LBL-19430

Lawrence Berkeley Laboratory
UNIVERSITY OF CALIFORNIA

EARTH SCIENCES DIV | S Tarony
SEP 3 1986

DOCUMENTS SECTION

MASS TRANSFER AND TRANSPORT
IN A GEOLOGIC ENVIRONMENT

P.L. Chambre, T.H. Pigford, W.W.-L. Lee, J. Ahn,
S. Kajiwara, C.L. Kim, H. Kimura, H. Lung,
W.J. Williams, and S.J. Zavoshy

.

TWO WEEK LOAN COPY -.
ThIS is a lerary Clrculat:ng Copy

April 1985

* V,ﬁe
T

. e.wh'ichA may be borrowed for two Weeks.”

Prepared for the U.S. Department of Energy‘ under Contract DE-AC03-76SF00098

-

I R

c- I~

O 11— 12 |



DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.



LBL-19430
UCB-NE-4057

-

MASS TRANSFER AND TRANSPORT IN A GEOLOGIC. ENVIRONMENT

P. L. Chambré, T. H. Pigford, W. W.-L. Lee, J. Ahn, S. Kajiwara,
C. L. Kim, H. Kimura, H. Lung, W. J. Williams, S. J. Zavoshy

Earth Sciences Division, Lawrence Berkeley Laboratory
and
Department of Nuclear Engineering, University of California

Berkeley, California 94720

April, 1985

*Prepared for the U. S. Department of Energy under contract no. DE-AC03-
76SF00098



II

P

The authors invite comments and would appreciate
being notified of any errors in the report.

- T. H. Pigford
Department of Nuclear Engineering
University of California
Berkeley, CA 94720



Chapter

Chapter

Chapter
Chapter
Chapter

Chapter

Chapter

Chapter

Chapter
Chapter

Chapter

10.

11.

I1I

CONTENTS
MASS TRANSFER AND TRANSPORT IN A GEOLOGIC ENVIRONMENT

Introduction and Summary

Radionuclide Mass Transport from a Spherical Waste Form Surrounded
by a Backfill

The Numerical Analysis of Nuclide Migration through a Backfill
Mass Transport in Backfill with a Non-Linear Sorption Isotherm
Steady-State Mass Transport from a Prolate Spheroid with Backfill

The Time-Dependent Mass Transport of a Radiocactive Nuclide frcn a
Waste Form by an Integral Method -

The Numerical Evaluation of the Time-Dependent Mass Transport of a
Radionuclide from Finite-Sized Waste Forms of Different Geometries
— Integral Method

Transient Mass Transport of a Radionuclide with Temperature - Dependent
Solubility, Diffusivity, and Retardation Coefficient

The Effect of Heating on Waste Dissolution and Migration

The Transport of a Radionuclide from a Point Source in a Three-

Dimensional Flow Field

On the Transport of Radioactive Chains in Geologic Media



]

1. INTRODUCTION AND SUMMARY

This report is in a continuing series of reports that present analytic
solutions for the dissolution and hydrogeologic tramsport of radionuclides
from geologic repositories of nuclear waste. vPrevious reports (P1, H1l, Cl)
have dealt maiﬁiy with radionuclide transport in the far-field, away from the
effects of the repository. 1In the present feport, the emphasis is on near-
field processes, the transfer and transpbrt of radionuclides in the vicinity
of the waste packages. The primary tool used in these analyses is mass
tfansfer theory (S1) from chemical engineering. In the chapters that follow,
the general format is that the problem statement, governing equations, and
derivations of the solutions are presented first, followed by illustrative

applications.

The thrust of our work is to develop methods for predicting the
performance of geologic repositories. However, many of the results derived in
the present report can be generalized to other situations of tracer or
contaminant transport in geologic media. We would be interested in
discussions with readers on other applications of this work. The subjects

treated in the present report are:

(a) Radionuclide transport from a spherical-equivalent waste
form through a backfill (Chapter 2, Derivations; Chapter 3,

Applications).



(b) Analysis of radionuclide transport through a backfill using

a non-linear sorption isotherm (Chapter 4)

-(c) Radionuclide transport from a prolate spheroid-equivalent
waste form with a backfill (Chapter 5, Steady-State
Solutions, Theory and Application; Chapter 6, Transient
Solution, Derivations; Chapter 7, Transient Solution,

Applications)

(d) Radionuclide transport from a spherical-equivalent waste
form through a backfill, where the solubility, diffusivity
and retardation coefficients are temperature dependent

(Chapter 8)

(e) A coupled near-field, far-field anaiysis where dissolution

and migration rates are temperature dependent (Chapter 9)

(f) Transport of radionuclides from a point source in a three-

dimensional flow field (Chapter 10)

(g8) A general solution for the transport of radioactive chains

in geologic media (Chapter 11)
Radionuclide Transport from a Spherical-Equivalent Waste Form with Backfill

In (Cl), Chapter 7, we analyzed the transport of radionuclides from a

bare waste form in wet, saturated rock. In the present volume we extend the
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solutions to waste forms enclosed by a layer of backfill or packing material.
The presence of a backfill will help ensure that in the vicinity of the waste
package there is little or no advection, and molecular diffusion will be the-
main mechanism for mass transfer. The aim is to find the rate of dissolution
of radionuclides and their rate of release into the rock, and to predict the
spatial and temporal concentration of radionuclides in both the backfill and
the rock. The approach used here is to set a saturation boundary condition at
at the waste form/backfill interface. The solutions allow the prediction of

both concentrations and mass flux as a function of position and time.

These results are potentially useful in showing compliance with the
U.S. Nuclear Regulatory Commission's release-rate performance objective (Ul).
The analytic solutions can be used, for example, to compute the flux of
radionuclides from the bagkfili/packing material into the rock, without the
potential problems that discontinuity in poroéity and retardation at the

backfill/rock interface can introduce into numerical approaches.

There are several important results from the mumerical evaluations.
First, radioactive decay, higher sorption in the rock and the backfill
steepens the gradient for mass transfer, and lead to higher dissolution rates.
This is contrary to what was expected by some other workers, but is shown
clearly in the analytical solutions. Second, the backfill serves to provide
sorption sites so that there is a delay in the arrival of radionuclides in the
rock, although this effect is not so important for the steady-state transport

of long-lived radionuclides.



Non-linear Sorption

In Chapter 4, we analyzed one-dimensional radiomuclide transport

through the backfill in the presence of diffusion only, using a two—-segment

»

linear approximation of the Langmuilr isotherm to simulate the effect of
saturation of sorption sites in the backfill. The analytical solutions
provide a method of predicting the position of the saturation front as it

moves through the backfill.

Radionuclide Tramsport from a Prolate Spheroid-Equivalent Waste Form with

Backfill

In (Cl) we obtained the steady state solution as well as the early-
time and large—-time mass transfer from an infinitely-long and finite
cylindrical waste forms. The analysis of cyliridrical waste forms has
attraction because actual nuclear waste packages are expected to be cylinders.
In the limit of zero flow, the time-dependent mass transfer form a prolate-
spheroid waste in contact with infinite rock was analyzed. In Chapters 5, 6,
and 7 of this report, the analysis of prolate spheroid waste shape is extendad

in the following directions:
- 1Inclusion of a finite backfill/packing material layer;
- Inclusion of advective transport in the rock;

- Inclusion of an approximate solution between the



previously derived asymptotical results;

The previous comment about the potential usefulness of these analytic
solutions in determining compliance with NRC requirements (Ul) also apply

here.

Radionuclide Transport with Temperature-Dependent Solutility, Diffusivity and

Retardation Coefficients

In and around a geologic repository of muclear waste, the‘femperature
will vary as a function of time. This variation of temperature will have
significant effect on the dissolution and transport of radionuclides by
changing the saturation concentration, diffusion coefficient and geochemical
retardation processes such as sorption. In Chapter 8 we analyze diffusive
mass transport from a sphericél-equivalent waste form where the solubiiity,
diffusion coefficient, and retardation coefficients are functions of
temperature. Chapter B gives radionuclide concentrations and mass fluxes
where solubility, diffusivity and retardation coefficients are specified

functions of time or temperature.

In Chapter 9, we present an application of this temperature dependent
theory, as well és a far-field radionuclide migration model. The coupled
model calculates concentration profiles of radionuclides in the far field
based upon nonisothermal dissolution of the radionuclides at the waste

canister surface.



Transport of Radionmuclides from a Point Source in a Three-Dimensional Flow

Field

In many repository projects, large—scale numerical codes are used for
predicting the far-field distribution of radionuclides. There is a need for
methods for testing these codes, especially when three-dimensional dispersion
is being considered. In this chapter analytical solutions are derived for the.
advective~diffusion equation for three-dimensional transport from a point

source .

A General Solution for the Transport of Radioactive Chains in Geologic Media
Chapter 11 provides solutions to the problgm of migration of
radioactive chains of arbitary length in geologic media of infinite or finite
extent. These solutions are for very general conditions, and are potentially

useful in many situations.

Summary

The following table is a summary index for the waste-package models

developed in this report.
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Table 1. Waste Package Models in This Report

c WASTE PACKAGE CONSIDERED SOLUTIONS

lA'l

P Waste Form Shape

: With Without Spherical Prolate Quantity Derivations Numerical Steady Time
R Backfill Backfill Equivalent Spheroid Predicted Exam~1lcs State Dependent
2 X X N X X
3 X X N, M X X
4 X X N, T, X X X
5 X X N, M X X X

6 X X N X X
7 X X M, t* X X
8 X X N, M X X
9 X X N, M X X

Key

N = Radionuclide concentration at r at time t
M = Radionuclide flux at r at time t

t*= Time to steady state

Ty™ Time to sorption saturation breakthrough

T,K,D,C = Temperature, retardation coefficient, diffusion coefficient and
saturation concentration

FLOW CONDITIONS

Diffueion Advection Constant Variable

Only and T,X,p,C T,K,D,C
Diffusion
X X
X X
X X
X X
X X
X X
X X
X X

Linear
Sorption
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2. RADIONUCLIDE MASS TRANSPORT FROM A

SPHERICAL WASTE FORM SURROUNDED BY A BACKFILL

P.L. Chambré

In the following we investigate the time dependent mass transport of a
radionuclide from a spherical waste form which is surrounded by a spherical
shell of backfill material. Both waste and backfill are imbedded in rock
extending infinitely in all directions, see Fig. 1. The mass transport through
backfill and rock is assumed to occur by diffusion only and the transport by
convection is not treated in this paper.

- The waste form has a radius R.0 and the outer edge of the backfill shell a
radius Rl' The backfill porosity is € and its retardation coefficient is Kl‘
The rock has the corresponding properties €, and KZ' The radionuclide's
diffusion coefficient in the water is Df and its decay constant is A. The
geometric factors for backfill and rock are % and Oys respectively. The
nuclide is released at its solubility limit cg at the surface of the waste form

into the surrounding which is initially at zero concentration. Then if Nl(r,t)

and Nz(r,t) denote respectively the nuclide's concentration in the backfill and
2

rock regions the governing equations read, see Fig. 1 with VZ = §—7-+ %- %;—
A ) ar
oN 0.D
1 _ 2y . 1f
T Dlv N1 ANl, Ro <rc< Rl’ t >0, D1 K1 (1)
oN o,D
2 _ 2, - . 2'f
I DZV N2 XNZ, R1 <r<®, t>0, D2 K2 (2)
'Nl(r,O) =0, RO <rg R1; Nz(r,O) =0, R.1 T <> (3)
Nj(R,t) = ¢, t 30 (4)
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Fig. 1 Geometry of spherical waste form with backfill layer.



Ny (Rp,t) = Ny (R,t) , € 30 | (5)

aN, 3N,
“eo0f 5w e%Pp s AT =R, €20 (6)
N, (2,t) =0, t 30 (7

Equations (1) and (2) describe the conservation of the diffusing specie in
the backfill and rock regions respectively. The initial conditions are given
by (3). Equation (4) sets the solubility 1imiteqﬁre1ease on the waste form
surface. Equations (5) and (6) assure the continuity of concentration and flux
at the interface between backfill and rock and (7) regulates the concentration
in the rock region far from the waste form. The purpose.in obtaining the
solution to this equation system is to analyze the space and time dependent
concentration and transport flux of the nuclide as a function of theeleven para-
meter system Ceo X, Df, Rb’ Rl’ Kz, ezand 02(2=1,2). This will be done in Chapter 3,

The analysis of equations (1) - (7) is facilitated through the introduction
of new dependent variables which satisfy the equation system in absence of radio-

active decay

acl 2 ‘
— 1
5T Dlv s Ro <r< Rl’ t>0 a"
acz 2
— = fe'e) . |
=T DVcy, Ry <1 <, t >0 | (2"
cl(r,O) = 0, Ro <rg Rl; <, (r,0) =0, IH_{ T < (3"
= 1
cl(RO,t) Co> t 20 (4"
= 1]
¢ (Rp5t) = ¢, (Rp,t), t 30 (5"
acl Bcz
- —_ \i
€10] 57 = €9, 55 at T =Ry, t 20 (6")



c, (%) = 0, t 20 (7")

One can then express Nl(r,t), Nz(r,t)‘in terms of the solutions of (1')-

(7') as follows

t ‘
Nl(r,t) = XJ( e-ATcl(r,T) dt + e-xtcl(r,t) Ro;s T < Rl’ t>0 (8) *
o
t AT -2t )
N, (r,t) = Ajr e c,(r,m)dr + e c(r,t), Ry gr <>, t>0 (9)
o}

This is readily verified by substitution (8) and (5) into the equation system
(1) - (7) utilizing the fact that cy and <, satisfy eqs. (1') - (7').
In turn the system (1') - (7') is simplified through the dependent variables

nl(r,t) = rcl(r,t), nz(r,t) = rcz(r,t) . (10)

There results

2

anl 3 ng
—_ =D , R<r<R,t>0 ' (1)
ot 1 ar2 0 Rl , o
an azn
2 _ D. - 2, R1 <Tr <o, t >0 (2™
at 2 5 2
T

nl(r,O) =0, R.0 <T g R1; nz(r,o) =0, R.1 T <o (3"
nR,t) = Rcg, t 20 (4"
ny (R,,t) = ny(Rp,t), t 30 (5"

an -n : an n

_1. - ._._1_ =' ._2 - __2_ = . 6” =
€19, (ar r) €202<3r = ) at T =Ry, t 30 (6")
nz(m,t) =0, t>0. (7 ¢

This is the principal equation system to be solved.
We take a Laplace transform of (1') and (2") with respect to the t variable
and apply the initial conditions (3'"'). This yields with
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e o]

[e-ptnl(r,t)dt, 2=1,2
o
the equation system

n,(r,p)

2—
d™n
1. .%o 2 _p_
—7 -y = 0, Ry <T <Ry, My =
dr 1
dZHé o - 0 <T < 2 _p_
Al A

The general solutions are

Hl(r,p) = A sinh ul(Rl-r) + B cosh ul(Rl.-r), Ry< T &Ry,

-u, (r-R,)
0o 2" Ry .

n, (r,p)

>Ry

with HZ satisfying the Laplace transform of the boundary condition

(11)

(12)

(13)

(14)

The

three constants A,B and D are found with help of the transforms of equations

(4")-(6"). With

Y - 1M1 €27%1
3 S b4
1 o €2u2+0t

there results

R c
A=-2S 1 .
) Ycoshulb+smhu1b
R c
B=D= 23

Y
P ycoshu1b+s inhulb

Substitution into (13) and (14) yields after a rearrangement

R c eiulcoshul (Rl-r)+(ez’u2+a)sinhul (Rl-r)

— 0”s
n, (r,p) = > -~ -
1 , elulcoshulb+(82u2+a)smhu1b
-H, (r-R;)
_ R, eiule 2T
n, (r,p)A T p siulcoshulb+ (eéu2+aTsinhu1b

(15)

(16)

- an

(18)

(19)



We turn next to the inversion of the Laplace transform ﬁi(r,p), which

is accomplished through the application of the complex inversion integral

1 t—
n (r,t) = 55 | e’'n (r,p)dp (20)

Since ﬁi(r,p) has a gianch point at p = 0 due to the term Hy =1/@;j we
adopt the integration contour shown in Fig. 2. One can show that tﬁe
integrand has no singularities inside this contour and furthermore that the
contributions of the integral along the semi-circular arc [1 vanishes as
R1 > o . Hence by the extended Cauchy theorem the integral (20) is equal to
the contributions along the paths BA, DC and the small circular contour s
about the origin. We indicate the necessary steps to express these contribu-
tions in the real valued form. |

Along the circle set

p=oe® dp= pe™®ide, - m < <m , (21)

Then ' .
Y ST & S VA A L7 - |
Hy DQ, Dg o e , 2=1,2 (22)

As the circle radius p + 0, the hyperbolic function contribution in

ﬁi(r,p) of equation (18) are approximated by
coshp = 1 + 0(02), sinhp = o+0(03) | (23)
Hence the bracketed term in (18) becomes, correct to first order terms

siu1+au1(R1-r) €i+a(R1=r)

= 24
GRS £;+ab (24)
Substituting for this into (20) one obtains with (21) the contribution
. “+a(R, -1)
2im 1 pt = _ €1+a( 1
o0 Tl fe nl(r,p)dp = RS, g — (25)

S 1

2-6



‘g

Im (p)

y+too

o
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X8L 8412-5878

Fig. 2 Contour integral for inversion of Laplace transform.



For the path BA set

Z_-im §R=2d_n

p=Dpne, =22 (26)

and make the following replacements in (18)

-1n Ki KQ
b = -in; o, = -,/P—- - i \/K1 n, K; = =, 2=1,2 (27)

2

coshul[ ] = cosh (- in[ 1) = cosn[ ] ‘ (28)

sinhy [ ]

sinh(- in[ ] = - isin(n[ D . (29

These expressions are substituted into (18) and a common factor of i is
cancelled from the quotient. On placing the result into (20) and reversing

the direction of integration one obtains the integral contribution

2 .
' Rc -D,tn™  G,-1iG :
1 pt— _ . _0s" 1 1772 dn
Vo /e ny(r,p)dp = = =3 [e EH, 0 (30)
' BA o
where
X
G1 = elncos(n[Rl-r])+ o 51n(n[Rl-r]); G2 =€ KT— n 51Q(n[R1—r])

K/
- - N e /% .
H1 elncos(nb) + o sin(nb); H2 €5 Kf nsin(nb) .

For the path DC set

| 2 im d .

=Dne ;-E:Z__ : 31
P 1 D (31)

This changes the terms - i to i in equations (27) and (29) and thus alters

the signs in the integrand quotient. In this case the integral contribution

to (20) is
. ROCS . -Dltnz 6.+, 4
ST n. ; (r,p)dp = e H;??ﬁ;‘ = (32)
DC o



Finally combining the integral contributions (25), (30) and (32) one
obtains the desired inverse

2

1+ oS €i+0t5 ™ —2 2 n
o Hy +H, |

Bu‘t in view of (30) and the definition of a by (15) this transforms with help

of (10} into

Cl(r,t) ® 'DltT]z
= = f(r) +[ e I(r,n)dn, Ro Srg Ri’ t>0 (34)
S o
where
1+6( 2= .. .
o) - R +6(R1) - (2R061€28> nsm(n [r-RO])
T 1+6<P‘o> ’ ’ r {eincos (nb) +a. sin(nb)}z+{88’2nsin(nb) }2
Ry
X3 €5-e5
- - = -—2— = 1 2
b=RiR, 8 K 8 = (35)

This is the solution for a stable nuclide in the backfill region. By similar
arguments one can determine the concentration field in the rock region. Since
our principal interest centers on the nuclide concentration in the backfill

and at the rock interface we shall not set out the solution in the rock field.

The solution for a radionuclide is obtained by combining (8) and (34)

t 2

o 2 0
N+(r,t) -D.tn . _ -D,tn
—1c—= Af f(r)+[ e 1 I{r,n)dn) e >‘TdT+e At f(r)+f e 1 I(r,n)dn} (36)

s o} (o o}

Interchanging the order of integration yields

@ o =D tnz
Ny (r,t) I1(r,n) atf e 1
— = f(r)+f =L dn+e f ———— 1(r,n)dn, R<rsRy, t30 (37)
s o Din 1+(3/Dyn")
1+ y
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The first two terms represent the steady state solution and the last term
the transient part of the concentration field through the backfill. When
A = 0 this result agrees with that for a stable nuclide.

The early and large time asymptotic behavior for Nl(r,t) is established
as follows. It is plausible by physical arguments that the nuclide concentra-
tion at very early times has not penetrated very far through the backfill
which.can thus be assumed to be of infinite extent. In this case the diffu-
sion in the rock can be ignored and the solution to this single region problem
is given by

-1
)

A y
"RV (r-R )
e

N, (r,t)

1 o]
e r— erfc

(r-Ro) Y 'D—l r-R,
e

erfc

HIO’/'U

- V)\t +

+‘\Mt T2R, t small (38)

-+

2 Dlt

This result can also be obtained from (37) by setting e[ = €; and K =K.

At large times, when Nl(r,t) tends to the steady state solution, equation

(37) can be given a form which is more suitable for physical and numerical
N, (r,*)
interpretation. One observes from (8) that as t > =, 1 3 is represented

‘as the laplace transform with the parameter p formally replaced by X, i.e.
Nl(r,w) =)L {cl(r,r)} lP=X
= xﬁi(r,x)/r | (39)
Thus using (18)

Nl(r,m) ] EQ eiulcoshul(Rl-r)+(ezuz+a)sinhu1(Rl-r)
T

(40)
c .

S Eiu1COSh(u1b)+(€£uzﬂu)Sinh(u1b) o]



This expression can be used to replace the first two terms on the right hand

side of equation (37) so that

2

e
o Cc

N () N e, f‘” PrEn
= + e —
s S 1+(A/Dln )

I(r,n)dn, Ro<r<‘R1, t30 (41)

With the concentration profile Nl(r,t) known it is a straightforward matter
oN

1

to compute the surface mass flux -elolDf 57 at the waste form surface and at

the backfill-rock interface. The result of such calculations are presented in

~ Chapter 3.

2-11



3. THE NUMERICAL ANALYSIS OF NUCLIDE MIGRATION THROUGH A BACKFILL

H. Lung and P.L. Chambré

In this chapter we evaluate and discuss the results of the transient
nuclide mass transport through a backfill as developed in chapter 2 . For
convenience we consider the transports of stable and radioactive nuclides
separately.

A. The Mass Transpoft of a Stable Nuclide

The nuclide concentration cl(r,t) in the backfill region is given by
equation (34) of chapter 2 ., From it one can calculate the three quantities
of principal interest in evaluating the performance of the backfill. Since
the nuclide concentration at the waste surface is prescribed at the solubility
limit, the concentration at the backfill-rock interface is of interest. It is

computed from, see Eqs. (34), (35) of chapter 2

cl(r,t) -Dltn2
- c = f(r) + e I(r’n)dn’ RO i r _<_ ’ t 2 0 (1)
S o
where T
R 1+6('I3\_) 2R €Ze;8\n sin(n[r-R_])
£(r) = 2 I(r,n) = - 0172 0
- T ’ o7 mr H(n)

)

H(n) = [ein cos nb + o sin nb]2

+ [Be;nsin(nb)]? 2)

The other two quantities of concern are the total mass fluxes M from the waste

form surface and through the interface between backfill and rock. Since

. 2 acl(r,t)

M(r,t) = 471r (}eiolDf —) RO.5 T < Rl’ t>0, (3)
one obtains from (1)
y . 2e’elB * —D“tn2 n[ncos(n[r—R 1)- l.sin(n[r—R ])] ]
M(r,t) - gre ¢ DR 1 1,172 e 1 0 T o Jy,
o 1'1°fo R T ' H) n

r<1+6 ﬁ'l—) 0 (4)
Rysr<Ry, t20



Some special cases of these results were investigated. With identical

rock and backfill properties, i.e. Ki = Ki, si = eé, the results reduce to

those of a single region problem

cl(r,t) RO T-R
< =I‘_ erfc 0 ,r_>_R,t_>__0 (5)
S ZVEIt °
which agrees with (38) of chapter 2 and
| (r-R )°
R~ M
y ' T-R 4Dt
Mr,t) . 4ﬂe101DfR erfc O J+ L ¢ 1 r>R, t>0 (6)
s ° 20t/ /Dt o -

As the steady state is approached (t - «) the integrals in (1), (2) will

vanish leaving
¢, (r,=)

9R irf_R ’ (7)

and

M(RO,W) = M(Rl,w) = 4rne O.D;RO (8)

since there can be no accumulation of the diffusing specie in the backfill.
Equation (7) is a special case of (40) of chapter 2 . The last two results are
applicable for arbitrary Ki and e£ (2 = 1,2) values.

The evaluations of (1), (3) and (4) were carried out on a CDC-7600. An

integration subroutine named DOIAJF was used to evaluate the integrals. The

description of this subroutine can be found in Appendix 3A.

-D tnz which decreases rapidly in

1
1t > 0) a cut-off value A was introduced for
the upper integration limit. Numerical experiments showed that for DltA2 > 20

Since the integrands contain the term e

magnitude as n increases (when D

the relative error bound for the value of the integral is 10-6. In the calcula-

tions we used DltA2 = 100.
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Figures 1 and 2 show the graphs of I\.’[(R.o,t)/cS and I\./I(Rl,t)/cs v.s. time with
ei and Ki, Ki as parameters. Figure 3 exhibits cl(Rl,t)/cS in a comparable
fashion. The remaining parameters were chosen as follows. The sphere radius
was taken as 65.9 cm so that the surface area of the spherical waste form is
equal to the surface area of the spent fuel canister which has a radius of 17.8
cm and a height of 470 cm. The backfill thickness is 30 cm. The rock porosity
€, = Qégl and the nuclide's diffusion coefficient Df = 10_5 cmz/sec in both
backfili and rock. :

A cursory look of Figures (1)-(3) reveals that one can subdivide the time
span into fhree separate intervals which will be called
a) The early time span, ETS, which is contfolled mostly by the backfill,

b) The intermediate time span ITS, which is controlled by both backfill and
rock, and |

c) The late time span LTS, which is-controlled mostly by the rock.

The figures show that these spans do not possess distinct separation points but

their existence can be argued on physical grounds as follows.

Initially there is no nuclide present outside the waste form. As time in-
creases the specie diffuses from the waste surface into the backfill but in the
ETS has as yet not reached the rock interface. Hence in this time span the mi-
gration of the nuclide is controlled by the backfill's properties only.

As the concentration of the backfill-rock interface rises both regions begin
to affect the migration until the backfill is mostly penetrated. After this ITS
the rock primarily controls the nuclide transport and the backfill properties
play a subsidiary role. Eventually the rock will also be fully penetrated and
a steady state will have been reached.

A semi-quantitative way to delineate the time spans is to compare the mass

transfer rate at the backfill-rock interface with the rate at the waste surface.
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In the ETS, M(Rl,t) »~ 0, since the nuclide has not yet reachéd the interface.
On the other hand, in the LTS, M(Rl,t).k M(Ro,t), since the backfill is then
almost saturated. Thus one can use the ratio M(Rl,t)/ M(Ro,t) as an indicator

for the separation points. We adopt the time Tb and Tg defined by

M(R,,T,) MR ,T#,) |

as the end points of the ITS. This delineates the three time intervals except
for the end point of LTS which borders the steady state. In order to gain
insights into the order of magnitude of Tb and Tb* computations were performed

with equations (3), (4) and (9) with the following results

Case - -

Number €1 €2 Ki Ki, Tb(yr) Tg(yr)
1 0.01 0.01 10 10 2.2 8.9x10" 1 without
2 0.01 0.01 105 100 2.2x10° 8.9x10° | backfill
3 0.2 0.01 10 10 7.6 2.0x10°
4 0.2 0.01 103 10 2.2x103 1.1x10* | with
5 0.2 0.01 10 103 2.0 1.80x10° ’ backfill
6 0.2 0.01 1035 108 7.6x10° 2.0x10%

The separation time is an indicator of the backfill retardation function since
it shows the breakthrough time of the backfill. Hence a larger T,, represents
a better backfill retardation performance. |

‘In the above table, cases 1 and 2 show the results for no-backfill.

The rest show the results with backfill. The porosity of the rock is 0.0 and
2
the porosity of backfill 1is 0.2 in cases 3-6. From this table one can see
1
that when Ki 3_K£, i.e. cases 3, 4, and 6. Tb is longer than that for no-

backfill, i.e. case 1 (against cases 3 and 4) and case 2 (against case 6).

-

But when K1

< Ki as in case 5, Tb will be shorter as seen in case 2.
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-

Therefore a backfill material with a larger K1 compared to Ké is preferred.
The drawback of the concept of Tb is that a larger Tb does not neces-
sarily mean a smaller mass transfer rate at the backfill-rock interface. For

example, Ty = 220 years for Ki = 10° without backfill as shown in case 2 while

it becomes 760 years when a backfill layer with'Ki = 10°

Tb is longer with the backfill present, the mass transfer rate at the backfill-

is added. Though the

rock interface is always higher than the mass transfer rate with the backfill
1 = K =10,

A better way to evaluate the backfill performance is to use the ratio of

removed, as seen in Fig. 1 and 2, dashed curves for K

the mass transfer rate at the backfill-rock interface for the case with back-
fill to the rate without backfill. This will be discussed later.

