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ABSTRACT 

The general features of the fission probabilities are reviewed in the 

light of the modern developments on the statistical properties of nuclei. The 

general thennodynamical aspects of the fission probabilities are first discussed 

without relying on any specific nuclear model. The effects of the shell 

structure and of the collective degrees of freedom on the saddle-point and 

ground state phase space volume are then considered. A general method to 

in-clude the effect of shells and pairing in the fission probability calculation 

is illustrated.- The disappearance of the shell and pairing effects with 

increasing excitation energy and its influence on the fission probabilities is 

exemplified by means of a calculation performed on superheavY elements. The 

·experimental data available in nuclei in the Pb region and lighter nuclei are 

discussed in detail and an analysis based upon the present knowledge of shell 

and pairing effects is performed. It is found that the experimental evidence 

on shell effects in these data are accounted for satisfactorily by including 

the Nilsson model and the BCS Hamiltonian in the calculation. A reliable set 
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of fission barriers is obtained and the liquid drop model predictions are 

tested. The saddle point single particle level densities which are also 

obtained in the analysis show the expected A dependence and their magnitude, 

about 8% larger than the corresponding ground state quantity, seems to be due 

to an increase in the nuclear surface at the saddle point. 

• 
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INTRODUCTION 

Already in 1939, immediately after the discovery of fission, it became 

apparent that the fission decay rate is controlled by a rather impenetrable 

potential energy barrier. 1 The existence of this barrier found its natural 

2 explanation in the liquid drop model, which was to become the leading model 

in the fission process. 

At the same time the theory of the chemical reaction rates, based upon 

the existence of an activated complex (or transition state), was employed to 

. 1 estimate the fission decay rate. 

An equivalently good theoretical knowledge of the neutron and radiation 

decay widths, 3 associated with the expected exponential rise of the level 

density with excitation energy led to a very early theoretical understanding 

of the fission probabilities.
1

•
4 

The first data on fission probabilities to become .available was in.the 

actinide region. 5 In these elements the fission barrier height and the neutron 

binding energy are very close and the resulting fission probability at energies 

above the barrier varies very slowly with energy. 

The observations of fission cross sections rapidly rising with energy in 

lighter elements, for which the fission barrier is much larger than the neutron 

binding energy, prompted a new theoretical and experimental effort which on one 

hand led to more accurate theoretical expressions for the fission,probabilities 

on the basis of the uniform mode1, 5•6 on the other produced an increasing wealth 

7-18 . of experimental data on lighter elements and at energies very close to the 

f . . b . 13,14,16-18 h uld 1 1 t• th . . k 1ss1on arrler. . One s o exp icit y men 1on e p1oneer1ng wor 

by Huizenga~ a1. 13 , the determination of the fission barrier of 201Tl by 
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14 16-18 Burnett et al. and the work by the Berkeley group. · The greatest part 

of the available cross section data which could be included in two figures is 

shown in Figs. l and 2. 

The analysis of the data on the basis of the early theories successfully 

accounted for the rapidly rising fission cross sections and produced reliable 

fission barriers. To a large extent the barrier determinations have been and 

still are the most relevant results obtained in the analysis of fission 

probabilities, for their contribution to the understanding of the potential 

energies surfaces and of the liquid drop model parameters. Clear indications 

of the shortcomings of the uniform model, and of the necessity for more accurate models 

16 to be used in the.evaluation of the level densities were also apparent. The data 

could be fitted only over a short energy range, and the level density parameters 

extracted from the data fitting showed marked fluctuations attributable to the 

shell structure. 

More recently, refined level densities, generated on the basis of the 

shell model19- 22 and of the pairing Hamiltonian, 23- 30 have become available and 

have made it possible to account for the shell structure effects in a nearly 

quantitative way. These new level densities have proven to be remarkably 

successful in the analysis of the fission cross sections of the lighter 

elements 31 ' 32 as well as in the analysis of the fission and isomer formation 

cross sections in the actinides. 33 , 34 A similar study has also been extended 

to the superheavy nuclei in order to investigate their stability towards fission 

at the compound nucleus stage.35-37 

In the present paper all of the above developments are presented to 

various extents. In Sec. l the general features of the fission probability 

theory are outlined, and the limiting behavior of the fission probability at 

• 
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high energies is derived. Furthermore, the insensitivity of this quantity 

to the fine details of the Hamiltonian is pointed out. In Sec. 2 the results 

obtained by using the uniform model in the analysis of the lighter element 

data are presented and the shortcomings of such a model are discussed. In 

Sec. 3 some recent and new aspects of the problem are treated, like the 

relevance of the collective degrees of freedom to the fission decay width, and 

the way in which shell and pairing effects can be included in the calculation 

of the fission probabilities. The latter point is illUstrated with the 

calculation of the fission probabilities in superheavy elements. In Sec. 4 

the available experimental data for lighter elements are cri tica.JJ..y analyzed 

and the results of the fitting procedure are discussed. 

As a last comment the data available for lighter elements have been 

given special attention in this paper. Very important. work has been and is being 

performed in the actinide region and will appear in other contributions to 

this conference. 
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Sec. I. THE FISSION AND NEUTRON WIDTHS: STANDARD FORMULAE AND LIMITING BEHAVIOR 

In this section an effort is made to derive various limiting forms of 

the fission probability without resorting to any detailed nuclear model. It 

can be shown that the physical features of the system can be summarized in 

terms of simple thermodynamical quantities, like the temperature which are 

rather independent of the nuclear structure details and vary slowly with energy. 

A nucleus, whose excitation energy is equal or larger than the fission 

barrier, is expected to move randomly in a restricted region of configuration 

space (the compound nucleus region) until, by chance, it finds access to the 

potential energy saddle which leads to a new, almost unrestricted region of 

configuration space (the region of the forming fission fragments). The decay 

probability is equal to the number of systems per unit time overcoming the 

barrier divided by the number of systems remaining in the compound nucleus 

region. If the access to the barrier is random, the population of the compound 

nucleus region and that of the saddle region can be taken to be proportional 

to the respective phase-space volumes. The randomness assumption should be met 

if the total _decay width of the.compound nucleus is small, namely, if its 

lifetime is long. 

Under these conditions the fission decay width can be written as: 

1 
rF = 27Tp(E) (1) 

where p(E) is the level density of the compound nucleus at the excitation energy 

E, BF is the fission barrier height, Ps(x) is the saddle point level density 

at the excitation energy x and P(E - BF - x) is the quantum~echanical probability 

of penetrating the barrier. This last quantity, for a parabolic barrier takes 

the form: 36 

• 
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1 
p = ----------~--------~ 2n(E - B - x) 

F 
1 + exp - ------h~w~-----

where hw is the phonon 

energy associated with the parabolic potential, called barrier penetrability 

coefficient. An important feature of the level density ~S ( x) is that it refers 

to all the collective and intrinsic modes of the system with the exclusion of 

the fission mode. 

The neutron decay width can be evaluated along similar lines and takes 

the form: 

1 
rN = 2np(E) cr. 

~nv 

where is the neutron mass, BN is the neutron binding energy, cr. is the 
. ~nv 

cross section associated with the inverse process and pR(x) is the level 

density of the residual nucleus. 

