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1. INTRODUCTION AND SUMMARY 

This report is in a continuing series of reports that present analytic 

solutions for the dissolution and hydrogeologic transport of radionuclides 

from geologic repositories of nuclear waste. Previous reports (Pl, Hl, Cl) 

have dealt mainly with radionuclide transport in the far-field, away from the 

effects of the repository. In the present report, the emphasis is on near­

field processes, the transfer and transport of radionuclides in the vicinity 

of the waste packages. The primary tool used in these analyses is mass 

transfer theory (Sl) from chemical engineering. In the chapters that follow, 

the general format is that the problem statement, governing equations, and 

derivations of the solutions are presented first, followed by illustrative 

applications. 

The thrust of our work is to develop methods for predicting the 

performance of geologic repositories. However, many of the results derived in 

the present report can be generalized to other situations of tracer or 

contaminant transport in geologic media. We would be interested in 

discussions with readers on other applications of this work. The subjects 

treated in the present report are: 

(a) Radionuclide transport from a spherical-equivalent waste 

form through a backfill (Chapter 2, Derivations; Chapter 3, 

Applications). 
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(b) Analysis of radionuclide transport through a backfill using 

a non-linear sorption isotherm (Chapter 4) 

·(c) Radionuclide transport from a prolate spheroid-equivalent 

waste form with a backfill (Chapter 5, Steady-State 

Solutions, Theory and Application; Chapter 6, Transient 

Solution, Derivations; Chapter 7, Transient Solution, 

Applications) 

(d) Radionuclide trarisport from a spherical-equivalent waste 

form through a backfill, where the solubility, diffusivity 

and retardation coefficients are temperature dependent 

(Chapter 8) 

(e) A coupled near-field, far-field analysis where dissolution 

and migration rates are temperature dependent (Chapter 9) 

(f) Transport of radionuclides from a point source in a three­

dimensional flow field (Chapter 10) 

(g) A general solution for the transport of radioactive chains 

in geologic media (Chapter 11) 

Radionuclide Transport from a Spherical-Equivalent Waste Form with Backfill 

In (Cl), Chapter 7, we analyzed the transport of radionuclides from a 

bare waste form in wet, saturated rock. In the present volume we extend the 
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solutions to waste forms enclosed by a layer of backfill or packing material. 

The presence of a backfill will help ensure that in the vicinity of the waste 

package there is little or no advection, and molecular diffusion will be the. 

main mechanism for mass transfer. The aim is to find the rate of dissolution 

of radionuclides and their rate of release into the rock, and to predict the 

spatial and temporal concentration of radionuclides in both the backfill and 

the rock. The approach used here is to set a saturation boundary condition at 

at the waste form/backfill interface. ~he solutions allow the prediction of 

both concentrations and mass flux as a function of position and time. 

These results are potentially useful in showing compliance with the 

u.s. Nuclear Regulatory Commission's release-rate performance objective (Ul). 

The analytic solutions can be used, for example, to compute the flux of 

radionuclides from the backfill/packing material into the rock, without the 

potential problems that discontinuity in porosity and retardation at the 

backfill/rock interface can introduce into numerical approaches. 

There are several important results from the rrumerical evaluations. 

First, radioactive decay, higher sorption in the rock and the backfill 

steepens the gradient for mass transfer, and lead to higher dissolution rates. 

This is contrary to what was expected by some other workers, but is shown 

clearly in the analytical solutions. Second, the backfill serves to provide 

sorption sites so that there is a delay in the arrival of radionuclides in the 

rock, although this effect is not so important for the steady-state transport 

of long-lived radionuclides. 
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Non-linear Sorption 

In Chapter 4, 'ioe analyzed one-dimensional radionuclide transport 

through the backfill in the presence of diffusion only, using a two-segment 

linear approximation of the Langmuir isotherm to simulate the effect of 

saturation of sorption sites in the backfill. The analytical solutions 

provide a method of predicting the position of the sa.turation front as it 

moves through the backfill. 

Radionuclide Transport from a Prolate Spheroid-Equivalent Waste Form with 

Backfill 

In (Cl) we o~tained the steady state solution as well as the early­

time and large-time mass transfer from an infinitely-long and finite 

cylindrical waste forms. The analysis of cylindrical waste forms has 

attraction because actual nuclear waste packages are expected to be cylinders. 

In the limit of zero flow, the time-dependent mass transfer form a prolate­

spheroid waste in contact with infinite rock was analyzed. In Chapters 5, 6, 

and 7 of this report, the analysis of prolate spheroid waste shape is extend~d 

in the following directions: 

Inclusion of a finite backfill/packing material layer; 

Inclusion of advective transport in the rock; 

Inclusion of an approximate solution between the 
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previously derived asymptotical results; 

The previous comment about the potential usefulness of these analytic 

solutions in determining compliance with NRC requirements (Ul) also apply 

here • 

Radionuclide Transport with Temperature-Dependent Solutility, Diffusivity and 

Retardation Coefficients 

In and around a geologic repository of nuclear waste, the temperature 

will vary as a function of time. This variation of temperature will have 

significant effect on the dissolution and transport of radionuclides by 

changing the saturation concentration, diffusion coefficient and geochemical 

retardation processes such as sorption. In Chapter 8 we analyze diffusive 

mass transport from a spherical-equivalent waste form where the solubility, 

diffusion coefficient, and retardation coefficients are functions of 

temperature. Chapter 8 gives radionuclide concentrations and mass fluxes 

where solubility, diffusivity and retardation coefficients are specified 

functions of time or temperature. 

In Chapter 9, 'We present an application of this temperature dependent 

theory, as well as a far-field radionuclide migration model. The coupled 

model calculates concentration profiles of radionuclides in the far field 

based upon nonisothermal dissolution of the radionuclides at the waste 

canister surface. 
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Transport of Radionuclides from a Point Source in a Three-Dimensional Flow 

Field 

In many repository projects, large-scale numerical codes are used for 

predicting the far-field distribution of radionuclides. There is a need for 

methods for testing these codes, especially when three-dimensional dispersion 

is being considered. In this chapter analytical solutions are derived for the. 

advective-diffusion equation for three-dimensional transport from a point 

source. 

A General Solution for the Transport of Radioactive Chains in Geologic Media 

Chapter 11 provides solutions to the problem of migration of 

radioactive chains of arbitary length in geologic media of infinite or finite 

extent. These solutions are for very general conditions, and are potentially 

useful in many situations. 

Summary 

The following table is a summary index for the waste-package models 

developed in this report. 
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Table 1. Waste Package Models in This Report 

c WASTE PACKAGE CONSIDERED SOLUTIONS 
H 
A 
p Wsste Form Shape 
T 
E With Without Spherical Prolate Quantity De r1 va tions Numerical Steady 
R Backfill Backfill Equivalent Sphe raid Predicted ExaDI"'lc I 

2 X X N X 

3 X X N, H X 

4 X X N, Tb X X 

5 X X N, H X X 

6 X X N X 

7 X X H, t* X 

8 X X N, H X 

9 X X N, H X 

Key 

N • Radionuclide concentration at r at time t 

H • Radionuclide flux at r at time t 

t*• Time to steady state 

Tb• Time to sorption saturation breakthrough 

T,K,D,C • Temperature, retardation coefficient, diffusion coefficient and 
saturation co nee ntration 

State 

X 

.. ·~ 

FLOW CONDITIONS 

Time Diffusion Advection Constant Variable Linear 

Dependent Only and T,K,D,C T,K,D,C Sorption 
Diffusion 

X X X X 

X X X X 

X X X 

X X X 

X X X X 

X X X X 

X X X 

X X X X 
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2. RADIONUCLIDE MASS TRANSPORT FROM A 

SPHERICAL WASTE FORM SURROUNDED BY A BACKFILL 

P. L. Chambre 

In the following we investigate the time dependent mass transport of a 

radionuclide from a spherical waste form which is surrounded by a spherical 

shell of backfill material. Both waste and backfill are imbedded in rock 

extending infinitely in all directions, see Fig. 1. The mass transport through 

backfill and rock is.assumed to occur by diffusion only and the transport by 

convection is not treated in this paper. 

The waste form has a radius R
0 

and the outer edge of the backfill shell a 

radius R1. The backfill porosity is £1 and its retardation coefficient is K1. 

The rock has the corresponding properties £ 2 and K2. The radionuclide's 

diffusion coefficient in the water is Df and its decay constant is A. The 

geometric factors for backfill and rock are cr1 and a2, respectively. The 

nuclide is released at its solubility limit c
5 

at the surface of the waste form 

into the surrounding which is initially at zero concentration. 

and N2(r,t) denote respectively the nuclide's concentration in 

rock regions the governing equations read, see Fig. 1 with v2 

aNl 2 
- ANl, R < r < R1, t > 0, D1 

alDf 
at= DlV Nl = KI 0 

aN2 2 
- AN2, ~ < r <co, t > 0, D2 

a2Df 
at= D2V N2 = KZ 

2-1 

Then if N1 (r,t) 

the backfill and 
a2 2 d 

= -+--
ar2 r ar 

(1) 

(2) 

(3) 

(4) 



Waste 

X BL 84 5- 6988 

Fig. 1 Geometry of spherical waste form with backfill layer. ... 
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(5) 

(6) 

N
2 

coo, t) = o , t ~ o (7) 

Equations (1) and (2) describe the conservation of the diffusing specie in 

the backfill and rock regions respectively. The initial conditions are given 

by (3). Equation (4) sets the solubility limited~ release on the waste form 

surface. Equations (5) and (6) assure the continuity of concentration and flux 

at the interface between backfill and rock and (7) regulates the concentration 

in the rock region far from the waste form. The purpose in obtaining the 

solution to this equation system is to analyze the space and time dependent 

concentration and transport flux of the nuclide as a function of theeleven para-

meter system cs, >.., Df, R
0

, ~' KQ., e:Q. and aQ. (Q.=l,2). This will be done in Chapter 3. 

The analysis of equations (1) - (7) is facilitated through the introduction 

of new dependent variables which satisfy the equation system in absence of radio-

active decay 

(1 ') 

(2') 

(3') 

( 4') 

(5') 

(6') 
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c2 c co, t) = o , t ~ o (7') 

One can then express N1(r,t), N2(r,t) in terms of the solutions of (1')­

(7') as follows 

N1(r,t) = AJ[te-A'c
1

(r,c) de+ e-Atc1(r,t) (8) 

J
t -AT -At N2(r,t) =A e c2(r,T)dT + e c2(r,t), R1 ~ r <co, t > o (9) 

0 

This is readily verified by substitution (8) and (9) into the equation system 

(1) - (7) utilizing the fact that c1 and c2 satisfy eqs. (1') - (7'). 

In turn the system (1') - (7') is simplified through the dependent variables 

There results 

2 
an2 a n2 Rl < r < co, t > 0 
F = D2 :-T' 

ar 

Rc,t~O 
0 s 

This is the principal equation system to be solved. 

(10) 

(1") 

(2") 

(3") 

( 4") 

(5") 

(6") 

(7") 

We take a Laplace transform of (l") and (2") \vith respect to the t variable 

and apply the initial conditions (3"). This yields with 

2-4 
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00 

J -pt n.Q,(r,p) = e n.Q,(r,t)dt, 
0 

.Q, = 1,2 (11) 

the equation system 

2-:? -"{n1 = o, R0 < r < R:t, "i = ~ 

(12) 

The general solutions are 

with n2 satisfying the Laplace transform of the bmmdary condition (7"). The 

three constants A,B and D are found with help of the transforms of equations 

(4")-(6"). With 

there results 

R c 

a. = ' 

A = ..2..2. 1 
p ycosh~1b+sirih~1b 

(15) 

(16) 

(17) 

(18) 

(19) 

2-5 



We turn next to the inversion of the Laplace transform n1(r,p), which 

is accomplished through the application of the complex inversion integral 

- 1 J pt-nl(r,t)- 2ni e n1(r,p)dp. 

Since ll1 Cr,p) has a ~;anch point at p • 0 due to the term ~l ·~ we 

adopt the integration contour shown in Fig. 2. One can show that the 

integrand has no singularities inside this contour and furthermore that the 

contributions of the integral along the semi -circular arc r vanishes as 

(20) 

R1 -+ oo • Hence by the extended Ca.uchy theorem the integral (20) is equal to 

the contributions along the paths BA, DC and the small circular contour s 

about the origin. We indicate the necessary steps to express these contribu­

tions in the real valued.form. 

Along the circle set 

ie ie ·de p = pe_ , dp = pe 1 , - TI < 8 < TI 

Then 

fL 11 pl/2 i8/2 
~9.=vn; =vrs; e ' £=1,2 

As the circle radius p -+ 0, the hyperbolic function contribution in 

nl(r,p) of equation (18) are approximated by 

coshp = 1 + 0 (p2), sinhp = p +0 (p3) 

Hence the bracketed term in (18) becomes, correct to first order terms 

£i~1+a~1 tR1 -r) Ei+a(R1-r) 
El~l +a~ 1 D-- = E:£ +ab 

Substituting for this into (20) one obtains with (21) the contribution 

Hm 1 J pt p-+0 2ni e . nl (r ,p)dp = 
s 

E{+a(R1-r) 
Roes E{+ab 

2-6 

(21) 

(22) 

(23) 

(24) 

(25) 
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Im (p) 

y+ioo 
---+--i 

A 

y-ioo 

Re (p) 

XSL 8412-5878 

Fig. 2 Contour integral for inversion of Laplace transform. 
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For the path BA set 

and make the following replacements in (18) 

= cosh (- in [ ]) = cosn [ ] 

sinhl11 [ ] =sinh(- in[ ] = - isin(n[ ]) . 

These expressions are substituted into (18) and a connnon factor of i is 

cancelled from the quotient. On placing the result into (20) and reversing 

the direction of integration one obtains the integral contribution 

where 

1 
1iiT 

Oo 

R c J -n1tn
2 

0 s . --.- e 
TTl 

0 

dn 
n 

G1 = c{ncos(n[R1-r])+ a sin(n[~-r]); G2 = cz~ n sin(n[R1-r]) 

Hl = E{ncos(nb) +a sin(nb); Hz= Ez~ nsin(nb) 
1 

For the path DC set 

2 in ~ 2 dn p = D1n e = 
' p n 

This changes the terms - i to i in equations (27) and (29) and thus alters 

(26) 

(27) 

(28) 

(29) 

(30) 

(31) 

the signs in the integrand quotient. In this case the integral contribution 

to (20) is 

1 
2ni J 

DC 

R c 
pt - - 0 s e n. (r,p)dp - -. -

l TTl 
(32) 

0 
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Finally combining the integral contributions (25), (30) and (32) one 

obtains the desired inverse 

But in view of (30) and the definition of a. by (15) this transfonns with help 

of (10) into 

00 2 

J 
-D tn 

= f(r) + e 1 I(r,n)dn, 
0 

where 

f(r) --r 

This is the solution for a stable nuclide in the backfill region. By similar 

arguments one can detennine the concentration field in the rock region. Since 

our principal interest centers on the nuclide concentration in the backfill 

and at the rock interface we shall not set out the solution in the rock field. 

The solution for a radionuclide is obtained by combining (8) and (34) 

Interchanging the order of integration yields 

00 

=f(r)+J 
0 

I (r, n) 
2 n1n 

1+ -:\-

dn + e 

2-9 
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(34) 

(35) 

(36) 



The first two terms represent the steady state solution and the last term 

the transient part of the concentration field through the backfill. ·when 

\ = 0 this result agrees with that for a stable nuclide. 

The early and large time asymptotic behavior for N1(r,t) is established 

as follows. It is plausible by physical arguments that the nuclide concentra­

tion at very early times has not penetrated very far through the backfill · 

which can thus be assumed to be of infinite extent. In this case the diffu-

sion in the rock can be ignored and the solution to this single region problem 

is given by 

e 

+ e 

- (r-R ).,[[; 
o D1 

erfc r:k --1M] + 

+y;;] } r~R, t SITL>ll 

This result can also be obtained from (37) by setting s:t = s.z and K:l = rs·· 

(38) 

At large times, when N1 (r, t) tends to ·the st·eady state solution, equation 

(37) can be given a form which is more suitable for physical and numerical 
N1(r,oo) 

interpretation. One observes from (8) that as t ~ oo, A is represented 

as the Laplace transform with the parameter p formally replaced by\, i.e. 

= \n
1
(r,\)/r 

Thus using (18) 

N
1 

(r,oo) 

c s 

- _Ro {El]JlCOSh]Jl (~ -r)+(EzJ.lz+a.)Sinh]Jl (R1-r) 

r El\Jl COSh (Ill b)+ (Ez]Jz+CI.) sinh (J.ll b) 

2-10 

(39) 

(40) 

.. 



where 

a. = j.l9, =~ 9, = 1,2 . 

This expression can be used to replace the first two terms on the right hand 

side of equation (37) so that 

c c s s 

2 

f
oo -n

1 
tn 

-At e + e ...:.._ __ _...,....2 

0 
l+(A/D1n) 

(41) 

With the concentration profile N1(r,t) known it is a straightforward matter 
aN 

to compute the surface mass flux -s1cr1Df arl at the waste form surface and at 

the backfill-rock interface. The result of such calculations are presented in 

Chapter 3. 
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3. Tiffi NUMERICAL ANALYSIS OF NUCLIDE MIGRATION THROUGH A BACKFILL 

H. Lung and P. L. Chambre 

In this chapter we evaluate and discuss the results of the transient 

nuclide mass transport through a backfill as developed in chapter 2 • For 

convenience we consider the transports of stable and radioactive nuclides 

separately. 

A. The Mass Transport of a Stable Nuclide . 

The nuclide concentration c1 (r,t) in the backfill region is given by 

equation (34) of chapter 2 . From it one can calculate the three quantities 

of principal interest in evaluating the performance of the backfill. Since 

the nuclide concentration at the waste surface is prescribed at the solubility 

limit, the concentration at the backfill-rock interface is of interest. It is 

computed from, see Eqs. (34), (35) of chapter 2 

CXl 2 

f -D tn 
= f(r) + 

0 
e 1 I(r,n)dn, R

0 
~r ~~' t ~0 

where 

f (r) 
R 

=__q_ 
r 

l+a(~ 

1+0(~) 
, I(r,n) 

H(n) = [e::in cos nb +a sin nb] 2 
+ [13e::znsin(nb)] 2 

The other two quantities of concern are the total mass fluxes M from the waste 

form surface and through the interface between backfill and rock. Since 

M(r,t) 2 = 4·7Tr 

one obtains from (1) 

M(r,t) = 

cs 

CXl 

J 
0 

3-1 
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Some special cases of these results were investigated. With identical 

rock and backfill properties, i.e. Ki = Kz, cl = cz, the results reduce to 

those of a single region problem 

which agrees with (38) 

M(r, t) 
c s 

r>R,t>O 
- 0 

of chapter 2 and 
2 

{ 

(r-R0 ) } 
r-R - 4D t 

erfc . 0 + r e 1 r CIDl~ ~ >R,t>O 
- 0 

As the steady state is approached (t + oo) the integrals in (1), (2) will 

vanish leaving 
cl(r,oo) 

= 

and 

M(R oc-) o' 

R 
=__q_ 

r 

f(r) 

since there can be.no accumulation of the diffusing specie in the backfill. 

(5) 

(6) 

(7) 

(8) 

Equation (7) is a special case of (40) of chapter 2 . The last two results are 

applicable for arbitrary Ki and ci (~ = 1,2) values. 

The evaluations of (1), (3) and (4) were carried out on a CDC-7600. An 

integration subroutine named DOlAJF was used to evaluate the integrals. The 

description of this subroutine can be found in Appendix 3A. 

Sl.nce the · d t · th t -D1tn
2 

which decreases rapidly in 1ntegran s con a1n e erm e 

magnitude as n increases (when D
1
t > 0) a cut-off value 6 was introduced for 

the upper iPtegration limit. 2 Numerical experiments showed that for D1t6 ~ 20 

the relative error bound for the value of the integral is 10-6. In the calcula­

tions we used D t6 2 
= 100. 1 

3-2 
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Figures 1 and 2 show the graphs· of M(R ,t)/c and M(R-,t)/c v.s. time with 
0 s --r s 

sl and Kl, KZ as parameters. Figure 3 exhibits c1 (R1 ,t)/cs in a comparable 

fashion. The remaining parameters were chosen as follows. The sphere radius 

was taken as 65.9 em so that the surface area of the spherical waste form is 

equal to the surface area of the spent fuel canister which has a radius of 17.8 

em and a height of 470 em. The backfill thickness is 30 em. The rock porosity 

s 2 = 0~~1 and the nuclide's diffusion coefficient Df = 10- 5 em2/sec in both 

backfill and rock. 

A cursory look of Figures (1)-(3) reveals that one can subdivide the time 

span into three separate intervals which will be called 

a) The early time span, ETS, which is controlled mostly by the backfill, 

b) TI1e intermediate time span ITS, which is controlled by both backfill and 

rock, and 

c) The late time span LTS, which is·controlled mostly by the rock. 

The figures show that these spans do not possess distinct separation points but 

their existence can be argued on physical grounds as follows. 

Initially there is no nuclide present outside the waste form. As time in­

creases the specie diffuses from the waste surface into the backfill but in the 

ETS has as yet not reached the rock interface. Hence in this time span the mi-

gration of the nuclide is controlled by the backfill's properties only. 

As the concentration of the backfill-rock interface rises both regions begin 

to affect the migration until the backfill is mostly penetrated. After this ITS 

the rock primarily controls the nuclide transport and the backfill properties 

play a subsidiary role. Eventually the rock will also be fully penetrated and 

a steady state will have been reached. 

A semi-quantitative way to delineate the time spans is to compare the mass 

transfer rate at the backfill-rock interface with the rate at the waste surface. 
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In the ETS, M(R1,t) ~ 0, since the nuclide has not yet reached the interface. 

On the other hand, in the LTS, M(~,t) ~ M(R
0
,t), since the backfill is then 

. . 
almost saturated. Thus one can use the ratio M(~,t)/ M(R

0
,t) as an indicator 

for the separation points. We adopt the time Tb and Tb defined by 

M(R1,Tb). _ M(R1,T\)_ 
. M(Ro,Tb) - 0.05 and M(Ro,TG) - 0.95 (9) 

as the end points of the ITS. This delineates the three time intervals except 

for the end point of LTS which borders the steady state. In order to gain 

insights into the order of magnitude of Tb and Tb* computations were performed 

with equations (3), (4) and (9) with the following results 

Case , , 
K' K' Tb (yr) Tb(yr) Number e:l e:2 1 2 

1 0.01 0.01 10 10 2.2 1 

1 

without 8.9xl0 

2 0.01 0.01 103 103 2.2x102 3 backfill 8.9xl0 

2 7 0.2 0.01 10 10 7.6 2.0xl0 .., 

4 0.2 0.01 103 10 2.2x103 l.lxlO 4 with 

5 0.2 0.01 10 103 2.0 1.80xl0 2 backfill 

6 0.2 0.01 103 103 7.6xl0 2 2.0x104 

The separation time is an indicator of the backfill retardation function since 

it shows the breakthrough time of the backfill. Hence a larger Tb represents 

a better backfill retardation performance. 

·In the above table, cases 1 and 2 show the results for no-backfill. 

The rest show the results with backfill. The porosity of the rock is 0~01 and 
2 

the porosity of backfill is 0 · 2 in cases 3-6. From this table one can see 
crl 

that when Ki:.::_ Kz, i.e. cases 3, 4, and 6. Tb is longer than that for no-

backfill, i.e. case 1 (against cases 3 and 4) and case 2 (against case 6). 

But when K{ < Kz as in case 5, Tb will be shorter as seen in case 2. 
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Therefore a backfill material with a larger Ki compared to Kz is preferred. 

The drawback of the concept of Tb is that a larger Tb does not neces­

sarily mean a smaller mass transfer rate at the backfill-rock interface. For 

example, Tb = 220 years for Kz = 103 without backfill as shown in case 2 while 

it becomes 760 years when a backfill layer with Kl = 103 is added. Though the 

Tb is longer with the backfill present, the mass transfer rate at the backfill­

rock interface is always higher than the mass transfer rate with the backfill 

removed, as seen in Fig. 1 and 2, dashed curves for K{ = Kz = 103 

A better way to evaluate the backfill performance is to use the ratio of 

the mass transfer rate at the backfill-rock interface for the case with back-

fill to the rate without backfill. This will be discussed later. 

We now consider the detailed behavior of the solution in each of these 

three time spans. 

i) Early Time Span (ETS) 

Since backfill controls the mass transport in this time span, one expects 

that the same mass transfer rate at the waste surface should be obtained for 

the same backfill properties regardless of the rock region. This is verified 

in the calculations as can be seen in Fig. 1 and 2, solid curves for Ki = Kz = 103, 

and K:l = 103, Kz = 10. For the mass transfer rate at the backfill-rock interface, 

one would expect a very low value in this time span. This can be seen from the 

steep slopes of the dashed curves in Fig. 1 and 2. 

Since a large K1 means a large retardation effect, the appearance of the 

mass transfer rate at backfill-rock interface will be delayed for larger K1, 

as seen in Fig. 1 and 2, dashed curves for K:l = 103, Kz = 10 and K:l = Kz = 10 . 

On the other hand, the mass transfer rate at the waste surface increases with 

increasing K1, due to the steepened concentration gradient near the waste 

surface, as seen in the same Figures, solid curves for Kl = 103, Kz = 10 and 

Kl = Kz = 10. 
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ii) Intermediate Time Span 

In this time span both backfill and rock exercise control over the mass 

transport. Nuclides start penetrating into the rock and the interface con-

centration increases with time as seen in Fig. 3a and 3b. The effect of rock 

on the mass transfer rate becomes more and more significant and tends to be the 

controller of the mass transport. This can be seen in Fig. 1 and 2, solid curves 

for Kl = Kz = 10
3

, and Kl = 10
3, Kz = 10. 

iii) Late Time Span 

The backfill is now fully penetrated and has only little effect on the mass 

transport in this time span. The concentration profile and the mass transfer 

rate only depend on Kz. This is shown as follows. 

co 

The integral term in Eq. (1), J 
-D t 2 nsin n (r-R ) 

e 1 0 d b . H(n) n, can e approx1-
0 

mated by J IJ. 

0 

-D1tn 2 nsin n(r-£
0

) 

e H(n) - dn, where IJ. is the cut-off point for the 

integration. 2 As mentioned earlier, the requirement for IJ. is that D1t!J. > 20 to 

obtain a six-digit precision in the computations. Hence for a very large t, 

one needs only a very small IJ.. For all nb < !J.b << 1, one gets 

If 

sin ( n b)_ ~ n b , cos(nb) ~ 1, sin n(r-R) ~ n(r-R ). 
0 0 

further n8E:zb -" + a.b, the integral then transforms << E:l 

2 
IJ. 2 n (r-R ) 

-D tn 0 dn 1 e 1 
CE:in+a.nb) 2+(8E:zn2b)

2 

(r-R ) 
0 dn 

(E:" +a.b) 2 
1 
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, .. 

.. 

(r-R ) t 2 . 
-D1 tn dn 

= 0 

Ce::l+a.b)
2 e 

0 

(r-R ) rn.p; 0 ( /i5lf 6) 
Ce::l+a.b)

2 2 Dlt erf 

(r-R
0

) . /TI _ (1 
~ (e:"+ a.b)Z zVDJ.f, since erf (v'D1t A)> erf (v'ZO) ~ 1. 

1 

With this the transient integral contribution in (1) becomes for very large 

time 

(r-R ) 
0 (A) 

A similar form can be obtained for M from (3) except that the factor (r-R ) in 
R . . o 

(A) is replaced by _£ . From (A) one finds that at very large t the concen­
r 

tration profile or the mass transfer rate depends on KZ alone. Eventually the 

K; dependency will also vanish when the steady state is reached. 