We now consider the detailed behavior of the solution in each of these
three time spans.

i) Early Time Span (ETS)

Since backfill controls the mass transport in this time span, one expects
that the same mass transfer rate at the waste surface should be obtained for

the same backfill properties regardless of the rock region. This is verified

in the calculations as can be seen in Fig. 1 and 2, solid curves for Ki = Ké = 10°
and Ki = 103, Ki = 10. For the mass transfer rate at the backfill-rock interface,

one would expect a very low value in this time span. This can be seen from the
steep slopes of the dashed curves in Fig. 1 and 2.
Since a large K1 means a large retardation effect, the appearance of the

mass transfer rate at backfill-rock interface will be delayed for larger K

1’
as seen in Fig. 1 and 2, dashed curves for Ki = 103, Ki = 10 and Ki = Ki = 10.

On the other hand, the mass transfer rate at the waste surface increases with

increasing K,, due to the steepened concentration gradient near the waste

1,

surface, as seen in the same Figures, solid curves for Ki = 103, Ké = 10 and
K1 = K2 = 10.
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ii) Intermediate Time Span

In this time span both backfill and rock exercise control over the mass
transport. Nuclides start penetrating into the rock and the interface con-
centration increases with time as seen in Fig. 3a and 3b. The effect of rock
on the mass transfer rafe becomes more and more significant and tends to be the

controller of the mass transport. This can be seen in Fig. 1 and 2, solid curves

.y _ 103 - _ 123
for Kl = K2 = 107, and K1 = 107, K

iii) Late Time Span

2 = 10.

The backfill is now fully penetrated and has only little effect on the mass
transport in this time span. The concentration profile and the mass transfer

rate only depend on Ké. This is shown as follows.

o]

-Dlt nsin n(r-Ro)
The integral term in Eq. (1), f e ) dn, can be approxi-

(o)

-D.tn” nsin n(r-RO) ' .
mated by J{ e | —___Tﬂ?ﬁ—_"—'dn’ where A is the cut-off point for the

0 .

integration. As mentioned earlier, the requirement for A is that DltA2 > 20 to
obtain a six-digit precision in the computations. Hence for a very large t,
one needs only a very small A. For all nb < Ab << 1, one gets

sin (nb). nb, cos(nb) » 1, sin n(r-Ro) v n(r-Ro).

If further nBeéb << €7 + ab, the integral then transforms into

1
s 0’ (R )
-D,tn n
e 1 . 2 .22
o (aln+unb) +(Bezn b)
(r-R)
A 2 o)
-D.tn dn
" [ e 1 (e” +ab) 2
N ; 1
0

3-10



(r-R)) j a -Dl‘cn2 dn
_ e
(si+ ocb)2 )

(r-R))
: 0__7. .fg ﬁlf' erf (/ﬁIE-A)
(ei+ ab) 1
(r-R)
v "“‘11"72 ‘fg ﬁlf , since erf (vDjt &) > erf (v20 ) p 1.
> — V)
(€1+ ab) 1

With this the transient integral contribution in (1) becomes for very large

time
e OR) w1 . (r-R) iy
- v o2 ZVDE Ve o anyZ 1%
R) 7 ) -
T .. (R . /%2 1
= e’e . since B =V => =V =— (A)
Vit 12 e o) k'

~ A similar form can be obtained for M from (3) except that the factor (r-RO) in
(A) is replaced by;9 . From (A) one finds that at very large t the concen-
tration profile or the mass transfer rate depeﬁds on Ké alone. Eventually the
K£ dependency will also vanish whgn the steady state is reached.

One observes from Fig. 1 and 2 that both mass transfer rates at waste sur-
face and at backfill-rock interface increase with increasing K,, as shown in
both solid and dashed curves for Ki = Ki = 103, and Ki = 103, Ki = 10. This is
due to the larger adsorption of the nuclides by the larger K, in the rock which
causes a steeper concentration gradient in the rock and extracts more nuclides
from the waste form. In the LTS the difference between the mass transfer rates
at waste surface and backfill-rock interface can hardly be seen. This means
that almost all the nuclides released from the waste form are diffusing into the
rock. The backfill can no longer retard the nuclides passing through it.

In all these three time spans, the mass transfer rates at waste surface and

at backfill-rock interface decrease with decreasing backfill porosity. The
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same result also applies to the backfill-rock interface concentration, see the
corresponding curves in Fig. 1, 2, and 3. Hence a low porosity material should
be used as the backfill when available.

As mentioned earlier in page 3-9, the ratio of the mass transfer rate at the
backfill-rock interface with the backfill present to the rate at the same position
without backfill can be used to show the effectiveness of the backfill layer. For
the case without backfill (ei = sé, Ki = Ké), the interface mass transfer rate is
calculated at an artificial plane which has the position equal to the actual

backfill-rock interface position. Fig. 4 shows this ratio as a function of time

with Ki and Ké as the parameters. Backfill porosity is taken as gig- and all

1
other parameters (Ro, b, Df, and ei) are the same as in Fig. 1, 2, and 3. Re-
tardation coefficient Ké used for rock is 10 and 103 and that used for backfill

2 3 e

is 10, 10™ and 10~ for each value of Ky. The dotted segments are not reliable

due to the limitation of the precision in computations. Th~z solid curves are for
3

Ki = 10 while the dashed ones are for Ki = 107. One can see that for Ki > Ki
such as Ki = 102, 103 and Ké = 10, this ratio is less than unity up to some time.
For Ki = 102 it is 100 years and for Ki = 103 it is about 1,500 years. This

implies that within this time span the interface mass transfer rate in the presence

of backfill is always less than that without backfill although the porosity changes

0.01 0.2 - .
from to .
ol ol 1 2

ratio is always greater than 1. It means the backfill does not add any benefit

On the other hand, when K] & K; as in 4ll other curves, the
to the retardation of the mass transport. Comparing the curves for Ki > Ki, one
finds that the effective time to retard the mass transport increases with increasing
K1 .

As a conclusion, a low-porosity backfill should be used to limit the mag-

nitude of the mass transfer rates and a larger retardation coefficient for

backfill compared to that for rock is required to lengthen the effective
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retarding time in backfill layer.

There is a restriction on the applications of the solutions (1) and (4).
One can not use them to calculate the limiting case €, = 0. For €, = 0, the
transient integral contribution in both equations vanish leading to the steady
state solutions. It means either the problem is time-independent or it reaches
the steady state instantaneously. This is certainly not the real situation of
this problem. Hence a separate method must be applied. Since €, = 0 implies

that the nuclides can not diffuse into the rock, one will have a zero gradient

<%%)= 0 condition at the backfill-rock interface. Therefore the governing
equation for rock and the zero concentration B.C. at infinity will not appear,

and the interface B.C. should be changed to

G =0,t>0 _ (10)

- e jp——
1°17f or r=R1

By solving the proper governing equation and side conditions, one can get a

correct solution for this special case.

B. The Mass Transpdrt of a Radionuclide
The radionuclide concentration Nl(r,t) through the backfill region is

given by equations (40) and (41) of chapter 2.

m' -Dltn2
NG M@ e_“f ot dn (11)
+
1

where I(r,n) is defined in (2). The total mass flux at ahy point in the backfill

is then

BNl(r,t)
s R <T <R, t>0 (12)

y _ 2
M(r,t) = - 4rre £ 5+ Ry 1o t2

ag,D

171

Again the three principal quantities of interest are the mass transfer rate at

the waste form surface and the radionuclide concentration and its mass transfer
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‘rate at backfill-rock interface. The numerical integration was used to
calculate Nl(r,t) and M(r,t) in Equations (11) and (12). The same subrou-
tine BO1AJF used in Part A was adopted again and is described in Appendix 3A. 1In

these computations, three different radionuclides were considered. They are

14

237Np with half life 2.14x106 years, =~ C with T1/2 = 5730 years, and one artifi-

cial nuclide with Tl/Z = 15.3 years which is close to ZM'Cm(Tl/2 = 17.6 years).

Fig. 5 shows I\./I(Rot)/CS and I\./I(Rl,t)/CS v.s. time with Tl/Z as the parameter.
Other parameters used are si = 0.2, ei = 0.01, Ki = K£ = 103. The results for
stable specie (Tl/2 = o years) are also plotted for reference. Fig. 6 and Fig.
7 show the same quantities with different parameters. In Fig. 6, e{ has been
changed to 0.01, i.e. it exhibits the single region results. In Fig. 7 not only
e] has been changed to 0.01, but Ki also changed to 10. Fig. 8 to 10 shows the
interface concentration Nl(Rl,t)/CS as a function of time with the three sets of
parameters mentioned above. One observes that for T1/2A= 15.3 years the interface
concentration is so small that almost all radionuclides released from waste
surface have decayed before they reach the interface boundary. This can be
seen from Eq. (11) for Nl(Rl,t) at steady state:

N R Ry B!

C R, E]icosh(mb)+(e5n,%a)sinh(i;b) (13)

s
'\/%r- increases, causing cosh(ulb) and
1

sinh (ulb) increasing very rapidly, resulting a very small N(Rl,w)/Cs. Eq. (13)

As Tl/Z decreases (A increases), My

can also be used to calculate the range of Tl/Z for which the radionuclides will

have decayed during the diffusion through the backfill layer. From (13) one

can solve for A in terms of Nl(Rl,w)/CS and other parameters. For example, if
- Ll - 4 = K” = 3 1 bt

Nl(Rl,w)/CS = 0.01, e] = 0.2, e5 = 0.01, K1 K2 107, as used in Fig. 5, one

finds that A = 8.5x103/yr, or T1/2 = 81 years. This means if a radionuclide
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with half life no longer than 81 years at least 99% of the specie will have
decayed in the backfill layer before reaching the interface boundary. One
- would expect that for larger Ki or smaller ei this decaying effect will be
more significant because of the longer traveling time in the backfill due to
the higher retardation. For instance, if ei = 0.01, Tl/Z may be as long as
110 years if other parameters are fixed. On the other hand, wheh the half

7

life is so long as 2.14x106 years (23 Np), the interface concentration is al-

most equal to that of the stable specie. ‘Hence a radionuclide with half life
of a few million years can be treated as a stable nuclide for the backfill
calculations. This is also shown in Fig. 5 to 7. In these figures, the mass

37Np can hardly be distinguished

14

transfer rates M(R,O,t)/Cs and M(Rl,t)/CS for
from the results of stable specie. The results for ~'C and 244Cm are somewhat
different. Since the radionuclides with relatively short half life will have
decayed an appreciable amount in the backfill, a lower concentration profile
will be produced in the backfill resulting in a steeper gradient near tie waste
surface. Hence a higher mass transfer rate at the waste surface will be ob-
served, as shown in curves for T1/2 =.15.3 and 5730 years. On the other hand,
the mass transfer rate at the backfill-rock interface can not so easily be
predicted. For very short-lived radionuclides, such as 244Cm, the concentration
drops to such a iow level that almost not a single nuclide can reach the inter-
face boundary. Hence the interface mass transfer rate is very close to zero,

as shown in Fig. 5 to 7 for the case T1/2 = 15.3 years. For 14C, however, the
situation is changed. Since not all the nuclides will have decayed in the
backfill, the concentration gradient at backfill-rock interface may be either
higher or lower than the stable spgcie. For instance, the curves for 14C

in Figs. 5 and 6 have the higher numerical values than the curves for

stable specie, while in Fig. 7 they become lower. It is worthwhile noting
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that the time to reach the steady state is shorter for radionuclides than for
stable specie, as seen in Figs. 5 to 7, since the decay can accelerate the
mass balance in addition to the spherical geometry.

As a conclusion, the backfill can effectively stop the mass diffusion for
very short-lived radionuclides, but makes no difference between the very long-
lived radionuclides and the stable nuclides. For meaium-lived radionuclides,
tﬁough the decay in the backfill will lower the concentration profile, as shown
in Figs. 8 to 10, the interface mass transfer rate may not be necessarily lower
than the stable species. This is contradictory to what was expected by some
other workers. Hence a complete transient analysis like this one should be
used to predict the backfill performance.

The following comment was supplied by Dr. W. Lee:

One of tﬁe important potential uses of results in Chapters 2 and 3 is to show .
compliance with the NRC release rates requirement. Within the repository
projects the approachés to showing such compliance is not well developed. Part
of the reason is that the boundary of the engineered barrier system is not well
defined, and may include some host rock in addition to the waste package. The
predictive tools developed in Chapters 2 and 3 will apply no matter where the
boundary is set. The case of the boundary set in rock is illuétrated by the
calculations in which the porosity and retardation of the rock and backfill are

the same.
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Appendix 3A

DO1AJF is a general-purpose integrator which calculates an approximation to

the integral of a function f(x) over a finite interval (a,b):

b
I= f f(x)dx (1
a

It is an adaptive routine, using the Gauss 10-point and Kronrod 21-point
rules, and is suitable as a general-purpose integrator. It can be used when
the integrand has singularities, especially when these are of algebraic or
logarithmic type.

The user can input the desired accuracy as the absolute and the relative
ones. However, it can not guarantee, but in practice usually achieves tbe
following accuracy:

]I-Ial < max ([abserr‘, lrelerr x ID) (2)

where

Ia = computing result for I

abserr = desired absolute accuracy

relerr = desired relative accuracy
Equation (2) was verified for the limiting case that the backfill and rock have
the same properties, that is, Eq. (5) and Eq. (6), and is assumed to be accept-

able for other calculations.
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4, MASS TRANSPORT IN BACKFILL WITH A NON-LINEAR SORPTION ISOTHERM

H. C. LUNG

P.L. CHAMBRE

One of the functions of the backfill is to retard the migration of the
radionuclides from the waste form by adsorbing the nuclides on its surface.
The sorption effect is usually measured by the so called distribution co-
efficient defined as

N
s

K,(N;) = (1
d+v'f Nf

where Nf = concentration of nuclide in liquid phase,
NS = concentration of nuclide in solid phase:.
The relationship between the nuclide concentrations in the liquid phase and
that in the solid phase under equilibrium condition is described by the sorption

isotherm. The retardation coefficient is then defined by [1]

KONp) = 1+ 1T€ K (Np) 2)

where € = porosity of the medium.

Usually one assumes a proportionality between N and N; so that Kd(Nf)
and therefore K(Nf) are constants in time and space. However, if the nuclide
concentration in liquid phase is sufficiently large so that the solid phase
can not adsorb all the nuclides then sorption.saturation in the solid phase
will occur [2].

Frequently a Langmuir sorption isotherm is assumed to take into account
the sorption saturation. Figure 1 shows the Langmuir isotherm with Q the
saturation concentration in solid phase. In the present anlaysis we approXi-
mate the langmuir isotherm (the solid curve) by two linear segments (the

dashed lines) so that for liquid concentration'Nf < N*, we have a linear
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Fig. 1 Approximate Langmuir isotherm.



relationship between Nf and NS; while for Nf < N*, the solid phase is satur-
ated and Ns = Q for all Nf. N* is called critical (nuclide) concentration.
We wish to model the radionuclide transport controlled by a sorption
isotherm. We assume one-dimensional nuclide transport through the backfill
and neglect the effects of convection in the liquid phase and diffusion in
its solid phase. The governing.equations for the nuclide concentration in

the absence of precursors and sources outside the waste form are given by

(1]

3(eN) 52 (eN.)

o Tz T O(Ng,NG) - AeNg (3)
8[‘(1-€)NS] .

———— = 0NN - A(L-€)N, ’(4)

where D = diffusion coefficient of nuclide in liquid phase
¢(Nf,Ns) = interphase reaction rate
A = decay constant.

On adding Eq. (3) to Eq. (4), one obtains

, az(eNf)
> [eNf " (l-s)Ns] = D, — - ) [eNf + (1-5)N5] (5)

Suppose the equilibrium is established for the nuclide concentrations between

the phases. If the approximated lLangmuir isotherm is applied, then for

Nf > N¥*, Ns = Q = constant, and Eq. (5) reduces to

‘ 2

3(eNg) 3" (eNg)

= - - - %
For Nf < N*, we have a linear isotherm so that by equation (1), N Kd.
’ f
If this is combined with (2) and substituted into (5) one gets
2
3 (KeN,) 9" (eNg) .
—— =D, T - A(KeNg), N <N - N



Fig. 2 shows the anticipated concentration profile Nf(x,t) at the fixed time
t in the backfill. With the approximation of Langmuir isotherm fhe backfill
can be divided into two parts:

a) an inner saturated region, close to the waste form, within which Nf

is greater than N*, and

b) an outer unsaturated region of lower concentration.
If we assume a zero initial condition and a constant boundary concentration
at the waste surface (x = 0) which is greater than the critical concentration
N*, then at time zero the entire backfill is unsaturated. But as time increases
saturation will occur at waste surface and an interface moves outward into the
backfill. The.interface position s(t), between the saturated and unsaturated
regions; is thus a function of time with s(0) = 0.

If one applies the above side conditions to Egs. (6) and (7) with the
assumption of constant properties one obtains for the saturéted region, with
NS = Nf

N, (x, t) 2N, (x,t)

=D
ot f aXZ

- W (x,8) - A léﬁ- Q 0<x<s (t),t>0 (8)

unsaturated region, with Nu = Nf

N, (x,t) D 3°N,(x,t)
——_BT——= ’K— ———2‘— ANu(X,t), X is (t), t >0 (9)
X
Initial conditions
N,(x,0) = 0, x > 0; Ns(x;o) unknown, . (10)
Boundary conditions
N, (0,t) = N, > N* t >0 ) (11)
Ny (s(t),t) = N (s(t),t) = N*, t > 0 (12)
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aNé (x,t) 3NU(X,t)
- EDf S = - EDf Tax X = S(t), t>0 (13)
N (=,t) =0, t >0 , (14)

The initial condition for Ns(x,t) is unspecified because at t = 0 there exists
no saturated region in the backfill. Equation (11) described the nuclide
concentration at the waste form surface to be greater than the critical con-
centration because.otherwise there will be no saturation effects. Equation
(12) assures that the critical concentration is reached on both sides of the
moving interfacé and (13) insists on the equality of the flux at this surface.
Eqaution (14) is self evident. The last term in (8) can be given an alternate
form. It follows from the approximation of (1) that Ky = Q/N*. If this is

substituted into (2) and that equation is solved for Q one obtains

1-e o _
= =W

where

W= (K-1)N* | | ' (15)
One can thus replace the term in (8) by AW. Equation (15) shows that for
K=1 (Kd = 0), Q = 0, which verifies that there is no adsorpfion in the
solid phase.

The Early Time Solution

For the time span much shorter than the half life of the rédionﬁclide, the

decay terms in both Eq. (8) and (9) can be neglected. The governing equations

become

N, (x,8) BZNS(x,t)

T=Df-—é—7—,0<xis(t),t>0' (16)
X

2

aNu(x,t) Df 3 Nu(x,t)

T—-=—T(- —3—-2————,)(15(1:),1:>0 (17)
X

The side conditions remain unchanged.

The solutions for Ns(x,t) and Nu(x,t) have the following forms
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N (x,t)
= = Aerf ( X +1,0<x< s(t), t>0 (18)

No ZVﬁft
N (x,t)
uN = B erfc X , X >s(t), t>0 (19)
0
£
2 e t

A and B are unknown constants to be determined by the boundary conditions.
Equations (18) and (19) already satisfy (10), (11), and (14).

From (12) one obtains

NS (S(t) ’t) - N*

No No

A erf _Sg;t_).. + 1
(Zl’ﬁft

B erfc ——§£31:>
Dt
(2\]—?—

K

N (s(t),t)
u t >0 . (20)

N> >
(¢]

Since A, B, Df, and K are constants, the argument in the error functions must

also be constant. Therefore,

SC) - kors(t) = kE, t >0, 21)
v/t
where k is constant in time and must be a function of the parameters of the
*
problem, i.e. Df, K, and %— . From (20)and (21) one gets
"o
N#* N*
oot N
A= 2—p , B2 —2 (22)
erf( ) erfc
2/55 ; D¢
X



Substituting into (13) one obtains

5 _
k k
e (K-1) erfc N#
Xp‘ Z'D—f} (2/ﬁf7K N;"\/E
k TN 0 (23)
erf[ —— 1- N
(:2/5;) < (3)

One can solve this transcendental equation for k. The results are shown in
Fig. 3. There k is plotted as a function of the dimensionless interface concen-
tration N*/No with the retardation coefficient K as the parameter. Df is fixed
in these computatiéns at 10-5 cmz/sec. One sees that as N*/No +1, k +- 0, since
the saturated region becomes very narrow, on realizing that N* i.Ns(x,t) <No
and that Nb > N*. On the other hand, as N*/No + 0, k >, In this case there
is almost no unsaturated region in the backfill and hence the interface position
will move very rapidly towards infinity. Five different K values were used in
the calculations. They are 104, 4 x 103, 103, 102, and 10, It ic seen from
Fig. 3 that for an increasing K the interface position moves more slowly, since
a large K implies a strong retérdation effect and hence a slowdown-of the satur-
ation in the backfill. |

The interface position s(t) is an indicator of the backfill performance
because it shows how quickly saturation takes place with a fesulting loss of
nuclide retardation. If the backfill thickness is L then the retardatiqn by

the backfill disappears when the saturation interface penetrates a distance

equal to L. The breakthrough time Tb for such penetration is given by

SCH * 2

Fig. 3 also shows the breakthrough time as a function of N*/NO with the same
parameter K. The backfill thickness is taken to be 30 cm. Since Tb is inversely
proportional to kz, as N*/No decreases, Ty decreases, and as K increases, T

increases also. The importance of saturation in the backfill can be seen by
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comparing these results with those in which saturation is assumed absent.
Assuming a linear isotherm with slope K = 4000, and for the (same) diffusion
coefficient Df = 10_5 cmz/sec, Nowak [3] showed that it would take 1000 years
to raise the concentration at x = 30 cm to 1% of No° However, if saturation
can occur, with N* = 0.01 No’ the breakthrough time is reduced to 60 years as
seen in Fig. 3, i.e. only 6% of the breakthrough time in absence of saturation.
In the présent analysis, a semi-infinite medium for backfill, as described
in B.C. (14) was assumed. Therefore some restriction must be imposed if one
wants to apply thevresults to a finite backfill layer. We assume for this that
the concentration at the outer edge of the backfill must not exceed 10% of the
concentration at the inner edge of the backfill, No‘ ‘This limits the time span
of the solution to a concentration N*/NO < 0.1 at the backfill-rock interface,
which is indicated by the vertical dashed line in Fig. 3. Since for K 5_104
and N*/NO < 0.1, Tb is always less than 2000 years, nuclides with half lives
greater than 5000 years can be treated as.nondecaying for the purpose of using

the early time solution.

The Steady State Solution

At steady state, time derivations in (8) and (9) vanish so that

3N, (x) |
D, — 7 AN (x) = AW =0, 0<x<s(=). (25)
X
D, 3N, | .
K— —8-)(—2—— = ANu(X) = 0, X i S(Oo) > » . ( 6)

where W = (K-1)N* as defined in (15). The boundary conditions are

N (0) = N, > N*, Nu(m) =0 (27)
N(S,)) = N,(S) = N*, S_ = s(t = =), (28)
AN_(S) 3N (S )
St us
- eDp —x— = - &g (29)
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where S_ is the interface position when steady state haé been reached. The
solutions of (25) and (26) subject to the boundary conditions (27) - (29)
take the forms

Ns(x) =Ae ° + Be -W,0<x<8, (30)

Nu(x) x > S (31)

where k =\(>‘— , k =V->‘—IS (32)
[ Df u Df _

It
Q
]

and A, B, C are constants of integration. After substituting (27) - (29) into

(30) and (31), one gets
kS k.S

1 Wee S °-1) + N e S _N*
= * =
> [veas /) + ] 7KS (33)
g o -]
e

Let

1 k_S_ ~ :

7 [IN*(1 « /R)+ W] = 8, e S %=y, (34)
then _

ByY - (W + Ny - (8-W-N&) = 0 (35)
Hence

(WeN ) + '\/(w+NO)Z + 48(R-W-N¥)

y = 58

so that

B¢
S, = T log ¥y (36)

In the solution of y the choice of root is determined so that log y is non-negative.
The radicand is always greater than [(W + N)) - 28)% since N, is larger than N* by
definition.

Fig. 4 shows the steady state interface position S as a function of N*/NO

for a half life T1/2 = 104 yr. Similar to the transient case an increase in the
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retardation coefficient K results in a decrease of S_. The effect of decay can
be seen from the equation (36). A decrease in T1/2 (an increase in 1) decreases
S,- Although the semi-infinite medium assumption was used in solving this prob-
lem, one can still get some insightvinto the effects of saturation. If, for

N* 4

example, N 0.01 and K = 10", then S_ is about 300 cm for a radionuclide of

0
T = 10 years or 30 cm for T1/2 = 100 years. So if for a backfill thickness

1/2
of 30 cm, and radionuclides with half lives longer than 100 years, the interface
position from the waste form will always be greater than the backfill thickness.
This implies that the backfill totally saturates before the steady state is
reached and is thus rendered useless as a barrier to the migration of the
radionuclides. This once more confirms the importance of the saturation of the

backfill as already shown in the early time solution. For a boundary condition

*
as %— > 1, the saturated region disappears, resulting in a almost zero inter-

o
face position as shown in Fig. 3. This is also true for S_ i.e. S+ 0 as
% b4
%— + 1, though not shown in Fig. 4.
0

To make the backfill more effective, one can a) increase the backfill
thickness to lengthen the breakthrough time Tb as seen in (24); b) wuse a backfill
material with large retardation coefficient K to slow down the interface movement
which in turn increases Tb as seen in Fig. 3. A large K also implies a small S
as shown in Fig. 4; c) use a backfill material with high %i , i.e. %ﬁ -+ 1, which
will limit the interface position close to the waste form sgrface eveg at the
steady state, as described in the previous paragraph. With proper combination of

the above three suggestions, it is possible to make a backfill not totally satu-

rated and hence effective at all times.
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5. STEADY STATE MASS TRANSPORT FROM A PROLATE SPHEROID WITH BACKFiLL

P.L. Chambré and H. Lung

In [1], we obtained the steady state solution as well as the early time and
large time behaviors of the mass transport from a finite sized waste form by
diffusion. The waste shape was approximated by a slender prolate spheroid of the
same surface area and volume. Here we extend the steady state analysis to in-
clude the effects of a finite backfill layer between the waste and rock and
include the transport by advection.

The waste form is approximated by a prolate spheroid with a focal distance
f (cf. Fig. 1). The surrounding backfill is idealized by a prolate spheroid
layer of the same focal distance. L is the backfill layer thickness at the
equator of the waste form, ar the semi-major axis of the backfill, ep the rock
porosity, and €, the backfill porosity.

Water is flowing perpendicular to the axis of the waste form with a constant
pore velocity U far from the waste. The backfill such as bentonite, possesses
an extremely low hydraulic permeability. It is assumed that no water can flow
inside it once it is saturated with water. Hence the nuclides can only be
transported out of the waste By diffusion in the backfill and then carried away
by both diffusion and convection into the porous rock.

In the present analysis we consider the steady state solution in the ab-
sence of radioactive decay. Under this condition retardation effects in both
backfill and rock regions do not arise.

Governing Equation and Side Conditions

The governing equation for the radionuclide concentration Cb(a) in the

backfill is given by

& (e 32) -0n,
aasmhaw=0,ocsiaia1. (1)
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Figure 1. Prolate Spheroid Waste Form \ XBLB836-5763
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Here o is the spatial coordinate in the prolate spheroidal system and ag and

G are the coordinates of waste surface and the backfill-rock interface,
respectively (cf. Fig. 1). A solubility limited concentration CS of the nuclide
is assumed at the waste surface. The (spatially) average nuclide concentration

- of backfill-rock interface is.CI which must be determined in the analysis. Thus
Cylog) = Cgp Gylap) = Cp. (2)

The solution of Eq. (1) subject to side conditions (2) is.

_ Q, () -Q, (@)
Cc(a) CS - (CS-CI) Qo(as)'Qo(dI) a <a <op, (3)

where

Q, (@)

o
log (coth 7) : (4)
From (3) one can compute the local mass flux

3’(a1) = - ebobDfVCb(a) (5)

G=G.I

on the backfill-rock interface

Sy - o0 4G
J o) = h, do.

_ EbObDf CS.'CI 1 _ (6)

Fsinnla, + sinle) 72 |0 T QG | sThop
where
£(sinh’a + sinZg)l/2

a .

