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INTRODUCTION 

While the velocity of light c is finite in the real world, most 

calculations of theoretical chemistry make the approximation c - =. 

This is usually a satisfactory approximation for systems of light 

atoms H, C, N, 0, etc., and for most properties of chemical interest. 

Where heavy elements are involved, however, the nonrelativistic 

(c - .) approximation is not adequate. This review concerns the area 

where relativistic equations must be used for accurate calculations of 

properties of chemical interest. Only in the last decade have a 

large and diverse array of relativistic quantum chemical calculations 

been made. 

We define relativistic effects as the differences between 

calculations for the correct value of the velocity of light and the 

results for c - -. To obtain correct results even for c - • one must 

either use the Dirac equation, which yields electron spin. or 

supplement the Schr~dinger equation with an ad hoc assumption about 

spin. Both of these procedures yield the same results and are 

commonly termed "nonrelativistic" even though spin is, in a strict 

sense, a purely relativistic effect. 

Indeed, for almost all purposes it is preferable to use the 

Schrodinger equation with the ad hoc assumption about electron spin. 

This is simpler mathematically; also it avoids the problem of negative 

energy solutions of the Dirac equation, which persists even for c - -. 

As we shall see below. this difficulty of contamination of the 
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physically significant Dirac states with those related to the negative 

energy solutions is very troublesome in all-electron molecular 

problems. Fortunately, this difficulty is avoided in numerical 

solutions for atoms and in the effective potential methods that are 

widely used for molecules. 

There are a number of anomalous effects in the properties of very 

heavy elements in relation to the regularities of the periodic table. 

The two sources of these anomalies are (i) relativistic effects and 

(ii) the appearance of f-electrons. In the first part of this review 

these anomalies will be discussed in relation to both of these effects 

on a qualitative or semiquantitative basis. 

The second section presents theoretical methods for quantitative 

relativistic quantum calculations for molecules, after which the final 

section presents a selection of the most interesting quantitative 

treatments of particular molecules. 

Previous reviews in English of relativistic quantum chemistry 

include one by Pyykko (1) which includes methods of calculation as 

well as results available prior to 1978, and a simultaneously 

published pair of reviews by Pyykko & Desclaux (2) and by-Pitzer (3) 

which emphasize properties of general chemical interest. A 1982 

symposium on Relativistic Effects in Quantum Chemistry (4) included 

several papers of broad interest. The volume (5) based on the 1981 

Advanced Study Institute on Relativistic Effects in Atoms, Molecules, 

and Solids also contains chapters of chemical interest as well as 
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pertinent underlying theory. The predictions of the chemistry of 

superheavy elements (above 103) were reviewed by Fricke (6). There 

are also reviews in French (7,8) and Finnish (9) . 

.. 
RELATIVISTIC EFFECTS AND THE PERIODIC TABLE 

probably the most familiar relativistic effect is the increase in 

particle mass as the velocity approaches the speed of light. It is 

the s electrons with no angular momentum that can approach an atomic 

nucleus most closely and therefore gain the highest velocity. For 

elements of large at~mic number this velocity approaches that of light 

at a considerable distance from the nucleus. In other words, the 

mass-velocity effect is substantial for a considerable portion of the 

s-electron motion. The resul tis tha t s orbi tals are more 

concentrated near the nucleus than would be expected 

nonrelativistically, have contracted mean radii, and have increased 

ionization potentials. Since outer s orbitals must be orthogonal 

to all inner orbitals, this contraction in size and increase of 

ionization energy applies also to valence-level s electrons. 

For p electrons the mass-velocity effect is similar to that for 

'. s electrons but is much smaller. Now, however, there is also the 

spin-orbit effect which divides the six p-shell spinorbitals into two 

P1/2 spinors and four P3/2 spinors. This spin-orbit effect, which is 

given by the Dirac equation, is purely a quantum-relativistic effect. 

The net result of the mass-velocity and the spin-orbit effects for 
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atoms is that the two effects nearly cancel for P3/2 electrons but 

they reinforce for P1/2 electrons and yield contractions and energy 

stabilizations about equal to those of 

principal quantum number. 

s electrons of the the same 

The direct mass-velocity effect is small for electrons with large 

angular momentum, but the contraction of inner s 

increases the shielding of the nuclear charge. 

and P1/2 shells 

Hence there is 

generally an expansion and energy destabilization of d and f 

orbitals. The spin-orbit effect remains substantial with the lower 

j value (j-l-1/2) yielding a smaller mean radius and larger 

ionization energy than the larger j value (j-l+1/2). 

Inorganic chemistry texts commonly list two general effects that 

appear 1n the sixth row of the periodic table: the lanthanide 

contraction and a great enhancement of the inert pair effect. In 

addition there are several additional anomalies when the properties of 

a sixth- or seventh-row element are compared to lighter elements of 

the same group. We now discuss these anomalus effects primarily in 

terms of the qualitative concepts stated above and the quantitative 

comparison of Dirac-Fock (OF) calculations of atomic properties with 

the corresponding nonrelativistic Hartree-Fock (HF) calculations. 

Desclaux (10) has presented a complete table of OF atomic properties 

and of the ratios of OF to HF properties. 

It is well-known that the radii of the lanthanide ions decrease 

from La to Lu and that this reduction in radius perSists for the 
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following elements. This "lanthanide contraction" is cited as the 

immediate cause of the near equality of radii (in comparable oxidation 

states) for Hf and Zr, Ta and Nb, etc., through Au and Ag and possibly 

further. The underlying cause is commonly stated as the incomplete 

shielding of the nuclear charge by the 4f electron shell. Thus there 

is a larger effective core charge for the sixth-row elements and this 

contracts the outer s, p, and d orbitals. 

The contraction for the lanthanides is primarily the 4f shell effect, as 

supposed. But a comparison (3) of DF and HF results yields a relativistic effect 
o 

which for Lu is 0.03 A in comparison with a total contraction from La of 0.11 A. 

Thus the relativistic effect is not negligible and adds to the 4f shell effect 

for Lu. 

In order to distinguish 4f shell and relativistic effects for the succeeding 

elements, HF calculations were made (11) for pseudo-atoms in which the nuclear 

charge was reduced by the number of 4f electrons and the 4f orbitals were deleted. 

Energies were considered as well as radii. It was found that the relativistic 

effect becomes more important for these succeeding e1ements(3,ll). Table 1 shows 

the calculated orbital energies and the experimental ionization potentials for Au 

and Ag. For the 6s electron in gold the total stabilization of 2.8 eV arises 

2/3 from relativistic effects and only 1/3 from the 4f shell effect. One notes 

also from Table 1 that the relativistic effects are small, but not negligible, 

for Ag and that both relativistic and 4f shell effects destabilize the Sd 

electrons in Au. For d-shel1 effects, which are primarily indirect 
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and may involve cancellations of opposing terms, the situation becomes 

complex and effects on radii do not necessarily parallel those on 

energies. ~hus the 4f shell effect on the 5d radius for gold is a 

contraction, but on the energy it is a destabilization. 

