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Abstract: 

Recent p +A ...... p +X data are analyzed within the context of 
the multi-chain and additive quark models. We deduce the average 
energy loss of a baryon as a function of distance traversed in nuclear 
matter. Consistency of the multi-chain model is checked by compar­
ing the predictions for p +A ...... 1r± +X with data. We discuss the 
space-time development of baryon stopping and show how longitudi­
nal growth limits the energy deposition per unit length. Predictions 
are made for the proton spectra to be measured in nucleus-nucleus 
collisions at CERN and BNL. Finally, we conclude that the stopping 
domain for central collisions of heavy ions extends up to center of 
mass kinetic energies K E"" ~ 3 ± 1 AGev. 
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1. Introduction 

Initial interest in hadron-nucleus collisions focused on the space time develop­
ment of multiparticle production(!]. The main role of the nucleus was to act simply 
as a microscopic detector sensitive to distance scales ;s 10 fm. The most important 
qualitative feature that emerged from those studies is the validity of the formation 
zone concept[2J-[4]. That concept follows from time dilation and the uncertainty 
principle and states that the formation of a secondary particle with rapidity y 
and transverse mass mJ.. cannot be localized within a distance l(y,pJ..) ~ e71 /mJ.. 
of the interaction point. This exponential growth of length scales is also referred 
to as longitudinal growth and explains why naive intranuclear cascade models[5] 
systematically over predict the charged particle multiplicities[6] in proton-nucleus 
reactions at high energies. 

Renewed interest in hadron-nucleus reactions has been stimulated by new 
data[7J on p + A -+ p + X at 100 Ge V. In addition to providing new tests for 
eompeting multiparticle production models(S]-[15), these data may have important 
consequences for quark gluon plasma(QGP) production in nucleus-nucleus colli­
sions(16]. In particular, the first analysis(l7] of that data indicated that the stop­
ping power of a nucleus could be much greater than first expected. This may imply 
that energy and baryon densities much higher than previously thought[l8] could 
be achieved in central nuclear collisions. Understanding nuclear stopping power 
is therefore essential in assessing whether high baryon density QGP could be pro­
duced in nuclear collisions in the energy range 10- 100 GeV per nucleon (AGeV). 
Since that pioneering paper(17] several other works(19]-[22] have addressed the nu­
clear stopping problem. In this paper we apply the Multi Chain Model(9] and the 
Additive Quark Model(l3]-(15] to gain further insight into this problem. 

The primary aim of this paper is to deduce the stopping power of nuclear 
matter to high energy protons. We evaluate several quantitative measures of that 
stopping power. One is the average energy fraction the leading proton retains 
after traversing a thickness, z, of nuclear matter. Another measure is the average 
rapidity loss of a baryon, (ay)z, as a function of nuclear thickness. In contrast 
to previous works, we can test the consistency of our methods by comparing our 
calculations for p+A -+ 1r±+X as well as p+A -+ p+X with the data. Furthermore, 
our method treats pp reactions on the same footing as pA and AB reactions. A 
fit to the available data determines the one physical parameter, a = 3 ± 1, of our 
model that controls the inelasticity in multiple collisions. In the terminology of 
Ref.[20] this parameter implies a momentum degradation length Ap = 8 ± 2 fm at 
100 GeV. 

The second aim of this paper is to clarify the space time development of the 
stopping process. In particular we find that longitudinal growth limits the energy · 
deposition per unit length and is the main factor, not the stopping power, that 
determines the boundaries of the stopping domain for nuclear collisions: We show 
that the length scales associated with secondary particle production and baryon 
stopping need not coincide. We find that baryon stopping and secondary particle 
production can occur within a Lorentz contracted nuclear volumes iri the em frame 
only up to center of mass kinetic energies - 3 ± 1 AGe V. However, by that en-
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ergy, baryon and energy densities in excess of one order of magnitude above their 
ground state values can be achieved in central collisions of heavy nuclei. Therefore, 
production of baryon rich quark gluon plasmas with nuclear collisions at relatively 
low energies is consistent with our stopping power analysis. 

The organization of this paper is as follows: In section 2 the assumptions, 
physical picture, and equations that define the Multi-Chain Model are reviewed. 
In section 3 we apply the model to fit the pA--+ 1r± and pA--+ p data[7]. Thereby 
we determine the one physical parameter of the model. In section 4 we analyze 
the space-time development of stopping and estimate the boundary of the stopping 
domain for nuclear collisions. In section 5, we predict the leading proton rapid­
ity density for nuclear collisions that may eventually be measured[l6] at CERN 
and BNL. In section 6, an independent determination of nuclear stopping power 
obtained from fitting the data with the Additive Quark Model gives additional con­
fidence in the extrapolated stopping power to nuclear depths - 14 Fm. Concluding 
remarks are then presented in section 7. 
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2. The Multi-Chain Model 
2.1. Assumptions 

There is much uncertainty about the low transverse momentum processes that 
lead to multiparticle production in high energy hadron-nucleus collisions. That 
uncertainty obviously is deeply routed in the unsolved nonperturbative problems 
associated with large distance scales in QCD. It is therefore not surprizing that 
there exist such a large number of phenomenological models in the literature. The 
main virtue of the present model[9) is that it cleanly separates geometrical effects 
from dynamical ones, and the dynamics is characterized by one physical param­
eter. Since geometrical effects are separated, this model treats hadron-hadron, 
hadron-nucleus collisions on the same footing. Furthermore, it provides a conve­
nient extrapolation tool to predict nucleus-nucleus reactions. 

The simplifying assumptions of the multi-chain model are 

1. The transverse momentum distribution is independent of incident energy, 
nuclear size, and longitudinal momentum. 

2. The probability that a hadron undergoes exactly n interactions is given by 
Glauber theory. 

3. The reaction involves two stages that determine the longitudinal momentum 
distributions of the particles: a fast multiple interaction stage and a time 
dilated fragmentation stage leading to secondary bardon production. 

4. The fragmentation stage is independent of the number of interactions in­
volved in the first stage. 

5. The multiple collision dynamics scales with energy. In particular, the lon­
gitudinal momentum distribution depends only on the scaling light cone 
variable 

z = (E + Pz) = er-rmax 
(E + Pz)max 

(2.1) 

where Ymax = Yo+ log(mN/m.L) is the maximum rapidity that a particle 
with transverse mass m.l = (m2 + p~J 112 can have. 

6. Projectile and target fragmentation processes are independent. 

The above assumptions are surely too strong but are consistent with present 
phenomenology [8)-[17), [19]-[22] a.nd considerably simplify the formalism. 

A physical picture consistent with the above assumptions can be formulated in 
terms of partons and color strings. The incoming proton is regarded as a composite 
object with many partons sharing the incident momentum. As that proton passes 
through a target nucleon one of its partons may change color due to an interac­
tion with a parton of the target. The color exchange can be viewed as a string 

· flip whereby the color string connecting the target parton to the spectator target 
partons and the string connecting the projectile parton to the spectator projectile 
partons interchange so that the spectator target partons now connect to the projec­
tile parton and the spectator projectile partons now connect to the target parton. 
In this picture an interaction creates two strings which stretch with time[11][23]. 



We refer to the string connecting the spectator target partons with th·e interacting 
projectile parton as a target chain. 

In proton-nucleus collisions, we regard the nucleus as a parton filter that sifts 
out a certain number of partons from the projectile. That sifting occurs by pro­
moting virtual partons to their mass shell and creating independent target chains. 
Because of time dilation the c:olor fields in each chain neutralizes via pair produc­
tion over a distance scale proportional to the energy of the projectile parton that 
formed that chain (see section 4). The spectator partons also drag a string behind 
them[23] that neutralizes over a large distance scale. That neutralization and re­
combination process is assumed to produce the leading secondaries, including the 
leading proton. 

The crux of the problem is to specify how the parton filter works, i.e., what is 
the distribution of energy fractions of the partons that interact in the target. That 
distribution specifies the stopping power of high energy protons, the information 
that we want to extract from the pA data. In order to characterize that distri­
bution in terms of as few a parameters as possible we adopt the simple algorithm 
proposed in Ref.[9]. That algorithm specifies that the energy fraction of interacting 
partons falls off according to a geometrical progression, z; =ai-l /(1 + a)i, where 
a ~ 1 is the phenomenological parameter of the model. We adopt this algorithm 
mainly because of the simplicity of the resulting formalism in the next subsection 
and because it can adequately accounts for the A dependence of the current data. 
In section 6 we check that our conclusions about nuclear stopping power are rela­
tively model independent by refitting the data in terms of a model with different 
assumptions. 

2.2. Formalism 
We translate now the above assumptions into the equations that define the 

model. First, we consider the invariant proton inclusive cross section. Assumption 
1 on transverse factorization implies that 

(2.2) 

where D'abs is the absorption cross section, rp is the final proton to baryon ratio, 
g(pl.) is the normalized transverse momentum distribution, and d.N/dy is the nor­
malized rapidity density. We note that the present data[7] shows that rpg(pl.) is 
independent of atomic number and rapidity for z > 0.3 and PJ...- 0.3 GeV Jc within 
20% accuracy. 

