a and b corresponding to handles 1 and 2. 

As mentioned above, the presence in lepton surfaces of a single JL calls for three 

handles to match the genus of gauge-boson surfaces. As Fig.14(a) exemplifies one 

can easily imagine lepton topologies with fewer handles, but as the same example 

indicates there are some unsatisfactory features: When the substitution principle 

(4) is applied, right-handed gauge bosons are found to couple to left-handed lep

tons etc. Furthermore, the entire JL side of a lepton appears inert while there is 

considerable ambiguity about the location of feathers #2 and #3. 

The first problem can be dealt with by introducing chiral switches between 

lepton t.p's and gauge-hole t.p's, caIling for two SCH's. Fig.14(b) makes it evident 

that the chiral structure very much resembles that of gauge bosons. Still another 

SCH needs to be introduced to reach g4 = 8; at the same time a more interesting role 

needs to be found for the non-principal feathers. The most satisfactory structure 

recognized so far is shown in Fig.14(c). One SCH connects the t.p and Y sides while 

1 and 2 are analogous to handles in gauge-boson topologies (the patches a and (3 

have two disconnected boundary components each). It was found necessary to place 

the gauge hole in the Y side so as to obtain an odd number of SCH's. This step 

simultaneously upgrades the JL side and assigns a unique location to the colour 

14Feathers #2 and #3 may be assigned in different ways to () and /3. A possibility to remove this 

ambiguity is to demand that the orientations of the colour lines agree with the orientation of the 

spinor patch boundary of which they form a part. While no inconsistency has developed from such 

a rule so far, it has not found application in a different context either, so the question remains 

open. 
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• 

15 As in the case of H bosons, colours #2 and #3 may be interchanged, but again this question is of 

no concern here. 
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5 Topologies for N onhadronic Interactions 

5.1 General Considerations 

In this section, surfaces representing the self-interactions of leptons and H 

bosons as well as their interactions with each other and with gauge bosons will 

be discussed. Non-gauge interactions are not much constrained by symmetry con

siderations, so topological principles have to be used to select the admissible vertex 

types. Such criteria, however, are not given a priori but must be bootstrapped 

themselves. It is then not surprising that some topologies presented below are still 

tentative, but their phenomenological consequences (discussed in [UD support their 

main features. 

The most fundamental assumption in this context is that all nonhadron topolo

gies share certain characteristics. In the following, four criteria abstracted from 

Figs.1O-14 are assumed to apply generally to all nonhadron topologies: 

1. All elementary nonhadron surfaces have gl = 0 and g4 = 8. 

2. A SCH is associated with each ("non-white") spinor patch. Disconnected 

boundary components of the same patch have opposite orientations (i.e., there 

is a chiral switch). 

3. Gauge bosons couple according to the substitution principle. 

4. The number of patches in an elementary surface is limited to 4 or 5; no "white" 

spinor patches are admitted. 

Given the central role of chirality in the dynamics of massless particles, one 

suspects that there should be a general principle determining the chiral complexity 

(an entropy index) of elementary non hadron surfaces. While it is easy to define a 
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chiral entropy index g3 for strong interactions, no satisfactory way has been found 

yet to extend its definition to electroweak interactions. As will be seen, a large 

share of the remaining uncertainties in vertex topologies is connected to this open 

question. 

5.2 Conservation of Lepton Generation Numbers 

Before discussing in detail interaction surfaces, a simple topological fact with 

striking phenomenological consequences needs to be stressed: There are neither ver

tices nor tangency points along JL's. Accordingly, a single (three-feathered) patch 

lies along a JL with the same patch and patch-boundary orientations from one end 

to the other. The frozen orientations associated with hadronic JL's imply smooth 

plugging rules for JL patches in strong interactions. It was argued in SectA.2 

that electroweak surfaces are also plugged smoothly, kinetic-energy topologies be

ing inserted between non-trivial vertices. This rule again ensures the continuity 

of JL-patch orientations. The immediate consequence thereof is the absolute and 

separate conservation of baryon number and all four lepton-generation numbers. It 

will be seen in Appendix A and in [II] that the symmetry between lepton genera

tions is broken and that a mass hierarchy develops, but different lepton generations 

nevertheless do not mix in this theory. 