The appearance, primarily in groups IV through VII, of compounds 

of oxidation number two less than the group number is ascribed to an 

"inert pair" of s electrons. This effe~t is enhanced for the 6s, 

6p valence shell and is extended to thallium in group III. Thus the 

energy required to remove the 6s pair of electrons is much greater for 

t·.2., P b , Bit han for the 5 spa i r i n In, 5 n, and 5 b • The per tin e n t 

atomic orbital energies for Ge, 5n, and Pb are given in Table 2. On 

a nonrelativistic basis, even with the effect of the 4f shell, all of 

the energies decrease along this sequence and no grossly anomalous 

trend is indicated. But on a relativistic basis, the s electron is 

bound as strongly in Pb as in Ge and much more so than in 5n, while 

the normal trend is maintained for the weighted average for the p 

electrons. Thus the difference in binding for s as compared to p 

electrons shows a very anomalous trend from 5n to Pb. Although the 4f 

shell effect is in the same direction, as indicated by the value for 

pseudolead. the major part of the anomaly arises from relativity in 

this case. The data for the third and fifth groups show the same 

pattern. 

There are numerous anomalies in the series Cu, Ag, AU, most of 

which are related to the contraction and stabilization of the 6s 

orbital in gold. In addition to the ionization potentials (Table 1), 
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the electron affinities show the anomalous sequence Cu 1.226 eV, Ag 

1.202 eV, Au 2.309 eVe The high value for gold is most striking and 

relates to the unusual compounds CsAu and RbAu which are nonmetallic 

semiconductors with the salt-like CsC! structure. They are 

presumably based on an ionic M+Au- model, and the high electron 

affinity of gold is essential to their nonmetallic character. 

The dissociation energies of the diatomic molecules are also 

Calculations 

discussed below indicate that the relativistic effect for AU 2 is about 

1.0 eV (12). This arises from the contraction and stabilization of 

the bonding 6s orbitals. The color of gold, in contrast to silver, 

has been related (2) to the 5d-to-Fermi-level excitation energy which 

is relativistically reduced in gold as compared to silver. 

For mercury ,one first notes that the anomalous volatility of the 

element is just the inert pair effect discussed above. The remarkable 

Hg 2+2 ion is isoelectronic with AU 2 and presumably has a relativistic 

stabilization of about 1eO eVe without which it would never exist as a 

common aqueous ion. 

For thallium and the following elements these effects continue 

but the large spin-orbit splitting of the energies of the P1/2 and 

P3/2 electrons represents an additional relativistic effect. For 

chemical bonding it is important to know the angular properties of the 

P1/2 and P3/2 spinors which are given in detail in a later section. 

Here we note merely that a P1/2 spinor has both a and ~ components 
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with respect to bonding along a given axis. Thus, for bonding in T~2 

a gerade conbination of P'/2 spinors yields a molecular spinor which 

is 1/3 a g and 2/3 1fg or 1/3 sigma bonding and 2/3 pi antibonding. 

The corresponding ungerade molecular spinor is 1/3 sigma antibonding 

and 2/3 pi bonding. Hence, two thallium atoms in their ground 2Pl/2 

state will not form a strong bond. This effect is discussed further 
Q.~d. 

in the last section in relation to Pb2~ T1H, as well as to T~2. 

F th 1 i bit ff t in Rn + it has been rom every arge sp n-'or e ec 

speculated + -(13) that radon fluoride may be an ionic compound, Rn F 

rather than following the covalent bonding pattern of the xenon 

fluorides. 

Relativistic erfects are presumably very important for the still 

heavier elements of the actinide series, but there have been few 

non r e 1 at i vis ti c cal c u 1 a t ion s f r om w hi c h , by d iff e·r e n c e , t he 

relativistic effects can be obtained. Even approximate. Huckel-type 

calculations are ordinarily based on parameters chosen from 

experimental spectra or from Dirac-Fock atomic calculations and. 

hence, are on a relativistic basis. Lohr & Pyykko (1~) developed a 

relativistic extended Huckel method which has been applied to a 

number of molecules and ions (15,16). 

There are many differences between the properties of the first 

few actinides and those of the corresponding -lanthanides. The 

prevalence of oxidation states higher than three .nd as high as six 

for U, Np and Pu is a fundamental difference which suggests that the 
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5f electrons are less strongly bound than the 4f electrons in the 

corresponding lanthanides. This is a relativistic effect. The OF 

orbital energies for Pu and Sm are 7.5 and 11.3 eV, respectively. but 

for the 5f orbital energy in a nonrelativistic pu, the value is 15.8 

eV. which is much higher than that for Sm. Hence, there is good 

reason to expect that nonrelativistic U, Np, and pu would retain as 

many unshared f electrons as Nd, Pm, and Sm and as a result would be 

limited in oxidation number to three. 

Thus the existence of uranyl ion U0
2 

+2 as a stable aqueous 

species is a relativistic effect. The reasons for its linear 

structure and very short, strong bonds are also interesting, and there 

are several pertinent calculations (17-25). In 1952 Connick & Hugus 

(17) argued persuasively for the importance of f-orbital participation 

in the bonding in U0 2+2 and in the analogous NP02+2 and puO;2. They 

showed that no other elements with six electrons outside a core formed 

similar ions and that the only plausible explanation was the 

involvement of 5f electrons in bonding. The corresponding 

lanthanide, neodymium, with 

from uranium as is tungsten 

not participate in bonding. 

nonbonding 4f electrons, is very different 
t"'e 

where 4f shell is full and 5f orbitals do 
/" 

2+ The species Th0 2 , which is isoelectronic with U0 2 t has been 

produced and studied in inert-gas matrices (26). In contrast to the 

180 0 angle in uranyl ion, Th0 2 has a bent geometry (122 0 ). Wadt 

(24) made relativistic calculations on an equivalent basis for these 

two species and found agreement with the observed structures. "-There 
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2+ is a l.arge 5f participation in bonding for U0 2 ' but much less 5f 

participation in bonding in Th0 2 • The back bonding from oxygen in 

Th0 2 is primarily to 6d orbitals, and Wadt finds that this favors a 

bent geometry. 

Substantial f orbital participation in the bonding is clearly 

an important aspect of the uranyl ion. There are some other aspects 

in which Wadt's more fundamental calculations disagree with earlier 

work by extended by Huckel methods. All of these calculations are 

relativistic; the differences are in the approximations made, and at 

present, Wadt's results have the best basis. 

The electronic spectra of uranyl compounds have been studied, and 

various authors have discussed their interpretatation,· including very 

recently Dekock et al (25). There is agreement on most features but 

some differences remain. Molecular orbitals of symmetries a g , au' 

'lr g , 'lru are of similar energy and are occupied, but various 

investigations yield different sequences within this group. The 

majority population is oxygen 2p for all of these orbitals. 

Also very interesting are the cyclooctatetrene sandwich compounds 

with several actinides. Theory played a major role in the initial 

discovery of uranocene. U(C SHS )2' by Streitwieser & Muller-Westerhoff 

( 27) • The key aspect is the availability of 5f orbitals and their 

participation in bonding. Relativistic effects certainly expand the 

5f orbitals and make them more suitable for bonding. There are 

approximate calculations for several actinocene compounds (2S), which 

• 
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were parameterized on a relativistic basis, as well as discussion of 

the related spectra. 