=
1}

(7)

Q
[}

b geometric factor for backfill
and Df is the diffusion coefficient of the nuclide in water. The total mass
transfer rate out of the backfill rock interface of surface area S derived from

concentration gradient in backfill is then calculated from (6):

My (ap) =-/; 3 (ap)ds

jr" ern N
= j h,h dydB
o o By
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T 2T [ ¢ -C 3
s 1 .
Jr Jr DN CRERCS) f.51nBebobDfdde
0 o} - L

[ C.C ] |
= 4nfebobDf Qo(as)'Qo(aI) , | (8)
e ol
where .
hy = h, = £(sinh’a + sin’g)1/2 - ©)
hw = fsinh a sin B8, , _ (10)

This mass transfer is carried away by diffusion and convection from the inter-
face boundary into the exterior porous rock where the concentration vanishes
far from the waste. The total mass transport rate from the interface into

the exterior field calculated from convection and diffusion in rock is represented

in the usual form. a1
M = hS.C
D m 171

where h is the mass transfer coetficient, and SI the interface area. If one

defines a Sherwood number for mass transport by
hm SI' '
Sh = meodo \T°/) 12)
pp f o}
with LO some characteristic dimension of the waste form and'op the geometric

factor for rock one can restate (11) as follows

y - T ’
Mp (5x€pchfCILo) (Sh) | (13)

BecauseL can be arbitrarily chosen, we choose it as (cf. Appendix 54)

Ly = 234 (14)

Since the Sherwood number is primarily a function of the Peclet number

Ua
Pe = S- One can express (13) in the form
p f
Mp = Sh (Pe) 4nCI€popraI (15)

Under steady state conditions the mass transported out of the backfill
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must equal the mass transported into the rock region in a unit of time. There-
fore one can equate equations (8) and (15) and solve for the interface concen-
tration CI as follows
Cs
Cr = 75 16

PP ,
gﬁ) [QO(OLS)-QO(O{'I)] COSh(QcI)Sh(Pe_) +1

On combining this expression with (15) one obtains the total mass transfer rate

valid in either backfill or rock region

. 4me_0.D.C a ‘
M= PP fsI . (17)

(%) [Qo(as) 'QO(OLI)J COSh(oLI) + [Sh(Pe)] -1

The physical content of this result is brought out by introducing the dimension-

less mass transfer resistances for backfill and rock

[SNRe)
R, = (Eblog [Qo(as)-Qo(aI)] cosh(a); R, = [Sh(Pe)] 1 (18)
so that I 6 D.C
me o D.C a
- P ill s I ’ (19)
Rb Rp

The Sherwood number dependence on Pe used in (16) and (17) is given by
(cf. Appendix I)

1 1+ Pe ’
QO(dI)cosh(aI) ZQO(aI)cosh(aITJ

Sh(Pe) = 1/2 ,
[-T?ﬁ tanh(aI)] , Pe > 4 coth (ag) (20)

Equation (19) shows that the resistance to the mass transport consists of two
parts: the backfill resistance and the exterior medium resistance. The back-
fill resistance is due to the properties and geometries of both media, as can
beiseen from (18), and is independent of the flow conditions. On the other

hand, the exterior medium resistance is determined by the backfill-rock inter-

face geometric factors oy and a; as well as the flow speed U. From (20) one
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can see that Sherwood number is a monotone increasing function of Pe. An
increase in Sh will thus reduce the exterior medium resistance in accordance
with (8). The result is a decrease in the total resistance and hence an
increase in the mass transfer rate. The effect of the flow condition on the
concentration drop can also be seen from (16). As U increases and thus Sh

increases, C. will decrease causing the concentration drop across the back-

I
fill to increase.

Figure 2 shows the dimensionless interface concentration as a function of
backfill layer thickness L with the parameters ;E— and Pe. Figure 3 shows
the normalized mass transfer rate as a function of L with the same parameters
as in Fig. 2. In all these calculations, a fixed diffusion coefficient
Df = 10-5 cmz/seé and a fixed rock porosity Ep = 0.01 were used. The waste
form is taken to be that of a spent fuel canister with the radius 17.8vcm and
height 470 cm. Thg approximating prolate spheroid of this waste form has a
semi-major axis of 272 cm and a semi-miaor axis of 20.3:cm and has the same

surface area and volume as the spent fuel canister.

€ o
The solid lines in Fig. 2 and Fig. 3 represent the case for EE' = 280 )
b
_ , o
i.e. backfill porosity is 20 times the porosity of the rock times 62" The
' € o b
dashed lines in Fig. 2 and Fig. 3 are for the case that_EE-= 5 i.e. backfill
o o b
orosity e, = €. —2=0.01 -2 . In both cases the Peclet numbers are taken to
P Y &y P O o .

be 0, 102, and 103. For the waste form geometry, consider here Pe = 100 corres-

ponds to a pore velocity U =_1.10p-m/year.
As L increases, the distance traveled by the nuclide inside the backfill

increases. Since the nuclide can only be transported by diffusion, a longer
travel distance implies a layer concentration drop across the backfill to
maintain an equilibrimm concentration gradient at constant exterior conditions.
Hence the interface concentration'CI is lowered as L increases for all the cases
in Fig. 2.
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Fig, 2 The dimensionless backfill-rock interface concentration as a

function of backfill thickness L, porosity ratio € /t:b and
Peclet number Pe. P
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3 The mass transfer rate as a function of backfill thickness L,

porosity ratio Ep/eb and Peclet number Pe.
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€ € o
The effects of EB- on Cz is noteworthy. When EP-= fﬁ%— , the concentra-

b 3 b p € %,
tion drop is small even for Pe = 10°. On the other hand when EE—= ool CI
: P

decreases in a more pronounced fashion as L increaaes. For Pe = 103 and L = 30 cm,

CI drops to about 10% of G- This is due to the fact that when the backfill
porosity € becomes so small =<§.01 ;ﬁ), most of the resistance to the mass
transport resides in the backfill especially at highwater flow speeds. From
(16) one observes that as the Sh number increases with increasing flow speed,
CI decreases. This can also be seen in Fig. 2.

From (18) one can see that the backfill resistance is proportional to
the ratio ;ﬁ- but the rock resistance Sh(Pe) -1 is independent of it. There-
fore an incréase in ;ﬁ will increase the backfill resistance but will not
affect the rock resistance. The final result is an increase in the total
resistance and this causes a decrease in the mass transport according to (19).
One can see this by comparing the solid curves with the dashed curves in Fig. 3.

Consider next the effects of flow speed. As already mentioned an increase
in the water flow or Pe number will increase.the magnitude of the Sh number.
This decreases the rock resistance but leaves backfill resistance unchanged.
The net result is then a decrease in the total resistance and a higher mass
transfer rate, as can be seen in Fig. 3 for different Peclet numbers.

The €ffect of layer thickness on the mass transport, however, is more
complicateé. Since a change in the layer thickmness L will cause both backfill

resistance and rock resistance to be changed due to the changes in o1 and ar,

the net effect also depends on these parameters. From Fig. 3 one sees that

£ 19 .
for Eg' = 7%5~ (the solid lines), M increases with increasing L. But for
P
o .
Ep = €y 59 = 0.01 (the dashed lines), M decreases with increasing L. Since as
p .

L increases, both a, and oy increase, (cf. Fig. 1), causing QO(aI) to decrease

I
from (4) and Pe to increase from definition. Hence the final results are an
increased Pb and a decreased R.p from (18). Thus the competition between
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Rﬁ and R will determine the total mass transfer rate M from (19). If sp is
fixed as in our calculatlons, ( R ) and hence M increase with the increas-
ing L for €, = 20 Ep 3§~, as seen 1n Fig. 3, due to the fact that part of the rock
is replaced by a more porous backfill material which results in an increasing
diffusive mass transport. On the other hand, <}E%§%> and M decrease with the

P

ag

increasing L for €, = € In this case the diffusive mass transport remains the

P 9y

same but the convective mass transport decreases for there is no water flbw in
the backfill.

In either case the mass transfer rate tends to a limiting value as L ap-
proaches to infinity. As the backfill thickness is increases, the convective
transport effects in the rock region become less significant since the radio-
nuclide has more backfill to diffuse through. When L becomes.infiﬂite, so that
there is no more rock region, one is left with a diffusion problem in the
backfill. The limiting value is then given by

o 4ﬂgb 2 fC f

oi sj

which was already obtained in [1], eq. (7.1.35). In conclusion, for the ranges

(21)

of the parameters used in the calculations, a thick backfill is prefered if a

low interface concentration CI is desired, as can be seen from Fig. 2. How-
' € 0
ever, if a low mass transfer rate is to be achieved then for L = 280 one

: p
should use as thin a backfill layer as possible. For €, = € ER the situation
b

- is reversed, as seen in Fig. 3.

Reference
1. Chambré, P.L., et al., "Analytical Performance Models for Geologic

Repositories,' LBL-14842, Vol. II, Ch. 7, October 1982.
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APPENDIX 5A Derivation of Sherwood Number

From (13)

M, = 2me 0 DeCy(LoSh) (13a)

Since for fixed geometry and properties, M 1is also fixed, one finds from (13a)
P
that (LOSh) is also fixed. Hence for different choice of Lo’ one will have

different Sh. We choose

L, = 2aj . | (14)

From Eq. (17), the mass transfer rate out of the backfill is

4ﬂepoprCSaI

M=—35
G%ﬁ) [0 )0y ep ] cosmiap+ [sncee]

As Pe = 0, we want (17) gives the correct answer and the solution for the trans-

(7)

-1

port by pure diffusion in both backfill and rock regions
4nep0prCsf
€0
€b0b> [Qo(as)_Qo(aI)] *Q, (o)
1

Comparing (17) and (a) one cbtains, with cosh (aI) =—F>

M(Pe=0) = (a)

Sh(o) =

1
Qo(al)cosh(al)
This is the Sh number for mass transport from the backfill-rock interface for

vanishing Pe. Now for small Pe number, the Sherwood number is expressed as [1]

1 ZLOU
Sh(Pe) = Sh(o) {1 + g Sh(0) — ] . (c)
pf
Substituting (14) and (b) into (c) one gets
sh(Pe) = g )1 . 1+ 5 §>e . )] , Pe small (20) (1)
Qo ar)cos (aI) Qo(aI cos (aI
where
UaI
Pe = opr . (d)
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For large Pe, we use the results for the infinite long cylinder with radius

T, = bI’ the semi-minor axis of the backfill, and a finite section with length 2
. Ur Ur
M= 8 epoprCI '\/TT—GPT)— L, Og > 4, (7,2,28) in LBL-14842. Equating this
pf pt
to (13a) one obtains
8e,0,D¢C1 Uj’-— = 2me_0_D.C; (L Sh)
ppf
/6 'V/—— /a U
= 2L ?93\/—9 To 4 (e)
naI i aI ’ dpDf

Now we let the surface area of the prolate spheroid be equal to the surface area

used for mass transfer of the cylinder section, assuming bI = ro<< a; ¥ f, so that

. -1f m and
S1in g— % -2-
I _
a% -1 f
2nr L = an bI + T sin 5;
n, ™
v Z‘TTbI (aI 2')
_ 2
= mtarrg
Hence
=
L= a (f)
ro bI
Also, — = — = tanh(a;) (g)
a I
I I
Uro aI <r0>
= 2 ) = Pe tanh(a,) )
opr opr aI I

Substituting (f)-(h) into (e) one obtains

Sh(Pe) =\/l;.e- tanho, , Pe tanh (o) > 4
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or

Sh(Pe) = (%;E tanhaI) 1/2 , Pe > 4 Coth(aI) . (20) (i1)

If any other choice for Lo is made, the expressions for the Sh number (20) (i) (ii)
will be different. This will alter the form of eqs. (16) and (17). However, if
the new Sh number forms are substituted into the altered egs. (16) and (17) the
present result is recovered. This sﬁows that the choice of LO is arbitrary.
Reference

1. P.L. Chambré, to be published.
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6.

THE TIME DEPENDENT MASS TRANSPORT OF A RADIOACTIVE NUCLIDE FROM A WASTE FORM

BY AN INTEGRAL METHOD

Paul L. Chambré

In reference [1] we investigated the diffusive mass transport from a
cylindrically shaped wéste form imbedded in a porous medium in absence of
convection. On emplacement of the waste form the diffusing species is released
from its surface at the solubility limit Cq where upon it diffuses into the
exterior unbounded space. ‘

Due to the mathematical complexities of the equations, only the early time
and the asymptotically large time behaviors of the solution were investigated.

We now fill this gap by constructing the complete time dependent solution to
this problem by a suitable approximation method. Furthermore, the analysis
is extended to include the effect of radioactive decay on the mass transport.

~As in [1], the shape of fhe waste form is approximated by a slender prolate
spheroid. With (z,u,y) the prolate spheroid coordinates, a solution is sought
for the species concentration C(z,u,t;)) which is independent of the longitudinal
angle Y on account of the uniformity of the surface concentration Cg- The species

concentration satisfies the governing equation, see (7.1.19), reference [1]

c- iy E[EE 5 {0 £ 2

CS<C<°°, -1gugl, ™0

C.?

<@
~

where
e, tyn) = SLetil) (2)
S
T = th X = )\ K_fz.
ke2 D¢



Here Df is the diffusion coefficient of the radioactive species in water, K its
retardation coefficient in the porous medium and f the focal distance of the
prolate spheroid (see Fig. 7.1.1, reference [1}]). T defines the surface co-
ordinate of the prolate spheroid.

The initial condition for the concentration is

c(z,u,050) = 0, g&t<e, -lepgl (3)

The boundary conditions are

clzgou,34) = 1, (4)
-lgkl, =0
c(=,u,151) = 0, (5)

together with a condition of symmetry about the midplane u=0,

ac(z,0,1;0) 0 JENASH 20 (6)

ou

At this point it is convenient to remove the radiocactive decay term from
(1) and construct the function c(z,u,T;0). We have shown [2] that with know-

ledge of c(g,u,T;0) the solution with radiocactive decay is given by

T
C(C,u,13)) = rfe'“ c(z,u,t7;0)dr e T T(z,u,1;0) )
0

However, for simplicity of writing, all references to A are now suppressed
until needed.

The above problem (1)-(6) is solved for the average surface mass flux of
the diffusing species which is the quantity of primary interest to us. For this
purpose an approximation method is employed and its effectiveness and accuracy
is tested later by comparing it with an exact analytical solution.

As in [1], equation (1) is first subjected to a Legendre transform with

respect to u
1
c(z,2n,T) = fE(c,u,r) Py (H)du (8a)
0
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On account of the symmetry condition (6) only even orders of the Legendre
polynomial set ~{?2n(u)}»are required. It has been shown that only Po(u)=l

is needed in order to obtain the leading term of the early and late time
solutions. Hence one of the assumptions of the approximation method consists in
ignoring the u dependence of the surface mass flux and treating it as an average

defined by 1
1

c(z,7) = f c(z,u, TP, (w)dy =[ c(z,u,T) du . (8b)
0 0
assumed valid for all time. For simplicity of writing, the dependence on n

has been suppressed.
If one applies the integral operator (8b) to every term of (1), with A=0,

thére results
=1
3 ac(c ) 2y 3c(z,u,1)
f(c u)C(c,u,T)du 37 [(C l) (1T =g =0 (9a)

Q <g<e, >0

The second term on the right hand side vanishes at the lower limit by the sym-

metfy condition (6) and vanishes also at pu=1. The integral is in view of (8b)
1

f(c uZ)C(c u,T)dy = ( - 3) c(@,T) - fE(c,u,T)Pz(u)du (5b)

0
The 1ntegra1 on the right hand s*de gives no contribution to the terms for the

early and late time solutions and the approximation method assumes this term to

be negligible for all times. Hence there results for c(z,t)

(Ez % acgg dc(z,T) . [(c 1) ac(c r)] , T <i<w, 0 (10)
with the transformed side conditions

c(z,0) = 0, gsE<e (11)

c(tg,t) =1, 120 (12)

c(e, 1) = 0, 130 (13)



This parabolic equation problem is solved by a moment method which in
continuum mechanics is commonly called an integral method. Its physical
motivation is the following.

The diffusing species spreads from time T = 0 onward into the surrounding
porous medium which is at zero concentration causing a concentration boundary
layer to form about the prolate spheroid. The thickness of this layer, denoted
by &(1), will increase in a monotone fashion with time. The species concentra-
tion varies from c(;s,r) = 1 at the inner edge of the boundary layer
‘next to the waste form to an-approximately zero value at its outer edge. This
outer boundary progresses into the porous medium where c=0. It is customary to
assume that the gradient of the concentration also vanishes at this outer bound-

ary. These conditions replace those of equations (11) and (13) and their forms are

8(0) = 0 ' (14a)
3¢ ((‘;S"'(S(T),T) '
c(;s+6(1), 1) = =5z =0 (14b)
One now integrates (10) with respect to ¢ over the boundary layer thick-
ness, which yields with (14b)
z.+8(1) ( )
S . actz,_,T
2 ac - (2 s’ N

- C -

s
One can interchange the order of differentiation and integration by Leibnitz's
rule and using once more (14b) there results the integral form for the concen-

tration boundary layer

cs+6(r)

o [T e - () <), s

%s

The physical content of this equation is the following. The surface flux issuing
from the waste surface, which is proportioned to the right hand side of (16),

gives rise to the rate of accumulation of the species in the boundary layer of
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thickness §(1).

The principal part of the approximation method consists in a choice of
a suitable concentration profile c(z,t) for the boundary layer. I assume the

form

2
N GAT NG

c(z,1) = Q) QO(C"S) ’ CS<C§CS + 8(t) , ™0 (17)

where

Q@) = 1 log (C"l

is the Legendre function of the second kind of zeroth order. One observes
that this form automatically satisfies the required boundary conditions (12)
and (14b). On substitution of (17) into the integral form for the concentration

boundary layer there results

AN 2 @) Qy(zy)
z-2. 1" Qs > , Qe .
f (73 [ 6(5] iy " () [acﬂ ‘ Qofczj} ;0 08

This can be transformed into an ordinary differential equation for the

unknown boundary layer thickness §(t). With

g +6(1)
1(8(1)) _f S(gz 1/3) [1 (ﬁ-c:s)J 2 Q@) i - a9
1)) = -1/ - :
| ‘ sl Q)
S
(18) becomes !

AG0) L (2.) Qplzg) 20)
Tdr T ST T Q)

One can now separate variables and express, since the boundary layer thickness

is initially equal to zero by (14a), t explicitly as a function of § in the

following form
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T(8) = nl’(n) — (21)
Qe
0 2 __0">s
) |
To simplify this one has from (17)
\ 1 |
Q) = - 59— : |
0%"s gg-1 (22)
and from (19)
z *n _
T-C (C -C ) ' Q (:,C)
I'(n) = zf (cz-l/s) (1 5) S 0 ds : (23)
:, n e Q)

With these, there results the solution for the growth of the boundary layer in

the form
6 C '+T’l

(8) ot f S (-1/3) gm0 )7—)%((;) dz pd | (24a)
‘r = ————— - - - a
I Zonenm - z*n-2) (5-g AN n
' 0 Cs
where

a= 221, B = [ooe))

The inner integral can be réadily evaluated which leads to

-1

5
' I, (m)-1, (ndn
) = 5 1 f[z 1 J (24b)

0'%s n“ (A+Bn)

-

The functions Il(n), Iz(n) are listed in Appendix 6A. The remaining integration
in (24b) was performed nﬁmefically and yields the inverse function §=8(t1)
describing the boundary layer thickness as a function of time.
With knowledge of §=8(1) one can at once calculate the transform of
the concentration profile c(Z,t). By applying the Legendre inversion formula
‘withn = 0 to this, one recovers c(z,u,T) = c(z,T7) to the present approximation.
The quantity of primary interest to us is the surface mass flux of the
species from the prolate spheroid surface which is given by [1], eq. (7.1.60)

and (17)



_,_Dfecs

T ac
3(t;0) = v
b (8] 8t t=c,
D.ec '(z.)
f s 2 Qo S
= ~ - s ’['>0 25
R, | 300 T Q) (25)
where 2 2 1/2
h (cg) = £{ 5— (26)

-1

From the above discussion d(t) can be considered to be a known function in (25).
This result is valid in absence of radioactive decay. The application of (7) to

the surface flux yields then in presence of decay
T

T ;0 =Tf e M J(17;0)dr” + e J(x;0) (27)

: 0
which will be used in next section for calculational purposes.

The surface mass transport as derived in (25) consists of two parts. The
first term in fhe bracket describes the transient behavior of the flux. Since
§(0) = 0 by (14a), the flux is initially infinite in magnitude. From the moii0-
toﬁe trend of t(8) given by (24) one obtains a boundary layer thickness §(t)
which tends to infinity as t+~. Hence the first term in the bracket of (25)
tends to zero leaving the second term which exactly represents the steady state
mass transport from the prolate spheroid, see [1] eq.(7.1.28) and sequel.

Of considerable interest is the time needed for the surface flux to attain
the steady state to some degree of approximation. This time t* is a function
of the prolate spheroid geometry. Consider a set of prolate spheroids with
identical surface areas but differing ratios of minor to major axis (b/a).

The limiting cases for this class are the sphere with b/a = 1 and the needle

with b/a = 0. We will show in next section that t* decreases with decreasing
(b/a) which could be of importance to waste form designs which operate within
the framework of the present theory.

To test the effectiveness and accuracy of the integral method we apply it
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to the determination of the méss transport from a sphere. The sphere is a
member of the family of prolate sphéroids. In this case the major and minor
axis of the spheroid are identical and the focal distance f = 0. We consider
a limit procedure in which ¢ becomes large but in such a way that the (new)
radial coordinate r is given by
= fg | (28)

The radius R of the sphere is then defined by

R = fcs ‘ (29)

In the same way one scales the position in the boundéry layer by the new co-
ordinate
a = fn (30)
and the boundary layer thickness by | |
= f§ . (31)

We proceed in making these scaling transformations in (24a). With (2)

Dt &

é=l [ 2[R2f2+_f_oi 1(f]{f[2-—-R+ar1[rRJ

cr/f) |
. 777% T dr}da. | (32)

From (17), as f»0

%(f)"log(hf;r) >t | (33

- Hence
- (r/f) '
2 (5) 7% w7y (34)
so that, on cancelling lf from both sides of (32), one obtains on letting f-0
f

%t 2 (1 M( ) (r-R)dr § d (35)

= ———— r(R+a-r) (r-R)dr o 35
ﬁz EZ- fOLz[ZR+()L] f

0 R
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This is readily integrated and yields

Dt 2

Lk @ =

Next one applies the same limit considerations to (25).

With

Q)| ¢
RIS &7

S

hC(cs) -+ £

one obtains for the surface mass flux from the sphere

D.ec )
] _ f7s 2
70 = g [(Aﬁz) ' 1]

- _f s + 1] » 0 (38)

using (36).

The exact analytical solution yields precisely the same form but with /3

replaced by vm . The numerical error of the approximation is less than 3%

throughout the entire time span. Although this '"spot check' for a single geo-

metry does not uniformly validate the integral method for prolate spheroids of

arbitrary slenderness ratios, it is hoped that the principle of this method will

be substantiated by future refinements and extensions.

References:

1.

2.

Chambré, P.L., et al, "Analytical Performance Models for Geological Repositories,"
LBL-14842, V.II, October, 1982.

Chambré, P.L., 'Nuclear Waste Management Seminar, NE 298)'", Spring Quarter, 1982.



APPENDIX 6A Evaluation of the Integral

8 CS+6‘

S

S L +8”
1 -1 f s 2 -2 . r+l )
= ———— (z"-u")(g-g_-87)(z-z )n (——) dgds
%S f o sfmsBsn J, S s77\L-L )
S

2 —2 ™ Q, (2] .
(z"-u )(as S -c)(c-cs) m dzds

S

g +8°
-1 1 s 2 =2 . : .
= = —_— (8- u)(-t_-87) (c-z_)[en(z+1)-2n(z-1) ]dzds
QY f 67 (A+BS”) f; s s

r’sﬂs’ 2 =2
Let I, =f (T*-u )(c-cs-é‘) (c-cs)zn(«:ﬂ)dc
Cs

248"
S —
I, =f (%0 %) (z-5,-67) (z-t ) en(c-1)ée
Cs

-1 S 1 .
T = (I,-1,)d8" .
Q (&) _/; ;'7(A+B<s‘) 172

S
Now let U = g+1, C1 = csfl, D1 = Cs + 67 +1,
o= [ (-2 u-) w-c )2 U
1 Cq ¥ 1 1°"n
D -
=f b P-aue1-m ) (U (¢ +DU + €D, 10 U QU
G

_ 3 3, (gl 2.
- fDl { U= (CDy*+2)U” + [(-T7) + 2(Cp*Dp) + €Dy JU° - [(-H7)(Cy#D)) +
G

.
+2C, D, U+ (1-1 ©)C; Py } anbdu

5 4.
(1 fSey UYL 4, . U 1 4.2
= 'g(u gnuU -5-—) T (C1+D1+2)(U U - =) + 3 [(L07) + 2(C;#D;)+CyD; 1.

D,

3 2
03 L USY L o2 2, . U 2 )
(J nu T > [(1-u ) (Cy#D)) + 2CyD,] (U tnU - > ) +(1-u ") D; (Ueny U)‘C

1

@

let v = ¢-1, C2 = cs—l, D,=¢_ + 67-1,

2 [

D

I, =f 2 [(v+1)? - UZ](v-DZ)(U-cz)zn v dv
C2

} Dz{ 4

3 -2 2 -2
- C D -2 - - - - -
. v -( 2*Dy WH[(1-u %) 2(C2+D2)+C2D2]v [(1-p )(C2+D2) ZCZDZ]V

+ (I-EZ)CZDZ} n v dv 610



2 4 3
_f1¢(5 v 1 ) 4 v 1 (., -2, 3,V
= [-5- (V v -.5—) "7 (C2+D2 2)(V v 4—) tz [(1 v 2(C2+D2)+C2D2 ](v nv -::5—)

2 D
2 -2 2
- v - %’—) + (1-n )CZD2 (Vznv-v)} '

[a7 Hicpny - 2CzDz]("

9 =

C,

Then
§ (1,-1,)
1 1 72 -
5) = - 172 s,
T(3S) QO{; ) /; Z;’Z(Amrs‘)

S

I am indebted to H. Lung for this calculation.
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7. THE NUMERICAL EVALUATION QOF THE TIME DEPENDENT MASS TRANSPORT OF A
RADIONUCLIDE FROM FINITE SIZED WASTE FORMS OF DIFFERENT GEOMETRIES -

INTEGRAL METHOD

H. Lung

P. L. Chambré

In last section equation (25) an expression for the surface mass flux 3(1;0)

from a prolate spheroid was given. We turn now to the numerical evaluation of
this result which is reformulated in terms of the total mass loss M(t;0) from

the waste form

+1 27
M(t;0) = f f 3 (1;0) h b, didu (1a)
-1 70 _
Here the metric coefficients are evaluated at L=t and are given by
1/2
2 2
Z -u 1/2
- S . - 2 2
h = f -l—uz—> : by f{(z;s 1) (1 )} _ (1b)
The result of the integration is obtained with (25)in the last section
. 2 Q(5.)
.0) = b1 2 _X0'’s

where b is the minor semi-axis of the prolate spheroid
1/2
2
b = f(;s-l) . (3)

The numerical evaluation of M(T;O) is based on the following porous medium

parameter values

D, = 107> am?/sec; €= 0.01; K = 10° (4)

The cyclindrical spent fuel canister, which is to be modeiled, has a radius
r and a height h
r=17.8 cmn; h = 4.70 cm , (5)

The prolate spheroid dimensions are chosen so that its surface area and volume
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are equal to those of the spent fuel canister. This determines the prolate
spheroid semi-major axis a and semi-minor axis b; the surface coordinate Cs
and the focal distance f

a =272 an; b = 20.3 cm; L, = 1.003; £ = 271 cm . (6)
In addition we shall refer to a spherical body of radius R which has the same
surface area as the cylindrical spent fuel canister

R =65.9 cm (7

With the values given by (4) and (6) ﬂi%égl- has been computed and is shown as
curve 1 in Fig. 1 as a function of the physical time ig the range 1 yr<t<107 yT.
Starting at t = 0 from an infinite value (not shown), MLég;gl-decreases in time
to a steady state value which is reached at about leOsyr. Shown also in Fig. 1
are the early time and the large time solutions which were derived in [1]
Section 7.1. It is seen that the present solution, which covers the entire time
range, tends to these asymptotic forms. Finally, curve 4 gives the mass trans-
port from the equal surface area sphere defined by (7) and computed froﬁ the exact
solution. The trend of that curve is close to that of the prolate spheroid up
to time t = 105 yrs and for larger times it falls about 20% below the steady
state solution of the prolate spheroid. The equal surface area sphere solution
will be used as an approximation in.part of thé following discussion.

The time t* necessary to reach the steady state plateau in Fig. 1 is a
quantity of interest since it gives an indication when the minimum mass trans-
port rate is achieved. It will be shown that t*, aside from the parameters K

and D, is a function of the prolate spheroid geometry. We define t* as the

f,
time at which the transient part of the solution (2) is a fraction yx of its

steady state part, i.e.

.y |
ST X | G2y | (8)



-2 .
10 I l T

| | 1
D¢ =10° cm%/sec, r=17.8 c¢m
h=470 cm
€ =00!, K=103
W
>
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k) solution
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- c
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XBL 8412-5901

Fig. 1 Normalized mass transfer rate as a function of time; diffusion
from a prolate spheroidal waste form and from a spherical waste

form.



This can be solved for T* which yields with (2) of last section,

2
t* = Kf~ | T* (9)

D¢

t* is the inverse function of § as given in equation (8). We wish

to compare the mass transport from a set of prolate spheroids of identical
surface area S, but of different eccentricities e = b/a. For this it is
convenient to express f in terms of S and e and T in terms of e. The relation-

ships are the following (S = surface area of the prolate spheroid)

=2
O
- a
az-bz
=1 ' (10)
1-e2
2
. 2 a -1 £
S = 27rb <3+ 5 Sin a)
2 ] -
-t & (14 =1 sin1WV1-e? (11)

2
1l-e e"l-ez
If one solves (11) for fz in terms of S and e and substitutes this together

with CS from (10) into (%) one obtains

t* = % Fx,e) | . (12)

where F(x,e) is a known numerical function of the steady state criterion x and
prolate spheroid eccentricity e.