It may be noted in this context that quark generation is associated with 6 units 

where no JL is present to impose an equally rigid conservation law - hadronic 

JL's guarantee baryon number conservation. One may expect that electroweak 

interactions of hadrons will at some level induce quark mixing in TPT. 
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5.3 Couplings Involving Gauge Bosons 

Starting from Fig.14(c) it is straightforward to construct the topology for the 

coupling between gauge bosons and leptons (Fig. 15) with the help of the substitution 

principle. The gauge boson is clearly seen to couple to the isospin of the leptons in 

the standard fashion, and left-handed gauge bosons couple to left-handed currents 

only, etc. 

The third requirement of Sect.S.l excludes couplings of a V n" gauge boson to 

the leptonic TJ line even though a corresponding surface could be constructed. The 

minimum-coupling prescription is presumably connected to the ultimate reason for 

the existence of gauge bosons and should thus be considered an overriding principle 

for the time being. 

The substitution procedure may also be applied to the gauge holes appearing in 

the H-boson kinetic energy (Fig.13(c)), resulting in the cubic and quartic couplings 

shown in Fig.16. The frozen TJ orientations of H bosons admit coupling only to 

gauge bosons of the V n" type (a source of isospin-symmetry breaking). The quartic 

term involves one left-handed and one right-handed gauge boson and thereby pro

vides the first example of mixing between VL and VR at the one-loop level. There are 

two different cubic terms: The one shown in Fig.16 gives an amplitude ex PB • f~(L) 

while the topology with the gauge hole and the gauge boson interchanged corre

sponds to PA . ft(R). The substitution principle requires the two terms to be added 

with relative + sign, as is also the case with the two chiral possibilities. One obtains 

PA . f~ + PB . f~ + PA . f~ + PB . f~ = -Pc . f~ - Pc . f~ (11) 

which vanishes if the gauge bosons are fully transverse. 
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5.4 Self-Interactions of H Bosons and Leptons 

Because of the constraint on the quantum numbers of H bosons (discussed in 

Sect.3), self-interaction terms for H bosons always contain an even number of parti

cles: One may think of the JL's as being arranged in a circle, linking "neighbouring" 

H bosons. With each JL goes a definite (0, P) bosonic label that is required to 

always change from one JL to the next in the sequence, hence the circle can be 

completed only with an even number of switches. Moreover, the topology of a term 

oc H2n contains 2n JL's which contribute 4n to g.. The latter being restricted to 

8, kinetic-energy topologies have two handles and quartic terms none (n = 2) while 

terms with n ~ 3 are excluded. It is then easy to see that the surface representing 

a quartic term will have eight patches, four of which are "white" spinor patches; 

in the absence of handles they cannot be united and criterion (4.) cannot be met. 

The conclusion is that elementary H-boson self-interactions are not allowed. 

Multilepton vertices with 2n fermions have n JL's and hence 4 - n handles to 

attain genus 8. Before handles are inserted, there are n JL patches, n "white" 

bosonic patches and also n "white" spinor and n "non-white" spinor patches. Each 

handle can lower the total patch number at most by two, hence only n = 2 (i.e., the 

four-fermion vertex) needs to be considered. The "raw" surface without handles 

(Fig.17(a)) shows that the patches 0: and {3 and also the (bosonic JL) patches '1 

and 0 must remain separate in order to avoid spinor patches with more than two 

rp boundary units and to keep the JL patches independent. If the two handles are 

used to connect i with ~ and TJ with 0, the total patch number is still too high 

to comply with the proposed rule (4.). There is a way to insert the handles so 

as to arrive at a surface with just four patches, none of them "white" (Fig.17(b)). 

However, one notices that particles A and C are not connected to other particles via 
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Finkelstein lines; instead their T lines link the Y and rp units of the same particle 

- an unacceptable feature 16 • It is reassuring to see that vertices with dimensionful 

coupling constants are being excluded by the adopted topological postulates. 

5.5 H -Boson-Lepton Couplings 

Finally one wants to consider couplings involving both H bosons and leptons. 

Arguments similar to those used in the previous two cases show that only the cubic 

HIl vertex with two JL's and two handles is able to attain a sufficiently low number 

of patches. The topological requirements thus have again eliminated all interaction 

terms with dimensionful coupling constants. 

Presently they are, however, not restrictive enough to single out one specific 

surface structure as the only consistent representation of the Hll vertex. One may 

suspect that the proper extension of the notion of chiral entropy will have consid

erable impact on the precise form of this chiral-symmetry-breaking interaction. In 

the meantime a discussion of the most promising candidate topology will persuade 

the reader that this particular vertex will eventually find a firm place in TPT. 