Assumption 2 allows us to decompose dN/dy into a standard multiple collision 
series 

(2.3) 

where PA(n) is the Glauber probability[24l that n target nucleons interacted with 
the incident proton: 

PA(n) = J <PtA) (A _A!)' 1 (NA(b)/A)"(l- NA(b)/A)A-n , (2.4) 
O'abs n .n. 
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with NA(b) being the average number of interacting target nucleons at impact 
parameter b as given by 

(2.5) 

Note that realistic nuclear densities, PA, lead to rather large values of the single 
collision probability ( ~ 0.2) even for the heaviest nuclei due to their diffuse surfaces. 
In terms of N A (b) we can also express 

(2.6) 

Assumptions 3 and 4, concerning the separation of the reaction into two stages, 
imply that the probability density, Q" ( z, z0 ), of finding a proton with light cone 
fraction z after n target nucleons have been struck can be written as 

Qn(z,zo) = 11 

dz'Fn-I(z',zo)/p(z/z',zo/z') , (2.7) 

where Fn(z, z0 ) is interpreted as the probability density that the spectator projectile 
partons retain a light cone fraction x after n projectile partons have interacted in 
the target. With the definition F0 (z, z0 ) = o(z- 1), the function /p(z, z0 ) must 
correspond to the invariant distribution of protons in pN collisions at incident 
rapidity y0 = log(1/z0). A convenient parameterization of the p+N- p+X data 
is 

/p(z, zo) = z/(1- zo) . (2.8) 

We emphasize that our model says nothing about about the fragmentation function 
/p(z). Our model only Specifies the A dependence of pA reactions using pp reactions 
as input. 

Since z0 is the minimum light cone fraction in the target frame, these functions 
a.re normalized as 

11 dz' 
so -;;-Qn(z', zo) = 1 , (2.9) 

11 dz' , 
•o 7 /p ( z , zo) = 1 , (2.10) 

~~ dz'Fn(z', zo) = 1 {2.11) 

Note that the scaling assumption 5 holds strictly only at asymptotic energies where 
Zo - 0. For finite energies we include only the minimal dependence of these 
functions on z0 required by overall energy conservation as in Ref.[21]. 

Note that Eq.(2.7) neglects the contribution from target fragmentation. To 
motivate this recall that empirically the recoil proton in pp collisions is distributed 
as e-r. Consequently, for the rapidity range of interest, y ~ 4, there is less than 
a five percent contribution to dN/dy from target recoil nucleons. Baryon pair 
production is also negligible for the energies considered here. 

6 

.. 



.. 

The dynamical information in this model is contained in the dependence of Fn 
on n. For simplicity we adopt the scaling algorithm of Ref.[9]: 

Fn(z, zo) = 11 

d~ K(z/z', zo/z')Fn-t(z', zo) , 
~ z 

(2.12) 

where K(z, z0 ) is a scattering kernel that specifies the probability density that a 
projectile parton carrying a light cone fraction 1 - z of the available light cone 
energy E+ = mJ./ z0 interacts with a target parton. 

Following Ref.[9] we parameterize K as 

azo-1 
K(z, zo) = 

1 01 
, 

- Zo 
(2.13) 

which is obviously normalized as 

~~ dzK(z, zo) = 1 . (2.14) 

All the dynamical information in this model is therefore contained in the one pa­
rameter a. As we show in the next subsection in terms of a the fractional energy 
loss per interaction is 1/(1 +a), and the final baryon rapidity loss per interaction 
is 1/a. Since Eq.(2.12) leads to a geometrically decreasing fractional energy left in 
the spectator parton cloud as a function of the interaction number, we refer to it 
as a "geometrical" filter. It is imporiant to emphasize that Eq.(2.12) says nothing 
about the space-time points of the n interactions. It is a purely momentum space 
equation. In section 4 we will consider possible extentions of this model to coordi­
nate space. However, for the analysis of the pA data we do not yet need to specify 
the space-time picture behind (2.12). 

With Eq.(2.13), the solution to Eq.(2.12) for n ~ 1 is 

F.(z, z0) = (n ~ l)! :~:~ [log(:.-=-~~) r . (2.15) 

We can now compare our model to others in the literature. In Ref.[21] only the 
case a= 1 was considered. That corresponds to the incoherent cascade limit where 
each interaction in the target is treated as if it were a pN collision in free space. 
In Ref.[22] the same ansatz to K(z, 0) was used, but in that model the two stages 
of the reaction in assumption 3 were not considered. Therefore, their formalism 
could not be directly applied to pA - eX, where cis any other fragment than a 
proton. In Refs.[19],[20J a different parameterization, K(z, 0) = 1- A+ A5(1- z) 
was used but in a formalism that treats pp and pA on different footings and pion 
and proton production on different footings. 

It is also instructive to compare the geometrical algorithm in Eq. (2.12) with 
one corresponding to a perhaps more intuitive "arithmetic" filter. The arithmetic 
filter is one where the probability that n partons interact with energy fractions 
z 1, • • ·, Zn can be expressed as an uncorrelated product 

oc W(zt) · · · W(zn)6(1- Zt- · · ·- Zn) 
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With Eq.(2.16), all n interacting partons carry the same average energy fraction, 
Zn· Only energy conservation forces Zn to decrease with increasing n. This cor­
responds to the equipartition model! in Ref.[9). In terms of W(.z), Fn(z) would 
then be given by 

(2.17) 

We refer to this as an arithmetic filter because the average energy fraction retained 
by the spectator partons after n interactions decreases approxiniately linearly with 
n rather than geometrically. However, because of the ackwardness of the the delta 
function constraint above, analytic formulas for the arithmetic filter are rather 
cumbersome. The geometric filter has the advantage of incorporating energy con­
servation in a simpler manner analitically. Otherwise, there is no deep reason to 
prefer the geometrical filter over the arithmetical one. 

An important advantage of the present formalism is that by incorporating as­
sumption 3 into Eq.(2.7) we treat p+A-+ c+X for any fragment c and any nucleus 
A ~ 1 on the same footing and that one parameter, a, fixes all those reactions. 
The basic input to this model are the measured p + p -+ c +X distributions and 
the known nuclear geometries~ The multi-chain model is then a convenient extrap­
olation tool for pA and AB collisions with the absolute minimum of parameters. 
That at least one parameter is needed was shown by Wong[21] by the inability of 
the incoherent cascade model (a= 1) to fit the new data[7J. As we show in section 
3 one parameter, a ~ 3, is in fact enough to fit the 100 GeV data. 

Unlike the leading proton which is assumed to emerge only from the recom­
bination of the projectile spectator partons, energetic pions can emerge not only 
from that fragmentation process but also from the hadronization of target chains. 
This is because pair production near the end of target chains can easily lead to 
meson formation and only much less frequently to baryon formation. In analogy 
to Eqs.(2.2,2.3,2. 7) we therefore have . 

(2.18) 

where Q:± includes the fragmentation of the projectile as well as the the hadroniza­
tion of the last chain, and T; describes the hadronization of the it" target chain. 
Surpressing the z0 dependences of all functions we can write 

(2.19) 

Since F0 (.z) = o(l- .z), we see that / .. corresponds to the rapidity density of pions 
in pp-+ 1rX. For simplicity we parameterize that data as 

(2.20) 

Again we emphasize that our model says nothing about the fragmentation functions 
/e(z). Those must be taken directly from pp -+ eX data. Only the Fn(x) are 
specified in our model. 
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With the above parameterization, the first term with a 1 ~ 3 represents the 
contributions from projectile fragmentation, and the second term with a2 ~ 9 
represents the contribution from the hadronization of the target chain. With this 
interpretation, Ti in Eq.(2.18) is given by 

(2.21) 

2.3. Measures of Stopping Power 

We can now apply the above formalism to evaluate several measures of nuclear 
stopping power. One important measure is the mean rapidity loss, {~y} z, suffered 
by a baryon after having traversed a thickness z of nuclear matter at saturation 
density, p0 = 0.145 Fm -s. Another important measure is the average fractional 
energy, {z)z, retained by the projectile spectator pa.rtons after traversing a thickness 
z. 

We denote the average of a function of z over a normalized distribution D(z) 
by 

(g(z)}D = ~~ dzg(z)D(z) , {2.22) 

The average of that function as a function of atomic weight is then 

A 

(g{z))A = ~ PA(n){g(z))n , (2.23) 
n=l 

where {g(z)}n is given by Eq-.(2.22) with D(z) = Qn(z)fz. In order to evaluate av­
erages as a function of nuclear thickness z, we use the Poisson limit of the binomial 
distribution to specify fluctuations of the collision number to get 

(2.24) 

in terms of the proton mean free path ..\. 
We consider here only the high energy limit z0 - 0. In that limit we have 

(2.25) 

(2.26) 

We see from Eq.(2.26) that the case a = 1 indeed corresponds to the incoherent 
cascade limit where in particular (z}n = (1/2)n. This relation also shows that the 
fractional energy loss of the projectile parton cloud per collision is just 1/ (1 +a). 
Applying Eq.(2.25) for n = m = 1, we see that the spectator partons retain a 
fraction a/(1 +a) of the incident energy. The final baryon after recombination, 
however, is observed in pp collisions on the average with {zh ~ 1/2. Therefore, 
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the recombination process must leave the final baryon with a fraction mN Jm* = 
(1 + a)/(2a) of the energy of the spectator pa.rtons. This shows how the effective 
mass, m•, of the spectator pa.rton cloud must depend on a in our model. 