One can take advantage of the strong energy dependence of the level 

densities and evaluate both expressions by suitably expanding the integrand 

about the upper limit of integration. The following expression is obtained 

for the fission width: 

1 
rF = 2np(E) 

(2) 

( 3) 

where the penetrability P has been taken equal to one above, and zero below the 

barrier.and 
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d ln p
8

(x) 

dx x=E-B 
F 

For the neutron width one obtains: 

a. l.nv 
1 

D 2 
R 

( 4) 

where the inverse cross section has been assumed to be independent of energy 
d ln pR(x) 

dx x=E-B 
N 

Recalling that in statistical mechanics 

d : P = : = ~' the quantities l/D8 and 1/DR assume the meaning of the saddle 

point and residual nucleus temperatures T8 and TN' respectively. 
r 
·F 

The ratio y- can then be expressed in the following simple form: 
N 

p8 (E - BF) 

pR(E - BN) 

This approximation is accurate even at rather low excitation energies. The 

( 5) 

above equation can be further simplified by expanding both level densities about 

the energy E - B where B is intermediate between BF and BN: 

I 

where TR 
I 

T
8 

p
8

(E - 'B) 

TR2 pR(E -B) 

and T
8 

are the effective temperatures in the residual nucleus and 

at the saddle at an excitation energy E - B. Such an approximation becomes 

(6) 
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better the closer BF is to BN and the larger is the excitation energy E. In 
I I 

fact, as the excitation energy increases, the temperatures T8 , TR, T
8 

, TR tend 

to a nnique value T. One can also assume that the two level densities 

p8 (E - B) and pR(E - B) are equal, which may be a good approximation in absence 

of shell and pairing effects. Assigning to the inverse cross section its 

geometric value one obtains: 

(7) 

Equation (7) and to large extent Eq. (5) and Eq. (6) are remarkable for 

their almost total lack of physical details aside from the neutron binding energy and 

the fission barrier height. One does not even need to assume any special form for 

~he level densities. This is an aspect of statistical theories which has both 

good and bad features and which, while easily and simply interpreting 

experimental data, yield information very reluctantly on the detailed Hamiltonian 

of the system. By means of Eq. ( 7) the asymptotic behavior of r F;r N can be 

estimate.d. For (BN - BR) ~ 0 the function is monotonically decreasing 

and eventually tends to zero as .. For (BN - BF) < 0 the function has a 

maximum at T = BF - BN and then it decreases again, tending to zero at large 

temperatures like ~· The dominance of the neutron decay over the fission 

decay at high energies is a consequence of the phase.;..space volumes available 

to the two modes of decay when energy restrictions become irrelevant as in the 

case of large temperatures. Everything being equal, three unbound modes are 

available for the emission of neutrons (the three cartesian coordinates of the 

free neutron) while only one unbound mode is available for fission (the saddle 
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point fission mod~). It is also quite interesting to notice that fF/fN tends 

to zero as the mass number of the system tends to infinity. The A-213 

rF 
dependence of - is signi:fying the increasing "surface area" from which neutrons rN 
can evaporate. 

The formalism described so far can be generalized to include the 

effect of angular momentum. The presence of angular momentum implies that a 

certain amount of energy is present in form of rotational energy, and it is not 

available to excite the internal degrees of freedom. Therefore, Eq. (5) can be 

modified as follows: 

(8) 

I h2I2 
the rotational energy at the saddle point; EI 

h2I,2 
is the where E8 = ~is = 

23'R R s 
rotational energy in the residual nucleus after neutron emission; I is the total 

angular momentum; I 12 = I 2 + ~2 and ~2 is the average angular momentum associated 

with the emitted neutrons. (The approximate way in which the angular momentum 

is handled in fN is well justified at moderate excitation energies. 37 ) The two 

moments of inertia :tR and ~S depend in general upon both the excitation energy 

and the angular momentum. A very complete study of the equilibrium shapes of 

liquid drop nuclei in the ground state and at the saddle point has been 

performed by Cohen, Plasil and Swiatecki 38 , 40 and by Cohen and Swiatecki. 39 

For relatively small angular momenta one can assume the zero angular momentum 
( 

shapes for the evaluation of the rotational energies. Rewriting Eq. (7) on 

tltis Lt.tsis one obt..ul.us: 

~· 
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I' I 
fF {B - BF- (ER- E8 )} 

5.25 A-2/ 3 T-l exp _N _ ___. __ ~----...;;;...-
fN = T 

(9) 

This expression indicates that the presence of angular momentum decreases the 
' ~ 

effective fission barrier by an amount (E~
1

- E~) which is always positive 

since :r 8 > ~R· At larger angular momenta the fission barrier itself is 

decreas.ing due to a change in the saddle point deformation, thus increasing even 

more the fissionability of the nucleus. 
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Sec. II. PRELIMINARY DATA ANALYSIS WITH SIMPLE LEVEL DENSITY EXPRESSIONS 

The formalism presented in the previous section requires the use of 

specific level density expressions both in fF and in fN. It is mainly in these 

quantities that all the physical information concerning the nucleus at the saddle 

. t d th . d al 1 ft t . . . t . d 41 po1n an e res1 u nuc eus a er neu ron em1ss1on 1s con a1ne . 

Until very recently, the statistical properties of nuclei have been described 

on the basis of the uniform model. 42 ' 43 In this model the nucleus is represented 

as a system of non-interacting fermions occupying equidistant non-degenerate 

single-particle levels. Although this picture contains little physics beyond 

the Pauli principle, still its application to problems like the present one 

has had a reasonable success. 

The expression for the uniform model level density is: 

p(E) rn =-
12 

2Tai 
e (10) 

wh~re E is the excitation energy of the system and a is the level density 

parameter, which is related to the single-particle level density g by the 

expression: 

The level density parameter a is expected to vary in proportion to the mass 

number of the nucleus: 

44 to be around 8 or 9. 

A a = - , where K is a constant whose value is estimated 
K 

Explicit expressions for the quantity fF/fN have been given by 

6 
Huizenga and Vandenbosch on the basis of the uniform model. In these calculations 

only the leading factor of Eq. (10) has been used, namely: 
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p{E) a: 
2/aE 

e (11) 

Almost all of the experimental data available at present have been analyzed in 

. . 13 14 16 17 terms of the un1form model level dens1ty. ' ' ' Here we shall report the 

overall conclusions of such an analysis applied to lighter nuclei, without any 

critical comment on the data themselves, which will be delayed until Sec. 4. 

The free parameters typically employed in this data fitting procedure 

are: the fission barrier BF; the penetrability coefficient hw; and fF and fN 

level density parameters ~ and~· The quantities which the fitting procedure 
aF 

can most solidly establish are the fission barrier BF and the ratio -. 
~ 

The experimental fF/fN quantities have been readily fitted up to 20 MeV 

above the fission barrier. In this energy range same of the experimental data 

cover more than six order of magnitude. ·The fission barriers have proven to be . 
rather insensitive to small variations in the other parameters._ The individual 

values of ~ and ~ turn out to be' quite uncertain, while their ratio tends to 

remain constant. Two difficulties immediately arise. The first is related to 

the~~~ ratio_which appears to be close to unity in nuclei far away from the 

shell region and as high as 1. 5 for nuclei in close vicinity to 208Pb. The 

second difficulty is the inability to fit the data in a larger energy interval 
a 

F for the latter kind of nuclei. Because of the large ratio of- necessary to 
~ 

fit the low_ energy d-ata, the. fission probability. increases much too rapidly with 

energy to fit the higher energy data. In other words, it appears that for this 

kind of nuclei' the effective ~/ ~ ratio. varies. smoothly from a rather large 

value close to the fission barrier to a value close to unity at-higher energies. 