One may try to develop the HIl topology either from the H-boson kinetic-energy 

topology, Fig.13(c), by "opening up" the Feynman line of B and inserting a pair 

of rp units, or from the lepton kinetic energy, Fig.14(c), by "cutting in two" the 

JL and readjusting the patch structure appropriately. The latter approach will not 

be pursued here because it leads to rather complicated structures which hold little 

promise, the Top line containing two or more tangency points or the two JL's being 

treated differently. 

l6The only precedent - the so-called vacuon - is briefly discussed in Appendix A.3. The reason 

requiring 1'-line connection between the two Y units in a vacuon does, however, not apply to the 

present situation. 
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Fig.IS shows the presently favoured structure, emphasizing its kinship with 

Fig.13(c). The H boson A occupies its own belt component and the leptons share 

the other one, as in the lepton-gauge-boson case. The H couples to each of the 

leptons through one of its JL's and one of its TJ lines while the Tv> line links the 

leptons. The generation labels on H thus determine those on the leptons; the latter 

are either both charged or both neutral. 

In transforming Fig.13(c) into Fig.IS, the gauge holes had to be removed where

upon the two SCH's became obsolete in their previous positions. In order to prevent 

the spinor patches between A and B or A and C from becoming "white", the han

dles 3 and 4 are rearranged in a symmetrical fashion so as to unite those patches 

with the "non-white" spinor patch between Band C into one patch a with a single 

patch-boundary component, as befits a scalar coupling. Tangency points between 

I and Ie lines are used for this purpose in the same way as in Fig.13(c), with the 

usual ambiguity arising from the colour assignments. 

One of the somewhat unsatisfactory features of Fig.IS is to be seen in the passive 

role of all T lines, which do not have tangency points. The low chiral complexity 

of this vertex type is chiefly responsible for the relative simplicity of Fig.IS. On 

the other hand, the boundary of patch a is unusually complicated, being tangent 

to itself at four points and consisting of three different T lines, four colour lines, 

two rp units and several pieces of Feynman lines. This is to be compared with 

strong-interaction spinor patches built from just two rp units, one Tv> line and some 

Feynman lines, or with spinor patches in elementary gauge-boson topologies which 

have two components, each composed of Feynman-line pieces, one rp unit and a 

T-line segment. The number of boundary segments appears to compensate for the 

lack of chiral complexity in patch a. Undoubtedly, some kind of topological entropy 

is associated with the number and type of line segments in patch boundaries. Such 
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an index would take the value zero in strong-interaction topologies and measure the 

presence of electroweak interactions. It is to be expected that its precise definition 

will depend crucially on the properties of semihadronic vertices. 
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6 Feynman Rules and Symmetries 

6.1 Shorthand Graphs 

The surface structures discussed in this paper are so complicated that it is 

essential- for all practical purposes - to develop a graphical shorthand more similar 

to standard Feynman graphs and also to give the Feynman rules which follow from 

the elementary kinetic-energy and vertex topologies. It should be obvious from 

the preceding discussions that the physical content of the theory may adequately 

be summarized in such rules and shorthand graphs but that only the full set of 

relations and consistency constraints among the detailed topologies allows inference 

of those rules. 

The corresponding problem for the strong interactions was solved some years 

ago [28], and the most adequate graphical shorthand was found to be the combina

tion of Feynman (momentum-line) and Harari-Rosner (quark-line) graphs [3] and 

was called "thickened Landau graph" in Ref.[6]. All particle properties except mo

mentum are put as labels onto the quark lines which carry them from one particle 

to another. Chiral and colour switching can easily be represented, and all other 

quantities are conserved in strong interactions. The Feynman graph represents the 

singularity structure of the amplitude.17 

The above-discussed nonhadron topologies exhibit a similar flow pattern for 

isospin and lepton-generation number (the coupling between H bosons and V n" 

vector bosons, Fig.16, is anomalous in this respect). In purely nonhadronic graphs, 

the colour degree of freedom is of no physical consequence, and no quantum numbers 

17 Graphs similar to HR quark-line diagrams were also used by 't Hooft in his investigations of the 

1/ N" expansion of U(N) gauge theories. His graphs do not show the chiral structure and spin 

correlations at vertices [341. 
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attach to feathers #2 and #3 in leptons and H bosons. In contrast, the spin-chiral 

structure of leptons and especially gauge bosons is much more complex than that of 

elementary hadrons. Accordingly it appears useful to devise a shorthand which ex

plicitly shows only the flow of isospin and lepton-generation number along "fermion" 

and "boson" lines, respectively, and indicates the chiral structure but suppresses 

the spin complications. The Feynman graph may also be included, mainly to guide 

the eye and later to allow connection with hadronic shorthand graphs. It will also 

be useful to distinguish clearly between quark lines (carrying eight flavours), non

hadronic fermion lines (representing isospin only) and nonhadronic boson lines (four 

lepton generations). Unfortunately, many different conventions have been used for 

shorthand graphs in past years. This paper will follow the notation of Refs.[2I,9] 

for hadrons; Fig.19 shows the representation for all elementary particles in TPT. 