One observes from Fig. 1 and 2 that both mass transfer rates at waste sur-

face and at backfill-rock interface increase with increasing K2, as shown i11 

both solid and dashed curves for Kl = Kz = 103, and K! = 103, Kz =· 10. This is 

due to the larger adsorption of the nuclides by the larger K2 in the rock which 

causes a steeper concentration gradient in the rock and extracts more nuclides 

from the waste form. In the LTS the difference between the mass transfer rates 

at waste surface and backfill-rock interface can hardly be seen. This means 

that almost all the nuclides released from the waste form are diffusing into the 

rock. The backfill can no longer retard the nuclides passing through it. 

In all these three time spans, the mass transfer rates at waste surface and 

at backfill-rock interface decrease with decreasing backfill porosity. The 
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same result also applies to the backfill-rock interface concentration, see the 

corresponding curves in Fig. 1, 2, and 3. Hence a low porosity material should 

be used as the backfill when available. 

As mentioned earlier in page 3-9, the ratio of the mass transfer rate at the 

backfill-rock interface with the backfill present to the rate at the same position 

without backfill can be used to show the effectiveness of the backfill layer. For 

the case without backfill (El = Ez, K1 = Kz), the interface mass transfer rate is 

calculated at an artificial plane which has the position equal to the actual 

backfill-rock interface position. Fig. 4 shows this ratio as a function of time 

with Kl and Kz as the parameters. Backfill porosity is taken as ~~2 and all 

other parameters (R
0

, b, Df' and El) are the same as in Fig. 1, 2, and 3. Re­

tardation coefficient Kz used for rock is 10 and 103 and that used for backfill 

is 10, 102 and 103 for each value of Kz. The dotted segments are not reliable 

due to the limitation of the precision in computations. Th~ solid curves are for 

Kz = 10 while the dashed ones are for Kz = 103. One can see that for Ki > Kz 
such as K:l = 102, 103 and Kz = 10, this ratio is less than l.lility up to some time. 

For Ki = 102 it is 100 years and for Ki = 103 it is about 1,500 years. This 

implies that within this time span the interface mass transfer rate in the presence 

of backfill is always less than that without backfill although the porosity changes 

f 0.01 t 0.2 rom-- o-. 
crl crl 

On the other hand, when Kl ~ Kz as 1n all other curves, the 

ratio is ah-.rays greater than 1. It means the backfill does not add any benefit 

to the retardation of the mass transport. Comparing the curves for Kl > Kz, one 

finds that the effective time to retard the mass transport increases with increasing 

As a conclusion, a low-porosity backfill should be used to limit the mag-

nitude of the mass transfer rates and a larger retardation coefficient for 

backfill compared to that for rock is required to lengthen the effective 
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retarding time in backfill layer. 

There is a restriction on the applications of the solutions (1) and (4). 

One can not use them to calculate the limiting case s 2 = 0. For s 2 = 0, the 

transient integral contribution in both equations vanish leading to the steady 

state solutions. It means either the problem is time-independent or it reaches 

the steady state instantaneously. This is certainly not the real situation of 

this problem. Hence a separate method must be applied. Since s 2 = 0 implies 

that the nuclides can not diffuse into the rock, one will have a zero gradient 

(~~)r 0 condition at the backfill-rock interface. Therefore the governing 

equation for rock and the zero concentration B.C. at infinity will not appear, 

and the interface B.C. should be changed to 

By solving the proper governing equation and side conditions, one can get a 

correct solution for this special case. 

B. The Mass Transport of a Radionuclide 

The radionuclide concentration N1(r,t) through the backfill region is 

given by equations ( 40) and ( 41) of chapter 2. 

N1(r,t) 

c s 

N1(r,oo) 
=---c s 

2 -D tn 
e 1 

I(r,n) dn 

(10) 

(11) 

where I(r,n) is defined in (2). The total mass flux at any point in the backfill 

is then 

(12) 

Again the three principal quantities of interest are the mass transfer rate at 

the waste form surface and the radionuclide concentration and its mass transfer 
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rate at backfill-rock interface. The numerical integration was used to 
. 

calculate N1 (r, t) and ~.f(r, t) in Equations (11) and (12) .. The same subrou-

tine EOlAJF used in Part A was adopted again and is described in Appendix 3A. In 

these computations, three different radionuclides were considered. They are 
237

Np with half life 2.14xl06 years, 14c with T112 = 5730 years, and one artifi-

244 cial nuclide with T112 = 15.3 years which is close to Cm(T112 = 17.6 years). 

Fig. 5 shows M(R
0
t)/Cs and M(~,t)/Cs v.s. time with T112 as the parameter . 

Other parameters used are £l = 0.2, Ez = 0.01, K{ = Kz = 103 The results for 

stable specie (T112 = oo years) are also plotted for reference. Fig. 6 and Fig. 

7 show the same quantities with different parameters. In Fig. 6, £{has been 

changed to 0.01, i.e. it exhibits the single region results. In Fig. 7 not only 

£{has been changed to 0.01, but Ki also changed to 10. Fig. 8 to 10 shows the 

interface concentration N1(R1,t)/Cs as a function of time with the three s~ts of 

parameters mentioned above. One observes that for Tl/Z = 15.3 years the interface 

concentration is so small that almost all radionuclides released from waste 

surface have decayed before they reach the interface boundary. This can be 

seen from Eq. (11) for N1 (R1,t) at steady state: 

(13) 

As T112 decreases (A increases), ~l 

sinh c~lb) increasing very rapidly, 

can also be used to calculate the range of T112 for which the radionuclides will 

have decayed during the diffusion through the backfill layer. From (13) one 

can solve for A in terms of N1(R1,oo)/Cs and other parameters. For example, if 

3 N1(R1,oo)/Cs = 0.01, £i = 0.2, Ez = 0.01, Ki = Kz = 10 , as used in Fig. 5, one 

finds that A = 8.5xl03/yr, or T112 = 81 years. This means if a radionuclide 
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with half life no longer than 81 years at least 99% of the specie will have 

decayed in the backfill layer before reaching the interface boundary. One 

would expect that for larger K{ or smaller s1 this decaying effect will be 

more significant because of the longer traveling time in the backfill due to 

the higher retardation. For instance, if s1 = 0.01, r112 may be as long as 

110 years if other parameters are fixed. On the other hand, when the half 

life is so long as 2.14xl06 years c237Np), the interface concentration is al­

most equal to that of the stable specie. ·Hence a radionuclide with half life 

of a few million years can be treated as a stable nuclide for the backfill 

calculations. This is also shown in Fig. 5 to 7. In these figures, the mass 

transfer rates M(R ,t)/C and M(R_ ,t)/C for 237Np can hardly be distinguished 
0 s -1. s 

from the results of stable specie. The results for 14c and 244an are somewhat 

different. Since the radionuclides with relatively short half life will have 

decayed an appreciable amount in the backfill, a lower concentration profile 

will be produced in the backfill resulting in a steeper gradient near t:1e waste 

surface. Hence a higher mass transfer rate at the waste surface will be ob-

served, as shown in curves for T112 = 15.3 and 5730 years. On the other hand, 

the mass transfer rate at the backfill~rock interface can not so easily be 

predicted. For very short-lived radionuclides, such as 244cm, the concentration 

drops to such a low level that almost not a single nuclide can reach the inter­

face boundary. tlence the interface mass transfer rate is very close to zero, 

14 as shown in Fig. 5 to 7 for the case T112 = 15.3 years .. For C, however, the 

situation is changed. Since not all the nuclides will have decayed in the 

backfill, the concentration gradient at backfill-rock interface may be either 

higher or lower than the stable specie. For instance, the curves for 14c 

in Figs. 5 and 6 have the higher numerical values than the curves for 

stable specie, while in Fig. 7 they become lower. It is '"orthwhile noting 
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that the time to reach the steady state is shorter for radionuclides than for 

stable specie, as seen in Figs. 5 to 7, since the decay can accelerate the 

mass balance in addition to the spherical geometry. 

As a conclusion, the backfill can effectively stop the mass diffusion for 

very short-lived radionuclides, but makes no difference between the very long-

lived radionuclides and the stable nuclides. For medium-lived radionuclides, 
1 

though the decay in the backfill will lower the concentration profile, as shown 

in Figs. 8 to 10, the interface mass transfer rate may not be necessarily lower 

than the stable species. This is contradictory to what was expected by some 

other workers. Hence a complete transient analysis like this one should be 

used to predict the backfill performance. 

The following comment was supplied by Dr. W. Lee: 

One of the important potential uses of results in Chapters 2 and 3 is to show 

compliance with the NRC release rates requirement. Within the repository 

projects the approaches to showing such compliance is not well developed. Part 

of the reason is that the boundary of the engineered barrier system is not well 

defined, and 1nay include some host rock in addition to the waste package. The 

predictive tools developed in Chapters 2 and 3 will apply no matter where the 

boundary is set. The case of the boundary set in rock is illustrated by the 

calculations in which the porosity and retardation of the rock and backfill are 

the same. 
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Appendix 3A 

DOlAJF is a general-purpose integrator which calculates an approximation to 

the integral of a function f(x) over a finite interval (a,b): 

I = Jb f(x)dx 
a 

It is an adaptive routine, using the Gauss 10-point and Kronrod 21-point 

rules, and is suitable as a general-purpose integrator. It can be used when 

the integrand has singularities, especially when these are of algebraic or 

logarithmic type. 

The user can input the desired accuracy as the absolute and the relative 

ones. However, it can not guarantee, but in practice usually achieves the 

following accuracy: 

j I- I a I < max Cj abserr j , j relerr x I p 
where 

Ia = computing result for I 

abserr = desired absolute accuracy 

relerr = desired relative accuracy 

(1) 

(2) 

Equation (2) was verified for the limiting case that the backfill and rock have 

the same properties, that is, Eq. (5) and Eq. (6), and is assumed to be accept-

able for other calculations. 
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4. MASS TRA~SPORT IN BACKFILL Willi A NON-LINEAR SORPTION ISOTHERM 

H. C. LUNG 

P.L. CHAMBRE 

One of the functions of the backfill is to retard the migration of the 

radionuclides from the waste form by adsorbing the nuclides on its surface. 

The sorption effect is usually measured by the so called distribution co­

efficient defined as 

- Ns 
Kd(Nf) - Nf 

where Nf = concentration of nuclide in liquid phase, 

N = concentration of nuclide in solid phase; s 

The relationship between the nuclide concentrations in the liquid phase and 

(1) 

that in the solid phase under equilibrium condition is described ~y the sorption 

isotherm. The retardation coefficient is then defined by [1] 

1-E: 
K(Nf) = 1 + --E:-- Kd(Nf) (2) 

where E: = porosity of the medium. 

Usually one assumes a proportionality between Nf and Ns so that Kd(Nf) 

and therefore K(Nf) are constants in time and space. However, if the nuclide 

concentration in liquid phase is sufficiently large so that the solid phase 

can not adsorb all the nuclides then sorption saturation in the solid phase 

will occur [2]. 

Frequently a Langmuir sorption isotherm is assumed to take into account 

the sorption saturation. Figure 1 shows the Langmuir isotherm with Q the 

saturation concentration in solid phase. In the present anlaysis we approxi-

mate the langmuir isotherm (the solid curve) by two linear segments (the 

dashed lines) so that for liquid concentration Nf < N*, we have a linear 
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relationship between Nf and Ns; while for Nf < N*, the solid phase is satur­

ated and Ns = Q for all Nf. N* is called critical (nuclide) concentration. 

We wish to model the radionuclide transport controlled by a sorption 

isotherm. We assume one-dimensional nuclide transport through the backfill 

and neglect the effects of convection in the liquid phase and diffusion in 

its solid phase. The governing equations for the nuclide concentration in 

the absence of precursors and sources outside the waste form are given by 

[1] 

where Df = diffusion coefficient of nuclide in liquid phase 

~(Nf,Ns) = interphase reaction rate 

A = decay constant. 

On adding Eq. (3) to Eq. (4), one obtains 

(3) 

(4) 

(5) 

Suppose the equilibrium is established for the nuclide concentrations between 

the phases. If the approximated Langmuir isotherm is applied, then for 

Nf > N*, Ns = Q = constant, and Eq. (5) reduces to 

2 a (EN£) 
= D - AEN£ - A(l-E)Q, Nf > N* . 

f ai 
N 

For Nf < N*, we have a linear isotherm so that by equation (1), N; = Kd. 

If this is combined with (2) and substituted into (5) one gets 
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Fig. 2 shows the anticipated concentration profile Nf(x,t) at the fixed time 

t in the backfill. With the approximation of Langmuir isotherm the backfill 

can be divided into two parts: 

a) an inner saturated region, close to the waste form, within which Nf 

is greater than N*, and 

b) an outer unsaturated region of lower concentration. 

If we assume a zero initial condition and a constant boundary concentration 

at the waste surface (x = 0) which is greater than the critical concentration 

N*, then at time zero the entire backfill is unsaturated. But as time increases 

saturation will occur at waste surface and an interface moves outward into the 

backfill. The interface position s(t), between the saturated and unsaturated 

regions, is thus a function of time with s(O) = 0. 

If one applies the above side conditions to Eqs. (6) and (7) with the 

assumption of constant properties one obtains for the saturated region, with 

- AN (x,t) s 

unsaturated region, with Nu - Nf 

Initial conditions 

Boundary conditions 

N (O,t) = N > N*, t > 0 s 0 

Ns(s(t),t) = Nu(s(t),t) = N*, t > 0 
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1-e: -A--- Q, 0 <X< s (t), t > 0 e: 

X > S (t)' t > 0 

(8) 

(9) 

(10) 

(11) 

(12) 

• 
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Fig. 2 Conceptual concentration profile in backfill at time t. 
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aN (x,t) . s 
e:Df ax = 

oN (x,t) 
u 

e:Df ax 

N (oo,t) = 0, t > 0 
u 

~ x = s(t), t > 0 (13) 

(14) 

The initial condition for N (x,t) is unspecified because at t = 0 there exists s 

no saturated region in the backfill. Equation (11) described the nuclide 

concentration at the \vaste form surface to be greater than the critical con-

centration because otherwise there will be no saturation effects. Equation 

(12) assures that the critical concentration is reached on both sides of the 

moving interface and (13) insists on the equality of the flux at this surface. 

Eqaution (14) is self evident. The last term in (8) can be given an alternate 

form. It follows from the approximation of (1) that Kd = Q/N*. If this is 

substinuted into (2) and that equation is solved for Q one obtains 

where 

1-e: Q = w 
e: 

W= (K-l)N* (15) 

One can thus replace the term in (8) by AW. Equation (15) shows that for 

K = 1 (Kd = 0), Q = 0, which verifies that there is no adsorption in the 

solid phase. 

The Early Time Solution 

For the time span much shorter than the half life of the radionuclide, the 

decay terms in both Eq. (8) and (9) can be neglected. The governing equations 

2 
become 

oNs(x,t) 
at 

o Ns(x,t) 
= Df - 2 ~ 0 < X .s.. s (t)' t > 0 

ax 

oNu(x,t) _ Df 
at - K 

2 a Nu(x,t) 
2 , x ~ s(t)~ t > 0 

ax 

The side conditions remain unchanged. 

The solutions for Ns(x,t) and Nu(x,t) have the following forms 
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(16) 

(17) 



.. 

N (x, t) 

(z~) s =A erf + 1, 0 < X < s(t), t > 0 N 
0 

N (x,t) 

= B erfcC{]:;) u , x .:_ s(t), t > 0 N 
0 

A and B are unknown constants to be determined by the boundary conditions. 

Equations (18) and (19) already satisfy (10), (11), and (14). 

From (12) one obtains 

Ns ( s( t) , t) _ N* 
No -No 

=A erf ( s(t)\ + 1 
2/Dft/ 

= B erfc ( s ( t) ) 
rrs:t 

2'1+ 

N (s(t), t) 
=-u~-N 

0 

, t.:_O 

(18) 

(19) 

(20) 

Since A, B, Df, and K are constants, the argument in the error functions must 

also be constant. Therefore, 

s(t) = k or s(t) = kit t _> 0, 
It ' 

where k is constant in time and must be a function of the parameters of the 
N* problem, i.e. Df, K, and ~ 
·o 

From (20)and (21) one gets 

A= 

N* 
-- 1 
No 

erf(_E__) 
ZITI£ 

N* 
~ :s - 0 -erfc(~ 
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(22) 



Substituting into (13) one obtains 

exp I(K-1) &-) erfc ( k ) 
f UD/K 

erf(_R__) 21ITf 

N* ~ r;; 
N "VK 

0 

( 
N*) 1- No 

= 0 (23) 

One can solve this transcendental equation for k. The results are shown in 

Fig. 3. There k is plotted as a function .of the dimensionless interface concen­

tration N*/N
0 

with the retardation coefficient K as the parameter. Df is fixed 

in these computati~ns at 10-S cm2/sec. One sees that as N*/N + 1, k + 0, since 
0 

the saturated region becomes very narrow, on realizing that N* < N (x,t) <N - s 0 

and that N + N*. On the other hand, as N*/N + 0, k + oo. In this case there 
0 0 

is almost no unsaturated region in the backfill and hence the interface position 

will move very rapidly towards infinity. Five different K values were used in 
4 3 3 2 the calculations. They are 10 , 4 x 10 , 10 , 10 , and 10. It i~ seen from 

Fig. 3 that for an increasing K the interface position moves more slowly, since 

a large K implies a strong retardation effect and hence a slowdown of the satur-

ation in the backfill. 

The interface position s(t) is an indicator of the backfill performance 

because it shows how quickly saturation takes place with a resulting loss of 

nuclide retardation. If the backfill thickness is L then the retardation by 

the backfill disappears when the saturation interface penetrates a distance 

equal to L. The breakthrough time Tb for such penetration is given by 

(24) 

Fig. 3 also shows the breakthrough time as a function of N*/N with the same 
0 

parameter K. The backfill thickness is taken to be 30 em. Since Tb is inversely 

proportional to k2, as N*/N
0 

decreases, Tb decreases, and asK increases, Tb 

increases also. The importance of saturation in the backfill can be seen by 
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Fig, 3 Breakthrough time Tb as a function of normalized critical concentration and retardation 

coefficient in backfill, 



comparing these results with those in which saturation is assumed absent. 

Assuming a linear isotherm with slope K = 4000, and for the (same) diffusion 

coefficient Df = 10-5 cm2/sec, Nowak [3] showed that it would take 1000 years 

to raise the concentration at x = 30 em to 1% of N . However, if saturation 
0 

, can occur, with N* = 0.01 N , the breakthrough time is reduced to 60 years as 
0 

seen in Fig. 3, i.e. only 6% of the breakthrough time in absence of saturation. 

In the present analysis, a semi-infinite medium for backfill, as described 

in B.C. (14) was assumed. Therefore some restriction must be imposed if one 

wants to apply the results to a finite backfill layer. We assume for this that 

the concentration at the outer edge of the backfill must not exceed 10% of the 

concentration at the inner edge of the backfill, N
0

• This limits the time span 

of the solution to a concentration N*/N < 0.1 at the backfill-rock interface, a-
which is indicated by the vertical dashed line in Fig. 3. Since for K < 104 

and N*/N <- 0.1, Tb is always less than 2000 years, nuclides with half lives a-

greater than 5000 years can be treated as nondecayin.g for the purpose of using 

the early time solution. 

The Steady State Solution 

At steady state, time derivations in (8) and (9) vanish so that 

a2N (x) 
Df 

s 
2 ax 

Df a2N (x) u 
K ax2 

AN (x) - AW = 0, 0 < x ~ s(oo). 
s . 

AN (x) = 0, x > s(oo), 
u -

where W = (K-l)N* as defined in (15). The boundary conditions are 

(25) 

(26) 

Ns(O) = N
0 

> N*, Nu(oo) = 0 (27) 

N (S) = Nu(S) = N*, S = s(t = oo), soo 00 00 

= - t:D 
f 
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where Soo is the interface position when steady state has been reached. The 

solutions of (25) and (26) subject to the boundary conditions (27) - (29) 

take the fonns 

+ Be 
-k s - W 0 < X < S ' - oo' 

Nu(x) = Ce 

where k ={f._ 
s Df 

-k X 
u 

X > S , 
- 00 

k = {fi. 
' u D f 

and A, B, Care constants of integration. After substituting (27) - (29) into 

(30) and (31), one gets 

f [ N* (1 + IK ) + W] = 

Let 

k s k s 
W(e s 00-l) + N e s oo -N* 

0 

k s f [N* (1 ·: IK)+ W] 
s 00 = 8, e = y, 

then 

0~ + N
0
)y - (8-W-N*) = 0 

Hence 

y = 
(W+N ) + YCW+N )

2 
+ 48(8-W-N*) 

0 0 
28 

so that 

S =- fD; lao y 
ro Vt- o 

(30) 

(31) 

(32) 

(33) 

(34) 

(35) 

(36) 

In the solution of y the choice of root is detennined so that log y is non-negative. 

The radicand is always greater than [ (W + N
0

) - 2B] 2 since N
0 

is larger than N* by 

definition. 

Fig. 4 shows the steady state interface position S
00 

as a function of N*/N
0 

4 for a half life r112 = 10 yr. Similar to the transient case an increase in the 
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retardation coefficient K results in a decrease of S
00

• The effect of decay can 

be seen from the equation (36). A decrease in r112 (an increase in A) decreases 

S
00

• Although the semi-infinite medium assumption was used in solving this prob­

lem, one can still get some insight into the effects of saturation. If, for 

N* 4 example, Nl = 0.01 and K = 10 , then S
00 

is about 300 em for a radionuclide of 
4 0 

T112 = 10 years or 30 em for r112 = 100 years. So if for a backfill thickness 

of 30 em, and radionuclides with half lives longer than 100 years, the interface 

position from the waste form will always be greater than the backfill thickness. 

This implies that the backfill totally saturates before the steady state is 

reached and is thus rendered useless as a barrier to the migration of the 

radionuclides. This once more confinns the importance of the saturation of the 

backfill as already shown in the early time solution. For a boundary condition 

N* as Nl + 1, the saturated region disappears, resulting in a almost zero inter-
o 

face position as shown in Fig. 3. This is also true for S
00 

i.e. Soo + 0 as 
' N* 

~ + 1, though not shown in Fig. 4. 
0 

To.make the backfill more effective, one can a) increase the backfill 

thickness to lengthen the breakthrough time Tb as seen in (24); b) use a backfill 

material with large retardation coefficient K to slow down the interface movement 

which in turn increases Tb as seen in Fig. 3. A large K also implies a small Soo 

h . . 4 ) b kf"ll . 1 . h h. h N* . N* 1 h" h as s own In Fig. ; c use a ac I materia w1t Jg ~ , I.e. ~ + , w IC 
0 0 

will limit the interface position close to the waste form surface even at the 

steady state, as described in the previous paragraph. With proper combination of 

the above three suggestions, it is possible to make a backfill not totally satu­

rated and hence effective at all times. 
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5. STEADY STATE MASS TRANSPORT FRCM A PROLATE SPHEROID WITH BACKFILL 

P. L. Chambre and H. Ltmg 

In [1], we obtained the steady state solution as well as the early time and 

large time behaviors of the mass transport from a finite sized waste form by 

diffusion. The waste shape was approximated by a slender prolate spheroid of the 

same surface area and volume. Here we extend the steady state analysis to in-

elude the effects of a finite backfill layer between the waste and rock and 

include the transport by advection. 

The waste form is approximated by a prolate spheroid with a focal distance 

f (cf. Fig. 1). The surrotmding backfill is idealized by a prolate spheroid 

layer of the same focal distance. L is the backfill layer thickness at the 

equator of the waste form, ai the semi-major axis of the backfill, sp the rock 

porosity, and sb the backfill porosity. 

Water is flowing perpendicular to the axis of the waste form with a constant 

pore velocity U far from the waste. The backfill such as bentonite, possesses 

an extremely low hydraulic permeability. It is assumed that no water can flow 

inside it once it is saturated with water. Hence the nuclides can only be 

transported out of the waste by diffusion in the backfill and then carried away 

by both diffusion and convection into the porous rock. 

In the present analysis we consider the steady state solution in the ab­

sence of radioactive decay. Under this condition retardation effects in both 

backfill and rock regions do not arise. 

Governing Equation and Side Conditions 

The governing equation for the radionuclide concentration ~(a) in the 

backfill is given by 

~a (sinh a :~) = 0, as 2_ a 2_ a1 
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Figure 1. Prolate Spheroid Waste Form 
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Here a is the spatial coordinate in the prolate spheroidal system and as and 

o1 are the coordinates of waste surface and the backfill-rock interface, 

respectively (cf. Fig. 1). A solubility limited concentration Cs of the nuclide 

is assumed at the waste surface. The (spatially) average nuclide concentration 

· of backfill-rock interface is c
1 

which must be determined in the analysis. Thus 

(2) 

(3) 

where 

(4) 

From (3) one can compute the local mass flux 

(5) 

on the backfill-rock interface 

s I 
[ 

c -c ] 1 (6) 

ab = geometric factor for backfill (7) 

and Df is the diffusion coefficient of the nuclide in water. The total mass 

transfer rate out of the backfill rock interface of surface area S derived from 

concentration gradient in backfill is then calculated from (6): 

r~b(ai) = f j (ai)ds 

= 11T fo2~ j hSh\j;dtjidS 
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= {~ 
2

~ [ q,c~:;~~Carl] f sinS1,abDfd~dS 

= 4~f0b0bDf [ Q, (~:;:l (a
1
)] (8) 

where 
hs = (9) 

h~ = fsinh a sin S, (10) 

This mass transfer is carried away by diffusion and convection from the inter-

face botmdary into the exterior porous rock where the concentration vanishes 

far from the waste. The total mass transport rate from the interface into 

th!~ exterior field calculated from convection and diffusion in rock is represented 

in the usual form. . 
Mp = hmSICI 

where hm is the mass transfer coefficient, and s1 the interface area. 

defines a Sherwood number for mass transport by 

(11) 

If one 

(12) 

~vith L some characteristic dimension of the waste form and a the geometric 
0 p 

factor for rock one can restate (11) as follows 

Mp = (J;s a DfCIL ) (Sh) p p . 0 

BecauseL can be arbitrarily chosen, we choose it as (cf. Appendix SA) 
0 

Since 

Pe = 

L = Za o I 

the Sherwood number is primarily a function of the 
ua

1 ---D-- one can express (13) in the form 
ap f 

M = Sh (Pe) 4nC1s a D~I p p p t 

Peclet number 

Under steady state conditions the mass transported out of the backfill 
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(14) 

(IS) 



must equal the mass transported into the rock region in a tm.it of time. There-

fore one can equate equations (8) and (15) and solve for the interface concen-

tration CI as follows 

(16) 

On combining this expression with (15) one obtains the total mass transfer rate 

valid in either backfill or rock region 

M = 4ne:PcrPDfCsai 

(:~:~) (Q0 (as)-Q0 Car)] cosh(ai) + [sh(Fe)J -l 

(17) 

The physical content of this result is ·brought out by introducing the dimension-

less mass transfer resistances for backfill and rock 

so that 
4ni a DeC ai p p i. s M = -~__;__ __ _ 

R +R 
b p 

The Sherwood number dependence on Pe used in (16) and (17) is given by 

( cf. Appendix I) 
1 

Sh(Pe) = 

(18) 

(19) 

(20) 

Equation (19) shows that the resistance to the mass transport consists of two 

parts: the backfill resistance and the exterior medium resistance. The back­

fill resistance is due to the properties and geometries of both media, as can 

be seen from (18), and is independent of the flow conditions. On the other 

hand, the exterior medium resistance is determined by the backfill-rock inter-

face geometric factors ai and ai as well as the flm~ speed U. From (20) one 
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can see that Sherwood number is a monotone increasing function of Pe. An 

increase in Sh will thus reduce the exterior medium resistance in accordance 

with U8). The result is a decrease in the total resistance and hence an 

increase in the mass transfer rate. The effect of the flow condition on the 

concentration drop can also be seen from (16). As U increases and thus Sh 

increases, CI will decrease causing the concentration drop across the back­

fill to increase. 

