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ABSTRACT 

The possibility of increasing the strength of 
aluminum-lithium alloys hardened principally by the 
0 ' precipitates was investigated. The elastic 
theory of phase transformations was used to deter­
mine that the 0 ' precipitate is not expected to 
deviate from spherical morphology even at very large 
sizes. The theory of the critical resolved shear 
stress for dislocation glide through a random array 
of obstacles was used to predict a moderate 
strengthening increment if the precipitate size 
distribution could be made more uniform. Experimen­
tal and theoretical hardening curves for an experi­
mentally determined precipitate size distribution 
were also compared. 

1. INTRODUCTION 

Although the aluminum-lithium alloys nearing commercialization 
are strengthened by copper-rich phases. the ideal aluminum-lithium alloy 
should be primarily strengthened by lithium-rich phases such as AI3Li, 
which do not increase the density of the alloy. We have therefore con­
ducted a theoretical investigation of the possibility of achieving 
significantly greater strengths than realized to date in near-binary 
alloys strengthened by 0 ' • 

In the nickel-based superalloys it has been possible to obtain 
considerable strength increments through modification of the composition 
of the L12 precipitate r' either to increase its misfit or to induce 
precipitation of the tetragonal phase r". Both of these avenues have 
been investigated for aluminum-lithium alloys, but have been unsuccess­
ful thus far. It is possible that the search for elemental additions 
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with these effects will eventually prove fruitful. In the meantime, 
near-binary aluminum-lithium alloys will be strengthened primarily by 0' 
precipitates with relatively low misfit strains. 

Given that the crystallography of the 0' precipitate is fixed, 
we have investigated two other microstructural factors which could have 
a significant effect on the strength at constant precipitate volume 
fraction: (1) the precipitate morphology, and (2) the precipitate size 
distribution. These problems may be examined using the elastic theory of 
structural transformations and the random array theory of dislocation 
glide, respectively. 

II. MORPHOLOGY 

In other alloys hardened by L12 precipitates, three precipi­
tate morphologies are observed: spherical, cuboidal, and plate-like [1]. 
Si:Il:ce platelet precipitates provide the greatest strengthening for a 
given amount of precipitated solute, it would be desirable to induce 
this morphology. We have focussed initially on identifying the condi­
tions under which each of the observed shapes is preferred. 

The linear elastic model of phase transformations is based on 
the recognition that elastic strains often influence the thermodynamics 
and kinetics of transformation. The theory may be used to predict the 
preferred shapes and habits of coherent inclusions [2,3]. The important 
assumptions are as follows: 

(1) A coherent precipitate will have the shape and habit which 
minimize its contribution to the Helmholtz free energy of the material. 

(2) The po rt ion 0 f the energy chang e which is a func t ion of mor­
phology is the sum of the surface energy and the elastic energy intro­
duced by the precipitate. The surface energy is assumed to be isotro­
pic. 

(3) Since in most cases the unconstrained elastic constants of the 
precipitate are unknown, they are assumed to be the same as those of the 
matrix. This is a good assumption if the anisotropies are similar. 

(4) The elastic energy of a misfitting coherent precipitate has 
been derived by Khatchaturyan using a version of the Eshelby cycle. The 
solution is the integral over the precipitate volume 

(1) 

where B(e) is an energy factor which depends on the habit of the preci­
pitate, the elastic constants of the precipitate and the matrix, and the 
unconstrained transformation strain, and 9(k) is an amplitude which 
depends only on the shape of the inclusion. The determination of the 
preferred shape and habit of the precipitate is accomplished through a 
minimization of this integral. 

(5) The above expression for the elastic energy is easily derived 
if the transformation is modelled using the Eshelby cycle [2,3,4]. In 
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the first step, a body the size and shape of the inclusion is cut out of 
the material and allowed to transform while unconstrained by the matrix. 
The strain with respect to its original dimensions is designated so, the 
stress-free transformation strain. Tractions are then imposed on the 
inclusion to return it to its original size and shape. The energy asso 
ciated with this step is given by the product of the strain SO with the 
stress aO required to reverse the transformation strain integrated over 
the volume of the precipitate 

. AF1 = /1/2a q . sq. dV 
1J 1J 

(2) 

::J , If the inclusion is now allowed to relax into another shape, its energy 

. ~ 

will decrease by an amount given by the integral over the precipitate 
volume 

(3) 

where the S~j are the elements of the relaxation strain tensor. If the 
stress in (3) is decomposed into aO and a relaxation stress, equations 
(2) and (3) may be combined into an expression for the elastic energy 

AF = /(1/2aG. .sq .9(r) - aq.s . . 9(r) 
1J 1J 1J 1J (4) 

+ 1/ 2Aijkls!j Skl)dv 

where the integral is now over the total volume of the system , 9(r) is 
the part ic Ie shape func t ion, which is 1 ins ide the inc 1 us ion and ze ro 
outside it, and the Aijkl are the elastic constants of the precipitate 
and matrix. 