Eq.(2.25) also shows that the average energy fraction, Zi, of the ith chain in 
this model falls off according to 

(2.27j 

Calculating next the average rapidity loss moments, we find that in the z0 -+ 0 
limit 

(Ay), = -(log (:;:-z ))n 

= (n- l)(Ay)K + (Ay)/, 

= (n- I)/a+ 1 , 

(Ay2
}, = n(n- 1)/a2 + 2(n -I)/a+ 2 , 

(2.28) 

(2.29) 

where we neglected terms of order log(m/m.L)· The average rapidity loss moments 
for impact parameter averaged pA collisions is then just given by the above expres­
sions with n and n2 replaced by their averages, (n)..t ~ liA and (n2}..t over PA(n) 
respectively. 

The average rapidity loss as a function of nuclear thickness is given by 

( } 1 z a - 1 ( _ zf..\) 
~11 z = -- + -- 1 - e , 

a.\ a 
(2.30) 

( 2} 1 ( z )
2 

2 z a - 1 ( zf..\) Ay z = - - + -- + -2 1 - e-
a2 .\ a.\ a 

(2.31) 

These relations show that 1/a is the mean rapidity loss per interaction. 
Finally, we note that the average fractional momentum carried by the spectator 

projectile partons after traversing a nuclear thickness z is given by 

(2.32) 

The leading baryon ends up with only a fraction mN/m* = (1 + a)f(2a) of that 
energy because of the effective mass of the spectator parton cloud. 
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3. Empirical Stopping Power of Nuclei 
3.1. Nuclear Geometry 

The use of accurate nuclear densities to compute P...t(n) in Eq.(2.4) is important 
because the z ~ !limit of the proton inclusive cross section is directly proportionaJ 
to P...t(l): 

lim z ddN = P...t(l) . 
•-1 % 

(3.1) 

Therefore, the non-diffractive component to the leading proton rapidity density 
near the kinematic limit is fixed by geometry alone and is independent of the 
dynamics. Since sharp sphere approximations to nuclear densities grossly underes­
timate the probability that only one interaction occurs in heavy nuclei, simplified 
treatments of nuclear geometry could lead to erronious dynamical information from 
z ~ 0.3 data. 

A sufficiently accurate approximation to nuclear densities is given by the Wood­
Saxon form 

P...t(r) = PA {1 + exp[(r- R...t)/d)} - 1 
, · (3.2) 

where P...t is determined by normalization, and the parameters R and dare chosen 
as 

R...t = 1.19A113 -1.61A-113 Fm , 

d = 0.54 Fm . 

(3.3) 

(3.4) 

We compared PA(n) computed with the above density to those computed by 
H.Sato[25) using density dependent Hartree-Fock and found agreement within lOo/c 
accuracy. We chose uf: = 32 mb as the inelastic pN cross section. Furthermore, 
Table 3.1 shows that this density leads via Eq.(2.6) to satisfactory agreement be­
tween the calculated and measured(26] reaction cross sections. Also listed in the 
Table are values of P...t(1), P ...t(2), and ll...t = (n}A for various nuclei. In practice we 
terminated the series in Eq.(2.3) at n=l5. · 

For comparison, we note that the densities employed in Ref.[21] lead to 10o/c 
larger values of P...t(1) and na~~.(pA). This led to invariant cross sections that are 
20% larger than ours at high z. In the calculations of Ref.[19) only the term 
n = (n)A was considered in Eq.(2.3). The neglect of surface and fluctuation effects 
is partially responsible for the large (17 Fm) momentum degradation length that 
was obtained in Ref.[19). In Ref.[20) diffuse surface effects were neglected, but since 

A D'A(exp) D'A(theo) PA(1) PA(2) VA 
12 222 225 0.57 0.25 1.7 
27 .09 411 0.45 0.24 2.1 
64 764 765 0.34 0.22 2.7 
108 1101 1105 0.28 0.19 3.1 
207 1730 1726 0.22 0.15 3.8 

Table 3.1: Reaction cross sections and Glauber probabilities 
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their method treated pp and pA collisions differently, they were able to fit the data 
by introducing a normalization factor. Finally, we note that in the pioneering work 
of Ref.[l7) only a very crude treatment of geometry was considered. An important 
objective of the present work is to reduce the uncertainties associated with such 
trivial geometrical effects. 

3.2. Implications of 100 Ge V Proton Spectra 

In Fig.l we compare our calculated invariant proton inclusive cross sections to 
the data[7) at 100 GeV /c. For these calculations we used the parameterization of 
the transverse momentum distribution of Ref.[9] and took the proton to baryon 
ratio rp = 0.53. This gives rpg(p_L) = 0.8876 for the P1. = 0.3 GeV /c relevant to 
the data. 

In Fig.l the case a = 1 verifies the finding of Wong{21] that the incoherent 
cascading cannot account for the A dependence of the data. ·The data indicate 
that the probability of small energy loss is greater than predicted by incoherent 
cascade. The partial transparency of nuclei can be parameterized in our model by 
setting a > 1. Taking into account the uncertainties associated with our model 
assumptions and those of the data, we see that 

a=3±1 (3.5) 

leads to a satisfactory fit to the A dependence of the data over the measured x 
region. Note that the :r = 1 intercept is independent of a in accord with Eq.(3.1). 
This value of a is in agreement with the value deduced in Ref.[20) {22] using a less 
general formalism. 

To emphasize the limited kinematic domain covered by the present data, we 
show in Fig.2 the normalized rapidity distributions for a = 3. We also calcu­
lated dN/dy for collisions with the outer (dashed) and inner (dashed-dot) halves 
of the nucleus for comparison to the extrapolations by Busza and Goldhaber[l7]. 
This separation into inner and outer half is accomplished by restricting the range 
of impact parameter integration below and above the impact parameter, be, corre­
sponding to one half of the reaction cross section. Comparing the dashed-dot curve 
in Fig.2b with the corresponding one in Fig.3 of Ref.[17] we find a substantial dif­
ference. The peak of our curve is shifted by one unit of rapidity less than their 
extrapolation. This is a consequence of their cruder treatment of geometry and 
their constraint that dN/dy vanish at :r = 1. It would be very useful to measure 
the multiplicity dependence of the proton distibutions to test more severely these 
geometrical effects. 

Having determined the range of a compatible with the proton yields, we show 
the average rapidity loss, {ay}z, as a function of nuclear depth in Fig.3. While 
we differ with the extrapolated distributions of Ref.[l7) for the inner half impact 
parameters, we find in agreement with Ref.[17) that the maximum rapidity shift 
induced by heavy nuclei is 

aYmaz::::::: (ay}z-I~m::::::: 2.5 ± 0.5 (3.6). 
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This rapidity shift may occur when a proton traverses the entire diameter of a heavy 
nucleus. It is important to keep in mind, however, that the above extrapolation has 
yet to be tested experimentally by more detailed measurements involving associated 
multiplicity triggers. The impact parameter averaged data yield {ay}A as indicated 
by the symbols in Fig.3. For finite nuclei we took the average nuclear depth to be 
z = VA x 2.08 Fm. The Ph data thus only tests nuclear stopping to average depths 
of- 8 Fm . 

3.3. Consistency with Pion Spectra 

To check the consistency of our model we compare next the calculated invariant 
pion inclusive cross sections with data. For these calculations used the following 
fit to th~ pp-+ 1r± X data 

trf: g,(0.3)/.- (z) = 35(1- z)9 + 18(1- z)2
·
8 mb/GeV 2 

, (3.7) 

af,!"g.(0.3)/,-(z) = 31.8(1- z)8
·
6 +4.59(1- z)3

•
29 mb/GeV 2 (3.8) 

The pp -+ 1r data were fit with this functional form to allow for a simple calculation 
of the target chain contributions T;(z) in Eqs.(2.18,2.21). 

In Fig.4 we see that the A dependence of the 1r- is well accounted for in .the 
measured z region. However, we see that while the A dependence of the 1r+ spectra 
is reproduced for A > 12, the pp -+ 1r+ X data are systematically lower than the 
solid curve which is obtained in this case by demanding the best overall fit to the 
nuclear data. Conversely, if we insisted on fitting the pp data by reducing the 
normalization in Eq.(3.7) by a factor- 2/3, then all the calculated nuclear curves 
would be systematically below the data. Private communication with W .Busza 
indicated that it is possible that for the reaction p+p -+ 1r+ +X certain experimental 
systematic effects could lead to underestimating the normalization in this channel. 
Another ·reason why pA -+ 1r+ data may require a larger pN -+ 1r+ is the apparent 
isospin dependence of 1r+ production. It was noted in Ref.[21] that in the region 
z > 0.3 the pn -+ ,.+ cross section is about a factor of two greater than the 
pp -+ 1r+ cross sections. While those data are also suspect, such an isospin effect 
could account for the difference between the pp -+ n-+ data and the solid curve. On 
the other hand, it appears[21], that the pp -+ n-- and pn -+ ,.- cross sections are 
approximately the same. Thus no isospin effect is expected in that channel. 

Finally we note that the pA -+ n-+ data at z ~ 0.9 are systematically higher 
than the calculations. This is likely to be due to the neglect of diffractive contri­
butions in our model[13]. Such diffractive contributions would also be expected in 
p+A-+ n +X. 

The successful reproduction of both the normalization and the shapes of the 
pion yields should be contrasted with the incoherent cascade model[21] that over­
predicted those yields by a factor of 7. This is due to the neglect of longitudinal 
growth in the cascade model. Our starting point via Eq.(2.18) explicitely incorpo­
rates that effect by including only one projectile fragmentation process according 
to assumption 3 in section 2.1. Unfortunately, this high x kinematical domain is 
not very sensitive to the multi-chain aspect of our model. Target chains produce 
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pions mostly in the z < 0.3 region. On the plus side, the data are, however, sen­
sitive to the energy loss mechanism since the ratio of pion cross sections for Pb 
and p targets varies by a factor of three in the measured z region for 1r-. The 
agreement of our calculations with the pion data shows that the energy loss of a 
proton deduced by fitting the proton data with a = 3 is consistent with both the 
leading pion and proton spectra. 