The time to reach steady state is thus directly proportional to the surface
area of the waste form as well as to the retardation coefficient and inversely
proportional to the diffusion coefficient. The dependence of t* on waste form
geometry is less obvious. It is shown in Fig. 2 as a function of e with X as

a parameter. . The other parameter values are those of (4) and (5) with a value of
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Time to reach steady state, years
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XBL 8412-5902

Fig. 2 Time to reach steady state as a function of body slenderness

and error bound.
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S = 5.46 mZ.

One observes the principal feature that the time necessary to reach
steady state decreases with decreasing values of e = b/a. Hence the sphere with
§-= 1 requires the longest time and the needle, for which g-+ 0, the shortest
time to reach steady state. The X cCriterion which characterizes the close-
ness to the steady state affects the value of t* in an understandable way. Holding
e = b/a constant, t* increases as x decreases. The marked point on the x parameter
curves represents. the operating point for the prolate spheroid form specified by (6).
As an illustration of the effect of the eccentricity e of the waste form on
the time t*, consider x = 0.1, i.e. curve 3. If a spherical waste form is used t*
will be approximately 4.5 x 105 yr which is about one order of magnitude greater
than t* at the operating point specified by (6). Hence a slender waste form
_geometry éhortens the time to reach steady state at which the mass transport
attains its lowest value.
We turn next to the discussion of the effects of radioactive decay on the |
mass transport. As stated in last section, equation (7), the transport in presence
of decay M(T;A) can be compactly expressed in terms of M(T;O) by

T .

M(T;A) = Xjr e AS ﬁ(s;O) ds+e M M(T;O) (13)
. 0 | .
With M(t;0) given by (2) one can readily'carry out the integration numerically,

since §(t) is a known numerical function. However, an analytical formula for
M(T;A) offers the advantage of exhibiting its parameter depéndence on X as well
as on some of the geométric characteristics of the waste form. One can accomplish
this by approximating curve 1 of Figure 1 by two curve segments.

The first segment covers the transient time interval 0<t<T*. As shown in
Fig. 1, the equal surface area sphere of radius R, given by (7), closely approx-
imates the mass transport from a prolate spheroid defined by (5). Thus in this
time span we apply the surface integral of (38) of last section with its correct

numerical factor
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M(t;O) = 4ﬂ€Df

(2 v ‘
CR |1+ KR octer* (14)

\jTert
When used in (13) this expression can be readily integrated analytically.

The intersection of (14) with the exact steady state mass transport from
the prolate spheroid determines the beginning of the second segment which is
givén by (7.1.13), (7.1.29) and (7.1.35) of [1]

M(t;0) = 4meDC_£Qp (z) , toT* (15)
The transition time T* is obtained by equating (14) and (15)

K
WDf

2
[—fi Q' () -1]

With the last three equations one can evaluate (13). With the total flux

- T* =

(16) -

expressed in terms of the physical time variable t,

-
-)\t N
( 1+(erf o+ —2 )Dal/2 N<tgT*
VTt
M(t;)) = 4meDCR { )
[ -AT*
1+<;rf AF + ——— ) pal/?] | o1
\ L I/TT)\T*
where
2
e B
f

For K=1, Da represents the dimensionless Damkohler modulus used by chemical engin-
eers in analysis of problems involving a chemical reaction of the first order
and subject to diffusive transport of the reactants. Retardation of the diffusing
specie modifies ¢ in our application.

Equation (17) is the approximation for the total mass transfer rate from a
prolate spheroid for a specie undergoing radioactive decay. It is evaluated

with the data given in (4) and (7) for the radio nuclides N%37, C14, and Cm244



with half lives

237\ _ 6 . AT 3. 244\ _
T, (N0 ) = 2.14 x 10° yr; T () = 6.14 x 10° yr; Tl/z(Cm ) -
= 17.6 yr (18a)
The corresponding A values are «

A7) = 320007yl (@) = 11307 vl (o) = s.0mxa072 et (ash)

The results of the calculations are shown in Fig. 3. Curve 1 represents
the total mass transfer rate without decay and curves 2 to 4 show those of the
three radionuclides. The effects of decreasing the half life are quite pro-
nounced. The transition time T* decreases fromlOS years to about 80 years.
The steady state (plateau) value of the mass transfer rate increases by more
than one order of magnitude. The physical explanation for this increase re-
sides in the fact that the radioactive decay removes the specie close to the
waste form surface thereby causing the concentration profile to become steeper.
In turn, this increased gradient increases the mass flux.

For a radionuclide of very long half life such as-N;?37

, which exceeds the
time T* to reach steady state, i.e. 2.14 x 106 yr >> 6.89 X 104 yr, the effect
of the decay on the mass transfer is negligible as curves 1 and 2 in Fig. 3 show.
This can also be seen from (17). If Tl/Z >>T*  then At is very small for t<T*,
Therefore erf/it=0, e-At:I and the first line ot (17) shows that M(t;x)zM(t;O).
This approximation even holds for some time span beyond T* as seen in Fig. 3.

If on the other hand T1/2 <<T#*, as is the case for Cn344, then even for

-At, 0. .

small and moderate values of t, At is large, so that erf/it =~ 1 and e
Equation (17) shows that then a steady state is reached relatively quickly,

within several times of T1/2’ with a value

M(«n;x) = 4meDCR [1+Dal/2] (19)



10 T T | T I 1
Df=l0'5 cm?/s, r=178 c¢m
h=470cm
£:0.01, K=103

-~ T2 17.6yr
€
(8]
c
o
2 o —
o| 2
olc
V|
HE
HE
~|lo
ni| o
w|o
=g e
2| s
7
6J4xl03yr
)
2.14xl0 yr, oo

T, =689x10%yr
| 1 | l L1 l
| 10 102 103 104 103 108 107
Time, years

XBL 8412-5903
Fig. 3 Normalized mass transfer rate as a function of time and half-life;

diffusion from a prolate spheroidal waste form.
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This can be compared with the total mass transport at steady state (t>T*) in

absence of decay. From (14),

. 7
M(,0) = 4meDCR |1+ /%}—Tw | (20)

With the definition of the DamkBhler modulus

S\ /2
<K)\R )
. 1+ D
M(=3A) _ f
M(=30) @ V7’
- P\
) 1/2
1+ (m 1n2 )
D.T. ..
- £'1/2

2 1/2
+(8r)
D ¢

From this it is seen that if T1/2 <<T* then M(«;1) will have a much larger steady

(21)

state value than ﬁ(m;O) as shown in Fig. 3.

It should be noted that the effects of radioactive decay on the mass transfer
have been made specifically for a waste form described by (6) in terms of its
replacement defined by (7). For other waste form geometries the qualitative
trends shown in Fig. 3 should remain unchanged. To obtain quantitative results
for other waste form geometries the numerical integration of (13) is readily

carried out.

Reference

1.. Chambré, P.L., et al, "Analytical Performance Models for Geological Repositories,''
LBL-14842, V.II, October, 1982.
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8. TRANSIENT MASS TRANSPORT OF A RADIONUCLIDE WITH TEMPERATURE-DEPENDENT

SOLUBILITY, DIFFUSIVITY, AND RETARDATION COEFFICIENT

P.L. Chambré

This analysis focuses on the time dependent, diffusive mass transport of a
radioactive specie from a spherically shaped waste form, imbedded in a porous
mediuh, in absence of water convection. It was shown in chapter 7 that one
can approximate, subject to stated restrictions, the mass'transport from a
cylindrically shaped waste by that from an equivalent surface area sphere. The
analysis given below incorporates a number of physical features of practical
importance and leads to a convenient analytical formula from which their effects
on the mass transport is readily judged. The analysis includes aside from the
effects of decay, the influence of a time variable temperature environment. Thus
it applies to the non-isothermal time span which arises shortly after the em-
placement of the waste form.

The surface temperature of the waste package is time dependent, on account
of the time variable heat release of the waste. Since we are primarily interested
in the surface mass flux, it is the effect of the variable surface temperature on
the mass transport which we wish to take into account. Since the solubility
concentration and the diffusion coefficient of the diffusing specie are assumed
known functions of temperature, they in turn depend on time. They are respect-
ively cs(t) and Df(t). The analysis applies of course also to isothermal con-
ditions where these parameters are constant in time.

The concentration N(r,t) of the diffusing specie, in absence of precursors,

is governed by for constant porosity

KON 15 (25N
At —'Df(t r—zg}— (I‘ I - K(t)AN, Ro<r<°° , t>0 | (1)

The initial conditions are

N(r,0) = 0; >R} - (2)



and the boundary conditions,

N(Ro,t) = Cs(t), t>0 (3)

N(=,t) = 0, t30 (4
Let |

c(r,t) = rK(tN(r,t)et; g%é;l = ;% g(t) (5)

then (1) - (4) transform to

ac _ Do 3%c
== &(t) =5 ; rR;, t>0 (6)

0 ar
c(r,0) = 0, r>R, - (7)

At 8
c(Ry,t) = ROK(t)cs(t)eA , >0 (8)
c(»,t) =0, t>0 ' (9)
The solubility concentration is given by

K(t)eg(8) = cof () , €20 (10)

The dimensionless functions f(t), g(t) represent the known time dependence

of K(t)cs(t) and %%%% respectively. In order to reduce (6) to a constant coeffi-

cient equation let

r-RO v _

x(r) = RO ’ rZRO (11)
t

Dy |
(1) = —— | glt)dt’, t20 - (12)

K.R.~ )

00 0
Cx,t) = c(r,t) 13

then (6) - (9) transform into

2
Lo z_g | 0<x< | 150 as)
X



C(x,0) =0 (15)

C(0,7) = £E(1) | (16)

C»,7) = 0 (17)
where ‘

B = Ry » E(1) = £(t(1))e (D (18)

To solve this problem appljya Laplace transform, with respect to the vari-

able 7, to (14) and impose the side conditions (15) - (17) with the result

C(x,s) = Bf(s)e-X/g

, X0 . (19)
The primary interest is in the surface concentration gradient which will be

denoted by ¢(1)

_ . 3C(0,D)
#(1) = - T2t (20)

Its Laplace transform is obtained, with help of (19),

o(s) = - L)
= sT(s) - (21)
/s
 Since
L {(nt)’l/ 2} s V24t {?v (r)} + T(0+) = sE(s) (22)

(21) takes on the alternate fomm

= f_(m.p L r . l__ |
8(s) = 8 [@ {f m} /;J : | (23)

provided f(t) is a continuously differentiable function for 1>0. ¢(s) can
be inverted with help of the convolution theorem

T
o(t) = 2 [f_(_(ﬁl + f f_'ﬁ:ﬂ)_dn} , (24)
m /‘? 0 /Y'_]

where the ' denotes differentiation with respect to the first variable.

One can now compute the surface mass flux per unit surface area from
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Tt

the spherical waste form into the exterior field. It is given by

. aN(RO,t)

m(t;A) = -Df(t)E BT (25)
where € is the porosity of the exterior medium, assumed independent of temp-
erature. From (5), (11) and (13)

aN(r,t) _e My [eqr,t)

or K(t) or T

-At
_e _c(r,t) .1 3c(r,t)
T X(®) [ r2 T or ]
-t
= E( - C(x,r(t))2 + (i %_ BC(g,T(t)) (26)
t ¥
[Rya0]® RolI™) Ry X
Hence
NR,t) e cro,7t)), 1 3¢(0,7(t)
or K(t) R2 , 2 ox
| 0 Ro
oA
= - S—[eF(x (N + ¢(r(1))] (27)
RO K(t) v :

on using (16) and (20). If one combines this with (24) there results the desired

solution for the mass flux per unit sphere surface

At T(t)
D.(t)C_.ce =
ey = fo S0 7 L1 JE0) I3 -y 4 2
m(t;2) - "R K(t [f(T(t)) = { — ’{; £'(1(t)-n) - (28)

Equation (28) shows that.if initially £(0+) # 0, the mass flux is infinite
at T =t = 0. To evaluate the right hand side of (28) one uses f(r) as defined
by (18) with t(t) defined by (12). An application of the determination of m(t)
in a time varying temperature environment for a stable nuclide is given in
Section 9. |

We illustrate (28) for a radioactive nuclide diffusing into a uniform and

time invariant temperature field..
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For this case
g(t) =1, £(t) = K(t) = K;, t 20 | .
From (12) and (18)

D
0+ (30)

2
KoRp

f(1) = ekt(T)Ko

(1)

2
) )\KORO
= exp\ 5 YK, , (31)
0
With this there results from (28),
r
-it 2 2
D.c_ .ce AK . R-1(t) AK.R
. O .
Ro 0 Y | V/T(E) 0
T(t) AKORS \
T (t(t)-n)
e 0 dn (32)
. /o
0

which with (30) reduces to the convenient formula

, | - |
c . / /AK R

m(t;A) = 0 0 WBRZ * g 0 erf (/‘XE) (33)
0

In absence of radioactive decay this reduces to

D.c .t K.R
07s0 1+ 0

.RO ﬂDOt

a well known result. A comparison with (33) shows that the mass transport is

2
0 (34)

m(t;0) =

enhanced by the decay. As already discussed in chapter 7 this is due to the
removal of the diffusing specie due to decay which increases the concentration

gradient close to the waste surface. Quantitatively (33) and (34) give the
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following expression for small and large times, with Av# 0

.
1, for t <<1
m(t;A) _ {
m(t;0) AKORS
1+ D ° fort > =
0

In Figure 1, the total mass transport m(t;)) from a sphere is shown as a
function of time with A as a parameter. Three nuélides of'widely different
half lives have been chosen to compare the effect of A on ﬁ(t;x). For con-
venience m has been normalized with the solubility concentration oo Start-
ing at t = 0 from an infinite value where according to (35) there is no

effect with A, E%Eil) decreases in time to a steady value which is reached
sO

approximately at t*. It is seen that t* decreases with the nuclide half life.
On the other hand, the steady state plateau increases in magnitude with the
decrease in half life in accordance with (35). These results are similar to

those discussed in chapter 7 which the reader might consult.
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. cm/s
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Oy

Ro=659¢cm, Do=10"cm?/s
£=00I, Ky= 1000
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|(55 L | ] ]
| 10 102 103 10% 10° 108 107

Time, years

X8L 8412~ 5890

Fig. 1 Normalized mass transfer rate as a function of time and half-life;

diffusion from a spherical waste form.
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9. THE EFFECT OF HEATING ON WASTE DISSOLUTION AND MIGRATION

W.J. Williams, III, C.L. Kim, T.H. Pigford, P.L. Chambré
9.1. THEORETICAL DEVELOPMENT

The timé dependent theory for the near-field mass transport from a spher-
ical waste canister embédded in a purely diffusive field with time dependent
temperatures, solubilities, and diffusion coefficients has already been developed
in chapter 8 . An existing far-field one dimensional nondispersive migration
model is coupled to this near-field model. The coupled model can be uéed to
calculate waste concentration profiles in the far field based upon the noniso-
thermal dissolution of material at the waste canister surface. This method is
applied to a conceptual commercial high level waste repository in basalt.

In the present study several assumptions were made in developing the waste
canister mass transport and migration models:

© The <cylindrical waste canister can be modeled as a sphere of the same
lateral surface area.

e The waste is embedded in a purely diffusive isotropic field.

® The near-field mass transfer of material from the waste surface is
controlled by diffusion, and near-field convective effects on mass
transfer are negligible,.

@® The surface temperature of the spherical wasﬁe package is spatially
uniform. This temperature is the spatially averaged surface temp-
erature of the actual cylinder and is a known function of time.

o The solubility and liquid diffusion coefficients of each chemical
species of interest are known functions of temperature.

¢ The retardation coefficeint is constant and not a function of temp-

erature for each chemical species of interest.
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The initial concentration of each chemical species of intérest is

zero outside the waste canister.

The maximum surface temperature of the waste canister occurs at the
time of emplacement in the repository.

The steel waste canister fails instantaneously at the time of emplace-
ment in the repository.

The waste is infinitely massive, i.e., the concentration of material
in the ground water next to the waste surface is never less than the
solubility limit.

The radius of the waste form is constant even though mass is being lost
to. the surrounding ground water.

The waste package surface temperature is determined by considering the
heat generation of all the canisters in the emplacement array. These
canisters are identical and were deposited in the repository at the
same time.

The concentration plumes resulting from the dissolution of other waste
packages in the repository are neglected. |

The ground water concentration of each chemical species dissolved from
the waste falls rapidly toward zero in the region within a few canister
diameters of the waste (see Figure 9.1).

A transition zone (see Figure 9.1) exists near the waste where diffusive

and flow effects are both significant.

The last two assumptions are needed to couple the waste surface mass flux to

the far-field ground water concentration. In the transition zone dissolved waste

tends to be swept away by the flowing ground water. Since the concentration in

this region is generally much less than the solubility limit at the waste surface,

the transition zone concentration is assumed equal to zero in the near-field mass

transport model. This assumption, however, does not apply to the far-field
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Far-field:

e no heat generation
o flow effects only
e isothermal region
e radioactive decay

Transition zone:

< e Some ground water flow
e Diffusion and flow
effects both important

Near-field:

waste canister

heat generation

mass dissolution
diffusive field
nonisothermal region
no ground water flow

Ground water stream line

0 T r
0 R2R

1

Figure 9.1 -- Coupling between the near and far fields.
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migration calculations, since the far-field concentrations are of the same order.

Given the above assumptions, the solutions obtained in chapter 8 can be
applied for near-field diffusive mass transport and the theory which governs the
subsequent migration of radionuclides from a repository is developed in the next
section 9.2.

Section 9.3 describes the method used to find the best polynomial fitting
curves for solubility CS and.diffusion coefficient D as the functidns of temp-
erature. These two quantities are then tabulated as the functions of time
according to the temperature history. Section 9.4 uses the cubic spline functions
to fit the abdve two quantities as smooth functions of time. Section 9.5 then
applies the cubic spline technique to obtain the mass transport from the waste
surface developed inchapter 8. This mass transport is used as the boundary
cordition for far-field migration model developed in section 9.2. Section 9.6
presents the :esults of these calculations and finally section 9.7 gives conclu-

sions about this analysis.
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' ST 1
9.2. Radionuclide Migration through-Nondispersive Porous Media - --

The one dimensional migration of a radionuclide through a water
saturated nondispersive porous medium is described by the following"

differential equation:
REe + v + AKN = 0 (2.1)

where N(z,t) is the ground water concentration of the radionuclide, v
is the ground water pore velocity, K is the retardation coefficient,
and A is the nuclide's radioactive decay constant.

For N(z,t) the following side conditions apply:

N(z,0) = 0 , z>0 (2.2)
N(O,t) = N, w(t) , t>0 (2.3)
N(»,t) = 0 , t>0 (2.4)

Taking the Laplace transform of equation (2.1) yields the ordinary
differential equation

dN K —
-é-; + V(X+S)N = 0 (2.5)

where N(z,s) = £{N(z,t)}. Equation (2.5) may be solved to produce

K K
_ K -)\;72 -7 2SS
N(z,s) = A(s) exp { - ;-(x + 8) z} = e { A(s) e }

(2.6)

Assuming ;hét its Laplace transform exists, boundary condition
(2.3) may be transformed to the s domain to obtain
Eko,s) = N A(s) (2.7)
where Q(s) = #£{w(t)}. The function A(s) may be determined by applying
this transformed boundary condition to equation (2.6):

A(s) = NOQ(s) (2.8)
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Thus, K K
-A=z -—2zZs

ﬁ(z,s) = e 7 { NOQ(s)e v } (2.9)
The inverse Laplace transform of equation (2.9) may be determined by

applying the Laplace transform translation theorem%

e® F(s) = 2{£(t-b) u(t-b)} , b >0 (2.10)

where F(s) = L{f(t)} and

0 (t < b) )
u(t-b) = (2.11)
1 (t > b)
Hence N(z,t) is given by
—A%z K K (2.12)
N(z,t) = No e w(t --‘;z) u(t - ;z) <412
A dimensionless relative ccncentration may be defined as
N(z,0) - Mzl) 2.13
' N(O,=) (2.13)
Substituting equation (2.12) yields
. o(t - Tz) u(e - 22y a X,
N (z,t) = - ) e (2.14)

Boundary condition (2.3) must be coupled to the surface mass flﬁx
at the waste canister. As shown in Figure9.l, a plane z=0 is assumed
where the ground water streé; lines become parallel. Since the migra-
tion is nondispersive, all of the dissolved radionuclides are contained
within a cylinder of radius Rt whose axls coincides with the z-a*is.
The intersection of the plane z-b and this cylinder is a disc of radius
'Rt' This disc 1s the migration source plane. Because all of the waste

must pass through this disc, the coupling between the surface mass flux

and the far-field migration may be achieved by assuming the following
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proportionality:

w(t-%z) « ﬁ(c-%z) (2.15)
Thﬁs,
. K K K
M(t = =2z) u(t = —2) =r—=2
N(z,t) = Y — Y — e v (2.16)
M(=)

Note that since ﬁ(Of) is infinite, the maximum concentration p;ssing a
given point, N;ax(z)’ cannot be defined for nondispersive migration.

The mass transport and migration models just developed require
funcgional representations of diffusion coefficlents, solubilities, and
surfgce temperatures, Generaliy the values of these functions are known
only at a few discrete points. In the next twq sections, two curve
fitting techniques, polynomial least squares analysis and the method of

cubic splines, are developed.



9.3. Method of the Least Squares for Polynomial Fitting

The mass transport equations (5) and (10) in chapter 8 presume that
the solubility (CS) and the diffusion coefficient (D) of each chemical
species of interest are known at the waste canister surface as functions
of time. Generally, however, these functions are tabulated with respect
to temperature as discrete experimental data points. Thus, one must
construct approximations to Cs(t) and D(t) based upon the tabulated data -
and the surface temperature history, T(t), of the waste canister.

The first step of the construction procedure is the fitting of the
.tabulated CS(T) and D(T) to continuous functions. Since the ranges of
Cs, D, and T are only a few orders of magnitude, the method of poly-
nomial least squares 1s an appropriate fitting technique.

Consider a set of data points (xi,yi)° The polynomial to be fitted

to these points can be represented as

S
y(x) = } ax (3.1)
3=0
where the aj are to be determined, Define the error, €45 as follows:
T
e, = ylxp) -y, = jZo axy = vy (3.2)

where n is the order of the polynomial to be fitted.
In a least squares analysis the best fit of the data to the

function y(x) is obtained when 02, the sum of the squared errors, is

ninimum:
m
g° = z ¢2 ' (3.3)

where m is the number of data points. Since o2 is generally greater

than zero, curve smoothing is an integral characteristic of the least



squares technique, The set of coefficients aj for which 02 is minimum

is given by the following system of equations (normal equations):

m m
Oo.n 0
z x + a z x z x eoe + a 2 XX, = Z X,y
0 4a1 i a1 1=1 i mogep P1ogo PH
m m
1 0 1 2 1 n 1
z x z x E X, X ses t+ a Z X x, = z X,y
TR R N g UL R = S
m m
2 0 2 2. n
Z x Z X x + a 2 x x ees + 2 z X, X, = z X,y
o f T L 1=1 myap PDogq U
m o] ®
n o, n_1 2 n_n
Z X E x.x, + a Z X x eee + a z X, X, = Z X,y
=1 1* i & {=1 i1 i noa 174 121 i71
(3.4)
In matrix form the normal equations reduce to
Q; = -&'; (3-5)
where X' is the transpose of X and
pum — pras —
%0 4
! Y2
3 = | %2 (3.6) y o= | Vs (3.7
i 3 4 7
1 x1 x1 x1 x1 « o e x1
1 x x2 x3 x4 X0
2 2 2 2" " 2
(3.8)
X = 1 x x2 x3 x“ o o X
= - 3 3 3 3 3
2 3 4 n
1l X X X X o o s X
m m m m m




B 7]
g xoxo ? xoxl ? xox2 ? xoxn
=1 171 =1 171 i=1 i1 1=1 171
m m m m
1.0 1.1 1.2 1. n
Z-,x x z X, X% 2 X, X .o 2 X, X
gm0 P g P g 1 =1 11
m m m m
Q = ) xixi ) xixi xixi cee ) xix: (3.9)
i=1 i=1 i=1 i=1
m n m m
n 0 n 1 n 2 nn
2 X, X ‘z X, X 2 X, X cee z XX
| 151 i1 i=1 i7i i=1 i1 i=1 i i_
The quadratic matrix, Q, can be represented in terms of X:
q = X'X (3.10)

Thus, equation (3.5) can be expressed in terms of equations (3.6) through

(3.10) as follows:

x'®na = X'y . (3.11)

Solving for a yields the desired result: .

a = o’

X'y (3.12)
provided that (X'X) 1is invertible. The best fitting polynomial of order
n is now given by substituting the elements of a 1into equation (3.1).

| In general n should be chosen such that there are more equa;ibns
than unknown coefficients, i.e., m > n. 1If n > 4, y{(x) may oscillate
wildly% Hence polynomial fitting 1is not alwéys an appropriate curve
fitting technique. In the case of the functions CS(T) and D(T){ the
selected values of n were all less than 4,

Consider a data point (ti,Ti) on the T(t) curve. Sipce T(t) is

monotonically decreasing, values of Cs(ti) and D(ti) can be determined
by evaluating the polynomial expressions for CS(T) and D(T) at several

Ti' Thus, the transformation from the temperature (T) domain to the
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time (t) domain has been accomplished.

Unfortunately, Cs and D are once again in tabular form, now as
functions of time. At first glance it may be tempting to apply the
least squares fitting technique a second time. However, because the
range of t is at least seven orders of magnitude, the resulting fit is
very poor and 02 is very large.

A better approximation might be calculated by analyzing Cs and D
as funtions of &n t instead of t. Substitution of logarithmic poly-
nomials into equations (12) and (28) in . chapter8 for g(t) and £'(t)
results in intractable integrals. While numerical integration theoret-
ically could be performed, such calculations require large amounts of
computational effort to achieve a result which has reasonable accuracy.

Because of these shortcomings of least squares curve fitting over
large orders of magnitude, another technique, the method of cubic spline

functions, was used instead. The theory of cubic splines is developed

in the next section.
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9.4, Cubic¢c Spline Functions

Consider an interval [a,b] containing the nodes xi such that

= = 40
a=x <X <X, ... <x =b , 0cgic<n (4.1)

and Cyy o= owxp) (4.2)

Suppose that Wi(x) is the set of cubic functions (spline functions)

which best approximates the actual function y(x) on each interval [xi_l,

xi], where
¥ (x) = a x3 + a x2 + ax + a l<1i<n 4.3
i 3 2 i o °? 2 (4.3)

and a_, al, a

o and a3 are coefficients. Since the method of cubic

2,

splines is not a smoothing technique,‘

Yo = ¥(xp) = ¥ (x)) | (4.%)
y; = W(xi) - ‘l’i(xi) = ‘l’iﬂ(xi) , 1<i1i<n-1 (4.5)
Yo = vOx) = ¥ (x) . (4.6)
The Wi are constrained by coﬁtinuity considerations at the nodes:
Yo(xp) = ¥, (), 1l<ic¢n-l (4.7)
Wi(xi) - Wi+1(xi) » l<i<n-1 (4.8)
W;(xi) - W;+l(xi) , 1l<4i<n-l (4.9)

Note that only the third derivative o ¥, may be discontinuous at a

i
nodal point. Two additional- boundary conditions are required to perform
the analysis. Since y(x) is of no interest for x < a or x > b, one sets
‘l"l'(a) = 0 (4.10)
y;(b) = 0 (4.11)

Define the following parameters:

: - 4.12

hi SR VR 1<i<n ( )
Y, = Y. Y, = Y.

di B i - i-1 _ 4 - i-1 , l<i<n (4.13)
S B8 1
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£ = - = , 1<ic<n, x, < x<x,. (4.14)
Xi7Xi1 hi - i-l-" -

Given the data (xi,yi), constraints (4.4) through (4.9), and definitions
(4.12) through (4.14), the solution may be expressed as’
Vilt(x)] = ty, + (l-t)yi_1 + hit(l-t)[(ki_l-di)(l-t)-(ki-di)t] >

l<ic<n (4.15)

where

2ko + k1 = 3d1 : . (4.16)

hi+1ki—1 + 2(h1+hi+l)ki + hiki+1 = 3(hidi+1 + hi+1di) .
1<1i<n-1 (4.17)

kn-—l + an = 3dn _ (4.18)

represent a non-recursive system of equations. Equations (4.16) through

(4.18) however, can be represented in matrix form:

A% = B (4.19)
where
M2 1 0 0 e . 0 0 0 0
. . 0 0 0 0
h 2(h +h) h 0
+ ... 0 0 0 0
Q h3 2(hZ h3) h2

>
u

I

0 0 0 0 e e« h_ 2(h __*h ) o 0

0 0 0 0 .. 0o h 2(h  +h ) h
n n-1 n n-

Lo 0 0 0 ... 0 0 1 2

(4.20)

-+ -
and k and b are given by
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=+
]

. (4.21) b =

+
hle thl

h d_ + h_d

o (4.22)

-

Equation (4,15) requires k. Solving equation (4.19) for k yields

> .
k = A

(4.23)

provided that éfx exists. Equation (4.15) can be expanded in terms of

the definitions (4.12) through (4.14) to obtain for each 1i:

= (4.24)
@3 €y
= - 4.25
a, (clc3 + <, + CS) | ( )
= <+ 4.26
a, di +coc, + c3(c“ cS) ( )
X,y -x, .y :
i741-1 i-171
= + (4.27)
c'.0 hi C2(C4 CS)
whefe
k., + k - 2d
¢ = 2171 1 (4.28)
1 h
i
C, = XXy, (4.29)
c3 = %y + xi_1 (4.30)
k -d
¢ 9w Az 4 (4.31)
4 h
i
= 4.32
cq €%y, ( )

Boundary conditions (4.10) and (4.11) were chosen primarily in the

interest of computational simplicity.