The stable existence of the hexafluorides UF 6 , NPF 6 , pUF 6 with 

oxidation number six is a relativistic effect, as discussed earlier, 

but their octahedral structure is expected. Relativistic calculations 

of various properties have been reported (29-33). 

In the latter part of the actinide series, the f-orbital energies 

become about equal to those of the corresponding lanthanides, and the 

chemical properties correspondingly become similar. This equality is 

for relativistic energies for the f orbitals; nonrelativistic 

energies would be much higher for the actinides than for the 

corresponding lanthanides. 

As the atomic number increases past 100 the 7Pl/2 orbital becomes 

much more strongly bound, and Brewer (34) predicted that the ground 

configuration of Lr would be s2p rather than s 2d. Desclaux & Fricke 

(35) have confirmed this result by DF calculations with extensive 

configuration interaction • 

Estimates of the chemistry of post-actinide elements have been 

reviewed by Fricke (6). Pitzer (36) emphasized the increased tendency 

2 2 toward closed sand p 1/2 shells for 112 and 114 which suggests high 

stability for the atoms. pyper & Grant (37) have carried out 

m~lticonfiguration DF calculations for the 7p atoms, 113-118, and 

Pyper (38) has discussed the application of these results. 
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PROCEDURES FOR QUANTITATIVE RELATIVISTIC CALCULATIONS 

The driving force behind the procedures here described has been 

the desire to extend conventional techniques into the heavy atom realm 

without sacrificing reliability. We must be able to deal not only 

with large numbers of electrons and the subtleties of electron 

correlation, but also, because of the large magnitudes of relativistic 

corrections in heavy elements, with the Dirac formalism. The 

effective core potential (EP) approximation provides a route by which 

all three of these difficulties are addressed. 

Although accurate all-electron calculations have been carried 

out within the Dirac-Fock formalism for the heavy atoms (10). to date 

only one study has been published in which it has been applied in an 

all-electron ab initio calculation using a multi-center basis to a 

molecule containing one very heavy atom (39;40). The difficulty of 

carrying out even the SCF step for AuH demonstrates that such 

all-electron calculations including CI and two or more heavy atoms 

will be impractical for some time to come. It also appears that 

electron correlation, if indeed the concept itself is preserved. 

generally cannot be neglected. 

In contrast to the ·case of molecules made up'solely of light 

atoms, the inclusion of extensive configuration mixing becomes 

important for reasons other than those usually attributed to electron 
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correlation. In molecules containing heavy atoms the angular 

momentum coupling can rarely be approximated accurately as pure j-j or 

pure L-S, but rather is intermediate between these limiting cases. 

Thus additional configurations may be required just for the purpose of 

insuring convergence to a proper electronic state. Clearly, for 

pragmatic reasons, it is often the case that extensive approximations 

must be made to make heavy element molecular calculations tractable. 

Considering the margin for error in even the best light element work; 

such approximations must be chosen with care to avoid a crucial loss 

of accuracy. 

It is desirable to understand effective potentials on a 

nonrelativistic basis before considering their derivation in the 

relativistic domain. Space does not allow a presentation here of the 

nonrelativistic equations and procedures, but there is an excellent 

review by Krauss & Stevens (41) in last year's Annual Review of 

Physical Chemistry. Unless the reader is familiar with effective 

potentials, this review should be consulted before proceding to the 

relativistic derivations which follow. 

Relativistic Effective Potentials - Formal ASP~~ 

The method detailed here for the inclusion of relativistic 

effects in molecular electronic structure calculations is grounded in 

the Dirac-Fock approximation for atomic wavefunctions (42). The 

premise is that the major effects of the Dirac hamiltonian are 

manifested in the core electrons and that these effects propagate to 
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the valence electrons. In addition, there are direct effects on the 

valence electrons arising from their penetration into the core region. 

Insofar as this is true, the valence electrons can be treated using a 

nonrelativitic hamiltonian to which is added an operator, the 

relativistic effective core potential (REP). The REP formally, and 

internally consistently, incorporates relativistic effects on valence 

electrons that penetrate the core region and those due to interactions 

of valence electrons with core electrons. The justification for this 

premise and the derivation of the precise form of the REP's are given 

in this section. 

We apply the formalism developed nonrelativistically by Kahn et 

al (43) in a parallel fashion beginning with the Dirac Hamiltonian 

Hrel • \ h () \ -1 L D i + L r ij 
i i >j 

( 1 ) 

where hO is the one-electron Oirac hamiltonian and i and j index 

the electrons. Many electron relativistic effects, which may be 

approximated by the Breit interaction terms (42) are omitted. (In all 

methods developed to date, such effects are included in the form of a 

first-order correction to the wavefunction due to Hrel as defined 

above.) The eigenfunctions of hO are four-component Dirac spinors 
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( 2 ) 

where the relativistic quantum number 

the total angular momentum quantum number, and 2. is the orbi tal 

angular momentum quantum number. The angular factors are defined by 

In Eq. (3) y A
m- a are spherical harmonics, +1/ a are Pauli spinors, and 

z 

C(A1/ z J;m-a,a) are Clebsch-Gordan coefficients. The index A is 

defined as A-ll+1/ z l-1/ z ,where l is either +k or -k. 

In an analogous fashion to the atomic Hartree-Fock equations, the 

angular vari~bles can be eliminated using the Wigner-Eckart theorem 

in the Dirac equation to yield a set of coupled differential equations 

depending on r (42). 

To construct the Dirac-Fock equations it is assumed that the 

wavefunctions for an atom having N electrons may be expressed as an 

antisymmetrized product of four-component Dirac spinors of the form 

shown in Eq. (2). For cases where a single antisymmetrized product is 

an eigenfunction of the total angular momentum operator J2, the 

N-electron atomic wavefunction may be written 

R [( c c C)( v v V)] , - A , ~ ••• ~ ~, ••• , • 
1. Z m 1 z n 

( 4 ) 
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The first product in brackets refers to m core electrons and the 

second to n valence electrons. A is the antisymmetrlzation and 

normalization operator. The total energy is then given by 

which is separable into contributions due to core, valence and 

core-valence interaction energies. Following procedures used for the 

nonrelatlvistic case (43), one may combine the last two terms using a 

modified hamiltonian and thewavefunction corresponding to the valence 

electrons 

E + E _ < RIH rell~ R) 
v cv ~v v v 

where 

v c 

-1 
+ 1 r vv , 
v)v' 

in which Jc(v) and Kc(V) are coulomb and exchange operators. 

( 6 ) 

H rel 
v 

includes the original Dirac one-electron hamiltonian for the valence 

electrons plus additional terms that represent the electrostatic 

effect of the core on the valence orbitals. 