Sometimes it is convenient to use an even more condensed notation as in standard 

Feynman graphs, see Fig.20. 

The shorthand graph corresponding to a given complete topology may be ob

tained in the following way: 

1. The Feynman graph is taken over unchanged except for lepton-gauge-boson 

vertices (Fig. IS) where the Feynman line corresponding to the boson is flipped 

over - then gauge bosons consistently attach to the fermionic side of leptons 

and H bosons to the bosonic one. 

2. The so rearranged Feynman graph is thickened by the Finkelstein lines where 

TJ is represented by zig-zag lines (boson lines) and T'P by dotted ones (fermion 

lines). Except at the anomalous H - V n" vertex, fermion lines and boson lines 

never cross each other nor themselves nor the Feynman graph. 

3. Chiral switches may be indicated by crosses on fermion or quark lines. Because 
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of the large number of such switches along fermion lines it is often more 

convenient to mark by a full square the spots where the handedness (L or R) 

of a fermion line changes. 

4. For the sake of conciseness, kinetic-energy trivial vertices will be suppressed. 

6.2 The Feynman Rules 

Table I gives the Feynman rules as they can be read off the topologies Figs.lD-

12, 13(c), 14(c), 15, 16 and 18. The different coupling constants e, t, g and h should 

not be considered constants at very high energies - this question will be discussed 

in [II]. In the following subsection, symmetry arguments will be used to establish 

relations between e, t, g and h. 

The following remarks concerning Table I are in order: 

1. Fermion lines maintain their handedness except at points marked with a full 

square. This statement follows from the fact that lepton and gauge-boson 

propagators as well as gauge-boson and gauge-boson-Iepton vertices impose 

an odd number of switches on a fermion line. A fermion line passing by a 

single vertex thus maintains its handedness; each further vertex also implies 

an additional propagator so that the number of chiral switches on a fermion 

line increases in even steps, staying odd. An exception to this chiral structure 

is the lepton-H vertex which breaks chiral symmetry. From Fig.16(b) it 

may be inferred that H bosons can couple to one left-handed and one right

handed gauge boson and so provide a further source for L - R mixing and 

chiral-symmetry breaking. 

2. For simplicity, Faddeev-Popov ghosts and their couplings have been left out. 

The topologically most natural way of dealing with the gauge degrees of free-
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dom is still being investigated. Neither the present paper nor [IIj deal with 

radiative corrections arising from Yang-Mills loops. 

3. The very simple isospin factors are equivalent to those of the more standard 

representation of non-abelian gauge theory - a circumstance noted, e.g., in 

Ref.[32j. 

4. As noted in Sect.3, the conventions about lepton charges and lepton num

ber imply that charge-conjugate spinors should be used for leptons if normal 

spinors describe quarks. Electroweak amplitudes may be written down in ac

cord with usual conventions by simply "reading" fermion lines in the sense 

opposite to their arrows. If interference terms with semihadronic amplitudes 

are present, care must be taken to include the charge-conjugation phases of 

all operators acting on fermion lines (this has been done in Table I). 

6.3 Symmetries 

With the help of the Feynman rules it is now easy to discuss the symmetries 

of the nonhadronic sector of TPT. As explained in Ref.[10j, discrete symmetries 

arise where the two possible orientations of a line, patch or patch boundary are 

topologically equivalent. The superposition principle of quantum mechanics then 

allows enlarging some of the discrete symmetries into continuous symmetries. 

Using the definitions of C, P and T transformations, given in Appendix D 

of Ref.[9j, one easily sees that the rules presented in Table I are invariant under 

those operations. Chiral symmetry, however, is broken by the lepton-H vertex: 

Left-handed fermion lines change into right-handed ones, and vice versa, so that 

independent transformations on Land R lines are not possible. 