At the same time it is 

,,· t 
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found out that the experimental fission barriers can be decomposed in two, parts: 

a smooth liquid drop quantity and a ground state shell effect which measures 

the deviation between the experimental ground state mass and its liquid drop 

prediction. This shell correction is at a maximum in the Pb region and has the 

effect of producing a strong local increase in the fission barriers. The 

mounting evidence indicates that the anomalously high fission barriers in the 

Pb region and the corresponding large ratio of ~~~ are two facets of the 

same physical fact; namely the small single particle level density at the 

Fermi surface of the spherical nuclei due to the double shell closure in 
208

Pb. 

At the same time the data are strongly suggesting that the effect of the shells 

is disappearing rather rapidly with increasing excitation energy. 

An overall view of the studies illustrated above allows one to reach 

the following conclusions. 

a) The statistical formalism is potentially able to fit the experimental 

fission probabilities over many orders of magnitude; 

b) Fission barrier heights can be extracted rather safely from the analysis 

of low energy cross sections; 

c) The obtained fission barriers so obtained can be decomposed into a smooth 

liquid drop component and the ground state shell correction; 

d) The uniform model is inadequate in justifying the widely varying ratio of 

aF/~ and in reproducing the fission probabilities over a large energy range. 

,, 
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Sec. III. MODERN PROBLEMS IN THE EVALUATION OF THE PHASE SPACE VOLUMES RELEVANT 
TO THE FISSION PROBABILITIES 

The use of the uniform model in the evaluation of the fission probabilities 

does not allow one to interprete the experimental data satisfactorily. Rather 

serious problems are met in the attempt to evaluate the detailed form of the 

phase space volume associated with the fission and neutron decay. Some of these 

problems can be solved, others have not yet been considered in depth. In the 

present section some of these problems will be considered. In the first part, 

the coupling between the collective and the internal degrees of freedom will 

be studied especially insofar as the fission width is concerned. In the · 

second part the simpler but better understood problem of the inclusion of shell 

and pairing effects in the formalism will be discussed. In the third part some 

examples of calculation of the fission probabilities of· superheavy nuclei will 

be shown to illustrate the disappearence of ·the shell effects with excitation 

energy. 

Relevance of the Collective Degrees of Freedom in fF. The peculiar collective 

nature of the fission process raises serious questions regarding the contribution 

of the collective degrees of freedom to the shape and volume of the phase space 

which controls the fission decay widths. This is particularly important when 

one needs to consider the fission width as a differential in the various saddle 

point.collective coordinates and momenta. In order to explore to what extent 

such collective degrees of freedom affect the fission widths, let us express them 

explicitly in Eq. (1). The introduction of n bound normal modes, besides the 

fissionmode, leads to the following expression: 

dx. dp. 
~ . ~ 

hn 
. 1 2 2 } 

Ps'(E- BF·- £ - L{-2 a. x. + p. /2m. ) 
~ ]. ~ ~ 

(12) 
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where £ is the kinetic energy along the fission coordinate; x. and p. are the 
1 1 

saddle point normal coordinates and momenta; a. and m. are the stiffnesses and 
1 1 

the inertias associated with the same normal modes; the quantity Ps is the 

level density due to the intrinsic degrees of freedom; the integration limits in the 

multiple integral are taken in such a w~ as to conserve energy. By profiting 
d ln p~(x) 1 

again from the strong energy dependence of Ps and by setting dx = T 
we can rewrite Eq. (12) as follows: 

l 
= 2Tip(E) 

-£/T e d£ 

(13) 

In this expression the energy is not rigorously conserved: in fact such an 

expression is well known in statistical mechanics as the canonical expansion 

where the temperature, instead of the energy, characterizes the system. In this 

case, the many internal degrees of freedom of the nucleus are acting as a 

thermostat with which the collective degrees of freedom are at equilibrium. 

The integration of Eq. (13) can be easily performed: 

l = 2Tip(E) 
(14) 

where the quantity in the box represents the phase space volume contribution of 

the collective degrees of freedom. This expression can be compared with Eq. (3). 

The two expressions are identical if one sets, 

(15) 

' ' - ' 
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The above discussion leads to interesting observations regarding the validity 

of Eq. (3). An obvious failttre of this equation occurs if one or more normal 

modes besides the fission mode are unbound 9 namely if one or more of the a. are 
l. 

negative. This is predicted to occur by the liquid drop model below the 

Businaro-Gallone point (x = 0.396) where the mass asymmetry mode becomes 
. 47 

unbound. Increasing displacements away from the saddle point along this 

coordinate lead to a rapidly diverging integrand in Eq. (12). Under these 

circumstances the canonical expansion about the saddle point cannot be justified. 

In fact, the main contribution to the integral along the mass asymmetry coordinate 

comes from around the extreme mass asymmetries and not from the symmetric region 

around the saddle point. In this region of the fissionability parameter fission 

loses its identity and merges into the evaporation (spallation) reaction; the 

decay width calculated by Eq. (12) refers to the statistical emission of particles 

as a whole. As a consequence a naive analysis of "fission" cross sections for 

elements below Ag (x ~ 0.4) will indicate fission barriers smaller than those 

predicted by the liquid drop model. In these kind of experiments "fission" 

and the resulting fission barrier are defined only by the arbitrariness of the 

experimenter, or by the mass cut-off of the detector. 

Besides the above glaring inapplicability of Eq. (3) and Eq. (14), more delicate 

points can be raised by the peculiar factorization of the phase space in Eq. 

(14) and (15). It is possible that the collective degrees of freedom are 

sharply defined and nearly uncoupled from the intrinsic degrees of freedom, 

leading to such a simple factorization of the phase space. On the other hand, the 

single particle degrees of freedom may be very pure, leading to a much 

less collective description of the system. 
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It is not very clear which of the two alternatives is more realistic, 

the second one being further plagued by the extra complication of having to 

define the number of collective degrees of freedom. These two extreme possibilities 

bring forth the problem of the microscopic nature of collective degrees of 

freedom in a manybody system. The collective states, borne out of very special 

combinations of intrinsic states, may be coupled to the remaining internal 

degrees of freedom to a varying extent. In the limit of compl~te uncoupling, 

the collective states have a physical existence and do play an explicit role 

in the form of the phase space volume at the saddle point. This phase space 

volume should have the form of Eq. (14) in the high temperature limit, and a 

.more complicated form accounting for the quantum-mechanical effects at lower 

48 49 temperatures. ' The coupling of the collective states to the intrinsic 

states has the effect of diluting the collective nature of the levels over the 

neighboring intrinsic levels. The collective aspects of the system now appear 

as strength functions. In classical terms, the motion along the collective 

coordinates becomes affected by viscosity, the largest momenta are strongly 

damped-out and the phase space associated with them is distorted and limited. 

As the collective motion becomes damped beyond criticality, the strength function 

loses its structure and the collective state is reabsorbed into the background 

of intrinsic levels. Therefore, depending on whether viscosity is large or 

small, the two extremes of the picture do apply. This uncertainty is not very 

important at high energies or when the integrated form of the decay width is 

considered. Instead, it is of extreme relevance when the differential form of the decay 

width in the coordinates and momenta of some collective coordinates is to be 
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used to establish the distribution of the initial conditions for the dynamical 

descent from the saddle to the scission point. Unfortunately, complication 

adds to complication since similar considerations apply for the neutron width 

rN as well although to a somewhat smaller degree. In fact, this very modern 

problem directly involves the overall theory of level densities. 