Figure 2 shows the dimensionless interface concentration as a function of 
E: 

backfill layer thickness L with the parameters _£ and Pe. Figure 3 shows 
E:b 

the normalized mass transfer rate as a function of L with the same parameters 

as in Fig. 2. In all these calculations, a fixed diffusion coefficient 

Df = 10-S cm2/sec and a fixed rock porosity E:p = 0.01 were used. The waste 

form is taken to be that of a spent fuel canister with the radius 17.8 em and 

height 470 em. The approximating prolate spheroid of this waste form has a 

semi-major axis of 2 72 em and a semi -miaor axis of 20. 3 ·em and has the same 

surface area and volume as the spent fuel canister. 
E: 

The solid lines in Fjg. 2 and Fig. 3 represent the case for _£ = 
E:b 
Op 

i.e. backfill porosity is 20 times the porosity of the rock ti~es 
(Jb 

The 

oashed lines in Fig. 2 and Fig. 
(J (J 

porosity E: = E _£ = 0.01 _£ 

e: (Jb 
3 are for the case that _ _£= -- i.e. backfill 

E:b (Jp 

b p 0 b 0b 
be 0, 102, and 103. For the waste 

In both cases the Peclet numbers are taken to 

form geometrj, consider here Pe = 100 corres-

ponds to a pore velocity U = l.lcr m/year. 
p 

As L increases, the distance traveled by the nuclide inside the backfill 

increases. Since the nuclide can only be transported by diffusion, a longer 

travel distance implies a layer concentration drop across the backfill to 

rna intain an equil~brit.un concentration gradient at constant exterior conditions. 

rience the interface concentration CI is lowered as L increases for all the cases 

in Fig. 2. 
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Fig. 3 The mass transfer rate as a function of backfill thickness L, 
porosity ratio £p/£b and Peclet number Pe. 
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e: 
The effects of _£ on Cz is noteworthy. 

e:b 
tion drop is small even for Pe = 103 On the 

e: crb 
When ....E. = -- the concent ra-

e:b 20cr ' p e: crb 
other hand when ...E. = 

0 
, C 

Eb p I 

decreases in a more pronounced fashion as L increaaes. For Pe = 103 and L = 30 em, 

CI drops to about 10% of Cs. 

porosity e:b becomes so small 

This is due to the fact that when the backfill 

=(0.01 ~' most of the resistance to the mass 

transport resides in the backfill especially at highwater flow speeds. From 

(16) one observes that as the Sh number increases with increasing flow speed, 

CI decreases. This can also be seen in Fig. 2. 

From (18) one can see that the backfill resistance is proportional to 
e: 

the ratio _p_ but the rock resistance Sh(Pe) -l is independent of it. There-
e:b e: 

fore an increase in -2 will increase the backfill resistance but will not 
e:b 

affect the rock resistance. The final result is an increase in the total 

resistance and this causes a decrease in the mass transport according to (19). 

One can see this by comparing the solid curves with the dashed curves in Fig. 3. 

Consider next the effects of flow speed. As already mentioned an increase 

in the water flow or Pe number will increase the magnitude of the Sh number. 

This decreases the rock resistance but leaves backfill resistance unchanged. 

The net result is then a decrease in the total resistance and a higher mass 

transfer rate, as can be seen in Fig. 3 for different Peclet numbers. 

The effect of layer thickness on the mass transport, however, is more 

complicated. Since a change in the layer thickness L will cause both backfill 

resistance and rock resistance to be changed due to the changes in ai and ai, 

the net effect also depends on these parameters. From Fig. 3 one sees that 

for :p = 
0

2b0 (the solid lines), M increases with increasing L. But for 
b crp 

e: = e:b :b = 0.01 (the dashed lines), M decreases with increasing L. Since as 
p p 

L increases, both ai and ai increase, (cf. Fig. 1), causing ~(ai) to decrease 

from (4) and Pe to increase from definition. Hence the final results are an 

increased Pb and a decreased Rp from (18). Thus the competition between 
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~and R will determine the total mass transfer rate M from (19). If s is 

fixed aspin our calcu~ations, (~lRP) and hence M increase with the inc:eas" 

ing L for sb = 20 sp ~ , as seen in Fig. 3, due to the fact that part of the rock 

is replaced by a more porous backfill material which results in an increasing 

diffusive mass transport.
0 

On the other hand, (~!R~ and M decrease with the 

increasing L for sb = s -E . In this case the diffusive mass transport remains the 
p ab 

same but the convective mass transport decreases for there is no water flow in 

the backfill. 

In either case the mass transfer rate tends to a limiting value as L ap-

preaches to infinity. As the backfill thickness is increases, the convective 

transport effects in the rock region become less significant since the radio-

nuclide has more backfill to diffuse through. l~en L becomes. infinite, so that 

there is no more rock region, one is left with a diffusion problem in the 

backfill. The limiting value is then given by 

which was already obtained in [1], eq. (7.1.35). In conclusion, for the ranges 

of the parameters used in the calculations, a thick backfill is prefered if a 

low interface concentration CI is desired, as can be seen from.Fig. 2. Haw­
s ab 

ever, if a low mass transfer rate is to be achieved then for ~ = 200 one 
a o p 

should use as thin a backfill layer as possible. For sb = s ~ the situation 
p b 

is reversed, as seen in Fig. 3. 
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APPENDIX SA Derivation of Sherwood Number 

From (13) 

~1 = 27re:: a DfCI(L Sh) p p p 0 
(13a) 

Since for fixed geometry and properties, M is also fixed, one finds from (13a) 
p 

that (L
0
Sh) is also fixed. Hence for different choice of 1

0
, one will have 

different Sh. We choose 

L = 2a (14) o I 

From Eq. (17), the mass transfer rate out of the backfill is 

47re:: a DfCsai M=--:----=----__..__._ __________ _ 

(:::~) [~Cas)-~Ca1 )] cosh(a1)+ (sh(Pe)] -l 

(17) 

A5 Pe = 0, we want (17) gives the correct answer and the solution for the trans-

port by pure diffusion in both backfill and rock regions 

47re:: a DfC f M(Pe=O) = _____ ..._p_p.____s _____ _ 

(:~:~) [ Qo (as) -Qo Car)] +~Car) 
a I 

Comparing (17) and (a) one obtains, with cosh (a1) = :E , 

1 
Sh(o) = Q (a )cosh(a ) · 

o I I 

(a) 

This is the Sh number for mass transport from the backfill-rock interface for 

vanishing Pe. Now for small Pe number, the Sherwood number is expressed as [1] 

[ 
1 21 u] 

Sh(Pe) = Sh(o) 1 + 8 Sh(o) 0p~f . (c) 

Substituting (14) and (b) into (c) one gets 

[
1 + Pe ] 

2~(a1 )cosh(a1 ) 
, Pe small (20) li) 

(d) 
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For large Pe, we use the results for the infinite long cylinder with radius 

r
0 

= b1, the semi-minor axis of the backfill, and a finite section with length £ 

. _ ru;;;- Ur 
0 M = 8 c: a DfCI ~ dn-n £, -D- > 4, (7,2,28) in LBL-14842. Equating this 

p p rrap f ap f 

to (13a) one obtains 

8c: a DfCI-~ £ = 2rrc: a DfCI(L Sh) 
PP ('/~ PP o 

(e) 

Now we let the surface area of the prolate spheroid be equal to the surface area 

used for mass transfer of the cylinder section, assumingb1 = r
0 

<< a1 % f, so that 

sin-1 f._ "" 2!:_ and 
ar "" 2 

Hence 

Ur _ Uar (r ) 0 aor = Pe tanh Car) apDf - apDf 

Substituting (f)-(h) into (e) one obtains 

Sh(Pe) = f;e tanhar , Pe tanh Car) > 4 
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or 

( Pe ) 1/2 Sh(Pe) = n- tanha
1 

, Pe > 4 coth(a1) . (20) (ii) 

If any other choice for L is made, the expressions for the Sh number (20)(i)(ii) 
0 

will be different. This will alter the form of eqs. (16) and (17). !1owever, if 

the new Sh number forms are substituted into the altered eqs. (16) and (17) the 

present result is recovered. 

Reference 

This shows that the choice of L is arbitrary. 
0 

1. P.L. Chambre, to be published. 
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6. THE TIME DEPENDENT MASS TRANSPORT OF A RADIOACTIVE NUCLIDE FRQ\'1 A WASTE FORM 

BY A\J INTEGRAL l'v1ETIIOD 

Paul L. Chambre 

In reference [1] we investigated the diffusive mass transport from a 

cylindrically shaped waste form imbedded in a porous medium in absence of 

convection. On emplacement of the waste form the diffusing species is released 

from its surface at the solubility limit cs where upon it diffuses into the 

exterior unbounded space. 

Due to the mathematical complexities of the equations, only the early time 

and the asymptotically large time behaviors of the solution were investigated. 

We now fill this gap by constructing the complete time dependent solution to 

this problem by a suitable approximation method. Furthermore, the analysis 

is extended to include the effect of radioactive decay on the mass transport. 

As in [1], the shape of the waste form is approximated by a slender prolate 

spheroid. With (s,~,~) the prolate spheroid coordinates, a solution is sought 

for the species concentration c(s,u,t;A.) which is independent of tile longitudinal 

angle ~ on account of the uniformity of the surface concentration c . The species s 

concentration satisfies the governing equation, see (7.1.19), reference 

de 1 
ClT -

where 

c(s,~,t;A.) 

{~, [< ,2-1) ~n} ~ {<1-~2) ~~} _ -.c 

= c(s,~,t;>.) 
c 

s 
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Here Df is the diffusion coefficient of the radioactive species in water, K its 

retardation coefficient in the porous medium and f the focal distance of the 

prolate spheroid (see Fig. 7.1.1, reference [1]). 

ordinate of the prolate spheroid. 

The initial condition for the concentration is 

c(s,J..l,O;A.) = o, 

The boundary conditions are 

-

C(

00

ss,J..l,T.;A.)_= 1,} 
-1~~1, T~O 

c( ,J..l,T,A.) - 0, 

s defines the surface co­s 

together with a condition of synunetry about the midplane J..l=O, 

At this point it is convenient to r~move the radioactive decay term from 

(1) and construct the function c(s,J..l,T;O). We have shown [2] that with know­

ledge of c(s,J..l,T;O) the solution with radioactive decay is given by 

1" - 'f -x"[~- ~ , . -X"T -c(s,J..l,T;A.) =A e c(s,J..l,T ;O)dT +e c(s,u,T;O) 

0 
However, for simplicity of writing, all references to A. are now suppressed 

until needed. 

The above problem (1)-(6) is solved for the average surface mass flux of 

(3) 

(4) 

(5) 

(6) 

(7) 

the diffusing species which is the quantity of primary interest to us. For this 

purpose an approximation method is employed and its effectiveness and accuracy 

is tested later by comparing it with an exact analytical solution. 

As in [1], equation (1) is first subjected to a Legendre transform with 

respect to J..l 
1 

c(s,Zn,T) = J c(s,J..l,T) P2n(J..l)dJ..l 
0 
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On account of the symmetry condition (6) only even orders of the Legendre 

polynomial set 1[P2n(~)} are required. It has been shown that only P (~)=1 
0 

is needed in order to obtain the leading term of the early and late time 

solutions. Hence one of the assumptions of the approximation method consists in 

ignoring the ~ dependence of the surface mass flux and treating it as an average 

defined by 1 1 

c(<;,T) = J C(<;,~,T)P0 (~)d~ = J C(<;,~,T) d~ 
0 0 

assumed valid for all time. For simplicity of writing, the dependence on n 

has been suppressed. 

If one applies the integral operator (8b) to every term of (1), with 1=0, 

there results 

1 
a j( 2 2)- a at s -~ C(s,~,T)d~ = ar, 

0 

The second term on the right hand side vanishes at the lower limit by the sym­

metry condition (6) and vanishes also at ~=1. The integral is in view of (8b) 

(8b) 

(9a) 

1 1 . J (s2 -~~c(s,~,T)d~ = (s
2

- ~) c(s,T) - ~ J c(s,~,T)P2 C~)d~ (9b) 

0 0 
The integral on the right hand s~de gives no contribution to the terms for the 

early and late time solutions and the approximation method assumes this term to 

be negliglble for all times. Hence there results for c(s,T) 

(sz_ ~) ac~;,T) = ~s [(s2_1) ac~~,T) J , ss<s<oo, T>O (10) 

with the transformed side conditions 

c(s,OJ = o, (11) 

(12) 

c(oo,T) = 0, T~O (13) 
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This parabolic equation problem is solved by a moment method which in 

continuum mechanics is commonly called an integral method. Its physical 

motivation is the following. 

The diffusing species spreads from time T = 0 onward into the surronnding 

porous medium which is at zero concentration causing a concentration boundary 

layer to form about the prolate spheroid. The thickness of this layer, denoted 

by o ( T) , will increase in a monotone fashion with time. The species concentra~ 

tion varies from c(s ,T) = 1 at the inner edge of the boundary layer s 

next to the waste form to an-approximately zero value at its outer edge. This 

outer boundary progresses into the porous medit.nn where c=O. It is customary to 

assume that the gradient of the concentration also vanishes at this outer bound~ 

ary. These conditions replace those of equations (11) and (13) and their forms are 

o(O) = o 
oC (sS +o(T) ,T) 

c(z;;s+o(T), T) = ---;::-::---- = o os 

One now integrates (10) with respect to s over the boundary layer thick~ 

ness, which yields with (14b) 

J 
sS+o(T) 

- s s 

(r; 2 ~1/3) ~~ ds = ' T>O 

One can interchange the order of differentiation and integration by Leibnitz's 

rule and using once more '(14b) there results the integral form for the. concen­

tration boundary layer 

d 
dT 

c;, +o(T) J s (s2 -l/3)ccr,;,-r)dT = 

(,s 

(14a) 

(14b) 

(15) 

(16) 

The physical content of this equation is the following. The surface flux issuing 

from the waste surface, which is proportioned to the right hand side of (16), 

gives rise to the rate of accumulation of the species in the bolmJary layer of 
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thickness o (-r) • 

The principal part of the approximation method consists in a choice of 

a suitable concentration profile c(s,T) for the boundary layer. I assume the 

form 

c(s,T) , s ~s~s + o(T) , T>O s s 

where 

Q Cs) = ! log (s+l) o 2 s-1 

is the Legendre function of the second kind of zeroth order. One observes 

that this form automatically satisfies the required boundary conditions (12) 

(17) 

and (14b). On substitution of (17) into the integral form for the concentration 

boundary layer there results 

sS+o(T) 2 

d J· ( 2 ) [ s-ss] Q0Cs) 
dT s -1/3 1 - 8C""TT QoCs ) 

s s 
s 

Tnis can be transformed into an ordinary differential equation for the 

ds 

(18) becomes 

One can now separate variables and express, since the boundary layer thickness 

is initially equal to zero by (14a), T explicitly as a function of o in the 

following form 
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To simplify this one has from (17) 

With these, there results the solution for the growth of the boundary layer in 

the form 

1 Co) d'} dn 
where 

The inner integral can be readily evaluated which leads to 

(21) 

(22) 

(23) 

(24a) 

1 J0 (r 2Cn)-I1 Cn)]dn 
1 co) = ~ (24b) 

, QoCss) n.c(A+Bn) 
0 

The functions r 1 (n), r 2 (n) are listed in Appendix 6A. The remaining integration 

in (24b) was performed numerically and yields the inverse function o=o(-r) 

describing the boundary layer thickness as a function of time. , 

With knowledge of o=o(-r) one can at once calculate the transform of 

the concentration profile c(s,1). By applying the Legendre inversion formula 

with n = 0 to this, one recovers c(l:;,V,T) = C(l:;,T) to the present approximation. 

The quantity of primary interest to us is the surface mass flux of the 

species from the prolate spheroid surface which is given by [1], eq. (7.1.60) 

and (17) 
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. ' 

ac I 
~ r;=r; 

s 

(25) 

where 

(26) 

From the above discussion o(T) can be considered to be a known function in (25). 

This result is vafid in absence of radioactive decay. The application of (7) to 

the surface flux yields then in presence of decay 
T 

j(-r;X) = 1 e -iT"' j(T"';O)d1:"' + e -X"T )CT;O) 

0 
which will be used in next section for calculational purposes. 

The surface mass transport as derived in (25) consists of two parts. The 

first term in the bracket describes the transient behavior of the flux. Since 

o(O) = 0 by (14a), the flux is initially infinite in magnitude. From the moito­

tone trend of T(o) given by (24) one obtains a boundary layer thickness o(T) 

which tends to infinity as T400. Hence the first term in the bracket of (25) 

(27) 

tends to zero leaving the second term which exactly represents the steady state 

mass transport from the prolate spheroid, see [1] eq.(7.1.2~and sequel. 

Of considerable interest is the time needed for the surface flux to attain 

* the steady state to some degree of approximation. This time t is a function 

of the prolate spheroid geometry. Consider a set of prolate spheroids with 

identical surface areas but differing ratios of minor t0 major axis (b/a). 

The limiting cases for this class are the sphere with b/a = 1 and the needle 

with b/a = 0. We will show in next section that t* decreases with decreasing 

(b/a) which could be of importance to waste form designs which operate within 

the framework of the present theory. 

To test the effectiveness and accuracy of the integral method we apply it 
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to the detennination of the mass transport from a sphere. The sphere is a 

member of the family of prolate spheroids. In this case the major and minor 

axis of the spheroid are identical and the focal distance f = 0. We consider 

a limit procedure in which s becomes large but in such a way that the (new) 

radial coordinate r is given by 

r = fs 

The radius R of the sphere is then defined by 

R = fc:: -s 

In the same way one scales the position in the boundary layer by the new co-

ordinate 

a= fn 

and the boundary layer thickness by 

~ = fO • 

We proceed in.making these scaling transfonnations in (24a). With (2) 

From (17), as f~o 

Hence 

~(f) = ! log(i ~~~i) ~ f 

fa Q-1 (R) -)- .!_ R· ~ (r/f) ~ ~ 
2 o f 2 a ' Q

0 
(RJ f) r 

so that, on cancelling~ from both sides of (32), one obtains on letting f~ 
f 

6 { R+a } 

f 2 
1 J r(R+a-r) (r-R)dr da 

a [2R+a] 
0 R 
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This is readily integrated and yields 

Next one applies the same limit considerations to (25). 

With 

one obtains for the 
Dfe::cs 

-r(T;O) = ~..---] R 

using (36). 

surface mass flux from the sphere 

[ (6;R) + 1] 

1 
-/3-(~:-f-~~1,...,./.,...2 + 1 

' T>O 

The exact analytical solution yields precisely the same form but with /3 
replaced by /IT • The numerical error of the approximation is less than 3% 

throughout the entire time span. Although this "spot check" for a single geo.,. 

(36) 

(37) 

(38) 

metry does not uniformly validate the integral method for prolate spheroids of 

arbitrary slenderness ratios, it is hoped that the principle of this method will 

be substantiated by future refinements and extensions. 

References: 

1. Olambre, P. L. , et al, "Analytical Performance Models for Geological Repositories," 
LBL-14842, V. II, October, 1982. 

2. Chambre, P.L., "Nuclear Waste Management Seminar, NE 298)", Spring Quarter, 1982. 
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APPENDIX 6A Evaluation of the Integral 

(~;; 2 -iJ 2 ) (r,;-r,; -o") (r,;-r,; ).Q.n(r,;+1)dr,; s s 

2 -2 d [(U-1) -~ ](u-D
1
)(u-c

1
)Q.nU u 

(if-2U+1-iJ 2 )[J- (C
1

+D
1

)U + c
1
D

1 
]Q.n U dU 

{lr4-(c
1

+D
1

+2)U3 + [(1-iJ 2 ) + 2(C
1

+D
1

) + c
1
D

1
]u

2
- [(1-iJ

2
)(C

1
+D

1
) + 

= 

Let v = r,;-1 C = r -1 D = r + o"-1 
' 2 "'s ' 2 "'s ' 



{ 
2 ( 4 2 3 

= t (v5 ~nv - ~ ) - ~ (C2+D2 -2) v 
4~nv - ~ ) + % ( (1-il ) -2 (C2+D2)+C2D2 Xv

3~nv - ~ ) 

- } [ Cl-iJ 
2

)(C2+D2J - zc2n2J( vZenv - ~2 ) + (I-i1
2 )c2n2 

(v~nv-v)) 1:: 
Then 

1 10 
T Co) = - .,..~--"7(-ss~) o 

(Il-12) 
? 

s"~ (A+~o ") 
do" . 

I am indebted to H. Lnng for this calculation. 
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7 • lliE NUMERICAL EVALUATION OF THE TIME DEPENDENT MASS TRANSPORT OF A 

RADIONUCLIDE FROM FINITE SIZED WASTE FORMS OF DIFFERENT GEOMETRIES -

INTEGRAL METI-IOD 

II. Lung 

P. L. Olambre 

-T In last section equation (25) an expression for the surface mass flux J(T;O) 

from a prolate spheroid was given. We turn now to the numerical evaluation of 

this result which is reformulated in terms of the total mass loss M(T;O) from 

the waste form 
+1 2TT 

M(T;O) = f f J(T;O) \.lhljJdljJd~ 
-1 0 

Here the metric coefficients are evaluated at s=s and are given by 
s 

( 

2 2jl/2 s -~ 
h = f s . 

)..1 2 , 
1-)..1 

The result of the integration is obtained with (25)in the last section 

• b 2 [ 2 Q~ ( s ) J 
M(T;O) = 4TTEDfCs y- CTTJ- QO(s:) , T>O 

where b is the minor semi-axis of the prolate spheroid 

I 2 ) 1/2 
b = f\ss -1 · 

. 

(la) 

(lb) 

(2) 

(3) 

The numerical evaluation of M(T;O) is based on the following porous medium 

parameter values 

(4) 

The cyclindrical spent fuel canister, which is to be modelled, has a radius 

r and a height h 

r = 17.8 em; h = 4.70 em (5) 

The prolate spheroid dimensions are chosen so that its surface area and volume 
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are equal to those of the spent fuel canister. This determines the prolate 

spheroid semi-major axis a and semi-minor axis b, the surface coordinate ~ s 

and the focal distance f 

a= 272 em; b = 20.3 em; ~ = 1.003; f = 271 em . s 

In addition we shall refer to a spherical body of radius R which has the same 

surface area as the cylindrical spent fuel canister 

R = 65.9 em 

With the values given by (4) and (6) f1(t;O) 
Cs 

has been computed and is shown as 

(6) 

(7) 

curve 1 in Fig. 1 as a function of the physical time in the range 7 1 yr<t<lO yr . . 
Starting at t = 0 from an infinite value (not shown), M(~;O) decreases in time 

s 
to a steady state value which is reached at about 2xl05yr. Shown also in Fig. 1 

are the early time and the large time solutions which were derived in [1] 

Section 7.1. It is seen that the present solution, which covers the entire timA 

range, tends to these asymptotic forms. Finally, curve 4 gives the mass trans-

port from the equal surface area sphere defined by (7) and computed from the e:xact 

solution. 

to time t 

The trend of that curve is close to that of the prolate spheroid up 

5 = 10 yrs and for larger times it falls about 20% below the steady 

state solution of the prolate spheroid. The equal surface area sphere solution 

will be used as an approximation in part of the following discussion. 

The time t* necessary to reach the steady state plateau in Fig. 1 is a 

quantity of interest since it gives an indication when the minimum mass trans-

port rate is achieved. It will be shown that t*, aside from the parameters K 

and Df, is a function of the prolate spheroid geometry. We define t* as the 

time at which the transient part of the solution (2) is a fraction x of its 

steady state part, i.e. 
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c: 
0 

QJ -- 0 -3 
0 ... 10 -... c: ... QJ 
QJ u - c: 
"' 0 c: u 
0 ... QJ 

u 
"' 0 
"' -0 ... 

' ' ' ' ' ' ' ' ' ' 

of: 10-5 cm2/sec 1 r: 17.8 em 
h = 470 em 

E =0.01 1 K = 103 

:21~ 

10 

Equal- surface- area 
sphere solution \ 

(R=65.9 em) 

Lage time 7-------=-~---~---1 
solution 

Time I years 
XBL 8412-5901 

Fig. 1 Normalized mass transfer rate as a function of time; diffusion 

from a prolate spheroidal waste form and from a spherical waste 

form. 
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This can be solved for T * which yields with (2) of last section, 

Kf2 
t* - -- • T* , - Df 

T* is the inverse function of 8 as given in equation (8). We wish 

to compare the mass transport from a set of prolate spheroids of identical 

surface area S, but of different eccentricities e = b/a. For this it is 

(9) 

convenient to express f in tenns of S and e and r;;s in terms of e. The relation­

ships are the following (S = surface area of the prolate spheroid) 

. -1 f) 
Sill -a 

= 2nf2 L (1 + - 1-­
l-e2 \ e"'l-e2 

-1 ... ,.--z) sin ~1-e-

If one solves (11) for f 2 in tenns of S and e and substitutes this together 

with r;;s from (10) into (9) one obtains 

SK t* = D F(x ,e) 
f 

where F(x,e) is a known numerical function of the steady state criterion x and 

prolate spheroid eccentricity e. 

(10) 

(11) 

(12) 

The time to reach steady state is thus directly proportional to the surface 

area of the waste form as well as to the retardation coefficient and inversely 

proportional to the diffusion coefficient. The dependence of t* on waste form 

geometry is less obvious. It is shown in Fig. 2 as a function of e with X as 

a parameter. The other parameter values are those of (4) and (5) with a value of 
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E. = 0.0 I , K = I 0 
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early time and Iorge time solutions 

--------/ ---, 
' ..... , 

.... , 
o31'.__ ______ '--:-------'""--::-------~=--~.....J 

I0- 1 10-2 

b/o 
XBL 8412~5902 

Fig. 2 Time to reach steady state as a function of body slenderness 

and error bound. 
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2 S = 5.46 m . One observes the principal feature that the time necessary to reach 

steady state decreases with decreasing values of e = b/a. Hence the sphere with 

b = 1 requires the longest time and the needle, for which£+ 0, the shortest a a 

time to reach steady state. The x criterion whichcharacterizes the close~ 

ness to the steady state affects the value oft* in an understandable way. Holding 

e = b/a constant, t* increases as x decreases. The marked point on the x parameter 

curves represents the operating point for the prolate spheroid form specified by (6). 

As an illustration of the effect of the eccentricity e of the waste form on 

the time t*, consider x = 0.1, i.e. curve 3. If a spherical waste form is used t* 

will be approximately 4.5 x 105 yr which is about one order of magnitude greater 

than t* at the operating point specified by (6). Hence a slender waste form 

. geometry shortens the time to reach steady state at which the mass transport 

attains its lowest value. 

We turn next to the discussion of the effects of radioactive decay on the 

mass transport. As stated in last section, equation (7), the transport in presence 
. . 

of decay M(T;A) can be compactly expressed in terms of ~1(T;0) by 

T -I -As · -IT · N ( T ; A) = A e M ( s ; 0) ds +e M ( T; 0) 
0 

(13) 

With M(T;O) given by (2) one can readilycarry out the integration numerically, 

since o(T) is a known numerical function. However, an analytical formula for 

M(T;A) offers the advantage of exhibiting its parameter dependence on A as well 

as on some of the geometric characteristics of the waste form. One can accomplish 

this by approximating curve 1 of Figure 1 by two curve segments. 

The first segment covers the transient time interval O<T<T*. As shown in 

Fig. 1, the equal surface area sphere of radius R, given by (7), closely approx­

imates the mass transport from a prolate spheroid defined by (5). Thus in this 

time span we apply the surface integral of (38) of last section with its correct 

numerical factor 
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(14) 

When used in (13) this expression can be readily integrated analytically. 