In gauge-boson and gauge-boson-Iepton couplings alone, Land R fermion lines 
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maintain their separate identities. All isospin orientations being equivalent, one may 

define global U(2)R x U(2)L transformations acting on fermion lines. Furthermore, 

all boson-line orientations are on equal footing in the LVl vertex and in the lepton 

propagator so that the coupling constant e is independent of the generation index 

of the leptons. As this vertex is obtained by the substitution principle from the 

lepton kinetic energy, one infers e = g and thus obtains local gauge symmetry 

U(2)R x U(2)L X P, the parity symmetry forcing gL and gR to be equal (before 

renormalization). Within this subset of vertices and propagators, the complete 

equivalence of all four lepton generations gives rise to a global U(4)G symmetry. 

Adding the lepton-H interaction breaks chiral symmetry and thereby reduces 

U(2)R x U(2)L X P to U(2)v x P. In the sense of perturbative QFT the model 

is then no longer renormalizable ([III will discuss why this is not a disaster in the 

context of TPT). Two-loop diagrams will mix VL with VR and produce couplings 

between VL and right-handed lepton currents, etc. 

The restriction of the HGG• spectrum to G and G' with opposite (0, P) content 

does not sustain the full U(4)G symmetry deduced above but breaks it down to 

U(2)o x U(2)p acting on bosonic indices. Before hadrons are added to the dynamics, 

bosonic 0 and P orientations are equivalent, i.e., there is an additional discrete 

symmetry left over from the breaking of U(4)G (otherwise the surviving local U(2)v 

symmetry would degrade into a global one). 

The effect of the H - vnn couplings is to break the residual gauge group U(2)v 

into a local U(I) associated with phase transformations on charged T<p lines - the 

gauge group of electromagnetism. This outcome is not surprising because the de

sired conservation of electric charge was the criterion used to determine the orien

tation of nonhadronic TJ'S. The corresponding gauge boson is a superposition of 

equal amounts of left-handed and right-handed, isosinglet and isotriplet states. As 
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noted by Chew and Finkelstein [191, the resulting unrenormalized Weinberg angle 

is 30°. 

It should be stressed that the foregoing discussion of topological symmetries, 

although presented as a sequence of symmetry breakings by considering more and 

more terms, does not imply any notion of spontaneous symmetry breaking. There 

are neither Goldstone bosons nor a Higgs mechanism in the nonhadronic sector of 

TPT. 
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7 Conclusions 

The preceding sections established that electroweak particles and interactions 

can be given a topological representation which is fully compatible with strong

interaction structures. Some particular features emerge which are connected with 

the relative weakness of the interactions (absence of duality) and the massless ness 

of elementary nonhadrons (necessity for specific kinetic-energy topologies, cylin

drical patches and spin-correlating handles). Motivated by the experimental fact 

that weak interactions to high accuracy proceed via left-handed currents and by 

the phenomenological success of the GSW model, elementary singularity-free chi

ral Yang-Mills couplings were assumed for vector bosons. As a consequence the 

corresponding surfaces acquired genus g, = 8. In order to maximize topological 

Fermi-Bose symmetry, the remaining nonhadron topologies were required to have 

matching g,. A set of topological properties was proposed which, among other 

consequences, led to the exclusion of vertices with dimensionful coupling constants. 

The gross features of nonhadron topologies are fairly well determined by those 

rules, except for the HIl vertex. The Feynman rules presented in Sect.6.2 thus ap

pear to be rather definite within the framework of theabove-mentioned assumption; 

their main consequences for the phenomenology will be discussed in [II]. 

It is to be expected, however, that some details of the proposed topologies will 

have to be changed when additional consistency constraints become recognized in 

future work. The remaining ambiguities are primarily connected with chirality, 

tangency points, patch-boundary structure and the function of handles. Additional 

requirements will probably result from a better understanding of photon-hadron 

vertices. 

One aspect deserves particular attention in future investigations: While all fea-
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tures of strong-interaction topologies (except "white" spinor patches) directly reflect 

themselves in the Feynman rules, the remaining ambiguities in nonhadronic surfaces 

are not expected to have noticeable impact on Table I. Hence the present proposals 

are either too complicated - in which case the complexity unavoidably present in 

Yang-Mills topologies would be hard to understand - or they are subject to more 

subtle consistency constraints that will not be easy to unravel. 