9-14

The actual curve to be fitted,



hoyever, may not have vanishing second derivatives at the end points a
and b of equation.(4{1). It has been found, fortuitously, that only the
spline functions near the coordinates a and b are sensitive to the above
boundary conditions. By extrapolating the actual function in the regions
Just outside the end points, dummy data points may be computed. These
dummy points "insulate" the actual data from the effects of the assumed
boundary conditions.

One muéc also exercise caution in the selection of the points on the
interval [a,b]. In low.slope regions the time interval between adjacent
points must be small in order for the spline approximation to accurately
represent the actual function. It should also be noted that adjacent
points may not have the same ordinate value.

The fitting of solubilities and diffusion coefficients is now com—
plete. The next section describes the application of the cubic spline

technique to the mass transport equations developed inchapter 8.
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9.5. Cubic¢ Spline Functions Applied to the Mass Tramsport Equatioms

The functions £(t) and g(t) of equations (5) and (10) in chapter 8

respectively, can be approximated up to the time t=t.n by cubic splines:

fi(t) = ai,3t + ai’zt + ai’lt + ai’o y l<ic<n (5.1)
3 2 ;
= 5.2
gi(t) bi,3r' +bi’2t +bi,1t+bi,o , l<ic<n (5.2)
Define
. . S _
G, (t) = ‘[0 g (t") dt' , ot << E l<ic<n (5.3)
b b b
i,3 4 i,2 3 i,1 2
= 2 ~Lae EETRS (5.4
Tt + =t +b1,ot )

The defining equation for 1(t) must be adapted in order to account for
the plecemeal nature of gi(t). From the transport analysis in chapter

8 one recalls that

D t ,
t(t) = ‘25 J g(t') dt' , t > 0 (chapter 8, eq.12)
. : KRO 0 )
For ti-l <t< ti sy 1<i<n, to = 0, and L 0
D, i-1 5 D t
(e = — ) J gj(t') dt'»+——2-J g (t') dt!
KRO j-l tj-l ’ KRO ti-l
vDo 171 | Dy
gl jzl [6yCep) = GyCey DT+ —5 [64(8) = Cy(ey )]
0 0
Dy
= Ty, t -1(—;5 [Gi(t) - Gi(ti_l)] (5.5)
0
where
D 151 D L1y 56
1 - — lG(t)-»G(t_)]-——J g(t') de’ .
i-1 KRS j=1 I it KR(Z)



Consider the convolution integral used in equation 28 of chapter 8:
T(t)
I(t) =f -t} g (5.7)
0. %3
The approximation of f'(t) by quadratic (derivative of cubic) spline
functions is shown in Figure 9.2. Note that in equation (5.7) T is fixed
and T' is the variable of integration. Define
™ = 1(t) - 1' | _ (5.8)
The transformation of f' from the time (t) domain to the 1" domain is
obtained by applying eq 12 of chap. 8.) Figure g¢_3shows the transforma-
tion when D(t)/KROZis taken to be constant. In general, however, D(t) is
not constant and the proportionality between each t; and Ti is lost. The
upper bound of integration, T(t), is selected to lie in the ith interval.

A simple change of coordinates is made so that f£f'(t") is plotted against

T". Now equation (5.7) can be rewritten as below:
T(t) .
1 1]
1(t) =] £ gen (5.9)
o /T (t)-t"
i_l Tj f'.('['") T(t)fl'(_[.")
= 3 -4 4 +[ — g (5.10.a)
j=1 vT(t)-t" YT (t)-T"
j-1 i-1
(where T, = o, Tiq S T(t) STy and 2 < i < n)
T(t)fv (T")
or f L a@" (o< (v) <T,i=1) (5.10.b)
o vYt(t)-t"

Notice that one must take care to perform the convolution integral using the
appropriate spline function f'; between the limits Tj and Tj—l in each inter-
val j, i < < i. Thus, the convolution integral can be treated as the
summation of the i separate integrations. And to remove the singularity

which appears in the second term of the right hand side in equation (5.10.a)

define
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2 _

u” = 1(t) - "
Then,
/ -
T(E) £. (T T -ty
f S 4" = 2f . 2
GRS =)
T. (o]
i-1
Similarly, equation (5.10.b) can be reformed as
T g e /7O ,
——— dT" = 2[ 1' {T(t)-u }du
o YT - o o
Now combine the equations (5.12) and (5.13) into the equation (5.105.
-1 T, £1(T™) (e -t )
I(t) = J b g 42 £, {r(t)-u } du
j=1 vT(t)-t" *
T. o
j-1
Ti__l<T(t)i Typ 22 1<
/T(t) )
or 2[ fi {T(t)—u } du
A .
o<1’(t)irl, i=1

At this point apply the trapezoidal rule to the equations (5.14.a) and

(5.14.b) and obtain the following results:

i1, [el) £, )
I(t) = z _2_ _J__.l__.. + _J_.L___ T'-T'_l) +
j=1 /T(t.)-Tj /T(t)—Tj_l 33

,[fi {T(t)} + fi(ri—l)] /%(t)—ri_l

where

] < < T, 2< i< n.
Ti1 T(t) < T, < <

I(t) = [fi {T(t)} + fi(o)] VT (t)
where

o < 1(t) < T , 1i=1
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9.6. RESULTS

The results of the waste dissolution and migration from a canister
embedded in a conceptual basalt repository are presented in this section.
Two species, SiO2 (silica) and 237Np, were considered in the analysis.
The dissolution of silica 1is indicative of the performance of the boro-
silicate glass matrix in the repository environment. 237Np is represen-
tative of many long lived (t12 = 2.14'106 y) radionuclides. Their activi-
ty can be appreciable even after thousands of years.

The time dependeqt rock temperature at the emplacement hole surface
was supplied by Altenhofen5 for commercial high level waste that has
been coole& ten yeafs prior to emplécement, In the present study it Qas
assumed that the emplacement hole surface temperature was the same as
the waste packége surface temperature, T(t). Furthermore,Athe time axis
wés shifted such that the maximum surface temperature occufred at time
t =0, an adjustment of six years. The assumed waste package surface
temperature history is sho&n in Figﬁre 9.4.

The temperature dependence of silica solubilit;s and liquid diffusion
COefficient7 is shown in Figures 9.5 énd 9.6 and also is tabulated in
Appendix 9A.'Using the construction Cechniqué described earlier inAthis
study, Figures 9.4, 9.5 and 9.6 were cbmbined to yield discrete time
dependent values of the silica solubility and diffusion coefficient. The
resulting 47 data points of each variable were cheﬁ splinéd to produce
the continuous functions plotted in Figure59-7 and 9:8. These results
are also tabulated in Appendix 9B. The interval of each cubic spline

function is delimited by a vertical string of dots in these figures.

The neptunium solubility and diffusion coefficients were not known

9-20
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functions of temperature. It was assumed that silica and heptunium have
the same specific heats of solution.. Consequently, the following rélation-

ship is valid (see Appendix 9D for derivation):

C. (T C.. (T
__Ezf_l_ = .__Eai_gl_ ' (6.1)
C3102(T) C3102(1:0)

wherg To is a reference temperature at which the solubilities.of both
species are known. This ratio was determined to be 2.0-10_7.8 The
diffusion coefficient of both species wasvassumed to be the same. The
retardation coefficient of silica was assuﬁed to be K=1, the worst case
value, and that of neptunium was taken as K= 100, the generally accepted
value for basalt,

Using the time varying solubility and diffusion coefficient func-
tions, the total surface mass flux from the waste cgnistef was ﬁomputed
using equation (23):in chapter 8, The results are shown in Figureé 9.9 and 9.10

and are also tabulated in Appendix 9C- A steady state waste dissolution

rate is reached after about 10,000 years for silica and 100,000 years for

neptunium, Less than two percent of the total silica inventdry was dis-
solved from the waste after 10,000 years of emplacement (see Appendix 9E).
Applying the one dimensional nondispersive migration model of Section

9.2. the concentration profiles of the waste‘were computed. The ratio

of the waste concentration at a par;icqlar time and displacement to that

under ambient temperature conditions is denoted by N*(z,t) [see equation
2,13)], where N(O,») is constant. Since N*(z,t) is hard to visualize,

it is plotted with one coordinate fixed. Thus, the function N*(c) is the

concentration ratio at a fixed position and N*(z) is the conéentration

ratio at a fixed time. The N*(t) and N*(z) for silica and 237Np are

plotted in Figures 9.1l through9.14 for various values of z and t.
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*
Since silica is stable, N (z,t) appraoches unity at large times. 237Np,

however, decays, though very slowly. The limit as t tends to infinity for
N*(z,t) of radioactive spécies tends to zero instead of unity. This effect
can be seen for 2.37Np in Figure 9.12.

The retardation coefficient, K, appears in both the mass transport
and migration equations. By comparing the shapes of Figures 9.9 and 9.10,
however, its effect in the near-field region is negligible .on the shape of
the surface mass flux curve. In the far-field region, the effect of K is
very dramatic. Comparing Figures 9.13 and 9.14 shows a K-fold increase in
the time necessary for the waste dissolution front to reach a given point
over the water travel time. One should also note that the initial impulse
magnitude increases with K, but decays rapidly to the same order of magnitude

as the K=1 case.
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9.7. CONCLUSIONS

The results of the total surface mass flux calculations demonstrate

that the dissolution rate of the borosilicate waste glass matrix in a

2

basalt repository is indeed very small. The duantity of 37Np leached

from the waste would hardly be detectable, less than one gram over 10
million years.

At first glance these results appear to verify the adequacy of the
conceptual basalt repository. One should note, however, that many of
the assumptions made in this analysis are not strictly valid in the
actual repository environment. The effect of fissures in the host roék,
for example, was not studied. Other pragtical considerations such as
finite waste mass, convective ground water flow, sequential waste cani-
ster emplacement, varying canister corrosion properties, and the inter-
actions of adjacent canisters in a reposito:y may play an important role

in future theoretical developments.
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APPENDIX 9A

Computer Program LSQR

LSQR performs a polynomial least squares analysis on a set of data
points (see Section 3 for theoretical development). Sample program

outputs for C_;,(T) and D(T) follow the FORTRAN listing.
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FRUGRAM LEOR

t R L R R U R N IR UL CE RSB T LU P P LN A N E N MR WK G & E
[ PLFIT THE NYTH ORDER LEAST SQUARES FOLYNDHIAL TO A SET OF DATA
c hbdeduindadibeb b bl L L L L L e R L Ty R ey Ut
FAKAMETER MO0, NOu 15/ N30
DINENSION ITR“NS(N"vHO)oX(HQrNG)'XOUAD(NﬂvNG)vXVECT(HH)vY(HB)v
1 !V(“.)vﬁ(Nﬂ)'XG[NV(NOINB)'G.HNﬂ'NZ)
DOUBLE PRECISION GuJ
EQUIVALENCE (XQUANCTIL1)sXAINV(1+1))
OPENCUNTITeL s NARE = "LSOR.GUA’ s TYFEE’ NEN® )
4
NRITE(S,5) . .
3 FORMAT(//53W ENTEK NUMRER OFF DATA POINTS AND OKDER OF FOLYNOMIAL )
READ(Se8) Hon .
N=N#+1
C CHECN ARKRAY BOUNDS

IV (M ,GT, M@ .0k, N .GT. N®#) GO0 4v0e '
VRITE(S,1%)
13 FORMAT(//36H ENTER X VECTOR: ONE VALUE FER LINE:)
c LOAD THE X AND X TRANSI'OSE MATRICES
00 2000 1=isn
READC(S+9) XVECT(])
X(Iel)dmg,
XTRANS(1s 1)y,
. o) 1080 Jed,N
X(IoJ)nXVECT(L)B®( J~1)
XTRANS( e 1) e x( 1, d)
1060 CUNTINUE
2088 CONTINUE

UKTTE (50 45)
45 FORMAY(//736H ENTLK Y VECTOR, ONE VAL UL FER LINE:)
10 3980 Is1.M
READCSe8) YOI
3098 CONTINUE

c XQUANROXTRANS 8 X
CALL MULTUXTRANSG . X0 XQUAY No Mo NsNB» MO » NP )
c XYuXTRANSSY
CALL MULTIXTRANS Yo XY Ny Mo 1oNBoHBo1)
c XAINVuXUUADES (1)
CALL INV(BJe XUUADI, XOINVeNe 29No NB)
C AT XOINVEXY

CALL MULTCXRINVI XY, AeN+Nul o NBoNBo1)
WKITE(S.90)

90 FORMAT(//1BH A VECTUK?)
CALt. FRTCAINLLoNDIL)

MRITE(S.181)
103 FURHAT(//?X:lNX-!OX:l?NChLCULhYED Yr6Xr OHACTUAL Yo 7XoHHKEL DIFF/

1 X IH- s 1 By 1 DHm e 16X BHumm e me PPy BH e )
EFSLON=9,

C CHECK LEAST SQUAKES FI1 AGAINST INFUT [ATA
LO 4000 I«1sh
CALC=POLYCALNIXVECT( 1))
EFSLON=EFSLON#CCALC-Y(I))as2
IF (v(1) .EQ. #.) GOTO 3%09
RDIFFe(CALC~Y(I))/Y(T)
WRITE(S.100) XVECT(I)»CALLCIY(I) o hUTFF

100 FORMAT(3C10,. 6417 135.3)
GOTD edpe
3%00 MRITE(S,108) XVECTC(I),CALL,Y(1)
4080 CONTINUE

VRITECS,185) EFSLON
185 FORMAT(//729H SUM OF THC BQUAKED ERRDKS = +E13.6)
c COMFUTE ADDITIONAL DATA FOINTS
URITE(S.118)
119 FORMAT(//731H INITIAL, FINALY AND STEF -~ FOLYNOMIAL EVALUATION:/}
KEANIS,8) START,IINALISTEFR

C
IF (START .QE. 9.) COTO Soos
CLOSECUNIT 1, hISHOSE="DELETE ")
GO0 oeee
C

20034 IF (STARY .GT, FINAL) GOTD 79090
URITE(1+128) STARTPOLY(A/N.STAKT)
120 FORMAT(2€816.6)
STARTwSTARTHSTES
GOTO Soee
6009 UKITE(S,130)
1380 FORPRAT(//37H DININSION FARAWLTER(S) ARE TDO LARGE )
78980 CONTINUE
CLOSECUNIT 1, DISHOSE = SAVE ")
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CONTINUE

€MD
$325808SSSBEEEEEREUNUERBUUIISEEEUNSRSNCUTERIRATEEEAAEANERIREERT
SISISESNSLERETIRABENS RIS RNEEESSUSENNRIGEINUINEESENEASIEEETERT RO
SUBROUTINE PRT(A'R»L AO/LD)

(D3 2 3 1 1 2 R RN IR RN R 8 F X0 X F-% 2 2.7 -4

! PRINT THE CONTENTS OF ARRAY a |

AN AN NAN R E R TR AR INARERITER Y

DINENSION ACKS L@

BO 1 I=1.K .

WMRITE(S»10) (A(lsJdeoJdrlsL)

FORMAT(18E13.3)
CONTIHUE
RETURN
END : .
SELSSE0RUCEEERICEERNEREEEERRPRNRERUENLVERRUTESAEEERENRAEHERELRIKEYN
SESESSERSSUSSLUSEENRROSEENREESRPEITIRNCERETEBIEENSARESEEINCEECERSS
SUBRKOUTINE MULT(AksCelodoehe 1B, I8 N8
SN EBURNOESFRSBRANTIRRSTNART W

RULTIPLY MATRILES: Crasb !

ArRMErAREIENTUUSEIAURNTESOTERAS K

GINENSION ACIB,J8)  Bi@ N3 L(IBKD)

DO 3 Il=1,1
00 2 KK=1sk
ClllekK)ImD,
0O 1 Ju=1.J
CCIT+RNI=CCITKRIFACTI T2 JUISREIIINK)
CONTINUE
CONTINUE
CONTINUE N
RETURN
END
SESSESENEEEEBIEEEINS O ERINENSORUSIRNSERUNREEREIREPITENEEEEELENEIK
SOSNSTERAEISESENEIRRECIGUCROUSESIEERIRESNETHRUREERINERLIEENEENIRREESS
SUBROUTINE INVCA,ReCoNo M/ ND)
LA L& 2 X 1 3 A RN NJ2X B 21 4
! OINVERY MATRIX A !

IXETEI T T T LT TR T

D R R R I I R I I R I I I I R I S IR A A R SPRT

SUBKOUT . NE INV WAS ADAITED FROM A BASIC FROGRAR IN AMFERDIX I
(INVERSE OF A MATRIX USING GAUGES-JORUAN ELIMINATIONY OF THE
TECXTBOON *COMFUTATIONAL LINEAK ALGEBRA WITH MODLLS® BY GARETH
WILLIANSy SECOND EDITIDNe ALLYN 3 BACON,» INC.» BROSTON, 1978,

css e ses

4 o4 00 40 22 v o

0 N
L I R R N R I R I I R R R I R R R I R e R R R

OIMENSION ACNeM) s RINB/ND)»C(NDING)
GOUBLE FRECISION AcToeYe2

B0 17 fetsN
b0 16 Julsn
IF (2 .GT. K) GBOTO 312.
AT e DI URLE(B(Tr)))
60T0 16
CF (J JEQ. N+1) 0OTOD 1S
l(IvJ)-'u
GOTO 16
A(Ie)ey,
CONTINUE
CONTINUE

U0 129 R=i¢N
IF (A(K:X) .NE. #.) GOTO 74
DO 72 I=KéloM
IF (ACL«K) (ED. &.) GOTO 79
D0 48 J=K/M .
T=a(KoJ)
ARy J)eACly )
Ao )T
CONTINUE
80Y0 76
CONTINUE
GOYOD 17¢
IF (A(K»K) EG. 1.) BGOTD o3
Y=A(K¢K)
BO % L=K»N
ALK L)eA(K LYY
CONTINUE
DU 120 I=1,N

IF (1 .EG. & OR. A(I.\) FEQ. #.) GOTO 120

9-38



[a N gl

.ﬂ (e NN aNaNal sl

e s AT

115
129

123

2=a(l)K)
0O 1135 JeK.#
AlLe DAYy DI-ZSAIN )
CONT INUE
CONT INUE
CONTINUE

DO 158 Is=1.N
DO 143 UuNeien
ClToJ=NITSNGL (AT ))
CONTINUE
CONT I NUE
GOTO 20

BRITE (5. 999) .
FORMAT(//727H THE INVIIRSE 0OFS NOT EXISY/)

CONTINUE

KETUKN

END
SSONESRBRBUBEORICRIITIONIRRIINENECUNEENREBIOEBRBUREIIRINENEEEROIS

SUNRUEBASEINIERNECORBUEEUOIIINREOIORENRERE USRS RERSNRORREPURENESK
FUNCTION FOLY(AsNoX)

BRI AR L T IR E N IR AN FE UL ERE L USRS EED
DCDMFUTE THE (N-1)TH ORDER FOLYNDMIAL F(X) !
LN AE TN AC A BRI TN URNE U C R Y INEREEE & & B ER

ALLl) 1D THE CONSTANT TERN
ACN) IS THE COEFIFICIULNT OF THE (M-1)TH TERM

CINFNSION ACN)

Sun=A(N)8X .

00 1 laled-2
SUR=(SUNSA(N-T)IEX

CONTINUE

FOLY=SUNSAC(L)

. RLTURN

END
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>RUN LSGR (Cs)

ENTER NUMEER OF DATA FOINTS AND ORDER OF FOLYNOMIAL:?
6 2

ENTER X VECTOR,» ONE VALUE FPER LINE?
20

S0

100
150
200
250

ENTER Y VECTOR» ONE VALUE FER LINE?Z
SE-5

B.8E~5

1., 7["‘4 B

2.8E-4

402E‘4

50 BE'“Q

A VECTOR:
0.30399E-04
0.87371E-06
0.53143E-08

SUM OF THE SQUARED

INI

D -

bod

0.200000E+02
0.500000E+02
0.1C0000E+03
0.150000E+03
0.200000E+03
0.250000E+03

TIAL» FINAL» AND STEF ~- POLYNOMIAL EVALUATION:

10

CALCULATED Y

0.499992E-04

0.873706E~04

0.170913E-03
0.281028E-03
0.417713E-03
0.580970E-03

ERRORS =

9-40

ACTUAL Y

0.500000E~-04
0.880000E~04
0.170000E-03
0.280000E~03
0.420000E-03
0.580000E-03

0.845712E-11

REL DIFF

-0.00001
"0000715
0.00537
0.00347
-0.00544
0.00167



“RUN LBOR (D)

ENTER NUMBER OF DATA FDINTS AND ORDER OF FOLYNOHIAL!
5 3

ENTER X VECTOR» ONE VALUE FER LINE!
20
S50
100
150
200

[
25

ENTER Y VECTOR» ONE VALUE FER LINE:
1E~-5

2E~-5

4,5E~-9

7.9E-§

1.2€~-9

1.6E-4

A VECTOR?
0.71642E-05
0.88B650E-07
0.34343E-08

~-0.53642E~-11

X CALCULATED Y

SUM OF THE SQUARED

INI

0 -~

ACTUAL Y REL BIFF
0,200000E+02 0.102680E-04 0.100000E-04 0.02680
0.500000E+02 0.195118E-04 0.200000E~-04 -0.02441
0.100000E+03 0.4500745E-04 0.450000E-04 0.00017
0.150000E+03 0.796284E-04 0.790000E-04 0.007%95
0.200000E+03 0.119351E~03 0.120000£-03 -0.00541
0.250000E+03 0.160133E-03 0.160000E-03 0.00095

TIAL» FINALY

10

ERRORS =

9-41

0.114943E-11

AND STEP -- FOLYNOMIAL EVALUATION?



APPENDIX 9B

Computer Program SPLINE

SPLINE performs a cubic spline fitting on a set of data points (see Section
4 for theoretical development). Sample program outputs for Cs(t) and D(t)

follow the FORTRAN listing.
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c
[
4
1
c
18
C
N
1099
[
c
c
c
1180
c
c
1200
c
1400
4
c
1)
c
C
79
1
2
3
4
b
4
c
c
C

PROGRAM SPLINE

B B N A NSRRI R e S e R NN NN IR TOEN e o N MR 18186 T
’

! COMPUTE THE CURIC SHFLINE FUNCTIONS WHICH BEST FIT TMC DATA

R N N NN U N R R IR AN AR NN ARAUR NN BRSO NORE R F . ED e

FARAMNECTER NPoda7,N2e94

OINMENSLION ‘(N.v“Q)’“INU(NOONU)DQLPNA(‘)vH(NG)vD(No)vr(é)-
HUNS) (X (N@) « XIND) s Y (NS)

DCUPLE PRECISION A

REAL K 'Y

EQUIVALENCE (neAINV)

OFPEN(UNITo1 s NARE='SPLINE.GDA’ s TYFE=’NEW’ )

OP[N(UNKYCION“NF"SPLXNE.OUT'vaPﬁ"'N[N’)

’

WKITL(S,18) NB

FORMAT(//39H ENTER NUMEER OF DATA FOINTS (MAXIMUM «,13,2M)2)
KCAR(S,8) N N

IF (N .GT. N®) GUIO 999V

NRITE(S+20)
FORNAT(//747H ENTEK X AND Y VECTUKS. ONE DATA POINT PER LINLD)
DD 1980 lei.N
READCS.8) XCI)eY(I)
CONTINUE

H(L)mp,
LIBRET IS

DU 1208 1=t.N
IERO THE ‘A’ nATR1X
DO 13100 Jel, 28N
A(IsJ)mp,
CONTINUE
LOAD THE IDENTITY MATRIX IN THE RIGHT HALF OF ‘A’
AtIeNsI)mg,

IF (1 JEQ. 1) GOTO 1200
MUY X)) -x(1-1)
DI YT D-YC(L=1)) /ML)
CONTINUE
LOAT THE A MATKIX AND TMF "R’ VECTDR
Atlr1)=,
AlLlet)ay,
LISREXIN 1O}
DO 1488 1=2,N-)
AMIrsI-1)DRLE(H(IHL))
AT el)aDBLECD. S(HCIDI4NCIHL)))
ACToI41)=DULT(M(T))
. a(I)‘3.‘(N‘l‘l)’ﬁ(x)*“(l)'b(I*l))
CONTYINUE
A(NIN-1) ],
A(NINY=D,
R(NIu3, SOCN)
INVERY THME LEFT MALF OF THE ‘A’ MATRIX
CALL INVCASAINV,Ns 2ENINB,ND)

VRITE(Ss6D)

FORMAT(//749H ENTER NUMBER OF PDINTS T0O COMPUTE BETWEEN NODESS)
READ(508) NSFLIN

COMPUTE THE K(I)'S .

CALL MULTCAINVIP/KoNsNs1oNBoND» 1)

VRITE(S5.7®)
'0&"07(//2Xv1N!o‘Xr6NX(X'l)rSXr?HF[X(1"1)Jv}XrlDNF'[X(I-l))vEX'
' LOHF CXCI~1) s IXs7HFIX () Do SX BHF “TXCI) 1raXy
ﬂHr'(X(I)]-bX,.Hh(})O7X-4Hk(:):7X'4Nﬂ(1)v7Xr‘Hh(U)/
2X o LM~ s AX s bH == mm e s X PH - mmm e n - PIX 10N e e 9

00 14088 1=2,N

EVALUATE EXP'RESSIONS TO COMPUTE THE CURIC CDEFFICILNTS
Cla(KCI)ORIT=1) -2, 0DCI))/ZCHCTIEHCT))

Cex¢IdExX(1-1)

C3=X(Id#X(I-1)

CAs(N(I=1)-D(I))/H(L)

CS=Clex(I-1)

CALCULATE THE COEFFICIENTS OF THE CUKRIC SPLINE

HOTE THAT A3 = ALFHACL)s A2 » ALPHA(D), Al = ALFHACI)y ETC.
ALPHA(1)=C1

ALFHAL D) m=(CA+CLE(CI+X(I-1)))

ALPHACI) »DCII4C3I8(CA+IS)I4CIECD

ALPHACA) e (X (1) 8Y(I~1)-X(I-1)8V(I))I/H(I)-CI8(CAILSY)
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~

[z N ol

[a N N NN NN NaNaNaNals)

30

0

189

1500

1609

9999

ot £ o=

(1]

CALCULATE F(X) AT THE TW0 SHLINE NOTES
FOL)®FPOLY(ALFHALA X (1-1))
FCA)oPOLY(ALFHAI A X(1))
CALCULATE THE CUBRIC SFLINE‘'S FIRST DERIVATIVE COEFi ILLIENTS
ALFHALL) =3, 354l FFHACL)
ALFHA(2) =2 . xALFHA(D)
CALCULATE F (X)) AT THE TWO SFLINE NODESY
FOQ)wPOLY(ALPHA 3, X(1~1))
FCO)wPOLYCALFHAI I X(T)) .
CALCULATE THE CUKRIC SFLINE’S SECOND UERIVATIVE COEFICIENTS
ALFHA(1)=2 sALFHA(YL)
CALCULATE F*(X) AT THE TWO SPLINE NOUES
FOI)mPOLYC(ALFHAP 2, X(I-1))
FUOImPOLY(ALFHA 29X (1))
RESTORE THE COEFFICICNTS OF THE CURICL SFLINL
ALPHA(1)=ALFHACL1)Y /S,
ALPHACD)sALFHAL D) 72,
TO TERMINAL
WRITE(S+88) I-1oX(I-1)0(F(Udrdmlpb)e CALPHACL) yL1lyd)
FORMAT(IA+EL1.3,Xs6E12.4,Xs4E11.3)
TO GRAPHILS FILE
MRITE(1+98) X(I-1)sl(1)
FORMAT(2ELS.5)
TO COEFFICIENTS FILE :
URITEC22108) X{I-1)sX(I)s (ALPHACS=L)s Lrmlva)
FORMAT(4EL14.8)
DELTAX®(X{I)~XCI~1))/FLDATCNSILINGL)
DO 1508 J=1 NSPLIN

XCI-1)eX(I~1) bLELTAX

WRITE(1,90) X(I-1)¢FOLYCALFHA, 4sX(I-1))
CONTINUL

CONT INUE

VRITEC(1,98) X(N).F(Q)

CONTINUE

CLOSECUNITRE, LiISFUSE ' SAVE’ )

CLUSECUNIT=D, DISFDSCe’ SAVE )

END
“"..‘.'.‘.‘.."".'."ﬁ.‘-..‘.'."’."‘I“l..ltl"-l"l.,'.“.“
'l.'.“.“3'..'...."’l.l‘.l.‘.'lt.“'t'..l"."‘!'l."-l!li‘ll"“
SURKQUTY I NF, BULTCA» B2 ColrodrRoTH, 10.N0) :

LRSI TR R T R XYy ¥y EOSr LE Sy E LR

COAULTIFLY MATRICES: CeAshk !

