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Abstraot

We conslder the possibllity that the quantum meohanics of a non-
relatlvistlo electron In the magnetic fleld of a magnetic charge distribution
oun be described In terms of a non-assoolative algebra of observables. It
appears that the case of a polnt monopole ls excluded, while that of a

constant churge distribution Is acaeptable.
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1. Introduction

It was polnted out some time ado by Lipkln, Welsberger and Peshkin [1])
that the comautators of the velocitles of an electron fn the fleld of a point
magnetic monopole appear to violate the Jacobl ldentity at the position where
the monopole s looated. More recently, a number of authors (2-5) have
obaserved that such a violation of the Jacobl fdentity could be related to the
exlstence of a 3-oooyole‘ on the three dimensional translation group for the
electron and to a violation of assoclativity for finlte translations. The
main observation of Refs. 2 - 5 1a that, even If the Jacobl identity ias
violated {(at the “Lle-algedbra® level), the Dirac quantization condition
ensures that finlte translations (obtained by exponentiation) are
asaoclative: in virtue of thia quantizatlon condition the phase which
measures the degree of non-associativity of finlite translations ls always of
the form exp(in2s) = 1 where n 18 an integer. '

The question remains 1f it s actually posslble that the Jacobl ldentity
1a violated. It has been polnted out in Ref. 8 that, in any formulation of
the quantum-mechanlical monopole problem in which the coordinates and the
velocitiea of the electron are.descrlbed by operators in a Hilbert space, the
Jacob! ldentity cannot be violated, alnce it follows from assocliativity of the
operators acting In a Milbert space (see also Ref, 1). This is described In
some detall in Ref. 8 for the erao atring formulation of the monopole problem
as well as for the Wu-Yang formulation in terms of local sections [9). The
Jacobl identity can only be violated if the coordinates and veloocitles of the
@lectron are not operators but belong instead Lo a non-associative algebra.2

One {3 then led to formulate the following problem. Glven the baslc

commulation relattons



(x,.x,1 =0, [x..vbl -1

(v.1)
['a"b] -1 Bnb(') LN ‘abono(')

(the indlces a, b, o, take the values 1, 2 and 3) oconslder the algedbra
consisting of all functlions of x, and Vg, day with cumplex coefficlents. Does
the consistency of this algebrs lmply some restrictions on the magnetic field

B,(x)? A simple formal manipulation glves the “Jacobian®

(lvyov,divgd e [(vj.v,].vzl ¢ [['2"3]"11 --4.8 0.2)
1f the divergence of the magnetic fleld vanishes, the Jacobl identity ls
satiafled (all other Jacoblans vanish in any osse) and the algabra can be
represented In terms of Hilbert apace operatdra by tlklng3

v. =p ~A B« A - 34 . (1.3)

This (s the usual case of vanishlng magnetic charge. In the case of a

monopole located at the origin one has

§.8 - -nagsdd) . .4
Is the algebra consistent in thls gase, or In any other case where the
magnetio charge does not vanish fdentically? With certain reasonable

assumptions we shall find that consistency requires

$d .8 -0 (1.5)

1.e., the magnetic charge must be independent of position., This excludes

(1.4) but leaves the Interesting case in which the magnetic fleld is linear in

x. lIndeed the general solutlion of (1.5) (8 of this type plus a magnetic field

with zero divergence. 1In Section 3, we show that by redefining the
coordinates and the velooltles one can always reduce an algebra satisfying

(1.5) to the case
B.(x) -x, . ' (1.6)

We shall ocall the algebra given by (1.1) and (1.6) the "magnetic" algebra. It
fa an inflnite non-assoclative algebra whigh seems to deserve some further
study. In Seation 3, we show that the condition (1.5) follows froa an
identity, the Maloev ldentity, whioch is weaker than the Jacobi identity, but
can be expected to be valid in a very large class of algebras, the
structurable algebras. The elements of a atruoturabie algebra that close
under commutation form a Malcev algebra, Before we must, however, introduce

some basio notlons in the theory of non-assoclative algebras.

2. MNon-asaoctative Algebras

In the Dirac foraulation of quantum mechanlcs the operators M that aot in

a complex Hilbert space satisfy the asaoolative law of composition, {.e.

(”QHZ)"3 - H|(H2H3). (2.1)

One may define non-assoclative algebras among these operatoras by taking an

antl-symmetric or a8 symmetrlo product of them. For example, the operators



that close under commutatlon satisfy the Jacobl ldentity trivially and form a
Lle algebra which Is not assoclative aince [[N“,Hb],ﬂol ta in general not
equal to ["a'[“b'"o]]' However, the non-associativity of Lie algebras is not
“intrinsic® In the sense that.they oan always be realized in terms of
asaoclative matrices with the product belng the commutator.

