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FRICTION IN NUCLEAR DYNAMICS* 

W.J. Swiatecki 

Nuclear Science Division, Lawrence Berkeley Laboratory, University of 
California, Berkeley, California 94720 

The problem of dissipation in nuclear dynamics is related to the breaking 
down of nuclear symmetries and the transition from ordered to chaotic 
nucleonic motions. In the two extreme idealizations of the perfectly 
Ordered Regime and the fully Chaotic Regime, the nucleus should behave as 
an elastic solid or an overdamped fluid, respectively. In the intermediate 
regime a complicated visco-elastic behaviour is expected. The discussion 
is illustrated by a simple estimate of the frequency of the giant 
quadrupole resonance in the Ordered Regime and by applications of the wall 
and window dissipation formulae in the Chaotic Regime. 

1. INTRODUCTION 

In the context of nuclear physics, the concepts of friction, dissipation, 

viscosity have come into widespread use only in the last 10-15 years, but 

early precursors can be found in the literature. Fig. 1 reproduces the last 

paragraph from a 1940 paper by H.A. Kramers, entitled "Brownian Motion in a 

Field of Force and the Diffusion Model of Chemical Reactions." l 

Apart from its intricate logic, this passage is remarkable in that it 

introduces into nuclear physics, perhaps for the first time, concepts that are 

currently central in discussions of nuclear dynamics: viscosity, friction, 

superf1uidity, plasticity and crystallization. 

As we know today, all these concepts have a place in the interpretation of 

nuclear phenomena, but their relations are quite intricate and, even now, are 

not fully understood. No wonder the logic in Kramers' concluding paragraph is 

50 contorted! [Niels Bohr is said to have advocated the rule: never talk 

more clearly than you think. ("Bohr's regel om aldrig tale klarere end man 
taenker. 1I2 ) In the paragraph I quoted, Kramers seems to have followed closely 

that rule.] 

Another early paper, in which nuclear viscosity is discussed, is the 1953 

article by D.L. Hill and J.A. Wheeler on "Nuclear Constitution and the 

Interpretation of Fission Phenomena." 3 (It is a very clearly written paper--I 

wonder if this caused Niels Bohr, who is cited as co-author of an 

*This work was supported by the Director, Office of Energy Research, Division 
of Nuclear Physics of the Office of High Energy and Nuclear Physics of the 
U.S. Department of Energy under Contract DE-AC03-76SF00098. 



earlier draft, to withdraw his name from the final version!) 

Fig. 2 reproduces parts of a section from this paper, entitled "Nucleus as 

Quantum Fluid." 

Physica VII. no 4 
April 1940 

BROWNIAN MOTION IN A FIELD OF FORCE 
AND THE DIFFUSION MODEL 

OF CHEMICAL REACTIONS 
by H. A. KRAMERS 

Leiden 

Still it is not uninteresting 
to con;ider the quc;tion of the cOl'fficicnt of viscosity of nuclear 
mattl'r >omcwhat more clo;dy. Even if a nucleus in its normal state 
Ix'hawd as a pt'rfectly hard, non plastic crystal, there is no reason 
to exclude the possibility that the excited nucleus possesses a finite' 
codficient of internal friction. In view of the surprising properties 
of He II it is even dangerous to assert that this coefficient cannot 
be extrcmely small; this assumption would not necessarily contradict 
B 0 h r's asssumption that a single neutron impinging on a nucleus 
is in first instance captured. This assumption is, however. not 
well reconcilable with the idea that nuclear matter should behave 
as a perfectly hard crystal. i.e. a certain amount of plasticity is 
anyhow to be expected. 

3 Jan. 1940 
Received January 29tb 194:), 

FIGURE 1 
Kramers l 1940 remarks on nuclear 
vi scos ity 1 

Nucleus as Quantum Fluid 

We have encountered in this discussion some of the 
properties of an unusual idealized quantum fluid. It is 
considered to be completely transparent internally with 
respect to motion of the constituent particles, and to 
receive disturbances solely by way of surface deforma­
tions. 

It is capable of collective 
oscillations, but it is the wall which organizes these 
disturbances, not nucleon to nucleon interactions. Oscil­
lations experience a damping, but the mechanism of 
the damping is unlike that encounterea in ordinary 
liquids. 

The wave function of the particle to come out 
is spread over the whole nucleus and has energy pumped 
into it by Doppler effect; it is not concentrated near a 
part of the surface before emission. 

Altogether one is dealing with 
a most interesting new form of matter. 

FIGURE 2 
Hill and Wheeler's view of a 
nuc1eus 3 

As is well known, one can find in the text of Hill and Whee1er l s paper the 

seeds of almost every import~nt idea in nuclear physics. (The few exceptions 
not appearing in the text can be found in the figure captions4.) The 
idea that I would like to single out in the present context is that the 
breaking down of nuclear symmetries should introduce a viscosity into the 
dynamics of nuclear shape evolutions. (Hill and Wheeler's "shape-dependent 
viscosity"). Since the presence or absence of symmetries is also decisive for 
whether the nucleonic motions inside the nucleus are ordered or chaotic, the 
problem may be stated as the effect of an Order-to-Chaos transition on nuclear 
dynamics. 

2. ORDER AND CHAOS IN DYNAMICAL SYSTEMS 
The study of Order-to-Chaos transitions in dynamical systems in general has 

seen a tremendous development in the past 2-3 decades 5 and these developments 
have begun to make their way into nuclear physics as wel1 6,7. The research in 

the field of Order-to-Chaos transition impinges on an incredibly large number 

of topics, including pure mathematics as well as plasma, solid-state and 
accelerator physics, hydrodynamics, astronomy, chemical kinetics, biology, 
physiology and eco1ogy8,9,10. This is not really surprising: after all, 

v 



the description of almost any system in nature--once one goes beyond the 

simplest idealization--involves equations coupling two or more degrees of 

freedom by means of non-line~r terms. And it has been a great discovery of 

the past decades that in most cases like that, the resulting dynamics is not 
just either ordered or chaotic--as one might have believed at the turn of the 
century--but that there is an incredibly rich spectrum of intermediate 
behaviours. This spectrum is so rich, in fact, that comparisons with organic 
systems come naturally to mind. 

Let me flash before you a few figures which--even if I don't explain them 
properly--give a taste of what is involved. 