Shell and. Pairing Effects in Level Densities. While, because of its difficulty, 

the problem of the st.reneth functions associated with the collective features 

of the system has not yet received the amount of attention it deserves, other 

detailed features of the J.evel densities have been worked out to a satisfactory 

degree. 'I'he level densities at low excitation energies are expected to be 

greatly influenced by the detailed structure of the sine;le particle levels close 

to the Fermi surface, as well as by the two-body residual interaction. Recently 

a subst[mtial success has been achieved in the development of a theoretical 

formalism which allows one to calculate the level density of a nucleus on the 

b . f . . h 11 d 1 d f th . . . t t. l9-30 as1s o. a g1ven s e mo e an o e pa1r1ng 1n erac 1on. 

Hamil toni an containing both 

H = L e:k at k ~ - G 

±k 

features is the following: 

\' t t 
L..ak,ak, 

The simplest 

(16) 

,. -r 
where ~are the shell model single particle energies, a k and ~are the 

.... 
creation and annihilation operators respectively, and G is the strength of the 

pairing interaction. The diagonal form of this Hamiltonian can be used to 

evaluate the Grand Partition function en: 27,28,30 

n = L B(e:k- A- Ek) + 2 L ln[l + exp- S(Ek- YI\_)] + L ln[l + exp- S(Ek + YI\_)) 

86.2 
G 

(17) 
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where~ are the single particle spin projections, A is the chemical potential, 

y is the angular velocity, S is the reciprocal of the temperatUre, 6 is the gap 

parameter which indicates the extent of the pairing correlation, and 

.. 1 . 2 . 2 
Ek = V(£k - A) + 6 represent the energies of the intrinsic modes of 

excitation of the system (quasi-particles). 

The boundary conditions are introduced in the formalism by means of the 

following equations: 

an \' a£. = 0 or L., gap equation; 

(18) 

an N a-a= \"" [ £k - A { 1 ( 1 ( )}] particle = L. 1 - 2Ek tanh 2 S ~ - ~) + tanh 2 S Ek + ~ equation; 

(19) 

angular momentum 
equation 

(20) 

~~ = E = [ Ek [1- E~~ A {tanh; 8(~- 'f"'k) +tanh t 8(~ + 'f"'k)}]- ~2 

energy equation (21) 

where a= SA and·~ = Sy. This set of four equations defines the quantities S, 

y, A, 6 in terms of E, M, N, G. This set of values is used to evaluate the 

entropy: 

s = n + SE - aN - ~M (22) 

.. 

.1- : 
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The level density of the system is then obtained by means of the expression: 

(23) 

where n is the number of first integrals of motion which are explicitly considered 
• 

in the problem, and 

D = det 

where a. is the set of Lagrange multipliers associated with the first integrals 
1 

of motion. Although very simple, the present formalism accounts rather well 

for the pairing effects, the shell effects, their mutual interaction and 

their dependence upon the excitation energy. 

The pairing correlation, in the ground state, depends upon the single 

particle level density at the Fermi surface. When the nucleus is in a shell 

region, the single particle level density at the Fermi surface is small and the 

pairing effects are also small. The opposite occurs in an antishell region 

where the single particle level density is large and so is the pairing correlation. 

In other words, the pairing effects tend to counteract the shell effects: when 

the latter is large the former is small and vice versa. 

As the excitation energy increases, the. gap parEUn.eter 6. and the pairing 

correlation steadily decrease and eventually vanish because of the blocking effect of 

the quasi-particles. The shell effects also are washed away by the increasing 

excitation energy. This is due to the fact that the fluctuations in the single 
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particle level density are averaged out by the Fermi distribution. The statistical 

averaging function is in fact the negative derivative of the Fermi function, 

which becomes broader as the temperature and the excitation energy increase. 

The angular momentum of the system is generated by breaking pairs and by 

aligning the spins of the resulting quasi-particle excitations. Each quasi-

particle blocks a single particle level making it unavailable for the pairing 

interaction. Therefore, the pairing correlation and the gap parameter decrease 

and eventually vanish as the angular momentum increases. Some of the features 

discussed above can be observed in Fig. 3 and Fig. 4 where the results of a 

calculation based on the Nilsson model and on the pairing Hamiltonian are shown 

220 30 for the nucleus Rn. In Fig. 3 the dependence of the neutron gap parameter 

upon the temperature T and the angular momentum I is presented in the form of 

an isometric projection. The surface ll(T,I) intersects the T,I plane along a 

curve which defines the boundary between the paired and the unpaired region. 

In Fig. 4 the level density surface is projected on the energy-angular momentum 

plane. The lower near-diagonal line in the figure represents the yrast line, 

or the locus of the states with lowest energy at fixed angular momentum. The 

boundaries between paired and unpaired phases for neutrons and protons are also 

shown. Their peculiar crossing is due to the way in which the angular momentum 

is shared between. the neutron and proton components. 

Application of the Level Density Formalism to the Calculation of the Fission 

Probabilities. In order to illustrate the effect of shells and pairing on the 

fission probabilities, the above formalism will be applied to superheavy nuclei. 35 , 36 

For such nuclei the relevance of shell and pairing effects is overwhelming and a 

calculation applied to them does clearly display the features discussed above. 
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First the shell structure in the potential energy surface will be 

discussed. In Fig. 5c the potential energy of ii~x is shown as a function of 

the deformation parameter E. This calculation has been performed using 

the Nilsson model and of the Strutinski normalization procedure. In the same 

figure the liquid drop potential energy is also shown as a function of £. The 

latter curve shows that for this nucleus, whose fissionability parameter is 

close to unity, the liquid drop fission barrier is vanishingly small. The former 

curve shows that the shell structure generates a rather deep minimum at 

sphericity and, because of it, the nucleus is stabilized against fission by a 

barrier of about 7.5 MeV. Similar plots for other nuclei are shown in Fig. 5a-c. 

In order to observe how the shell effects disappear with excitation 

energy, the level density at the ground state deformation and at the saddle 

point deformation can be calculated. This calculation is shown in Fig. 6. It 

can be observed that the saddle point level density rises faster than the 

ground state level density. In fact, the level density value reached at 60 MeV 

excitation energy by the nucleus in the ground state deformation is reached at 

about 7.5 MeV lower local excitation energy by the nucleus at the saddle point. 

Since the potential energy difference between the ground state and the saddle 

point is in fact 7.5 MeV, and since such a difference is exclusively due to the 

shell effects, it is possible to conclude that, at 60 MeV, the nucleus does not 

retain any relevant trace of shell effects. In order to better appreciate the 

evolution of the system as the excitation energy increases, it is possible to 

calculate, for each excitation energy, the probability of· finding the nucleus 

at the various deformations. Assuming statistical coupling between the 

25 26 intrinsic modes and the collective fission mode, one obtains: ' 
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(24) 

where E is the compound nucleus excitation energy, ET = E ~ V(E) is the local 

excitation energy at the deformation E,m is the inertia along the coordinate 

E and D = d ln p(x) 
dx 

x=E 
T 

· f 296x · h · F. Tb The natural logarithm of the deformat1on pi:'obabili ty o 116 1s s own 1n 1g. 

for various excitation energies. At low excitation energy, the deformation 

probability shows a marked peak at E = 0 and a deep minimum at E = 0. 225. If 

the nucleus were stable against fission, the deformation probability would be 

bounded along any deformation coordinate. Since the system can undergo fission, 

the probability goes through a minimum and eventually diverges as the deformation 

increases. This minimum actually controls the flow of probability from the 

d 1 . t th . f f . f t 35 , 36 A th "t t· compoun nuc eus reg1on o e reg1on o omng ragmen s.. s e exc1 a 1on 

energy increases, the structure of the deformation probability becomes less 

pronounced, the compound nucleus peak becomes broader and the rate-controlling 

minimum fills in. At the highest excitation energy, the deformation probability 

becomes almost flat from sphericity to the location of the fission barrier, 

indicating that the oscillations of the potential energy are completely 

irrelevant to the behavior of the excited system. In other words, the system 

behaves as if the fission barrier had vanished. Similar comments can be made 

about the nucleus ~i~x whose deformation probability is shown in Fig. 7a. 

