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ABSTRACT 

String theories suggest particular forms for gravity interactions in higher 

dimensions. We consider an interesting class of gravity theories in more 

than four dimensions, clarify their geometric meaning and discuss their 

special properties. 
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1. Introduction 

The study of gravity in more than· 4 dimensions is motivated by the approach 

of Kaluza [1] and Klein [2] to the problem of unification of gravity with electro

magnetism and the other elementary interactions. The Kaluza-Klein point of view 

has been revived recently [3] by the study of supergravity. The most promising 

approach to unification seems to be that based on string theories 14-6]. 

The 10 dimensional gravity which emerges from supersymmetric string theories 

in the low energy limit contains in its action terms quadratic in the Riemann curva

ture tensor. Warren Siegel has emphasized that these terms give rise to ghosts and 

violate unitarity, while the string theory is unitary. This puzzling contradiction has 

been resolved by Barton Zwiebach [7] who has pointed out that the n-dimensional 

action 

f vg<f'z (.Rab,cd.Rab,cd- 4.Rab.Rab + .R2) ' (1.1) 

leads to ghost-free nontrivial gravitational interactions for n > 4. By explicit com

putation Zwiebach has shown that, if one expands (1.1) about Minkowski space, 

the terms quadratic in the gravitational field combine to a total derivative and inte

grate to zero, so that (1.1), added to the usual Einstein-Hilbert action, introduces 

no propagator corrections. In 4 dimensions the entire expression (1.1) is a total 

derivative and is recognized as proportional to the Euler topological invariant. 

Halpern and Zwiebach have observed that, similarly, the Einstein action in 4 

dimensions, f .;gd4 x.R, has exactly the form of the Euler invariant in 2 dimensions 

except that the indices run over 4 values instead of 2. This has led them to believe 

that dimensionally continued Euler densities may play a role in the low energy limit 

of string theories. They have also conjectured that, in each case, the leading term 

in an expansion around Minkowski space integrates to zero. 

We shall see that this conjecture is rather easy to prove, once the geometric 

meaning of the dimensionally continued Euler densities is understood. As we show 

below, they form a particular class of gravity Lagrangians in higher dimensions, 

which are constructed in terms of the vielbein and curvature forms, without the use 

of the Hodge dual of the curvature 2-form and are, therefore, a natural generalization 

of the Einstein action and of the cosmological term. 
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2. Basic differential geometry 

We recall here some basic notions of differential geometry 2 • We shall use the 

vielbein 1-forms 

e0 = e0 m(x)dzm, (2.1) 

and the connection 1-forms 

Wa 6 = W0 
6 m(x)dzm. (2.2) 

Latin (tangent space) indices are raised and lowered by means of the constant 

Minkowski metric 'la6 and 

Wa6 = -W6a• 

Torsion and curvature are 2-forms defined respectively as 3 

T 0 = De0 := de0 + W0 
6e

6
, 

and 

Ra 6=dwa 6 +wacWe 6
, Rab=-Rba• 

They satisfy the Bianchi identities 

DTa ::: dTa + wa b T6 = Ra 6 eb, 

and 

(DR)a 6 = (dR + wR- Rw)a 6 = 0, 

(2.3) 

(2.4) 

(2.5) 
I 

(2.6) 

(2.7) 

where matrix multiplication in implied. It is well know, and easy to verify, that 

(2.~) and (2.7) follow from the basic property of the exterior differential d 

2 A very useful review is given by Eguchi, Gilkey and Hanson [8]. 

8 We omit the wedge sign II in the product of exterior differential forms. This convention causes no 

confusion and simplifies the formulas. 
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~=0. (2.8) 

If one applies d to a Lorentz invariant polynomial, the result can be worked out 

according to the Leibnitz rule of differentiation with d replaced by the covariant 

differential D on the various terms of a product and suitable signs corresponding 

to the fact the d is an antiderivative. 

A small variation ow of the connection forms induces, by (2.5), a variation of R 

given by 

oR = Dow =dow +wow+ oww. (2.9) 

The last two terms both have the plus sign because w and ow are both odd. 