BHE RN A S E AP LRI C AN T L

DIMENSION ACTBIUB) s BUJBIND) »C (TR IKD)

B0 3 1letel
00 2 KKeloK
CUITeRK) =B,
00 1 Jue1rey
COIToRRKInECII KK +ACT T JDEEC ISP KN
CONTINUE
CONTINUE
CONTINUE
RETURN
END .
Sttt tttttttttttttbidddddadd Il N T I L L LI T T I T T T
ittt A AL T L L T L L T L T T T T T T T T T i
SUBRROUTINE INV(AsAINVI N Mo NG, HI)

SysssRNaEeEwERSanana *

! INVERT MATRIX A !

....o-..-..oa.-o-c-.--o.--.--.e-..-...o..aoo--.‘-......-.--.'...

SUBROUTINE INV WAS aDAPTED FROM A BASIC FROGRAM IN AFEENDIX
(IHVERSE OF A MATRIX USING GAUSS-JORDAN ELIMINATION) OF THE
TEATROOK °*COMFUTATIONAL LINEAR ALGEPRRA WITH NODELS® ®Y GARETH
MILiLiang, SECONUL EDITIONs, ALLYN g RACONs INC.» ROSTON. 1978,

u---'-ocoo-on.oolo----.o--.‘-oaoo-oe-'voouo-o.-oo-c--.'na--..ec-

e o6 bs ce we e w

oo o6 an sa vw on

DIMENSION A(NI,MO) s AINVINGINS)
BOUBLE PRECISION ArT.Y,2

00 125 Kel,N
IF fAa(KeN) .NE. 9.) GOTO 76
00 70 I=K+1,N
IF (AtI.N) JEQ. 8.) GOTO 7@

0) 40 Jvnom
TeA(N, )
ACNe D) =nCTy )
A(Lrd)nT

CONTINUE
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2 XsNaXaNalel el oM

(4]

GOT0 74

td CONTINUE
010 179

76 1F (A(RsN) Q. 1.) GOTO 93
Y=ACKIK)

00 P8 LokeH
ALK L) RACNI LYY

e CONT INUE
*?0 0O 128 I=1,N .
IF (1 .ED. X .OR, ACI/K) .EQ. #.) GOTO 129
TeNCIeN)

D0 118 JeKen
AL e DIEACE v D) -2ENCKe D)
11% CONT I NUE
120 CONT INUE
128 CONMTINUE

DO 14U I=1,N
DO 145 JU=Nélen
AINVII»J-NISSNGLIACT )
145 CONT I NUE
158 CONTINUE
GOTO 208

178 WKITE(5,999)
999 FURMAT(//727W THE INVIRSE DOES NOT EXIST/)

299 CONTINUE

RETURMN

END ’
SEXSRIRREESRORREN ISR AR URUIEEENERERENEU SN UEEROERERUBEKITNKETEIKS
SAXISABAENERERENEIEIRIFEABNATNNE SR REASERRCEAREEERESE RS AR EREEAERY
FUNCTION POLY(AIN:X)
BRACRICDNERENSSITAL AT LIITLENASUANEMLERFNOSEIES
¢ COMPUTE THE (N-1)TH ORDER POLYNOMIAL F(X) !

P NS NWEANEANSt T TR NN EUNEENAREERAUREN RIS

A1) IS THE COEFFICIENT DF THE (N-1)TH ORDER TERM
A(N) I8 THE CONSTANT TERM

HINUNSION ACN)

e nilrex
I (n L. D) GUTO 2
00 1 Im2yN-1
SUM= (SUMIACT) ) 8X
CONTINUE
POLYaSUREACK)
RETUKN .
END

" -
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- *RUN SFULINE

ENTER NUMERE
47

(C)

R OF DATA FOINTS (MAXIMUM =

473

ENTER X ANDI' Y VECTORS: ONE DATA FOINT FER LINE

~0,400E401
-0.220E+01
0.000E+00
0.500E+01
0.150E+02
0.250E+02
0.350E+402
0.450E+07

" 0.550E+02

0. 6S50E402
0.750E+02
0.85S0E+02
0.950E+02
0.145E+03
0.19SE+03
0.29S5E+03
0.39SE+03
0.,495E+03
0.400E403
0.700E+03
0.800E+03
0.900E+03
0.100E+04
0.1S0E+04
0.200E+04
0.300E+04
0.500E+04
0.750E+04
0.100E+0S
0.150E+0S
0.200E+05
0.300E+05
0.S00E+0S
0.,7S0E+05
0.100E+06
0.150E406

. 200E406
0.300E+06
0.500E+06
0.7S0E+06
0.100E+07
0.150E407
0.200E+07
0.300E+07
0.S00E+07
0.75S0E+07
0.100E+08

ENTER NUMRE
25

0.5460E~-03
0.5390E-03
0.5290£-03
0.5090E~-03
0.44610E-03
0.4120£~-03
0.3740E-03
0.3380E~03
0.3110E£-03
0.2940E-03
0.2770E-03
0.2660E-03
0.2570£-03
0.2240E-03
0.2040E-03
0.1850£-03
0.1710E-03
0.1610€£~03
0.1560E~-03
0.1520E-02
0.1480£-03
0.1450E-03
0.1430E-03
0.1340E-03
0.1290E-03
0.1230E-03
0.1190E-03
0.1160E-03
0.1144E£-03
0.1122E-03
0.1112E-03
0.1106E-03
0+ 1096E-03
0.1088E-03
0.10B1E-03
0.1073E-03
0.1067E-03
0.1039E-03
0.1050E-03
0.1041E-03
0.1035E-03
0.1026E-03
0.1020E£-03
0.1012E-03
0.1004E-03
0.9955€E~04
0.9895E-04

R OF FOINTS
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LY-6

-0.400£+01
-0.220€ 4014
0.00GCE+00
0.500€401
0.130£402
0.250€+02
0.350€402
0.450E¢02
0.550£402
0.850€402
0.750E402
0.850E402
0.950E402
0.145€403
0.195€403
0.295£403
0.393£403
0.495£403
0.600E+03
0.700£403
0.800€£403
0.900£403
0.100E+04
0.150E404
0.200E+04
0.300£+04
0.500£+04
0.750E404
0.100€+03
0.150E+05
0.200€+05
0.300E+05
0.500E+05
0.7S0E+03
0.100€¢C8
0.150E+04
0.200E+06
0.300E+06
0.500E+06
0.750E406
0.100£407
0.150€£407
0.200€+07
0.300£407
¢.500€407
0.750£407

FIXxiI-1)3

0.5460E-03
C.5390£--03
0.5290E-013
0.2090€-03
0.4610€£-03
0.4120£-03
0.3740£-03
0.3380E-03
0.3110e-03

«2940E-03
0.2770€£-03
0.2460E-0G3
0.2570£-03
0.2240E-03
0.2040E-03
0.1850€-03
0.171D0E-03
0.1610E-03
0.1560E-03
0.1520€-03
0.1480£-03
0.1450€-03
0.1430E-03
0.1340£-03
0.1290€E-03
0.123CE-D3
0.1190E-03
0.1160£-03
0.1144£~03
0.1122€-03
0.1112C-~03
0.1104E-03
0.1094E-03
0.1084E-03
0.10BIE-03
0.1073E-03
0.10678-03
0.1059€-03
0.10%0€E-03
0.1041E-03
0.1035£~03
0.1026E-03
0.1020€-03
©0.1012E-03
0.1004E-03
0.99556-04

Table of Cubic Spline Functions for Cs(t)

Frixal-11

0.3133E-05
“O.A307E-03
-0,3720E-03
-0.4308BE-05
~0.5114£-05
~0.43346E-00
-0.3641€E-05
-0.3301E-0%
-0.2057€-0%
-0.1673E-D5
-0.1451E-05
~0.9210£-08
-0.8843E-0s
-0.%029€-06
-0.3041E-06
~0.1394E-06
-0.1272¢-06
~0.6972€E-07
-0.3795E~-07
~0.4147€-97
-0.3416E-07
-0.2387€-07
~0.1834E-07
-0.1456E-07
~0.7421E-08
-0,4354E-08
-0.1034€-08
-0.1004E-08
~0.4693E-09
-0.3346E-09
-0.1119€-0¥%
-0,3914E-10
-0.5120E-10
~0.2B15E~10
-0.1622E-10
-0.1441E-10
-0.1016E-10
-0.4241£-11
-0.3737E-113
-0.3058€-11
-0.2032€E-11
-0,1492€-11
-0.1001FE-11
~0.6127k-12
~0.3227€~12
~0.3021E-12

FeixX<I-1)1]

-0.1296E-04

0.24%52£-05
-0.1008E-05
-0.1342E-06
-0.2713E-07
0.1027E-04
~0.4356E-07
0.1116E~-08
0.1372E-08
-0.6051£-07
0.1C48E-0s
0.1284E-08
0.10046E-07
0.4396£-08
0.3555E-08
~0.2643E-09
0.5017E-~09
0.6577E-09
-0.5257E-10
~0.1786E-10
0.1240E-09
0.1218E-09
-0.1105E-10
0.2616€E-10
0.2392E-11
0.3742€-11
-0.4222€~-12
0.44526-12
-0.1852€~-13
0.724BE-13
0.1660E-13
-0.203BE-14
0.8439€-15
0.1001E-14
-0.4638E-14
0.1188E~15
C.5114E~L6
0.2719E-16
~0.2149E-17
0.7581€E-47
0.6241E-18
0.1537E-17
0.427BE~18
0.34BDE-18
-0.5804E-19
0.7451€E~19

FOx(1)

0.5390F~-03
0.5%290E-03
0.50%0£-03
0.4410E-03
0.4120t-03
0.3740€£-03
0.3380E-03
0.3110£-03

«2940£-03
0.2770E-03
0.2660£-03
0.25720£-03
0.2240F-03
0.2040€-03
0.18350£-03
0.1710E-03
0.1610£-03
0.1560E-03
0.1520E-03
0.14B0E- 3
0.1450E-03
0.1430E-03
0.1340€£-03
0.1290€-03
0.1230€£-03
0.1190£-03
0.31140€-03
0.1144E-03
0.1122E-03
0.1112E-03
0.1106E-03
0.10%6L-03
0.1086E-03
0.1081E-03
0.1073E-03
0.1067E-03
0.105%9€-03
0.1050E-03
0.1041E-03
0.1035€-03
0.1026E-03
0.1020£-03
0.108126-03
0.1004F-03
0.9955L- 04
0.9HPSE-D4

F IX(I))

~0.63076~-03
-0.3720£-05
-0.4308€E-02
-0.5114€-03
-0.4336E-03
-0,3641E-03
-0.3301E~05
-0.2057€-0%
-0.1473€-03
~0.1431€E-03
-0,.9211E-06
-0.8643E~06
-0.5029E-06
-0.3041E-06
-0.1396E-08
-0.1277€-08
~0.4972€-07
-0.3793E-07
-0.4147E-07
~0.36316E-07
-0.2387€-07
-0.1834€£-07
-0.14358E-07
~0.7421E-08
-0.4354£-08
-0.1034E-08
-0.1004£-08
~0.4695E~-09
-0.3344E-07
-0.13119€E-0¢9
-0.3914E~10
~0.3120E-10
~0.2815€-10
~0.1822E-10
-0.1441E-10
~0.1016E-%0
~0.6241E~11

-0.3737e-11

-0.305BE-11
-0.2032E-11

~0.1492€-11

-0.1001E-11

-0.46127E-12
-0.3227€-12
-0.3021€-12
-0.2090E-:2

FeEX(IY)

0.2432(-05
-0.100BE-06
~0.1342E-06
~0.2713E-07

0.1827E-08
-0.4356E-07

0.11156E-06
0.1372c-06
-0.6031E-07
0.1048E~-04

O~ 1284E-08

0.1006E-07

0.4394E~08
0.3555£-08
~0.2643E-09
0.5017€-~09
0.6577E-09
~0.5257€-10
-0.1786E~-10
0.1240E-0¥9
0.1218E-09
-0.110%€-10
+2616E-10
«2392E-11
0.3742E-11
~0.4222E-12
0.4462E-12
~0.1852E-13
0.724BE-13
0.1660E-13
~0.204BE-14
0.B439€~-15
0.1001E-14
-0.4638E-16
0.118BE-15
0.5114E~16
«R719E-16
-0.214%9€-17
0.7381E~-17
0.6241£-18
0.1337€-17
0.4278E-18
0.34B0E-18B
-0.5604E-1Y
0.7A451E~19
-0.258%E-23

ACd)

0.143€-03
~0.193E-06
-0.111E-08
0.178E-08
0.350E-08
~0.377€-08
0.259€-08
0.427E-09
-0.330€-00
0.274E-08
-0.173E-08
0.144E-0°9
-0.18%E-10
-0.280E-11
~0.637€~11
0.128E-11
0.260€-12
-0.113E-11
0.578E-13
0.236E~12
-0.378E-14
-0.221E-12
0.124€~13
-0.792E-14
0.225E~-13
-0.347€E~-15
0.57%E-16
~0.310E-16
0.303E-17
-0.186E-17
-0.311E-~18
0. 241E-19
0.104E~-20
-0.698E£-20
0.351€£-21
-0.226E-21
-0.399E--22
-0.245&~22
0.649E-23
~0.464£-23
0.304E-24
-0.370E-24
-0.133€E-25
-0.330E-23
0.8B4E-28
-0.A97E-26

ALD)

0.106£-04
~0.504£-07
-0.504E-07
-0.938E-07
-0.171E-08
0.374£-06
-0.293E-06
-0.192E-08
0.612¢-06
~0.568E-06
0.441E-06
-0.3676-07
0.104E-07
0.342E-08
0.550¢£-08
~0.124E-08
~0.573E-10
0.200E-08
-0.130E-09
-0.506E-09
0.711E-10
0.659E-09
~0.427E-10
0.487E-10
-0.154E-12
0.499E-11
-0.108E-11
0.920E~-12
-0.100E-12
0.120E-12
0.270£-13
-0.319€-14
0.2635€-15
0.207E-14
-0.188E-15
0.161E-15
0.495€£-16
0.356€-16
-0.t108€E-16
0.142E-16
~0.601E-18
0.243E-17
0.2940-18
0.479E-18
-0.162E-18
0.14%€-18

Ay

0.19BE-04
-0.372€-03
-0.372€-05
-0.350€-03
~0.235€-03
-0.160E-04
0.739E-05
~0.573E~03
-0.395€-04
0.372€-04
-0.384E-04
0.214€-05
-0.233€-03
-0.1326-05
-0.172€-05
0.272E-06
-0.204E-05
~0.322€-03
0.561E-07
0.319E-06
-0.143E-06
-0.671E-06
«299€E-07
-0.107E-06
~0.931E-08
~0.24%E-07
0.542£-08
-0.958E-08
0.626E-09
-0.26BE-08
-0.817€-09
0.874E~-10
-0.8356E-10
-0.221€-09
0.494E€-11
-0.4735E-10
-0.252€E-10
-0.210E-10
0.220E-11
-0.166E-10
~0.174E-11
~0.4629E-11
-0.202€E~11
-0.257e~11
0.630E-12
~0.170€-11

ACD)

0.5%46E-03
0.529€-03
0.5296-03
0.529E-03
0.523€-03
0.636€-03
0.344E~-D3
0.561E~03
0.11BE-02
~0.482E-03
0.141E-02
0.259E-03
0.401&-03
0.352€-03
0.378E-03
0.182€E-03
«245€-03
0.413£-03
0.157E-03
0.955E-D4
0.219€-03
0.377€-03
0.143E-03
J212E-03
0.147€-03
0.162€-03
0.112E-03
0.149E-03
0.115€-03
0.132E-03
0.119€£-03
0.110£-03
0.113E-03
0.116E-03
0.109E-03
0.1126-03
0.110E-03
0.11DE-03
0.106E~03
0.110E-03
0.106E-03
0.108E-03
0.105E-03
0.106E~-0)
0.10DE-D3
0.106€~-03



»RUN SFLINE (D

ENTER NUMRER OF DATA FOINTS (MAXIMUM =

47) ¢
47

ENTER X AND Y VECTORS,
-0.400E+01 0.1520E-03
-0.,220E+01 0.1510E-03

ONE DATA FOINT FER LINE

0.000E+00
0.500E+01
0.150E+02
0.250E+02
0.350E+02
0.450E+02
0.550E402
- 0.650E+02
0.750E+02
0.850E+02
0.9250E+02
0.,145E+403
0.195£4+03
0.295E+03
0.395E+03
0.495E+03
0.600E+03
0.700E403
0.800E+03
0.900E+03
0.100E+404
0.150E404
0.200E+04
0.300E+04
0.500E+04
0.750E+04
0.100E+05
0.150E+05
0.200E+05
0.300E+05
0.500E+05
0.750E405
0.100E+06
0.150E+06
0.200E+06
0.300E+06
0.500E4+06
0.750E+04
0.100E£407
0.150E+07
0.200E+07
0.300E+07
0.500E+407
0.7350E+07
0.100E+08

0.1480E-03
0.1430E-03
0.1310E~03
0.1180E-03
0.1070E-03
0.9670E-04
0.8890E-04
0.8270E-04
0.7810E-04
0.7510E-04
0.7220E-04
0.6180E-04
0.5S60E-04

.0.4%940E-04

0.4500E-04
0.4200E-04
0.4020E~-04
0.3910E-04
0.3790E-04
0.3710E~-04
0.3620E~04
0.3360E-04
0.3190E-04
0.3040E~04
0.2890E-04
0.2790E~04
0.2739E-04
0.2672E-04
0.2644E-04
0.2633E-04
0.2597E-04
0.2564E-04
0.2550E-04
0.2527E-04
0.2509E~-04
0.24B6E-04
0.2459E-04

«2432E-04
0.2414E-04
0.2387E~04
0.2349E-04
0.2347E-04
0.2325E£-04
0.2299€£~04

. 2282E-04

ENTER NUMBRER OF FOINTS TO COMFUTE BETWEEN NODES?

25
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6%7-6

1
2
3
4
M
[
7
8
1

10

11

12

13

14

135
18

17

i8
19
20
21

22
23
24

25
26
27
28
29
30
31

32
33
34
35
36
37
3e
39
40
4]
42
43
44
45

446

-0.400L401
-0.220£401
0.000£ +00
0.500E¢01
0.150£402
0.250E402
0.350£402
0.450€402
0.%50€402
0.650€402
0.750E402
0.850E£402
0.950£402
0.145E403
0.1956403
0.295€+03
0.395€403
0.495E403
0.400E403
0.700E403
0.800E403
0.900E403
0.100E+04
0.15S0E+04
.200£+04
0.300£+404
0.S00E+04
2.750E404
0.100E405
0.150E105
0.260E40S
0.300E+0S
0.500£405
0.750E405
0.100E+06
0.150E+06
0.200E406
0.300E+06
0.500€406
C.750E406
0.100€407
0.150E407
©.200E407
0.300E407
0.500E407
0.750E4+07

FOXCT-1)1)

0.1520€-03
0.1510E--03
0.1480€-03
0.1430£-03
0.1310L-03
0.1180€-03
0.1070E-03
0.9670E-04
0.8B90E-04
0.8270E-04
0.7B10OE-D4
0.7510E-04
0.7220£~04
0.6180E-04
0.5360E-04
0.4%40E-04
0.4500€-04
0.4200E-04
0.4020E-04
0.3910E-04
0.3790E-D4
0.37108-04
0.3620£-04
0.3360E-04
0.3190E-04
0.3040E-04

+2B890E-04
0.2790£-04

.2739E-04
0.2672E-04
0.24644€E-04
0.24633E-04

J2597E-04
0.2564L-04
0.2550E-04
0.2527E-04
0.2509E-04
0.2486E-04

S 24359E-04

. 2432E-04
0.2414E-04
0.2387E-04
0.2349€£-04
0.2347E-04
0.2325€-04
0.229YE-04

Table of Cubic Spline Functions for D(t)

Froxei-13

0.4301E-06
-0.12640E-0%
-0.1297E-05
-0.9445E-06
-0.1339E-0%
-0.1198E-0S
-0.106BE-05
-0.919BE-06
-0.6829€-06
-0.5486€-06
-0.3627E-0¢
-0.2006E-06
-0.2848£%06
-0.153BE-06
-0.9609E-07
-0.4589€-07
-0.3Bl4E-07
-0.2273€-07
-0.1248E-07
-0.1141E-07
-0.1010€E~-07
-0.7993E-08
-0.8927E-08
-0.3507E-08
-0.2B43£-08
-0.8266E-09
-0.6044E-0%
-0.2597E-09
~0.1690E-09
-0.9291E-10
-0.2939E-10
~0.6B48E-11
-0, 2014E-210
~0,792%9F~11
-0.4583E-11
-0.4254E-11
-0.3037E~-11
-0.1771E-11
-0.1151E-11
-0.9092E-12
-0.6122€-12
-0.4485E-12
-0.2935E-12
-0.16116-12
-D,.9606E£~-13
-0.9004E-13

Ferxci-11]

-0.1852€-05
-0.2486£-046
0.2133E-06
~0.7434E-07
~0.4631E-08
0.3287€-07
-0.6B39E-00
0.3649E-07
0.1008E-07
0.159BE-07
0.2120E-07
~0.4794E-08
0.3972€-08
0.1267€-08
0.1041E-08
-0.3743E-10
0.10B4E-09
0.1240€E-09
0.7127E-10
-0.5379E~-10
0.838BE-10
-0.4173E~10
0.2305E-10
-0.136BE-11
0.4024E-112
0,72497€-14
«2147€-12
9.6104E-13
0.1133E-13
0.1BBPE-13
0.46525E-14
-0.2017&E-14
0.4B80E-15
0.2885E-135
~0.1B01E-16
0.297BE-16
0.1B88%E-14
0.6427E~-17
-0.7294E-18
L2164E-17
S2116E~-18
0.442YE-18B
0.1768BE-18
0.882PE-19
~0.2323E-19
0.2741E-19

FLx(I)]

0.1%510£-03
0.14B0E-03
0.1430€-03
0.1310E-03
0.1180E-03
0.1070E-03
0.9670€~04
0.8890E-04
0.8270E-04
0.7810€E-04
0.7510€-C4
0.7220E-04
0.461B0E-04
0.5560E-04
0.4940E-04
0.4500E-04
0.4200E-04
0.4020£-04
0.3910€E-04
0.3790E-04
0.3710E-04
0.3620E-D4
0.3360E-04
0.3190E-04
0.3040E-04
0.2890E-04
0.2790E-04

L2739E-04
0.2672E-04

s 2644E-04
0.2633E-04
0.2597£~04
0.2564L-04
0.2550E~-04
0.2527€-04
0.2509E-04

. 2484E-04
0.2459€-04
0.2432E-04
0,J414E-04

+2387E-04
0.236%E-04
0.2347E-04

+» 232LE-04

L 22996 -04
0.2282€-04

Frixcn)

~0.1260£-0%
-0.1297E-05
-0.9445E-06
~0.1339E-035
-0.119BE-05
-0.1048£-03
-0.9198E-06
-0.6829E-08
-0.54856E-06
~0.3627C-04
~0.:2806E-06
-0.2BABE-06
-0.153BE-06
-0.9609E-07
~0.4589E-07
-0.30834E-07
-0.22723E-07
-0.1246£-07
~0.1161€-07
-0.1010E-07
-0.7993£-08
-0.8927€-08
-0.3507E-08
-0.2B43E-08
-0.8266E-0V
-0, 6044E-09
~0.2597E-09
-0.1690£-0°9
-0.9291€-10
~0.2939E~10
~0.6848E-11
~0.2014E-10
-~0.7929€-11
-0.4548E~-11
~0.4254E€-11
-0.3037E~11
-0.17271E-1%
-0.1151E-11
-0.9092E-12
-0.6122E-12
~C.44085E-12
-0.2936E-12
-0.1611E-12
-0.9606E-13
-0.7084E-13
-0.56U8E~13

Frexeld»d

-0.24R5E-06
.2153C-06
-0.7434£-07
-0.4632E-08
0.3787€-07
-0.6839E-08
0.3649€-07
0.1068E-07
0.1590E-07
0.2120E-07
-0.4794£-08
0.3972£-08
0.1267€~-08
0.1041£-08
-0.3743E-10
0.18B4E-D9
9.1240€-09
0.7127€-10
-0.5379€-10
0.838BE-10
-0.4173€-10
.2305€-10
-0.134BE-11
0.4026E-11
0.7499E-14
0.2147E-12
0.6104E-13
0.1153E-13
0.1889E-13
0.5525E-14
-0.2017E-14
0.4BBOE-15
0.28B5E-15
-0.1BOLE-16
.297BE-16
0.1889E-16
0.6427E-17
-0.2294E-18
L2164€-17
0.2116E-18
0.4429E-18
0.1768E-18
0.882BE~19
-0.23236-19
L2741E-19
-0.1292E-25

hC(3)

0.148€-06
0.35%€-07
-0.965E£-08
0.114E-08
0.620F-09
-0.662E-09
0.722€-09
-0.427g-0°9
0.84%€-10
0.871£~-10
-0.4336-09
0.146E-0¥
-0.902E-11
-0.751E-12
-0.180E-11
0.376E~-12
-0.107E-12
-0.836E-13
-0.208E-12
LR29E-12
-0.209€~-12
0.10BE-12
~0.0814E-14
0.180E-14
-0.,670E-15
0.173E-16
-0.102€E-16
-0.330E-17
. 245E-18
-0.,412E~-18
-0.142E-18
J225E-19
-0.266E-20
-0.204E-20
0.159€-21
-0.363E-22
-0.20BE-22
~0.555€-23
0.160E-23
~0.130E-23
0.771E-25
-0.,8B7E-25
~0.147€E-25
-0.929E-26
0.338E-26
-0.183E-26

ALD)

0.855E-06
0.108E-06
0.100E-06
-0.%44E-07
-0.304£-07
0.661E-07
-0.792E-07
0.759E-07
-0.857£-08
-0.89%E-08
0.108£-06
-0.397E-07
0.456E-08
0.960E-09
0.157€-08
-0.352E-09
0.221€-09
0.186E-09
0.411£-09
-0.509€-09
0.544E-09
-0.312E-09
0.359E-10
-0.878€~11
0.603E-11
-0.152€-12
0.261€-12
0.105€-12
~0.159E-14
.2B0E-13
0.11BE-13
-0.304E-14
0.744E-15
0.408E~15
-0.558E-16
0.312E-14
0.215E-16
0.821E-17
-0.251E-17
0.401E-17
-0.125€-18
0.621E-18
0.177E-18
0.128E-18
-0.823E-19
0.54BE-19

[

A1)

0.34BE-06
-0,130E-03
-0.130E-05
-0.484E-06
-0.BABE-06
-0.326E-03
0.183E-03
-0.51%€-03
-0.511E-06
-0.4683E-06
~-0.928€-05
0.329E-05
-0.906E-06
-0,38%E-06
~0.504E-06
0.634E-07
-0.143E-06
-0.146E-06
~-0.280E-06
0.363E-06
-0.479E-04
0.292E-06
-0.544E-07
0.107E~-07
~0.1B9E-07
~0.383t-09
~0.245£-08
-0.127E-08
-0.211€-09
~0.4354E-09
-0.331E-0°7
0.115E-09
-0.7435E-10
-0.640E-10
0.203£-11
~0.112E-10
-0.931E-11
-0.520E-11
0.181E-12
-0.473E-11
-0.593E-12
-0.171E-112
~0.B24E-12
-0.677E-12
0.273E-12
-0.605E-12

ACO)

0.149€-03
0.14BF-03
0.148E-D1
0.147€-03
0.148£-01
0.169€-03
0.109E-03
0.214E-03
0.129€-03
0.128£--03
0.348E-03
-0.608E-05
0.125€-03
0.,997E-04
0.107E-03
0.516E~-04
0.815E-04
0.784E~04
0.106€-03
~0.447E-04
0.180£-03
-0.513€~-04
0.648E~04
0.313E-04
0.510E-04
0.324£-04
0.359E-04
0.330€-04
«294E-04
0.316E-04
0.295E-04
0.250E-04
.282€-04
0.279E-04
0.257€-04
+264E-04
«262E-D
0.258E-04
+249E-04
«262E-04
«24BE-04
0.253E-04
. 247E-04
0.246E-04
0.230€-04
JI52E-04



APPENDIX 9C

Computer Program SURMF

SURMF calculates the total surface mass flux from the spherical waste
canister (see chapter 8 for theoretical development). The data created by
SPLINE (see Appendix 9B are used as ipput to SURMF. In SURMF the input data
are again interpolated to increase the number of data points being used in
the calculation of the total surface mass flux by routines called SPLIFT,
SPLINT and SPLIQ. These three routines are obtéinable from the SANDIA
Mathematics Library which is one of the Background Mathematics Libraries at
LBL. SPLIFT computes the parameters of an exact spline fit to data. Then
SPLINT interpolates values on a spline using parameters from SPLIFT. And
SPLIQ integrates a cubic spline defined by SPLIFT or SPLINT. Besides the
routines from SANDIA one more subroutine CONVOL is included in this program.
CONVOL calculates the convolution integral (see equation (5.7)) by method
explained id Section 5. List of MNP-237(t) obtained from this program follow
the FORTRAN listing. 1In the next page the sy bols used in SURMF are ex-

plained.
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Symbols Used in SURMF

T Array of abscissas (actually time in increasing order)
that define the spline.
F Array of ordinates that define the spline. See eq. 10

in chapter 8 and eq. (5.1) for definitions.