3.4. Deviations from Scaling 

While we have seen that the 100 GeV /c data on leading protons and pions 
could be well reproduced in our model by one fixed parameter, a ~ 3, the scaling 
assumption must break down at sufficiently low energy. In Fig.5 we compare our 
calculations for p +A -+ p +X with data[27] taken at 24 Ge V. For that calculation 
we took rp = 0.75 and g(p.l.) from a fit to the 24 GeV pp-+ pX data of Blobel et 
al[28]. The data and calculations correspond to fixed angle 6 = 17 mr. The three 
curves show cases a = 1 (solid), 3 (dashed), and 6 (dot-dashed). While none of 
the curves provides a good fit, the data seem to indicate a bigger energy loss than 
expected from the a = 3 curve (i.e., the integral of the measured distributions 
between 0.1 < z < 1 is less than the integral of the calculated distributions). 
Further support for this conclusion has come from preliminary pA-+ pX data[29] 
at 17 GeV, where the normalization of the high z proton density seems to be in 
fact a factor of two smaller than that of the data displayed in Fig. 5. 

These data therefore indicate that the stopping power of nuclei at"' 20 GeV is 
greater than at 100 Gev. In terms of our phenomenological parameter a, a ·value 
closer to unity may be necessary at these lower energies. For the purposes of the 
present paper, we shall not try to incorporate such scaling violations by modifying 
the model but ·only note their existence. Fortunately, we find in the next section 
that our conclusions about stopping domain of nuclear collisions are not especially 
sensitive to such violations. 
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4. Space-Time Development of Stopping 
4.1. Momentum Degradation Length 

From the pA data we could deduce how much energy is lost by the leading 
baryon after traversing a certain thickness of nuclear matter. Our analysis confirms 
earlier estimates[7) ,[19]-[22] that about 90% of the incident energy of a proton could 
be lost after traversing 14 Fm of nuclear matter. However, until now the question 
of where that energy is deposited has not been seriously addressed. Obviously the 
data provide constraints only on the momentum space aspects of models, which 
in our case is the value of a. The space-time development of stopping and energy 
deposition is largely unconstrained by the available data. However, for applications 
to nuclear collisions it is necessary to know not only how much energy is lost but 
also where that energy is deposited. In this section we consider the space-time 
picture of energy loss and deposition in the context of the multi-chain model. We 
pay paticular attention to the effect of time dilation and longitudinal growth[2] 
(3) [4) on the space time development of particle production. We show below that 
this basic phenomenon, neglected in previous studies on stopping power, limits 
the maximum energy that can be deposited into a nucleus. Furthermore, that 
maximum energy deposition is relatively insensitive to dynamical assumptions. 

Taking fluctuations of the number of interactions into account, we found in 
Eq.(2.32) that the average energy fraction retained by the spectator projectile 
partons decreases exponentially with nuclear thickness traversed. This implies 
that 

dE E 
(4.1) -~--dz A, ' 

where E( z) is the energy left in the projectile spectator cloud at depth z in the 
matter, and A, is the "momentum degradation length"(20) as given by 

A,= (1 +a).\ ~ 8 ± 2 Fm . (4.2) 

If we ignore fluctuations as in Ref:(20J, then 1 +a above is replaced by 1/ log(!+ 
1/ a). For a = 3 fluctuations enhance A, by only 15%. 

While Eq.(2.32) relies on the assumption that the stopping dynamics scales 
with energy, Eq. ( 4.1) is more general if we let A, depend on energy. The value of 
A, in Eq.( 4.2) has been deduced from data at laboratory energies ,...,. 100 Gev. For 
lower energies we expect according to Fig.5 that A, decreases as a decreases. For 
comparison, our value of A, is a factor of two larger than if incoherent cascading 
were valid[21J. It is also 60% larger than deduced in Ref.[20J because they neglected 
fluctuations and used the total rather than the inelastic pp cross section for esti­
mating..\. (their revised results to be published are in accord with ours). On the 
other hand, our value is a factor of two smaller than deduced by Hwa[l9j, where 
only the roughest geometrical considerations and dynamical approximations[20j 
were considered. · 

Stopping the baryon in a frame that moves with rapidity y with respect to the 
lab means that E in the lab is reduced to m• cosh(y), where m• is an effective mass. 
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Recall from section 2.4 that in our model the fraction of the energy of the spectator 
partons that is carried away ultimately by a baryon is f = (l+a)/(2a) ~ 2/3. By 
defining m•·= mN/ f, we thus guarantee that on the average the projectile nucleon 
ends up at rest in that frame. Since E(z) = E0e-;fA., from Eq.(4.1), the thickness 
of nuclear matter required to reduce the rapidity of a nucleon from y0 to y is 

(4.3) 

where 6y = log(l/ /) ~ 0.4. For y = 0 the approximation E ~ m.1e" /2 used in 
Eq.(4.3) is not good enough. The stopping distance in the laboratory frame is 
given rather by 

(4.4) 

Solving for Jl.y = Yo- y from Eq.(4.3), we note that Jl.y = L/AP + 5y in­
creases slower with L than if we used {ll.y)L from Eq.(2.30). This is because the 
distribution of energy loss is so wide that the average rapidity loss tends to over 
estimate the average energy loss for a given a. Within the large uncertainties in 
the present determination of a, however, this distinction is not so crucial. To be 
on the conservative side we use Eq.(4.3) in applications to nuclear collisions. 

For application to collisions of symmetric nuclei (A+A), we are interested in 
reducing the incident rapidity by only 1/2 since such a rapidity shift applied to 
both target and projectile nucleons would lead to stopping of all baryons in the 
center of mass system. The thickness of nuclear matter required to stop baryons 
in the em system is thus estimated to be 

L • = L(Yo/2) = Ap(Yo/2- 6y) (4.5) 

4.2. Effect of Longitudinal Growth 

We now turn to the problem of how to reconcile the slow (log E0 ) increase of 
these stopping distances with the concept of longitudinal growth[2]. Because of 
Lorentz time dilation, the formation time of a secondary particle increases linearly 
with the energy of that particle {3). Therefore, at a distance z into the matter only 
particles with rapidities[3][4] 

11 ::._ log(2z/ro) , (4.6) 

could have come on shell. The proper time for formation of hadrons is estimated to 
be r0 ~ 1 Fm. Recall [2] that Eq.( 4.6) also follows from the uncertainty principle 
in terms of light cone variables (z± = t ± z,q± = E ±qz) 

> 2h 
liz±-­

Jl.q=f 
(4.7) 

Therefore the production of a particle with rapidity y and transverse mass m.i 
cannot be localized on the average within a distance ~z "'e11 Jm_ ofthe interaction 
point. Note that this is in spite of the fact that at any fized time the z coordinate 
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of a high energy particle with a rapidity wave packet of width tiy can be measured 
with great accuracy, i.e., az ~ 2hf(ml.e11tiy) as y ~ oo. What we cannot localize 
well is the production point of the particle, not its wavepacket once it has been 
formed. This exponential growth with rapidity of the uncertainty in the production 
point is referred to as longitudinal growth. We see that To ~ 2/mJ. ,...., 1 Fm even 
for point like partons due to limited P1. ditributions. For point like particles the 
transverse Compton wavelength sets the minimum uncertainty in the proper time 
for its formation. Time dilation then increases the uncertainty in the formation 
time in any other frame. 

To see what limitations longitudinal growth places on the energy deposited per 
unit length let Pr(z;y)oz be the formation probability of a secondary with rapidity 
y at some point between z and z + oz downstream from the interaction point. A 
simple form of Pr that incorporates Eq.(4.6) is 

Pr(z; y) = 
2
x:(y) O(z- (1- x)l(y))9((1 + x)i(y)- z) ~ 5(z -l(y)) , (4.8) 

where l(y) =To sinh(y) ~ e" /m1. is the average production point of a particle with 
rapidity y, and xt(y)f J3 is rms width of the production region. The parameter 
X ~ 1 controls the magnitude of fluctuations about the average production point. 

For an interaction at point z0 , the energy deposited at z in the form of on shell 
secondaries is 

dE
00 I dN -;I;-= dyPr(z- z0; y)ml. cosh(y) dy ~ (4.9) 

where dN fdy is the final rapidity density of secondaries. Since the empirical dN fdy 
is only a slowly varying function of y in the central region, we see that longitudinal 
growth implies that dE00 fdz is approximately a constant[30] given by 

tT = m1. (dN) ..!..log (1 + x) ,...., 1 Gev . 
To dy 2x 1 - x fm 

(4.10) 

Note that fluctuations around the average production point enhance dE 00 
/ dz. 

The approximate constancy of dE00 
/ dz also follows naturally from the string 

model. A string produced in a collision corresponds to a color flux tube that 
streches out with time. The constant color electric field t in that tube leads to 
a constant energy per unit length tT ex t 2

• In the color fields of that tube the 
Schwinger mechanism produces pairs that neutralize the field. Since a particle 
'Yith energy € cannot be emitted from the string before the kinetic energy loss, 
trz, exceeds €, longitudinal growth is automatically satisfied. Furthermore, the 
empirical string tension, tT ~ 1 Gev /fm, gives an energy loss similar to Eq. ( 4.10). 