The only unknown parameter in equation (4) is the relaxation 
strain field. Since the inclusion is a macroscopic defect, this strain 
field may be determined in the long-wavelength approximation by requi­
ring that it obey static equilibrium. The Fourier transform of the 
strain must then be 

Sij(k) = 0im(e)a~leje19(k) (5) 

where O(e)=(k)2Ai~(k), Aij is the dynamical matrix of the elastic medium 
and e is a unit vector in the direction of k. Substituting into (4) 
gives the equation (1) for AF where B(e) 

B(e) = Aijkl S1j skI - e i a!jOjk(e)akl e 1· (6) 

The function B(e) is a scalar energy factor which depends on 
particle shape only through the direction of the k-vectors. B(e) is 
positive semi-definite so that the lattice is mechanically stable • 

The shape factor 9(k) is the Fourier transform of the real 
space shape function 9(r). Its amplitude depends on the inclusion shape 
through the allowed values of k. 

It can be shown easily that an infinitely thin plate is always 
the elastically preferred morphology of the precipitate. If the function 
B(o) depends on 0, then there is some value of e for which B(e) has its 
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minimum value B(n). The lower bound for the elastic energy is then given 
by 

(8) 

where V is the volume of the precipitate. The energy is minimized when 
the shape factor &(k) approaches a f)-function with k equal to n. that 
is. when the precipitate is an infinitely thin plate with normal vector 
n. 

The minimum energy shapes for a cubic inclusion in a anisotro­
pic cubic matrix can be predicted easily in the limits of zero and 
infinite volume. At small volumes. the precipitate will be spherical 
because the surface energy term will dominate. At large sizes. the 
surface-to-volume ratio is low. and the precipitate will be a thin plate 
with a well-defined habit which minimizes the volumetric elastic energy 
term. 

The regimes in which these morphologies are stable may be 
determined by comparing their energies. The sphere to plate transition 
may be modelled by considering the energy of an ellipsoid as a function 
of aspect ratio. Figures 1-3 illustrate the variation with aspect ratio 
of the surface. elastic. and total energies as a function of the preci­
pitate volume. (The aspect ratio. K. is defined so that a sphere has an 
aspect ratio of one and plates and rods have aspect ratio which are 
greater than. and less than one respectively. The fframeter g is a 
dimensionless variable given by (y/C44(go)2)(4nI3V) 3 where y is the 
surface energy per unit area). Figure 4 compares these energies with the 
energy of the cube shape. which was computed separately. From these 
plots we have obtained the following results: 

(1) The sphere is stable at small sizes and the thin plate at very 
large sizes as expected. The cube is stable in an intermediate range. 

(2) The sizes above which the cube and plate are preferred were 
calculated for f)' in aluminum. and y' in nickel. A surface energy of 10 
erg/cm2 was assumed in all calculations. The numerical results (given in 
Table 1) predict that spherical and cuboidal y' should be stable in 
nickel-based superalloys. as observed, but that cuboidal f)' would not be 
stable until the precipitate had a mean diameter of more than 60 metersl 

(3) The size at which the sphere is no longer preferred is a 
strong function of the anisotropy ratio of the matrix. Since aluminum is 
nearly isotropic the spherical shape remains stable to very large sizes; 
the elastic energy is not significantly lowered by the shape change. 

(4) Other results indicate that a sphere is never the stable shape 
of a tetragonal precipitate in a cubic matrix. 

This model can be used to examine a number of other relevant 
problems such as the effect of external stress on the precipitate mor­
phology, the morphology of a tetragonal precipitate in a cubic matrix, 
and the influence of precipitate-precipitate interactions on precipitate 
morphology. 
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III. PRECIPITATE SIZE DISTRIBUTION 

Given that the 6' precipitates are likely to be spherical 
under all conditions, we have also investigated the potential yield 
strength increment obtainable in aluminum-lithium alloys by optimizing 
the precipitate size distribution. We have approached this problem by 
calculating the critical resolved shear stress (CRSS) for the glide of a 
dislocation through a random array of point obstacles. 

The random array solution for the CRSS for dislocation glide 
is based on a simple idealization of the general problem [5,6]. It has 
been used with reasonable sucess to model a number of experimental 
situations [7,8,9]. The chief assumptions are as follows: 

(1) The dislocation is a flexible line of constant line tension T 
for a given mean square obstacle spacing Is. 

