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ABSTRACT 

LBL-19101 

A formal derivation of the wave kinetic equation governing the wave action density for 

electromagnetic waves propagating in a weakly inhomogeneous and nonstationary medium is 

presented. 'rhe method is based on the Weyl representation of a general vector wave equation 

(including local sources and dissipation) governing the evolution of the field spectral tensor 

in the phase space of the (geometric optics) rays. This equation is systematically approxi-

mated with ordering assumptions consistent with conventional eikonal methods, leading to 

a natural definition of the wave action density. 
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The action density of a wave propagating in a medium is a concept which is central to 

the analysis of a variety of wave processes. For waves of uniform amplitude in a uniform, 

stationary medium, the action density J(~J on (~,.~}space of a mode at wavevector 1£ and 

frequency w(!s.) is given by the energy density U(!s.) of the mode divided by its frequency, 

J(!s.) = U(!s.)/w(!s.). The extension of this definition to nonuniform amplitude waves in a 

uniform medium or to the case of a weakly inhoraogel.l.!ous, nonstationary medium is often 

made by simply considering these quantities to be slowly varying local functions of space 

and time. In particular, the wave action density J (~, If; t) becomes a function on the phase 

space of the (geometrical optics) rays which are generated by the eikonal (or WKB) methods 

that are traditionally applied in this regime. 

The wave kinetic equation which governs the evolution of J(~,!s.; t) in a weakly nonuni-

form, nonstationary medium is 

d . 
dt J(~,!s.; t) == [ae + ~. a:. + If . a~]J(~,!s.; t) = S(~,!s.; t) (1) 

Here, (~,!) are given by Hamilton's equations for the rays in phase space, determined by 

the local dispersion relation w = n(~,!s.; t). The local source S(~, If; t) represents the effects 

of dissipation, external sources, nonlinear interactions, etc. The most common method of 

derivation 1 proceeds from the quantum field-theoretic concept of the occupation number 

n~ of a mode and the changes in that number due to nonlinear interactions with other 

modes; the classical limit then assumes large occupation numbers with smooth (as opposed 

to discrete) variation in time. As n~ is proportional to the square of the amplitude of the 

wave, the connection between the relation J = U /w and the usual quantum electrodynamic 

model of modes as oscillators provides the identification of the occupation number as the 

wave action in the classical limit. The primary focus ~f those methods is the form of the 
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source terms S which are taken to represent nonlinear couplings among modes and the 

approximations which can be made to simplify them. The classical, irreversible aspect 

of dissipation is generally just inserted into the kinetic equations which appear, and the 

extension to nonuniform nonstationary medium is typically achieved by simply assuming 

a local spatial dependence of the occupation numbers and postulating the replacement of 

(iJ/iJt) by the full convective operator (at + ~. a=. + k· af!)' 

Other non-quantum derivations have been gIven based on conventional WKB treat-

ments of wave propagation. As such, these approaches introduce the ray trajectories at the 

lowest order approximation and arrive at an evolution equation for the amplitude of the 

wave at next order. This equation, which adequately describes the transport of wave en-

ergy, momentum and action in nonuniform dissipative medium (including external sources), 

is naturally set in ~-space (or &-space) and these quantities are densities on ~- or &-space. 

In order to obtain an equation for J (~, &; t) in the (~, &) ray phase space, the ~-space action 

density is lifted into a phase space density using various procedures. One technique2 is to 

label the contribution to the amplitude at a point due to a single ray by the initial value 

of the wavevector of that ray; in this way the amplitude becomes an implicit function of 

&. Another method,3 applied to scalar fields, relies on an assumption for the asymptotic 

form of the Wigner function4 which corresponds to a wave field that is a superposition of 

eikonal wavelets. Both of these schemes for introducing phase space representations into 

fundamentally ~-space equations tacitly assume a relationship &(~) (either through initial 

conditions or the eikonal phase) and this poses difficulties in each case: either quantities 

appearing in the resulting equations are tied to initial conditions (requiring the inversion of 

all trajectories) or the eikonal phase label may be continous (invalidating the assumption 

used for the Wigner function). In addition, neither method incorporates the possibility of 
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local nonlinear sources. 