The energy deposition per unit length can be approximately constant of course 
only over a finite range. That range is fixed simply by energy conservation. For a 
target chain carrying an energy fraction z, energy conservation flxes its "length", 
l(z ), to be 

l(x) = zEo/tr , 
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where E0 is the incident energy. At the point where the string is streched to 
length l(z) all the kinetic energy of the leading parton has been converted into 
potential energy. That potential energy is in turn converted via the Schwinger 
mechanism into energy of pairs that are formed in the color neutralization process. 
A target chain formed at depth z0 therefore leads to an approximately constant 
energy deposition per unit length over a finite range z0 < z < z0 + l(z), so that 

dE 00 

-;;:;- ~ D'8(z- zo)O(zo + l(z) - z) . {4.12) 

Summing over all target chains leads then to the estimate 

dE00 

dz ~ D'{~ 8(z- Zi)8(zi + l(zi)- z)) , 
• 

(4.13) 

where the average denoted by {· · ·) is over the multiplicity of target chains, their 
production points z,, and their energy fractions z,. 

To Eq.( 4.13) we must still add the contribution to the energy deposition due to 
the recombination and neutralization of the projectile chain. We do this formally 
by extending the sum from i = 0 to i = N, where i = 0 refers to the contribution 
of the projectile chain. Thus, z0 is point from which fragments from the projectile 
chain start to materialize, and l(z0 ) = l(l - z1 - • • • - ZN) is the distance over 

. which the projectile string neutralizes. With this convention, note that the total 
length of all chains is just the naive longitudinal length scale 

N 

E l(zi) = E0/D' . (4.14) 
i=O 

From this it is clear that an important feature of multi-string models is the oc­
currence of multiple length scales that are smaller than the naive length scale, 
Eo/D'. 

What we must next specify is the distribution of z0 , • • ·, ZN and z1, • • ·, ZN 

as well as of N. The distribution over N is given by a Poisson from Glauber 
theory, such that {N) = 2RjA, where 2R is the thickness of nuclear matter. The 
distribution of the fractional energies, zll · · ·, ZN, carried by the N target chains is 
completely specified in our model as 

(4.15) 

This distribution leads to the average fractional energies, Zi, of target chains given 
by Eq.2.27. 

The distribution of interaction points, z,, on the other hand, is not specified 
by the model as formulated thusfar. Fitting the momentum space data does not 
require knowledge about the z;. Again we emphasize that those data provide 
information only on energy loss and not on energy deposition. Thus, strickly 
speaking the pA data are not enough to determine the energy deposition that 
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is crucial to applications to nuclear collisions. Note that the maximum energy 
deposition in a finite nucleus is not even bounded by the energy loss because some of 
the energy carried by the spectator partons can also end up within the nucleus (term 
i = 0 in (4.13)). On the other hand, the energy deposition could be significantly 

. smaller than the energy loss because the lengths of several chains could exceed 
the nuclear thickness. To estimate the energy deposition we consider two extreme 
models for the distribution of production points, z1• 

The first model for that distribution follows naturally from multiple collision 
theory. In such a framework interactions occur sequentially involving successively 
smaller and smaller energies. Therefore, the first chain, carrying on the average 
the highest energy fraction :t1 = 1/ ( 1 +a), would be prod need first ( z1 "' ;\). Then 
the second chain would be created after another mean free path, etc. Such a time 
ordered/sequence of interaction points corresponds to a distribution 

{4.16) 

where 2R is again the thickness of the nuclear slab and 0 < Zi < 2R for all i. With 
Eq.(4.16) the average production point of chain i is (z,) = 2Rif(N + 1). 

A second possibility for the distribution of interaction points is suggested by 
the parton model. In that model partons are assumed to have very large mean free 
paths. Only because there are so many of them that a few can neverthess interact 
inside a finite nucleus. In that picture the Zi are thus uniformly distributed over 
the nuclear thickness. Such a distribution thus corresponds to 

(4.17) 

On the average, there is an interaction every 2Rf(N + 1} as with the time or­
dered distribution ( 4.16). However, with ( 4.17) there is no correlation between the 
interaction point and the energy of the chain. 

Clearly, (4.16) leads to an upper bound on the estimate for energy deposition, 
because the first few chains that carry the largest fractional energies have the 
longest range within the nuclear matter to neutralize. Conversely, ( 4.17) leads to a 
lower bound since some of the time the shorter chains are allowed to be produced 
before the longer ones. Comparing the energy deposition resulting from ( 4:.16) with 
that resulting from ( 4.17) will give an indication of the theoretical uncertainty in 
those estimates. 

Consider first the time ordered case corresponding to (4.16). On the average, 
the energy of a chain produced at depth z is given by E(z)/(1 +a). Therefore, its 
length is approximately 

l(z) = l
0
e-z/A., , (4.18) 

where l 0 = E0 f((1 + a)O'). Fig.6 illustrates the range of nuclear depths over which 
different target chains neutralize in this case. A given target chain n neutralizes 
on the average between n;\ .:S z .:S n..\ + l(n..\). Note that the length of all chains 
increases linearly with the incident energy and that those lengths are twice as long 
for the case a = 1 a.s for a = 3 because the average energy lost forming target 
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chains is twiee as large in the former case. The peculiar shape of the solid curves 
results from the interplay between the linear growing and exponentially decreasing 
contributions to the end point of the neutralization range for different chains. For 
a fixed energy and a there exists a minimum depth, z•, below which none of the 
chains have yet neutralized. That depth as given by 

z• =A, { 1 +log [(1 + ~o)o-A.J} (4.19) 

grows only logarithmically with incident energy. 

Since each chain con tributes approximately a constant q to dE00 
/ dz, we can 

estimate the total energy deposition per unit length by noting that a new chain is 
created on the average every mean free path .\ and summing over all contributing 
chains via 

dE00 (J dzo -
~~a lo T8(zo + l(zo)- z) . (4.20) 

For z < z• the total energy deposited per unit length simply increases linearly[30], 

(4.21) 

This linear growth is illustrated in the bottom part of Fig.6. For z > z•, dE 00 jdz 
decreases rapidly as fewer chains contribute. Note the little kink in the curves 
that occurs at z = L(O) = Aplog(E0 /m•) corresponding to the stopping distance 
in the laboratory frame as given by Eq.(4.4). For z > L(O) the integration oYer 
z0 in Eq.(4.20) terminates at L(O). Nevertheless, dE 00/dz continues to be finite 
because not all target chains can neutralize so fast. For Eo = 50 Ge V and a = 1, 
for example, the baryon stops on the average at a depth L(O) = 17.5 Fm while 
target chains continue to produce secondaries until the first chain is neutralized at 
depth ~ 25 Fm. In this example linear growth of dE00 jdz ceases at z• = 12 Fm. 

The most striking feature to note in Fig.6 is the insensitivity of dE00 jdz to 
the value of a. Even though the hadronization range of any particular chain is 
sensitive to a, the net sum of all chains is rather stable with respect to changing 
a. It is also obvious from the dE00 fdz curves that the energy deposited per unit 
length eventually saturates as the incident energy increases. At a fixed depth z, 
dE00 fdz saturates at azf.\ for incident energies satisfying z• > z. Therefore, the 
total energy deposited within a finite nucleus of thickness 2R saturates at 

with the upper bound being reached at incident energy 

Eo= E'at = { 
(1 + a)a2R 

(1 + a)aApef2R-A.,)/.&., 

if 2R < Ap 

if 2R ~ Ap 

{4.22) 

(4.23) 

The maximum energy that a proton can deposit in nuclear matter of thickness 
2R = 14 Fm is thus E:o ~ 45 GeV which is reached for incident energies Eo > 
E•at ~ 60-80 GeV for a~ 1-3. 

20 

• 



• 

Consider now the alternate possibility, Eq.(4.17), where the assumption about 
the time ordering of the production point z; is removed. In this case, each z; is 
uniformly distributed between 0 < Zi < 2R. Consequently, chain i contributes to 
the energy deposition per unit length ad amount 

( d:zoo); :o; rr J.'R ~~ 9(z- z;)9(z; + l(z;) - z) . (4.24) 

This integral leads to a trapezoid shape in the range 0 < z < 2R + l(zi)· Of more 
interest however is the total energy deposition into nuclear matter of thickness 2R. 
That is given by 

Ei(2R) = { 

uR 

ul(zi)(1-l(zi)/(4R)) 

l(xi) > 2R 

l(zi) < 2R 
(4.25) 

We see from ( 4.25) that at sufficiently high energies, when the l( z;) generally 
exceed 2R for every chain, the sum over the :::::::: 2R J .\ chains gives the same total 
energy deposition as in Eq.(4.22)! Therefore, we draw the important conclusion 
that the maximum energy deposition in a finite nucleus does not depend on the 
distribution of the z; nor on the distribution of the Zj. For a nuclear thickness 
of 14 Fm, that maximum energy deposition is "' 45 GeV. We note, however, that 
this estimate depends on the effective string tension t1 :::::::: 1 Ge V /Fm and the 
assumption that the strings add incoherently. The assumption that strings add 
incoherently is justified only if the color electric charge at the end of the strings is 
random. Clearly, a random walk in color space leads to an average color electric 
field squared, {e 2), that grows only linearly with the number of interactions. Hence, 
the effective number of strings grows only linearly with nuclear depth although large 
fluctuations about the average can be expected. 