The intersection of (14) with the exact steady state mass transport from 

• the prolate spheroid determines the beginning of the second segment which is 

given by (7.1.13), (7,).29) and (7.1.35) of [1] 
,o 

(15) 

The transition time T* is obtained by equating (14) and (15) 

T* = 
(~:) 

[ f 1 ] 
2 

- Q- (c,; )-1 
R 0 s 

(16) 

With the last three equations one can evaluate (13). With the total flux 

expressed in terms of the physical time variable t, 

[ l+~rfixt + ~At) Dal/2] O<t,T* 

(17) 

, t>T* 
[ ( 

-AT*) 1/2] 1+ erf~ + _e_ Da 
!nAT* 

where 

•. 

" For K=l, Da represents the dimensionless Damkohler modulus used by chemical engin-

eers in analysis of problems involving a chemical reaction of the first order 

and subject to diffusive transport of the reactants. Retardation of the diffusing 

specie modifies ~ in our application. 

Equation (17) is the approximation for the total mass transfer rate from a 

prolate spheroid for a specie undergoing radioactive decay. It is evaluated 

with the data given in (4) and (7) for the radio nuclides N~37 , c14 , and em244 
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with half lives 

T112(Np
237

) = 2.14 x 106 yr; T112 (c14) = 6.14 x 103 yr; T112 (an244) = 

= 17.6 yr (18a) 

The corresponding A values are 

The results of the calculations are shown in Fig. 3. Curve 1 represents 

the total mass transfer rate without decay and curves 2 to 4 show those of the 

three radionuclides. The effects of decreasing the half life are quite pro-

d Th *d . 5 nounce . e transition time T ecreases from 10 years to about 80 years. 

The steady state (plateau) value of the mass transfer rate increases by more 

than one order of magnitude. The physical explanation for this increase re­

sides in the fact that the radioactive decay removes the specie close to the 

waste form surface thereby causing the concentration profile to become steeper. 

In turn, this increased gradient increases the mass flux. 

For a radionuclide of very long half life such as Np237 , which exceeds the 

time T* to reach steady state, i.e. 2.14 x 106 yr >> 6.89 x 104 yr, the effect 

of the decay on the mass transfer is negligible as curves 1 and 2 in Fig. 3 show. 

This can also be seen from (17). If T112 >>T*, then At is very small for t<T*. 

Therefore erfill"'O, e-At"'l and the first line ot (17) shows that M(t;A.)"'M(t;O). 

This approximation even holds for some time span beyond T* as seen in Fig. 3. 

If on the other hand T112 <<T*, as is the case for Cm244 , then even for 

~ -At small and moderate values of t, A.t is large, so that erfvA.t "' 1 and e "' 0. 

Equation (17) shows that then a steady state is reached relatively quickly, 

within several times of T112 , with a value 

M(oo;>..) = 4nEDfCsR [l+Da
1
/

2
] 
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Fig. 3 Normalized mass transfer rate as a function of time and half-life; 
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This can be compared with the total mass transport at steady state (t>T*) in 

absence of decay. From (14), 

M(oo,o) • 4n£D£C5 R [1+ ~] 
With the definition of the Damk8hler modulus 

2 1/2 
1 (KR ln2 ) 

= + DfTl/2 

(
KR2 \1/2 

l+ rrDfT*j 

. 

(20) 

(21) 

From this it is seen that if T112 <<T* then M(oo;A) will have a much larger steady 

state value than ~(oo;O) as shown in Fig. 3. 

It should be noted that the effects of radioactive decay on the mass transfer 

have been made specifically for a waste form described by (6) in terms of its 

replacement defined by (7). For other waste form geometries the qualitative 

trends shown in Fig. 3 should remain unchanged. To obtain quantitative results 

for other waste form geometries the numerical integration of (13) is readily 

carried out. 

Reference 

1. . Olambre, P. L. , et al, "Analytical Performance Models for Geological Repositories," 
LBL-14842, V.II, October, 1982. 
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8. TRANSIENT .V~S TRANSPORT OF A RADIONUCLIDE Willi TEMPERATIJRE- DEPENDENT 

SOLUBILITY, DIFFUSIVITY, M'D RETARDATION COEFFICIENT 

P. L. Ch.ambre 

This analysis focuses on the time dependent, diffusive mass transport of a 

radioactive specie from a spherically shaped waste form, imbedded in a porous 

medium, in absence of water convection. It was shown in chapter 7 that one 

can approximate, subject to stated restrictions, the mass transport from a 

cylindrically shaped waste by that from an equivalent surface area sphere. The 

analysis given below incorporates a number of physical features of practical 

importance and leads to a convenient analytical formula from which their effects 

on the mass transport is readily judged. The analysis includes aside from the 

effects of decay, the influence of a time variable temperature environment. Thus 

it applies to the non-isothermal time span which arises shortly after the em­

placement of the waste form. 

The surface temperature of the waste package is time dependent, on account 

of the time variable heat release of the waste. Since we are primarily interested 

in the surface mass flux, it is the effect of the variable surface temperature on 

the mass transport which we wish to take into account. Since the solubility 

concentration and the diffusion coefficient of the diffusing specie are assumed 

known functions of temperature, they in turn depend on time. They are respect­

ively cs(t) and Df(t). The analysis applies of course also to isothermal con­

ditions where these parameters are constant in time. 

The concentration N(r,t) of the diffusing specie, in absence of precursors, 

is governed by for constant porosity 

aK(t)N 
at = D (t) _!~ (r2 aN)- K(t)AN R <r<oo, t>O f 2 ar ar ' o r 

The initial conditions are 

N(r,O) = 0; r>R 
0 
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and the boundary conditions, 

Let 

N(R ,t) = c (t), t~O 
0 s 

N(co,t) = 0, t~O 

c(r,t) 
At Df(t) DO 

= rK(t)N(r, t)e ; K(t) = K g(t) 
0 

then (1) - (4) transform to 

ac Do a2c 
at= K g(t) -:::z ; r>R0, t>O 

o ar 

c(r,O) = 0, r>R0 

At c(Ra,t) = R0K(t)cs(t)e , t>O 

c(co,t) = 0 , t>O 

The solubility concentration is given by 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

The dimensionless functions f(t), g(t) represent the known time dependence 

of K(t)cs(t) and ~t~j respectively. In order to reduce (6) to a constant coeffi­

cient equation let 

r-R 
x(r) = --0 

Ro 

t 
Do 

T(t) = -~ f g(t')dt' , t~O 
0 

C(x,T) = c(r,t) 

then (6) - (9) transform into 

(11) 

(12) 

(13) 

(14) 

8-2 



C(x,O) = 

C(O,T) = 

C(oo,T) = 

where 

f3 = Rae sO 

0 

Sf(T) 

0 

f(T) = f(t (T) )e~:t (T) 

(15) 

(16) 

(17) 

(18) 

To solve this problem apply a Laplace transform, with respect to the vari-

able T, to (14) and impose the side conditions (15) - (17) with the result 

-xrs C(x,s) = SI(s)e , x~O 

The primary interest is in the surface concentration gradient which will be 

denoted by tP(T) 

cp(T) = _ aC(O,T) 
ax 

Its Laplace transform is obtained, with help of (19), 

Since 

<P(s) = _ ac(O,s) 
ax 

- 1 = Ssf(s) -
rs 

L {(Tit) -l/2} = s -l/Z and L {t' (T)} + f(O+) = sf(s) 

(21) takes on the alternate form 

(19) 

(20) 

(21) 

(22) 

cp(s) = 8 [I(O+) +L{f'(T)L · !_] (23) rs IJ 15 

provided f(T) is a continuously differentiable function for T>O. cp(s) can 

be inverted with help of the convolution theorem 

[
f(O+) + 1 Tf' (T-n) dn] ' 
~r 0 rn 

where the ' denotes differentiation with respect to the first variable. 

One can now compute the surface mass flux per unit surface area from 
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the spherical waste fonn into the exterior field. It is given by 

aN(R0,t) 
m(t;:\) = -Df(t)e: ar (25) 

where e: is the porosity of the exterior medium, assumed independent of temp-

erature. From (5), (11) and (13) 

aN(r,t) = e-:\t ~ [c(r,t)] 
ar K(t) ar r 

= e-:\t [- c(r,t) +! ac(r,t)] 
.KltT r2 r ar 

(26) 

Hence 

oN(RO,t) = e-:\t [- C(O,T(t))+ .!.__ oC(O,T(t))l 
ar KltT R~ . ~ ax J 

-:\t 
= - ~ [f3f(T(t)) + <jJ(T(t))] 

R
0 

K(t) 
(2.7) 

on using (16) and (20). If one combines this with (24) there results the desired 

solution for the mass flux per unit sphere surface 

m(t;:\) = f sO f(T(t))+ L f(O+J + f' (T(t)-n) dn 
. D (t)c e:e -:\t [ {- IT(t) }] 

, RaKCt) rn ITTtT o . rn 

Equation (28) shows that if initially f(O+) 'f 0, the mass flux is infinite 

at T = t = 0. To evaluate the right hand side of (28) one uses f(T) as defined 

by (18) with T(t) defined by (12). An application of the determination of m(t) 

in a time varying temperature environment for a stable nuclide is given in 

Section 9. 

We illustrate (28) for a radioactive nuclide diffusing into a uniform and 

time invariant temperature field. 
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For this case 

g(t) = 1, f(t) = K(t) = K0, t ~ 0 

From (12) and (18) 

Do 
T (t) = ::-:! t 

KoRQ 

With this there results from (28), 

+!_ 
I1T 

which with (30) reduces to the convenient formula 

In absence of radioactive decay this reduces to 

mCt;o) 

1 

;:rm 

a well known result. A comparison with (33) shows that the mass transport is 

enhanced by the decay. As already discussed in chapter 7 this is due to the 

removal of the diffusing specie due to decay which increases the concentration 

gradient close to the waste surface. Quantitatively (33) and (34) give the 

B-s 

(29) 

(30) 

(31) 

(32) 

(33) 

(34) 



following expression for small and large times, with A ~ 0 

mCt;A) = 
m(t;o) 

1, for t « 1 

In Figure 1, the total mass transport m(t;A) from a sphere is shown as a 

function of time with A as a parameter. Three nuclides of widely different 
. 

half lives have been chosen to compare the effect of A on m(t;A). For con-

venience m has been normalized with the solubility concentration csO' Start­

ing at t = 0 from an infinite value where according to (35) there is no 

effect W1.th , mCt;A) d · t. t t d 1 h. h · ch d A - ecreases 1n 1me o a s ea v va ue w 1c 1s rea e ' c .r sO 
approximately at t*. It is seen that t* decreases with the nuclide half life. 

On the other hand, the steady state plateau increases in magnitude with the 

decrease in half life in accordance with (35). These results are similar to 

those discussed in chapter 7 which the reader might consult. 
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9. THE EFFECT OF HEATING ON WASTE DISSOLUTION AND MIGRATION 

W.J. Williams, III, C.L. Kim, T.H. Pigford, P.L. Chambre 

9 .1. THEORETICAL DEVELOPMENT 

The time dependent theory for the near-field mass transport from a spher­

ical waste canister embedded in a purely diffusive field with time dependent 

temperatures, solubilities, and diffusion coefficients has already been developed 

in chapter 8 An existing far-field one dimensional nondispersive migration 

model is coupled to this near-field model. The coupled model can be used to 

calculate waste concentration profiles in the far field based upon the noniso­

thermal dissolution of material at the waste canister surface. This method is 

applied to a conceptual commercial high level waste repository in basalt. 

In the present study several assumptions were made in developing the waste 

canister mass transport and migration models: 

o The cylindrical waste canister can be modeled as a sphere of the same 

lateral surface area. 

• The waste is embedded in a purely diffusive isotropic field. 

e The near-field mass transfer of material from the waste surface is 

controlled by diffusion, and near-field convective effects on mass 

transfer are negligib1e. 

• The surface temperature of the spherical waste package is spatially 

uniform. This temperature is the spatially averaged surface temp­

erature of the actual cylinder and is a known function of time. 

e The solubility and liquid diffusion coefficients of each chemical 

species of interest are known functions of temperature. 

• The retardation coefficeint is constant and not a function of temp­

erature for each chemical species of interest. 
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• The initial concentration of each chemical species of interest is 

zero outside the waste canister. 

• The maximum surface temperature of the waste canister occurs at the 

time of emplacement in the repository. 

• The steel waste canister fails instantaneously at the time of emplace­

ment in the repository. 

• The waste is infinitely massive, i.e., the concentration of material 

in the ground wate~ next to the waste surface is never less than the 

solubility limit. 

• The radius of the waste form is constant even though mass is being lost 

to the surrounding ground water. 

• The waste package surface temperature is determined by considering the 

heat generation of all the canisters in the emplacement array. These 

canisters are identical and were deposited in the repository at the 

same time. 

• The concentration plumes resulting from the dissolution of other waste 

packages in the repository are neglected. 

• The ground water concentration of each chemical species dissolved from 

the waste falls rapidly toward zero in the region within a few canister 

diameters of the waste (see Figure 9.1). 

• A transition zone (see Figure 9.1) exists near the waste where diffusive 

and flow effects are both significant. 

The last two assumptions are needed to couple the waste surface mass flux to 

the far-field ground water concentration. In the transition zone dissolved waste 

tends to be swept away by the flowing ground water. Since the concentration in 

this region is generally much less than the solubility limit at the waste surface, 

the transition zone concentration is assumed equal to zero in the near-field mass 

transport model. This assumption, however, does not apply to the far-field 

~2 
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Figure 9.1 --Coupling between the near and far fields. 
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migration calculations, since the far-field concentrations are of the same order. 

Given the above assumptions, the solutions obtained in chapter 8 can be 

applied for near-field diffusive mass transp::>rt and the theo:ry which governs the 

subsequent migration of radionuclides fran a reposito:ry is developed in the next 

section 9.2. 

Section 9. 3 describes the rreth:Xl used to find the best polynomial fitting 

curves for solubility C and diffusion coefficient D as the functions of temp­
s . 

erature. These t:Y.o quantities are then tabulated as the functions of time 

according to the terrperature histo:ry. Section 9. 4 uses the cubic spline functions 

to fit the above twu quantities as srrooth functions of titre. Section 9.5 then 

applies th: cubic spline technique to obtain the mass transport fran the waste 

surface developed in chapter 8. 'Ihis mass transport is used as the boundary 

corrlition for far-field migration rrodel developed in section 9.2. Section 9.6 

presents the results of these calculations and finally section 9. 7 gives conclu-

sior:3 about this analysis. 

9-4 



9.2. Radionuclide Migration through Nondispe.tsive Porous Medii -

The one dimensional migration of a radionuclide through a water 

saturated nondispersive porous medium is described by the following· 

differential equation: 

K ClN + ClN 
at v az + ). K N - 0 (2.1) 

where N(z,t) is the ground water concentration of the radionuclide, v 

is the ground water pore velocity, K is the retardation coefficient, 

and ). is the nuclide's radioactive decay constant. 

For N(z,t) the following side conditions apply: 

N(z,O) - 0 z > 0 

N(O,t) N
0 

w(t) t > 0 

- 0 t > 0 

(2.2) 

(2.3) 

(2. 4) 

Jaking the Laplace transform of equation (2.1) yields the ordinary 

differential equation 

dN 
+ ! (). + s) N 0 (2.5) ... 

dz v 

where N(z,s) • .l{N(z,t)l. Equation (2.5) may be solved to produce 

-·~ z { 
K 

N(z,s) A(s) exp { 
K (). + s) z} A(s) e v z s} - e 
v 

(2.6) 

Assuming that its Laplace transform exists, boundary condition 

(2.3) may be transformed to the s domain to obtain 

N(O,s) .. (2 0 7) 

where O(s) • .t{w(t)}. The function A(s) may be determined by applying 

this transformed boundary condition to equation (2.6): 

A(s) .. (2. 8) 
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Thus, 

N(z,s) .. -).!z{ _!zs} . v v 
e N

0
n(s) e (2.9) 

The inverse Laplace transform of equation (2.9) may be determined by 

2 applying the Laplace transform translation theorem: 

e-bs F(s) ~ ~{f(t-b) u(t-b)} b > 0 

where F(s) = ol{f(t)} and 

u(t-b) {: 
( t < b) 

(t > b) 

Hence N(z,t) is given by 

N(z,t) = 

K 
-).-z 

v w(t- !z) u(t- !z) 
v v 

A dimensionless relative c~ncentration may be defined as 

* N (z, t) .. N(z,t) 
N(O,ca) 

Substituting equation (2.12) yields 

w(t - !z) u(t - !z) 
------~v--~~----~v___ e 

w(ao) 
* N (z, t) = 

K -).-z 
v 

(2.10) 

(2 .11) 

(2 .12) 

(2 .13) 

(2 .14) 

Boundary condition (2.3) must be coupled to the surface mass flux 

at the waste canister. As shown in Figure9.1, a plane z•O is assumed 

where the ground water stream lines become parallel. Since the migra-

tion is nondispersive, all of the dissolved radionuclides are contained 

within a cylinder of radius Rt whose axis coincides with the z-axis. 

The intersection of the plane z•O and this cylinder is a disc of radius 

R • This disc is the migration source plane. Because all of the waste 
' t 

must pass through this disc, the coupling between the surface mass flux 

and the far-field migration may be achieved by assuming the following 
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proportionality: 

Thus, 

* N (z,t) .. 

K 
w(t - -z) v 

11< t - ! z > u < t ! z > 
------~v~---------v~-- e 

K -).-z 
v 

(2.15) 

(2 .16) 

• + 
Note that since M(O ) is infinite, the maximum concentration passing a 

* given point, Nmax(z), cannot be defined for nondispersive migration. 

The mass transport and migration models just developed require 

functional representations of diffusion coefficients, solubilities, and 

surface temperatures. Generally the values of these functions are known 

only at a few discrete points. In the next two sections, two curve 

fitting techniques, polynomial least squares analysis and the method of 

cubic splines, are developed. 
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9.3. Method of the Least Squares for Polynomial Fitting 

The mass transport equations (5) and (l,Q) in chapte:rr 8 presume that 

the solubility (C ) and the diffusion coefficient (D) of each chemical 
s 

species of interest are known at the waste canister surface as functions 

of time. Generally, however, these functions are tabulated with respect 

to temperature as discrete experimental data points. Thus, one must 

construct approximations to C (t) and D(t) based upon the tabulated data 
s 

and the surface temperature history, T(t), of the waste canister. 

The first step of the construction procedure is the fitting of the 

tabulated C (T) and D(T) to continuous functions. Since the ranges of s 

C , D, and T are only a few orders of magnitude, the method of poly­
s 

nomial least squares is an appropria~e fitting technique. 

Consider a set of data points (xi,yi). The polynomial to be fitted 

to these points can be represented as 

n 
y(x) - I (3.1) 

j=O 

where the aj are to be determined. Define the error, Ei, as follows: 

- (3.2) 

where n is the order of the ~olynomial to be fitted. 

In a least squares analysis the best fit of the data to the 

2 function y(x) is obtained when a , the sum of the squared errors, is 

minimum: 

- (3.3) 

where m is the number of data points. 2 Since a is generally greater 

than zero, curve smoothing is an integral characteristic of the least 
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squares technique. 2 The set of coefficients aj for which a is minimum 
3 

is given by the following system of equations (normal 

·m 
0 0 m m r + a1 I 0 1 

+ a2 I 0 2 + •.. + ao xi xi xi xi xi xi a 
i•1 ia1 i•l 

m 1 0 .m m 
1 2 I ~I 1 1 + a I + ao xixi + a xi xi xi xi + ••. a 

i•1 1 i•1 2 i=1 

m 2 0 m 2 1 m 2 2 
ao I xi xi + al I xi xi + a2 I xi xi + ••• + a 

i•1 ico1 i=1 

In matrix form the normal equations reduce to 

-+ -+ ,g, a = !'Y 

where X' is the transpose of X and 

-+ 
a 

X 

a 
n 

l 

1 

1 

1 X 
m 

(3.6) 

2 
X 

m 
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3 
X 

m 

-+ 
y -

4 
X 

m 
. . . 

n 

n 

n 

equations): 

m 
I 

ial 

m 
I 

i .. l 

m 
I 

ial 

n 
X 

m 

m 0 n I xi xi .. 
i=l 

m 1 n I xi xi ... 
i=l 

2 n m 
xi xi ... I 

i•l 

(3.7) 

(3. 8) 

0 
xiyi 

1 
xiyi 

2 
xiyi 

(3. 4) 

(3.5) 



m m m m 
I 0 0 I 0 1 I 0 2 I 0 n 

xi xi xi xi xi xi xi xi 
i•l i=l i:cl i•l 

m m m m 
I· 1 0 I 1 1 I 1 2 I 1 n 

xi xi xi xi xi xi xi xi 
1•1 i•l i=l i•l 

.m m m m 
g, I 2 0 I 2 1 I 2 2 I 2 n (3. 9) - xi xi xi xi xi xi xi xi 

i•l i=l ial i•l 

m n 0 m m m 
I I n 1 I n 2 I n n 

xi xi xi xi xi xi xi xi 
i=l i=l i=l i=l 

The quadratic matrix, g,, can be represented in terms of X: 

.9. .. X'X (3 .10) 

Thus, equation (3.5) can be expressed in terms of equations (3.6) through 

(3.10) as follows: 

..... ..... 
(!'!)a .. !'Y (3 .11) 

..... 
Solving for a yields the desired result: 

: • <!'!>-1 !'Y (3 .12) 

provided that (!'!) is invertible. The best fitting polynomial of order 

..... 
n is now given by substituting the elements of a into equation (3.1). 

In general n should be chosen such that there are more equations 

than unknown coefficients, i.e., m > n. If n ~ 4, y(x} may oscillate 

3 
wildly. Hence polynomial fitting is not always an appropriate curve 

fitting technique. In the case of the functions C (T) and D(T), the 
s 

selected values of n were all less than 4. 

Consider a data point (ti,Ti) on the T(t) curve. Since T(t) is 

monotonically decreasing, values of C
8
(ti) and D(ti) can be determined 

by evaluating the polynomial expressions for C (T) and D(T) at several 
s 

Ti. Thus, the transformation from the temperature (T) domain to the 
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time (t) domain has been accomplished. 

Unfortunately, C and D are once again in tabular form, now as 
s 

functions of time. At first glance it may be tempting to apply the 

least squares fitting technique a second time. However, because the 

range of t is at least seven orders of magnitude, the resulting fit is 

2 
very poor and o is very large. 

A better approximation might be calculated by analyzing C and D 
s 

as funtions of in t instead of t. Substitution of logarithmic poly-

nomials into equ~tions (12) and (28) in· chapterS for g(t) and f'(t) 

results in intractable integrals. While numerical integration theoret-

ically could be performed, such calculations require large amounts of 

computational effort to achieve a result which has reasonable accuracy. 

Because of these shortcomings of least squares curve fitting over 

large orders of magnitude, another technique, the method of cubic spline 

functions, was used instead. The theory of cubic splines is developed 

in the next section. 
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9.4. Cubic Spline Functions 

Consider an interval [a,b] containing the nodes xi such that 

and -
< X • b 

n 0 < i < n (4 .1) 

(4.2) 

Suppose that ~i(x) is the set of cubic functions (spline functions) 

which best approximates the actual function w(x) on each interval [xi , 
-1 

xi], where 

~i(x) .. 2 + ax 
2 

+ 1 < i < n (4. 3) 

and a
0

, a
1

, a
2

, and a
3 

are coefficients. Since the method of cubic 

splines is not a smoothing technique, 

• 

• 

w<xo) • '1'1(xo) 

W (xi) • ~ i (xi) 

tp (x ) • ~ (x ) 
n n n 

.. 1 < i < n-1 

(4.4) 

(4.5) 

(4.6) 

The ~i are constrained by continuity considerations at the nodes: 

'I' i (xi) 

~ l (xi) 

~"(x ) 
i i 

-
-
-

~ i+l (xi) 

~ l+l (xi) 

~f+l (xi) 

1 < i < n-1 

1 < i < n-1 

1 < i < n-1 

(4. 7) 

<4.8) 
(4. 9) 

Note that only the third derivative o~ ~i may ~e discontinuous at a 

nodal point. Two additiona~boundary conditions are required to perform 

the analysis. Since tp(x) is of no i~terest for x < a or x > b, one sets 

~"(a) • 0 
1 

~"(b) - 0 
n 

Define the following parameters: 

hi - xi -X 
i-1 

di 
yi - yi-1 

- -xi - X i-1 
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1 < i < 

yi - yi-1 

hi 

n 

(4.10} 

( 4 .11) 

(4.12) 

1 < i < n (4.13) 



t -
x..-xi..-1 

x.-x. 1 1 1-

x-x. 
1 1 ... 

h. 
1 

1 < i ~· n, X. l < X < X • 
1- - - i 

(4.14) 

Given the data (x
1
,yi), constraints (4.4) through (4.9), and definitions 

(4.12) through (4.14), the solution may be expressed as4 

'l'i[t(x)] 

1 < i < n (4.15) 

where 

= (4.16) 

3(h.di +hi 1d.) 
1 +1 + 1 

1 < i < n-1 (4.17) 

k + 2k = 3d 
n-1 n n (4.18) 

represent a non-recursive system of equations. Equations (4.16) through 

(4.18) however, can IJe represented in matrix form: 

A k = b 
where 

-+ -+ 
and k and b are given by 
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0 0 

0 0 

0 0 

h 2 (h +h ) 
n-1 n-2 n-1 

0 

0 

h 
n 

0 

0 

0 

0 

h 
n-2 

(4.19) 

0 

0 

0 

0 

2(h 1+h ) hn-l n- n 

1 2 

(4.20) 



k dl 0 

k h d + h d 
1 1 2 2 1 

k2 h2d3 + h3d2 

-+ -+ 
k - (4.21) b - 3 (4.22) 

k n-2 
h d 

n-2 n-1 
+h d n-1 n-2 

k h d + h d 
n-1 n-1 n n n-1 

k d 
n n 

.... -+ 
Equation (4.15) requires k. Solving equation (4.19) for k yields 

(4.23) 

-1 ( provided that ~ exists. Equation 4.15) can be expanded in terms of 

the definitions (4.12) through (4.14) to obtain for each i: 

a3 ... c 
1 

a2 = -(c c + c + c5) 1 3 4 

a = di + c c + c (c + c ) 
1 1 2 3 4 5 

xiyi-1 - X. y 
a 

i-1 i c (c + c ) ao hi 2 4 5 

where 

ki + ki-1 - 2d i 
c1 "" hi 

c2 • xixi-1 

c .. xi + xi-1 3 

k 
i-1 

- d i 
c .. 

4 hi 

c5 • c1xi-1 

(4.24) 

(4.25) 

(4.26) 

(4.27) 

(4.28) 

(4.29) 

(4.30) 

(4.31) 

(4.32) 

Boundary conditions (4.10) and (4.11) were chosen primarily in the 

interest of computational simplicity. The actual curve to be fitted, 
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however, may not have vanishing second derivatives at the end points a 

and b of equation (4.1). It has been found, fortuitously, that only the 

spline functions near the coordinates a and b are sensitive to the above 

boundary conditions. By extrapolating the actual function in the regions 

just outside the end points, dummy data points may be computed. These 

dummy points "insulate" the actual data from the effects of the assumed 

boundary conditions. 

One must also exercise caution in the selection of the points on the 

interval [a,b]. In low slope regions the time interval between adjacent 

points must be small in order for the spline approximation to accurately 

represent the actual function. It should also be noted that adjacent 

points may not have the same ordinate value. 

