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Recently, the microcanonical quantization method1 has received much 
- ' 

attention as a means of performing numerical calculations. Notably, it has 

been used in lattice gauge theories. Since the method is quite new to 

particle physicists, it is important to examine in detail the basis 2 of this 

quantum formulation. 

We shall show in this letter that for both the strong and weak coupling 

expansion of scalar field theories'or gauge theories, the perturbation series 

are convergent if we quantize in a finite volume with the microcanonical 

ensemble density. 1 It is possibl~. in principle, to sum these perturbation 

series. 

As is well known, 3 the perturbation series in the standard formulations 

(Feynman 1 s path integral or canonical quantization) is not convergent, even if 

we use an ultraviolet cut off and a finite volume. Although the series in the 

standard perturbation expansion can be summed up in some cases with 

appropriate methods of summation (Borel summation, etc.), the final results 

may still depend on the methods used. Furthermore, so called non-perturbative 

effects can not be recovered unambiguously from the standard perturbation 

expansion. On the other hand, the convergence of the microcanonical 

perturbation series implies that we can obtain all the effects. The 

underlying reason for the convergence of the series is that the microcanonical 

density is expanded with respect to an interaction Hamiltonian, but not with 

respect to the total energy, which in general depends itself on an expansion 

parameter and should be determined self-consistently (see below). 

First, let us recapitulate briefly the microcanonical quantization 

method. 1•2 Consider a scalar theory on ad-dimensional lattice. The action is 



2 

and 

where a, m and X are the lattice spacing, bare mass and bare coupling 

constant, respectively, and where x is the vector belonging to a lattice 

point and ~ is a unit vector in the ~ direction. The volume V = Nad is 

{ 1) 

taken to be finite. According to the microcanonical method, we compute the 

reguralized Green•s function as follows 

{2) 

with E = ~ + <S> 

The measured used in {2) is given by 

N 

d~ - II dP dct> 
x=l 

X X 
{ 3) 

and the average <S> in E is 

i~ -s dct> e S 
X 

<S> 

fA dcp e-s 
X 

{4) 



... ) 

A 
I 

3 

We shall show below that the Green's function in (2) is identical to the one 

given in the standard formulation. In a previous paper, 2 we .have shown this 

equivalence perturbatively. It is easy to see that the formula in {2) is the 

same as the one used in the numerical calculations of Ref. 4. We note that 

the quantity <S> may also be obtained as 

lim <S>/N = lim t J dll ScS(E - H)/N 
N-+m N-+m 

( 5) 

This is a consistency condition, by use of which the total energy E (or <S>) 

is to be evaluated. 

Now we turn to the microcanonical perturbation theory and show the 

convergence of its series. ~he perturbation series we consider is defined by 

expanding the microcanonical density with respect to ~. 

co n n 
cS(E - H) = ~ ~ _Q_ cS(E - H )(~S )n 

~ n. dEn 0 I 
( 6) 

with H 

To demonstrate the convergence of the perturbation series of the Green's 

function, it is sufficient to show the convergence of the following series 

Z = ~ ~ __ d__ dll cS(E - H0 )(~SI)n co n n J 
~ n. dEn 

( 7) 

It is worthwhile to stress that the limit N ~co is taken after summing the 

perturbation series. In our previous paper, 2 we took the limit order by order 

in the series together with the extra condition E = N and obtained the usual 
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Feynman rules. In general, the infinite volume limit and the summation over 

the order n of the expansion do not commute. This situation is analogous to 

that in the standard functional formulation, where an exchange of the 
s ~ ~ n -so 

functional integration and the summation e- = ~ 1 s1e is also 
0 n. n= 

impossible. 

To prove the convergence of the series (7), we scale P and~ as 
X X 

Px ~ viE Px and ~x ~ v/E ~x· The n-th order of the series becomes then 

n n J A :: ~ _d- EN+2n-1 dll o. (1 - H
0

)(xS1)n 
n n. dEn 

-~ (N + 2n- 1)! EN+n-1 J d" o(1 - Ho)(XSI)n 
- n! (N + n - 1)! ~ 

<-1 (N+2n -.1)! EN+n-1f 1 n n! (N + n _ l)! dll o(1 - H0)(XS1) ( 8) 

where 

Using the equality 

(9) 

where c:::: ~ : , 
( )

1/2 

t.V m 
we find that An is less than 
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(N + 2n- 1)! EN+n-1(~S ( = 
n!(N + n- 1)! I •x 

( 1 0) 

J Thus, we have discovered that the perturbation series (7) for given energy E 

converges absolutely for small enough~. Summing the series for small ~. we 

obtain the Green•s function by taking the limit N ~~afterwards. Before 

taking this limit, it is necessary to insert for E an explicit value which 

depends on ~ and to make an appropriate analytic continuation in ~. The 

reason for the former operation is that when we expanded the microcanonical 

density as in (6), we did not expand the total energy E, which has to be 

determined from the self-consistency equation (5), but only the interaction 

part s1. This is the crux for obtaining a convergent perturbation series. 