While the maximum energy deposition: asymptotically does not depend on the 
details of those distributions, the maximum energy deposition in the baryon stop­
ping region does. That is because in the baryon stopping region, some of the chains 
have lengths less than 2R, and therefore the energy deposition from those chains 
depends on their production points, z;. The maximum energy deposition in the 
baryon stopping region is estimated in the next section. 

4.3. The Stopping Domain of Nuclear Collisions 

In the context of nuclear collisions we are interested in stopping baryons in the 
mid-rapidity or nucleon-nucleon center of mass system. The condition for stopping 
a nucleon in the mid-rapidity frame due to a zero impact parameter collision with 
a nucleus of radius R is L• < 2R, where L• is given by Eq.(4.5). This limits the 
energy per nucleon in the center of mass to be 

( 4.26) 

Of course the same condition is obtained by requiring that the stopping distance in 
the center of mass system be smaller than the Lorentz contracted radius, R/lem· 
For a finite impact parameter b, 2R is replaced by 2y'( R 2 - b2). 
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In Fig.(7) the thickness, L•, of nuclear matter required to reduce the incident 
lab rapidity 2Ycm to 1/cm is shown qy the solid curves labeled B for both a = 1 and 
3. For a = 3 the em stopping distance exceeds the diameter of the heaviest nuclei 
for "Ycm ~ 4:. For a = 2, L• > 14: Fm for "'fcm > 6. If we could extrapolate the 
a = 1 curve indefinitely, then L• > 14: Fm only for "Ycm > 14:. Recall that 1cm ~ 6 
corresponds to the extrapolated upper bound on the stopping energy in Ref.[17]. 

While there is considerable sensitivity of the value of "Ycm for which L • > 14: Fm, 
something striking occurs at "Ycm "' 4 regardless of the value of a. In addition to 
showing L•, Fig.(7) shows the boundaries of the target c.hain hadronization regions 
for the first and last chain in the case that the interactions are time ordered such 
that z, ~ iA.. Curves labeled 1 show the end point 

(4:.27) 

of hadronization of the first target chain. Curves labeled 2 show the end point of 
the last target string formed at L • as given by 

(4:.28) 

The energy lost by the incident hadron is deposited into the target in the form 
of secondary particles aver a region extending to the larger of curves 1 and 2. 
For lower energies the hadronization of the last string defines that boundary. For 
higher energies the first string extends further than the last string. This is simply a 
consequence of longitudinal growth since the length of the first chain is proportional 
to the incident laboratory energy while the last chain is proportional to the center 
of mass energy. On the other hand, L • only grows logarithmically with energy. 

When either curve 1 or 2 exceeds the diameter of the nucleus, a fraction of 
the available energy in the em is lost to secondaries produced outside the nuclei. 
We define the stopping domain of nuclear collisions as that energy range where 
not only the baryons come to rest in the em but also where most of secondary 
particles can be reabsorbed within the Lorentz contracted nuclear volume. Only 
if the secondaries resulting from the color neutralization processes are produced 
within the nuclear volume can they contribute to heating the high baryon density 
fireball in the em frame. We see from Fig.(7) that the stopping domain for the 
heaviest nuclei therefore extends only up to center of mass kinetic energies 

KEcm ~ 3± 1 GeV /A (4:.29) 

relatively independent of the precise value of a. 

The total energy deposited within nuclear matter of thickness z is shown in 
Fig.(8) for the time ordered case. That energy, E 00 (z), as obtained by integrating 
Eq.(4.20) up to a given depth z, is shown in units of the energy loss, E;top = 
Eo- m• cosh (Yo/2), necessary to stop a baryon in the em system. For a maximum 
nuclear thickness 12- 14: Fm, indicated by the shaded region, all the energy loss 
necessary to reduce the incident rapidity by one half can be deposited within the 
nuclear volume as long as the incident laboratory energy is below ,....., 20-50 A.GeV. 
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By 100 AGeV only "' 1/2 of the necessary energy can be deposited within the 
heaviest nuclei found in nature. Once again note the remarkable insensitivity of 
these curves to variations of a between 1 and 3. 

The relative insensitivity of the stopping domain to dynamical assumptions is 
a consequence of longitudinal growth. In the case a = 1 the energy lost forming 
target chains is twice as large as in the case a = 3. Therefore, the rapidity of the 
baryon is reduced in only a fraction of the distance that is necessary in the a = 3 
case. However, the catch is that the hadronization region of target chains extends 
then twice as far as in the a = 3 ease. Therefore, the stopping domain in the a = 1 
ease is limited by the energy at which energetic pions start being produced outside 
the nuclear volume due to time dilation. On the other hand, in the a = 3 case 
the stopping domain is limited by the energy at which the nuclear thickness is no 
longer sufficient to bring the baryons to rest in the em frame. 

The above estimates are only upper bounds because they are based on the as­
sumption, Eq.(4.16), that the chains are produced sequentially. Furthermore, they 
neglect the effects of fluctuations in the number of chains, their energy fractions, 
and production points. To study such eff'eets we have written a Monte-Carlo pro­
gram to evaluate the ensemble average in Eq.(4.13) sampling the number of chains 
from a Poi~son, the z, from the distribution ( 4.15), and Zi from either ( 4.16) or 
(4.17). We have also included the contribution from the projectile chain assuming 
zo = z1 in ( 4.13). Further details of the algorithm and results will be published 
elsewhere. Here we only quote the final results of such calculations in Table 4.2. 
In that table the average energy loss and deposition in nuclear matter of thickness 
14 Fm is given as a fun·ction of incident energy, E0 • (Units are in GeV). Cases 
a = 1 and 3 are again considered. The upper and lower estimates for the en­
ergy deposition are obtained using ( 4.16) or ( 4.17) respectively. Note that while 
the energy loss is greater for a = 1, the energy deposition is smaller in that case 
because the chains are longer. Note also the saturation of the energy deposition 
above Eo > 50 Ge V. The most remarkable point is again the relative insensitivity 
of the total energy deposition to variations in a and the distribution of the z,. The 
maximum average energy deposition in 14 Fm of nuclear matter is thus "' 30 ± 10 
GeV. We also found that the rms fluctuations about that average are fairly large 
(- 10 GeV). However, in nuclear collisions those fluctuations are reduced by .. 4-l/S. 

This Monte-Carlo study is therefore consistent with the estimate Eq.(4.29) for 
the upper bound of the nuclear stopping domain. The error bars quoted in ( 4. 29) 
therefore correctly reflect the theoretical uncertainties in the present estimates. 

Just beyond the stopping domain ( K Eem ~ 3) the situation is more uncertain . 

Eo 30 50 100 
a=3 E,a., 24 40 80 

Eam 22-26 29-33 38-42 
a=l E,a., 27 47 95 

Etko 16-22 20-26 25-31 

Table 4.2: Average energy loss and deposition (see text) 
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If a "" 1 is appropriate at those energies, then there could exist a curious inter­
mediate energy region, 3 ~ KEcm < 6, where baryons would stop on the average 
in the mid rapidity frame but an ever increasing fraction of the energy is lost to 
fast secondary pions produced outside the Lorentz contracted nuclear volume. For 
a = 3, such an intermediate region would not exist. Experimental information in 
this energy domain is obviously needed. 

We can now estimate the maximum baryon and energy densities that could be 
reached in the stopping domain. Simple kinematic eonsiderations[31] alone indicate 
that in the stopping domain the baryon density could reach 

(4.30) 

and the energy density could reach 

(4.31) 

where we input our estimate "Ycm ~ 4 as the boundary of the stopping domain. In 
fact, baryon and energy densities up to twice as high could be reached[30] if shock 
conditions could.be reached. On the minus side, not all the secondaries produced in 
the nuclear volume will be reabsorbed in the fireball due to their finite interaction 
mean free paths. The leakage of some secondaries would probably compensate for 
any extra compression beyond the kinematical minimum (4.30). In any case, energy 
densities in excess of one order of magnitude above the ground state value should 
be easily accessible in central collisions of heavy nuclei at energies K Ecm ~ 3 ± 1 
AGeV (K EztJb - 17 - 50 AGeV). The unique feature at these energies is that 
the baryon density reaches the maximum value that could ever be attained in a 
laboratory via nuclear collisions. 
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5. · High Energy Nuclear Collisions 

In this section we make predictions for the nucleon rapidity distributions in the 
projectile fragmentation region for nuclear collisions beyond the stopping domain. 
The extension of the Multi-Chain Model to B +A ~ N +X, where both B and A 
are nuclei has been carried out in Ref.[32]. With the assumptions in section 2, the 
invariant nucleon inclusive cross section for nuclear collisions can be written as 

(5.1) 

where the rapidity density is given by a multiple collision series in analogy to 
Eq.(2.3) as. 

dNBA B A 

d = L L Ps...t(m, n)Qm,n(z) . 
Y m=ln=l 

(5.2) 

(Charge exchange and isospin effects will not be considered here.For a distribution 
of nuclear collision impact parameters, B(b), the probability that m projectile 
nucleons interact with n target nucleons is given by the usual Glauber expression 

(5.3) 

where Ps(m,s) is the binomial probability that m projectile nucleons interact at 
relative impact parameters: 

Recall that Ns(s)/B with N8 given as in Eq.(2.5) is just the a priori probability 
of finding a projectile nucleon in an infinitely long cylinder of area uf:.N at relative 
impact parameter B. The product PsPA in Eq.(5.3) is then just the probability of 
finding m projectile and n target nucleons in that same cylinder when the nuclear 
collision impact parameter is b. Therefore, Qm~ must be normalized to m + 
n. In Eq.(5.3) usA does not correspond to the reaction cross section but rather 

· to a normalization factor insuring that E!=t E~=I Ps...t(m, n) = 1. The Glauber 
reaction cross section is given by 

Recall that the inclusive nucleon cross section is normalized as 

(5.6) 

and that it is convenient to decompose B = W8 +58 and A= W...t +SA, where Ws 
is the average number of interacting or wounded nucleons and 58 = B- W 8 . is the 
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average number of noninteracting or spectator nucleons in the projectile nucleus 
B, and similarly for the target A. From the above relations it is clear that 

. I d'bB(b) J d's { A} W s = BA "NNNs(s) 1- (1- NA(b- s)/A) , 
tTr (Tin 

(5.7) 

with WA given by interchanging A and B above. 