The shape-consistent algorithm of Christiansen et al (44) is 

employ~d to define nodeless pseudospinors. The wave equation for one 

valence electron may be written 



R 
Xv 

, 7 

( 8 ) 

where the Ucore is the REP in the form of a 4 x 4 matrix that operates 

on the four-component pseudospinors Xv R• 

The REP Ucore may be expanded in the angular factors of Eq. (2) 

and used to construct the Dirac-Fock equations in terms of the radial 

pseudowavefunction (45) 

d 
err ( 9 ) 

The REP's uvP(r) and uvQ(r) may in principle be extrac"ted using 

any pseudowavefunction having components Pv
Ps and Qv ps • Such REP's 

would exhibit discontinuities at pOints corresponding to nodes in 

P ps 
v • This particular problem is removed if nodeless pseudospinors 

are used. However, nodes cannot be rigorously removed simultaneously 

from the large and small components. [A procedure for circumventing 

this difficulty in the context of the Phillips-Kleinman formalism has 

been proposed by Ishikawa and Malli (46j.] The procedure presented 
o 

here is based on strong evidence that the effect of small components 

in the valence regions of atoms can be assumed to be negligible (45). 

The appropriate one-electron radial equation is then 

( , 0 ) 

where hv is the nonrelativistic Schrodinger hamiltonian for the 
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valence electron. 

Atoms having more than one valence electr~n are treated in a 

parallel fashion using two-component pseudospinors and the many 

electron analog of Eq. (8) to yield 

( 1 1 ) 

In Eq. (11) Wk represents the two-electron integrals involving 

pseudospinors Xk and all remaining pseudospin6rs. 

It is clear from Eq. (11) that a different REP arises for each 

pseudospinor. The complete REP is conveniently expressed in terms of 

products of radial functions and angular momentum projection 

operators. as has been done for the nonrelativistic Hartree-Fock case 

(43)5 Atomic orbitals having different total angular momentum j but 

the same orbi tal angular momentum are nondegenera t e in j - j 

coupling. Therefore the REP is expressed as 

• U REP _ 
L 

1-0 

The projection operator 

u REP(r) 11jm><f.jml 1j 
( 1 2 ) 

11jm><1jml is comprised of the two-component 

angular functions of Eq. (2) that ar.e eigenfunctions of the Dirac 

hamiltonian. 

In theory an infinite number of calculations for highly excited 
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states is required to complete the expansion of the EP given by Eq. 

(11). since there are only a few occupied valence orbitals in neutral 

atoms. This difficulty also exists in the nonrelativistic case and is 

resolved by using the closure property of the projection operator with 

the assumption that radial parts of EP's are the same for all orbitals 

having higher angular quantum numbers than are present in the core. 

The same approximation is applicable in our approach if relativistic 

effects are not too different for electrons in the highly excited 

orbitals. We expect that this is true since those electrons spend 

less time near the nucleus. Then the REP may be given by 

UREP _ U REP(r) + 
LJ 

L-1 1+11 j r r Z r [U REP(r)-U REP(r)] 11jm><tjml (13) 
taO It- 1 / z l m--j lj LJ 

where 

A weighted average REP (AREP) is defined as follows (45) 

L-l 
UAREP _ U AREP + r 

L 1-0 

1 r [U AREP(r)_U AREP(r)]llm><lml 
m--I. 1 L . 

AREP -1[ REP REP ] 
U1 - (21+1) lUl.l-1/z +(f.+l)Ut.l+1/z (r) • 

( 1 4 ) 

The AREP has the advantage that it may be used in standard molecular 

calculations that are based on A-S coupling (47). The AREP may be 

interpreted as containing the relativistic effects included in the 

Dirac hamiltonian with the exception of spin-orbit coupling. This 
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form is the same as that presented by Kahn et al (48) which is based 

on the relativistic treatment of Cowan and Griffin (49), The 

hamiltonian employed by Cowan and Griffin is essentially the Pauli 

approximation to the Dirac hamiltonian with the ad hoc omission of the 

spin-orbit term. 

Definitions of the AREP and REP, Eqs. (14) and (13), can be 

combined to reveal a useful form for the spin-orbit operator (50,51), 

where 

1- 1
/ 2 

- (1+1)/(21+1») I 1r.,1- 1
/ 2 ,m><l,1- 1

/ 2 ,ml] 
m--l+ 1

/ 2 

, (1 6 ) 

( 1 7 ) 

This form of H SO has been used with considerable success in 

applications to molecules containing only light atoms (52) as well as 

to heavy atom molecules (53). 

An alternative equivalent form of H SO has been proposed (54) that 

is more appropriate for use with a standard polyatomic integrals 

program that computes angular and radial integrals (55). It is 

derived by transforming the projection operators 11jm><1jml to a 

form involving only projection operators 11m><1ml and spin operators 
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S and orbital angular momentum operators 1. The spin-orbit operator _. 
then becomes (54) 

L 
HSO _ S • L (2/(220+1») AU REP(r) 

20-1 20 

20 
L 11m >< 20m 111 tm >< 1m I 

m--2o ......... 
( 1 8 ) 

in HSO of Eqs. 

(11), (15) and (11) or Eq. (18), respectively, are derived in the form 

of numerical functions consistent with the large components of Dirac 

spinors as calculated using the Dirac-Fock prog~am of Desclaux (56). 

These operators have been used in their numerical form in applications 

to diatomic systems where basis sets of Slater-type functions are 

employed (12,53,51,58). It is often more convenient to represent the 

EP's as expansions in exponential or Gaussian functions (43,45,47). 

The general form of an expansion involving M terms is 

U AREP(r) 
20 . 

-2 
- r ( 1 9 ) 

where x-l for exponential and x-2 for Gaussian functions and the n1i 

are integers. Similar expansions may be used to represent UljREP(r) 

The numerical forms of these operators are fitted 

using a nonlinear least squares technique thereby yielding optimum 

values of the C1i and ati. 

In appliqations to atoms and molecules the REP's in the form of 

Eq. (12) or the AREP's in the form of Eq. (14) are used in the valence 

hamiltonian 



H - L (-Z /r + U EP) 
a a~ a 

] + 
nv 
L r 

llV a 

where nv is the number of valence electrons, 

~>v 

and U EP 
a 
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. , (20) - 1 

refers to a 

relativistic, an averaged relativistic, or a nonrelativistic effective 

potential that represents the core electrons of atom a. If the U EP 
a 

are nonrelativistic or averaged relativistic EP's7the wavefunction for 

the nv-electron system may be represented by linear combinations of 

spinorbitals,and standard electronic codes may be employed for their 

calculation. The only alteration in the procedure for using such 

codes is the necessity to incorporate an additional set of 

one-electron integrals involving the basis functions and the EP 

(43,45). 