Another important point can be made in this discussion. The critical stage, or 

transition state, controlling the fission decay probability has been assumed, 

so far, to be located at the saddle point. The saddle point is an extremum in 
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the potential energy surface and does not have any direct connection with the 

phase space region which controls the decay. The deformation probability surface 

includes the overall phase space and determines the position of the transition 

state which is located on a saddle point which is unstable in n-1 degrees of 

freedom and stable along the fission mode. The locations of the deformation 

probability saddle point and of the potential energy saddle point in general 

do not coincide. In particular, the disappearence of the shell effects discussed 

above may be responsible for a shift in the location of the transition state. 35 , 36 

Some evidence that this is occurring is available from the fission fragment 

angular distributions in the actinide region. The moment of inertia for the 

saddle point configuration appears in fact to shift from the expected value 

corresponding to the actual potential energy saddle point to the value consistent 

with the liquid drop saddle point. 21 ' 29,50 

The final product of this formalism is the first chance fission 

probability shown for various isotopes in Figs. Sa-c. In order to obtain a 

reference point in the interpretation of these quantities one can use Eq. (7) 

as an approximation to the rF;rN expression. For a nucleus with A~ 300, the 

temperature T = l MeV corresponds to an excitation energy between 30 and 40 MeV. 

When BF = BN the fission probability at that temperature is PF- 0.1. Similarly, 

in order to obtain PF 

for PF = 0.8, BN BF 

= 0.5, BN- BF = 2.15 MeV; for PF = 0.7, BN- BF = 2.88 MeV; 

= 3.5 MeV; for PF = 0.9, BN - BF = 6.35 MeV. In all of 

these cases, the fission probability should decrease slowly with energy. An 

inspection of the fission probabilities calculated for the superheavy nuclei 

shows that for excitation energies larger than 35 MeV they assume very high 

values, as high as 0.95. Such high values are predicted by the Eq. (7) for 

neutron binding energies 4 to 6 MeV larger than the fission barriers. Since the 
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neutron binding energies are about 4 to 6 MeV, the effective barrier felt by these 

superheayY nuclei is practically zero. On the other hand, at lower excitation 

energies the effective barriers are very close to the true barriers. In 

particular, the fission probabilities are indeed very small for isotopes of 

element 114 and 116, where the shell effects are responsible for very large 

fission barriers. Furthermore, for nuclei where BF - BN the fission probabilities 

are subjected to peculiar fluctuations at low energies mainly related to the 

different energy dependence of the pairing correlation at the saddle point and 

in the ground state (Fig. 8a). 
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Sec. IV. THE BXPfl1IMENTAL FISSION PROBABILITIES IN LIGHTER ELEMENTS 

Extraction of the Total Fission Probabilities. The experimental data available 

for lighter elements at energies reasonably close to the barrier are proton and alpha 

induced fission cross sections as a function of energy for various targets ranging from 

the heavy rare earths to bismuth. The cross sections which are going to be 

16-18 . analyzed here are character1zed by errors between 10% and 30%, due to 

various causes, such as uncertainties in the beam current reading, in the solid angle, 

in the detection efficiency, in the angular distributions and in the beam energy. 

The observed fission events arise from two sources. The first and 

hopefully the main source is from the compound nucleus formed by the complete fusion 

of target and projectile with a subsequent thermalization of the kinetic energy. 

The second source is the compound nucleus formed after a direct reaction or 

a preequilibrium decay has taken place. The latter source is expected to be of 

minor importance in the first 20 MeV above the barrier, because of the strong 

energy dependence of the fission probability, but it is expected to be substantial 

in the high bombarding energy region. Even if one can disregard the contribution 

to fission due to direct reactions, one should estimate the fraction of the 

total reaction cross section associated with direct reactions. This is important 

in the calculation of the total fission probability: PF T = crF/crC, where 
' 

crF and crc are the fission cross section and the compound nucleus cross section, 

respectively. Recent work in 
4

He induced reactions in the Pb region51 shows 

that the compound nucleus cross section is very close to the reaction cross 

section up to 55 MeV bombarding energy, it decreases by perhaps 30% with respect 

to the total cross section at 70 MeV, and may be a factor of 2 to 5 lower at 

120 MeV. One of the greatest uncertainties is related to the precompound 
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emission of neutrons. For these reasons it is very hard to analyze the data 

above 70 MeV. The total fission probabilities up to this energy were determined 

by dividing the total fission cross section by the reaction cross section 

obtained by an optical model. The use of the optical model may produce systematic 

errors as large as 25%. 

The First Chance Fission Probabilities. The quantity predicted by the theory 

is the first chance fission probability P F ,l = f F/ ( f F + f N). The experimental total 

fission probability PF,T includes also the probability that the nucleus undergoes fission 

after one or more neutrons have been emitted. The problem then arises of 

estimating the higher order fission probability in order to transform PF,T into 

PF,l' In principle, if the total fission probability PF,T is available for two 

nuclei with the same Z and differing only by one neutron, it should be possible 

to extract PF 1 for the heavier nucleus. Unfortunately, the various uncertainties , 
associated with the experimental data, but especially the uncertainty in the 

compound nucleus cross section make this proceedure very dubious. The only safe 

conclusion which can be usually drawn is the establishment of an upper energy 

limit below which the contribution of higher order fission becomes unimportant. 

One might also consider the possibility of obtaining a theoretical estimate of 

the higher order fission probability. Unfortunately, here the problem is even more 

serious. With a saddle temperature of about 2 MeV, a variation of 10% in the saddle 

rF 
single particle level density gF produces a variation in r- of 

N 
Even a small variation of 1% in gF produces a variation of - 70% 

a factor of about 

rF 
in r ! This 

N 
means that any attempt to correct for higher order fission is likely to fail. 

Fortunately, the counterpart is more pleasant; large variations in the fission 

probabilities at high energies involve only minute changes in the single particle 

level density parameters. We shall make use of this conclusion later on. 

150! 
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In practice, the fission cross section is divided by the total reaction cross 

section and the resulting quantity is assumed to be equal to the total fission 

probability PF T up to 25-30 MeV above the barrier where the contribution of 
' 

higher order fission is small. In the next 10-15 MeV the effect of higher order 

fission is expected to be approximately counterbalanced by the decreasing 

compound nucleus cross section. Because of these reasons, it has been assumed 
rF 

that the above defined PF,T is also equal to PF,l or torT up to 70 MeV 

excitation energy in 
4

He induced fission. 
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Analysis of the Data. At this point one might be tempted to consider the 

possibility of comparing the experimental data directly with the theoretical 

fission probabilities calculated on the basis of the shell model. This attempt 

. 32 
has been made by Vandenbosch and Mosel. The results of. such an investigation 

are shown in Fig. 9. The agreement between experiment and theory is rather 

poor as expected. The fission probabilities are very sensitive to the height 

of the fission barrier and to the ratio of the single particle level densities 

to be used in fF and fN. The present models do not reproduce both quantities 

accurately enough to justify any hope of immediate success for this approach. 