The procedure we shall employ in the present derivation of the wave kinetic equation 

for electromagnetic wave~ has several advantages. In contrast to the conventional eikonal 

approach, this will be inherently a phase space method from the outset; thus, we shall 

treat ~,t and li, w as independent variables, with all functions on phase space well-defined 

through the Weyl transform. 5 The exact phase space equation which governs the evolution 

of the electric field spectral tensor will be derived and solved under an ordering hierarchy 

consistent with the customary eikonal approximations. This leads to a natural definition for 

the wave action density in a weakly nonuniform, nonstationary medium which is a reasonable 

extension of the wave action in a uniform medium. Furthermore, our procedure allows one 

to include nonlinearities and to proceed to higher order in a straightforward manner. 

We begin with a general integral equation for electromagnetic waves in an inhomoge-

neous, time-varying medium, 

I crx' dt' 2-(~,t;~',t'). E(~',t') = iJ~,t) (2) 

where E(~, t) is the wave electric field. The two-point space-time dispersion kernel £ rep-

resents Maxwell's equations with a linear response model of the medium (i.e., the cur-

rent density associated with the wave is given by a linear conductivity law 6i(~, t) = 

J d3 x' dt' O'(~,t;~',t') . E(~',t'))j we allow 2- to correspond to a non-hermitian operator. -
The current-source i(~, t) on the right-haQd side accounts for departures from the linear 

treatment of the wave (such as external sources, discreteness effects or nonlinear wave pro-

cesses). We view (2) as the space-time representation of the abstract equation 

(3a) 

The product of (3a) with its adjoint equatjon 
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(3b) 

gives 

(4) 

This is an equation for the spectral tensor of the electric field. (E E t) in terms of the 

dispersiCln operator Q and the spectral tensor (jjt) of the current-source field. Furthermore, 

while (3) is naturally viewed in either its space-time representation (2) or the wavevector-

frequency (!, w) basis (obtained by Fourier transform), the operator equation (4) is ap-

propriate for introducing a joint space-time/wavevector-frequency representation. Thus we 

define 

n{x t k w) = ! d3 s dr D(x + 1s t + 1r- x - 1s t - 1r) e-i(&.~-w1") (Sa) K. -, ,-, '" - 2 -, 2' - 2 -, 2 

(EEt)(x t k w) == ! d3 s dr E{x + 1s t + 1r )E·{x - 1s t - 1r) e-i(&.~-w1") (5b) 
- -" -, - - 2 -, 2 - - 2-' 2 

This transformation may be viewed as a local Fourier transform of the space-time repre­

sentation (P'(~,t;~',t') or E{~,t)E·(~',t'» of the corresponding operator (Q or (EEt)). 

In particular, the transform produces the local wavevector-frequency spectrum of the wave 

field E (hence the appelation spectral tensor for (EEt)). We shall refer to this description 

of the operators as a phase space representation since the quantities defined in (5) are func-

tions on the eight-dimensional ray phase space (including time and frequency). We note that 

this wave operator/phase space function correspondence is not unique; this formalism is the 

Weyl tepre8entation, 5 and the phase space functions defined in (5) are the Weyl symbols of 

the operators. In its scalar form, the Weyl symbol of the wave field (5b) is commonly called 

the Wigner function.." 

In addition to providing a correspondence between wave operators and phase space 

functions, the Weyl formalism includes a symbol calculus. In particular, we have the follow-
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ing theorem:7 if A, B and C are abstract operators which satisfy 

AB=C (6) 

then the Weyl symbols A, B and C of the operators satisfy 

(7) 

Here, A, B and C are defined as in (5) wi'..h the notation that z8 represents the point 

~ 

(~, t, /s., w) in the eight-dimensional phase space. The exponentiated Janus operator £ acting 

(8) 

precisely the Poisson bracket operator on the extended ray phase space.6 Applying this 

theorem (extended to tensor operators) to (4), we directly obtain 7 our basic phase space 

equation 

(9) 

That this is indeed the equation which governs the wave spectral tensor (EEt)(z8) can be 

verified by substituting the definitions (5) into (9), expanding the exponential operator in 

power series, and recovering the space-time representation (2) of (3). 