An interesting application of the AREP technique involves the 

computation of atomic dipole polarizabilities for Rb and Cs, for which 

spin-orbit effects should be negligible. Although the alkali metals 

could be treated as one-valence-electron atoms using EP's, previous 

work has shown that important correlation effects arise due to the 

next inner electron shell. Thus Rb and Cs were treated as nine 

electron atoms (59), The REP's,however, were generated from atomic 

positive ion wave functions to avoid complications due to the presence 

of two valence shells of the same angular symmetry [see Refs. (43) and 

(45)]. A basis set of STF's, including diffuse functions, was 

generated, and coupled-Hartree-Fock calculations were carried out to 

determine the polarizabilities. However, as in the case of the light 
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alkal'i metals, a CI procedure consisting of single and double 

promotions was required. Polarizabilities can be particularly 

difficult to compute and the excellent agreement between the computed 

and experimental values demonstrates quite clearly the reliability of 

the shape-consistent EP technique for this property. 

If the REP's of Eq. (12) are used, the presence of the projection 

operators Ii.jm><i.jml dictates that the valence wavefunctions must be 

comprised of two-component atomic spinors (TCAS) involving the Pnk of 

Eq. (2) (58), Whereas the incorporation of a nonrelativistic EP 

requires only the computation of a new set of one-electron integrals, 

the use of UREP and TCAS requires the computation of all one- and 

two-electron integrals. Malli and Oreg (60) have derived the 

relationship between diatomic molecular integrals in a basis set of 

four-component Dirac spinors [Eq. (2)] and spinorbitals that are 

products of complex Slater-type functions (STF) and a and B spin 

functions. These relationships involve integrals with respect to the 

STF's and factors that include the proper Clebsch-Gordan coefficients 

that render the resulting wavefunction an eigenfunction of the total 

angular momentum operator. This w-w coupling procedure has been 

specialized to the case of basis sets of TCAS for closed and open 

shell SCF (58) and MCSCF (61) calculations on linear molecules. 

The symmetry properties of diatomic molecules in the double group 

rep res e n tat ion maybe found in the work by Mall i & are g (60). 

However, the molecular spinors which are eigenfunctioris of the REP of 

Eq. (12) have only two components while the Dirac spinors have four 
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components. In linear molecules, the angular symmetry of a state of 

a molecule is defined by the total electronic angular momentum 0, as 

in Hund's case c ( 62) t and that of i'th molecular orbitals by m.u±w .• 
1 1 

The two orbitals with mi -+ wi and mi--w i are degenerate and constitute 

a shell. Because spin is incorporated in the orbital, each molecular 

orbital can accommodate only one electron. With these 

characteristics, one can derive the SCF theory for the two-component 

molecular spinors (TCMS) for diatomic molecules by fOllowing the 

procedures that have been formulated for conventional nonrelativistic 

molecular calculations (63). 

When the variational procedure is applied to the energy 

e~pression, one obtains equations that are essentially the same as the 

nonrelativistic equations [Eqs. (12)-(16) of Ref. (63)]. The 

open-shell configurations which can be treated with the formalism of 

Ref. (58) are limited to the cases where each open shell belongs to a 

different symmetry. This formalism may be easily extended to simple 

multi- configuration SCF calculations using standard nonrelativistic 

computer codes such as the Bison MCSCF programs (64). 

Unfortunately, due to the fact that the angular momentum coupling 

is just as unlikely to be pure j-j as L-S, single configuration or 

even small MCSCF calculations are not appropriate in many cases for 

molecules containing atoms from the lower portion of the periodic 

table. For the heavier elements the coupling is often intermediate 

between the two extremes. To deal effectively with these intermediate 

coupling cases at the SCF level would require MCSCF calculations that 
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calculations have not been done. 

To date such 
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Although the intermediate coupling problem has not received much 

attention at the SCF level. several methods have been developed in 

which the spin-orbit coupling is introduced into a normal L-S coupling 

calculation in a final configuration interaction step. One procedure 

employed (53.65-68) has been to carry out normal L-S coupling SCF 

calculations using the AREP's of Eq. (14) to form the molecular 

orbital basis set used as a starting pOint for CI calculations. The 

usual AO' to MO integral transformation is carried out and the CI 

matrix formed. However, instead of the relatively simple L-S 

coupling configuration list, the configuration expansion is augmented 

to cover the entire intermediate coupling range. In the simplest 

cases this is achieved by selecting a set of reference configurations 

which spans the coupling range for the important valence electrons 

(53) (typically ten to twenty terms have been used). Additional 

configurations are generated by promoting electrons from the reference 

configurations using the usual L-S coupling electron correlation 

conventions. In more complicated cases it may be necessary to carry 

out numerous trial calculations or a limited full-valence CI 

cal~ulation (67) (in the intermediate coupling regime) to determine 

the important reference configurations. 

Since the final configuration lists may be an order of magnitude 

or more longer than those required for equivalent light element work. 

configuration selection techniques have been extensively employed 
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(67). The CI matrix is generated in the usual manner except that now 

the full REP (AREP plus spin-orbit operator) is included in the 

molecular hamiltonian. A complication of this approach is that some 

matrix elements that arise due to the spin-orbit operator are complex 

when computed in terms of the usual cartesian basis sets generally 

employed in L-S coupling calculations. 

hermi t ian but complex, and the standard 

That is, the CI 

diagonalization 

matrix is 

programs 

cannot be used. However, in the REP formalism, there are few 

imaginary or complex elements to deal with. Furthermore iterative. 

diagonalization procedures, such as that developed by Davidson (69), 

are very easily modified to take such problems into account with 

relatively little loss in speed. 

It is, of course, also possible to carry out CI calculations in 

two atages with the electron correlation terms in the first stage for 

each L-S configuration and then the spin-orbit effects in a second 

stage. This has been done with semi-empirical spin-orbit operators in 

several investigations (32,70). From the current viewpoint, however, 

there seems to be no advantage to the two-stage method. 

Alternate procedures have been proposed for REP's. Space does 

not allow a detailed discussion of these approaches. Fortunately many 

of these were discussed by Krauss & Stevens (41) in their chapter in 

last year's Annual Review of Physical Chemistry. The variant in which 

the AREP's are calculated directly (48) from a spin-supp~essed atomic 

calculation (49) has been discussed above. Also to be noted is the 

use of REP's in density functional calculations. This was developed 
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by Hamann et al (71) and has been described more fully (72) along with 

a compilation of EP's for the entire periodic table. 

EXAMPLES OF RELATIVISTIC CALCULATIONS FOR MOLECULES -. -_ .. --

Some of the earliest molecular calculations that included a 

rigorous treatment of relativistic effects were done by Desclaux & 

Pyykko using the one-center numerical Dirac-Fock approach (73-79). 

One-center expansions are not particularly reliable in absolute terms 

and break down entirely for large internuclear separations. The 

authors, however, computed both relativistic and nonrelativistic (by 

adjusting the speed of light) molecular properties and the differences 

are useful indicators of the magnitudes of the relativistic effects. 

They studied the hydrides of several groups of the periodic table. 

These calculations provide an estimate of the relativistic bond length 

contraction as a function of the column in the periodic table. For 

boron and carbon they found no significant contraction, but for the 

column containing A1 through T1 they computed contractions of 

approximately, .002, .02, .07, and .2 bohr, respectively. These 

values correspond rather closely to the relativistic contractions of 

valence atomic orbitals published by Desclaux (10) and suggest that 

the two are intimately related. Unfortunately, one-center 

calculations are incapable of estimating dissociation energies and are 

inadequate for bond lengths for molecules containing more than a 

single heavy atom. 