An approach which leads to a better result is a hybrid formalism. In 

this formalism the neutron binding energy is taken from the experimental masses 

and the level density to be used in r N. is calculated from the Nilsson model and 

the pairing Hamiltonian. Insofar as the evaluation of rF is concerned, the fission 

barrier height as well as the barrier penetrability are taken to be free parameters; 

the level density is evaluated on the basis of the uniform model and of the pairing 

Hamiltonian. The single particle level density at the saddle and the 

saddle gap para!neter are also free parameters. The angular momentum is accounted 

for both in f F and in fN. 

As it was discussed before, the use of the shell model in the evaluation 

of rN does account for the ground.state shell effects. One might then consider 

the possibility of accounting for the shell effects at the saddle point in the 

same way. This has been done by Britt et a1. 33 in the analysis of the fission and 

isomer formation probabilities in the actinide region. In this work, however, it has 

been decided not to follow this approach for the following reasons. First, in 

the lead region and below, the shell effects in the neighborhood of the saddle 

• 
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point are expected to be small because of the large deformation. Furthermore, 

the saddle point cannot be located in a shell region, because it would be a 

minimum, nor can it be in an anti shell region because it· would be a maximum. It 

must be somewhere between a shell and an antishell region which means, close to 

the liquid drop surface. This situation is quite different from that of the 

ground state which always is in a shell region, namely in a minimum. In other 

words the saddle masses are expected to be far smoother than the ground state masses. 

A superficial glance at some shell model calculations may give the impression 

that the shell fluctuations at the saddle are quite large. This impression is 

somewhat misleading and stems from an inadequate parameterization of the nuclear 

shape. In fact, a shell model calculation with a truncated deformation space 

has a tendency to locate the saddle point in an antishell region. When more 

collective degrees of freedom are introduced, the saddle moves toward the 

liquid drop surface in between a shell and an antishell region. Therefore, one 

.may feel justified in using the uniform model for the evaluation of rF because of the 

small shell effects to be expected at the saddle point, and fur~hermore because of a 

major lack of information about whatever shell structure does exist in the saddle region. 

The formalism used in fitting the data contains five parameters which 

in principle can be considered to be free. In rN one has the oscillator quantum 

hw which specifies the level spacing of the Nilsson model; in fF, the barrier 
0 . 

penetrability coefficient hw; the fission barrier BF; the density of the doubly 

degenerate single particle levels gF; the gap parameter ~ assumed to be the same 

for neutrons and.protons. Two different energy ranges have been studied. The 

first includes the data up to 70 MeV excitation energy and the second up to 

120 MeV. 
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In a preliminary attempt to fit the data, all of the five parameters 

have been considered free. The most interesting result has been the large 

uncertainty with which both hw
0 

and gF are determined. Equivalently good fits 

could be obtained by keeping the product of these two quantities constant and by 

adjusting the fission barrier in a minor way. This effect can be predicted on 

the basis of Eq. ( 7). 

Because .of the above concl~sion, hw was assigned the value. 4l/A113 
0 

which contains the proper A dependence and should be reasonably accurate. The 

data were then fitted with the remaining four parameters. The resulting fits 

appear to be quite good and the parameters are essentially identical in both 

energy ranges. Some of the fits are shown in Fig. 10 and Fig. 11. 

The barrier penetrabilities for those cases where data are available 

very close to the barrier have an average value of l MeV. The rather large 

dispersion observed in these quantities depends mainly upon the way in which the 

corrections for U or 'rh contaminants were performed close to the barrier. 

In order to obtain a more consistent set of fission barriers, the 

barrier penetrability coefficients were fixed at 1 MeV. The fits obtained in 

this way are as good as the previous ones and the resulting parameters are shown 

in Table I. The fission barriers quoted in the table should be considered to 

be accurate within l MeV. Assuming that no shell effect are present at the 

saddle point, the experimental barriers from which the ground state shell effects are 

subtracted should follow closely the smooth liquid drop prediction. In Fig. 12 

the experimental barriers corrected for the ground state shell effects and 

expressed in units of 1/600 of the surface energy of the corresponding spherical 

nucleus are plotted as a function of the fissionability parameter x. In the 

same graph the ground state shell effects are shown. The solid line represents the 

smooth liquid drop prediction. The experimental fluctuations about the liquid drop 
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·value are at most l MeV, well within the experimental uncertainties. Therefore, 

one is led to the conclusion that the experimental shell effects at the saddle 

point are, for this region of elements, rather small. 

The saddle single particle level densities are shown as· a function of 

mass number in Fig. 13. The two lines bracketing the data correspond to the 
.2 

level density parameters aF = A/9 and aF = A/8 where~-=; gF. A reasonable 

average line passing through the data corresponds to aF = A/8.5. The fluctuations 

about the average are smaller than 5%. When the fits are performed with Fermi 

gas level densities, the ratio aF/~ varies from about 1.0 in the upper rare earths to 

1.5 in the 
208

Pb shell region. Thus, it appears that the level densities based 

upon the Nilsson diagram have accounted for the major part of the shell effects 

and for their disappearence with energy. A closer examination shows that the deviations 

are not statistical in nature, but correlate quite well with the residual shell 

52 . effects not accounted for, or overaccounted for, by .the N1lsson model. It is 

interesting to notice the average value of.~, equal to A/8.5, as 

compared with the corresponding average quantity on r N obtained by smoothing the 