FP Array of first derivatives of F at Dscissas T.
FPP ‘ Array of second derivatives of F at T.
G Array of ordinates that define the gpline.

See eq., 5, ch. 8 and (5.2) for definition and details.

GP Array of first derivatives of G at abscissas T.
GPP Array of second derivatives of G at T.
N The number of data points. The arrays F, G, FP, GP,

FPP, GPP must be dimensioned at least N. (N > 4).

W E Array of working storage dimenéioned at least 3N used
in routine SPLIFT.

ISX Must be zero on the initial call to SPLIFT. 1If a
spline is to be fitted to a second set of data that
has the same set of abscissas as a previous set, ISX
may be set to 1 for faster execuﬁion.

Al, BI1, AN; BN Specify the end conditions for the spline determined

by the routine SPLIFT. The end condition constraints

are
FPP(i) = Al * FPP(2) + Bl
FPP(n) = AN*FPP(N-1) + BN

where |Al] < 1 and |AN| < 1.
TLO Left end point of integration intervals in the routine

SPLIQ.
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TUP

NUP

TAU
FI
FPI

FPPI

GI

GP1

GPPI

FPT

Fo

FP¢

Do

CSé

Array of abscissas (in arbitrary order) at which the
spline is to be evaluated by the routine SPLINT. At
fhe same time it is the array of right end points of
integration intervals used in the routine SPLIQ.

The number of right end points in the routine SPLIQ.
Same as the number of abscissas at which the spline
is to be evaluated by the routine SLINT.

Array of integral vélues, that is, ANS(I) = integral
of G from TLO to TUP(I).

Array of dimenéionless times defined by eq, 12 of ch. 8.
Array of valﬁes of the spline F at TUP.

Array of values of the first derivative of'spline F
at TUP.

Array of values of the second derivative of spline F

‘at TUP.

Array of values of the spline G at TUP.

Array of values of the first derivative of spline G
at TUP.

Array of values of the second derivative of spline G
at TUP. |

Array of values of the first derivative of 'spline F
at TAU which is to be used by subroutine CONVOL.
Value of the spline F at time t = 0.

Value of the first derivative of spline F at dimen-
sionless time T = O (see eq 12 of ch. 8 for definition
of 1T).

D0 defined by equation (x.5).

CSo defined by equation (x.12).
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EPS

COEFK

FLUX

CONVIN

CUMFL

The porosity of the surrounding medium.

The radius of the spherical waste canister.
Retardation factor.

The total mass flux from the entire sphere surface
expressed by eq. 28 in chpter 8.

The convolution integral used ineq. 28, chap. 8.
The accumulated mass flux since the beginning of

dissolution.
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5090

610

501

1C

11

€00
29

601
30

602
4C

$PRCGCRAM SURMFOILI( INPUT,QUTPUT ;TAPES=INPUT,TAPEG=CUTPUT) *%

PROGRAM SURMFCLUINPUTQUTPUT yTAPES=]INPUT 4TAPEO=CUTPUT)
CIMENSICN CF ARRAYS FOR SPLIG ANC SPLIFT

FAREZNMETER N=47,NUP=64

DIMENSION TUMN)GIN)GPIN)GPPIN),TUPINJP); ANS (NUP)

DIMENSION FIN)FPIN) JFPPIN) 4FT{NUP) +FPI (NUP) ,FPP]I (NLP)

CIMENSICN GI(NUP),GPIINUP)yGPPI(NUP) ,
DIMENSION wiNy3) ,TAU(NUFI FPT (NUP) "
COMMON/CAL/FPO . R
CATA FA1/3.1415926535/

SET VARIABLES NEEDED FOR SPLIQ

1L0=C, '

REAC{5,500) DO,CSOWEPS+R,COEFK

FCRMATISF10.01

WRITE(E,€1C) DCO,CSCHyEPSyRyCOEFK,NUP

FCRMAT (1F194HCO =F8.CoTHCM*22/S,/ ¢5H CSO=y EB.1ly7THG/CME%3,/,

1 SH EPS=yFBe3¢y/¢5h R. =,F8.3,2HCM,/4+5H K =9yF8.,04 /s

2 ¢CH NG CF CALCULATIONS: ,I3)
REACL5,501) (Y{I)eGUI)eFll)oI=14N)
FCRMAT(3F10.0)

NO=0Q
CC 10 L=1,8
DC 1C LL=1,69
FL=LL .

M=1.%10.%8(L-1)*FL
NC=NC+]

TUP(ND)=TM
IF(NCLECLNUP) GC TG 11
CCNTINLE

SET VARJABLES FOR SPLIFT ANC THREN CALL SPLIFT TO
a OBTAIN THE ODTHER NEEDED INPUT FCR SPLIQ
ISX=0
Al=0.
B8l=Ce
AN=0.
BA=(C.
caLL SDLlF1(1'G GP yGPP yNolwy IERRleSXvAl BlyANy BN}
IFUIERFL LECL1) GO TO 20
PRINTY &CC
FORMAT(/71X,3CHM]ISTAKE MADE IN SPLIFT ABCUT G)
CCNT INUE v
CALL SPLIQUT G oGP GPPsNTLC,TUP NPy ANS, TERR2)
IFLIERR Z.EQ.1) GO TO 30
FRINT 601
FORMAT({/]1X,21HMI STAKE MADE IN SPLIQ)
CONTINUE
CALL SPLINT (T GoCPPyN,TUP,GICP1yGPPI,NUP,[ERR3)
IF(IERR3L.EQ.]1) GC TO 40
PRINT 602, IERR3
FCEMAT(/1X 6 HIERR3=,13)
COGNTIALE

A SPLINE IS TO Bé FITTEC TO A SECOND SET UF DATA
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o

€03
5C

604
€C

*S$FFCCFAM SURMFOL ( INPUT,OUTPUT ¢ TAPE 5= INPUT, TAPE €=(UUTPUT) %#

THAT HAS THE SAME SET CF ABSCISSAS
1SX=1 o
CALL SPLIFT (T oFoFP FPPyNoWy IERRL, ISX,ALsBLlyAN,HN)
IF{IERR1.EQC. 1} GC 10 5C
FRINT €02
FCRNAT (/1 X 3CHMISTAKE MACE IN SPLIFY ARCUT F)
CONTINUE
CALL SFLINTUTsFoFPPyNsTUPsFILsFPIsFPPI NUPIERRY)
IF(IERR4,EC.1) GC TO 60
PRINT €C44 JERR4
FCRMAT(/1X+6FIERRG=, [3)
CCNTINLE B
' FO=F(TIME T = 0+ YEAR)
FPO=F*(TINME T = O+ YEAR)

CFC=F( 2}

FFO=FP(])
FRIANT ¢2C

620 FORMAT(A(/) 44Xy lHT)15Xs3HTAULOX4HF (T) 4 IXSHF* (T )4y8Xy6FF' ' (T),

99

~1C1

102

N, IR A N

10X 4HGIT)y SXySHG*(T) 48X, 6HG* (T),
2X 9y 12HSURFACE FLUXy1lh CUMMUJFLUX,
JA4X g lH= g 15 Xe3{ IH=) ¢1CXy4(1lH=),y 9OXyS{LH=)8X,6 (LH=-),
10Xy 4{1H=)y 9X¢5( 1H- ) ,8X,6( 1H=),
) 2X 912 (1H=1,1Xy10(1H-))
FLUXC=4.%PAI*R*DO*CSO*EPS*365,25%24,%3¢CCe
CCNST=CO/CCEFK/ (R*#2)2#365.25%3600.%24,

CALCULATE THE FIRST DELIVATIVE OF F IN TAU.
DC 90 ULM=1,ANUP _
FPTCLAY=FPI(LNI /CONST/GI(LNI
CCANTINUE
FFEC=FPC/CCNST/G(3)

(ALCULATE STEADY=STATE SURFACE MASS FLUX AND
TIME-DEPENDENT SURFACE MASS FLUX,

CC 100 «=1sNUF

TAUC JI=CCNSTRANSL N

CALL CONVOL(FPTTAUyJ«eNUPLONVIN)

FLUX=FLUXO®GI(JI*(FI(J)+(FO/ZSCRT(TAU(J)I+CONVINI/SQRT(PAIL))

IF{J.EC. 1) GC TC 1C1

CUMFL=CUMFL4(FLUX+FMEMO)/2.¢(TUP(J)=-TLP(J-1))

GC 7C 1C2

CUMFL=FLLX=TLP(])

FMEMC=FLUX ‘

RRITE (646300 TUP(J)yTAUGJ)»FT(J)WFPI(IILFPPI(IN,GI(JDI,GPI(JD,
GPPI(J) FLUX,CUMFL

637 FCRMATI(LIX ylPEBL2+8E14.5,E11.3)
1CC CONTINUE

S1aP
END
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$sSLBRCLTIINE CCAVCL(FPT  TAUy KK AUP,CCAVIN)*%

SUBRCUTINE CCAVCL(FPY T AU,KKyNUP, CONV IN)
DIMENSICN FPTINUP) ,TAUIANUP)
CCVMMCN/CAL/FPO
SUNM=0, .
DO <CC 1I=1,KK
IFUI1.NE<1) GO TO 201
IF(I1.EQC.KK) GC TC 203
SUM=SUM+(FPTI( 1) /SQRT{TAULKKI=TAU(L) ) +FPO/SQRT(TAU (KK} ))& 5T AU(Ll)
CC TC 200 :
203 SUM=SULNM+ (FPT(1)+FPO)*SCRT(TAU(L )
GO 10 2CO
201 IF(IT.EC.KK)} GO TO 202 _
SUM=SUM(FPTILITI/SQRT(TAUIKK)I-TAU(TIT )} I+FPT (II-11/SQRT{TAU(KK )=-TAU(
*+ J1-110)4.5¢(TAULTIL)-TAU(II-1))
GC TC 200

REMOVAL OF SINGULARITY

202 SULM=SUM+(FPTUKK)+FPT(KK=11)&SQRT (T AU (KKI1~-T AU (KK=11)
200 CONTINLE .

CCAVIMN=SUM

RE TLRN

END
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0
SO
PS

0
c
3
R
K

«1E+C1
42.C4C

CMex2/5
G/ CM# 23

CM

NO OF CALCULATIONS: 64

2

- STEADLY STATE SURFACE MASS FLUX

TIME
ELAFSED
Cu]

l.00E+00
2.00E+00
3.00E+00
4, 00E+Q0
5.00E ¢QQ
6. 00E¢00
7T.CCE+00
B.0QE+00
9. 00E+00
1.00€+01
2.00E+01
3. 00E+ 01
4 .00E+0Q1
5.00€E+01
6.00E+01
T.00E+01
8.0CC+01
5.00E+01
1.00E+Q2
2.00E+02
3.00€+02
“. 00E+ Q2
5.00E +02
6.000¢02
7.00E+02
80005002
9.CCE+ 02
1.00€+¢03
2.00E+03
3.00E+Q3
4.,00E+03
5.00€+03
6.00E+03
T.00E+03
8.COE+C3

9.00E+03 -

SURFACE
MASS FLUX
Cd/u]

1.72628E401
1.57T110€¢01
1.49258E+C1
1.43884F+401
l¢ 395G6SE+ (]
l.35829E+01
1.29042€+01
1.25863E+01

14 2277¢E+ 01

9 .5837T1E+00
1.65T06E+00
6.2079%E+00
5.08211E+00
4. 39CC7€+CC
3.8T296E+00
3.50121E+00
3.25750E+00
3.02671E+00
1. 872¢€8E+0C
1 .52357E£+00
1.28343F+00
1.13075E+CC
1.05531E+00
1.C004SE+CC
9.437187E-01
9.05229€E~01
8.71429E-01
6.920C5E-01
6.28613€-01
5.97T7T19E-01
S5« T7T932E-01
5.61866E~-01
5.48694E-01
5.38747E-01
5.31533E-01

9-57

(For SIO,)

= 0.376

TOTAL MASS
DISSOLUTION
Cg3

1eT26E 401}
3.375€+01
4.9CTE+C]
6.373E+01
1. 7SCE+ 01
9.167E+01
1.051E+02
l. 181E+02
1.309E+02
l1.433E+02
2.526E+02

3.3B8E+02

4. 0B2E+C2
4.646E+0°
S«.12CE+02
5.533E¢02
S.902£+02
6. 2406402
6.554£402
$5.0C3E£+02
1.070¢ 403
1.211E¢03
le331E+C2
1.441E+03
1.543L+03
l.641E+03
l.733€+¢03
1. 8226403
2 604E+03
3.2064E4+03
3,877E+03
4,465F403
€,025E+4C3
5 .590E+03
6. 134F+C3
6.669E402

q4/y



TIME
ELAFSED
Lyl

1. COE+C4
2.00&*0"
3.00E+Q4
4.00E+Q¢4
5.00E+04
6.CO0E+04
T.00E+04
8 .,00E+04
9. 00t + 04
- 1.00€E+05
2.00E+05
3.0CE+QS5_.
4.00E+05
5. 00E+0Q5_
6.C0E+Q5
7.00E+05
8.00E+05
9.00E+05
1. COE+ Co
2.00E+ 06
3.00E+06
4.00C+06
5 .00E+06
6. COE+OQ6
T.00E+Q6
8.00E+06
9.C0E+06&
1.00E+0Q7

SURFACE
MASS FLUX
Cg/y9]

5.25741E-C1
4.92589E-01
4.87574E-01
4.82561€E-01
4.76147TE-01
4.70882€E-01
4.67027€-01
4.64287E-01
4.62316E-01
4 .60705E-01
4.47113€-C1
4.39554E-C1
4.346STE-01
4.30948E-01

4.27352E-01
4, 23978E-01
4.,21133¢€-01
4.18847E-01
4.16879€E-C1l

4 .,03083E-01
©3,561€67E-01

3.92172E-Cl

3.88311F-01"

3.86224E-01
3.8306G2€E-01L
3. 80422E-01
3.78336E-01
3.76551E-01

9-58

TOTAL HASS
DISSOLUTION
el

7.1 G8E+03
1.229E+04
l.7T19E+04
2.2C4E+ 04
2.683E+04
3.15TE+C4
2.62¢E+4CH4
4.092€+404
4. 555€E+C4
5.016E+04
G.555E+C4
1.3G69E+05
1.836FE+05
2. 2069+ 05
2.698E+05
3.1264E405
3.546E¢05%
3.966E+05
4. 384+ 05
B.484E+05
1.248E¢06
1.642€¢06
2.033E+00
2.421E+C¢
2.805E4+06
J.18TL +06
3.56€L 406
3.944E4+06



DO = 1.
€S0=
EPS= «Cl0

R = 42,040
K = 100.

NO OF CALCULATIONS:

STEADY STATE SURFACE MASS FLUX

TIME
ELAFSED
Cul

1.00E+00
2.00E+00
3.00E+00
4. 00E+00
5S.00E+Q0Q
6. 00E+0Q0
T.C0E+Q0
8.00E+00
9. 00E+00
1.006+01
2.00E+01
3. 00E+01
4.00E+01
5.00E+01L
6.,00E+01
T.00E+01
8.00€+01
S5.00E+01
1.00E+02
2.00E+02
3.00E+02
%. O0E+ Q2
S.00E+02
60.000C+02
7.006+02
8.00E+02
9. CCE+ 02
1.00E+03
2.00E+03
3.00€E+Q3
4.00E+«03
5. 00€+03
6.00E+¢03
7.00E+03
8.C0E+03
9.00E+03

025-06”

CM3%2/5
G/ CMe 23

(For

CM

64

SURFACE
MASS FLUX
Cd/ug]

1.14225€E-05
He 6K61G8E-06
T.40453E-C¢
6.,62994E-Q6
6.CT724E-0Q6
5 «64512E-06
5. 28833E~-C6
4.,98334E-06
4.,71577TE-06
4, 47653E-06
2 «92498E-06
2.09345E-06
1.3%6834E-00
101993QE-06
1. C19CB8E-CO
8.842C46E-07
7.850S8E-07
Te36615E-~-07
6.80445E-07
3.947C6E-C?
3.27734E-07
275894 E-0Q7
2.42082E-07
2.28T01E-O7
20 1148GE-C7
2.04318E-C7
1496132E-07
1.89422E-07
1.49117E-07
1. 3513¢E-07
l.28215€E-07
1.23830€-07
l.1G989E-C7
l16720E-0Q7
le 143CGE-C7?
1.12588E-07

237

N

9-59

3

p/

= 0.752E-07 d/y

TOTAL. MASS
DISSOLUTION
(g1

1.,1642€E-0Y
2.650L-05
3.652E-05
4,287E-05
4.,873L-05
5.42CF-05
5.933t-05
6.413E-0U5
6. 878E-05
1.058E-04
1.309E-04
le 462t -C4
1.630€-04
l.741t-04%
l.836E-04
1.920E-04
1 9G6E-04
2.0C7E-0C4
2.604E-0%
2.9E6E-014
J.26TE-0Q4
3.526E-0%
3.7¢26-04
3.985¢€-04
4. 19¢66-04
4.396L-04
©.589E-04
t.281E-C4
7.703L-04
S. 019E-04
1.028E-Q2
1.150E-03
1.268E-03
l.384E£-02
1.4G76-03



TIME
ELAFSED

Cul

1< COE+ C4
2.00E+04
3.00E+04
%.00E+Q4
5S.00E+04
6.C0E+04
T.00E¢+064
B.00OE+04
9. 00E+ 04
1.00E+05
2.00E+05

- 3.00E+05_

4.00E+0S5
5. 00E+Q5_
6.C0E+QS
7T.00E+05
8.00€E+05
9.00E+05
l. COE+ Co
2.00E+ 06
3.00F+06
©.00C+Cs
5 .00E+006
6. COE+Q6
71.00E+06
8. 00E+06
9.C0E+Q¢&
1.00E+07

SURFACE
MASS FLUX

Ca/491]

l.11181E-07
1. C2880E-C7
1.01262€-07
5. 97984E-C8
9.81489E-C8
9.68278E-08
S. 585%59E-048
9.51523€-08
9.46320£-08
9.42017€-08
9.08579E-08
8.9073CE~-CH
8.79421E-08
8.70826€E-08
Be62797E-08
8.55391€-08

- H.4S1€%E-CH

8.44200E-08
8.39914£-08
d.10362E£-C8

T 95759 E-08

7.87301€E-08
7T.81259€E~-C8
T.7T4846E-08
1.6837%E~-(C8
1.62882E-08
7.58587€E~C8
1.54912E-08
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TOTAL. HASS
ODISSOLUTION
Cdl

le £CGE~-C3
2.679F-31
3.7CCEC-02
4.7(HL-01
5.HhG5L=-013
6. 6T0L-03
T.633¢-9"
8.58BBE-03
G« 537:~C3
1.0480-0/
1.973k-02
2.813t~0¢
3.758k-02
4e 633F-02
5«5C0L=-0"
6.359F~02
1.212L-C/
B.058E-0
B.9COt-0/
l.715E-¢C1
2.513E-01
3.31Ct-01
4.064t-01
4B8T2E=01
S5« 844E~( L
6.409E-01
7.17Ct-01
1. G27t-C1



APPENDIX 9D

Derivation of Solubility Proportionality Law

The dissolution of a chemical species into a liquid such as water

is governed by the following equation:

AHS
= - — D.1
C(T) A exp { T } (D.1)
where C(T) [g/cm3] is the temperature dependent solubility concentration,
A is a constant with the same units as C(T), AHS [J/mol] is the specific
heat of solution, R [J/mol:K] is the gas constant, and T [K] is the tem-

perature of the liquid.

Suppose C(T) 1is known for a chemical species at two temperatures T1

and T2. Then,

c(T.) AH .
1 s i 1
= exp { - —— [——- - = } (D.2)
C(TZ) - R T1 Tz_

1f one assumes that AHs is constant for all species of interest and that
it does not vary with temperature, it is obvious that the right hand side
of equation (D.2) will be a constant onca T1 and '1’2 are selected. Thus,

Ci(T1) c, (T,)

Cj(Tl) Cj(TZ)

(D.3)

where 1 and j are the two species of interest. This formula is useful for
determining the fourth member of a set of related solubilities when only

three members are known.
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APPENDIX 9E

Mass Loss From a Waste Canister

In sec;ion 1l of this report the assumption was made that the radius
of the spherical waste canister, R, does not change with time. It may
be of some interest to use the mass transport results to strengthen the
basis for making such an assumption,

Consider the actual cylindrical waste capister of radius Rc and
length Lc. This cylinder is modeled in the present study by a sphere of
equal lateral surface area. The relationship between the sphere radius,
R, and the cylinder radius, Rc’ can be expréssed as follows:

R L
c c

2. - (E.1)

R =

The total amount of silica mass initially contained within the cylinder

is given by

4 3 Y2 3/2
m 3 TypR = 3 TY P (Rch) (E.2)

where Y is the mass fraction of the waste that is silica and p is the densitv
of the waste. Taking y = .50, p = 3 g/cm3, Rc = 15.24 cm, and Lc = 2,32 m,

one obtains

mSiOZ = 470 kg

(E.3)
At time t=10,000 y the total SiO2 mass loss from the waste 1is 7.2 kg
(see Appendix 9C). The loss in silica inventory from the canister is thus

about_l.SZ, a rather small amount., Since

@ = R’ (E.4)

the effect on R would be much smaller and can be determined from the fol-
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lowing expression:

AR m - Am
T - 1 - [:——m -] (E.5)

Substituting the parameters from the previous page into equation (E.5)

‘results in

AR
[11 1 S E.6
R .005 (E.6)

Thus,'the waste canister dimensions do not change appreciably

during the first 10,000 years of emplacement and the constant R assump-

tion is well founded.
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10. THE TRANSPORT OF A RADIONUCLIDE IN A THREE DIMENSIONAL

FLOW FIELD FROM A POINT SOURCE

P.L. Chambré

The following analysis describes the concentration pattern in three dim-
ensional space and in time of a radio-nuclide which is emitted from a point
source. The source is located in a porous medium permeated by water flow.

The magnitude of the advective and dispersive transports in the three principal
coordinate directions can be prescribed with some latitude. The solution to the
mathematical problem has been obtained in terms of elementary functions, specif-
ically an integral, which can be evaluated in a straightforward manner. The
result of the analysis is useful as a benchmark for comparison with numerical
solutions of the governing equation. It can also serve as a model for the far
field migration of a radionuclide emitted from a single waste form.

The model is based on the governing equation for the nuclide concentration

N(xl’XZ’XS’t) with a retardation coefficient K

(“1*0‘1 1) 3%, (“ +O‘2 z)gi\cI ( 3*a5Xs ax
(1)

5 [ oN 3 [~ oN 5 [~ oN .
- : =1,2,3;t>0
5% <D1 3% >+ 3% (Dz ax,) YA (Ds X ) AN, x;e0 , 1=1,2,3;t>
1 1 2 Z 3 )

For mathematical convenience the cartesian space coordinates are labelled X| X)Xz

and the dispersion coefficients D 62,ﬁ3. The unbounded space is D_. The strength
of the nuclide source, located at x; ,» 1=1,2,3, in D_ is M(t)dt and measures the
mass of material released at time t during the time span dtr. The release gives
rise to the concentration N(xl,xz, 3,t) at position X X5 5Xg at time t>t. This
concentration is initially zero throughout 0_ and satisfies suitable boundedness

conditions at an infinite distance from the source position.

10-1



Furthermore N obeys a vanishing flux conditions at interior surfaces of T
which are not penetrated by the advection nor by the dispersion.

In (1) the pore water velocity components:

<u1+a1x1) s (u2+a2x2), (u3+a3x3); ul’u2’u3’a1’a2’a3 constants, (2)
which are chosen for a linear velocity field, are spatially dependent and are

subject to the constraint imposed by the conservation of mass equation for an

incompressible liquid moving with velocity v through the porous medium

div v = 0 3
This yields with (2)

Q *a,+og = 0 (4)
The coefficients &1,&2,&3 can be selected to satisfy a few physically meaning-

ful potential flow patterns.

~ ~

I1lustration A. The choice; u; =u) = ug = 0, @) = 0y, Og = -Zal, leads

to the velocity components

Uy = 09X5 Uy = 0gX, 5 Uz = —2a1x3 . (5)

for which the three-dimensional flow stream tubes appear as shown in Fig. 1.
The flow pattern simulates the streaming past the source point (xi,xg,xg) by

a wide jet, which is symmetrical about the x, axis and which impinges against

3

an impenetrable (xl,xz) plane from both positive and negative Xz directions.
By suitably adjusting the dispersion coefficients Dl’DZ’DS’ additional
skewing'of the concentration field, over that caused by the velocity field, can

be achieved to test the applicability'of a numerical code calculation.

A

Illustration B. If one choses &1 = &2 =ay = 0, the flow pattern is con-
stant in space and without loss of generality one can take the flow direction
along one of the coordinate axes such as x; by setting Gz = 63 = 0 and Gl # 0.

This rectilinear flow pattern in the completely unbounded D _ can be used to
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Point Source

h-)(z

| ‘
(a) Stagnant Potential Flow Field Bounded by
| X| =X, Plane
A X2

/Point Source

>

(X7, Xz, X3)

>X|
/ ’

X3
(b) Rectilinear Potential Flow Field Along X; Axis

_XBL 8412-5894

Fig. 1 TIllustrative flow fields for sample problems A and B.
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model the far field migration from a single waste form. Other choices for
the parameters ﬁi,&i (i=1,2,3) can be made which lead to other useful physical
simulations.

To solve equation (1) we first eliminate the decay term with help of
c(X,,X,X,t) = eAtN(x X, ,X4,t) (6)
12722732 1°°2°73 ‘

If one divides the resulting equation by K and sets

A A

s
Dy =g »W =g o g s i=12,3 (7)

there results, if the Di's are considered constant,

ac JC acC oC _
5¥-+ (u1+a1xl) 5§I + (u2+a2x2) 5§5-+ (u3+a3x3) 5;; =
2 2 2 (8)
D, 2 +p @S +p, 2C  x.eD, t50; i =1,2,3
1 3 2 2 2 3 2 M1’ ? 9&
x1 8x2 ax3

To solve this represent c(xl,xz,x3,t) in the product form

c(x)5X,),X3,t) = ¢q(x),t)c,(x,,t)cgX55t) )

where the ci(xi,t) satisfy the "one-dimensional" equations defined by the

differential opefator L

aci aci » azci
Lej(xp®) 2 g+ Wyrogxy) g = by ——7 = 0, 151,2,55 - waxyen, 0 (10)

i

To show that the product form (9) is a solution of the governing equation (8)
is straightforward and leads on substitution of () into (8) and some re-

arrangements to

CyCo {Lcl} + ¢z {ch} + ¢ {LCS} =0 (1)

Since the bracketed temms vanish by (10) the result is established.
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Hence the solution of the problem (8) is thus reduced to the much simpler

equations (10) which have the common form

2
acC aC _ 3 C
3t * (Wex) 2= D s (12)

on dropping the subscfipt labels. As explained in the paragraph below
equation (1), c(x,t) must satisfy the initial condition

c(x,0) = 0, xeD_ (13)

and the source condition at x°ecD_.
We reduce the variable coefficient partial differential equation (12) to

one with constant coefficients. Let

c(x,t) = 2 {e‘“t 1+ ] } (14)

() = L (172) | (15)
and
c(x,t) = C(z,T). (16)
From (14)
or _ -at ox 3z _ _-at
—t-_: = -ue [l"’ —u-] ’ _X = e (17)

and from (15)

dt e-2at . (18)

With these expressions the derivatives of C(z,t) are computed from

= e 20t 5C L Oty XL (19)
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sc _ 3¢ 2z
X C X
oC
P T 20)
3% -2at a%C
——Z— e -7 (21)
X 3C

Substitution of (19) - (21) into (12) yields the desired constant coefficient

equation
2
aC 3°C .
L _opt (22)
9T BCZ

A solution of (22) with a point source singularity of unit strength at

£=0, 1=0 is given by the well known Kelvin function

2

1 Z
C(z,T) = - (23
ROY== {lm} )

In terms of the original x,t variables one has in view of (14) - (16) for a

point source singularity now located at x°,

- 2
1 | (e o+ o] - 151) (24

(% 2D [1-e-2at]>l/2 expy— ég[l_e—Zat]

o

c(x,t) =

This is the solution of the system (12) and (13). In turn this allows one now
to construct, with help of (%) and (24), the solution for the nuclide
- concentration ¢ from a point source singularity of unit strength located at

x? (i =1,2,3)

3
C(xl’XZ’XS’t) = 121 ci(xi,t) . . (25)

The source condition produced by integrating Eq.(25) with respect to X3 from

- o to+o, i=1,2,3, is (3(0L1+0L2+0L3)t = 1, since a; + a, + oz = 0 from Eq.(4).
Hence ¢ indeed is the solution of the unit strength point source condition.