Hay et al (80) computed by EP methods the relativistic 
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contractions for AuH to be 0.26 A. This -is about three times that 

from the one-center calculations of Desclaux & Pyykko (74). Hay et al 

found a relativistic increase of about 0.5 eV in the dissociation 

energy of AuH. 

Recently Lee & McLean ( 3 9 , 40 ) h a v ep ubI ish e d all-electron 

LCAO-SCF relativistic calculations on AgH and AuH. They reported 

relativistic bond length contractions of 0.08 and 0.25 A, 

respectively, and increases in dissociation energies of O.OS and 0.42 

eVe The relativistic contraction of 0.26 A from REP calculations (SO) 

agrees well with this more rigorous value of 0.25 A for AuH. 

Unfortunately~ all-electron calculations involving heavy atoms. even 

for hydrides, are extremely difficult and to date these are the only 

calculations of their type. 

Some of the earliest relativistic molecular calculations 

involving more than one heavy atom were done by Lee et al (12) on the 

ground state of AU 2 • 10 6 AU 2 was chosen because the 5d s Au valence 

electron configuration gives rise to primarily s bonding, and 

relativistic spin-orbit corrections (which greatly complicate other 

cases) should be negligible for the ground state. More importantly. 

however, the AU 2 bond is anomalously strong, stronger even than that 

in CU 2 and much stronger than that of Ag 2 • The relativistic 

correction to the bond strength was computed to be approximately 1 eV, 

or twice that (or AuH. This gives a "nonrelativistlc" bond strength 

of 1. 3 e V (t h e ex per i men tal val u e is 2. 3 e V) as com par edt 0 2. 1 and 

1.5 eV in CU 2 and Ag 2 , respectively. The anomaly appears to be due 
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almost entirely to relativity. In this work the bond length 

contraction was computed to be 0.35 A, only slightly larger than the 

value Hay et al obtained for AuH. 

Usi n g the same techni ques and effect i ve pot ent i al s as above., 

Ermler et al (51) evaluated several excited state dissociation curves 

for AU 2 • However, for the excited states the 5d participation results 

in significant spin-orbit corrections, which were included using a 

semiempirical procedure. 

* The above AU 2 and AU 2 calculations employed effective potentials 

based on the Phillips-Kleinman atomic orbital transformation. It is 

now well known that such potentials are not particularly reliable for 

computing molecular properties and typically underestimate bond 

lengths and overestimate dissociation energies. Furthermore, the 

relativistic and nonrelativistic potentials employed in this work are 

not pr ec is el y comparabl e • Very recently Ross & Ermler (81) have 

repeated ground state calculations on AU 2 using the more reliable 

shape-consistent potentials. Employing configuration interaction 

expansions equivalent to Lee et al (12) they obtained a bond length 

0.1~ A longer. When compared to nonrelativistic all-electron 

calculations (12) this gave a relativistic bond length contraction of 

about 0.2 A. They also looked at Ag 2 and in the same manner computed 

a bond length contraction of 0.05 A. Thus Ross and Ermler obtained 

homonuclear relativistic contractions of about the same magnitude that 

Lee and McLean found for the hydrides. Based on the results of these 

two sets of calculations, it would appear that the model of the 
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relativistic atomic orbital contraction as a shift in the bonding 

radii is too simple. On the other hand. since we are considering 

shifts of only a few tenths of Angstroms. we may be expecting too much 

of the bond radius model. 

Ziegler et al (82.83) and snijders & Pyykko (84) have suggested 

that the bond length contraction is independent of the orbital 

contraction but rather it is a "direct" result of the Dirac 

hamiltonian. They arrived at this conclusion after observing that 

the cont.raction could quite reliably be computed from the 

nonrelativistic molecular wavefunction by replacing the Schrodinger 

hamiltonian with a relativistic one. The energy then is the 

"first-order" relativistic energy. Comparisons were made using both 

the one-center approach of Desclaux and Pyykko and using the 

Hartree-Fock-Slater (HFS) method. These results were recently 

verified using the molecular generalization of the Cowan-Griffin 

atomic procedure (85). In detailed calculations Ziegler et al (83) 

indicated that the contraction occured as a result of the relativistic 

stabilization of the electron density build-up near the nuclei. which 

in turn resulted from the overlap of the valence orbitals on one 

center with the core on another. The interpretation of these studies 

has not been universally accepted. First. most comparisons were done 

using the rather approximate HFS procedure. But more importantly, it 

is not clear that the molecular buildup of electron density near the 

nuclei differs altogether from the relativistiC AO contraction. 

Indeed Schwarz and co-workers (86) have argued that the bond length 

contraction can be obtained in either of two equivalent ways: (i) by 
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the first-order energy method employed by Zeigler et al 

(nonrelativistic wavefunction and relativistic hamiltonian), or (1i) 

by replacing the nonrelativistic wavefunction by its relativistic 

counterpart, which includes the orbital contraction (relativistic 

wavefunction and nonrelativistic hamiltonian). This interpretation 

is based on the double perturbation theory "equivalence theorem", 

using the relativistic correction to the hamiltonian and a shift in 

the internuclear separation as perturbations. 

This anaysis has recently been tested for AU 2 and xe2+ within the 

eff~ctive potential approximation (87). Four sets of calculations 

were carried out: nonrelativistic, first-order relativistic, fully 

relativistic, and first-order nonrelativistic (relativistic 

wavefunction with nonrelativistic hamiltonian). computed He 

values were, respectively, for AU 2 3.01,2.67,2.58, and 3.14 A and 

The 

+ for Xe 2 3.24, 3.18, 3.19, and 3.24 A. For these cases then, the 

analysis of Schwarz et al is clearly inappropriate, and it may indeed 

be the case that the nonrelativistic electronic "contraction" 

stabilized in first-order calculations is independent of the usual 

relativistic AO contraction. Nevertheless.since the "contraction" is 
~ 

only stable in the presence of the relativistic hamiltonian, it is 

still a relativistic orbital contraction, but now at a molecular 

level. 

Clearly, for atoms as heavy as Au the first-order approach to 

relativistic corrections is inadequate and analyses of the type 

employed in Refs. (82-85) may not be accurate. The more detailed 
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aspects of relativistic bond length contraction are still somewhat of 

an open question. First, the precise mechanism by which it occurs 

has not been determined unequivocally. In addition, the computed 

magni tudes often vary by as much a factor of two or more from 

calculation to calculation. 

A very interesting problem has to do with the effect of 

spin-orbit coupling on the formation of chemical bonds. This 

possibility was first brought up by Pitzer in 1975 (3); however, it is 

'a m u c h m 0 red iff i cuI t pro b 1 em t 0 de a 1 wit h com put a t ion all y ( as 

compared to the bond contraction) and only recently have accurate 

calculations for heavy element systems appeared in the literature. 

Spin-orbit coupling might also have a non-negligible impact on 

atomic and molecular polarizabilities, where, in the simplest case, a 

weak field is applied which disrupts the atomic spherical symmetry. 