The fitting of solubilities and diffusion coefficients is now com­

plete. The next section describes the application of the cubic spline 

technique to the mass transport equations developed inchapter 8. 
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9. 5. Cubic Spline Functions Applied to the Mass. Transport Equations 

The functions f(t) and g(t) of equations (5) and (10) in chapter 8 

respectively, can be approximated up to the time t=t by cubic splines: n 

f 1 (t) 
3 2 + 1 < i < n • a1,3t + ai,2t ai,l t + ai (5 .1) ,o 

gi ( t) 
3 

+ bi,2t2 + bi,lt + bi 1 < i < n (5. 2) "' bi,3t ,o 

Define 

Gi (t) - Jt gi ( t I) dt' t < t < ti 1 < i < n (5.3) 
0 i-1 -

b b. b .. _!d t4 + -.!..z..£ t3 + _L_!_ t
2 + bi t (5. 4) 

4 3 2 ,o 

The defining equation for t(t) must be adapted in order to account for 

the piecemeal nature of gi(t). From the transport analysis in ahapter 

8 one recalls that 

T ( t) 
D Jt 

-
0 

g(t') dt' 
K~ o 

t > 0 (chapter 8, eq. 12) 

For ti < t < t , 1 < i < n , t
0 

= 0 , and t 0 • 0 
-1 - i 

T (t) 

where 

D0 i-1 Jtj 
• - z: g <t'> dt' 

KR~ j•l t j 
"\) j-1 

D i-1 
- _o L 

KR2 j .. l 
0 

-

9 -16 

g (t') dt' 
i 

t 
D f i-1 

• --
0
- g(t') dt' 

KR
2 

0 

(5.5) 

(5.6) 

"' 



... 

Consider the convolution integral used in equation 28 of chapter 8: 

T (t) 

I(t) =J[ f'{T(t)-T'} dT' 

0 It 
(5. 7) 

The approximation of f'(t) by quadratic (derivative of cubic) spline 

functions is shown in Figure 9.2. Note that in equation (5.7) Tis fixed 

and T' is the variable of integration. Define 

T11 
::: T(t) - T 1 (5.8) 

The transformation of f' from the time. (t) domain to the T" domain is 

obtained by applying eq 12 of chap. 8.) Figure 9. 3 shows the transforma­

tion when D(t)/KR 2is taken to be constant. In general, however, D(t) is 
0 

not constant and the proportionality between each t. and T. is lost. The 
1 1 

b d f . . ( ) . 1 d ]. . h .th . 1 upper oun o 1ntegrat1on, T t , 1s se ecte to .1e 1n t e 1 1nterva . 

A simple change of coordinates is made so that f'(T") is plotted against 

T". ~ow equation (5.7) can be rewritten as below: 

or 

J
T{t) 

I(t) = f 
1 

(T") dT" 
h (t)-T" 

0 

i-1 f 'J 
f'. (T") f T(t)f'. (T") 

I dT" + 1 

j=l h (t)-T" . h (t) -T" 
T. 1 1. 1 ]- 1-

(where T - 0, T. l < T (t) < T.' and 2 < 
1-0 

J
T(t) f' 1 (T") 

dT" 
h (t)-T" 

0 

- 1 

(o < T(t) < Tl' i 

dT" 

i .::_ n) 

1) 

(5.9) 

(5.10.a) 

(5.10.b) 

Notice that one must take care to perform the convolution integral using the 

appropriate spline function f', between the limits T. and T. 
1 

in each inter-
] ]-

val j, i .::_ j .::_ i. thus, the convolution integral can be treated as the 

summation of the i separate integrations. And to remove the singularity 

which appears in the second term of the right hand side in equation (5.10.a) 

define 
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- f' (t) 
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t 
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n 

Plot of 

f' in the 

t domain. 

Plot of 
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T-T' domain 



u2 - T(t)- T11 

Then, 
I 

I
T (t) fi (T") 

IT (t)-T" 
Ti-l 

dT" 
= 2! IT (t)-T i-1 

0 

S: I 

.Li 

Similarly, equation(S.lO.b) can be reformed as 

f T (t) fl (T") 

o / T ( t) -T 11 f
h(t) 2 

2 f i { T ( t ) -u } d u 

0 . 

Now combine the equations (5.12) and (5.13) into the equation (5.10). 

C (T") 
I(t) = 

h (t)-T" 

Ti-l< T(t) < Ti' 2 < i < n 

[

h(t) 2 
or 2 . fl {T(t)-u }du 

0 

0 < T(t) ~ Tl' i = 1 

At this point apply the trapezoidal rule to the equations (5.14.a) and 

(5.14.b) and obtain the following results: 

where 

where 

I(t) 

I(t) 

I - J J --+ 
i-1 l [ C (T.) 

j = 1 2 h ( t) -T j 

f! (T. l) J J ]-

IT (t)-T. 1 
]..-

T. l < T ( t) < T. , 2 < i < n . 
]..- - l.. 

+ fi(o)J v'T(t) 

0 < T(t) < Tl i 1 
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(5 .12) 

(5.13) 

(5 .14a) 

(5.14b) 

(5.15.a) 

(5.15.b) 



9.6. RESULTS 

The results of the waste dissolution and migration from a canister 

embedded in a conceptual basalt repository are presented in this section. 

237 Two species, Si0
2 

(silica) and Np, were considered in the analysis. 

The dissolution of silica is indicative of the performance of the boro-

silicate glass matrix in the repository environment. 
237. 

Np is represen-

tative of many long lived (t~ = 2.14•106 y) radionuclides. Their activi-

ty can be appreciable even after thousands of years. 

The time dependent rock temperature at the emplacement hole surface 

5 
was supplied by Altenhofen for commercial high level waste that has 

been cooled ten years prior to emplacement. In the present study it was 

assumed that the emplacement hole surface temperature was the same as 

the waste package sur;ace temperature, T(t). Furthermore, the time axis 

was shifted such that the maximum surface temperature occurred at time 

t = 0, an adjustment of six years. The assumed waste package surface 

temperature history is shown in Figure 9.4. 

6 
The temperature dependencP. of silica solubility and liquid diffusion 

7 
coefficient is shown in Figures 9.5 and 9.6 and also is tabulated in 

Appendix 9A. Using the construction technique described earlier in this 

study, Figures 9.4, 9.5 and 9.6 were combined to yield discrete time 

dependent values of the silica solubility and diffusion coefficient. The 

resulting 47 data points of each variable were then splined to produce 

the continuous functions plotted in Figures 9. 7 and 9.8. These results 

are also tab_ulated in Appendix 9B. The interval of each cubic spline 

function is delimited by a vertical string of dots in these figures. 

The neptunium solubility and diffusion coefficients were not known 
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functions of temperature. It was assumed that silica and neptunium have 

the same specific heats of solution.. Cousequent-ly, the following relation-

ship is valid (see Appendix 9D for derivation): 

CN (T) p 
CSiO (T) 

2 

.. CNp(TO) 

CSi0
2

(T
0

) 

where T
0 

is a reference temperature at which the solubilities of both 

species are known. -7 8 This ratio was determined to be 2.0·10 • The 

diffusion coefficient of both species was assumed to be the same. The 

(6.1) 

retardation coefficient of silica was assumed to be K • 1, the worst case 

value, and that of neptunium was taken as K'"' 100, the generally accepted 

value for basalt. 

Using the time varying s~lubility and diffusion coefficient func-

tions, the total surface mass flux from the waste canister was computed 

using equation (28)' ~n chapter 8. The results ·are shown in Figures 9.9 and 9.10 

and are also tabulated in Appendix9C. A steady state waste dissolution 

rate is reached after about 10,000 years for silica and 100,000 years for 

neptunium. Less than two percent of the total silica inventory was dis-

solved from the waste after 10,000 years of emplacement (see Appendix 9E). 

Applying the one dimensional nondispersive migration model of Section 

9.2. the concentration profiles of the waste were computed. The ratio 

of the waste concentration at a particular time and displacement to that 

* under ambient temperature conditions is denoted by N (z,t) [see equation 

* 2.13)], where N(O,m) is constant. Since N (~,t) is hard to visualize, 

* it is plotted with one coordinate fixed. Thus, the function N (t) is the 

* concentration ratio at a fixed position and N (z) is the concentration 

ratio at a fixed time. * * 237 ~e N (t) and N (z) for silica and Np are 

plotted in Figures 9.11 through 9.14 for various values of z and t. 
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Since silica is stable, N*(z,t) appraoches unity at large times. 237Np, 

however, decays, though very slowly. The limit as t tends to infinity for 

* N (z,t) of radioactive species tends to zero instead of unity. This effect 

can be seen for 237Np in Figure 9.12. 

The retardation coefficient, K, appears in both the mass transport 

and migration equations. By comparing the shapes of Figures 9.9 and 9.10, 

however, its effect in the near-field region is negligible on the shape of 

the surface mass flux curve. In the far-field region, the effect of K is 

very dramatic. Comparing Figures 9.13 and 9.14 shows a K-fold increase in 

the time necessary for the waste dissolution front to reach a given point 

over the water travel time. One should also note that the initial impulse 

magnitude increases with K, but decays rapidly to the same order of magnitude 

as the K=l case. 



9.7. CONCLUSIONS 

The results of the total surface mass flux calculations demonstrate 

that the dissolution rate of the borosilicate waste glass matrix in a 

basalt repository is indeed very small. 237 The quantity of Np leached 

from the waste would hardly be detectable, less than one gram over 10 

million years. 

At first glance these results appear to verify the adequacy of the 

conceptual basalt repository. .One should note, however, that many of 

the assumptions made in this analysis are not strictly valid in the 

actual repository environment. The effect of fissures in the host rock, 

for example, was not studied. Other practical considerations such as 

finite waste mass, convective ground water flow, sequential waste cani-

ster emplacement, varying canister corrosion properties, and the inter-

actions of adjacent canisters in a repository may play an important role 

in future theoretical developments. 
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APPENDIX 9A 

Computer Program LSQR 

LSQR performs a polynomial least squares analysis on a set of data 

points (see Section 3 for theoretical development). Sample program 

outputs for C (T) and D(T) follow the FORTRAN listing. 
s 
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C •c•••R•aacau•c••:•a~••~A~•••n•a••~•u•acaart·e~••~~~•~n~Mtrll~t:•&uccau 
C :. FIT THE NTH QJ.([t[R Lf.AS1 SO\IM:f.S F'OLYNOI1111L TO A SET Or [tilT II : 
C •••tl••n••••••• • •• a e. •~ • n • •a a tt • • • n a au c· ttaaun u n •~•u• a a •• •u"a r. •~ u r r.t :1 s.: r· 

c 

f"Aii1111[T[R fti•JioNinl:;oN::!"Jil 
DJI1[NS10N ITRAN51NMol1lloXII1il•NiloXOUIIltiNil•NilloXVECT(I18>oYII181o 

l IYIHI>oAIN81 oXO!NVINioNill oG.JINI•N:!I 
~OU~LE PRECISION GJ 
[OUIIIALENCE IXOUIIIll l• 1 l o XOINV< 1o 1 I l 
OI'[NC UNI T•l • NAI11: • • LSOil. Gltll' o T Yf·t: e' NEll' > 

wt.:ITt:<~.:u 

5 FOk"IIT(//5lH [NT[k NU"~[R OF ~IITA POINfS AN~ O~~Eil OF POLYNOI11111.:> 
~£A(I(~•II ltoN 
NcN+l 

C CHCC~ ARRAY 80UNrui 
If I K , G T, II If , Ok. II , G T. Nil GO 1 0 6ill!il 
Will TF:< 5ol!il 

l~ tOR"IITI//3bH ENT~R X Vt:CTO~. ONE VALUE rER LINF:I 
C lOAil TH[ X AN[t X TkiiNSI'OSt: MTRlCic!J 

c 

c 

[10 :0111 J•l•ll 
llEADC5•tl XV£CT<J> 
Xll•l>•l, 
XTRANS<1•ll•l. 
110 1111 J•:1,N 

XlloJ)•XV[[lCll**<J-1) 
XTRIINSCJol >• XI I oJI 

11f81 CUNTINU£ 
::!1111 CONTINUE 

llkJTF.ISo"':;) 
4~ F0kl111l(//l6H [NlLk 

ltD 3111! l•l•K 
r.:r11oc :;,., ·,, t> 

CONTINUE 
XQUAilooiCTRIIHS*X 

T VU; 1 Of\ • ON[ VAl. Ul. f'f.R L t N[: l 

CIILL 11ULf(XfRIIN!JoXoXOUII"oHoHoNoHioHioN9) 
XY•XTI.:AHSeY 
CALL 11ULTIXTI'1ANSoYoXY•NolloloNifol1lllo1) 

C XOtNV•XU\IA~a•<-11 
C:l\ll. I NV( GJ• X IIlJA!•• XCII NVo No ~tHo NM > 

t. '" l(QINV,XY 
(ALL IIUL 1 ( XOI NV, XY olio No No I oNIJoH"' I l 
Ill< 1 T£ < ~, 91 l 

91 fORHATC//llfH A Vlt1Uk:l 
CIIU. f·r..:T<AoN•1•NI•ll 

c 
111.· I T [ I :S , Ill I 

111 f0kHIITCI/9XolHXolt••l2HCALCULIITF.O Yo6Xo0HACTUAL Yo7XoAHREL Otrr/ 
I 9XoiH-,JBX~12H------------•6XoBH--------,7Xo9H--------/I 

c 

IU 

3~10 

•••• c 

,.~ 

c 

Ill 

c 

t 
:.11111 

1~0 

I> Ill 
1:11 

""' 

[F·Sl ON•I, 
CHlC'- LEAS!' 50\IAI<[S rtt AGAINST lNPU1 I•ATA 
[,0 41JII I•I•K 

CIILCuPOLYIAoNoXVECT<II> 
EPSLON•£~SlON+<CALC-Yillla*2 
tr (Y( I) ,[Q, I. I GOTO 3~111 

ll[llrF"•ICAI.C-YI I I 1/YI t > 
WRIT [ C :S, I U I XV£C T I I I , CAl. r., Y < I I , l<t• I r r 
rD~KIIT<3Clh.~ofiJ.:SI 
GOTO 411ft 

IIRITE:15tllll X\/E~Til>oCAI.CoY< I I 
CONTINUE 

Ul<l Tl: ( :;, 115 I EF"51.0N 
f0RMATI//::!9H SUM Of THC SUUII"El• Elll'lOf<S • •[13.61 
COHf'UTE AODITIONIIl. I•IITII POIN1S 
wRI n:c:h 1111 
f0RKATC//51H INITIAL• riNALo AND STfr ·- POLYNOKII\L EVIILUAllON:/1 
~[A~I~oll START,fiNALo51£r 

tr IRTA~T ,Q[, 1.1 OCTO !1181 
CI.OSI: I UNIT •1 • t• I 5,.051: • • t•lLETE' I 
GOlD ae1• 

Ir !START ,QT, rJNALI OOTD 7•tl 
WRITEIIol:Oifl START,rOLYCIIoNoSTAkll 
f0RI111TC 2(16, td 
STAR1•5TA~TIST£P 
GOTO :SQIIJI 

Wf!ITE<So13111 
rOkHATI//J7H DIKIHStOH PAI<IIIIlT£RISI AN[ TOO LI\RG[/1 
CONT INU[ 
CUIS(IUNI T•1olll!;F·IJSI:•'SAV(' I 
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8GDI CONTINUE: 
(NP 

c •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
c ••••••••••••••••••••••••••••••••••••••• , •••••••••••••••••••••••••• 

SU~~OUTlNE PRT<A•~•L•~Irlll 
C ••••••••••••••••••••••~••ft•a&••a~ 

C l PRINT THE CONTEHTS Or ARRAY A : 
C •••••••••••••••~·~··~~•n"n••••••••~r 

~l"EHSION A<~••l8l 
c 

DO 1 1•1 • K 
WR1TE15rlll (A(JrJ>•J•lrL> 

11 fOR"AT<t•Etl.~> 
1 CONTIHU£ 

f(ElU~N 
[N[I 

c •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
c •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

SUB~OUTIN£ KULl<A•~•Crl•Jr~rllrJ~r~Bl 
C ••••••••••••••••••a"•w•••••"~N 

C : "ULTlrLY "ATRlCF.S! CnAtD : 
C aJ:aa•n••n••••~••uau"aaea~•••k 

t 

c 
c 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
r. 
t 

c 

c 

1 
2 
l 

[IIH(NSJON A(l8rJ~).~(J8,~1l•tii8rK8> 

[IO 3 ll•t rl 
[tO 2 ll;l(alr~ 

t ( J 1 'j;IO;). 0. 
[IO 1 JJ•t ,J 

C<Il•K~l•Cillrk~l.AIIIrJJ)I~IJJrkKl 

CONTINUE 
CONTINUE 

CONTINUE 
aETUnN 
[NP 
•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• .......•••...................•....•.......................... , .. ,. 
SU8~0UTINE INV<A•~•C•N•"•H8l 

~'·~·············~··· 
: lNV[RT HArRIX • : 
••·••nn••~••••••n•w•a 

SU~kOUT ;NE INV WIIS l'ftAI'HO fROH A (IIISIC F'I;:(JGf',;l\11 IN Al'f'E>HIIX J 
<INVERSE OF A MIITRIX USINU OAUGS-JOR~AN ELIHINATIOHl OF THL 
T[XTBOO~ 'COHf'UTIITIONAL LIN[AR ALG(~RA WITH HO~[LS' (IY GII~ETH 

WlLLlA"S• SEtON~ [~lTIONr ALLYN & (lAtON• INC., POSTON, 197U. . . . 
e e I e It Itt •t I I It I I It II It I Itt till IIIII I II I I I It I I I It I It I It lilt o 0 It I o I 

~lHENSION AINrHloR(N0rN8loCIN~rN~J 
~OUBL[ ~RECISION AoTrY•Z 

110 17 t •1' II 
DO 16 J•1 •" 

1r (J .GT. Nl GOTO 1:! 
AllrJ)•~~L[(blloJ)) 

GOTO 16 
12 :F IJ ,f.Q, N+I l GOTO 15 

ji(J,J>•t. 
GOTO 16 • 

IS A!lrJl•l. 
16 CONTINUE 
17 CONTIIIUE 

l•O 1 ~~ k •l , N 
IF (1\(KriO ,N£, f, l GOTO 76 

DO 7t I•K+lrN 
IF <ll<lrld ,f.Q, l.l GOTO 78 

DO 61 J•K•" 
T•AikrJ) 
A(KrJ)ooA( 1 rJ) 
All rJ>•T 

•• CONTINUE 
GOTO 76 

7. CONTINUE 
OCTO 171 

76 lF' CA(kolO ,[Q, 1,) 0010 f!j 

,. 
·~ 

Y•A(Ii:riO 
00 tt L•k•H 

A(Koll•A(Koll/Y 
CONTINUE 
DO 12• I•loN 

IF' II ,f:Q, 1\ .OR. lillrl\l ,[(l, f,J GOTO l~IJ 
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c 

c 

c 

c 
c 
t 
c 
c 
c 
c 
c 
c 

c 

Z•A< ltiO 
toO 115 J•K•" 

All•Jl•A<l•Jl-ZIAC~oJl 
II:; CONTI NUl: 
l~t CONTINUl 
1~5 CONTINUE 

110 15f 1•1oN 
DO 145 JaNHoH 

c c 1, J-N > • !;NGI c n c 1 , J > 1 
14:0 CIJNTINU£ 
1~1 CONTINU[ 

GOTO ~~~ 

171 Wf<!Tt:C :;,999) 
999 FO~H~TC//~7H TH£ INV[~5E ~OFS NOT EXI5fll 

Zll CONTINO( 
fiiTUf;N 
tNil 

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
FUNCTION tOLY<AoNoXl 
ec-a•r: rr•an11a11a\~ f'.l: ~ t-"II:CIIIUWnUtro&.IJU&r•:u'J ••1: 1.1~&.11ff~ !"' 1.; Ctr 

: CtJHJ·UTI: TIC[ <N·1lTH O~lli:R f'OL'I'NOHIAL r!XI : 

Ill 1) 15 TIU; CONSTANT TE~H 

A<Nl IS THt: CUUrtC:ILNT OF TICE IN-1 liH THM 

(lll'trNSION ACNl 

SUH•II<NIIX 
00 1 l•lrN-Z 

IUH•CSUH+ACN-IlltX 
CONTINUE 
F'OLYrSUH+AC1l 
UTURN 
[NO 
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ENTER NUMBER OF DATA POINTS AND ORDER OF POLYNOMIAL: 
6 2 

ENTER X VECTOR, ONE VALUE PER LINE: 
20 
so 
100 
150 
200 
250 

ENTER Y VECTOR, ONE VALUE PER LINE: 
SE-5 
B.DE-5 
1.7E-4 ~ 

2.8E-4 
4.2E-4 
s.er·-4 

A VECTOR: 
0.30399E-04 
0. 87371 E·-06 
o.53143E-OB 

X 

0.200000E+02 
o.soooooE+02 
0.100000E+03 
0.150000Et03 
0.200000Et03 
0.250000Et03 

CAL~ULATErt Y 

0.499992E-04 
·o.a73706E-04 
0.170913E-03 
0.281028E-03 
0.417713E-03 
0.580970E-03 

ACTUAL Y 

O.SOOOOOE-04 
O.BBOOOOE-04 
0.170000E-03 
0.2BOOOOE-03 
0.420000E-03 
O.SBOOOOE-03 

SUM OF THE SQUARED ERRORS ~ 0.845712E-11 

INITIAL• FINAL• AND STEP -- POLYNOMIAL EVALUATION! 

0 -1 0 
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REL DIFF 

-0.00001 
-0.00715 

0.00537 
0.00367 

-0.00544 
0.00167 



.. 

>RUN LS11R {D) 

ENTER NUMBER OF DATA POINTS AND ORDER OF POLYNOHIAL: 
6 3 

ENTER X VECTOR• ONE VALUE PER LINE: 
20 
so 
100 
150 
200 
250 

ENTER Y VECTOR• ONE VALUE PER LINE: 
lE-5 
2E-5 
4.5E-5 
7.9E-5 
1.2E-4 
1.6£-4 

A VECTOR: 
0.71642£-05 
0.88650E-07 
0.34343£-08 

-0.53642E-11 

X 

0.200000Et02 
O.SOOOOOEt02 
0.100000E+03 
0.1SOOOOEt03 
0.200000Et03 
0.2SOOOOEt03 

CALCULATE[! Y 

0.102680E-04 
0.195118E-04 
0.450076E-04 
o.796'284E-04 
o.119351E-03 
0.160153E-03 

ACTUAL Y 

O.lOOOOOE-04 
0.200000E-04 
0.450000E-04 
o.79ooooE-o4 
0.120000[-03 
0.160000E-03 

SUM OF THE SQUARED ERRORS = 0.114943£-11 

INITIAL, FINAL• AND STEP -- POLYNOHIAL EVALUATION: 

0 -1 0 
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REL DIFF 

0.02680 
-0.02441 

0.00017 
0.00795 

-0.00541 
0.00095 



APPENDIX 9B 

Computer Program SPLINE 

SPLINE performs a cubic spline fitting on a set of data points (see Section • 

4 for theoretical development). 

follow the FORTR&~ listing. 

Sample program outputs for 

9-42 

C (t) and D(t) 
s 



" 

PROGRAPI IPI.l NE 
C •••~u••••n••••••;n•cttu•u•••••••••~•••••••n•~n•n•nq••••uft~•1:sus"'· 
C : COPII"UTE THE CUfolC $~'LINE rUNCTlDNS WHICII IIEST FIT TIK [oATil : 
C ••••~•••••••••••••••~•••a••••••••"•••ft••"•n••••••••k~••••a••:-ttv 

c 

c 

c 
c 

t 

c 

'A~APICT£- Nl•4?oN~•Y4 
~IKtNSlON ACNioN2loAlNVINioNiloALPHAI4lo~INiloDINO!o[l6), 

1 H<NiloKINiloXINI!oYINII 
DOU.LE PRECISION A 
IFAL a; 
[OulUALENCl (AoAlNVl 
OPENCUNlT•1oNAK[•'SI"LlNE.GDA'oTYPE•'NEW'l 
OP[NC UNIT•~• NAnl:,. 'Sf·LI NE, OUt'' • TYf'·[,.' NOI' > 

llf\ITI:15oll) Nt 
11 rOkKATC//39H ENTER Nl1KfoF.I< 01' DATI\ F'OJNTS IMAXIKUn ,.,(J,~IO!l 

"'EA(ll~oll N 
lF IN .GT, Nil CiOIO 99YI' 

IIRl Tt<~o~l) 
~· F'ORKATI//4?H [NTfk X ANDY VCtTUk5o ON[ DAIII POINT PEk LlNll> 

~0 Itet 1•1oN 
READCSol) Xll>•Yill 

lfll CONTINUE 

[IU 1::!1e 1•1oN 
ZERO THE 'A' KATR1X 
[IO 1111 J•1o::!IN 

ACioJ>•e. 
1111 

c 
CONTINUE 
LOAD THE ltli:NTITY nATfllX IN TilE Rtt;IIT HALF 01' 'A' 
All•N+l> •1. 

c 
H <I ,[Q, 11 GUTO 1::!11 

Hen •X c ll -x <I-ll 
DCli•CYCJ l-YCl-11!/HIIl 

l:'lt CONTINUE 
C LOA~ THE 'A' "ATklX AND THr ·~· VECIO~ 

1411 

t\ ( 1 " =~). 1 • 
101 1l•J,I[o( 1) 
[oQ 1411 l•::!oN-1 

Allol-1l•DIIL[IH11+111 
Alloi)•[liiLEI::!.IIHIIl+Hillllll 
Allol+l)•[l~L[IHilll 

t<Il•J,eiH<l+llfDIII+HIII•~<l+lll 
CONTI NUt 
iiii!Noll•1l•1, 
t\(N•N)•~. 