Fig. 3 represents the results of a computer study of the problem of a ball 
bouncing between two parallel walls, whose distance apart oscillates in a 
periodic way. (The problem was examined in 1949 by Fermi as an analogue to a 
possible acceleration mechanism for cosmic rays, in which charged particles 
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FIGURE 4 
Poincare section through the phase 
space and four regular orbits in the 
Perey-Pilt potentjal with ratio of 
axes 1.27 
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FIGURE.5 
Chaotic phase space and orbit in 
Perey-Pilt potential with ratio of 
axes 1.57 
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FIGURE 6 
Ordered, intermediate and chaotic 
phase space for Henon-Heiles 
trajectories at three energie~9 

gain energy by colliding with moving magnetic field structures. This 

wall-bouncing or Doppler acceleration mechanism is also somewhat related to 

the so-called "wall formula" for nuclear dissipation, to the "escape width" of 

nuclear giant quadrupole resonances and to the "Fermi jet" mechanism of 
pre-equilibrium emissions of nucleons in nucleus-nucleus collisions.) Fig. 3 

is a look at the two-dimensional phase space of the particle bouncing between 

the walls. (The ordinate u is the particle's velocity and c is related to 

its position.) In the computer studies, low velocity test particles were 

injected between the walls and you can see how the oscillating wall pumped 

energy into the particles. Thus the right hand side of the figure is the 

4 



velocity spectrum of the particles after many bounces. For low velocities, 

the spectrum is pretty featureless, but for higher velocities weird structures 

appear unexpectedly, as seen particularly clearly in the phase space on the 

left. 

Fig. 4 is taken from a recent numerical study of the classical orbits in 

the Perey-Pilt potential, a potential resembling a diffuse nuclear Woods-Saxon 

well. The size of the potential is appropriate to a nucleus with mass number 

A = 16 and the shape is a spheroid with a ratio of axes equal to 1.2. The 

lower part of the figure shows some regular two-dimensional periodic orbits in 

such a potential and the upper part shows a section through the three­

dimensional phase space of all possible orbits with the given energy (the 

so-called Poincare section). Unless you already know how to read such 

Poincare plots, you are not supposed to understand the figure--the only 

message I want to convey is that there are some very definite structures in 

the phase space, associated with the existence of regular symmetric orbits in 
ordinary space. Now contrast Fig. 4 with Fig. 5, which shows a trajectory 

with the same energy as before (i.e. within 1% of the dissociation energy in 

the Perey-Pilt potential) but for a ratio of axes of 1.5 instead of 1.2. Both 

the trajectory and the Poincar~ section show that order has given place to 

chaos at some critical value of the deformation between 1.2 and 1.5. Fig. 6 

shows similar plots in the so-called Henon-Heiles problem (a mass point in a 
two-dimensional anharmonic oscillator well). This problem was studied 

originally in connection with the oscillations of stars about the galactic 

plane. The three parts of Fig. 6 are again Poincare sections through the 

(three-dimensional) phase space of the particle's motion, for three values of 

the (dimensionless) particle energy E. As this energy is increased from E = 
1/12 to E = 1/6, one can again see order giving place to chaos (in a fairly 

abrupt way). 

Fig. 7 is taken from a numerical study of the phase space for orbits in 

intersecting storage rings for particle accelerators. The next case, Fig. 8, 

is a real beauty. The top also refers to intersecting storage rings, and the 

bottom is a three-dimensional representation of the structure of the phase 

space for a system like the Henon-Heiles problem. Note in particular the last 

sentence in the original captions: "A magnification about such an elliptic 

orbit yields the same picture all over, etc. adinjinitum"! 

The next two pictures illustrate the occurrence of such infinite 

regressions in a related problem of pure mathematics, concerned with repeated 

applications of a mapping or transformation such as z ~ AZ (1 - z), where z 
is a (complex) number and A a (complex) parameter8,11 Fig. 9 shows a 

structure that appears in the complex A plane. Fig. 10 is a related 
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FIGURE 7 
Phase plot for Intersecting Storage 
Rings9 

structure. 

Figure 10 
Colt-posite Phase Plot near the elliptic ori!)in, for the intersecting 
storage rings (2.39/29) (after {ZZ.15.ZJ). The rational to.·; of Fig. 
8 have broken up into disjunct elliptic and hyperbolic Ql'blts, cf. 
rig. 9. From the latter now emanate the wild separatrices (sketch) 
and chaotic regions discllssed in sect;on 2.4. Coneentt"ic \olith the 
ori<Jin are irrational K.A.r~. tori which do survive,conUining the 
majority of all orbits in this picture. Magnifications about the --E-­
elliptic orbits yield pictures similar to this Fig. 10. etc.: Of 

--;. that .(Jlai.lite hi£M.ltc.hy only the next K.A.M. tori are sketched. 

Figure 11 
Nested K.A.M. tori in the 3·dimensional )(,y,y phase space of a 
(reduced) Ham;] toni an system like the Htnon·Heiles system (2.8·10), 
see figs. 10 and 4 (taken from [16]). Note the smooth regular K.A.M. 
tor\ about the center and about the elliptic orbits \·/hich. together 
with the chaotic regions. populate the gaps between the K.A.M. tori 

---+ A magnification about SUCh an elliptic orbit yields the same picture 
allover, ue. ad .l.u6.cJt.c:.twn. +- ~ 

FIGURE 8 
Structures in phase space9 

XBL 852-1396 

All this was just to give a hint of the baroque goings on in phase space 

when order gives place to chaos in dynamical systems. Note also the diversity 

of the applications of this research. (I attended recently a conference on 

Non-linear Systems and Dynamics. One of the lectures was entitled "Fish Gotta 

Swim" and dealt with how a dogfish swims. Apparently, one gets useful 

insights into this problem by modeling the spinal chord of the dogfish as some 

70 coupled non-linear oscillators and studying the periodic solutions that one 

finds numerically using a computer.) 