Stevens and Krauss (88) have carried out comparative calculations on 

several heavy element species that exhibit such effects. 

For molecular calculations involving only the lighter elements, 

or even heavier elements, provided bonding is dominated by s 

character, spin-orbit effects can probably be added as a final 

correction to standard, Hund's case a coupling, calculations. The 

principal difficulty of this approach is in determining the spin-orbit 

matrix elements. In all-electron calculations they can be determined 

using the usual Breit-Pauli operator [see Langhoff & Kern (89) for a 

review of such procedures]. But tor effective potential calculations 
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the all-electron operator is no longer appropriate and various 

semi-empirical and effective operator schemes have been devised 

(90-92). We note at this point that, although spin-orbit coupling is 

a relativistic effect, for purposes of limiting the size of this 

review, it is considered here primarily in the context of the full 

Dirac Hamiltonian. As such we do not discuss applications to light 

atom systems where the spin-orbit effect is treated as a perturbation. 

The article by Langhoff & Kern should be consulted for a discussion of 

such applications. 

If one assumes a very strong spin-orbit effect, then it is 

appropriate to set up the problem in terms of molecular spinors, 

Hund's case c, analogous to atomic j-j coupling.· The spin-orbit 

energy is then included at the first stage of the calculation. Lee et 

al (45) were the first to use this approach in calculations on atomic 

+ Xe and Au, and later in molecular calculations on AU 2 ' T1H, PbSe, and 

PbS (58). Schwarz and coworkers (51,93) have developed a similar 

molecular j-j coupling technique but using more approximate effective 

potential operators. Christiansen & Pitzer extended the technique to 

do simple j-j coupling MCSCF calculations on T1H (61), T1 2 , Tt
Z
+ (94), 

and Pb 2 (95). 

The mechanism by which spin-orbit coupling can impact molecular 

bonding becomes clearer when the wavefunction is reformulated in terms 

of molecular spinors. 
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The P1/2 spinors are combinations of sigma-type and pi-type spin 

orbitals (ignoring the small components) with coefficients of 1/3 and 

213. respectively. Therefore a molecular spinor formed as a sum or 

difference of atomic P1/2 spinors on two centers will be 1/3 sigma 

bonding and 2/3 pi anti bonding or just the reverse. In either case 

one would expect only a weak bond to form. On the other hand. the 

P312 (m-±l/ z ) atomic spinors are 2/3 sigma and 1/3 pi. Because of 

the difference in the component signs. linea~ combinations of P1/2 and 

P312 spinors can be made to obtain pure sigma or pure pi 

spin-orbitals. and this, of course. occurs for the lighter elements. 

However, for the heavier elements such as Tt, Pb and Bi the energy 

gap between the 1/2 and 312 spinors is approximately one electron volt 

and the appropriate mixing is not nearly as readily achieved. For 

this reason one would expect onlr very weak bonds to form between two 

Tt atoms or between Pb atoms which in their ground atomic states have 

only P1/2 electrons. For Pb the problem is somewhat more complicated 

in that the two P1/2 electrons form a closed subshell. From this 

pOint of view, Pb 1s somewhat comparable to Be. Bismuth, on the other 

hand, in addition to the closed P1/2 subshell has a Single P3/2 

electron. If the m-±'/ z spinors are used a single pi bond is readily 

formed Thi sis 

Similar combinations can 

in contrast to the triple bond of N2 • 

of course be made for heteronuclear 

molecules. For instance TiBi would be expected to form a single 

stable bond that is roughly half Sigma and half pi. Furthermore one 

would expect to see some effect, though probably not as dramatic, for 

bonds between a heavier element and a lighter one, such as in TiH. 
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The above discussion presumes that P'/2 to P3/2 promotion is 

unlikely due to the large energy difference, and for this reason L-S 

coupling is no longer appropriate. Unfortunately, in most cases pure 

j-j coupling is also inappropriate. perhaps the best example of this 

is Pb 2 for which simple j-j coupling SCF or even MCSCF calculations 

suggest little or no bonding, whereas the Pb 2 bond energy is known to 

be about 0.9 eVe For these heavy elements the coupling is typically 

intermediate between the two extremes,and in practice the formulation 

of the wavefunction must be sufficiently flexible to cover the full 

range for the various electronic states. If the wavefunction is 

written as a linear expansion (as in configuration interaction 

cal c u 1 a t ion s), the e x pan s ion t e r m s must be c h 0 sen wit h bot h e I e c t ron 

correlation and intermediate angular momentum coupling in mind. 

TtH is one of the Simplest molecules for which one would expect 

to observe substantial angular momentum coupling effects. Dissociation 

curves for six low-lying states of TtH were determined by Christiansen 

et al (53) using L-S coupling SCF calculations followed by a 

spin-orbit CI as discussed in an earlier section. The lowest two 0 + 
g 

curves were found to agree with the experimentally determined curves 

from Ginter & Battino (96). indicating the reliability of this 

particular computational technique. The inner walls of the computed 

curves are slightly too repulsive, probably due at least in part to 

the neglect of d-shell promotions in the CI calculation. 

From the. discussion of atomic spinors, one would expect the 

ground state bond to be considerably weaker than it would have been 
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had the spin-orbit coupling been weaker. Indeed, Pitzer & 

Christiansen (97) have shown in MCSCF calculations that the spin-orbit 

coupling reduces the bond strength by about 25 percent. 

T12 is a more extreme example of the effects of spin-orbit 

coupling on chemical bonding. Early j-j coupling MCSCF calculations 

(94) indicated that T12 was only weakly bonded in its lowest energy 

configuration. From figure 1. it is apparent that the spin-orbit 

coupling lowers the atomic asymptote well below the L-S coupling bond. 

The 3nu state gives rise to the 0u 
+ 

and 1u states whereas the Og 

In addition. these calculations indicated 

that. although the neutral molecule is only weakly bonded. the (1/2)g 

state of the molecular ion has a bond strength of about 0.5 eV, which 

is consistent with mass spectral data. 

More recently. intermediate coupling calculations have been used 

to determine the spectroscopic properties and dissociation curves for 

several low-lying states of T12 (65). All three lowest energy states 

are bound. but only weakly. The 

avoided crossing of the 3rg - and 

+ lowest Og curve shows clearly 

'r + curves shown in figure 1. 
g 

an 

In 

contrast to T1H. the angular momentum coupling for the lowest energy 

states of T12 is predominantly j-j. The weak bond in the 0u ground 

state is in apparent conflict with the value given by Balducci & 

Piacente (98) (0.6±0.15 eV) based on mass spectral data. However, a 

reinterpretation of the experimental data using the molecular 

parameters from the four lowest energy states gives a bond of about 

0.37 eV (±0.15) which is in marginal agreement with the computed 
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values. assuming a similar error limit for the computation. 

Balasubramanian & Pitzer (68) have carried out calculations for 

several states of Sn 2 and Pb 2 using essentially the same intermediate 

coupling procedure as above. These calculations provide an 

interesting comparison. with the spin-orbit splitting increasing from 

Sn to Pb by about a factor of four. 