IOINluJ,eO(NI 
C INVERT THE LEFT HALF 0~ THE 'A' "ATRIX 

CALL INVIAoAlNVoNo~SHtNioN~I 
c 

WkiT£15o611 
61 FOR"ATI//49H ENTER NU"PER OF POINTS TO CO"PUTE ~ETUEEN NOD[Sll 

READISo•) NSPLIN 
C CO~PUTE THE a;(Il'S 

c 

t 

t 

t 
c 

wr.:[T[( 5o?ll 
711 fOI<~AT I //:'Xo lHio •4Xo 6HX ( 1-11 oSXo 914F[XI 1··1 l J, 3Xol IIIF' [)(( 1-l >), ~Xo 

I liH~"CXII-IlJo3Xo?HFCX<lllo5X•BHF''[X(Illo4Xo 
2 8HF'"[XIII)o6Xr4HA<llo7Xo4HAI~lo7Xo411Aillo7Ko~IIAII!l/ 
3 2XoiH-o4XobH------o5Xo9H---------,JXo10H----------,~X. 
4 liH----------,JKo7H-------•5Xo9H--------,4)( 1 

~ IH·-------,6Xo411----•l<?Xo4H----l/) 

[10 1611 I•:!•N 
[VALUATE [XF'RESSIOHS TO CO"PUTE THE CUPIC COEFf'ICI[NTS 
C l • < K I I ) +Ill I -1 I -::!, til I I ) l I Ill< I I t HI I l l 
C::!•X< I >IXII-1> 
tl•XCII+XII-1> 
C4•C~Cl-11-[lllll/Hill 
C~•CUXI 1-l I 
CALCULATE THE COErFICIENTS Of THE CU~IC SPLINE 
NOTE THAT Al • IIII.PilAillo A~ • AU'III\1~), AI • Al.f'lll\1~>• ETC:. 
ALPHA( ll•Cl 
AlF'HAI:!)•-<C4+C1,1CJ+XII-1111 
IIILPHAI 3 I •0< I> +C Jl < CHI::S l +C UC::! 
Ali'HAI41•1XIlliYII-Il·XII-1l'YIIll/HCI!-C2•1C~IC~l 
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c 

c 

c 

c 

c 

t 

c 

CALCULATE fiX> At THE fWO S~LINE NOOES 
flli•POLTIAL~HAo~oXIl-1>> 
f I 4 I•POL T I Al f·HA, 4, X ( 1) I 
CALCULATE THt:: C:UfoiC SHINE'S rii'iST t•EJ.:IVIITIVt: COHI ll:l£N1S 
Alf'HA( 11•3, lAIYHAC 1 I 
AL~HAC~I·~.IALfHAI~I 
CALCULATE F'CXI AT THE TWO SPL!Nl NOPt:S 
F<~l•POLTIALPHAoJ,K<I-1>> 
F C ~~"'POL TC 1\U"HI\o J, XI l I I 

CALCULATE TIU: CUI<IC SF'I.INE'S SECON[I [l[kiVIIfiV[ COt If IC:IENT!; 
IILF'HAC1>•~.aAL~HA!tl 
CALCULATE ~'<X> AT THE TWO SPLINE NODES 
Flli•F'OLTIALPHIIo~oXII-111 
FI61•F'OLYIIILPHI\o~oX<I>I 

RESTDI':E THE COEF"F"ICIENTS 01'. Tit[ CUiliC: SPLINt 
ALPHAC11•ALPHA!llt6, 
ALPHA<~I•IILPHI\121/2, 
TO fER"lNAL 
WRlTEISoQII I-1oX!l-11•1fiJioJ•1•6loCALPHIICLirL"lr41 
FORMAT!l4oEl1.3oXo6E1~.4•Xr~Ett,JI 

C TO Gf<APII! t:; F ll E 
WRITEilo91l X<I-1lofC11 

fl FOR"ATIZE16.S> 
t TO COEFFICIENTS fiLE 

c 

~RlTEC~r1111 X<I-lloXIIIoiALPHAI~-Llo l•lo41 
lit FOR"ATC6El6,BI 

DELTAX•CXIII-XCl-111/FLOIIfiNSPLINtll 
DO 1~08 J•I•HSPLIN 

X<I-1l•XCI-1ltP[LTIIX 
WR If£ I 1 • 91 I X I I -1 > • POLY C Alf·t<A • 4 • K I 1- 1 I J 

l~Wt CONTINU( 
1611 t:OioiT I NU[ 

Ill< 1 T 1: ( 1 r •• I XC N l , F C 4 I 
9999 CONTINUE 

CLOSl<UNlf•1•~IS~OSr•'SAV['I 
CLOS(IUNJf•~rDitPO~C•'SIIV['I 
[Nil 

c ························~········································· c ••••••••••••••••••••••••••••••••••••••••••••••• , •••••••••••••••••• 
SUF<f<OUTINr: P1lli.T1Arl<•f•l•J•Ii•fllr.IG,~>.9l 

( &~~u•~•~~••••~••·•~~•·r~~~~~-•=ttt-• 
C ; IIUL Tlf'l'( 111\TkJ(;U;: C~I'IU< : 
c ·M···········~-·~~caa••Jti~4U~ 

c 

c 
c 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

c 

DO l ll•l.Z 
DO :! ~1\•1 •li 

CCil,lilil&l,. 
DO 1 JJo.l,J 

C<IIo~lil•CIIIoKkltAIIIoJJ)I~(JJ,KK) 
CONTlNUE 

~ CONTI NU£ 
l CONTINUE 

•• 

IO:ETU~N 
END 

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• •..........•...........•......................•....•............. , 
SUP~OUTIH£ tNV!AoAINVrNollrNio"ll 

INVERT ~ATRIX A : 

···············"~--

•., • • •• • • • •••••••• • • • • • •• • • • • ••o• •• • • •• ••• • •• • • • • ••• ••. • • ••,., •, • • 

SUP~OUTINE l~V 111'15 •DAPTE~ FROII A ~I'IS!C rROGRI'IM IN ArPE~DIX J 

!INVERSE 0' A IIATJ<IX USING GAUSS-JORDAN ELIMI~IIflON> OF THE 
TE~T~OOK "COHFUTATIONAL LINEAR ALGE~~~~ WITH IIODELS' ~y GARETH 
WllLlnll&r SECONU EDITlONr ALLYN & PACON, INC,, POSTON. 1978. . . 

I I I I 8 II II II I Ill I I I I I I I 0 I I lit I I II fl 100 Illite Ifill II II 0 ol • t I 0 II I 01 I I 

D!ME~SlON ACNI,"IloAINVINfoN.I 
bOU~LE ~~ECISlON ArToYrl 

(!Q 1~:3 k'•l ,N 
11· (A("rld ,N[, f,) OOTO 76 

DO 7!1 I•k+lrN 
IF' llllf•U ,[Cl. 1.1 GOTO 79 

(10 '' J•·..:, M 
T•l\1 ~.;, .1) 

A<l\o.ll-A!lrJ) 
AI I r Jl QT 

COIH I HUE 
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.. 
t 

c 

t 

GOTO 76 
71 CONTINUE 

GOTO 171 
76 IF CAU.•Id .1:0. l,) GOTO 9::; 

,. 
t:. 

ll !', 
1:!8 
1:!5 

Y•ACii:,l() 
l!O 91 L•"•" 

AIKol.l,.A(t.;,Ll/Y 
CONTINU( 
00 1::.'1 I•1•N 

IF C I .ED. I( ,OR, AC loiO .En. 1.) GOTO 1::.'" 
z.,n<Iold 

,(IQ 115 J•K•I1 
AII•Jl~A<IoJl-ltA(KrJ) 

CUNliNIII: 
CONTINUE 

CONTINUE 

(10 1!.1 l•l•N 
[10 1115 J•Ntl•l1 

AINVCioJ-N)•f.NGL<A<IrJl) 
14~ CONTINUE 
l!i8 CONTINUE 

GOTO ~~~~ 

171 WI<IT£1:;, 999) 
999 rOk11ATI//~7H TH£ INV[~SE [IOES NOT EXI5T/l 

:!II CONTINUE 
~ETUJ.:N 
lN[l 

c ·························································~········ t •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
ruNCTION P'DL Y(A• N, X l 

C au••••~•••••••n•~••nA•t~nn~anwau••••&aarn•••nca 

C : COMPUTE THE CN-1lTH O~b[~ POLYN011IAL r<Xl : 
C •n••••••••••••a~~•••~n•••u••••••••••uaanttCadHa 

c 
C A<ll IS TH[ COHritlENT OF" THE <N-1lTH Of.:(lER T£k11 
C AINl IS THE CONSTANT T£~11 

c 
[ti11[N5[0N A(N) 

~~111•· A( 1 l tX 
II IH .L[. ~~ GOTU :! 

(10 l I•:!·N··l 
SU11•<SU11tA<IlltX 

I CONTI Nll[ 
2 P'OL Y•5Ut1HH Nl 

IH. TUJ.:N 
[Nft 
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>RUN SF'LINE (C) 

ENTER NUMBER OF DATA POINTS <MAXIHUH = 47>: 
47 

ENTER X AND Y VECTORS, ONE DATA POINT PER LINE 
-0.400E+01 0.5460E-03 
-0.2~0E+01 0.5390E-03 

O.OOOE+OO 0.5290E-03 
0.500E+01 0.5090E-03 
0.150E+02 0.4610[-03 
0.250E+02 0.4120E-03 
0.3SOE+02 0.3740[-03 
0.450E+02 0.3380E-03 
O.SSOE+02 0.3110£-03 
0.650Et02 0.2940E-03 
0.7SOE+02 0.2770E-03 
0.850E+02 0.2660E-03 
0.9SOE+02 0.2570E~03 
0.145Et03 0.2240£-03 
0.195E+03 0.2040£-03 
0.295Et03 0.1850[-03 
0.395£+03 0.1710(-03 
0.495E+03 0.1610E-03 
0.600E+03 0.1560£-03 
0.700E+03 0.1520E-03 
O.BOOE+03 0.1480E-03 
0.900E+03 0.1450E-o3· 
0.100£+04 0.1430E-03 
0.1SOE+04 0.1340£-03 
O.~OOE+04 0.1290E-03 
0.300E+04 0.1230E-03 
O.SOOE+04 0.1190E-03 
0.750Et04 0.1160E-03 
0.100E+OS 0.1144E-03 
OolSOE+OS 0.1122E-03 
0.200E+OS 0.1112(~03 
0.300E+OS 0.-1106£-03 
O.SOOE+OS O~t096E-03 
0.750Et05 0.1086E-03 
0.100Et06 O.lOBlE-03 
0.150Et06 0.1073E-03 
0.200Et06 0.1067E-03 
0.300E+06 0.1059E-03 
0.500Et06 0.1050E-03 
0.7SOE+06 0.1041E-03 
0.100Et07 0.1035£-03 
0.1SOE+07 0.1026E-03 
0.200E+07 0.1020E-03 
0.300E+07 0.1012E-03 
O.SOOE+07 0.1004E-03 
0.7SOE+07 0.9955E-04 
O.lOOE+OB 0.989SE-04 

ENTER NUMBER OF POINTS TO COMPUTE BETWEEN NODES: 
25 
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Table of Cubic Spline Functions for Cs(t) 

I I 1-11 rDii-I>J r·cxll-1>1 I'IXII-I>l ron>l J"'[XIJ)) r•cx1 UJ AI]) Al~l All> AlOI 
---------- ------------ ------------ ------- .. -------- --------

I -0.400£t01 0.~460[-0J 0.31~3£-0~ -0.1~96[-04 o.5390r-oJ -o.6J07£-o~ 0.~4~2[-0~ 0.143£-05 0.106£-04 O.I\IB£-04 0, ~16£ -OJ 
:! -o. :!:!OUDI 0.:5390[··03 -ll, ldOlf-0:5 0.:'-1~;:![-0!i 0.:5~90£-03 -0.37~0£-0:5 -0.1008£-06 -0.1VJE-06 -0.504[-07 -0.37~£-0:5 0.:5:!9£-0] 
3 O. OOCE+OO 0.:5~90[-03 -0.37~0[-0~ -0.1008£-06 0.:5090[-03 -0.4309£-0:5 -0.134~[-06 -O.IIlE-09 -0.:504[-07 -0.372£-0:5 o.!i::'9[-0J 
4 o.:;oouo1 0.:5090£-0l -0.4308£-05 -0.1342[-06 0.4610£-03 -0.:5114£-05 -0.2713£-07 0.178£-08 -0.938£-07 -0.3:50£-05 0.:5:'9£-03 
5 O.l:50£t0~ 0,4610[-03 -0.5114[-05 -0.2113[-07 0.4120£-0l -0.4336£-0:5 0.1827£-06 0.350£-08 -0.171£-06 -0.235£-05 0.:5~3[-0J 

b o.~sorto2 0.4120£-03 -0.4]36£-05 0.111~7£-06 0.3740[-03 -0.3641[-05 -0.4356£-07 -0.377E-OB 0.374£-06 -0.160(-04 0.636£-03 
7 0.350Et02 0.]740[-03 -O.JL41[-0:5 -0.4356£-07 0.3390£-03 -0,3301£-05 O.lllb£-06 0.2:59£-08 -0.293[-06 o. 739£-05 0.364[-03 
8 0.4~0£+02 0.3390[-03 -0.3301£-0:5 0. 1116£-06 0.3110£-03 -0.20:57£-0:5 0.1-372£-06 0.427£-09 -0.19~[-08 -0.573£-05 0.561[-03 
9 0.:550E+02 0.3110£-03 -0.:'0~7£-0:5 0.1372£-06 0.~940[-0~ -0.1673£-05 -0.6051£-07 -0.330£-09 0.61~[-06 -0.39:5£-04 0.119£-02 

10 0.6~0Et02 0.2940[-03 -0.167][-05 -0.6051(-07 0.2770£-03 -0.1451[-05 0.1048£-06 0.276£-08 -0.568£-06 0.372£-04 -0.48~[-03 
11 0.7:50[t0~ 0.2770£-0l -0.14~1[-0~ 0.10411£-1>6 0.~660£-03 -0,9211[-06 o.. 1284£ -o9 -0.173[-09 0.441£-06 -0.384(-04 o.t41E-o~ 
1~ 0.8:50[+02 0.26oOE-Ol -0.9210£-06 0.1294[-011 0.~:570£-0J -0.8643£-06 0.1006£-07 0.146£-09 -0.367[-07 0.214£-05 0.::!591::-03 
13 0.9~0[+02 0.2570£-0l -0.11643£-06 0.1006[-07 0.2240[-03 -0.:5029£-06 0.4]96£-08 -0.189£-10 0.104[-07 -0.233£-05 0.401[-03 
14 0. 145Et03 0.~240[-03 -0.~0~9[-06 0. 4391>[ -Oil 0.2040£-03 -0.3041£-06 0.35:55£-08 -o. 2BOE-l1 0.342£-08 -0.132£-05 0.352£-03 
15 O.I9:5Et03 0.2040[-03 -0.3041[-06 O.J!i~~E-08 0.1850£-03 -0.1396£-06 -0.2643[-09 -0.637£-11 0.550(-08 -0.172£-05 0.379£-03 

\.0 lb 0.:<95[t03 0.1850[-03 -0.1396[-06 -0.2643[-09 0.1710[-03 -0.1277£-06 0. 5017£-09 0.128[-11 -0.1:!6£-08 o.2nr-o6 0.19:'£-03 I 
.p.. 17 o.395£t03 0.1710[-03 -0.1:!77[-06 0.:5017[-09 0.1610(-0] -0.6972£-07 0.6577£-09 0.260[-12 -0.573£-10 -0.204[-06 0.245[-0J 
-...! IB 0.495£t03 0.1610[-03 -0.6972£-07 0.6577£-09 0.1560(-03 -0.3795£-07 -0.5257£-10 -0.11lE-11 0.200[-08 -0.122£-0:5 0.413[-03 

19 0.600[t03 0.1560£-03 -0.3795£-07 -0.5257£-10 0.1~20£-03 -0.4147[-07 -0.1786£-10 0.578£-13 -0.130£-09 0.561£-07 0.1:57£-03 
20 o.7oorto3 0.1520£-03 -0.4147E-J7 -0.1786£-10 0.1480[·23 -0.3.16£-07 0.1240[-09 0.236£-12 -0.:506[-09 o.319E-06 0.9~~[-04 

21 0.800Et03 0.1480[-03 -0.3616£-07 0.1240[-09 0.1450£-03 -0.2307(-07 0.121BE-Ii9 -0.378£-14 0.711£-10 -0.143(-06 0.219[-03 
22 0.900£t03 0.1450£-0l -0.2JII7E-07 0-1219£-09 0.1430[-0] -0.1834£-07 -0.1105£-10 -0.221£-12 0.6:59[-09 -0.671[-06 0.377[-03 
:!3 O.IOO£t04 0.1430[-03 -0.1934(-07 -0.110:5£-10 0.1340(-03 -0.14:56£-07 0.2616£-10 0.124£-13 -0.4~7£-10 0.299£-07 0.143£-03 
24 0.150Et04 0.1340[-03 -0.1456[-07 o. 2616£-10 0.1290£-03 -0.7421£-08 0.2392£-11 -0.792£-1'1 0.487£-10 -0.107£-06 0.212[-03 
;!5 o. 200[t04 0.1:<90£-03 -0.7'121£-08 0.2392(-11 0.1230£-03 -0.43:54£-08 o.3742E-11 0.225£-15 -0.154[-12 -0.951[-08 0.147£-03 
26 0.300Et04 0.1230[-03 -0.4354[-08 0.3742[-11 0.1190[-03 -0.1034[-08 -0.4222£-12 -0.347£-15 0.499[-11 -0.249[-07 0.162[-03 
27 o.soo£to4 0.1190[-03 -0.1034[-08 -0.4~22£-12 0.1160[-03 -0.1004[-08 0.4462£-12 0.579[-16 -0.108£-11 0.542[-08 0.11~[-03 

28 0. 750Et04 0.1160£-03 -0.1004£-09 0.4462£-12 0.1144£-03 -0.4695£-09 -0.1B52E-1J -0.310£-16 0.920£-12 -0.958[-08 0.149£-03 
29 0.100Et05 0.1144£-03 -0.4695£-09 -0.1852£-13 0.112~[-03 -0.3346£-09 0.7248[-13 O.JOJE-17 -0.100£-12 0.626[-09 0.115[-03 
30 0.150Et05 0.1122[-03 -0.33~6[-09 o. 7248£-13 0.1112[-0l -0.1119[-09 0.1660£-ll -0.186£-17 0.120[-12 -0.268£-08 0.132£-0J 
31 0. ~00Et05 o.1112E-ul -0.1119E-o9 0. II>I>OE-13 0.1106£-03 -0.3916£-10 -0.2048£-14 -0.311E-19 0.270[-13 -0.817£-09 0.119[-03 
3:< 0.300[+0:5 0.1106[-03 -0,3916E-IO -O.~O~BE-1~ 0.1096[-0] -0.5120[-10 0.8439[-1:5 0.241[-19 -0.319£-14 0.87H-10 0.110(-03 
33 O.~OO[tO!; 0.1096£-03 -0.:5120[-10 0.8-139£-15 0.1086[-03 -0.2815[-10 0.100IE-14 o.1oqr-2o 0.265£-15 -0.856[-10 O.llJE-03 
34 0.7SO£t05 0.1086[-03 -0.2915[-10 0.1001£-14 0.1081[-03 -0.1622£-10 -0.4638£-16 -0.698[-20 0.207[-14 -0.221£-09 0.116£-03 
3:0: 0.100Et06 0.1081£-0J -0.16~~[-10 -0.~639E-i6 0.1073£-03 -0.1441£-10 0.1188[-15 0.:551£-21 -0.188£-15 0.494£-11 0.109[-03 
36 0.!:50£+06 0.1073[-0J -0.1441[-10 0.1189£-15 0.1067[-0J -0.1016[-10 0.5114£-16 -0.226[-21 0.161£-15 -0.47~£-10 0.112[-0J 
37 o.~OOE+06 0.1067[-03 -0.1016[-10 C.:5114E-16 0.1059[-03 -0.6241[-11 0.2719[-16 -o. 399£··22 0.495£-16 -0.252£-10 0.110£-03 
38 o.300E+06 0.1059[-03 -0.6241(-11 0.2719[-16 o.1050E-o3 -o.J7J7E-11 -0.2149£-17 -0.24:5[-22 0.356[-16 -0.210[-10 0.!10£-03 
39 0.:500Et01> 0.10:50[-03 -0.3737[-11 -0.~149[-17 0.1041£-03 -0.3058£-11 0.7591£-17 0.649[-23 -0.108£-16 0.220£-11 0.106£-03 
40 o.750Et06 0.1041£-03 -0.3058[-11 0.7581£-17 0.1035£-03 -0.2032£-11 0.6241£-IB -0.464[-23 0.142[-16 -0.166£-10 0.110[-03 
41 0.100£+07 O.I03:5E-OJ -0.203~£-11 0.6241£-18 0.10~6[-03 -0.1492£-11 o. 1537£-17 0.304£-24 -0.601[-19 -0.174£-11 0.106[-03 
4:.' 0.1:50Et07 O.I02oE-Ol -0.1492[-11 0.1537£-17 0.1020£-03 -0.1001[-11 0.4278£-18 -o.370E-:l4 o.~~3E-17 -0.629£-11 O.IOOf-03 
43 0. ~00[t07 0.1020[-03 -0.1001[-11 0.4278[-18 0.101~£-0J -0.61~7[-12 0.3480[-18 -0.13JE-25 0.294[-18 -0.202£-11 0.10~£-0J 
44 0.300£+07 0.101~[-03 -0.61~7[-12 0.34BOE-10 0.1004[-03 -0.3~27£-12 -0.~904[-19 -0. 338[·-25 0.479£-18 -0.257[-11 0.106[-0.1 
45 0.500£t07 0.1004£-0l -0.32~7[-12 -0.~804[-19 o.9955f·04 -o.J021E-12 o. 7451[-19 0.884[-26 -U.1b2£-1B 0.630£-12 0.100£-03 
4o 0.7SOEt07 0.9955[-04 -O.JO:'IE-1~ o. 74~1[-19 0.989~£-04 -0.2090£-1~ -0.2SB~E-~5 -0.497£-26 o.1q9£-19 -o.170E-11 0.106£-03 



>RUN SPLINE (D) 

ENTER NUMBER OF DATA POINTS CHAXIHUH = 47>: 
47 

ENTER X AND Y VECTORS, ONE DATA POINT PER LINE 
-0.400£+01 0.1520£-03 
-0.220Et01 O.lSlOE-03 

O.OOOE+OO 0.1480£-03 
O.SOOE+Ol 0.1430E-03 
0.1SOE+02 0.1310E-03 
0.250Et02 O.llBOE-03 
0.350Et02 0.1070E-03 
0.450Et02 0.9670E-04 
0.550Et02 0.8890E-04 
0.650£+02 0.8270£-04 
0.750Et02 0.7810E-04 
O.B50Et02 0.7510£-04 
0.9SOEt02 0.7220E-04 
0.14SE+03 0.61BOE-04 
0.195Et03 0.5560E-04 
0.29SE+03.0.4940E-04 
0.395Et03 0.4SOOE-04 
0.495Et03 0.4200E-04 
0.600Et03 0.4020E-04 
0.700Et03 0.3910£-04 
O.BOOEt03 Q.3790E-04 
0.900E+03 0.3710E-04 
0.100Et04 0.3620E-04 
0.150E+04 0.3360E-04 
0.200E+04 0.3190£-04 
0.300E+04 0.3040E-04 
0.500E+04 0.2890£-04 
0.750E+04 0.2790£-04 
O.lOOEtOS 0.2739E-04 
0.150Et05 0.2672£-04 
0.200Et05 0.2644E-04 
0.300Et05 0.2633E-04 
0.500Et05 0.2597£-04 
0.750Et05 0.2564£-04 
0.100Et06 0.2550£-04 
0.150Et06 0.2527£-04 
0.200Et06 0.2509£-04 
0.300£+06 0.2486£-04 
O.SOOEt06 0.2459E-04 
0.7SOEt06 0.2432£-04 
0.100Et07 0.2414E-04 
O.lSOEt07 0.2387£-04 
0.200Et07 0.2369E-04 
0.300E+07 0.2347£-04 
O.SOOEt07 0.2325£-04 
0.750£+07 0.2299E-04 
0.100E+08 0.2282[-04 

ENTER NUMBER OF POINTS TO COMPUTE BETWEEN NODES: 
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Table of Cubic Spline Functions for D(t) 

l !I-ll 1· (X I I -I J J r ' [X l I -I l J f '[ll<l-lll HX< Ill r'IKIIll r' l X< I I J I<(JI AI~) jl( I) 111(0) 

--------- ---------- ---------- ------- ---·----- ----··---

-o. 400l+01 o.1:;:cor-oJ 0.6301[-06 -0.18~2[-0~ o.1:;1oE-o3 -o.I~60E-O~ -o.~4Ro£-06 0.148[-06 o.8:;~E-o6 0 .J4(i[-06 0.149£-0J 

~ -0.2~0001 o.t:;lo£-OJ -o.1~60£-o~ -o.~486£-06 O.I~B0£-03 -O.l~V/[-0~ 0. ~1 :;3(-06 o.J=.tH-07 O.IODf-06 -0,1lOE-05 0.1481:-03 

l 0. 000[ +CIO 0.1480£-03 -0.1~97£-0~ o.~I=..JE-06 o.t43o£-o3 -0.944~£-o• -0.7434£-07 -0.96~£-08 O.IODE-06 -0.130£-05 0.148[-03 

o.:;oo£+01 0.1430£-03 -0.944~£-06 -0.7434£-07 0.1310£-03 -0.1339£-05 -0.463~£-08 0.116[-08 -0.:146[-07 -0.486£-06 0.147£-03 

:; o.1:;o£+o:? 0.1310£-03 -0.1339£-0~ -0.4631£-08 0.1190£-03 -0.1199£-0~ 0.3~87[-07 0.6~~[-09 -0.304£-07 -0.848[-06 0.148£-0l 

6 o. ~:;ouo~ ~.1180£-03 -0.1198[-0~ 0.3:.?117£-07 0.1070£-03 -0.1068[-0:; -0.6839[-08 -o.66n-o9 0.661£-07 -0.326£-05 0.169£-03 

7 o.3::iO£+O::! 0.1070[-03 -0.1068[-05 -0.6839£-00 0.9670(-04 -0.9198£-06 0.3649[-07 0.7~:.?£-09 -0.792£-07 O.IBJE-05 0.109[-03 

8 0. 4::iOE+02 0.9670[-04 -0.9199[-06 0.3649[-07 0.9890[-04 -0.6829£-06 0.10118E-07 -0.421£-09 0.759£-07 -0.515£-05 0.214[-03 

9 O .. ~~OE+O~ 0.0090£-04 -0.6929[-06 0.1008£-07 O.R270£-04 -0,:;486£-06 o.1!i9UE-07 0.849£-10 -0.857£-08 -0.511£-06 0.1:.?9£-0J 

10 0.650£+0:? 0.9~70£-04 -0.~~86£-06 0.1~98£-07 0.7910£-04 -0.]6~7(-06 0.2120£-07 0.971£-10 -0.89¥£-08 -0.483£-06 o.1:.?9£--oJ 

II 0.7~0£+0:! 0.7810[-04 -0.36~7[-06 0.::'1::?0£-07 0.7~10[-04 -0.::'906£-06 -0.47?4£-08 -0.433[-09 0.108£-06 -0.926[-05 0.348£-03 

12 0.8~0[+02 0.7510(-04 -0.2806£-06 -0.4794£-08 0.7220£-04 -0.::?948[-06 0.3972£-08 0.146(-09 -0.397£-07 0.129£-05 -0.808£-05 

13 0.950£+02 0.7220£-04 -0.2848(~06 0.397~£-08 0.6190£-04 -0.1:iJOE-06 0.1267£-08 -0.902[-11 0.456£-08 -0.906[~06 0.125[-03 

14 0.14~£+03 0.6180[-04 -0.1539£-06 0.1267£-08 0.~560[-04 -0.9609[-07 0.1041(-08 -0,7SIE-12 0.960£-09 -0.]8:;[-06 0.997[-04 

15 0. 19:;[+03 0.5:160(-04 -0.9609(-07 0.1041£-08 0.4940(-04 -0.4589£-07 -0.3743£-10 -0.180£-11 o.1::i7E-o8 -o.504£-06 0.107£-03 

1.0 
16 0.295£+03 o,4940E-04 -o,4~09£-o7 -o.3743E-10 0.4500[-04 -0.3834[-07 0.1884[-09 0.376[-12 -0.352£-09 0.634£-07 0.516£-04 

I 17 0.395£+03 0.4500[-04 -O.lDl4(-07 O.IBB4E-09 0.4200(-04 -0.::?273£-07 0.1240[-09 -0.107£-12 0.::?21£-09 -0.16]£-06 0.815£-04 

~ 18 0.495£+0] 0.4200[-04 -0.~273£-07 0.1::'40[-09 0.4020[-04 -0.1248[-07 0.7127[-10 -0,831..[-13 0.186[-09 -0.146(-06 0.786[-04 

\0 19 0. 600Et03 0.40::'0£-04 -0.1~48£-07 0.7127£-10 0.3910[-04 -0.1161£-07 -0.5J79[-10 -0.209£-12 0.411£-09 -0.::?80£-06 0.106[-03 

20 o. 700£+03 0.3910£-04 -0.1161[-07 -0.5379£-10 o.l790£-04 -o.loi0£-07 0.8388£-10 0.229£-12 -0.509£-09 0.363£-06 -0.447(-04 

21 0.800£+03 0.3790[-04 -0.1010£-07 0.9389£-10 o.l710E-04 -o.7993E-o8 -0.4173£-10 -0.209£-12 0.544[-09 -0.479[-06 0.180£-03 