Having presented the exact equation for the wave spectral tensor, we now wish to treat 

this equation in the short wavelength, high frequency regime. We shall assume that the 

waves described by (2) have a wavelength ~ which is short compared with the scalelength 

L of the spatial variation of the medium (as represented by 12), (~/ L) « 1; similarly, we 

assume that the temporal wave period is short compared with the timescale T of variation, 

wT» 1. Unlike traditional eikonal methods8 for treating wave equations such as (2) in this 

regime, however, we do not postulate an explicit form for the solution (EEt)(Z8). Instead, 
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..... ..... 
we begin by expanding the exponential operator in (9) as exp(if./2) = 1 + (if./2) + ... and 

estimate the order of the resulting terms. Specifically, we assume that derivatives acting 

on!2 and (EEt) are of the order a~ '" L-1 , at'" T- 1, alE. '" >. and aw '" w- 1• These 

requirements on the variation of the medium are standard, but the assumption for the 

behavior of the solution would have to be justified a posteriori. Introducing the hermitian 

and anti-hermitian parts of the dispersion tensor (12',12"), we assume that thl medium is 

only slightly dissipative, 12" '" O(>'/L). We alsa assume that the waves are only weakly 

driven (weak sources or small nonlinearities), IUjt)1 '" 0(>./ L). 

With these assumptions in (9), we collect terms by powers of (>'/ L) '" (wT)-I; the 

lowest two orders are 

12'(z8) . (EEt)(Z8) = 0 

412'1. (EEt) + il2". (EEt) = Ujt). (Qt)-1 

(lOa) 

(lOb) 

As we shall see, the lowest order equation (lOa) is a "constraint" on (EEt)(Z8), while the 

O(>'/L) equation9 (lOb) governs the evolution of (EEt). 

We consider first the lowest order equation (lOa). Unlike the usual dispersion equation 

in a homogeneous medium (or the corresponding lowest order result in conventional eikonal 

methods), this is a matrix equation. Therefore, the standard result detl2' = 0 does not 

immediately follow from (lOa). Since both 12' and (EEt) are manifestly hermitian, however, 

the adjoint of (lOa) implies that·these tensors commute (in this approximation.) We can 

thus simultaneously diagonalize the matrices: 

3 

(EEt)#'II == L Wae:~, (11) 
a=1 

where we have introduced the basis of the local polarization vectors ea(z8). The scalars 

DQ(Z8) are the local eigenvalues of 12', and we shall refer to wa(z8) as the Wigner function 
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corresponding to the component of the wave field in the eQ polarization. In this basis, the 

lowest order equation becomes three equations for the diagonal elements 

(12) 

This constraint must be satisfied at each point (Z8) in phase space; that is, at each 

point either DO or WO (or both) must vanish. Thus, we have the condition that WO = 0 

everywhere except on the seven-dimensional dispef"sion manifold defined by DO(z8) = O. The 

restriction DO(z8) = 0 is then equivalent to the usual eikonal condition detQ' = 0, and this 

in turn implicitly defines the local dispersion relation w = nO(~,!£; t). More generally, the 

vanishing of a single eigenvalue DO may yield multiple solutions (or branches) for w = n°, 

all with the same polarization. In addition, more than one eigenvalue DO may be zero at a 

particular point (or on some manifold) in phase space; this possibility introduces coupling 

between the linear modes at the next order and requires special treatment. We do not 

consider further such degeneracies. 10 

The dispersion manifold defined by w = n° (~, 1£; t) is the surface on which the rays 

_ generated in conventional eikonal methods propagate. According to (12), this is also the 

only region of phase space where WO(Z8) is nonzero. While this apparently establishes a 

connection between the Wigner function WO and the rays of geometrical optics, we point 

out that these rays are not directly induced by this lowest order equation. [In standard 

eikonal treatments, the local dispersion relation w = n(~,!£; t) arises as a partial differential 