The heraltian operators corresponding to observables in quantua mechanics
close under antl-commutation and form a Jordan algebra {10]. Definlng the
Jordan product o as 1/2 the antl-commutator it 18 easy to verify that the
hermlitian operators in a complex Hilbert space do not satisfy the assoclatlve

law of composition under the Jordan product, i.e.

(Hyolly )l o H o(H oH ) : (2.2)
where

Hooll, = 1/72(H R, + HH) = Hol . (2.3)

Even though one does not have sssoclativity among three arblirary elements one

still has assoclativity for H,, Hy, and Haz
a2 2
(0l Yol © = B ool ol ©). (2.%)

Thia fdentity 13 referred to as the Jordan ldentity and, together with the
symmetry condltion on the product, defines a Jordan algebra [10]. In their
classio work Jordan, von Neumann and Wigner [11] have shown that with only one
possible exception all finite dimensional Jordan algebras are speclal, i.e.,

Lhey can always be reallzed In turms of assoclative matrices with the Jordan

product being one-half the anti-commutator. The only exception s the
exceptional Jordan algebra J3° of 3 X 3 hermitian octonlonic matrices, the
Jordan product being one-half the anti-commutator of the matrices. The
exceptionality was proven by A. Albert [12]}. Recently, Zelmanov has proved
that there are no infinite dimensional Jordan algebras that are exceptional
{13). Thus the algebra J3° 1s the unlque exceptional Jordan algebra that has
no reallzation in terms of assoclative watrices. In spite of its "fntrinsic”
non-assoclativity it was later shown {14] how one can formulate quantuam
mechanlos over J3° sgtlarylng all the axioms of von Neumann. Furthermore, the
Jordan formulation of quantum mechanlcs has been extended to the quadratio
Jordan formulation [15]) which extends to the exceptional octonlonle quantum
mechanics as well. The exceptlonality of J3o however implies the non-
existence of a Hilbert space formulation of the corresponding quantum
mochanlos a la Dirac.

In studying algebralc atructures that do not uatlafy the assoclative law.
of composition one lmportant concept that is ¢ften Introduced Is that of the
éaaoclator. Given three elements, a,b,c of an algebra A thelr associator

fa,b,0)} 1s defined as
[a,b,c] * (ab)e - a(ba). (2.5)

It vanishes identlcally for assoclatlive algébras. An alternative algebra i3

defined as an algebra In which the following tdentlities hold [16,17)
[a,a,u) -~ 0 (2.6a)

[b,a,a) = O, (2.60b)



Replacing a by (a * ¢) In (2.6a) one finds

{a¢o,asr e, d)={a,a,b) e+ [(a,0,b) ¢ {0,a,b] +(c,0,b) =0

= [a,0,b]) ¢ [0,a,b] = O. » (2.7)
Stmilarly (2.6b) implles
(b,a,c} ¢+ (b,c,a] = 0. (2.8)
Thus in an alternatlve algebra the assooiator {a,b,c] 13 an alternating

function of its arguments. Using this property of the assoolator, one may

derlve the following Moulfang fdentitlies for alternative algebras:

(aba)e = a(b(ac)) (2.9)
ac(aba) = ((ca)b)a . (2.10)
{(ab){(ca) = a(bc)a ’ (2.11)

where (aba) - (ab)a = a(ba) by alternativity, To prove (2.9) one needs only
- to write the quantity (aba)c - a(b{ac)) in terms of the assoclators and show

that It vanlshes as a result of alternating property:

(aba)c - a(blaoc)) = [ab,a,0) ¢+ [a,b,ac)
- -{a,ab,c] - [a,ac,b]

- -(ab)c + a((ab)o) - (ac)v + al(ac)b)

- -[az.b.o] - az(bc) - [nz.c.b] - az(cb) + a((ab)e) + a(({ac)v)
= a(-a(bc) - a{cb) ¢ (ab)c + (ac)b)

- a({a,b,c] + (a,0,b)) ~ 0.
The ldentity (2.10) can be similarly proven., To prove (2.11) consider

(ab)(ca) - a(bc)a =« [a,b,ca) + a(b(ca)) - a(be)a
= {a.b,ca} - alb.c,a)
« -[a,0a,b) - a[b,c,a]
= -(aca)b + a({ca)b) - a[b,0,a)
« ~(aca)b ¢ a((ca)v) - a[oc,a,p)

= ~(aca)b + a(c(ab)) = 0

where the vanishing of the expression In the last line follows from (2.9).
Given an alternative algebra A one can deflne an algebra A" with a

symmetric product o defined slmply as 1/2 the anti-coamutator
acb = 1/2(ab + ba).