One of the most fundamental questions regards the origin of electroweak topolo

gies. Are they truly elementary, representing a new and different bootstrap level, 

or can they be thought of as summarizing some as yet unknown dynamical mecha

nism which generates nonhadrons from complex hadronic dynamics? Whatever the 

answer to this question, it should at the same time provide a way to compute (at 

least in principle) the various electroweak coupling constants either through some 

new bootstrap system or from the fundamental strong-interaction parameters. 

Most likely, progress in this question will depend on the link forged between 

hadrons and nonhadrons by semihadronic topologies. Unfortunately, their devel

opment has not yet reached a comparable degree of definiteness - exactly because 

that dynamical link is still unknown. The presence of an elementary mass scale 

in that sector of TPT does not justify exclusion of couplings characterized by di

mensionful parameters, so many different types of vertices need to be considered. 

Appendix A demonstrates that the present topological scheme can accomodate cou

plings to hadrons for all nonhadrons without patently conflicting with known data. 

It is expected that more definite proposals will emerge as soon as a consistent set of 

photon-hadron couplings has been developed: The principle that the electric charge 

be conserved locally must translate into restrictions on the topologies which may 

then be applied to other cases. 

In the meantime one may draw some encouragement from the rather simple semi-
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quantitative explanation of the observed lepton mass spectrum which is suggested 

by the coupling patterns developed in the present paper. TPT thereby achieves 

a unification of strong, electromagnetic and weak interactions which differs funda

mentally from the approach pursued in grand unified theories and promises a wealth 

of new phenomena in the Te V energy range. A first survey of those processes is the 

purpose of [II]. 
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A Topologies for Semihadronic Couplings 

A.I Phenomenological Considerations 

The Feynman rules in Table I imply that the nonhadronic sector of TPT does 

not represent a viable theory on its own because of nonrenormalizability. [II] will 

indicate how semihadronic couplings overcome the problem and also generate a 

realistic mass spectrum. The goal of this appendix is to make preliminary proposals 

for corresponding topologies, even though the underlying principles are not yet 

known. Certain phenomenological facts may temporarily provide guidance in this 

situation: 

1. Nonhadrons appear pointlike up to high q2 (except for mixing between gauge 

bosons and nearby 1- resonances), excluding direct interaction between lep

tons and light physical hadrons. Leptons may, however, have a not too large 

number of couplings to elementary hadrons whose common mass rno;:.1 Te V 

[11] will strongly suppress couplings to light physical hadrons. 

2. H bosons and right-handed gauge bosons must be very heavy and should 

thus interact with heavy hadrons of high multiplicity; on the other hand, 

most leptons are extremely light. For the sake of renormalizability, the latter 

should also communicate with high-multiplicity hadrons, but chiral symmetry 

must be preserved to a very high degree. 

3. Neutrinos are several orders of magnitude lighter than their charged partners, 

if they are not completely massless. Their direct interactions with hadrons 

thus have to conserve chiral symmetry exactly. It also turns out that charged 

lepton currents must not directly couple to hadrons for this reason. 
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No general topological principle governing such couplings has been recognized 

yet; the most stringent restrictions may well stem from electromagnetic gauge in

variance which is needed for keeping the photon massless. Such gauge invariance can 

be achieved if the photon couples in a noncontractible way to all charged T lines in 

elementary hadron currents consisting of a particle-antiparticle pair (or one incom

ing and one outgoing particle of the same type). Ref.[lS] showed which topological 

questions and phenomenological potential were connected with those couplings in 

the earlier version of TPT; work is in progress to adapt the earlier ·proposals to the 

present, more economical scheme [9]. 

A.2 Lepton-Hexon and H -Boson-Hexon Couplings 

Conservation of lepton-generation numbers implies that leptons and H bosons al

ways couple in pairs to other particles (except for the Hil vertex). If one constructed 

cubic vertices involving a pair of leptons or H bosons and a single hadron, the lat

ter would have to occupy a belt component by itself. There is strong-interaction 

precedent for single-particle belt components in "naked-cylinder" topologies [10], 

but the discontinuities of the corresponding amplitudes vanish on the elementary

hadron mass shell, creating a new pole (called "vacuon", see Sect.A.3) with lower 

mass. Therefore only quartic couplings involving a hadron pair will be consid

ered in this subsection. Higher than quartic couplings are not promising because 

they would have to be exceedingly complicated in order to be manifestly noncon

tractible. Furthermore, the discussion will be restricted to hexons because their 

very high multiplicity will produce the most significant physical effects. 