2::? 0.900[+03 0.3710E-04 -0.7993(-08 -0.4173£-10 0.3620[-04 -0.8927£-08 0.230~£-10 0.108£-12 -0.312(-09 0.292[-06 -0.513(-04 

23 0, 1 OOE+04 0.3620[-04 -0.89:.?~£-08 0.2305[-10 0.3360[-04 -0.3~07[-08 -O.Il68£-l1 -0.814£-14 0.359£-10 -0.564[-07 0.648£-04 

24 0.150Et04 Q,3J60E-04 -0,3507[-08 -O.I369E-11 0.3190£-04 -0.2943£-08 0.4026£-11 0.190£-14 -0.878£-11 0.107£-07 o.J13E-04 

25 0.200£+04 O.JI90E-04 -0.::?843[-08 o. 4026£-11 0.3040(-04 -0.8:.?66[-09 0.7499(-14 -0.670£-15 0.603[-11 -0.189£-07 0.510[-04 

26 o.looE+04 o.3J4c£-o4 -o.8266£-o9 0,7499£-14 0.~890[-04 -0.604~£-09 0.2147£-12 0.173£-16 -0.152£-12 -0.383£-09 0. 324£-04 

27 0.500[+04 0.2890[-04 -0.6044£-09 0.2147£-1:! 0.2790[-04 -0.2~97[-09 ().6104£-13 -0.102[-16 0.261[-12 -0.245[-08 0.359[-04 

::'8 o. 7:;0[+04 0.2790[-04 -0.2~97£-09 0.6104[-13 0.2739(-04 -0.1690[-09 0.1153£-13 -0.330£-17 0.105E-1:! -0,127£-08 o.JJ0£-04 

29 0.100£+05 0.::?7J9E-04 -0.1690[-09 0.1153[-13 0.2672[-04 -0.9~91[-10 0.1989[-13 0.:!45£-18 -0.159£-14 -0.211[-09 0.294£-04 

30 0. 150[ + 05 o.~o72E-o4 -o,929t£-10 0.1899[-13 0.~644[-04 -0.:!939[-10 0.652~£-14 -0.412£-18 0.280E-13 -0.654£-09 o.3uE-04 

31 0- :!00[+05 0.::?64~£-04 -0.:!939£-10 0.65~5[-14 0.~633£-04 -0.6848£-11 -o. 2017£-14 -0.142[-18 0.118£-13 -0.331£-09 0.:.?95£-04 

l~ 0.300E+05 0.2633£-04 -0.6848£-11 -o. 2017t:-14 0.2597[-0~ -0.:!014£-10 0.6880[-15 o.:.?25E-19 -0.304£-14 0.115£-09 0.250£-04 

33 0.500[+05 0.2597[-04 -0.~014[-10 o. 6890[·-15 0.2~64(-04 -0.7929£-11 0.288~£-15 -0.266[-20 0.744[-15 -0.745[-10 o.292£-o4 

34 o. 750£+0~ 0.::?564[-04 -0.7929E-11 0.2895[-15 0.:!5~0£-0~ -0,4540[-11 -0.1801[-16 -0.204[-20 0.604[-15 -0.640[-10 0.279[-04 

35 0.100£+06 0.::?550[-04 -0.4548[-11 -0.1001(-16 o.2527E-04 -o.~::?54E-lt 0.2970£-16 0.159£-21 -o. ::i!>9£-16 0.20JE-11 0.257[-04 

36 O.!SOE+06 0.25::?7[-04 -0.4254(-11 o. 2978[-16 0.2~09[-04 -0.3037[-11 0.11189[-16 -0.363£-22 o.312£-16 -o.112E-1o 0.264(-04 

37 0.200£+06 0.2~09(-04 -0.3037£-11 O.l889E-16 0.2486[-04 -0.1771£-11 0.6~27£-17 -0.208[-22 0.219£-16 -0.931£-11 0.262[-0~ 

39 0.300£+06 0.2486£-04 -0.1771[-11 0.64~7E-l7 0.2459[-04 -0.1151£-11 -0.2;!94[-18 -o.555E-::?3 0.921[-17 -0.520[-11 0.2~8£-0~ 

39 0.5JO[t06 0.2459£-04 -O.I1::i1E-11 -o.::294£-18 0.2432£-04 -0.9092(-1:! 0.2164[-17 0.160£-23 -0.251£-17 0.161£-12 0.::!49(-04 

40 c. 7:;0[+06 o.~43:!E-04 -o.9o92E-12 0.2164£-17 0,2414[-04 -0.6122£-12 0.2116£-18 -O,l30E-23 0.401[-17 -0.473[-11 0.262£-04 

41 O.IOOE+07 0.2414(-04 -0.6122£-12 0.2116[-18 0,2387(-04 -0.449::i£-1~ 0.4429[-18 0.771£-25 -0.125£-18 -0.593[-1:.? 0.248£-04 

42 0.1~0£+07 0.2387£-04 -0.4485E-12 0.4~~9(-18 0.2369(-04 -0.2936£-12 0.1768[-18 -0.987£-25 0.6:!1[-18 -0.171[-11 0.253£-04 

43 (). 200[t07 0.:!369(-04 -0.2936[-12 0.1768£-IB 0.2347£-04 -0,1611£-12 0.982BE-IP -·0.147[-25 0.177[-18 -0.824£-12 0.:.?47[-04 

44 o.3oOE+07 0.2347[-04 -0.1611[-12 0.8828[-19 0.232:;[-04 -0.9606£-13 -0.2323[-19 -0.929[-::?6 0.128£-18 -0.677£-12 Oo246[-04 

45 0.500£+07 0.~3~5£-04 -0.9606£-13 -0.2323£-19 0.~:!99[-04 -0.9084[-1] 0.::?741£-19 0.338[-26 -0.623£-19 0.273£-12 0.230£-04 

46 o.J:;o£+!>1 0.229Y[-04 -0.9084[-13 0.2741[-19 0.22B2E-04 -0.56~8£-·ll -O.l2V~E-~5 -0.103[-26 0.548£-19 -0.605£-12 0.::!5:!£-04 



APPENDIX 9C 

Computer Program SURMF 

SURMF calculates the total surface mass flux from the spherical waste 

canister (see cha?ter 8for theoretical development). The data created by 

SPLINE (see Appendix9B are used as inPut to SURMF. In SURMF the input data 

are again interpolated to increase the number of data points being used in 

the calculation of the total surface mass flux by routines called SPLIFT, 

SPLINT and SPLIQ. These three routines are obtainable from the SANDIA 

Mathematics Library which is one of the Background Mathematics Libraries at 

LBL. SPLIFT computes the parameters of an exact spline fit to data. Then 

SPLINT interpolates values on a spline using parameters from SPLIFT. And 

SPLIQ integrates a cubic spline defined by SPLIFT or SPLINT. Besides the 

routines from SANDIA one more subroutine CONVOL is included in this program. 

CONVOL calculates the convolution integral (see equation (5.7)) by rrtethod 

explained in Section 5. List of ~P-237 (t) obtained from this program follow 

the FORTRAN listing. In the next page the s~bols used in SURMF are ex­

ulained. 
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Symbols Used in SURMF 

T 

F 

FP 

FPP 

G 

GP 

GPP 

N 

ISX 

Al, Bl, AN, BN 

TLO 

Array of abscissas (actually time in increasing order) 

that define the spline. 

Array of ordinates that define the spline. See eq, 10 

in chapter 8 and eq. (5 .1) for definitions. 

Array of first derivatives of Fat ~scissas T. 

Array of second derivatives of F at T. 

Array of ordinates that define the spline. 

See eq. 5, ch. 8 and (5.2) for definition and details. 

Array of first derivatives of G at abscissas T. 

Array of second derivatives of G at T. 

The number of data points. The arrays F, G, FP, GP, 

FPP, G~P must be dimensioned at least N. (N ~ 4). 

Array of working storage dimensioned at least 3N used 

in routine SPLIFT. 

Must be zero on the initial call to SPLIFT. If a 

spline is to be fitted to a second set of data that 

has the same set of abscissas as a previous set, ISX 

may be set to 1 for faster execution. 

Specify the end conditions for the spline determined 

by the routine SPLIFT. The end condition constraints 

are 

FPP (i) 

FPP(n) 

Al * FPP(2) + Bl 

AN*FPP(N-1) + BN 

where IAll < 1 and IANI < 1. 

Left end point of integration intervals in the routine 

SPLIQ. 
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TUP 

NUP 

ANS 

TAU 

FI 

FPI 

FPPI 

GI 

GPI 

GPPI 

FPT 

F¢ 

FP¢ 

D¢ 

CS¢ 

Array of absci SSls (in arbitrary order) at which the 

spline is to be evaluated by the routine SPLINT. At 

the same time it is the array of right end points of 

integration intervals used in the routine SPLIQ. 

The number of right end points in the routine SPLIQ. 

Same as the number of abscissas at which the spline 

is to be evaluated by the routine SLINT. 

Array of integral values, that is, ANS(I) integral 

of G from TLO to TUP(I). 

Array of dimensionless times defined by eq. 12 of ch. 8. 

Array of values of the spline F at TUP. 

Array of values of the first derivative of spline F 

at TUP. 

Array of values of the second derivative of spline .F 

at TUP. 

Array of values of the spline G at TUP. 

Array of values of the first derivative of spline G 

at TUP. 

Array of values of the second derivative of spline G 

at TUP. 

Array of values of the first derivative of spline F 

at TAU which is to be used by subroutine CONVOL. 

Value of the spline F at time t = 0. 

Value of the first derivative of spline F at dimen-

sionless time T = 0 (see eq. 12 of ch. 8 for definition 

of T). 

D defined by equation (x.S). 
0 

C defined by equation (x.l2). 
so 
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EPS 

R 

COEFK 

FLUX 

CONVIN 

CUMFL 

The por.osity of the surrounding medium. 

The radius of the spherical waste canister. 

Retardation factor. 

The total mass flux from the entire sphere surface 

expressed by eq. 28 in capter 8. 

The convolution integral used ineq. 28, chap. 8. 

The accumulated mass flux since the beginning of 

dissolution. 
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t tPRG CRAM SURMF 0 1( INPUT, OUTP U l , TAPE 5= I NP Ul, l APE u-=OlJTPUT) ** 

PROGRAM SURMFCU INPUT,OUTPUT ,T.\PE5=1 1\PUT ,TAPt:o=CUTPUT) 

Cl~E~SICN CF ARRAYS FOR SPLIQ ANC SPLIFT 

F~~t~ETE~ N=47,NUP=64 
DIMENSION Tlf\) ,G lN) ,GP(NJ ,GPP(NJ ,TUPHU PJ, ANS (NUP J 
Olf1ENSION F(N),FP(N) ,FPP(N) ,FI (NUPl ,FPI CNUPI ,FPPI CNuPl 
CU4ENS1CN Gl lf\UP),GPICNUP),GPPI (NUP) 
DIMENSION ~(N,3J ,TAU(NUfJ ,FPT CNUPI 
COMHON/CAL/FPO . 
CAT~ F~l/3.1415926535/ 

SET VARIABLES NEEDED FOR SPLIQ 

lLO:aC. 
REAC(5,500) DO,CSO,EPS,R,COEFK 

50J FCP~AT(5FlO.OJ 
~Rl TE(t,tlCJ DC,CSC,EPS,R,COfFK,NUP 

610 FCPMATClt-l,4HCO =F8.C,7t1CM**2/S,/,5H CSO=, E8.1,7HG/CM**3,/, 
l 5H EPS=,F8.3,/,5h R. =,F!L3,2HCM,/,5H K =,Fa.o,/, 
2 2CH NG CF CALCULATIONS~ ,131 
1Cf~Ct.5,50U lT(IJ,GliJ,F(IJ.I=l,N) 

501 FCP~AT(3FlO.OJ 
NO= 0 
cc 10 l=l,8 
DC lC ll=l,9 
Fl=Ll 
T~=l.•to.••<L-l)*fl 
~C-=~C+l 

TUP(NOJ=TM 
IFC~C.E,.~UPJ GC TC 11 

lC CCN Tl t<.LE 

SET V.ARIABLES FOR SPllFT ANC ThEN CALL SPLIFT TO 
. I OBTAIN THE OTHER NEEDED INPUT FCR SPLIQ 

11 ISX-=0 
Al=O. 
a 1= c. 
/J ~= 0. 
B~=C. 
CALl S=>LtFl(T,G,GP,GPP,N,h,IERRl,ISX,Al,Ul,AN,BI\) 
1 F ll E j; H • E C .1 J GO TO 20 
PPINT tCC 

tOO FORMAT(/1X,3CHMISTAKE MADE IN SPLIFT ABCUT G) 
2 J C C t<. T I ~U E 

CALL ~PllQ( T,G,GP,GPP,N,TLC,TUP,~UP,AI'>.S, IE~R21 

IFC IERq~.EQ.l) GO TO 30 
FJ;lNT 601 

tJOl FOR!'o'A l( /1 X ,21HMI STAKE MADE IN SPLIQJ 
30 CONTINUE 

( .A ll S P l I ~ T ( T , G , G P P, N, T U P, G I , G P I, GP P I , N UP , I ERR 3 ) 
IF( IERR3.EQ.U GC TO 40 
PRINT 602, IERR3 

6 C2 F C F M /J T (I l X , 6 H I E R R 3 = , I 3 ) 
4C CGN TI ~lE 

A S P ll ~ E 1 S T 0 8 E F ITT E C T 0 A S E CON 0 SET U F DATA 
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• • FF C G F M" S U PM F 0 1 ( IN PUT , 0 U T P U T , T J\ P ( 5= I N P U T , TAPE ~ = U U T P U f) * * 
THAT HAS THE SAME SET CF ABSCISSAS 

lSX•l 
CALL SPllFT n,F,FP,FPP,~,w, IERIJ.l, ISX,Al,~l,AN,BNI 
IF( IERR l.EC. U GC TO SC 
F PI t\T t 0 3 

~03 FCF~All/1X,3CHMISTAKE MACE IN SPLlFT AGGUT Fl 
SC CONTINUE 

C~LL SFLINTlT,F,FPP,NrTUPrfl,fPl,~PPI,NUP,IERR41 
IFliERR4.EC:.ll GC TO 60 
P R IN T t C It , I ERR 4 

604 FCf'f'ATC/1X,6t-IEPP4=, 13) 
t:C CCNTI~LE _ 

FO=flTIME T = 0+ YEAR) 
FPJ=f' (T ll'f T =. 0+ YEAR) 

F C=F ( ~I 
F fO= F P ( 3 ) 
FPlf\T t:2C 

tJ 2 J F 0 R M A 1 ( It ( I I , 4 )I , 1 H T t 1 5 )I , 3H T A U , 1 0 X , 4 H F ( T I , 9 X , 5 H F' ( T ) , 8 X , 6 r F' ' ( T ) , 
1 lOX,4HG(TI, qx,5HG'(TI,8X,6HG''(TI, 
2 2Xtl2HSURFACE FLUX.llt-1 CUMMU.FLUX, 
3 I 4 X , 1 H- , 1 5 X , 3 ( lH - ) , 1 C X , 4 ( 1 H - ) , 9 X , 5 (l H- ) , 8 X , 6 (1 H - I , 
4 10X,4(1H-), qx,5( 1H-t,8X,6(1H-I, 
'5 2 X , 1 2 ( 1 1-l- I , 1 X , 1 0 ( 1 H- I J 

fLu)C=4.CPAl*R*DO*CSO*EPS*365.25*24.*36CC. 
CC~ST=CO/CCEFK/ ( 1Ut2 )t365.2c;*3600 .*24. 

C CALCULATE THE F IRS T DELl 'vAT I VE: Of F IN TAU. 

c 
c . 
c 
1 
'-

o c q o L "= 1 , ~u P _ 
FPTC Ll\t'=F PI (lNI/CUNSl/G I ( LNI 

90 CC~T 11\U E 
FFC=FPCICC~Sl/G(31 

CALCULHE STEADY-STATE SURt-ACE MASS fLUX AND 
TIME-DEPENDENT SURFACE MASS fLUX. 

c c 1 o o .. = 1 , ~u F 
lAUCJI=CC~ST*A~S(Jl 
CALL C8NVOL{FPT,TAU,J,NUP,CONVIN) 
F ll. X= F llJ X 0 * G I ( J) * ( F l ( J ) + ( FO IS c;; R T (TAU ( J I ) +CON V IN ) I SQR T ( P A l ) l 
IFC J.EI.i.ll GC TC lCl 
CUMFL:CUMFl+CFLUX+fMEM0)/2.•CTUP(JI-TLP(J-1ll 
GC T C 1 C2 

lCl CU~Fl=FLl)OJl,;PCll 
102 f,_EMC=FLUX 

~~I T E ( 6 , 6 3 0 t T l. P C J t , TAU ( J I , f t ( J ) , F P I ( J I , F P P I ( J I, G I ( J I , GP I ( J I , 
• GP P I ( J ) , F l LX , C U ~F L 

6 3 •1 F C f. ~ l T (l X , 1 F E 8 • 2 , A £1 4 • 5 , E 1 1 • 3 ) 
lCC CONTI ~uE 

STOP 
E~D 
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••SLBRCLTI~E CC~~CL(FPT,TAU,KK,~UP,CG~VINI** 

SLBRC~Tl~E CC~VCLCFPT,TAU,KK,NUP,CJNVINI 

DIMENSICN FPTCNUPl ,TAUC~UPI 
C C PIP' C t\/ C, l/ F P 0 
SLI".=O. 
DO 2CC II=l,KK 
lflli.NE.U GO TO 201 
lFCil.EI:.I<t<l GC TC 203 
.SUM= S U"1 + ( F P .T C 11 I SQ R l( TA U ( K K I - T A U (l I ) +- F PO I S Q R T (T AU ( K K ) ) ) * .. 5 *T AU U ) 
GC TC 200 

203. S~po=Slfi'+CFPT(l)+FPOJ*SC:RT(TAUU IJ 
GO TO 2CO 

201 lflli.EC.KK) GO TO 202 
5 L,. = S U .- + C F P T( U ) IS QR T (T AU ( K K I - T AU ( [ I ) I + F PT ( ( I - 1 I IS Q R T (TAU ( K K I- T A U ( 

• JI-l)tJ•.s•CTAUCIU-TAU(ll-lJI 
GC TC 200 

R E"MOVAL OF 51 NGLLARI TY 

202 SL~=SLM+(fPlCKKI+FPT(KK-lii*SOKT(TAU(KKI-TAU(KK-111 
200 CON T INLE 

((t\'vH=SU,. 
RET LR N 
END 

. : 

9-56 



DO = 1. CM •• 2/ S 
CSO= • lE + C 1 G/ CM••3 
EPS= .010 (For SI0

2
) 

R • ~z. C'tC CM 
I( a: 1 • 
NO OF CALC lJLA ll ONS; 64 

STEADY STATE SURFACE MASS FLUX - 0.376 

TIME 
ELAF'SEit 

(~J 

l.OOE+OO 
2. OOE + 00 
3.00E•OO 
4. OOE•OO 
~.OOE+OO 
b.OOE+OO 
7. C CE + 00 
B.OOE+OO 
9.00E+OO 
l.OOE+01 
Z.OOE+Ol 
3.00t+01 
4 .OOE+01 
5.00E+Ol 
b.OOE+Ol 
7. 00 E •O 1 
a. occ + o 1 
9.00E+Ol 
l.OOE+02 
2. OOf + 02 
3.00E+02 
4. OOE + 02 
5.00E+02 
b. 00(+02 
7. OOF. +02 
tJ.OOE+02 
9.CCE+02 
l.OOE+03 
2. OOE +03 
3.00E+03 
4.00E+03 
5.00(+03 
6.00E+03 
7.00E+03 
A. COE + 0 3 
9.00E+03 

SURFACE 
HASS F"LUX 

(!1/~J 

1 • 7£6 2 f3 t +\) l 
1.57llOE+Ol 
l.4925t!E+t;l 
1.43884(+01 
1. 395<;<;E+Cl 
l.35M2~E+Ol 
1.32344F.+Ul 
1.29042(+01 
1 • 2 58 6 3 E +0 l 

·1.22776E+01 
9.58371E+OO 
7 • 6 5 7 06 E + 0 0 
u • 2 0 7 9 <JE + 0 0 
'> • 0 !i 2 11 E +0 0 
4. !9CC7E+ CC 
3 .8729oE+OO 
3.50lllE•OO 
3. 2 57 SOE • 00 
.3.02671E+OO 
1. 872f8E•OC 
1 .52357E+OO 
l • 2 83 4 3 F.+ 0 0 
1.1307<iE+CC 
1.05531 E+OO 
1 • C 0 0 4 9E + C C 
9.43787E-01 
9.05229E-01 
d • 7 14 2 9E- 0 1 
6. 92005 E-01 
6. 28613E-01 
5.97719 E-O 1 
5.77932E-Ol 
s • 6 1 a c; 6 e- o 1 
5.486 94 E-01 
5.38747E-Ol 
5 • 3 1 5 3 3 E -0 1 
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TOTAL MASS 
[IISSOLUTION 

(!:I] 

1.726£+01 
3.375E+01 
4. 9 C 7E + C l 
6.373E+Ol 
7. 7GCE+ 01 
9.l67E+Ol 
l.051E+02 
1. Ll:rt[ + 0 l. 
1.309E+OL 
1.433E+02 
2.526E+02 
3. 3 A 8 ( +() 2 
4. 0 A 2E + C 2 
4.646E:+Ol 
5.12C[+02 
5.533E+02 
5.902E:+02 
6. 2 4 0[: .. 0 2 
6.554 1:::+02 
9.0C3E+02 
1.070f.+03 
1. 2 11 E +0 3 
l.331E+C3 
1.441[+03 
l. 54 3l+ 0 3 
l.641E+03 
1.733E+03 
1.822(;+03 
2 .604E+03 
3.264E+03 
3.877E+03 
4.465E+03 

. ~.035E+C3 
5 .590E+03 
fl. 1 HF+ C3 
6.669E+03 



TIME SUf\FACE TOTAL MASS 
ELAF'SED MASS FLUX [IISSOLUTION 

('::IJ [S/'::1] (SJ 

1. OOE + C4 5. 2S741E-Cl 7.l<J8E+03 
2. OOE + 0 4 4 • 9 2 5 8 9 E- 0 1 t.zzgE+04 
3. OOE +04 4.87574E-Ol 1 • 7 19 E +0 4 
4. OOE + 0 4 4.8256lE-Ol 2. 2 C 4E + 0 4 
S.OOE+04 4 • 1 6 1 4 1 E-o 1 2.683t+04 
6. COE+04 4.70882E-Ol 3.157E+C4 
7.00E+04 4.67027E-Ol :3.62~1::+04 
B.OOE+04 4. 642 8 7 E-O l 4 .092 E +0 4 
9. OOE+ 04 4 .62316E-O 1 4.555E+C4 
l.OOE+05 4.60705 E-Ol 5.016E+04 
2.00E+05 4.47113E-Cl <;.555E+C4 

_ _3. 0 OE + 0 5 _ 4. 3 9 5 54 E- 0 1 1.3<;91::+05 
4.00E+05 4.346<;7E-Ol 1.836f+OS 
5._00E+ 05_ 4. 30948E- 01 2. 269E + 0 5 
b.COE+OS 4 • 2 1 1 52 e-o 1 2.h9BE+05 
7.00E+05 4o 23970E-Ol 3.1241::+05 
B.OOE+05 4.21133[-01 3.546E:+05 
9.00E+05 4.11itl47E:-Ol 3.966E+05 
1. COE+ C6 4.16879E-Cl 4. 3 84E + 0 S 
2.00E+06 4.03081E-01 8.484E+05 
3.00E+06 . 3.G61t7f:-Ol 1 • 2 4 BE.+ 06 
4 .. OOE + 06 3 • 9 2 l 7 2 E- 0 l 1.642(+06 
5.00E+06 3.~<7311F-ol· 2. • 0 3 3 E: + 0 (, 
6.COE+06 3.8622HE-Ol 2.421E+Cc 
7.00E+06 3. s 30 92 e -a 1 2.805E+06 
8. OOE+06 3. U0422E-Ol 3.LR7l+Ob 
9. OOE + 06 3 • f 8 3 3 b E- 0 1 3.51>6E:.+06 
1 .00 E +07 .3.76551E-Ol 3.944E+Ob 
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0 0 • 1. CH •• 2/ S 
_CSO:~ .2 E-06. G/ CH••3 
E PS:~ • C10 
R • ... ~ 2. C 'tO CH 

(For 237N ) 
p 

IC. = 100. 
NO OF CALC lJLA liONS; 64 

STEADY STATE SURFACE MASS FLUX = 0.752E-07 ~/w 

TIHE SURFACE TOTAL MASS 
ELAPSED HASS FLUX [IISSOLUTION 

(~J (!i/~J (!iJ 

1. OOE+OO 1 • 1 " 2 2 5 e -o 5 1 .14 2 E -0 ~ 
2. OOE + 00 H. 661 c;aE-06 2. 1_46l-OS 
3.00E+OO 7.40453E-Ct 2.950[;-05 
4.00E+OO b.b2994E-Ob 3. 6 s 2 E-o., 
!>.OOE+OO 6 • C 7 7 2 HE- 0 b 4. 2 87E- 0 5 
b.OOE+OO 5.64512 E-OIJ 4.873L-05 
7. COE + 00 5. 20833E-C6 5.42CF-05 
B.OOE+OO 4 .'i8334E-06 5.9331-05 
9.00E+OO 4.71577E-06 b • 4 l 8 E -iJ ':> 
l.OOt+Ol 4. 47653E-06 6 •. 878£-0~ 
2. 00 E +0 1 2 .92498 E-06 l.0513E-04 
3.00E+01 2.0~345E-06 1. 3 011 E-o 4 
4.00E+Ol 1."'56t3 34(- 06 1. 4<j2(-C4 
S.OOE+Ol l.l~93QE-06 1.630f-04 
6.00E+Ol l.Cl9C8E-C6 1. 741[-04 
7. 00 E +0 1 8.842CbE-07 1.H36E-04 
B. OCE + 0 l 7.esoc;ae-o7 1 .920 E-04 
9.00E+Ol 7 • 3 6 6 1 5E - 0 1 l.<J<;6E-0'• 
l.OOE+02 6 • a o 4 4 s e -o 1 2.067E-04 
2. OOE + 02 3.947C6E-C7 2. 60 4 f-0'• 
3.00E+02 3.17734E-07 2 • 9/: 6(- 0 1t 

4. OOE + 02 2. 75894E-07 J. 26 7 F.-0 1t 
5.00E+02 2.42082E-07 3.52hE-tH 
6.00[+02 2 • 2 a 1 o 1 E-o 7 3.7cn-o4 
7.00E+02 2.1748CJE-C7 3.985(-04 
H. 00 E +0 2 2 • o 4 3 1 H E- 0 7 4. 1 q 6f:- 0 1t 
9.00E+02 1.96132E-07 4.39t.L-04 
l.OOE+03 l.89422E-07 4.5tj9E-04 
2.00E+03 1 • 49 1 11 E -0 7 l:. 2 ~ 1 E- C 4 
3.00E+03 1. 3513t.E-07 7.703l-04 
4.00E+03 l • 2 8 2 1 5 E- 0 1 <;. 019E-0 1t 

5. OOE+03 l.lJ830E-07 l.02~E:-03 

b.OOE+03 1.l<J9e9E-C7 1 .150f:-OJ 
7.00E+03 1 .16 7 20 E-O 7 1.2fl8E-03 
8. COE + 03 l.l43C<;E-07 1.3t14(-03 
9.00E+03 1 • l 2 5 8 8E- 0 1 1. 491 [ -o 3 
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TIHE SIJf\FACE TOTAL HASS 
ELAF'SE!I HASS FLUX t•ISSOLUTION 

['l:IJ (S/1::1] (gJ 

lo COE + C4 l.lllBlf-07 1. L ViL- C 3 
2.00E+04 l. C 2M 8 OE- C 7 2.679f-J3 
3. OOE + 04 l .0 l 2 6 2 E -0 7 3. 7C0[-(D 
4. OOE + 0 4 <;. 9798f:lE-C8 4.7C'Jl-GJ 
5.00E+04 9. 8 14 8 9 E- 0 8 ') 0 6 t; ') l - 0 3 
6. COE+04 9.6H27!JE-OU f1. o 70l- OJ 
7.00E+04 <;. ~A'>SCJE- OB 7 • l; :1 3 L- J ~ 
B.OOE+04 ~ • 5 1 52 3 E- 0 8 R. ') H B l-0 J 
9.00E+04 9.46320E-OR 'i.5l1E-C~ 

l.OOE+05 9. '• 2 0 1 7E- 0 8 l.04HE-o,; 
2.00E+05 9.08579£-00 1 e 9 73 f.:.- o;? 
3. OOE + 0 5 __ A.<J073CE-CH 2.ti73l-Ut.: 
4.00E+05 8.79421£-0B 3.7')8!.:.-02 
S._OOE+ 05_ A.70926E-08 '•· 633F-02 
6.COE+05 8.627<J7E-08 5.~CO(-O) 
7.00E+05 ti.55391E-OA h. 3 ">9 F -o 2 
8.00E+05 H.4~lfl'::E-C8 7. 2 l 2L - C .:' 
9 .oo E+05 A.44200E-08 U • 0 58 E- 0 ;-
l.COE+C6 8.39914£-0A A • <J C 0 E - ll i 
2.00E+06 a.t03S2E-08 1.715£-Cl 
3.00f+06 · 7 • 9 57 59 E -0 H ? • 5 113 F. -0 1 
4.00E+06 7.o73olE-og 3.310l-Ol 
S.OOE+Ob 7.t1125«JE-C8 4 • 0 c; 1i ~-- 0 1 
6. COE•06 7 .74H4h E-OH '• • H 72.1::-0 1 
7.00E+06 7.683 7~E- ca ~.644!:::-Gl 
8. OOE+06 7 • 6 _2 ~ 13 2 E - 0 8 6.409E-Ol 
9. OOE • 06 7. 58587E-CA 7.1 7Cl-Ol 
l.OOE+07 1.?4912E-08 7.92TL-Cl 
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APPENDIX 9D 

Derivation of Solubility Proportionality Law 

The dissolution of a chemical species into a liquid such as water 

is governed by the following equation: 

C(T) • A exp { - ~RH; } (D.l) 

where C(T) [g/cm3
] is the temperature dependent solubility concentration, 

A is a constant with the same units as C(T), ~H [J/mol] is the specific 
s 

heat of solution, R [J/mol•K] is the gas constant, and T [K] is the tern-

perature of the liquid. 