(2) The obstacles to dislocation glide are modelled as a random 
array of immobile point barriers. The properties of the point obstacle 
are adjusted so that the interaction of the dislocation with the obsta­
cle is mathematically equivalent to its interaction in the glide plane 
with the physical obstacle. 

(3) The configuration of the dislocation is described by a unique 
set of pinning points. The CRSS of the array is reached when the dislo­
cation bypasses the weakest point in the strongest configuration. 

(4) For a random array of identical obstacles the problem may be 
solved analytically using standard statistical techniques. It is con­
venient to define a dimensionless CRSS 

(9) 

where b is the Burgers' vector in the glide plane. The analytic solution 
is then given by 

(10) 

where ~ is a dimensionless obstacle strength given by 

~ = F/2T (11) 

and F is the force to bypass the obstacle • 

(5) The CRSS for a mixture of obstacle types is a quadratic sum 

't2 = 1: x ( ... ) 2 
a "a (12) 

where xa is the fraction of obstacles of type a and 'ta is the CRSS for 
an array containing obstacles of type a only. Computer simulation indi­
cates that the quadratic sum is a good approximation if the distribution 
of obstacle sizes is relatively continuous [10]. 

In order to study the effect of the 0' precipitate size dis­
tribution (PSD) on the yield strength of the alloy the following addi-
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tional assumptions were made: 

(1) The precipitates coarsen according to the LSW rate law and at 
constant volume fraction (in the interior of a grain) [11]. 

(2) The shape of the PSD as a function of r/r does not evolve 
during coarsening [11]. 

(3) Each spherical precipitate may be reduced to a set of point 
obstacles whose strengths correspond to the effective radii of the 
precipitate in the glide planes it intersects. Therefore, even if all 
precipitates are the same size, there will be a distribution of obstacle 
sizes in the glide plane. 

(4) The strength of the obst~cles is assumed to be a function of 
the radius of the sheared ordered precipitate only. This is equivalent 
to neglecting the misfit of the precipitate. 

(5) The strengths of the obstacle may be related to the maximum 
obstacle strength which correponds to the looping radius. at which 
Orowan looping is first preferred over shearing of the precipitate. The 
Orowan condition puts an upper limit on the strength of the obstacle 
whatever its physical size. Based on available TEM micrographs, an upper 
limit on the looping radius in aluminum-lithium is approximately 300A 
for a mean square particle spacing of about 1.111m [12]. The antiphase 
boundary energy is not required to compute the obstacle strengths. 

(6) There is considerable confusion in the literature over the 
appropriate form of the line tension. We have adopted the approach of 
Bacon, Kocks, and Scattergood [13] and taken the line tension to be 

(13) 

This is the correct form of the line tension for screw dislocations. It 
is not necessary to consider edge dislocations since macroscopic yiel­
ding requires the motion of screw, edge, and mixed dislocations and it 
is harder to move screw dislocations through the array. 

We have also adopted the upper limit on ~ of 0.7 suggested by 
Bacon, Kocks, and Scattergood. 

(7) The calculated eRSS due to the obstacle distribution repre­
sents the increment in the total strength of the alloy due to precipi­
tate hardening only and should properly be denoted a~. 

These criteria allow the CRSS for hardening by 0' to be calcu­
lated for various PSD's. We have calculated the eRSS for experimentally 
obtained PSD's measured by Gu et ale [11] and Baumann [14], respective­
ly, and for the case of uniform precipitate size. The PSD's and the 
corresponding 'aging curves' are shown in Figures 5 and 6 respectively. 
As can be seen from the figures, the more sharply peaked the distribu­
tion. the more effectively it strengthens. This result is in qualita­
tive agreement with the results of a study by Munjal and Ardell [15] of 
the effect ofPSD's on the eRSS of Ni-Al alloys. The theoretical in­
crement in A~c in Figure 6 is approximately 30%, so this result may have 
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alloy design implications. 

A direct comparison of the theoretical and experimental 
strengthening increment from the coarsening of 0' is possible for the 
PSD from Gu et al. [11] for Al-2.78Li-O.3Mn aged at 2000 e which is shown 
in Figure S. The experimental and theoretical aging curves are shown in 
Figure 7. The theoretical coarsening rate has been fixed using the 
exper imen tally determ ined LSW rate constant. Since the quenched alloy 
undoubtedly contains some atom clusters. the theoretical aging curve has 
been shifted to slightly shorter times to obtain the best fit. The 
strength increment for the both yield strength curves has been taken as 
the strength above the lowest measured strength. To convert the theore­
tical eRSS values to yield strengths. a Taylor factor of 3 has been 
assumed. The figure shows that the theoretical and experimental aging 
curves are in excellent agreement up to peak strength. Beyond peak 
strength. the model is no longer valid since it does not account for 
the uncoupling of the paired dislocations after Orowan looping begins. 
This uncoupling would cause the strength to drop off more gradually 
after peak strength. The theoretical aging curve for a uniform distribu­
tion of precipitates is shown for comparison. 