(Hamilton-Jacobi) equation for the wave phase 4>(~,t), with (!£,w) == (8=.4>, -8t 4>); this is 

then solved by introducing the characteristic ray trajectories. It is important to remember 

that in our method (!£,w) are independent of (~,t).J Furthermore, (12) does not require WO 

to be nonzero everywhere that DO vanishes, so that it is possible for the Wigner function to 
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be concentrated on a submanifold of the dispersion surface. In view of these considerations, 

we take as an appropriate solution for the lowest order constraint (lOa,12) the form 

(13) 

We shall see that the function Ja (~, /£; t) giving structure to the Wigner function on the 

(~i.~U)ersion manifold can be identified as the wave action density. 

The next order equation (lOb) will determine: the evolution of Ja with the use of (13). 

First, however, we express (lOb) in the basis of the polarization vectors eO. In doing so, we 

make the simplifying assumption that the waves in the system are of only one polarization: 

that is, we take only W". to be nonzero (wa = 0 everywhere for Q # s). Furthermore, due 

to the form of (13), the derivatives of W" also vanish where D" # o. As previously stated, 

we assume that there are no degeneracies: in the region where W" is nonzero, D" = 0 but 

no # 0 for Q # s. Under these conditions, (lOb) becomes7 the evolution equation for 

2·( . ·t)"" 
{D" W"} = -2(D")""W" _ ' JJ 

, 8 .. D" - i(D")"" 
(14) 

In this expression, the superscript ss denotes the ss-component of a tensor expressed in 

the polarization-vector basis. The bracket notation {·,·}8 stands for the standard Poisson 

+-+ 
bracket on the eight-dimensional phase space: {A(z8), B(z8)}8 = AlB. This equation is 

derived by casting all the terms in (lOb) in the polarization-vector basis and then comparing 

the expressions produced by extracting the ss-component and the trace. 

Equation (14) governs the evolution of the Wigner function W" for the polarization s on 

the dispersion manifold D" = o. Therefore, the quantities (;"jt)""(z8) and (D")""(z8) as well 

as the derivatives of D" and W" must be evaluated on this surface by setting w = n" (~, /£; t). 

This can be incorporated into (14) to some extent by inserting the solution (13) of the lowest 
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order constraint which explicitly exhibits this restriction. Using the antisymmetry of the 

Poisson bracket, we have {DB,JBc5(DB)}S = {DB,JB}sc5(DB) so that (14) is 

2°( ° ·t)BB 
rCa D8)a J8(X k' t) -I- {D8 J8} Jc5(D8

) = _2(D")88 J8c5(D8) _ 1 II 
.., t -,-, , 6 ° DB _ i(D")B8 (15) 

Now the bracket notation {" '}6 denotes the standard Poisson bracket on the six-dimensional 

(~,!) = (Z6) phase space; i.e., {A(Z6; t), B(Z6; t)}6 == A(a; . a; -~ . a;,.)B. We have 

dropped the term proportional to a..,J" since by definition (13) the action density J8(~,1£j t) 

is independent of w. The appearance of c5-functions in (15) indicates that this expression is 

to be interpreted as a density; integrating with respect to D8 ( the local direction transverse 

to the dispersion manifold) we obtain 

(16) 

In arriving at this equation, we have replaced the denominator of the current-source term in 

where P denotes the Cauchy principal value. The principal value integral vanishes because 

of the antisymmetry of the integrand. Now, using the standard relations 

(17) 

which hold on the surface given by D8(z8) = 0, and defining the local growth rate 18(~, 1£; t) 

in the usual manner 

(18) 

we have our main result 

[
21r(jjt)88] 

.at J
8

(!.,1£i t ) + {J
8
,n8}6 = 218(~,1£it)J8 + (a..,D8) ..,=n (19) 

This equation governs the evolution of JB(~, 1£i t) on the dispersion manifold. In that the 

left-hand side is reminiscent of the Liouville operator of classical mechanics, we observe that 
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this 0 (A/ L) approximation to the exact phase space equation (9) introduces the notion of 

the ray trajectories in phase space. Specifically, defining the Hamiltonian ray system which 

corresponds to the underlying wave equation (2,9) by 

(20) 

we see that, as in (1), the left-hand side of (19) is the total derivative dJ"/dt of J"(~,I£;t) 

along the ray trajectories (20) in phase space. 