But back to the nucleus. As I hinted already, the nucleus is a system 

where some of the richness of the order-to-chaos transition may be explored 

under novel and sometimes unique conditions, in particular where quantal and 

dissipative effects are concerned. So let me sketch the three principal 

phenomena where dissipation or friction make an appearance in nuclear 

physics--fission, nucleus-nucleus collisions and giant resonances--and point 

out the relation to the order-to-chaos transition. 
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Structures in the complex A plane 
associated with the iteration 
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3. FRICTION IN NUCLEAR DYNAMICS 

MandelbrOI: FraClal AspeCIS of heralion of z - "z( I - z) 

X8l 852-1398 

FIGURE 10 
Structures associated with the 
iteration z ~ Az(1 - z), from11 

In the case of fission it is clear that the dynamical evolution of the 

shapes of a fissioning nucleus will depend on whether the nuclear fluid is 

viscous or not. Think of the division of a charged liquid drop: the fission 

will look drastically different depending on whether you have a drop of honey 

or a drop of mercury. In particular, the kinetic energy of the separating 

fragments would be much less for honey than for mercury because of the viscous 

drag between the two separating pieces. On the experimental side, fission­

fragment energies have been studied systematically and in great detail for 

some 45 years. The theory of fission is just as old but, in the early days, 

the question of viscosity was, quite mistakenly, underemphasized. Fig. 11 

shows some sketches made by Niels Bohr during a conversation about fission, on 

October 7, 1950, his 65th birthday. Alongside is an example ofa calculation 

from the sixties12 of the fission of an idealized non-viscous liquid drop. 

How strongly the fragment energies could be affected by viscosity is shown in 

Fig. 12, which illustrates more recent calculations with and without 
viscosity13,14. The viscosity used to calculate the lower solid curve was of 

the ordinary kind, familiar from conventional hydrodynamics. (From the 
comparison with the experimental data you might want to conclude that nuclei 

must be only slightly viscous--but this is almost certainly wrong. As I will 

7 
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FIGURE 11 
Niels Bohr's sketches illustrating fission, and a 
calculation of the fission of an idealized, non-viscous 
237Np nucleus, from12 

8 

argue later, nuclei are very viscous, but the viscosity is not of the ordinary 

hydrodynamic kind). 
In the case of the collision of two nuclei, one may again expect very 

different behaviour depending on whether the nuclei are viscous or not. For 

example, in somewhat peripheral collisions, the relative kinetic energy of the 
nuclei will be reduced rapidly if there is a lot of friction between the two 

pieces. Moreover, it should be more difficult to make two nuclei fuse into 

one if there is a large viscosity resisting the flow. It was, in fact, the 

study of so-called deep-inelastic collisions between nuclei some 15 years ago 

that stimulated the development of dissipative theories of nuclear 

dynamics15 . In such collisions, illustrated in Fig. 13, the twd nuclei are 

brought to relative rest without fusing (and almost without changing their 

masses). This suggests at once a large friction between the two pieces and a 

large viscosity resisting the flow of nuclear matter. 

\.1 
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FIGURE 13 
Three types of nucleus-nucleus 
reactions 

In addition to fission and nucleus-nucleus collisions, evidence for 

friction in nuclear physics comes from damping widths of so-called giant 
resonances16 ,17. These are resonances of a collective nature, of which the 

three most familiar examples are the giant dipole vibration of all the 

neutrons against all the protons, the spherically symmetric compressive 

monopole mode and the giant quadrupole mode, where the nucleus is alternately 

stretched and flattened along an axis of symmetry. Fig. 14 shows the 

systematics of the giant quadrupole resonance energies for nuclei in the 
periodic table and Fig. 15 shows the observed widths of these resonances, 

testifying to the presence of dissipative effects. 

There exists today a wealth of experimental data on fission, nuclear 

collisions and giant resonances, all bearing on the problem of dissipation. 

As regards the interpretations of these experiments, one h~s available a whole 

spectrum of theories, ranging from microscopic, quantal descriptions using the 

Time-Dependent Hartree-Fock method, to macroscopic, hydrodynamic theories 

ignoring altogether the nucleonic degrees of freedom. I can do little more 

than list the main groupings of these theories, mentioning their relevance to 

9 
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the question of dissipation. After that, I will come back to the relation of 

dissipation to the Order-to-Chaos transition. 

4. GROUPING OF THEORIES 

I have divided the theories into two main classes, microscopic and 

macroscopic. The latter is further subdivided into statistical and 

hydrodynamic (Fig. 16). There are, of course, mixed and intermediate 

situations that are not easy to classify. 

The most detailed are microscopic theories, in which all the nucleonic 
degrees of freedom are treated explicitly. At very high energies they are 

often of the type of Monte Carlo cascade calculations18 , or even brute-force 

computer solutions of the A-body problem of interacting classical mass 

points19 . At low energies, the self-consistent Time-Dependent Hartree-Fock 

method has seen very active development in the past ten years20. Being 

microscopic, these theories do not need the concepts of friction or viscosity 

in their formulation and they are in this sense outside the scope of this 

10 
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Macroscopic Brownian motion 
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Bohr, Wheeler 

FIGURE 16 
Classification of nuclear theories 
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talk. On the other hand, the results of the microscopic calculations do, in 

general, display viscous features to a greater or lesser extent and they could 

serve as a testing ground for macroscopic approximations. But, on two 

accounts, there is need for caution in using most existing TDHF calculations 
as a benchmark when the specific question of dissipation is at issue. First, 

the standard TDHF treatment is based on disregarding altogether residual 
interactions between nucleons. Second, many TDHF calculations introduce into 
the problem various symmetries to make the calculation more tractable. Both 

these approximations tend to favour the preservation of regularities in the 

nucleonic motions and so delay the development of chaos. Since, as we shall 

see, the transition from order to chaos is intimately related to dissipation, 

it is important to keep in· mind these approximations of many currently 
available TDHF calculations. 