The above relations clearly separate the cumbersome but well understood ge­
ometrical aspects of nuclear eollisions from the sought after dynamics specified by 
the distributions Qm,n(z). It is clear that proton nucleus data(7J provide informa­
tion only on Q1,n(z) as given by Eq.(2.7). In this paper we explore the consequences 
of only the simplest assumption- namely, that in them projectile nucleons fragment 
independent of one another, i.e., 

(5.8) 

As emphasized in Ref.[22] it is far from obvious that such an independent fragmen­
tation assumption is valid. There is as yet no nuclear collision data to test this 
assumption. Since such data will be available within a few years (at CERN and 
BNL), we have calculated the leading nucleon rapidity density under this assump­
tion using the value of a = 3 determined from pA data. The hope is that deviations 
from our predictions may help uncover possible new phenomena in nuclear colli­
sions. For example, if a locally equilibrated quark gluon plasma is formed in the 
fragmentation regions as current speculations suggest[4J[30], then there could be 
deviations from our predictions. 

With Eq.(5.8), the leading baryon rapidity density is given by 

(5.9) 

where 

P ( ) _ j d'bB(b) I d's N8 (s)p ( b _ ) 
BA n - _ -.JYN B A n, s . 

tT Uiia 
(5.10) 

where q. is chosen to normalize E~=I PsA(n) = 1, and Qn is given by Eq.(2.7). 

In Fig.9 our predictions for the leading baryon rapidity density in central nu­
clear collisions are shown divided by the atomic number of the beam nucleus. Note 
that only the projectile fragmentation distibutions are shown. According to our 
assumption on the independence of the target and projectile fragmentation regions 
the target fragmentation contribution is additive and would substantially modify 
only the lower half of the rapidity region. We define central collisions via an im­
pact parameter cut B (b) = 6(2 Fm-b). Experimentally, such an impact parameter 
range is selected via appropriate associated multiplicity cuts. 

The most obvious point to be noted comparing the different reactions is that 
asymmetric systems like O+Pb offer a more stringent test of nuclear stopping power 
than symmetric systems. This is due to the rather large surface contribution with 
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even the heaviest nuclei. A central U+U collision still involves a substatial number 
of interactions near the surface where only one or two multiple collisions occur. 
In a central O+Pb collsion, on the other hand, every projectile nucleon traverses 
"' 12 Fm of nuclear matter. Therefore, it is not surprising that O+Pb exhibits the 
largest rapidity shift of the reactions shown. 

From the point of view of new phenomena, deviations from predictions in cen­
tral U+U collsions could be most interesting. With such large nuclei multiple final 
state interactions could lead to local equilibrium and, hopefully, to a high baryon 
density quark gluon plasma state in the fragmentation regions. However, our calcu­
lations clearly demonstrate that there will always be a substantial source of back­
ground due the nuclear halo in collsions of identical nuclei that would contaminate 
possible signatures of that state. In order to reliably subtract that background, 
the nuclear stopping dynamics, via Qm,n' must be first understood by extensive 
studies with light nuclear beams . 
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6. Additive Quark Model 

We showed in section 3 that the available data at 100 Ge V could be understood 
in terms of one phenomenological parameter a ~ 3 related to the momentum 
degradation length via Eq.(4.2). However, we have repeatedly pointed out the 
limitations of the current phenomenology. In particular, we have stressed that 
the extrapolated stopping power function in Fig.3 for nuclear depths > 8 Fm 
is not tested by the current data. To help gauge the uncertainties involved, we 
show in this section that the 100 GeV data can be also understood within the 
framework of the Additive Quark Model (AQM)[12]113](15J. Remarkably, we find 
that -the extrapolation to 14 Fm with this model is consistent with the multi-chain 
extrapolations. This gives us futher confidence in those extrapolations. 

In the AQM the incident proton is thought to be composed of three costituent 
quarks. As the proton passes through a nucleus 1,2 or 3 of those quarks get 
"wounded" due to interactions. The final observed proton arises from the frag­
mentation of the wounded projectile. In contrast to the Multi-Chain Model the 
fragmentation probability is allowed to depend explicitely on the number of quarks 
that were wounded in the projectile. In effect the multiple collision series in Eq.(2.3) 
is terminated at the term n = 3. The probabilities P.A(i) are reinterpreted as the 
probabilities, Pq.A ( i), that 1,2, or 3 constituent quarks interact in the nucleus. The 
Qn are regarded as unknown fragmentation functions to be determined by fitting 
data. 

The probability that i projectile constituent quarks are wounded is given in 
analogy to Eq.(2.4) by 

P9A(i) = j d'! .1 (33~ .)1P,A(b);(l- p,A(b))'c; , 
tTtn I. I . 

(6.1) 

where Pq.A(b) is the probability that a constituent quark interacts at impact pa­
rameter b 

Pq.A(b) = 1- (1- tTqN I dzp..t(z, b)/A)A 
(6.2) 

and the reaction cross section is given by 

(6.3) 

In the spirit of that model we take the constituent quark-nucleon cross section to 
be tTqN = 10 mb. The probabilities for wounding quarks are shown in Fig.lO as 
a function of A I/S. For these calculations we used the Wood-Saxon parameters of 
Ref.(33]. Use of the parametes in Eqs.(3.3,3.4) lead to the same probabilities within 
10%. This is the order of magnitude uncertainty in the choice of f7qN in any case. 
Note how large is the probability that only one constituent quark interacts even 
for Pb. Note further that we have set PqN(i) = 61,1 as in Refs.[l3j[l5] although a 
strict application of Eq.(6.1) to A=1 would yield PqN(l) ~ 0.8- 0.9. This is an 
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additional model assumption that is necessary in orde·r to fit the A dependence of 
the data from A=l to A=208. With this assumption Q.(z) should correspond to 
the p+p-+ p+X distribution. In fact we did not constrain Q1 to equal the proton 
target data, but rather we determined the Q; at each value of z by a minimum x2 fit 
to all six (A=p,C,Al,Cu~Ag,Pb) reactions. Such a method was used in Refs.[13][15] 
to fit A 0 inclusive data. · 

With a three parameter fit to six data points at each value of z we found 
obviously a very shallow x2 minimum with enourmous uncertainties and correla­
tions among the Q,. However, the results suggested that in the measured z range, 
the, contribution to dN / dy from collsions involving three wounded quarks could be 
neglected. Therefore, we tried a fit constraining Q3 = 0 as in Refs.!l3l[15]. The 
invariant proton distributions, zd'Ni/dz~pJ., fori= 1 (solid dots) and i = 2 (open 
dots) as determined from such a fit are shown in Fig.ll. The solid lines represent 
linear least square fits to those distributions. We find that we can parameterize 
those invariant distributions for z > 0.3 and P1. = 0.3 GeV fc in (GeV fct2 units 
by 

z<f4N1 fdz~pl. ~ 0.11 + 0.34z , 

zd' N2fdz~pl. ~ 0.35(1- z) 

zd'N3fdz~pl. ~ 0 . 

(6.4) 

With the above fragmentation functions the invariant proton inclusive cross section 
in the AQM is 

(6.5) 

In Fig.12 the solid curves calculated from the above relation are compared to the 
Busza data[7). We find that the Additive Quark Model can reproduce the data as 
well as the Multi-Chain Model. Of course, there is a much larger degree of freedom 
in the AQM through three arbitrary fragmentation functions. 