We now tum to a discussion of (19) and the nature of our definition of J II (~, 1£; t) in 

order to identify it as the wave action density. 

In the absence of dissipation and sources, the evolution equation (19) simply states that 

JII is constant along the ray trajectories. In analogy with a similar result of classical mechan-

ics, this suggests that JII should be interpreted as a kind of Liouville phase space density 

for the propagation of waves in the short wavelength regime. Allowing for dissipation, the 

solution of (19) is 

(21) 

which explicitly conveys the non-Hamiltonian damping (or growth) of this phase space 

density from its initial value depending on the local value of ,II. The factor of two is 

appropriate as J is quadratic in the field amplitude, yet it arises naturally here from the 

-(i£/2) in (lOb) and our approximation scheme. 

As stated earlier, the source contribution (jjt).sIJ may represent given external currents, 

discreteness effects, nonlinearly generated currents,etc. IT this term is independent of JII, 

then (19) is a linear inhomogeneous equation for JII. IT, however, the current i<~,t) depends 

nonlinearly on the field E(~, t), then using (5) and its inverse, the source (jjt)1JII may be 

written as a nonlinear functional of JII; in this case, (19) becomes a nonlinear equation. 

-10-
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To see that JlJ(~,!£; t) is properly identified as the wave action density, we integrate 

(13) with respect to DlJ: 

JlJ(~,!£;t) = ! dDlJ WlJ(~,t,!£,w) 

= ! dw (8wDlJ)(~,t,!£,w)WlJ(~,t,!£,w) 
(22) 

In this integral transverse to the dispersion manifold, the slowly varying term (8w D8) may 

be approximated by its value at w = nlJ due to the singular behavior of W8 across this 

surface. Thus, we have 

JlJ(~,!£; t) ~ (8wDlJ)(~, t, !£,nlJ) ! dw WlJ(~, t,!£, w) 
(23) 

== (8wD")(~, t, !£,n")Wa(~,!£; t) 
which defines Wa as the integral of (5) over w. In a stationary uniform medium~ (23) reduces 

to the usual expression for the energy of the mode at (1£, w) divided by the frequency 

J lJ (!£) = IElJ (!£)1 2 (
8DlJ(!£,w)) UlJ(!£) 

8w w=D(hl = wlJ (1£) 
(24) 

Thus, our definition of J"(~,!£; t) reduces to the standard one in the uniform medium case. 

Furthermore, we have seen that in the absence of dissipation or sources, J8(~,!£; t) is an 

invariant under the flow of the rays in phase space._ For these reasons, we suggest that 

J(~, 1£; t) as defined in (13,22) is an appropriate extension of the wave action density to the 

case of a weakly nonuniform, nonstationary medium. 

In summary, the derivation presented here offers a classical wave (as opposed to quanta) 

phase space (instead of ~-space) treatment, which results in the wave kinetic equation in 

a nonuniform, nonstationary medium as an approximation to the exact tensor phase space 

\) 
equation governing the local spectral tensor of the wave field in the presence of dissipation 

and sources. The steps in the development of this equation were as follows: It is assumed 

that one is given the form of the linear dispersion operator Q from which one constructs 

-11-
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the local dispersion tensor Q in the Weyl representation (5) as a function on (~, t, k, w) 

phase space, and its hermitian (12') and anti-hermitian (12") parts are identified. In the 