In the future. we hope to extend this model to co~sider the 
effect of other strengthening precipitates such as thin plates and to 
other problems such as the prediction of texture and the superposition 
of several hardening mechanisms. 
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Table I. Numerical results for the minimum characteristic diameter (in 
~m) of the cube and plate. Experimental data is given where available. 

cube plate 
PPT 

theory expt theory expt 

o'-AI 1.4 )0.3 )60m 

y'-Ni 0.13 0.1-0.2 200 J.IlD 

9 



1. 

0.1 

NO 
W 
~ 
~ 

U .. 
>­
C' 
~ 

Q) 1.0 
c: 

UJ 

Aluminum, 8' 

0.01 

1.0 10 100 
Aspect Ratio, K 

XBL856-6359 

Surface energy of 0' precipitate as a function 05 aspect ratio. 
The parameter g is given by (y/c44(eo)2}(4nI3V)1 3. 

-10-



,~ 

\,J 

\ 
.r' 

0.1 

3.9 

> 
NO 
~"2 7 v..J, 

U .. 
~ 
0-
~ 
Q) 

c 
lLI 
c 
o 
~ -CJl 

Aluminum, 8' 

1.0 10 1000 
Aspect Ratio, K 

XBL 856-6358 

2. Elastic strain energy of the &' precipitate as a function of aspect 
ratio and the parameter g. 

-11-



0.1 

>5.0 
No 

UJ 
V 

J 
... 
~ 
C' 
~ 

~ 4.6 
w 

Aluminum J 8' 

1.0 10 100 
Aspect Ratio J K 

XBL 856-6360 

3. Total energy of the 0' precipitate as a function of aspect 
ratio and the parameter g. 

-12-



c?o 6 
w~ 

UV 

... -c::r 
c: .-
en 
Q) 

5 0 .--to.. 
0 a. ... e.o 

-.... 
0 
~ 

I 0' I-' to.. w 
Q) I 

c: 
W 

0 -~ 
E 
:l 

E -c: 

:E 

~ .. 
--" 

c .~. 

0 Sphere 

o Cube 

0 Plote 

Cube Sphere 

0.2 0.4 
41T)1I3 Y 

g, (3V C
44

C! 

4. Relative energies of the sphere, cube, and plate morphologies as a 
function of g. 

0.6 

XBL 8:52-~:53 



I 
...... 
.r::. 
I 

20 

"'0 -
8C 

• 
~ 10 

R.:, 

D I-FUNCTION 

" STEP QUENCH 

o DIRECT QUENCH 

LOG TIME 

s. Experimentally determined precipitate size distributions for some 
aluminum-lithium alloys. 

-::. r­
'-

XBL 856-2857 

: .. 



0.3 

0.2 

z 
0 -l-

I 0 
I-' C 
lJ1 0: I 

LL. 

0.1 

0.0 

~~ .. 

o.~ 1.0 
Rift 

.­
t:--- ,-, 

. D STEP QUENCH 200c/2H BAUMANN 

o DIRECT QUENCH 20OC12H BAUMANN 

A WATER QUENCH 200C/75H GU 

1.5 2.0 
XBL 856-2859 

6. Comparison of the variation of the critical resolved shear stress 
with aging time for the precipitate size distributions in Figure S. 



-a 
I 0.. 

f-' 
0'1 
I 2 -., 

~>-
<J 

.. -:-

100 

0 

-.. ~ 

D 1- function 

6 AI- Li-Mn experimental 

o AI- Li -Mn theoretical (shifted) 

0.1 10 

dislocations 
uncoupled 

100 

TIME (hours) XBL 856-2840 

7. Comparison of the theoretical and experimental aging curves for 
AI-2.78Li-O.3Mn alloy. Time scale refers to experimental curve. 

":. ::.>. 



This report was done with support from the 
Department of Energy. Any conclusions or opinions 
expressed in this report represent solely those of the 
author(s) and not necessarily those of The Regents of 
the University of California, the Lawrence Berkeley 
Laboratory or the Department of Energy. 

Reference to a company or product name does 
not imply approval or recommendation of the 
product by the University of California or the U.S. 
Department of Energy to the exclusion of others that 
may be suitable. 



.",.:.) 

LA WRENCE BERKELEY LABORA TORY 
TECHNICAL INFORMATION DEPARTMENT 

UNIVERSITY OF CALIFORNIA 

BERKELEY, CALIFORNIA 94720 

~~;J<' 