For purposes of this paper the important question is what this fit implies about 
nuclear stopping power. Unfortunately, the data only go down to z = 0.3, and the 
model provides no clues of how to extrapolate the fragmentation functions to low z. 
Thus, strictly speaking the nuclear stopping power remains undetermined from the 
available data! We can, nevertheless, try to estimate it in the spirit of Ref.[17] by 
extrapolating Eq.(6.4) to a lower cutoff Zc· We took Zc = 0.073, corresponding to 
an extrapolation to mid rapidity. With this extrapolation we found that the average 
momentum fraction carried by the leading proton is z1 ~ 0.45 and z2 ~ 0.25 if 
one or two quarks are wounded respectively. With a form of Q 3 compatible with 
it being negligible for z > 0.3, the leading proton would carry only a fraction 
zs ~ 0.15 of the incident energy if all three quarks were wounded. These results 
are therefore compatible with 

(6.6) 
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With Eq.(6.6) the average momentum fraction carried by the leading proton after 
traversing a thickness z of nuclear matter is 

(6.7) 

where .\9 ~ 7 Fm is the mean free path of a constituent quark in nuclear matter. 
For z = 14 Fm, Eq.(6.7) gives {z} ~ 0.18. In comparison, the Multi-Chain Mode] 
extrapolation via Eq.(2.32) to 14 Fm gives {z} ~ 0.19 for a nucleon inelastic mean 
free path .\ = 2.08 Fm. It is remarkable how stable is this extrapolation to major 
changes in the model assumptions as long as the 100 Ge V data are used to constrain 
the parameters of the models. For comparison, the incoherent cascade model, which 
fails to reproduce the data, would give {z} ~ 0.03. 
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7. Concluding Remarks 

The main purpose of this paper was to extract as much information on nuclear 
stopping power as possible from the limited data[7] on p+A- p+X at 100 GeV. 
Making several strong assumptions concerning transverse factorization and scaling 
dynamics, we applied the Multi-Chain Model[9] to extract one physical parameter, 
a = 3 ± 1, by fitting the invariant cross sections for A=p,C,Al,Cu,Ag, and Pb 
at P1. = 0.3 GeV /c and :z > 0.3. This parameter was shown to be related to 
the momentum degradation length, Ap = 8 ± 2 Fm, that controls the exponential 
decrease of the final baryon energy fraction as a function of nuclear thickness. We 
pointed out, however, that the phenomenon of longitudinal growth[2] implies that 
energy loss via multiparticle production occurs over an ever increasing length scale 
proportional to the energy. By analyzing the space time development of particle 
production in the Multi-Chain Model we were led to conclude that there are in 
fact multiple length scales associated with the hadronization scales of the different 
target chains created during the collision. This follows because hadron nucleus 
collisions involve several independent processes due to the composite nature of 
hadrons: each subprocess involving only a fraction of the incident energy. The 
longest of those chains was found to be on the average 1/ ( 1 + a) smaller than the 
naive longitudinal length scale[2]-[4] given by E0fu. 

The second purpose of this paper was to apply the empirical stopping power to 
determine the upper bound on the stopping domain in nuclear collisions. In this 
paper we defined the stopping domain to be that energy range in which collisions 
of slabs of nuclear of thickness 14 Fm lead not only to the stopping of most baryons 
in the center of mass system but also the production of most of the energetic secon­
daries within the Lorentz contracted nuclear volume (14/icm)· For this we had to 
extrapolate to lower energies and greater nuclear depths than covered by the cur­
rent data. We found in· section 3.4 that we should expect violations from the simple 
scaling hypothesis, but that those violations tend to increase the stopping power 
of nuclei at lower energies. Unfortunately, there is insufficient data at present to 
determine the precise form of the energy dependence of those violations. There­
fore, in estimating the boundary of the stopping domain in nuclear collisions we 
varied the parameter of our model from a = 1 to 3 to cover the large uncertainties 
associated with scaling violations. We found, however, that because of longitudinal 
growth the bound on the stopping domain, KEcm ::._ 3 ± 1 AGeV, was relatively 
independent of the value of a. We showed further that the extrapolation to nu­
clear depths "' 14 Fm was stable against variations of the model assumptions by 
considering limitations on the number of target chains and by varying the assump­
tions on projectile fragmentations via the AdditiYe Quark Model[I2j[I3][15J. This 
gave us further confidence about our estimate of KEr;::z. A Monte-Carlo study 
also showed that within the errors quoted, the maximum stopping energy does not 
depend sensitively on the unknown distribution of the interaction points. 

Beyond the maximum energy for stopping the situation is less clear. Eventually, 
at very high energies K Ecm ~ 100 AGeV the fragmentation regions and central 
region separate although the nuclei shatter over several units of rapidity. The 
energy range above the stopping domain "' 3-5 AGe V is most likely characterized 
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by large fluctuations. Some collisions may accidently lead to complete stopping, 
while others only to shattering. In this region the notion of an average collision 
may not be useful. The stopping domain has the advantage that the maximum 
baryon and energy densities are more or less fixed by kinematics. With maximum 
stopping energies K E~ on the order of a few AGe V, our analysis is consistent 
with previous expectations[16]-[18] that baryon densities and energy densities on 
the order of 10 times those found in ground state nuclei could indeed be achieved in 
central collisions of heavy nuclei. Whether that energy density is enough to reach 
the quark-gluon plasma phase remains an exciting open question. 

Finally, there is a clear need for more extensive data to help resolve some of the 
many remaining uncertainties associated with nuclear -stopping power. Systematic 
measurements as a function of energy in the range 20 to 400 GeV are important to 
map out the scaling violations. Also important are measurements of inclusive cross 
sections with associated multiplicity triggers to probe stopping power to greater 
depths z "' 14 Fm. Finally, central collision studies with light nuclear beams are 
necessary to test linear extrapolations from pA reactions and look for possible non­
linear effect. We have made predictions for central nuclear collisions to establish a 
baseline in looking for novel effects. 
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Figure Captions: 

1. Invariant proton inclusive cross sections[7] for p+A- p+X at 100 GeV as a 
function of light cone z for fixedpJ. = 0.3GeV fc. Solid curves are calculated 
using the multi-chain model. The incoherent cascade[21] corresponds to the 
curves for a = 1. The effect of increasing nuclear transparency is shown by 
cases a = 2, 3, 4. Note that pp and pA are treated on the same footing. 

2. Leading proton rapidity density as a function rapidity measured in pro­
jectile frame. All curves correspond to a = 3 and the C and Ph target 
data are deduced from Ref.[7) assuming rpg(0.3) = 0.8876. Solid curves are 
for impact parameter averaged results, while dashed and dashed-dot curves 
correspond to outer half (b > be) and inner half (b < be) collisions respec­
tively. Here be is chosen to be the impact parameter cut leading to 1/2 of 
the reaction cross section as in Ref.[17). 

3. Stopping power of nuclear matter as measured by the mean baryon rapidity 
shift as a function of nuclear thickness. This is the asymptotic rapidity shift 
(see section 4). Curves for a= 1-4 are shown. Symbols indicate the impact 
parameter averaged mean rapidity shifts for the case a = 3 for finite nuclei 
as a function of the average nuclear thickness, VAA· 

4. Inclusive p +A - 1r± +X cross sections[7] at 100 Ge V for p 1. = 0.3 Ge V /c. 
All calculated curves correspond to a = 3. 

5. Invariant proton inclusive distributions[27) at 24 Ge V for fixed angle, () = 17 
mr. Calculations for a = 1, 3, 6 are shown by solid, dashed, dashed-dot 
curves respectively. The pp data are from Ref.[28) 

6. Top graphs show the color neutralization region of different target chains in 
the laboratory frame. Chain n is formed at depth z = n.X (dashed line) and 
is neutralized between n.X !5 z !5 ze(n.X), where ze(z) (solid curves) is given 
by Eq.(4.13). The curves are labeled by the incident laboratory energy in 
GeV. The bottom two graphs show the energy deposition per unit length, 
Eq.(4.20) in the form of on-shell secondaries as a function of nuclear depth. 
The linear increase of dE 00 fdz up to some depth z• given by Eq.(4.19) is 
a consequence of longitudinal growth and the approximate constancy of 
the rapidity density dN jdy of secondaries produced in the neutralization 
process. Comparing cases a = 1 (left side) and a = 3 right side shows that 
dE00 

/ dz is not very sensitive to uncertainties in a. 

7. The laboratory distance scales involved in stopping baryons and producing 
secondaries are shown as a function of center of mass kinetic energy for 
a = 1 and 3. Curve B gives the depth of nuclear matter, Eq. ( 4.5), required 
to halve the rapidity of the incident baryon. Curve 1 shows the extent 
of the hadronization region of the first target chain via Eq. ( 4.27). The 
hadroniza.tion of the last target chain occurs between curve B and curve 2 
as given by Eq.(4.28). The crossing of the shaded region by any curve locates 
the end of the stopping domain of nuclear collisions. Below that point not 
only do most of the baryons stop but also most of the energetic secondary 
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particles are produced within the Lorentz contracted nuclear volume in the 
center of mass frame. 

8. Total energy deposition as a function of nuclear depth in units of the energy, 
E;,op =Eo- m•cosh(y0 /2), necessary to reduce the rapidity of an incident 
proton by one half, i.e., stop the proton in the mid-rapidity frame. Dashed 
and solid curves correspond to cases cr = 1 and 3 respectively and are 
obtained by integrating dE00 jdz in Fig.(6) from 0 to z. Curves are labeled 
by incident laboratory energy Eo in GeV. The stopping domain of nuclear 
collisions is limited to energies such that the ratio reaches unity before 14 
Fm. 

9. Predicted nucleon rapidity densities for central nuclear collisions in the pro­
jectile frame. Central collisions are defined by integrating impact param­
eters only up to 2 Fm. The rapidity densities are divided by the atomic 
number of the projectile nucleus. Only the projectile fragmentation co!l­
tributions are shown. The dashed, solid, dashed-dot curves corresprond to 
cr = 2, 3, 4 respectively. 

10. Additive quark probabilities for wounding 1,2, or 3 constituent quarks with 
effective cross section ~qN =10mb on Wood-Saxon nuclei[33]. 

11. Invariant proton fragmentation distributions in the Additive Quark Model[l3Jll5: 
resulting from wounding one (solid dot) or two (open dot) q narks as deter­
mined by a x2 fit to data[7]. Wounding of all three quarks is assumed to 
lead to negligible proton production in the measured kinematic range. The 
data points are obtained by a x2 fit to the pA - pX data[7] and lines 
correspond to linear fits. 

12. Comparison of proton inclusive data[7] with calculations using the AQM 
fragmentation functions of Fig.ll as parameterized by Eq.(6.4). 
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