In macroscopic theories, a set of collective coordinates is introduced 

from the beginning and their time development is described by differential (or 

integro-dfiferential) equations with or without a fluctuating (Langevin) 



term. In the former case one has a type of Brownian motion in the space of 
the collective coordinates, with the microscopic coordinates treated as a heat 

bath21 . In the latter case one ends up with hydrodynamic-type collective 

theories, in which only the average or most probable time development of the 

system is described. This is in contrast to the statistical theories, where 

the average drift of the coordinates, as well as their fluctuations about the 

average, are included in the description. 
The concept of friction or viscosity enters directly as input into 

macroscopic theories of the hydrodynamical kind. In the statistical theories 
there appears in addition a diffusion coefficient describing the width of the 
fluctuations. Under certain conditions (near equilibrium) it is related to 

the friction coefficient by the Einstein relation 21 . 
Here are a few illustrations of the type of results obtained with the 

different approaches. Fig. 17 shows a microscopic classical treatment of a 

high-energy collision between Niobiu~ nuclei 19 . Fig. 18 shows an example of 
a TDHF study of a collision between 160 and 40Ca at 315 MeV 20 . Fig. 19 
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FIGURE 17 
Computer simulation of a high-energy 
co11 i s i on 19 
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FIGURE 18 
A collision between 160 and 40Ca 
at Elab = 315 MeV and l = 80~, 
according to a TDHF calcu1ation20 

shows the angle-energy correlation for a deep-inelastic collision in which a 

statistical spreading due to fluctuations is included22 . There are many such 

calculations in the literature, dealing with collisions between different 

pairs of nuclei, with damping of giant resonances and with fission. I have 

included a number of references to recent articles in which the state of this 
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FIGURE 19 
Angle-energy correlations (Wilczynski plots) 
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research is reviewed14-17 ,20-30. The general situation is that the degree of 

correspondence between the calculations and experimental data is uneven and 

often depends on how many adjustable parameters one is willing to introduce in 

the theories. 

Rather than attempting to describe in more detail the current situation, I 

would like to focus on one theme that seems to be emerging from the multitude 
of experimental and theoretical studies, and which I take as the heading for 

the next section. 

5. THE NATURE OF NUCLEAR DYNAMICS IS DETERMINED BY SYMMETRIES 

I have tried to summarize the idea in a single diagram (Fig. 20). In this 

figure I have focused on two limiting cases, the Chaotic Regime and the 

Ordered Regime. In the former the nuclear shape is supposed to have no 

symmetries and the nucleons move chaotically inside. the irregular mean-field 

potential. There are no good quantum numbers for the single-particle motions 

(except for the particle energy in the case when the mean field is static). 

In the opposite extreme, the nuclear potential is dominated by symmetries, the 

nucleonic motions are regular orbits and there are other constants of the 

motion and other quantum numbers besides the energy. 
The inset pictures in Fig. 20 illustrate qualitatively the energy spectrum 

of the system, plotted as a function of deformation. The lowest curve is the 
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FIGURE 20 
Symmetries and nuclear dynamics 
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ground state and its behaviour as a function of deformation corresponds simply 

to the dependence of the potential energy of a nucleus on shape. In the 

Chaotic Regime this ground state is drawn with a gentle positive curvature, 

corresponding to the increasing surface energy of the deforming nucleus. It 

is well known that, in the absence of shell effects (and there are no s~ell 

effects in the Chaotic Regime), a surface energy is an excellent approximation 

to the deformability for all but the lightest nuclei. (The wiggles in the 

figure are meant to hint at the quantal nature of the particles: this may 

introduce a small-scale structure with a characteristic length of the order of 

the wavelengths ~ of the nucleons in the nucleus.) The other curves in the 
Chaotic Regime are the excitated states of the nucleus. In the mean-field 

approximation they are obtained by rearranging the single particles from the 

set of eigenvalues corresponding to the ground state, to some other set with 

higher energy. Since the individual-particle states are assumed to have no 

good quantum numbers besides the energy, their eigenvalues will not, in 

general, cross as a function of deformation. It follows that also the energy 

levels of the nucleus, when approximated as a sum of individual-particle 

eigenvalues, will almost never cross. Consequently, the excited states of the 

system have to follow the general trend of the ground state, as shown in the 



figure. (We are looking apart from the few good Quantum numbers for the 

system as a whole. such as the total angular momentum.) 

To get an idea about the energy spectrum in the Ordered Regime. let us take 

a highly schematic model of a nucleus. namely A independent particles in a 

very symmetric potential. such that the three-dimensional motion of each 

particle is separable into three one-dimensional motions. A spheroidal. 

infinitely deep. sharp potential well would be a good choice. but it turns out 

that an even simpler potential. the Hill-Wheeler box. is just as good for 
purposes of illustration and is easier to interpret. The lower inset in Fig. 

20 is a Qualitative sketch of the energy spectrum. and Fig. 21 is a 

Quantitative illustration. In this example the box has x.y.z dimensions 

Lexp(-~/2). L exp(-~/2). L exp ~. so that ~ is a measure of a volume­

preserving Quadrupole-type stretching deformation. The eigenvalue €i of each 

particle in the box is proportional to (~2 + m2)exp ~ + n2exp(-2~). where 

~.m.n are the numbers of half-wavelengths along the three axes of the box. 

Each parabola-like curve in Fig. 21 is a plot of the total energy. I €i' in 

the case where the Quantum numbers ~.m.n for each particle are kept fixed. 

In other words. it is the energy of the system when all the wave functions are 

stretched (in the Quadrupole mode) while keeping the volume and the nodal 

structures intact. The dashed curve in Fig. 21 indicates the trend of the 

envelope of the parabola-like curves. Thus it corresponds to the deformation 

energy of the system in the case when. at each deformation. the particles 

are allowed to readjust their Quantum numbers (and thus their nodal 

structures) so as to minimize the total energy. The envelope is consequently 

the ground-state deformation energy and the set of higher-lying curves at each 

deformation gives the single-particle excitations of the system. In contrast 

to the Chaotic Regime. these energy levels do cross. a consequence of the 

separability of the equations of motion and the presence of additional Quantum 

numbers for the individual particles. 

Note also that in Fig. 21 the energy of the cubic shape (with ~ = 0) sags 

below the dashed curve corresponding to the envelope. This is because the 

case illustrated refers to 60 eigenvalues (or 240 nucleons in Quadruply 

occupied orbits) and 60 happens to be a closed shell for the cubic shape. 

(Several degenerate eigenvalues €i have just been filled at this particle 

number.) This shell effect gives the cubic shape special stability. 