Next, let us expand the ensemble density with respect to ~-l/2 (i.e. a 

strong coupling expansion) 

( 11) 
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where we have scaled $ as $ ~ ~ 4$ The n-th order (=An) of the 
X X X 

series can be written as 

-- ( -1.) n L (E~ N+~ - 1)~- ~ f 
1\. d lJ cS < 1 - HI ) s0" 

n. dEn 

If we note the following _equality, 

% ~2 q2 2 I s <tJ.V XoJJ x+~!!L$2 :::s• 
0= 2 2 X 0 a x 

it is easy to show that 

(,E!N + ~ - 1) I'- ~ J • n 
\ r.. dll cS(l - HI)(S0 ) 

)-.- ~ s~(~x= c') "J dp ~(l 

- l 1 

- H ) 
I 

( 12) 

( 13) 

( 14) 

where c• ::: (lJ.V) 4 = (~) 4 and where we have replaced $x with a possible 

maximal value of c•. Therefore, we conclude that the series (11) in the 

strong coupling expansion for given E also converges absolutely for large 

enough ~. 

In the previous discussion we have demonstrated the convergence of the 

perturbation series for the scalar field theory. For lattice gauge theories, 

it is also possible to prove the convergence of the strong coupling 

expansion. In the case of an even number of degrees of freedom (N =even), we 

obtain a finite series. 
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Let us write the action of alattice gauge theory as ~s. where ~ is the 

inverse of the coupling constant squared. The microcanonical partition 

function is then 

-t :L ~s\ 
1=1 ; 

N 

with dll - TI dPi 
i=1 

n 
E = 2 + <~S> ( 15) 

In (15) dUt is the Haar measure of a link variable and N is the total number 

of degrees of freedom, which equals (number of lattice points) x d(d 2- 1) x 

(number of gauge degrees of freedom). It is straightforward to show the 

convergence of the series (15). We find that the effective expansion 

parameter is ~N/2E, which is less than ~. so that a series like (15) in 

~N/2E converges faster than one in ~ of the standard formulation. 

It is interesting that the series in (15) terminates at order 

N n (=- - 1) if N is even. c 2 
This implies that the series of the weak coupling 

-(N- 1) 
expansion, which is obtained by multiplying the series (15) by ~ 2 , is 

convergent also. 

Finally, we show that under some reasonable assumptions the 

microcanonical expectation value (2) equals the one derived in the standard 

functional formulation, which is given by 



Using the formula, 

8 

Q) 

1 f d). e i).( E-H) = 
211' 

integrations over Pi, we-obtain from eq. 

with 

1 f dll cS(E - H)f(4>) zc 

e = w -j N 

~ log).+iU+W 
G).(f) 

n -i).S 
d4> e 

X 
x=1 

cS(E - H) 

(2) 

and performing the 

( 17) 

In (17) we have not specified an irrelevant normalization factor. In order to 

evaluate the integral over). as N ~ cxo, we assume that both of the following 

limits exist 

lim ~). W/N for Im ). < 0 
N~ 

Then, by using the steepest descent method as N ~ cxo and the relation 

( 18) 

E = ~ + <S>, it is easy to derive the standard formula (16). The stationary 

point required can be found by solving the equation, 

E = ~ + <S> ( 19) 

where <S> is given by (4). 

•• 
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To summarize, we have shown that for a sufficiently small expansion 

parameter, the perturbation series converges in the microcanonical formulation 

of the scalar theory and of the gauge theories with an even total number of 

degrees of freedom. The convergence of the series is only guaranteed for a 

finite volume. However, if we are able to sum the series and make appropriate 

analytic continuation in the expansion parameter of the result, we may 

construct, in principle, all the regularized Green•s functions in the infinite 

volume limit. The reason for being able to obtain non-perturbative effects 

from perturbation theory is eq. (5), in which we need to estimate 

. non-perturbatively the quantity <S> and then develop the perturbation theory 

as discussed above. 
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