Fig.21 shows a lepton-hexon surface which was constructed so as to couple only 

neutral lepton currents, treating all four generations alike. One quark in each di-
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quark is passive. The second quark associated with JL a undergoes isospin coupling 

to the leptonic JL c; it is inserted in such a way as to prevent patch ex from being 

"white". The 'P sides of the leptons are linked by their Tv> line while their spins 

and chiralities are correlated with one quark belonging to JL b; due to the tangency 

points between the T lines and the Feynman graph or quark-colour line, the patches 

f3 and I have opposite chiralities - a vector coupling. The SCH is necessary because 

there would otherwise appear a "white" spinor patch between the hexons' Feynman 

line and TJ of b. Along the same lines one may construct a topology with baryons 

rather than hexons by replacing JL b and its diquark by a single quark; the main 

properties of both vertices are very similar. 

An interesting feature of Fig.21 is the patch 8 whose boundary contains a pair of 

both 8 units and Y units, implying a coupling between lepton and quark generations. 

Once the generation symmetry of leptons is broken [II], a similar breaking of quark

generation symmetry will be induced, although no mixing will occur yet. lS 

H-boson-hadron couplings being less constrained phenomenologically, Fig.21 

can easily be modified into a hadron-H-boson topology where no spin exchange oc

curs between hadrons and nonhadrons (Fig.22). The SCH is again used for avoiding 

"white" spinor patches. The previously encountered mixed scalar patches with 8 

and Y units are also present here, and again one may replace the hexons by a baryon 

pair. 

A completely different coupling scheme makes use of the JL's to link baryons or 

hexons to leptons or H bosons. The frozen patch and patch-boundary oientations of 

hadronic JL's have to be matched by the nonhadrons so that only A, 1/)" H24 and H34 

may get involved in such coupling. If the quarks playa completely passive role, the 

18Chew has recently constructed a similar topology with H -bosons where quark-generation mixing 

is induced by the opposite Y-patch-boundary orientations of the latter [361. 
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isospin coupling must proceed via hadronic TJ lines. As hadronic and nonhadronic 

TJ orientations are frozen in opposite directions, only the lepton with T<p orientation 

c, i. e. A, meets all the requirements. Fig.23 shows a preliminary topology where 

the leptonic 'P units have the same spin and chiral orientations. Chiral symmetry 

is broken and A may acquire a big mass through hadronic loop diagrams. [II] will 

discuss how the lepton mass hierarchy develops from this starting point. 

A.3 The Vacuon and Its Couplings to Leptons 

Already the first attempts at understanding the lepton mass spectrum in the 

framework of TPT [20] indicated the need for a special mechanism to lift the de

generacy between /.L and T. Because of absolute conservation of lepton-generation 

numbers, generation mixing is excluded and T must undergo some extra coupling in 

order to become more massive than /.L. It was conjectured that a mysterious scalar 

particle emerging from TPT dynamics at the cylindrical level [37] might have the 

required properties to accomplish such splitting. Because of its zero quantum num

bers it is called vacuon or 0. Its place in TPT and its representation are briefly 

reviewed below [10] before a proposal is made for its couplings to leptons. 

Certain ("naked") cylinder topologies possess a simlar self-reproduction capa

bility in plugs as do (planar) zero-entropy topologies. A new pole corresponding 

to a single neutral scalar state is thereby created while a specific superposition of 

zero-entropy states - containing mesons as well as hexons - is eliminated. Being 

also capable of contractions, the newly created vacuon must still be considered an 

elementary particle19 and hence needs its own topological representation differing 

from that of mesons and hexons. It has not been possible to consistently implement 

an earlier proposal [37] which employed a pair of 'P boundary units. More recently, 
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a closed Y-Y+ portion emerged as a promising candidate (Fig.24). 

In order to assure the contractibility of certain graphs with vacuons, E must 

be three-sheeted (at least in hadronic couplings). A tadpole-like Feynman line -

not representing any specific particle - encircles the vacuon to prevent quantum 

number exchange. The strong interactions hence cannot determine the orientations 

of the TJ line and of the scalar patch and patch boundary. It is expected that con

sistency constraints from electroweak couplings will eventually determine them; at 

the present stage where only 0-lepton couplings are considered, those orientations 

are assumed which are most promising with respect to the phenomenology: c, U 

and 0 - the orientations ascribed to hadronic JL patches. 