In addition to the Chaotic and completely Ordered limiting cases. there 

will be an Intermediate Regime. where the system is neither chaotic nor fully 

separable. The deviations from a fully separable situation may be associated 

with three different physical features: a) the mean field may have 

irregularities that spoil the separability. b) the mean field has a finite 

15 



112
.".2 [2 2 0 2 -201 

Elmo: 2ML2 (I +m )e +n e J 

1260 

N-I 

1240 ::E' ;' 
;' 

(\J 

(:imol deformalion 

..... 
N 

'" N 

~ potential 

1220 
'" 'c Potential curve for 
::> rapid deformation 
c 

>-
~ 1200 
'" c 

'" 
'0 
'0 
I-

1180 

0.0 0.1 0.2 0.3 0.4 

Deformation, a 

MUS 6320 

FIGURE 21 
The energy of a Hill-Wheeler box as a 
function of a stretching deformation 
Q. From 37 

Energy 

Deformation 

16 

, 
I 

I 
I 

I 

Resonances in 
the continuum 

Avoided crossings 
in energy leilels 

X8L 852·7077 

FIGURE 22 
Schematic energy spectrum in the 
Intermediate Regime 

depth, so that particles are sometimes ejected into the continuum and c) there 

are residual interactions between the particles, which break down the 

mean-field approximation in the first place. Fig. 22 illustrates 

schematically the effect of these perturbations on the energy spectrum of a 

nucleus. Instead of crossings between parabola-like levels, there will be 

near-crossings and, at higher energies, some of the parabolas will peter out 

into resonances corresponding to particles ejected into the continuum. 

Note that in the Ordered Regime there are two characteristic stiffnesses in 

the problem. The following noteworthy features of these stiffnesses may be 

demonstrated. The soft stiffness of the envelope is proportional to the 

surface area of the system and acts, therefore, like a surface energy of a 

fluid, just as in the Chaotic Regime. The large stiffness is proportional to 

the volume of the system (or to the number of nucleons) and acts, therefore, 

like an elastic energy of a solid body. Whether a nucleus will respond to a 

deformation as a fluid or as an elastic body will depend on the speed of the 

deformation. For very slow deformations the system will tend to stay close to 

the ground state and behave like a fluid; for very fast deformations it will 

tend to follow a parabola-like stiffness and behave like an elastic solid. In 

~. 



general, neither limit will be followed exactly and the system will get 
derailed into neighbouring excited levels. This means that collective energy 

of deformation will be partly converted into excitation. Thus, in the case of 

the nearly ordered regime, damping may be expected to be a sensitive function 

of the residual interactions, of the speed of the deformation and of 
deviations of the mean field from the symmetries that produced separability. 
The deviations from separability are themselves functions of the amplitude of 
the deformation, so one may expect a very complicated behaviour, where both 
the stiffness and the damping are complicated functions of several variables. 
In addition, for a sufficiently fast deformation, particles may be ejected 
directly into the continuum31 - 36 . 

In the Chaotic Regime the situation ought to be simpler, since (looking 
apart from the wiggles) there is only one stiffness and there are no 
symmetries and shell effects to worry about. As I will discuss in the next 
section, one finds that as regards large-scale deformations, the nucleus 
should behave as a very viscous fluid, with a type of viscosity quite 
different from that found in ordinary liquids. So the Qualitative picture is 
this: an elastic behaviour in the perfectly Ordered Regime, a complicated 
visco-elastic behaviour in the Intermediate Regime and a simple viscous 
behaviour in the Chaotic Regime (except, perhaps, for small-amplitude motions). 

6. QUANTITATIVE ESTIMATES 
Let us start with the Ordered Regime. In the case of A Quantized particles 

in the Hill-Wheeler box, it is easy to derive elementary expressions for the 
volume energy, the surface energy and the elastic energy. Thus 

Volume energy = (energy per particle)A 
3 3 1 2 3 2 = (- c)A = -(- mv )A = -- Mv 
5 5 2 10 

Here c is the Fermi energy (the energy of the highest occupied eigenvalue 
ci ), v is the corresponding Fermi velocity, m is the nucleon mass and M is 
the total mass of the nucleus. Similarly, 

Surface energy = (Surface Area)y 

where 

y = --' (9~)'/3(particle density)2/3c 
40 4 

(1 ) 

( 2) 

( 3) 
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(Subtleties arising in the evaluation of yare discussed in37 .) 18 

Elastic energy = (Volume energy)~2 

= 1(1 Mv2)~2 
2 5 

(4) 

The numerical value of the specific surface energy given by eq. (3) is not 

relevant for nuclear applications--it would be different for a more realistic, 

diffuse surface. But as regards the elastic stiffness, there are two 
remarkable features of eq. (4). First, it would hold for other types of 
potential wells,' provided the wave functions were stretched in a quadrupole 

mode without changes in the nodal structures38 . (But only in special cases 
would such stretched wave functions continue to be eigensolutions in the 

stretched mean field.) Second, the formula is identical for a gas of classical 

independent particles in a box (with the same velocity distribution as the 

Fermi gas). Thus a classical gas of independent, long-mean-free-path 

particles (a Knudsen gas) in a box with perfectly reflecting walls would 

respond to (volume-preserving) deformations not as a gas at all, but as an 

elastic solid! Moreover, its elastic stiffness would be quantitatively 

identical with the stiffness of a quantized gas. This sounds unexpected, 

since in the quantized case the stiffness reflects a property of specifically 

quantal objects--the wave functions--to stretchings at fixed nodal 

structures. This puzzle ;s closely related to the fact--not widely 
recognized, for some strange reason--that the response of an ideal classical 

gas to compression is exactly the same as the response of a quantized Fermi 
gas. In other words, that the ideal gas law for point particles 

pV =NkT (5) 

where p = pressure, V = volume, N = number of particles, k = Boltzmann 

constant, T = temperature, is equivalent to the relation between energy E and 
density p for a (degenerate) Fermi gas: 

( 6) 

where Eo ;s the energy at the density po. Equation (6) is most easily 

derived by remembering that each momentum component of a quantized particle 

scales inversely as the wavelength, or directly with the cube root of the 

density. Hence the energy scales with the two-thirds power of the density. 

But since one invokes here wave mechanics, how can the resulting equation be 



equivalent to the classical gas law? 

Well, it is. Rewrite eq. (5) as 19 

2 1 pV = - N(3 • - kT) 3 2 

= ~ N[3(energy per translational degree of freedom)] 

= ~ N(energy per particle) = ~ E (7) 

~ If now the gas is allowed to increase its volume adiabatically by 6V, the 
work done will be p~V, so its energy will decrease by that amount: 

• 

p~V = -&E (8) 

Dividing eq. (8) by eq. (7) we find 

(9) 

(10) 

an equation identical with the Fermi gas relation. 