Finally, let us recall that, for a (pseudo-) Riemannian manifold the torsion van

ishes 

T 0 =0. (2.10) 

3. Candidate Lagrangians 

Inn dimensions the Lagrangian is given by ann-form which, integrated over the 

manifold, gives the action. A particularly interesting class of Lagrangians invariant 

under local Lorentz transformations is given by 

R,.6Rcd ... e,e, ... f.a6cd···Jg···. (3.1) 

The totally antisymmetric epsilon tensor has n indices. If the number of R's is 

k ~ [i], the number of vielbein forms e is r = n- 2k so that (3.1) is ann-form, 

which we denote by Lk,•· For instance, in 2 dimensions we could take either 

Lo,2 = eaebt.a6 , (3.2) 

or 

L1,0 = Rabf
06

• (3.3) 
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The latter is proportional to the Euler invariallt. Because of its topological 

nature the corresponding equations of motion are trivial, there is no Einstein-like 

gravity in 2-dimensions. 

In 4 dimensions we can take a linear combination of 

Lo,4 = ea eb ee ed Eabed) (3.4) 

Ll,2 = Rab ee ed Eabed, (3.5) 

and 

L2,0 = Rab Red f. abed • (3.6) 

The first is a cosmological term, the second is proportional to the Einstein-Hilbert 

Lagrangian and the third to the Euler invariant. 

In 6 dimensions we can take a linear combination of 

Lo,a = ea e6 ee ed e J e, Eabed.fg, (3.7) 

L1,4 = Rab ee ed e1 e, EabedJu, (3.8) 

L2,2 = Rab Red e, e, Eabed.fg' (3.9) 

and 

Ls,o = Rab Red R,, f.abedJp. (3.10) 

Again, the first is a cosmological term, the second is proportional to the Einstein

Hilbert action and the last to the Euler invariant. Now we have the new possibility 

(3.~). Similarly for higher dimensions. Odd numbers of dimensions can be consid

ered as well, but in this case the Euler invariant is absent, of course. 

To be concrete, let us stay with 6 dimensions. Can one really have a term like 

(3.9) in the Lagrangian? At first sight one may think that such a term, which is 
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quadratic in the Riemann tensor, will contribute to the bilinear part of the La

grangian for the field h which describes the deviation from Minkowski space 

ea m = {ja m + ha m (3.11) 

and thus spoil the particle interpretation by introducing ghosts !9]. However, one 

can see that this is not the case. 

Let us consider an infinitesimal variation of the connections and vielbein forms. 

The corresponding variation of L 2,2 is 

8L2,2 = 28Rab Red e1 e, Eabed.f, 

+ 2 Rab Red e, {j e, Eabed.fg 

Using (2.9), the first term on the right hand side is 

2 (Dowab) Red e1 e, f.abed.fg. 

(3.12) 

(3.13) 

On the other hand, using the Bianchi identity (2. 7) and the definition (2.4) of the 

torsion we have 

2d (owab Red e, e,) Eabed.fg = 2 (DOWa6) Red e, e, Eabed.fg 

+ 40Wa6 Red e, T, f.abed.fp 

Therefore, if the torsion vanishes, (3.12) can be written 

8L2,2 = 2d (ow06 Redel e, f.abed.fu) 

+ 2Rab Red e1 oe, Eabed.fu 

(3.14) 

(3.15) 

This equation tells us that, if we consider a power series expansion in h starting from 

flat space, the terms in L2,2 which are quadratic in h appear under a derivative sign 

(first term on the right hand side in (3.15)); for a compact manifold or with suitable 

conditions at infinity, they drop out after integration. The first non trivial term 

in the integrated action is cubic; it comes from the second term on the right hand 

side of (3.15) and can be immediately obtained from it. Clearly, the same result 

is true for L2,, in 4 + r dimensions. These Lagrangians with 2 Riemann tensors 

and r vielbeins, do not introduce propagator corrections. Instead they generate 

interaction terms which are at least cubic. 
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A perfectly analogous argumPnt can be carried out when there l'.re k > 2 Rie

mann tensors. For Lk,n the terms of order k in the field h appears under a total 

derivative sign and the leading term in the action is actually of order k + 1. For 

r > 0, Lk,r gives interaction vertices with 2k derivatives (momenta) and at least 

k + 1 graviton lines. 