By construction N(xl,xz,x3,t) from Eq.(6) is seen to satisfy equation (1).
x,x%,u,a and D are replaced by xi,x;,ui,ai, and Di respectively in (24) to
give the function c(xi,t) in (25).
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In turn the solution due to a point source located at x;, releasing the
mass M(t)dt at time T during the time span dt, creates the concentration dN

at the time t(>t) at X3

3
dN = m(r)dne T g c; (x;,t-1) , m(r) = Mg) (26)
i=1
where ¢ is the porosity of the porous medium. The reason for using this form is

presented in Appendix 10A.Hence the concentration at time t, at X; 5 due to the

mass liberated during the time span O<t<t is given by the superposition integral

t
_ _ 3
N(xi’XZ’XS’t) = [rh(r)e A(t-T) 121 Ci(Xi,t'T)dT 27)
: 0
where
-a. (t-1) )
- 1 .
Ci(xi,t—T) = - 72 exp{— >
o= ¢(0y,t-1)
1 \ /
and (28)
¢(ai,t-T) = [l-exp(-Zai[t-T])]

Equation (27) represents the solution to our problem in an unbounded D space.
It should be noted that one can utilize this point source solution to model
the emission of a radionuclide from a surface source of arbitrary shape. For
this one integrates the source position x; 1= 1,2,3)‘over the surface to
obtain the desired answer. This can be carried out analytically for the
simulation of line, plane, cylindrical and spherical surface sources but the
results are not reported here. As an example of the theory we consider the
Illustration B with U, = Uz =a; = 0y =ag 0 and uy # 0 representing a
rectilinear flow field which is independent of position. Furthermore we

° °

assume the source to be located at the origin so that x| =Xy = xg = 0. The

following limits are required in. (28)
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‘b(ai ,t'T)

lim ————=t-1, i = 1,2,3
a._}o ZOLi b B |
1
(29)
-ai(t-‘r) u; . ui‘. .
i _— - - — - -—° - _ :
i.njo e 3 + (x;x3) 3, | (x; x?) u, (t-1), i = 1,2,3. )
1 X
With these results (27) reduces to
t 2 2 2
3 -A(t-1) X, -u, (t-1) x x
Nixpx %500 =[ P 377 %P 4({% [ . ) b gt o b dr (30)
g  (4nD(t-1)) 1 2 3

where
- 1/3
D = (DIDZDS) .

The integral can be simplified for an easy numerical evaluation with the
assumption D1 = D2 = D3 = D. Let

2 _ .2 2 2 (31)
and
T .
= 7 32
* <4D[t-'r])1’2 : . (32)

Then (30) reduces to

. 2 .
‘“m ( - 4_11_7) da (33)
Do

For the special case of a constant mass release for 1>0 X

m(t) = ho , >0

one obtains on carrying out the integration
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1% .
moe w Td ul > + T
N(XI’XZ’X:S’t) T e erfc A+ o t

(34)

where

~ A Y1
b2 —D*(ﬁ>

As with t - » a steady state concentration field is established which has the

form

m, 1Y () v
NGXXs™) = gope &P V20 - 2 35 *\ap, (35)
o
Equation (33) can be used to describe the far field migration from an isolated
waste form. The solution for the case of unequal dispersion coefficients can

be obtained in a similar manner but is too lengthy to be reported here.

Eq. (27) is a solution for the governing equation (1) subiect to the pre-

“r

scribed initial and boundary conditions. If there is no mass transport through

the (xl,xz) plane, either by advection or by dispersion, the solution can be

obtained by superposing a point source at (xlo,xzo, - xso) to cancel out the
mass flux at x30 . The final result for U =u, Tuz =0 and

Q.
@] = 0y = - 5, as described in Illustration A is



. “A(t-t)f 0] o]
N(Xl’XZ’XS’t) =f m(t)e (t T)[f(xl-xlo,xz-xz s Xz7Xg ,t-1)
o)

+f(x x1 s X5" xz »X7+X 7 ,t T)] drt, - QX X< ® 5 0K <@, t>o, (36)
where
o) o o)
f(xl—xl 3Xy"X, ,xstxs ,t)
2
(x._x.o)z -Za.t v (XS i_X:’)o) e-2a3t
exp exp - =
20, (1-e % t)/xi 20,(1-¢ 3% As

1/2 2D 1/2
-2a.t 3 (;_.-2at
W-of:— 1-e 1 ) TTGT<1 e 3)

Il .'IIN

(37)
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APPENDIX 104

In Eq. (26) the source term Iﬁ(t) used in the solution is related to M(t)
by m(t) = Mé—% , where M(t) is the total mass release rate (g/sec) at the
source point, € is the porosity of the porous medium, and K is the nuclide
retardation coefficient. This relation can be derived as follows.

Let N(XI’XZ’X3’t) be the nuclide concentration in the liquid and NS

(xl,xz,xs,t) the nuclide concentration in the solid, then conservation of

the nuclide specie in the porous medium requires that

oo 0 ,00 t . -}\(t-'t)
f f f [EN + (l-E)NS] dx, dx,dx4 = [ M(1)e dr . (11)
«00” -0 -0 o

eN 1+<£_€_ .N_s.>
€ N

= eKN

Since eN + (1-&:)1‘\1S

+ co ,+00 , +

t. \
[[ ekidx, dx, dx =f Mr)e M (T Dgr (12)

0

Eq. (I1) becomes[

-0

But from (27) we have, with help of (25), for the left hand side

+00 400 400 t . .
ff/eKNd.xldxzdx3= f ekm(t)e Mt gy (13)
—00J-00 J -0 o

Comparing (12) and (13), one finds m(t) = M£1t<)
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11. ON THE TRANSPORT OF RADIOACTIVE CHAINS IN GEOLOGIC MEDIA

Paul L. Chambré

The following analysis deals with the migration of radioactive chains in
geologic media of finite and infinite spatial extent. The governing equations
are sufficiently general to model the specie transport by dispersion and
advection in a water saturated porous medium. They can also be applied to
diffusion of radioactive chains in denser media such as rocks permeated by
micro-pores where advection is negligible.

- The formulation of the equation system and its solution form is given
in Section I. Two classes of problems, dealing with dispersion-advection
and diffusion respectively, are formulated together with very general boundary
conditions in Section II. Sections III and IV give the exact closed form
(non-recursive) analytical solutions for the radioactive specie concentra-
tions of chains of arbitrary length in media of finite and (semi) infinite
spatial extents. Section V illustrates the theory by applying it to the
problem of radionuclide transport by dispersion and advection from a reposi-
tory surface to the biosphere, positioned at a finite distance. At the
latter position the specie fluxes are shown to be given by explicit analytical
formulas.

The results of the analysis generalize the recursive chain calculations
on which the Computer Code UCB NE 10.2 and 10.3 are based, to chains of

arbitrary length in both finite and infinite spatial geometries.

11-1



I. The Governing Equation System and its Solution Form

Consider the canonical system for zeD, t>0

Ny Ny aN,
K *Vvezr * MK =D 2
Z
2
N, N, oN,
Kyge * Vg + AMKN, =D, oz " MEKN 1)
3N N, 32N,
Kl 3 TVt A1K1N1 = Di azz Al-l Kl-l N1-1

which is to be solved for Ni = Ni(z,t), in a one-dimensional domain D which is
either finite or infinite, for times t>0. The Di are the diffusion coefficients
of the individual species'to be specified later. All other symbols have their
usual meaning. The functions Ni(z,t), i=1,2,... are subject to the initial
conditions

N;(z,0) = 0, zeD (2)

and the boundary conditions

oN.

o
-Die 323 + v Ni = v Ni¢i(t) for z=0, t>0 (3

¢i(t) = 0 for t<0

The left hand side represents the total flux of specie i through the boundary
surface z=0 of D while the right hand side describes the rate of supply of
specie i in terms of the abitrarily prescribed integrable functions Ni°¢i(t).
These functions describe the time release of the chain members from a repository
surface or waste form located at z=0. ¢ is the porosity of the medium. In case
of no advection the terms involving v are dropped from (1) and replaced by other
parameters in (3) as will be discussed later. The second boundary condition for

the Ni(z,t) at the other boundary of D will be stated in Section II.
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The general form of the equation system (1) is

K, N, N, aZNi .
T 3t ViNi = 5=+ Vi Ni-l’ with v0=0, i=1,2,... 4
i 1 9z
where
v, = M v. . = Ei;lii;l (5)
i D. > i1 D. ‘
i i

The aim is to obtain the general (non-recursive) analytical solution for the

Ni(z,t).

On account of the linearity of (4), the solution for the individual chain member
Ni can be represented as a sum of functions, which satisfy (4), and selected

boundary conditions. We specify

Ny (z,t) = N, D (z,0)
Nen = LYoo s nPen ‘ (62)
No(z,t) = N, z,0) + NP (2,0 + N3 (2,1
and for an arbitrary ith chain member
(1) L G)
N (z,t) = N, "V (z,t) + _zl N, Wiz,0) . - (6b)
J'—‘

Thus, in order to obtain the concentration of the ith

chain member, every function
Nlcj)(z,t) must be known. We begin with the construction of Nlcl)(z,t). It is
chosen to be a solution of (4) (with Vo = 0) which satisfies both the initial
condition (2) and the boundary condition (3). This determines Nl(z,t). To de-
termine Nz(z,t) we require two solutions of (4). NZ(I)(z,t) is chosen so that

it obeys the initial condition (2) and the homogeneous boundary condition (3)

with N2 = 0. This function yields the contribution to Nz(z,t) which is due

to the radioactive decay of its precursor Nl(z,t). NZ(Z)(z,t) on the other hand
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is chosen to satisfy the inhomogeneous boundary condition (3), as well as of
course (2). But since the precursor contribution to Nz(z,t) is already accounted
for, the inhomogeneous term VlNl is not included in eq.(4) when one solves for
Nz(z)(z,t). One proceeds comparably in the construction of Ns(z,t). Ns(l)(z,t)
and NS(Z)(z,t) are precursor contributions stemming from chain members Nl(z,t)
“and Nz(z,t) respectively. Their solutions of eq.(4) satisfy homogeneous boundary
concentrations, with N; = 0, while NS(S)(z,t) yields the contribution to
N3(z,t) due to the inhomogeneous boundary condition (3), with NSO # 0. However,
for the determination of N3(3)(z,t) the inhomogeneous term VN, is dropped from
(4).

According to this decomposition of the problem, the functions Nz(j)(z,t)

must satisfy the following equation system for zeD, t>0

D, 3t ' D, 3z M e IR 7, 970, 21,2,..4, (D)
% 2 oz :
RN
The functions are subject to,
N, (z,0) = 0 (8)
N, 9 0,1) ) . _
Dpe ——— + WN, 7’ (0,t) = anNQ Vo, (t), jgo (9)

wheve sz is the Kronecker delta which vanishes for 2#j and is unity for 2=j.

Furthermore
() - ) ,
Nl—l (z,t) = 0, for 2gj (10)

which assures that for 2<j the inhomogeneous (source) term vl-lNQ—l vanishes.
The second boundary condition which Nz(j)(z,t) must satisfy in D will be dis-
cussed in the next section. At this point however one can verify that the

solution to equations (7) through (9) when substituted into (6) will satisfy

the original equations system (1), (2), and (3) due to the linearity of the
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latter equations.

II. Specification of Problems

We now wish to specify a number of problems of practical interest which
will be seen to have a common mathematical basis. For this purpose we take

the Laplace transform of (7) with respect to the time variable and define

NI, - f e St, ) (z,0)a; 35(s) = f RCNOLE (11
0
The transform of equation (7), on utilizing the initial condition (8), yields
_ (3
azy (3) y K (3 (3)
—  tom o oes )& e v Ny (12)
dz g 9 2
_ @) : y . o
for Nz (z,s). It is convenient to remove the first order derivative term by
setting
N
- (j) ZDQ z ()
N, (z,3) =e n, 3 (z,s) (13)
Then
() 1
&n K 2l &) Iy ¢ ——
dz '3 L
With

K _
) _ 1 1
=1 = + 9 = (2,) = —(—— = "—> ’ (15)
Hy (:Pz S a;) 3y <?“{> Z\D, "D, ;

equation (14) reduces to the compact form

, &)
d n, (z,s)

. () _
L2 eg 7 (z,8) = -vo g Mg 4

(j)(z,s) e'Y('Q')Z’ i< (16a)

This differential-difference equations system with variable coefficients is the
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governing equation of our problems. Equation (10) transforms to
n, ;I (z,9) = 0 for agj (16b)

The general solution to these equations is a matter of some complexity and will
be treated later. Here we consider two special cases of (16) which describe a
number of physically important models.

Case 1. We assume the dispersion coefficients of the radioactive species
in the medium are equal

D, = D, for all & . | (17)

Then y vanishes, removing the complicating exponential term from (16). The cor-
responding equation system (1) together with (2) and (3) describes the far
field migration problem in the presence of advection and dispersion. For a
concentration boundary condition of form of (9), the general (non-recursive)
analytical solution for radioactive chains of arbitrary length i has so far not
been available to us. The most extensive model to date has been the recursive
three member chain in a semi-infinite domain D_ on which the computer code
UCB NE 10.2 is based. In the following we shall consider two distinct far field
migration problems. One of these is the nuclide migration in a (semi) infinite
domain D_, the other the migration in a finite domain Df. Thus we need to
consider appropriate boundary conditions at the second boundary joint of D.

For D_, 0gz<e, Ni(w,t) and hence Nl(j)(w,t) together with their derivatives
must vanish sufficiently strongly

dr

az ng(j)(z,s) = O(e-kz) as z » », k>0, r=0,1,2..., zeD_ (18)
A

For the problem in Df, O<z<L, a general boundary condition of Type III is

specified
aNi(L,t)

De 7

+ h [Ni(L,t) - N;(t)] =0, t>0 , (19)
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h may be a velocity dependent parameter which describes the surface coefficient
~of specie transport at z=L, into a medium z>L in which the ith specie concen-
tration is a prescribed function N;(t). The boundary position z=L can, for
example, be interpreted to represent the biosphere boundary. As h is varied
from 0 to », the flux through the boundary at z=L varies from zero to an
infinite value causing the specie concentration to decrease there. To express
(19) in temms of the Nz(j)(z,t) functions, substitute the equation (6) so that
N, D (1,0

De 7

+h [NRU)(L,t) : asz,i(t)] = 0, jet, ©0 (20)

Hence the NQ(J)(z,t) satisfy homogeneous boundary conditions for j<g,

while Nz(l)(z,t) satisfies the inhomogeneous condition at z=L. On taking the B
Laplace transform of (20) and using the transformation (13) results finally in o
anQI(J)(L,S) (J) - \2% ] . ) 3
e —p——* h,n 77 (L,s) = égjhe N, (s), Jg (21)
where
= 24
h2 = (h t=

Summarizing, we have for the problem with advection in either Df or D_ the
governing equations (16), the Laplace transformed boundary condition at z=0,
i.e. equation (9),

anQ(j) (0,s) * |

- (J) - ° 1 = - .61
De 5= + hlng (0,s) = 62jN2 V¢2(S), jg2 where h1 v > (22)

The second boundary condition is given by (18) for D_ and by (21) for Df.

Case 2. Consider again the governing (16) but now without advection,
i.e. v=0. By (15) y vanishes, thus removing again the variable coefficient
term from the differential difference equation. For this case, the specie
aiffusion coefficients D2 need not be identical in order to obtain an analytical

solution. The advection free formulation is applicable to the rock fracture

11-7



(D

problem where one wishes to account for the diffusion of radioactive
species into the rock from water filled fissures. Another possible appli-
cation can be found in the analysis of the diffusive migration of radio-

nuclide chains with small half-lives in a water saturated backfill region
which surrounds a waste form (2 ). Backfill materials, such as Bentonite,
. possess low permeability to water flow so that the principal mechanism of
transport through the layer may occur by diffusion. In case of the rock

fracture problem the domain can be either D_ or D. while in the backfill

f
problem it is Df.

At the present time there appear to be insufficient data to apply the
formulation to the diffusion of specie with unequal diffusion coefficients.
For this reason we conduct the analysis, assuming the radiondclides to
satisfy equation (17). The solution given below can however be readily
generalized to include unequal Dg's if desired.

Since the boundary conditions remain of the same mathematical form
as quoted in (18), (20), (21) and (22) it is seen that Case 2 is merely
a special case of Case 1 obtained by setting v=0 in the governing eq. (16)
and assigning special values to h1 and h2 in equations (21) and (22) as well
as to their right hand side functions. In the following we shall concentrate
on the solution of Case 1. Although the solution procedures of this

problem in D_ and Df have certain common features, it is best to present

their solutions separately.

ITI. The Solution of the Problem in Df.

The solution of the system of equations (16) in‘Df is constructed with
help of a finite Fourier transform with respect to the variable z. We define
L
n, e, 9 - [K(Bm,z) n, ) (z,5) dz . (23)

0
11-8



The Fourier kernel K(Bm,z) satisfies the Sturm-Liouville system

ke 2,

T + Bm K(erz) =0 (24)
dk(Bm,O)

-De —dz + th(Bm’O) =0 (25)
dK(Bm,L)

De —dz + th(Bm,L) =0 ‘ (26)

The Bm's are the positive eigenvalues of this system. The kernel has the

form (3)
B cos(B z) + a,sin(B_z)
K(Bm,z) - /7 m m 1 m — 27)
2. 2 % N, )Y
Bm'+ * L+— Z) %
B~ +a
m 2
where
h h - : _ _
=1 _ 2 _
17D %0 (28)
The eigenvalues form a discrete, countable spectrum which is given by the
solutions of the transcendental equation
B (o, +a
tan(g L) = “‘2(—12—)— ,m=1,2... . (29)
B T 1%

If one applies the kernel to every term of equation (16) and integrates with

respect to z over the interval (0,L) there results in view of (23}, since y=0,

L, ()

d n, (z,s) () )
f o7 K(B,»2) dz - wynp?? (B ,8) = -vp 4 nz-l(J)(B ) (30)
0 z m

The integral term J yields, with integration by parts,
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L () o\
dn, " (z,9) an, 9 (z,5)
J =IT K (Bm,z) dz = K(Bm,z) 5 -
vA
z=L (31)
. dK(B_,z) .
- @) _m’ _ g2 ()
n, '’ (z,) T _ B n, (8>S)
z2=0
By (25), (26) and (28)
dK(Bm,O) dK(Bm,L)
Iz = OLlK(Bm,O) ’ —dz = ‘OLZK(Bm’L) (32)
so that
dnz(j)(L,s) (3)
T = KBL| — g * o, VL)) -
. (33)
anI(J)(O’S) () 2 (j)
- K(Bm,O) — T T My (0,s)y - Bm n, (Bm,s)
On applying cquations (21) and (22) together with (28) results in
_ VL |
] b Y i
J K(Bm,L) ng e © Nz(s) + K(Bm,O) 623“\]2 ﬁg—%(s)
, D (34)
) Bm Ty (Bm’s)
When this is substituted into (30), one obtains the difference equation
ng(J)(Bm’s) = {vl-l nl-l(J) (Bm’s) + 62jg£(8m,s)} ——%————— s gL (35)
Bm * He
where
L _
X(8_,L) 2D K(8 ,0)
- m’ “he ) ’ °
g, (B,,8) = —¢ Ny (s) + ——D—IQ“—NQ v, (s) (36)
Equation (16b) transforms to
ng_fj)(ﬁm,S) =0, 2] (37)

11-10



Equation (35) is solved in a recursive manner by setting j = 1 and letting

fl

2 run from & =1 to & = i. This process is repeated for j = 2,3,...1 in order
to obtain the solution for the i nuclides of the chain.

Starting with j=1, and letting 2 run through the values 1,2,...i, one

takes from (37) no(l)(sm,s) = 0, so that (35) yields
g, (B ,s)
nl(l) (B,»S) = _li_HL__
B~ +u
m 1
- (1)
0 (1) (6 s) ; Vlnl (Bmas) _ Vl'gl(Bm’S)

’ 2 2
U B C R RO
V V-, oo g (B ,S)
ni(l)(sm’s) _ 172 i-1 % m ; (38)

By *upD B "+ uy)---(B " + u;)

Next one takes j=Z and lets & run through the values 1,2,3,--,i .

From (37) one has nl(z)(Bm,s) = 0. Hence (35) yields

B sS)
(2) _ gZ( m’
n, ) (8,.5) = S T—
Bm ML
(2)
Von, t (B ,8)  V,8,(B,S)
n3(2)(B 5) 2 % m - 2 % m >
__________ m ¥ G TG )
. (2) (B S) _ \)ZVS"‘Vi_lgz(Bm’S) (39)
i - 2
N R R R
Continuing in this manner one shows that in general,
: A Bg (8 ,s)
ni(J)(Bm s) = ——= , 1> (40)
’ m (Bm * Un)
n=j

where
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-1

i
A0y (41)
1 . T

Tr=]

while for j=i one has

. g.(B ,s)
ni(l) (Bm’s) = 12 m (42)
B + W.
m i
Equations (40)-(42) represent the solution of the difference equation (35)-(37).
We turn next to the Laplace inversion process with respect to the t variable.

By (15), with D_ = D,

K
2
B, *H =gt (5 +a) | (43)
where
2
o = T‘Q; (8% +a). (44)

: .y 8:(B ,s)
ni(J)(Bm,s) =2 ) A (45)
1
(s +a)
nzj n
with
(j) _
. A. i
c.. 1 . i1, (46)
1 1-1 (I\n) ™ n
T \p n=]

™ (s + an)

Now the inverse of < 1
n=j

(47)
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-0t :
If one applies the convolution theorem to gj(Bm,t) and e " , equations

(40) and (41) yield, with the * symbol denoting the convolution integral,

-o_t
. % n
) D .G L gEptlte .
ni (Bm,t), Ki Ci L, T , 1>j (48)
Joq (ar-an)
n=j
. -a.t
n, W 0 ST spD (49)

This is followed by the Fourier inversion with respect to the z variable.
The inverse transform of (23) is given by (with £ now replaced by i in nz(j)),
n, 9,0 = T ke 2 0P ), i3 (50)
m=1
The ni(j)(Bm,t) in the summation are taken from equations (48) and (49). The
inversion can be shown to be valid if ni(j)(z,t) is continuous and satisfies

Dirichlet conditions on O ¢ z g L wiph t in the domain t > 0. From (44) one

separates the Bmz dependence as follows

0% = TP * Y 6D
where )
_ 1 1 - _ (v
r_ =D (K; K;) s Y [(Yn v, (ZD') FmJ (52)
There results with (48), (51), on substitution into (50), the inverse function
-ant
: - i = K(B ,z)g.(B ,t)*e
ni(J)(z,t) - -g— ci(J) L , i3 (53)
b n=j m=1 - (F 8 2, y )
. \nrm nr.
=)
r#n
and for ni(i)(z,t) from (49) and (50,
ni (Z,t) = Kl mzl K(Bm,z)gl(Bm,t) e ) (54)
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On re-introducing the exponential multiplier of (13) into the last two equa-

tions, one obtains all component parts of the solution for the chain member

Ni(z,t). Their substitution into (6b) yields the general (non-recursive)

solution in Df, .;

' -o_t
vz w -a.t i-1 v i o= K(B ,2)g.(B ,t)%e T
N. (z,t) =e(ﬁ) D I KB ,2)g:.(B,t)*e * + ] C () ) 40 :
i K.} & m it m - =1 m=1 I
i |m=1 j=1 n=1 m=1 T (F

r=j

r#h

8 2

+
nrm an

(55)
It is readily verified that the dimensional terms in these equations have the

following units (cgs)

)+ oY, gy - [ o sl oy - [
. . 2 2
0 - Lo, n = [ 7 - [ D] v () o (]

It follows from this that Ni(z,t) = [gmg] , -as required.
cm

The form of the solution (55) does not explicitly exhibit the steady state
form of the solution Ni(z,w).. This limiting form is contained in the convol-
ution time integrals and it results on letting t - ». Alternately if one sets
s = 0 in (45) (for i > j) and proceeds with the Fourier inversion with respect
to z, follbwing the indicated steps, one is led to Ni(z,m). The resulting

series can in some instances be summed in terms of elementary functions.

IV. The Solution of the Problem in D_.

The solution of the system of equations (16) in D_ follows along similar
steps to that given in section III. In order to exhibit the correspondence of e
the solution method with the previous work we indicate corresponding equations
by a dash mark.

We introduce an (infinite) Fourier transform with respect to the z variable

0

n, 9 p,s) - fK(p,z) n, Wz,9a (23"
0 11-14



The Fourier kernel K(p,z) satisfies

2
d—f’éﬁ +p% K(p,z) = 0 Ogz<e (24"
z
-De ggéglgl + hl K(p,0) =0 (25")

and instead of (26), K(p,z) satsfies a boundedness condition as z - ». The

(3)

solution to this problem is given by

pcos(pz) + o 51n(pz)
K(p,2z) = (27")

{pz * 0‘1} 2

p replaces the eigenvalues Bm in (24), and it represents a continuous spectrum

of range 0Og¢p<~. One now transforms (16) with help of (23'). This leads to a
set of equation steps comparable to (30)-(35), except that L is replaced by («).
On account of the boundedness of K(p,z) and its derivative and in view of (18)

the contribution to J at z = « vanishes leaving us with

(3 g o) = ) 1 .
Ve, = vy m P + %jgg(p»s)}pz% it (35
where
g, (%) = 5L\ g (s) (36")
and
n (j)(p s) =0, 2&j (37")
g-1 " (P ’

The steps of the solution of the difference equation (35') are identical to
those in section III leading, on inverting with respect to t, to equations
(48), (49) with B replaced by p. However, the Fourier inversion with respect

to z is in'place of (50) given by
n, 9 z,1) = [K(p,z)ni(”(p,t)dp, i< (50")
o)

11-15



Hence all steps between equations (51) to (55) remain unchanged except for

[o o]

the replacement of Bm by p and that of the sumation | by j’.( ) dp.
m=1 °

The result is the general (non-recursive) solution in [/
v o ) . - -ant &
== Z a.t i-1 .y 1 K(p,z)g:(p,t)*e
2 C_(J) 2 i J
Lo

N.(z,t) =e 2D {2 [xp,2)g p,t)%e L dp+
1 K. 1 & 1
1 n=1 2
. o m(lP

1J, J
_ r;
TN

* an)

Ogz<e, t>0, i=1,2,..
(55")
with gi(p,t) prescribed by (36'). One verifies by dimensional arguments of the

right hand side of (55') that N (z,t) = [523] )
cm

V. The Advective-Dispersive Far Field Migration of Radionuclide Chains in Df

We illustrate the theory with an application of the diffusive and advective
transport of radionuclide chains in the finite span Df : O<z<L. It is assumed
that the chains orginate it the repository boundary z = 0. Subject to a release

rate, which is a particular form of (3) i.e.

N, (0,t). = N? ¢.(t), t50 i=1,2,... (56)

At the biosphere boundary

N, (L,t) = 0, ©20 , i=1,2... (57)

These boundary conditions are special cases of (3) and (19) for which the
original problem was solved. By specializing the'parameters in the previous .
section III, the solution to the present problem is obtained by a limiting
procedure. |

First the Kernel function K(Bm’z) is constructed from the equation system
(24) to (26) with homogeneous boundary conditions of Type I. The comparison

shows that in the present case D=0 in (25), (26), so that a; =a, = in (28).
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o

With this (27) yields in the limit the kernel function

K(8,2) = \/ %- sin(B_z) (58)

The eigenvalues Bm are determined from (29) which reduces to
51anL =0 (59)

with the positive solutions

sm=‘£ﬂ,m=o,1,z,... ) (60)

Now the theory developed in Section III, and specifically the set of equation
(31) to (35), assumes that the boundary condition for K(Bm,z) at z=0 and z=L

are of Type III, i.e. of the form of (25), (26)

dK(8 +0)

- De —g,— + hK(B ,0) =0 (61)

3K(8, L)
De - Ca— + th(Bm,L) =0

Since in the present case the boundary conditions are of Type I and thus do

not involve the derivative term, one must forimally make the following limiting

replacements in (36)

dK (B, L)  K(B»0)
dz ’ De

K(8,,L)
De

dK(Bm,0{
dz

(62)

=1
|-

2 1

] ]
Further, a comparison of (57) with (19) shows that Ni(t) = 0 so that Ny (s) = 0.

This leaves only the second term in (36) which reduces with the above to

dK(Bm,O) o
gQ(Bm,S) = ———EE___'NQ ¢Q(S)

_ 2 °
N '\/; BrNgg (5)

With K(Bm,z) and gi(Bm’t) determined the solution of the problem is given by

(55).

(63)
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The quantity of principal interest is the specie transport through the
biosphere boundary at z=L which in view of (57) reduces to

o aNi(L,t)

ml(t) = -De T
which will be investigated in the future.

As a second application consider the transport of the radionuclide chains
vL

by diffusion only, so that v=0 in (55). Aside from the term eZD being re-

(64)

2
placed by unity, one must delete the term.(%ﬁ) in the expression for a, in
(15). Recall that y(R) = 0. For the present boundary condition (56) a compar-
ison with (22) shows that v can formally be set to umity so that no further

changes are needed in (55) other than those mentioned.
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