shell model spectrum. This last quantity is ~ = A/9.2 giving a ratio 

~~~ = 1.08. Although it is not possible at this stag~ to reach any definite 

conclusion regarding this experimental point, an increase in the saddle point single 

particle level density should be expected on the basis of a very simple argument. In a 

Fermi gas the single particle level density at the Fermi surface depends upon the 

particle density. The higher the particle density, the lower the single particle 

level density. The nuclear matter is less dense on the surface of the nucleus 

and the surface is larger in a deformed nucleus. Bishop et a1. 53 have shown that 

the ratio of the single particle level densities at the Fermi surface for the 
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deformed to the undeformed nucleus is given by: 

R = 11 ~ (f-1 + 2fl/2) 
15 + 45 

LBL-1914 

where f 3/ 2 is the ratio of the major to minor axis (Fig. 14). This ratio varies 

from 1.05 at x = .7 to 1.1 at x = 0.65 in surprising agreement with the 

experimental ratio of 1.08 obtained in the same fissionability range. 

The saddle gap parameters !::,. shown in Table I are characterized by rather 

large uncertainties. The only safe experimental indication is that the gap parameters 

are rather small. The average value is in fact somewhat smaller than the ground 

state value in the same region. While the large uncertainties associated with 

this quantity do not justify any serious speculation, it may be possible that 

the smallness of the gap parameters may be due to same extent to the rather 

large angular momentum with which the compound nuclei are prepared at excitation 

energies close to the barrier. The gap parameter and the pairing correlation 

are in fact diminished by the presence of angular momentum, as it can be seen 

in Fig. 3 and Fig. 4. It is also possible that this parameter is actually 

compensating for other quantities not included in the formalism, like the 

saddle point shell effects. In fact, pairing effects and shell effects behave 

much in the same way with excitation energy. However, if one assumes the 

decrease in pairing to be fully due to shell effects at the saddle point; such 

shell corrections would amount to 1 MeV at most. 

Indications of a rather large gap parameter at the saddle point of 

210
Po were obtained from the fission fragment angular distributions of the 

4
He induced fission of 

206
Pb and 207Pb. 54 

These very low energy angular 

distributions suggested a gap parameter as large as 1.5 MeV. The experiment 

... 
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has been recently duplicated by Itkis et a1. 55 with complete agreement on the 

data. While the high energy data seem to be consistent with 6 - 1 MeV the 

lowest energy data remain unexplained with such a value. Shell model 

calculations are in progress to estimate the value of 6 necessary to fit the 

experimental data. While the fission probabilities are not the most sensitive 

quantities to use in the exploration of the superfluid properties of the system, 

the present analysis seems to indicate a saddle gap parameter definitely lower 

than l. 5 MeV. 

CONCLUSION 

It appears that the most relevant features associated with the fission 

probabilities are now understood in fair to good detail. The shell model, in 

conjunction with the liquid drop model can provide a nearly quantitative 

description of the potential energies relevant to the problem. At the same 

time the statistical-thermodynamical behavior of the· system can be predicted 

in an equivalently good detail. In fact, a new picture is emerging where the 

ground state and the saddle point properties are discussed on the same basis 

as the statistical properties of the compound nucleus and of the transition 

state. The same physical structure responsible for the anomalously small masses 

208 
of nuclei in the Pb region is seen to be responsible for the. unusually high 

fission barriers of the same nuclei and for the very 'rapid increase in their 

fission probabilities. 

It is to be recognized that the present status of the theory still falls 

sh_ort of a completely quantitative understanding. The fission barriers cannot 

be predicted with accuracies better than a few MeV and similar difficulties are 
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enconntered in reliably predicting the details of the potential energies. The 

same nncertainties in the shell structure affect the evaluation of the level 

densities and of other related statistical quantities. Furthermore, in the 

actinide region where the fission probabilities can be observed at extremely 

low energies above the barrier, delicate problems arise associated with the 

inapplicability of statistical mechanics and to the onset of fluctuations 

requiring more of a spectroscopical than a statistical interpretation. 
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Table 1. Parameters obtained from the analysis of fission probabilities. 31 

Bf gf t. 
Reaction Ref. . ., 

(MeV) (MeV-1 ) (MeV) 

209B. 
83 1 + 4H + 213At 

2 e 85 [16] 17.0 7.67 0.38 

208Pb 4 212 [16] 19.5 7.36 0.06 82 + 2He + 84Po 

207Pb 4 211 [16] 19.7 7.08 0.84 82 + 2He + 84Po 

206Pb 4 210 [16] 20.5 7.42 0.60 82 + 2He + 84Po 

209B. + lH 210 [16] 21.4 7.33 0.17 83 1 1 + 84Po 

208Pb 
82 

+ lH 
1 

+ 209B. 
83 1 [16] 23.3 7.55 0.22 

206Pb + lH 
82 1 

+ 207B. 
83 1 [16] 21.9 7.63 0.11 

197A + 4H + 201T1 'T9 u 2 e 81 [16] 22.3 7.57 o. 39 

197A + 1H 
79 u 1 

198H 
+ 80 g [16] 20.4 7.43 0.68 

187 4. 191 
75

Re + 2He + 
77

rr [17] 23.7 7.16 0.05 

185R 4 189 [17] 22.6 6.84 0.10 75 e + He + Ir 
2 77 

184w 4 188 [18] 24.2 6.89 0.54 74 + 2He + . 76os 

18~ 4 187 .. 
[18] 22.7 6.84 0.83 

~· 74 
+ 2He + 

76
os 

18~ 
74 

+ 4H + 1860 2 e 76 s [18] 23.4 6.66 0.43 

181 .4 185 
83Ta + 2He + 

75
Re [16] 24.0 6.51 0.60 

175Lu + 4He + 179Ta 
71 2 73 [17] 26.1 6.53 0.99 

169Tm 
69 + 

4 + 173 
2He 71Lu [17] 28.0 6.17 0.87 

The barrier penetrations have been set equal to 1.0 MeV. 
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FIGURE CAPTIONS 

Fig. 1. 
4 

Examples of He induced fission cross sections in lighter elements. 

The data are taken from Ref. 13, 14, 16-18. 

Fig. 2. 
1 Examples of H induced fission cross sections on lighter elements.· The 

data are taken from Ref. 16. 

Fig. 3. Isometric projection of the neutron gap parameter as a function of 

temperature and angular momentum for the neutron component of 
2~~Rn. 30 The 

angular momentum refers to the neutron component only. 

Fig. 4. Lines of constant natural logarithm of the level density in the energy

. 220 30 
angular momentum plane for the nucleus 

86
Rn. The lowest line going 

diagonally from lower left to upper right is the yrast line. The boundaries 

of the neutron and proton superfluid phases are also shown. 