This miracle was vividly commented on by Ehrenfest in 1911 and 1916 (in the 

related context of the unexpected survival of Wien's displacement law of 

black-body radiation through what Ehrenfest called the "quantum 
conflagration"39). As shown by Ehrenfest, the explanation lies in the 

adiabatic invariance of the action integral Ipdq in classical mechanics. This 
ensures that the process of (semi-classical) quantization, which demands that 

such integrals be multiples of Planck's constant, brings in nothing new as 
regards the response of a system to adiabatic changes of parameters: the 

integrals are already constants, in classical mechanics, as regards slow 

variations of parameters. 

The relevance of this in the present context is that, in the Ordered 
Regime, where the particle motions are separable (as in the case of the 

Hill-Wheeler box) quantal and classical results can be very similar or even 
identical. In particular, the unexpected elastic response of a classical or 

quantized gas to volume-preserving deformations of the box are a consequence 

of the separability of the problem. Thus, the volume-preserving 

three-dimensional gas is equivalent to three one-dimensional gases (one for 

each of the separate motions). Since the volume of each gas is not conserved 

(the edge-lengths of the box are not constant, even though their product is) 
each gas taken separately is being compressed and decompressed during the 



deformation. It responds, therefore, in an elastic way. It then follows that 20 

the sum of the three elastic energies leads to an elastic response of the 

whole system. 
Estimates of the frequency of elastic quadrupole oscillations of a nucleus 

may be found in38 and references lO-30 quoted in that paper. In our present 

schematic model, let us combine the stiffness coefficient from eq. (4) with 

the inertia Meff against quadrupole oscillations, as given by assuming 
irrotational flow. (It turns out that this is justified for quadrupole 
stretchings of wave functions with frozen nodal structures40 .) Thus we write 

the kinetic energy for quadrupole oscillations of a nucleus of mass M and 

radius R as 

1 -2 
K. E. = 2" Meffe); (11 ) 

( 12) 

From eqs. (4) and (12) the frequency of the giant quadrupole mode follows as 

~3 'l 3 2 .J2 w = - Mv -- MR = 2 viR 5 10' (13 ) 

Planck's constant does not appear in this formula, testifying to its classical 
origin. As is appropriate in a symposium on semi-classical methods, ~ only 
appears at the last moment, when the collective quadrupole oscillation itself 

is quantized, to give a resonance energy 

~w = .J2 ~v/R (14 ) 

The result may be readily rewritten in a more obscure way, which hides its 

essentially classical content, by expressing the Fermi velocity v in terms of 
the particle density, which in turn is written in terms of the nuclear radius 

constant roo This gives 38 

(911')1/3 ~2 A-1/3 (15) 
'flw = - 2 

V2 mro 

Using the nominal value ro = 1.18 fm and taking for m the nuclear mass unit, 

931.5 MeV/c 2, one finds 38 

\.i 



(16) 

This is the solid curve in Fig. 14. To what extent the very close 

correspondence of the (parameterless) theory with experiment is due to 

accidental cancellations of substantial corrections is a somewhat open 

question. From the derivation of eq. (16) one would be tempted to conclude 

that giant quadrupole resonances are specific to symmetric systems close to 

ideal separability, that one is witnessing directly the elastic response of a 

set of separable single-particle motions and that, owing to the adiabatic 
invariance of the action integral, it does not matter whether these motions 

are quantized or not. However, some caution is in order, since such elastic 

resonance behaviour might conceivably occur also in the Chaotic Regime if the 

amplitude of the oscillations were small enough to fit into one of the wiggles 
in the upper inset of Fig. 20. Now the maximum amplitude of the stretching 

oscillator a in its first excited state is 

a max = 3~/vI(Stiffness constant)Meff (11) 

which gives for the maximum amplitude, 6Rmax ' of the oscillating major axis 

of the nucleus, the formula 

(18) 

The reduced wavelength l of the fastest particle in a nucleus is related to 

ro by 

(19) 

and this might be a typical length dimension for the wiggles. Thus, for 

typical nuclei, there is no order of magnitude distinction between 6Rmax and 

l. This seems to leave somewhat open the question of the possible existence 

of giant quadrupole resonances also in the Chaotic Regime. Still, one would 

certainly expect the resonances to be more clearly developed and to have 

smaller damping widths for systems close to the Ordered Regime. 

Concerning the question of widths, many different estimates are available. 

According to the 1983 review article by Bertsch, Bortignon and Broglia16 , the 

relation of theory to experiment is quite intricate, but detailed microscopic 

calculations can often reproduce the observed widths to within a factor of 

two, or better. As I mentioned before, the damping is expected to be 
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sensitive to details of nuclear structure, and no simple average treatment may 22 

be easy. But it would be nice to have a simple quantitative formula for the 

average trend of the points in Fig. 15. I will comment on this further after 

discussing the damping mechanism in the simpler Chaotic Regime. 

In this regime two elementary dissipation formulae have been derived to 

describe the rate of energy flow from collective to single-particle degrees of 
freedom: the wall formula and the window formu1a 41 -44 . The former is 

relevant for convex nuclear shapes (without a neck), the latter for shapes 

with a strong constriction, as in the late stages of fission or the initial 

stages of a nucleus-nucleus collision. The wall formula states that the rate 

of energy dissipation is given by 

(20) 

where p is the nuclear mass density, v is the average nucleonic speed (equal 

to iV) and the integral is taken over the nuclear surface, whose elements do 
have normal velocities n. (The quantity 0 is zero in the absence of overall 

translations and rotations; otherwise it gives the IIdriftll of the particles 

about to impinge on the surface element do and is determined--under certain 
assumptions--by the requirement of linear and angular momentum conservation.) 

The wal1-and-window formula states that for two nuclei interacting through a 

small neck or window of area 60, the rate of energy dissipation is given by 

two terms like eq. (20), one for each fragment, plus a window contribution of 

the form 

dE 1 - (2 2 2) + ~ eY ~2 - dt = 4 pV60 ut + ur 9 60 1 

In the above, Ut and ur are the tangential and radial components of the 
relative velocity of the two fragments and ~l is the rate of change of the 
volume of one of the fragments (equal to minus the rate of change of the 

other, since the total volume is assumed constant). 