When 0 interacts with nonhadrons, no contractions are possible and the cou

pling is not expected to be independent of the channel. This consideration indicates 

that the tadpole line is not present in electroweak vertices involving 0. Under the 

present assumptions about the topological orientations of 0 one can easily construct 

the surface shown in Fig.25. It correlates the lepton charge with the TJ orientation 

of 0 so that only charged leptons are able to couple. The JL's of 0 and the lepton 

pair border on the same scalar patch whose orientation is thus fixed at U. That 

patch has two independent boundary components so that both A and T are subject 

to this coupling. 

The proposal of Fig.25 can, of course, not be considered final. In particular, it 

is unclear whether the vacuon always requires a three-sheeted structure or follows 

the pattern of normal hadrons. One may also suspect that the colour lines will have 

to acquire a more substantial role. At the very least, however, the present proposal 

19The vacuon occupies an intermediate position between hadrons and nonhadrons which led to the 

suggestion that it might provide an opportunity to bootstrap the nonhadrons [37[. An encouraging 

property of e is that its coupling to hadrons is weak, of the order of the electric charge. 
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strengthens the case for this unusual coupling and the dynamical scenario presented 

in [II]. 
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Figure Captions 

Fig.1: (a) Single-vertex Feynman graph F. 
(b) Corresponding Harari-Rosner diagram. 
(c) Embedding of F in 2-d planar surface E. Particle boundary portions 7ri 

are indicated by braces; the arrow around the Feynman vertex shows the 
global orientation of E. 

Fig.!!: Connected sum of two TPT single-vertex surfaces. 

Fig.S: Surface representing the simplest meson-baryon-antibaryon vertex. Note 
how the JL induces orientations on feathers #2 and #3. 
- - - - : Feynman lines 
- • - • - : colour lines 
____ : junction line 

,~ : Finkelstein lines 

Fig.4: (a) cp± boundary units. 
(b) 6± boundary units. 
(c) y± boundary units. 

Fig.5: Hadronic boundary portions. (a) Meson. (b) Baryon. (c) Hexon. 

Fig.6: Creation of a gauge hole in a plug. Chiralities are shown as arrows on cp 
boundary units. They match in the patches a and a', the plug is smooth; 
the mismatch in the patches {3 and {3' forbids identification and erasure of cp 
units. 

Fig.7: Closed cp-cp+ belt portion representing a gauge boson. 

Fig.8: Lepton belt portion built from Y±cp'f; 

Fig.9: (a) Belt of H "propagator" with single boundary component. JL's, colour 
lines and Finkelstein lines are also shown. 
(b) Belt of H "propagator" where each H occupies its own boundary com
ponent. (In the full surface, lines do not cross.) 

Fig.10: Topological representation of quartic Yang-Mills vertex. E has been mapped 
onto the infinite plane; dotted circles with equal numbers are to be identified. 
Arrows indicate patch-boundary orientation corresponding to left-handed 
vectors. 

Fig.11: Cubic Yang-Mills vertex. 

Fig.1!!: Surfaces representing the kinetic energy of gauge bosons (shown for the case 
of left-handed vectors). 
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Fig.1S: H-boson kinetic-energy surface. 
(a) Structure of feather #I. 
(b) Two equivalent representations of feather #2. 
(c) The full surface. 

Fig.LI: Lepton kinetic-energy surfaces. 
(a),(b) Rejected proposals. 
(c) Adopted proposal with g4 = 8. Greek letters label patches. 

Fig.15: Topology for lepton-gauge-boson interaction. 

Fig.16: (a) Cubic and (b) quartic couplings between H bosons and vnn gauge 
bosons. 

Fig.17: (a) Surface representing four-fermion coupling before insertion of handles. 
(b) After insertion of two handles. 

Fig.18: Proposal for Hll vertex topology based on H kinetic-energy surface. 

Fig.19: Shorthand representation for elementary particles in TPT. The circular 
arrow indicates the surface orientation . 

Feynman line; 
- - - : quark line; 
• ••... : nonhadronic fermion line; 
NV\AA: nonhadronic JL (boson line). 

Fig.!!O: Alternative shorthand notation for nonhadrons. The arrows indicate the 
flow of lepton-generation number. 

Fig.21: Proposal for lepton-hexon vectorial coupling. 

Fig.!!!!: Proposal for H-boson-hexon coupling. 

Fig.!!S: Candidate topology for scalar coupling between lepton pair (A+>'-) and 
hexon pair. 

Fig.24: ,Two-meson-vacuon coupling. A tadpole in the Feynman graph isolates 0 
from the other particles. 

Fig.25: Proposal for coupling between vacuon and T and>' leptons. 
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