Fig. 5. Potential energy profiles 36 of some superheavy nuclei calculated on 

the basis of the liquid drop model (solid line) and of the Strutinski 

method (solid line with dots) 

Fig. 6. 36 Level densities as a function of local excitation energy calculated 

for the ground state and saddle point deformation of ii~x. 

Fig. 7. Logarithms of the deformation probabilities at various excitation 

energies
36 

for the nuclei ii~x (a) and ~i~x (b). 

Fig. 8. First chance fission probabilities for various superheavy nuclei. 36 

Fig. 9. Comparison between some experimental fission probabilities and some 

shell model calculations. 32 

Fig. 10. Least-squares fits to the fission probabilities of some compound 

31 nuclei produced with proton bombardment. 

Fig. 11. Least-squares fits to the fission probabilities of some compound 

4 3i nuclei produced with He bombardment. 

'"' 
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Fig. 12. Experimental fission barriers corrected for the ground state shell 

effects (upper points) and ground state shell effects (lower points) as a 

function of the fissionability parameter. The solid line represents the 

smooth liquid drop prediction. 31 

Fig. 13. Experimental saddle point single particle level densities as a function 

of mass number. The two dashed lines correspond to a level density 

parameter a 13 equal to A/8 and A/9, respectively. 

Fig. 14. Ratio of the single particle level densities for a deformed and a 

non-deformed Fermi gas nucleus as a function of the major to minor axis 

t . 53 ra 10. 



~- ~-

4He induced fission cross section on: 

"-92U238 

•-a3Bi209 

o-a2Pb2os 

·-a2Pb
206 

"79Aul97 

o-r5Rel85 

·-74w's2 

v-75Rel87 

<>-75Rel85,1s7 

•-74WI84 

·-74w1s3 

o- 73Tal81 

.,._ 71 Lul75 

..,_ 69Tml69 

•- 49Inll3-115 

c 

X6L 737 · 3382 

I 
.r:
f\) 
I 

~ 
1 
I-' 
\0 
I-' 
.r:-



-43-

Proton induced fission 
cross section on: 

• u23s 
92 

o Bi209 
83 

• azPb206 

6 79Aul97 

• azPbzoe 

Excitation energy, Ex 

Fig. 2 

LBL-1914 

X8l1!7· 338~ 



-ll 4..:. LBL-1914 

4 HB~R 

DEL Hl T INTERU~L= .059UJ MEU 

DEL Hl INTERU~L:= • 40 MEV 

T 

XBL 733-273 

Fig. 3 



-45- LBL-1914 

LIMES OF CDMST~Ml LEVEL OE~SlTY 

M•Z• 134a 86 ~BOT,O~• -2.S0a 2.60 •. 

1.0.0 20.0 JO.O 40.0 60.0 60.0 

A~GULA~ MOMENTUM lHBA~J 

XBL 734-2612 

Fig. 4 

/ 



-46- LBL-1914 

~;;x 
'*' 

0 
~.· 

-2 

-4 

-6 

> 291x 01 
:2: 110 

> 

0 

-2 

-4 

-6 

-.2 0 .2 .I. .6 
£ 

XBL 736-705 

Fig. 5a 



0 

~ "' -2 

"" 
-t. 

-6 

-8 

> 
Ql 

~ 

> 

0 

-2 

-I. 

-6 

-8 

-10 

-47-

----

- .2 0 .2 .4 

Fig. 5b 

zgsx 
11.4 

znx 
, '"· 

.6 

LBL-1914 

.8 

XBL 736-717 



0 

- 2 

-4 

-6 

-8 
> 
QJ 

~-10 
> 

0 

-2 

-4 

-6 

-8 

-10 

-12 

- 2 0 

-48-

296x 
116 

31ox 
116 

.2 '.6 
£ 

Fig. 5c 

LBL-1914 

'\ 

\ 

8 

XBL 736-710 

'-..Y 

1.. 



LBL-1914 

60 

50 

L.O 

c 

30 

20 

10 

2 10 20 30 L.O 50 60 
E (Mev l 

XBL 736-715 

Fig. 6 



-50- LBL-1914 

21 

1/\ 290 
35 II OX 

70 1,\\i\ v 57 

30 G'v v; 53 65 

/;;\1\f::;; 49 

25 
0 (" ~ 

45 
-;:;;_ J 

Ew 
~20 

41 5 ~ 
w 
w 
a.. 
c 37 
- 15 

50 

33 

10 
45 

29 

I 

I 0 

\ (\ 25 

0 I 

5 I -1 
-.2 0 .2 .I. .6 .8 -.2 0 .2 .I. .6 

~ 

( ( 

XBL 736-708 

Fig. 7a 



u 

•:-I 

-51- LBL-1914 

l96x 
111 

35 70 

57 - ·-· • ·~ ..... 

30 53 5 

49 

25 0 

45 
> 

... 
E 
~ 20 

.:::;... 
-'= 

w 
w 
a.. 
c 
- 15 37 

10 ~ 
/\! 

29 v 
33 

5 

45 

40 

25 

0 3S 

-1~~~~~~~~~~~----------~~----~--~~~--~~ 
-.2 0 .2 .4 .6 .8 

E 

Fig. 7b 

-.2 0 .2 .4 
E 

.6 8 

XBL 736-707 



-52- LBL-l~Hl1 

L11 .-t 
<D N 

r--.. 
I 

\0 
I") 

• r--.. 

~ 
0 • ~ 
0 • X X 

CD 0 0 0 
C7l ... C7l ... L11 

0 • N ..- N ..-
U") 

0 • • 0 

0 • 
0 • 
0 • 
0 • U") 

--.3 

0 • 
0 • 
0 • 
0 • > 

Q) 

0 • U")~ 
M_ 

0 • w 

0 • 
0 • 

0 • 
oe U") 

N 

oe 

0 • 
0 • 

0 • 
0 • L11 

0 • 
0 • 

0 • 
p 

U") 
0 ... N C't ~ 

0 'o •o '0 'o -- r-
~+ J r- r-

~ 

Fig. 8a 



-53- LBL-1914 

L{) 0 
<D N 

['. 
I 

'-0 
t"'l 
['. 

<» ,. 
.....:l 

oe ~ 
<» X X 

f) 
Cl>. ID.., 
.,.. ~ .,. ... 

L{) a. N ~ N-
L{) 

• 0 oe 

oe 

oe 

oe 

oe L{) 
...:t 

o• 
oe 

oe 

oe > 
Ql 

oe L{)~ 
M_ 

0 • w 

0 • 
0 • 

0 • 
0 • L{) 

N 

0 • 
0 • 

0 • 
0 • 

0 • L{) 

0 4 .. 
0 

"' 
L{) 

0 N ... .... 
0 •o 10 10 10 
~ ~ NJ +J ~ 

'J 

Fig. 8b 



-54- LBL-1914 

u 
10 r-------~----------------0--0--70~o~o~•o~o~~o~o~<>o~o~ro~0~ro~o~~o~o~~o~----~ 

-1 

10 

-2 

10 

-3 
10 

-4 
10 

-5 
10 

5 

0 

• 

0 

0 

0 

0 

0 • 

• 

• 

• 

• 

15 

0 

• 
• 

• 

25 

• • 
• • • 

35 
E(Mev J 

Fig. Be 

• • • • • 

45 

• • • • • 
310 

• 11sx 

296., 
0 116}. 

55 

• • 

65 

XBL 736-716 

-·· 



f.rj 
t-'· 

Otl . 
\0 

;;. ~ 

10-4 i 191Ir 
77 

ru 1o-7 

rn 
10""'8 

10-10 

"-2ooHg levels 
80 

•• 
• 

~. ( 

-

lo-"· ~6 . I 34 I J2 I I i4 I 32 I 4o I ~4 I 32 I 4o . I L I , L I -~- I , 

EXCITATION ENERGY (MeV) 
XBt 736-723 

I 
\Jl 
\Jl 
I 

t-' 
tJ:: 
t-' 
I 
f-' 
\0 
f-' 
~. 



10-1 

162 

10-3 

164 

105 

166 

-56- LBL-1914 

Proton induced fission 

Compound nuclei 
210p0 _ • 

209Bi ...,. o 

2o18 i _ • 
. 198Hg _ 6 

16 13 ~--~------~---~------~---~------~---~---~ 
0 10 20 30 40 50 60 70 80 

Excitation energy (MeV) 
XBL735-2985 

Fig. 10 



10° 
v 

101 

102 

10-3 

10-4 

10-5 

t--106 
~ 

'--......I0-7 
LL. 
~ 10-8 

169 

lo-lo 

1011 

10-12 

10-13 
' 0 

(\ 

-57-

4He induced fission 
Compound nuclei 
213At -• Jes05 _. 
212p0 _ o 179ra _ o 

210p0 -• 173Lu-• 
ISSos-A 

LBL-1914 

10 20 30 40 50 60 70 80 90 100 110 120 130 
Excitation energy (MeV) 

XBL 735 - 2 986 

Fig. 11 



-58- LBL-1914 

-> Q) 

::?! 
0 
0 
<D 
....... 
>-
Cl .... 
Q) 
c: 
Q) 

Q) 
(.) 

0 -.... 
:::1 
en --0 Saddle-point masses 
en -c: 
:::1 

10 
c: ·-
>-
Cl 5 .... 
Q) 

c: 
w 

• . ,, 
Ground- state masses 

-6 • • -a 

0.60 0.65 0.70 0.75 
Fissility parameter (X) 

XBL 721-16 

Fig. 12 



-59- LBL-1914 

:j 

7 

-
I 6 -> --Q) --::?! --0 

4 

o~~~~~~~~--~~~~~~~--~~~~ 
• 150 160 170 180 190 200 210 220 230 

A 
XBL 721-14 

Fig. 13 



R, 
RATIO OF 

DEFORMED 
TO 

NORMAL 
SINGLE 

PARTICLE 
LEVEL 

DENSITY 

-60- LBL-1914 

I.OOL..-.:::::;;---~~----~:------4~ 
I 2 3 

p = ('12, RATIO OF MAJOR/MINOR AXES 
XBL 736-724 

Fig. 14 

., 



~-----------------LEGAL NOTICE---------------------. 

This report was prepared as an account of work sponsored by the 
United States Government. Neither the United States nor the United 
States Atomic Energy Commission, nor any of their employees, nor 
any of their contractors, subcontractors, or their employees, makes 
any warranty, express or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness or usefulness of any 
information, apparatus, product or process disclosed, or represents 
that its use would not infringe privately owned rights. 



/,:' 

~---- ..._..., 
TECHNICAL INFORMATION-...DIIQSI{>N 

LAWRENCE BERKELEY LABORATORY 

UNIVERSITY OF CALIFORNIA 

BERKELEY, CALIFORNIA 94720 

" 
';.0- ~-

---

( 