The argument given in this section is a simple generalization of the argument 

one uses to derive the equations of motion from the Einstein-Hilbert Lagrangian 

(3.5), and to show that the corresponding action does not contain a term linear in 

h (which integrates to zero) and starts instead with a kinetic term of order h2
• In 

the case of the Euler invariants Lk,o one finds of course that the entire variation is 

a total derivative 

6L~o,o = kd (owa6 Red R.,. · · Eabcde/··"), (3.16) 

corresponding to the fact that the integral of L~e,o is a topological invariant. 

4. Conclusion 

The Lagrangians described in the previous section are the natural generalization 

to more than 4 dimensions of the Einstein action and of the cosmological term. It 

is easy to rewrite them in terms of the four-index Riemann tensor which is related 

to the curvature 2-form by 

Ra6 = ~ Ra6,mn dxm dxn 

1 n cd = 2 Aa6 eceJ 

For instance (3.9) in 6 dimensions becomes 

L 1 n a'6' n eltl a6cdfg 
2,2 = 4 Aa6 ~cJ ea• eb' er1 ed' el e1 € 

1 n a'6' n e'<f a6cdfg ~ = 4 Aa6 Acd e fa'6'r!d' Jg f a~ X 

where 

e = det eo m• 
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(4.1) 

(4.2) 

(4.3} 

is the determinant of the vielbein field. On the other hand, the Euler iuYariant (3.6) 

in 4-dimensions becomes 

L _ 1 D a'6' n e'<f a6cdd4 
2,0- 4 Aa6 AcJ e Ea'b'r!J' f X. (4.4) 

Expressing the product of epsilon tensors in ( 4.4) in terms of Kronecker delta's one 

finds the well known expression (1.1) for the Euler invariant in 4-dimensions 

L2.o ex Ra6,cJRa
6
,c

4
- 4Ra6Ra

6 + R 2
, (4.5) 

in terms of the Riemann tensor, the Ricci tensor 

Rab = Rac,b c, (4.6) 

and the scalar curvature 

R = Ra
0

• (4.7) 

Now it is obvious that the product of epsilon tensors in the 6 dimensional expression 

(4.2) will generate a formula for L 2,2 exactly like (4.5) (up to an overall factor) 

except that now the indices run over 6 values instead of 4. The relative coefficients 

1, -4 and 1 of the three terms are the same. The same remark applies to all other 

Lagrangians with 2 Riemann tensors in higher numbers of dimensions. One can say 

that L2,r, for r ~ 1 is obtained from the 4 dimensional Euler invariant L 2,0 in the 

form (4.5) by letting the indices run over n values instead of 4 and by integrating 

over n dimensions, instead of 4. Because of the antisymmetry of the epsilon tensors, 

it is also clear that, if in ( 4.5) one lets the indices run over fewer than 4 values, one 

obtains identically zero. 

In a similar way, the Lagrangians L~o,r , written in a form analogous to ( 4.5), 

can be interpreted as the extension to a higher number of dimensions of the Euler 

number L~o,o in 2k dimensions also written by working out the product of epsilon 

tensors. Again, one obtains zero if one limits the range of the indices to fewer than 2k 

values. Therefore, as it is also obvious from Sec. 3, in a given dimension the number 

of Lagrangians of the class considered here is finite. It would be truly remarkable 

if they were the only ones emerging from string theories in the low energy limit. 

Indeed, Zwiebach [7J has pointed out that the 3-graviton on-shell vertex obtained 
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from the bosonic closed string theory contains a term with the momentums to the 

6th power. On the other hand a term with 6 derivatives can come only from L 3,, 

and must involve at least 4 gravitons. To obtain an interaction with 6 derivatiYes 

and 3 gravitons one must go beyond the class ofLagrangians given by (3.1) and use 

explicitly the Hodge dual of the curvature 2-form. 
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