(21) 

The physical content of the wall formula is illustrated in Fig. 23. A gas 
of particles bombarding a stationary element of surface (a piston45 ) exerts 

a pressure k pv2, but if the piston is moving away from the gas with speed 
n, the pressure is reduced by a correction, which turns out to be pvn. If 

one now writes down the expression for the work done by the gas on a deforming 

container (by integrating pressure times displacement over the surface) one 

finds that the leading term does no work (if the container deforms at constant 

volume) but that the correction term leads to a one-sided flow of energy from 



the collective wall motion into the gas, i.e. to dissipation of energy. 23 

An essential condition for the validity of the wall formula is the 

assumption that, at each instant, the surface elements of the container are 

bombarded by particles whose velocity distribution is that of a chaotic 

isotropic gas, unaware of the details of the state of motion of the surface 

(or its time history). This is the assumption of randon1ization of the 

~ particle motions, which is expected to be valid in the Chaotic Regime, but 

which is obviously not valid in the Ordered Regime. (As is readily verified, 

the leading term in the pressure does not cancel when integrated over the 
surface of, for example, a deforming Hill-Wheeler box. It is precisely this 

leading term, made up of the pressures of three one-dimensional gases, that 

produces the elastic response of a gas in the Ordered Regime.) 

In Fig. 24 the validity of the wall formula, originally derived for a 

classical gas, is tested against numerical computer studies of both classical 

and quantal particles in a time-dependent potential well. The well is 

oscillating in a hexadecapole mode around the spherical shape. The solid 

curve is the wall-formula prediction for the excitation energy pumped into the 

gas during one period of the oscillation of a sharp-walled container. The 

triangles show the result of actually following, by means of a computer, the 
time history of a swarm of classical point particles and keeping track of 

their energy as a function of time (rather like the case of the Fermi 

acceleration mechanism shown in Fig. 3). The dot-dashed curve is the result 
of repeating the calculation for 112 quantized particles (56 doubly-filled 

neutron wave functions) by numerically solving the time-dependent Schrodinger 
equation. In this case the container was an almost sharp Woods-Saxon well 

(with a diffuseness about one seventh of a realistic diffuseness). The dashed 

curve is a similar quantal calculation for a well with a realistic 

diffuseness. (The reason for the decreased dissipation in the latter case has 

not been settled.) 
The effect of symmetries on the dissipation is illustrated in Fig. 25. 

Here, a sharp-walled container is oscillating in a quadrupole (n = 2) or an 

n = 6 mode, with relative amplitudes chosen so that the wall-formula 

prediction for the dissipation is the same for both (the solid curve). The 
numerical study for n = 6, shown by the dotted curve, is close to the 

theoretical curve, presumably because the short-wavelength ripples in the n = 
6 mode of oscillation produced adequate randomization of the particle 
motions. By contrast, the n = 2 case, with its approximately spheroidal 

symmetry (leading to separability) shows only about half the dissipation at 

the end of one cycle. One can also see a bun1p in the dissipation curve, 

where energy was stored elastically in the particles before being given back 
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FIGURE 24 
Tests of the wall formula against 
classical and quantal microscopic 
calculations41 

This is just what one expects when the 

particle motions are separable, as indicated by the dashed curve, referring to 

the oscillations of a Hill-Wheeler box. A similar elastic behaviour was 

observed in the numerical studies when the oscillation was made exactly 

spheroidal. (Note that a finite-amplitude deformation specified by a Legendre 

polynomial with n = 2 is only approximately spheroidal.) 

The absolute magnitude of the dissipation predicted by the wall formula is 

very large. One finds that the characteristic damping time in which a typical 

kinetic energy of collective nuclear deformation would be dissipated is, in 

order of magnitude, given by the factor R/v. This, as we saw, is the same 
order of magnitude as the period of the giant quadrupole oscillation. In 

fact, if one applied the wall formula to estimate the width of the giant 

quadrupole oscillation, forgetting that this is precisely the Ordered Regime 

where the wall formula is not supposed to be valid, one would find for the 

width r the result r/~ = 3v/2R. This is the solid curve in Fig. 15. (Note 

that in ref. 38, 1980 item, third equation on p. 401, the exponent of 9~ 

should be 1/3 and not 1/2.) This curve is, indeed, close to the value of the 

resonance energy itself (Fig. 14) and a factor of about 3 larger than the 

experimental widths. If, on the contrary, one assumed perfect separability, 
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the predicted width would be zero. The experimental widths are between the 25 

two limits, as might be expected. 

The wall formula might be more nearly applicable to very deformed shapes, 

such as occur in fission, especially at excitation energies above 20 Mev or 

so, where shell effects are also washed out. The dashed curve in Fig. 12 

shows fission-fragment energies in a dynamical calculation in which the wall 

formula was used. 
To be more precise, the wall formula was made to go over (smoothly) into 

the wall-and-window formula as the nucleus necked-in and divided. This brings 
us to the question of the physical content of the window formula, eq. (21). 

The essence of the first term in eq. (21) is illustrated in Fig. 26. It is 
simply that particles exchanged back and forth between two containers in 

relative motion act as a brake and tend to bring the containers to relative 

rest. The last term in eq. (21) describes the dissipation associated with the 

net flow of nucleons from one fragment to the other. (There is an analogy 
with the Joule-Thompson throttling experiment in thermodynamics.) Without 

going into the derivation of the wall and the wall-and-window formulae, let me 

just note that the idealization of a long-mean-free path gas in a volume­
preserving container is used consistently, and this shows up in the structure 

of the formulae: they both contain only one physical property of the nuclear 

Fermi gas, the "flux factor" pV. It follows that the basic time unit for 

the dissipation of the kinetic energy of relative motion by the window formula 

is again the short time R/v, except that it is modified by the geometric 
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factor involving the window area 60 in the first part of eq. (21). Because 
the window area appears in the denominator in the second term, the window 

formula predicts also an inhibition of the mass flow between the fragments for 
small 60. These features are what is needed to account qualitatively for 
deep inelastic collisions of nuclei (i.e. sticking with little mass transfer). 