The resulting algebra A i a special Jordan algebra [17). On the other hand
starting from an alternative algebra A If we define a new algebra A~ with the
anti-symmetrio product (commutator) then A~ 1a in general not a Lie algebra.
This I3 because the Jacobl identity 1s not satisfled in A”. The Jacoblan

J(a,b,c) defined by

J(a,b,c) = [[a,bl,e] + [[e,a),b] * [[b,c],al (2.12)



is slaply proportional to the assoclator
J(a,b,0) = 6[a,b,c] : (2.43)

which does not vanish in general. The algebra A~ thus obtalned s a Malcev

algebra (18,19). A Malcev algebra ia defined by an anti-sywaetric product *.
a*be-bta (2.1%)
and a fourth order identity (Malcev identity)

(a*b)® (a%c)«((a®*DbD)ro)®ar ((b%o)*a)*a

¢+ ((c® a)® a)0p, (2.15)
To prove that the algebra A" with the anti-symmetrlo produot ® taken as the
commutator satisfies the Malcev ldeniity one uses the Moufang identity
(2.1%). This 13 mo3t easlly done by flrst showing that the (2.15) is
equivalent to the following identity
J(a,b,a * ¢) -.J(a,b,c) ¥ a. (2.16)

We have

J(a,b,a®*c)-(a®b)®" (a%a)+((a“c)®a)*p

¢+ (b% (a¥g))* a.

Replacing for (a * b) ® (a ® ¢) Lhe right hand slde of (2.15) we have

Jla,p,a®c)=((a®*b)c)*®as+ ((b*c)*a)sa
t({(c ™ a)da)"pe ((a¥o)®a)sp
¢+ (b* (a®c))"a

= J{a,b,c) * a
proving (2.16). Since in A~ the product % Is simply the commutator, we have

J(a,b,a ® o) - J(a,b,0) * a
= J(a,b,{a,0]) - [J(a,b,c),a]}
= 6(a,b,[a,0)) - 6((a,b,0),8]
« 6[a,b,ac) - 6[a,b,ca) - 6{a,b,cla + 6$[afb.o]
- -6f{ao,b,a) + 6alb,c,a) - 6[a,b,0a8) + 6[a,c.bla
= -6(((ac)b)a - (ac)(ba) - a(bc)a *+ a(b(ca)) + (ab)(ca)
- a(b(ca)) - ((ac)bla ¢+ a(cb)al
= -6{(ab)(ca) - a(bc)a - (ac)(ba) *+ a(cb)a)

-0

thus proving the Malcev identity for A™.
For assoclative algebras A the assoclator vanishes tdentically and hence
the corresponding algebra A~ is a Lle algebra. The Maloev identlity 1s

trivially satisfied in this case. Therefore Halcev algebras correspond to a

- generallzatlon of Lie algebras. They arlse naturally from alternative

algebras under the commutator product. The best known example of an
alternative algebra which (8 not assoclative 13 the octonlon algebra O of
Caylay, Graves and Dickson. The seven lmaglnary units of the octonions close

under commutation and form a Malcev algebra which we denote as 0~ , The



algebra O s the unique (up to isomorphisas) finite dimensional slmple Malcev A=sH+S
algebra which Is not a Lie algebra (19,20].

As for non-assoclative algebras that go beyond alternative algebras we where H = {xcAtx « x} and S = (3¢A:8 = -8). The slements of the odd
should mentlion skew-alternative algebras [21). A skew-alternative algebra la subspace S close under comautatlon, 1.e, [8,t] = st - ts ¢ S 1f s,teS, and
an algebra with an lnvolutlon x + ¥ such that the assoolator satlafles form a Malcev algebra. Thus we see that the concept of a Malcev algeﬁra 1s

very general as long as one ls dealing with the commutator product.
{s,x,y) = -(x,8,y) = (x,y,8)

3. Consfstency Conditlon

where 8 I8 an odd element (1.e., changes slgn under the involutlion We shall now asaume that the commutators glven by (1.1) satisfy the

8- -8) and x,y are arbltrary elements of the algebra., Struoturable algebras Malcev ldentity which we take In the form (2.16). The only nontrivial

that have been studied In detall by Alllson (21) satlafy the skew- consaquence of the Malcev identity is obtained If one considers the case of

alternativity property. A struoturable algebra A is defined as an algebra four velocities, for other cholces of the basic varlables the identity s

wtth an involution that satisfies the following operator identity A satlsfled. Therefore we requlire, for Instance,