Weyl formalism, the wave field is represented by the local spectral tensor (EEt) which 

is related to the field by (5b); a similar definition is used to construct the phase space 

representation of the current source contributions (jjt) not included in the usual linear 

treatment of wave propagation. The general form of the wave equation in configuration 

space (2) is then translated directly (using the Weyl calculus) into the equation in phase 

space (9) which connects these phase space functions. At lowest order, the basis of the 

local polarization vectors is introduced in order to simplify the tensor equation, and the 

local dispersion relation (although not the rays) emerges along with the solution (13). This 

solution defines the quantity J(~, k; t) which is shown to be the wave action density on 

~!:) space in a nonuniform medium. Substitution of the lowest order solution into the 

next higher order equation results in the wave kinetic equation which governs J (and also 

serves to define the rays in this treatment). Dissipation (due to 12") and general sources 

are included while the possibility of linear mode coupling (degenerate eigenvalues of 12') is 

neglected for simplicity; this situation could be treated in much the same manner as used 

in traditional eikonal methods. 
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Appendix 

In this Appendix, we examine the validity of the ordering scheme and the approxima-

tions we have used. Specifically, the solution (13) of the lowest order constraint and the 

result (19) at next order shouJ.:1 be compared with the assumptions made for the magnitude 

of the (~, t)- and (k, w)- derivatives of the spectral tensor (EEt)(~, t, k, w). The derivatives 

of (11,13) involve contributions from differentiating the action density J, the polarization 

vectors e and the 6-function. The presence of the 6-function, however, would appear to ren-

der all of these terms to be singular so that our assumption is violated. Therefore, in order 

to justify this solution, we wish to impose the following interpretation: Since only a one-

dimensional6-function appears here, restricting the support of W" to the seven-dimensional 

dispersion manifold in the eight-dimensional extended phase space, local coordinates in the 

neighborhood of this surface may be constructed so that one "direction" (evidently, the D" 

direction) is "perpendicular" to the surface. It is along this direction that the solution has 

singular derivatives while derivatives in the other directions (lying "in" the manifold) act 

only on the amplitude of W", that is, on the action density J. Thus, the derivatives which 

appear in the wave kinetic equation should be understood as the pieces of those derivatives 

"parallel" to the surface D" = o. In fact, this has already been incorporated into (19) with 

the substitution of (17) into (16): the trajectories which convect J evolve on this manifold. 

Now the question arises as to the order of the derivatives on the action density. By the 

hypothesis of a weakly dissipative medium with weak sources (or coupling), the right hand 

side of ( 19) drives changes in J which are of a magnitude consistent with the assumed order 

of the derivatives of J on the left side. The foregoing argument requires the action density 
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to be somewhat smooth on the dispersion manifold and in particular, this assumption would 

be viola.ted if J were concentrated on a sub manifold of this surface; in that case, the pieces of 

the derivatives in (19) along directions transverse to that submanifold would be large. In this 

regard, it can be shown 11 that the rays corresponding to the propagation of monochromatic 

waves evolve on Lagrangian manifolds, which are three-dimensional surfaces in (~, k) phase , ) 
\.i 

space. Since J is convected by the rays, it must in these C?ses va aish everywhere except on 

these submanifolds of the dispersion surface, in contradiction to the smoothness assumption 

stated above. In the case of propagating waves, however, the possibility exists that the 

Lagrangian manifold may become so convoluted that it nearly fills the dispersion surface; 

allowing for a small wave-like spreading or broadening of the action density off the manifold 

(due to higher order corrections), a smooth variation of J on the dispersion surface may be 

achieved as these "diffraction edges" from neighboring "leaves" of the Lagrangian manifold 

coalesce. 12 This circumstance would imply the existence of many leaves "above" each 

point in ~-space and hence, in terms of the traditional eikonal description of the wave, 

many contributions to the field at that point; the convoluted nature of the rays also might 

be expected to produce a decorrelation of the phases of each contribution. In view of 

these considerations, it would seem that the smoothness assumptions on the action density 

imposed in the present derivation require that the wave system under consideration be 

incohnent. With these qualifications then, the derivation given for the wave kinetic equation 

is a justifiable procedure for approximating the exact equation governing the local spectral 

tensor. 
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zeroeth-order tensors shown. 
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