Several studies are in progress to test the degree of quantitative 
correspondence between experiments and theories incorporating the wall and 
window formulae46 ,47,48. In the general case of an off-center collision 

between two unequal nuclei (where experimental data are most ~omprehensive), 
the theoretical problem is complicated because of the presence of the 

asymmetry degree of freedom and of angular momentum, which calls for at least 
three more (angular) degrees of freedom. The simplest case to analyze is a 
central collision of two equal nuclei--the inverse process to the symmetric 
fission illustrated in Fig. '2. 
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FIGURE 27 
Extra injection energy above a nominal Coulomb barrier, necessary to make two 
(nearly) equal nuclei fuse into a compound nucleus 49 . The geometric mean 
fissility Xg is related to the conventional fissility x by Xg = 
X/t(K2 + K + K-l + K-2)'/2, where K = (ratio of target and projectile 
masses)'/3. This factor allows (approximately) for the slight 
inequality of the masses. The curve was calculated with a model 
incorporating the wall and window formulae46 

Instead of the kinetic energy of the fission fragments, one now tries to 
predict the opposite: the collision energy necessary to make two equal nuclei 
fuse into a compound nucleus. In particular, how this energy varies as one 

goes up the periodic table. Of course, up to a certain critical size of the 
colliding nuclei, this energy is simply the energy necessary to bring the 

nuclei in contact, i.e. the Coulomb or contact energy. From then on the 
nuclear forces take care of the rest of the fusion process. But beyond a 
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critical size, the electric forces are effectively stronger than the nuclear 27 
forces and the system will re-separate without fusing, unless it is given an 
extra push over the Coulomb barrier. This extra injection energy will be a 
function of the excess of the electric repulsion over the nuclear attraction 

or, in other words, a function of the excess of the fissility parameter x over 
some threshold value xth . (The fissility parameter is proportional to the 
dimensionless ratio of the electrostatic energy to the nuclear surface 
energy.) The absolute value of the extra push (for a given system) may be 
expected to be a sensitive function of the dissipation, and its experimental 
determination provides a test of this aspect of a theory. The curve in Fig. 
27 shows the extra energy calculated using the wall and window formulae, 
incorporated in a liquid-drop type model similar to the one used to calculate 
the fission fragment energies. The relevant experiments on nearly symmetric 
systems are, unfortunately, very few and not easy to interpret49 . As a 
result, it is far from clear at the moment how close is the correspondence 
between experiment and the simple dissipation theory based on the Chaotic 
Regime dynamics. 

7. QUANTAL CHAOS 
I described above some simple results that one may derive in the extreme 

limiting cases of complete separability and complete chaos: elastic response 
in one case and strongly damped motion in the other. Cases of actual interest 
are often in the Intermediate Regime, where the situation is much less clear 
and progress much more difficult. In the classical studies of the transition 
from order to chaos, a useful tool is the examination of the phase space, in 
particular of the Poincare sections. Such plots are not directly available in 
the case of quantal systems. One way of distinguishing order from chaos in 
such systems is to display the statistics of the level spacings in the energy 
spectrum. In the Chaotic Regime, energy levels must avoid crossings, and 
consequently the frequency of small spacings (in particular zero spacings) 

will be suppressed. On the other hand, levels with different quantum numbers 
don't care about one another and can cross if they like. In the case of 
complete lack of correlations between levels, a Poisson distribution of 
spacings is expected. In the case of a chaotic spectrum, a theoretical model 
resulting from diagonalizing a matrix with random matrix elements is proving 
very successful (the so-called Gaussian Orthogonal Ensemble, or GOE)50. 

Numerical studies of the transitions from one type of spectrum to another are 

being pursued for various simple potentials 50 . Three of those are shown in 
Fig. 28. Fig. 29 shows some level-spacing statistics for the stadium 
potential. In the lower part only levels with the same symmetry are included, 
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and the agreement with the GOE model is very good. In the upper part levels 

with several symmetries are present, many of the levels are allowed to cross, 

and the level spacings tend towards a Poisson distribution. 

Fig. 30 shows some level spacing statistics taken from experimental 

spectra: nuclear, atomic and molecular50 . The levels were selected to have 

all the same symmetries and follow fairly well the GOE predictions. Note that 
it is in the nuclear case that the most unambiguous test of the theory is 

possible at the present time. 

These are only a few examples of current studies of the transition from 
order to chaos in Quantal systems. Despite rapid progress being made, the 

field is much less advanced than in the classical case. The nuclear system, 
where order and chaos are tied to the problem of dissipation in collective 

dynamics, can be expected to contribute to this progress in the future. 

8. RELATION TO BROADER PROBLEMS 

Let me add one remark about the wider-context in which friction problems 

28 
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the physical world 51 

are discussed: the Question of irreversibility in general and the role of 

irreversibility in Quantum mechanics, in particular. The recent studies 



of order-to-chaos transitions, which have revealed the fantastic intricacies 30 

and instabilities associated with this transition, have stimulated attempts at 

new approaches to these perennial problems. An interesting example is 

Prigogine's book "From Being to Becoming"51 in which even the meaning of time 

receives a new interpretation. Fig. 31 shows a diagram taken from that book, 

in which Prigogine illustrates his discussion of the relation between 

classical dynamics, Quantum theory, statistical mechanics and macroscopic 

physics. The "Instability" in this picture, which I have circled, refers to 

the transition from order to chaos. I hesitated to Quote from Prigogine's 

book, because there are several things in it that I do not understand. 

However, I do share the belief that the relation between classical and Quantum 

mechanics needs further clarification and that the transition from order to 

chaos may be an important element in this problem. A related Question is 

whether it is not, in fact, misleading to continue juxtaposing classical and 

Quantum mechanics, since "classical mechanics" is only a formal 

abstraction--inva1id in practice--and there is in nature only one mechanics, 
namely Quantum mechanics. From this point of view, the problem of measurement 

in Quantum mechanics, with its references to large-scale, irreversible, 

classical measuring apparatus, should be restated as the clarification of 

Questions arising when very large and very small quantru systems interact. 

But once the problem is stated in this way, one feels the need to generalize 

it immediately to the discussion of interacting systems of any relative 

sizes. Could it be that the standard exposition of Quantum mechanics relies 

too heavily on the special case of interacting systems of hugely different 

sizes, with one of them actually taken all the way to the invalid classical 

limit? Could it be that the more general case continues to await a proper 

formulation? 
The possible role of nuclear physics in this wider context will probably be 

modest and indirect: a nucleus is a nice Quanta1 system of moderate size, 

which exhibits both ordered and chaotic behaviour. Its study will certainly 
contribute to the technical understanding of the transition from order to 

chaos in Quantal systems in general. But to what extent this might contribute 

to the clarification of the broader problem that I hinted at, remains to be 

seen. 
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