For Sn 2 the spin-orbit splitting is much smaller than the'bond-

energy. 

lowest. 

The lowest energy 3tg - state is split 

The three j-j states that arise from 

higher in energy. 

+ with the Og component 

3rru are only slightly 

important only at short interatomic distances where it yields an 

avoided crossing in the 0 + states. 
g 

In Pb
2 

the lt g + and 3tg - states are much closer in energy. As 

compared to Sn 2 • in the presence of the spin-orbit coupling. the lEg+ 

produces a marked shoulder on' the repulsive portion of the ground Og+ 

curve. The 0 + t 1 gOg energy gap is considerable. and the u states are 

one eV or more above the ground state. These calculations for Pb2 

have been comfirmed by subsequent experimental results of sontag et al 

(99) . 

Sn 2 is reasonably well represented in L-S coupling with the 

spin-orbit effects as a mild perturbation. whereas for Pb 2 • spin-orbit 

coupling reduces the ground state bond strength by a factor of two. 

However. as stated earlier, simple j-j couping alone is also 
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inadequate. The coupling in Pb 2 is quite intermediate, at least for 

the low energy states. 

The review by Pitzer (100) gives somewhat more detail concerning 

the molecules AU 2 , T1 2 , T1H, Pb 2 , and sn 2 • In addition to the 

homonuclear diatomics, Balasubramanian & Pitzer (101-104) have carried 

out comparable calculations for the oxides of Pb and Sn and also for 

the hydrides, all in intermediate coupling. Wang & Pi tzer have 

studied PtH and PtH+ bonding, particularly as it relates to 

chemisorption phenomena (105). Balasubramanian has reported similar 

c a I cuI a t i ·0 nsf 0 r T 2. F (1 0 6) and for s eve r alp 0 sit i v e ion sin c Iud i n g 

SnO+ and PbO+ (107). 

Chr i st i ansen (67) has recentl y - compl eted cal cuI a t ions for the 

ground state of Bi2 which is dominated by the 1t g + triple bonding 

configuration (as in N2 ). However, the spin-orbit coupling mixes in 

considerable 3n character (about 25 percent). 

For the Tl, Pb, Bi series of homonuclear diatomics, one can see 

that as electrons are added to the 6p shell, the impact of spin-orbit 

coupling decreases. This is what one would expect in terms of the 

additional electrostatic interactions and, of course, for the 

compl-etely filled shell, the P1/2' P3/2 problem should not arise. 

Another trend that has been observed in intermediate coupling 

calculations is that for a given molecular state, L-S coupling is 

generally more important for the equilibrium atomic separation and 

becomes less important as the interatomic distance is increased. 
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These ideas were discussed recently by Pyykko (108). Pyykko et al 

(109) have also evaluated the effects of d orbitals on bond lengths in 

small molecules containing heavy atoms. 

Laskowski and coworkers have employed AREP's in cr calculations 

on Crr (110) and CsO (111). Krauss & stevens have utilized an AREP in 

studies of UO (112) and UH and UF (113) and their ions. Hafner et al 

(114) have used REP's based on a model potential approach in a study 

+ of relativistic effects in AU 2 ' T1 2 , and Pb 2 • Pelissier (115) has 

performed SCF and CI calculations on CU 2 using an AREP derived from an 

approximate. second-order representation of the Dirac hamiltonian 

(116). Teichteil and coworkers used a similar formalism (117) in a 

study of InH and certain excited states of Ar 2 (118). Celestino & 

Ermler (119) carried out CI calculations on the electronic states 

arising from the 6s and 6p shells in Hg 2 and T1Hg using AREP's and 

included the effects of spin-orbit coupling in a semi-empirical (90) 

fashion. 

For nonlinear polyatomic molecules different calculational codes 

must be used (as compared to diatomic molecules) and few results have 

been reported which are based on the more rigorous procedures. Noell 

et al (120) have reported SCF calculations on complexes of platinum 

including Pt(PH 3 )n using REP's based on the Cowan-Griffin hamiltonian 

(48,49). Hay (121) has investigated the interaction between Pt and 

ethylene using this type of REP for Pt. Basch & Cohen (122) have 

published an SCF study of the linear complex PtCO using an AREP on Pt 

that was based on a formalism whereby the spin-orbit operator was 



40 

"averaged" out of the numerical OF procedure. 

-2 Most notable are the studies of UF 6 and Re 2C1 8 by Hay (33,123). 

The paper on UF 6 also discusses the calculational methods. 

is of special interest because of the apparent quadruple bond with a 

component. The studies of U0 2 +
2 and Th0 2 (24) were discussed 

briefly in the first section and use similar methods. All of these 

calcul~tions use semi-empirical spin-orbit operators (91), which are 

probably a reasonable approximation in these cases where the 

spin-orbit energies are not too large. Codes for nonlinear molecules 

using the ab initio spin-orbit operator of Eq. (18) have been 

developed (54) but results have not yet been published. 

There have been a large number of studies of relati~istic effects 

on chemical bonding that employed various semi-empirical approaches. 

A representative list includes CNDO calculations on Pt(C1 6 )-2 (124), 

an extended Huckel study of the halides BiX
3 

(125), relativistic Xa 

calculations on PbM0 6S8 (126), and Dirac-Fock-Slater calulations on 

CsH and the halides CsX (127) and on 12 and HgI 2 (128). 
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Table 1 Calculated orbital energies (E) and experimental 

ionization potentials (IP) in eV for valence shell electrons 

-------
Au, exptl IP 

calcd relativ E 

reI wt av € 

nonrelativ E 

pseudoatm € 

Ag, exptl IP 

calcd relativ E 

reI wt av E 

nonrelativ E 

s 1/2 

9.22 

7.94 

7.94 

6.01 

5.18 

7.58 

6.45 

6.45 

5.99 

d5/ 2 

11.22 

11 .66 

1 2 .51 

13.64 

12.37 

1 4. 17 

14.62 

13.91 

14.62 

d3/ 2 

12.81 

13.43 

1 3. 1 8 

1 4 . 31 
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Table 2 The inert pair effect: orbital energies for 

Ge, sn, and Pb (eV) 

element Ge Sn Pb 

s, relatlv 15.52 13.88 1 5 • 41 

s, nonrel 15. 1 6 13.04 12.49 

p, wt av reI 7.29 6.71 6.48 

p, nonrel 7.33 6.76 6.52 

!l E , relativ 8.23 7.17 8.93 

!lE, nonrel -7.83 6.28 5.97 

!lE, pseudoatom 4.78 

-----
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Figure 1: + -Potential curves for the Og , 0 , and 1 states of . u u 

112 with 3r -, 3rr , and 1r + curves (computed without 
g u g 

spin-orbit coupling) for comparison. 
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Figure 1. 
. + - . 

Potential curves for the 0 • 0 • and 1 states of Tt2 
3- 3 1+ g u u 

with t. n. and t curves (computed without spin-orbit 
g u g 

coupl~ng) for comparison. 
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