[Tz'vl,'] ® v'l'zl,y - VI,T y* - J(V|pV20[V|oV3]) * [J(v‘.vz.v:’).v,] =--0. (3.1)

The 1inear operator T, and the blllnear operator V, . are deflined in Now, the first term on the left hand slde la easily seen to vanlsh. Indeed,
terms of multiplication in A: 1t equals
Vgt " 9z e (@nx - () Cvyolvailvyavg]dd « Cvp llvyovglivydd ¢ [lvy,vgl,lvy,vp11l. (3.2)

Tx(z) = xz ¢ X - 2% .
Uatng (1.1), we see that the first two terma cancel, because they are

Structurable algebras are a very general class of non-assoolative algebras reapectively equal to 13 3.8, and to -13,3,8 The last term vanlshes by

122 2V 2°
that Include associative algebras, Jordan algebras and alternative algebras. (1.1) also. Therefore the second term on the left hand slde of (3.1) must be
Given a structurable algebra A It can be docomposed as a vector space dlrect zero. Using (1.2) we obtaln

sun of Its even and odd subapaoces

3, -8 -o. (3.3)



13

The other components of (1.5) oan be obtained In a similar way.
We have found that the divergence of the .magnetic fleld must be

independent of x

¥ .8 - constant. (3.&?
The most general solutlon of thia equation 13 glven by

-8 . ¥xik ' (3.5) ¢
where B* Is 1tnear in x. If we iatroduce the new vnrlfblea

LA A W) ‘ (3.6)
we see that they satlaly an algebra slailar to (1.1) but with B replaced by
B*., Flnally, It 13 not hard to see that, combining transformations of the
type (3.6) with linear transformations on the coordinates and veloclties, one

can roduce the algebra to the form (V.1) with (1.6) or, equivalently, to the

form (1.1) with

8, = x4, By = B3 = 0. 3.7

These transformations, which are invertible, can be interpreted as a change of
basls In the Lnflnite algebra consisting of the functions of the basis

eluments x, and v,.

14

‘N, Conclusion

We have investigated the posalbility that the dynamical variables
describing an electron moving in the magnetic fleld generated by a
distribution of magnetic charge form a non-assoclative algebra which does not
satisafy the Jacobi itdentity. Having dropped the Jacobl identity we have
assumed the validity of the weaker Malcev identity, which ls known to be valid
for a very large class of algebras with an anti-symmetric product. This
restriots the magnetlc charge distribution to belng constant and therefore
excludes the case of a point monopole. We have not actually proven that the
case of the point monopole I3 Inconsistent, but thils seems to be likely, In
view of the wide range of valldaity of the Malcev identity.

On the other hand we expect the magnetic algebra for constant magnetic
charge to be consistent, Our attempts to find an explliclt representation of
the nagnet}o algebra have been unsuccessful. This infinite algebra would seem
to be an interesting subject for further mathematical atudy.

We have not constdered here the gquestlion of the quantum mechanlcal
description of the system with constant magnetic charge distributlon.

However, there seems to,be no serlous problem in developing such a description
in terms of density matrices and projection operators, along lines similar to
those followed in the Jordan approach to quantum mechanica [10,15].

Coming back to the question of the 3-cocycle mentioned In the
introduction, the outcome of our investigatlion 138 that the violation of the
Jacobl identity corresponding to a polnt magnetic monopole is not acceptable,
since It leads to an lnconsistent algebra, in the sense explained above. It
seems that the polnt monupole muist be treated ; la Dirac (with a string) or
with local sectlons. On the other hand, the algebra corresponding to constant

magnetic charge seems to be consistent. Here we have a violatlon of the
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Jacobl identity, which by exponentlation leads to a true non-assoclativity of
the finite translations as well, Since the amount of magnetio charge
contained In a finite volume varies contlnuously there is no quantizatlion

condltion which could restore the associativity in exponentlial form.

This work was supported in part by the Director, Offlce of Energy Research,
Office of High Energy and Nuclear Physica, Division of High Energy Physics of
the U.S. Department of Energy under contract DE-AC03-76-SF0-0098 and In part
by the Natlonal Sclence Foundatlon under research grant PHY-81-18547.
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Footnotes

Cocycles and cohomology are dlascusaed 1n Refs. 6 and 7.

Here we use the term non-assocliative to mean not assoclative. In the
mathematics literature the term non-assoclative algebra is used in a
general sense to denote assoclative as well as not assoclatlve algebras.

We take the mass and the charge of the electron equal to unity.
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