Suppose C(T) is known for a chemical species at two temperatures T
1 

and T
2

. Then, 

• exp { - flHs [..l._ - _!_l } 
.. R T T 

1 2-
(D.2) 

If one assumes that 6H is constant for all species of interest and that 
8 

it does not vary with temperature, it is obvious that the right hand side 

of equation (D.2) will be a constant oncG T
1 

and T
2 

are selected. Thus, 

(D. 3) 

where i and j are the two species of interest. This formula is useful for 

determining the fourth member of a set of related solubilities when only 

three members are known. 
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APPENDIX 9E 

Mass Loss From a Waste Canister 

In section l of this report the assumption was made that the radius 

o~ the spherical waste canister, R, does not change with time. It may 

be of some interest to use the mass transport results to strengthen the 

basis for making such an assumption. 

Consider the actual cylindrical waste canister of radius R and 
c 

length L • This cylinder is modeled in the present study by a sphere of 
c 

equal lateral surface area. The relationship between .the sphere radius, 

R, and the cylinder radius, R , can be expressed as follows: 
c 

R (E.l) 

The total amount of siltca mass initially contained within the cylinder 

is given by 

m = 4 -n 
3 

3 
y p R 12 

- lf 
3 

y p (R L )3/2 
c c 

(E.2) 

where Y is the mass fraction of th§: waste that is silica and p is the density 
3 of the waste. Taking y = .50, p x 3 g/cm , R = 15.24 em, and L = 2.32 m, 

c c 

one obtains 

= 470 kg (E.3) 

At time t=lO,OOO y the total Si02 mass loss from the waste is 7.2 kg 

(see Appendix 9C). The loss in silica inventory from the canister is thus 

about 1.5%, a rather small amount. Since 

m a: (E.4) 

the effect on R would be much smaller and can be determined from the fol-
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lowing expression: 

m - Am 
m 

= [ R -R AR J 3 

R [
m -m Am] 1/3 

= R - AR 

AR 
R 

= 1 (E.S) 

Substituting the parameters from the previous page into equation (E.5) 

results in 

AR 
R 

= .005 

Thus, the waste canister dimensions do not change appreciably 

(E.6) 

during the first 10,000 years of emplacement and the constant R assump-

tion is well_ founded • 
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10. TilE TRANSPORT OF A RADIONUCLIDE IN A THREE DIMENSIONAL 

FLOW FIELD FR(}.1 A POINT SOURCE 

P.L. Chambre 

The following analysis describes the concentration pattern in three dim­

ensional space and in time of a radio-nuclide which is emitted from a point 

source. The source is located in a porous medium permeated by water flow. 

The magnitude of the advective and dispersive transports in the three principal 

coordinate directions can be prescribed with some latitude. The solution to the 

mathematical problem has been obtained in terms of elementary functions, specif-

ically an integral, which can be evaluated in a straightforward manner. The 

result of the analysis is useful as a benchmark for comparison with numerical 

solutions of the governing equation. It can also serve as a model for the far 

field migration of a radionuclide emitted from a single waste form. 

The model is based on the governing equation for the nuclide concentration 

N(x1,x2,x3,t) with a retardation coefficient K 

(1) 

_a- (o aN)+ _a- (oz aN)+ _a- (D3 aN ) - A.KN, x.eV ' i=l,2,3;t>O 
ax1 1 ax1 ax2 ax£ ax3 \ ax3 1 oo 

For mathematical convenience the cartesian space coordinates are labelled x
1

,x
2

,x
3 

"' " " and the dispersion coefficients D1,D2,D3. The unbounded space is V
00

• The strength 

of the nuclide source, located at xi , i=l,2,3, in D
00 

is M(T)dT and measures the 

mass of material released at timeT during the time span dT. The release gives 

rise to the concentration N(x1,x2,x3,t) at position x1,x2,x3 at time t>T. This 

concentration is initially zero throughout V and satisfies suitable boundedness 
00 

conditions at an infinite distance from the source position. 
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Furthermore N obeys a vanishing flux conditions at interior surfaces of Voo 

which are not penetrated by the advection nor by the dispersion. 

In (1) the pore water velocity components: 

c~l+~lxl) ' c~2+~2x2)' c~3+~3x3); ~l'u2,u3'~1'~2'~3 constants, 

which are chosen for a linear velocity field, are spatially dependent and are 

subject to the constraint imposed by the conservation of mass equation for an 

incompressible liquid moving with velocity V through the porous medium 

div \i = 0 

This yields with (2) 

&1+~2+~3 = 0 

The coefficient3 ;1 ~;2 ,;3 can be selected to satisfy a few physically meaning~ 

ful potential flow patterns. 

Ulustration A. The choice; 
A. ":' A 

a
2

, a3 = -2a1 , leads 

to the velocity comp•)nents 

for which the three-dimensional flow stream tubes appear as shown in Fig. 1. 

The flow pattern simulates the streaming past the source point (xl,xz,x3) by 

a wide jet, which is ~ymmetrical about the x3 axis and which impinges against 

an impenetrable (x1,x2) plane from both positive and negative x3 directions. 

By suitably adjusting the dispersion coefficients D1,D2,D3, additional 

(2) 

(3) 

(4) 

(5) 

skewing of the concentration field, over that caused by the velocity field, can 

be achieved to test the applicability of a numerical code calculation. 
A A A 

Illustration B. If one choses a1 = a2 = a3 = 0, the flow pattern is con-

stant in space and without loss of generality one can take the flow direction 

along one of the coordinate axes such as xl by setting ~2 = u3 = 0 and ul f 0. 

This rectilinear flow pattern in the completely unbounded V can be used to 
00 
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Point Source 

(a) Stagnant Potential Flow Field Bounded by 
X1- X2 Plane 

0 (; 0 
(XI, X2, X3) 

------------~----------~ 
~---------:~~X I 

x3 
(b) Rectilinear Potential Flow Field Along x1 Axis 

XBL 8412-5894 

Fig. 1 Illustrative flow fields for sample problems A and B. 
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model the far field migration from a single waste form. Other choices for 
A A 

the parameters u.,a. (i=l,2,3) can be made which lead to other useful physical 
1. 1. 

simulations. 

To solve equation (1) we first eliminate the decay term with help of 

If one divides the resulting equation by K and sets 

D. G. ~-
Di = Kl. , ui = Kl. , ai = Kl. , i = 1,2,3 

there results, if the Di's are considered constant, 

~+ (ul+alxl) ~+ (u
2
+a2x2) ~+ (u3+a3x3) 

ac 
at ax1 ax2 

ax
3 

-

2 2 2 
n a c + D a c + D 3 c , x.EV , t>Oi i = 1,2,3 1 ;-r 2 ;-r 3 ;-r 1. 00 

xl x2 X3 

To solve this represent c(x1 ,x2,x3,t) in the product form 

where the c. (x., t) satisfy the "one-dimensional" equations defined by the 
1. 1. 

differential operator L 

2 a c. 
l)i ~= 

ax. 
1. 

0, i=l,2,3; - oo<x.<oo, t>O 
1. 

To show that the product form (9) is a solution of the governing equation (8) 

is straightforward and leads on substitution of (9) into (8) and some re-

arrangements to 

Since the bracketed terms vanish by (10) the result is established. 
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(7) 

(8) 

(9) 

(10) 

(ll) 



Hence the solution of the problem (8) is thus reduced to the much simpler 

equations (10) which have the common form 

2 
~ + (u+a.x) ~ = D .£__£ (12) 
at ax ax2 

on dropping the subscript labels. As explained in the paragraph below 

equation (1), c(x,t) must satisfy the initial condition 

c(x,o) = 0, x£V
00 

and the source condition at X0 £V 
00 

We reduce the variable coefficient partial differential equation (12) to 

one with constant coefficients. Let 

1 ( -2at) T(t) = 2a 1-e 

and 

c(x,t) = C(s,T). 

From (14) 

as _ -at 
at - -ue [1+ ~] ' 

and from (15) 

dT -2at 
dt = e 

as _ -at 
ax - e 

With these expressions the derivatives of C(s,T) are computed from 

ac _ ac dT + ac as 
at - a:r crt as at 
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(14) 

(15) 

(16) 

(17) 

(18) 

(19) 



ac -a.t-= e ar,; 

-2a.t e 

Substitution of (19) - (21) into (12) yields the desired constant coefficient 

equation 

ac a2c 
aT - D os2 

A solution of (22) with a point source singularity of unit strength at 

r,;=O, T=O is given by the well known Kelvin function 

1 C(r,;,T) = --
2/rrDT 

In terms of the original x,t variables one has in view of (14) - (16) for a 

point source singularity now located at ·xo, 

c(x,t) 

This is the solution of the system (12) and (13). In turn this allows one now 

to construct, with help of (9) and (24), the solution for the nuclide 

concentration c from a point source singularity of unit strength located at 

X
0 (i = 1 2 3) 
1 ' ' 

3 
c(x

1
,x2 ,x

3
,t) = IT 

i=l 
c.(x.,t) .· 

1 1 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) 

The source condition produced by integrating Eq.(25) with respect to xi from 
- oo to+ oo, i = 1,2,3, is e(a.l+a.2+a.3)t = 1, since a.

1 
+ a.2 + a.3 = 0 from Eq.(4). 

Hence c indeed is the solution of the unit strength point source condition. 

By construction N(x1,x2,x3,t) from Eq.(6) is seen to satisfy equation (1). 

x,xc,u,a. and Dare replaced by x.,x~,u.,a.., and D. respectively in (24) to 
1 1 1 1 1 

give the function c(x.,t) in (25). 
1 
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In turn the solution due to a point source located at xi, releasing the 

mass :M(T)dT at time T during the time span dT, creates the concentration dN 

at the time t(>T) at x. 
1 

• -f...(t-T) dN = (m(-r)dT)e 
3 
II c.(x.,t--r) , 

. 1 1 1 . 
1= 

. 
mCT) - M(T) -E"K (26) 

where s is the porosity of the porous meditun. The reason for using this form is 

presented in Appendix lOA.Hence the concentration at timet, at x., due to the 
1 

mass liberated during the time span O<T<t is given by the superposition integral 
t 

N( t) = J m·(T)e-A.(t-T) xi,x2,x3' 
0 

where 

1 = --------------~~ 

[ 
2D. ~1/2 

7T --1:.4J(a..,t-T) a.. 1 
1 

and 

3 
II ci(xi,t-T)dT 

i=l 

a.. 1 1 a.. 
e -a.i (t-T) [ 2_ + (x. -x?)] - u8. 2 

~-----·----~1___ -------~-exp --
i 2 -- 4J{a.., t-T) a.. 1 
1 

Equation (27) represents the solution to our problem in an unbounded Doo space. 

It should be noted that one can utilize this point source solution to model 

the emission of a radionuclide from a surface source of arbitrary shape. For 

this one integrates the source position x? (i = 1,2,3) over the surface to 
1 

obtain the desired answer. This can be carried out analytically for the 

simulation of line, plane, cylindrical and spherical surface sources but the 

results are not reported here. As an example of the theory we consider the 

Illustration B with u2 = u3 = a.1 = a.2 = a.3 = 0 and u1 ~ 0 representing a 

rectilinear flow field which is independent of position. Furthermore we 

assume the source to be located at the origin so that xl = xz = x3 = 0. The 

following limits are required in. (28) 
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<P(a..,t--r) 
llJTI

. l . 
-~---- t--r, l = 

a..-+0 Za.i 
1,2,3 

l 

{
-a.. (t--r) [U· ] U. }· 

lim e 1 .2 + (x.-x~) - .2 = 
0 a.. l l a.. a..-+ l 1 . 

l 

With these results (27) reduces to 

where 

Ih(-r)e-!t(t-T) 

(4nD(t--r)) 372 exp 

(x. -x~) 
l l 

- ui(t--r), i = 1,2,3. 

TI1e integral can be simplified for an easy numerical evaluation with the 
assumption D1 = D2 = n3 = D. Let 

(29) 

2 2 2 + 2 (31) r = x
1 

+ x
2 

x
3 

and 

a. = r 

(4D[t-T)) 1
' z 

(32) 

Then (30) reduces to 

exp {;~~~ J oo f 
N(x

1
,x2 ,x3,t) =? __ 3 2 

exp <-
.(nJ Dr r/2/Dt l 2 _ (~tr2 [u1 r]2) 1 1 a. 4i) + 4D "7 

a. 

m (t - __!'-=--) da. 
41hz 

(33) 

For the special case of a constant mass release for -r>O 

rn(T) = rn , T>O 
0 

one obtains on carrying out the integration 
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xlul 

{ er~ erfc (-/(A+ ~62 ) t + _r ) 

2D me 
N(x1, x2,x3, t) 0 = 87rDr 2v'Dt 

(34) 

+ e -rep [2 erfc ( -j(, + ~o t- 2~) J1 
where 

As with t ~ oo a steady state concentration field is established which has the 

form 

{ 
x1 u1 (A.r2 (u1 r\ 2) 

112
) 

exp zn - 2 4D + 4D) . l 
. 
m 

N(xl,x2,x3,oo) = 4~Dr (35) 

Equation (33) can be used to describe the far field migration from an isolated 

waste form. The solution for the case of unequal dispersion coefficients can 

be obtained in a similar manner but is too lengthy to be reported here. 

Eq. (27) is a solution for the governing equation (1) subject to the pre-

scribed initial and boundary conditions. If there is no mass transport through 

the (x1 ,x2) plane, either by advection or by dispersion, the solution can be 

b 0 d b 0 0 ( 0 0 0) 1 t th o taine y superposing a point source at x1 ,x2 , - x3 to cance ou e 

0 
at x3 The final result for u1 = u2 = u3 = o and 

a.3 - z- , as described in Illustration A is 

mass flux 
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t 

N(x
1

,x
2

,x
3
,t) = J m(-r)e-:\(t-·r)[f(x

1
-x

1
°,x

2
-x

2
°, x

3
-x

3
°,t-T) 

0 ,, 
• 

0 0 0 J +f(x
1

-x
1 

,x
2

-x
2 

,x
3
+x

3 
,t-T) dT,- oo<x

1
,x2<oo, o<x

3
< 00 , t>o, (36) 

where 

= (37) 
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APPENDIX lOA 

In Eq. (26) the source term m(t) used in the solution is related to M(t) 

by m(t) = M~k) , where M(t) is the total mass release rate Cg/sec) at the 

source point, e: is the porosity of the porous medium, and K is the nuclide 

retardation coefficient. This relation can be derived as follows. 

Let N(x1,x2,x3,t) be the nuclide concentration in the liquid and Ns 

(x1,x2,x3,t) the nuclide concentration in the solid, then conservation of 

the nuclide specie in the porous medium requires that 

Since 

fJ}: [eN+ (1-ElN5 ] dx1dxzdx3 • f 
( N) 1-e: s e:N + (1-e:)N = e:N 1 + - -s e: N 

=e:KN 

But from (27) we have, with help of (25), .for the left hand side 
+oo +oo +oo 

foofooloo eKNdxldx2dx3 • J t ekJit(T)e -A(t-T)dT 

0 . 

Comparing (12) and (13), one finds m(t) = M~~) 
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11. ON THE TRANSPORT OF RADIOACTIVE mAINS IN GEOLOGIC MEDIA 

Paul L. Chambre 

The following analysis deals with the migration of radioactive chains in 

geologic media of finite and infinite spatial extent. The governing equations 

are sufficiently general to model the specie transport by dispersion and 

advection in a water saturated porous medium. They can also be applied to 

diffusion of radioactive chains in denser media such as rocks permeated by 

micro-pores where advection is negligible. 

The formulation of the equation system and its solution form is given 

in Section I. Two classes of problems, dealing with dispersion-advection 

and diffusion respectively, are formulated together with very general bow1dary 

conditions in Section II. Sections III and ~V give the exact closed form 

(non-recursive) analytical solutions for the radioactive specie concentra­

tions of chains of arbitrary length in media of finite and (semi) infinite 

spatial extents. Section V illustrates the theory by applying it to the 

problem of radionuclide transport by dispersion and advection from a reposi­

tory surface to the biosphere, positioned at a finite distance. At the 

latter position the specie fluxes are shown to be given by explicit analytical 

fonnulas. 

The results of the analysis gener.alize the recursive chain calculations 

on which the Computer Code UCB NE 10.2 and 10.3 are based, to chains of 

arbitrary length in both finite and infinite spatial geometries . 
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I. The Governing Equation System and its Solution Fonn 

Consider the canonical system for zsV, t>O 

aN2 aN2 a2N2 
Kz a:r- + v az + A.zKzNz = Dz -z- + A.l KlNl 

az 
- - - - - - - - - - - - -

a2N. 
A..K.N. = D. ~ + A.. l K. l N. l 

1 1 1 1 az~ 1- 1- 1-

which is to be solved for N. = N.(z,t), in a one-dimensional domain V which is 
1 1 

(1) 

either finite or infinite, for times t>O. The Di are the diffusion coefficients 

of the individual species to be specified later. All other symbols have their 

usual meaning. The functions N.(z,t), i=l,Z, ... are subject to the initial 
1 . 

conditions 

N. (z,O) = 0, zsV 
1 

and the boundary conditions 

-D.s 
1 

aN. 
1 

-- + v N. = az 1 

0 

v N.¢. (t) 
1 1 

for z=O, t>O 

<J>.(t): 0 for t<O 
1 

The left hand side represents the total flux of specie i through the boundary 

surface z=O of V while the right hand side describes the rate of supply of 
0 

specie i in tenns of the abitrarily prescribed integrable functions N. <J>.(t). 
1 1 

(2) 

(3) 

These functions describe the time release of the chain members from a repository 

surface or waste fonn located at z=O. s is the porosity of the medium. In case 

of no advection the terms involving v are dropped from (1) and replaced by other 

parameters in (3) as will be discussed later. The second boundary condition for 

the Ni(z,t) at the other boundary of V will be stated in Section II. 
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The general form of the equation system (1) is 

where 

K.>.. 
v =.....!.....! 

i D. 
1 

K. 1>.. 1 1- 1-
vi-1 = D. 

1 

The aim is to obtain the general (non-recursive) analytical solution for the 

N.(z,t). 
1 

(4) 

(5) 

On accomlt of the linearity of (4), the solution for the individual chain member 

Ni can be represented as a sum of functions, which satisfy (4), and selected 

boundary conditions. We specify 

N1(z,t) = N1(l)(z,t) 

N
2

(z,t) = N
2
(l)(z,t) + N

2
(2)(z,t) (6a) 

N ( ) - 1\.T (1) ' ) N (2) ( ) N (3) ( ) 
3 z,t - n 3 lZ,t + 3 z,t + 3 z,t 

df b . .th ha. b an or an ar 1trary 1 c m mem er 

N.(z,t) = N. (i)(z,t) + iil N. (j)(z,t) 
1 1 1 j=l 

(6b) 

1hus, in order to obtain the concentration of the ith chain member, every function 

N /j) (z, t) rrrust be known. We begin with the construction of N1 (l) (z, t). It is 

chosen to be a solution of (4) (with v = 0) which satisfies both the initial 
0 

condition (2) and the boundary condition (3). This determines N1 (z,t). To de-

~ termine N2(z,t) we require two solutions of (4), N2(l)(z,t) is chosen so that 

it obeys the initial condition (2) and the homogeneous boundary condition (3) 
0 

with N2 = 0. This function yields the contribution to N2 (z~t) which is due 

to the radioactive decay of its precursor N1(z,t). N2(2)(z,t) on the other hand 
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is chosen to satisfy the inhomogeneous boundary condition (3), as well as of 

course (2). But since the precursor contribution to N2 (z,t) is already accounted 

for, the inhomogeneous term v1N1 is not included in eq.(4) when one solves for 

N2(Z)(z,t). One proceeds comparably in the construction of N3(z,t). N3(l)(z,t) 

and N3(Z)(z,t) are precursor contributions stemming from chain members N1 (z,t) 

and N2(z,t) respectively. Their solutions of eq.(4) satisfy homogeneous boundary 

concentrations, with N; = 0, while N3(3)(z,t) yields the contribution to 
0 

N3 (z, t) due to the inhomogeneous boundary condition (3), with N3 t- 0. However~ 

for the determination of N3(3)(z,t) the inhomogeneous term v2N2 is dropped from 

(4). 

According to this decomposition of the problem, the functions N~(j)(z,t) 

must satisfy the following equation system for zEV, t>O 

The functions are subject to, 

N~ (j) (z,O) = 0 

aN~(j)(O,t) 
-D~E az 

whe:.:·e o~j is the Kronecker delta which vanishes for .Qij and is unity for ~=j. 

Furthennore 

C) N~-l J (z,t) = 0, for ~~j 

which assures that for ~~j the inhomogeneous (source) term v~_ 1N~-l vanishes. 

The second boundary condition which N~ (j)(z,t) must satisfy in V will be dis­

cussed in the next section. At this point however one can verify that the 

solution to equations (7) through (9) when substituted into (6) will satisfy 

the original equations system (1), (2), and (3) due to the linearity of the 
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latter equations. 

II. Specification of Problems 

We now wish to specify a number of problems of practical interest which 

will be seen to have a common mathematical basis. For this purpose we take 

the Laplace transform of (7) with respect to the time variable and define 
00 00 

NQ,(j)(z,s) = Je-stNQ,(j)(z,t)dt; ¢j(s) = Je-stcpj(t)dt (11) 

0 0 
The transform of equation (7), on utilizing the initial condition (8), yields 

Q, v Q, Q, _J ,...J d2N (j) cll""f (j) (K ~ (;) C) 
-;z - DQ. """dz - DQ. s + v.Q. NQ. = -v.Q.-l NQ..,.l ' (12) 

_(j) 
for NQ, (z,s). It is convenient to remove the first order derivative term by 

setting 

v z 
_ (j ) 2D Q. (J.) 
NQ, (z,s) = e n.Q. (z,s) (13) 

Then 

(j) (j) 
= -v.Q.-1 n.Q.-1 

e - ~z (t, -Dt~l) (14) 

With 

"t 0 G~ 5 
+ a~ . at = tt + (z~s] . y(t) 0 y (~t - D~J . (15) 

equation (14) reduces to the compact form 

2 . (j) 
d n.Q, (z,s) (j) ( ) - - (j) ( ) -y(Q.)z . n 

dzz - ~Q,n.Q. z,s - v.Q.-l n.Q.-l z,s e , J~;v (16a) 

This differential-difference equations system with variable coefficients is the 
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governing equation of our problems. Equation (10) transforms to 

(j) ( ) - 0 f n • n£-l z,s = or N~J 

The general solution to these equations is a matter of some complexity and will 

be treated later. Here we consider two special cases of (16) which describe a 

number of physically important models. 

Case 1. We assune the dispersion coefficients of the radioactive species 

in the medium are equal 

(16b) 

D£ = D, for all £ . (17) 

Then y vanishes, removing the complicating exponential term from (16). The cor-

responding equation system (1) together with (2) and (3) describes the far 

field migration problem in the presence of advection and dispersion. For a 

concentration boundary condition of form of (9), the general (non-recursive) 

analytical solution for radioactive chains of arbitrary length i has so far not 

been available to us. The most extensive model to date has been the recursive 

three member chain in a semi-infinite domain 0
00 

on which the computer code 

UCB NE 10.2 is based. In the following we shall consider two distinct far field 

migration problems. One of these is the nuclide migration in a (semi) infinite 

domain 0
00

, the other the migration in a finite domain Vf. Thus we need to 

consider appropriate boundary conditions at the second boundary joint of V. 

For 0
00

, O~z<oo, Ni(oo,t) and hence N£ (j)(oo,t) together with their derivatives 

must vanish sufficiently strongly 

dr (") kz 
nn J (z,s) = O(e- ) as z ~ oo, k>O, r=0,1,2 ... , 

dzr N 

ZEV 
00 

For the problem in Vf' O~z~L, a general boundary condition of Type III is 

specified 

()N.(L,t) [ 1 
DE \z + h Ni (L, t) - Ni (t)] = 0, t>O , 
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h may be a velocity dependent parameter which describes the surface coefficient 

of specie transport at z=L, into a medium z>L in which the ith specie concen­

tration is a prescribed function N~(t). The boundary position z=L can, for 
l 

example, be interpreted to represent the biosphere boundary. Ash is varied 

from 0 to oo, the flux through the boundary at z=L varies from zero to an 

infinite value causing the specie concentration to decrease there. To express 

(19) in terms of the Ni(j)(z,t) functions, substitute the equation (6) so that 

aNi (j) (L, t) [ ] 
DE a z + h N i (j ) (L , t) - o i j N~ ( t) = 0 , j ~ i , t> 0 

Hence the Ni (j)(z,t) satisfy homogeneous boundary conditions for j<i, 

while Ni (i)(z,t) satisfies the inhomogeneous condition at z=L. On taking the 

Laplace transform of (20) and using the transformation (13) results finally in 

ani(j)(L,s) vL 

DE + h n (j)(L s) = o he 2D N~(s)' j<i az 2 Q, ' Q,j 

when~ 

h2 = (h + E:~) 

Summarizing, we have for the problem with advection in either Vf or Voo the 

governing equations (16), the Laplace transformed boundary condition at z=O, 

i.e. equation (9), 

(20) 

(21) 

anQ,(j)(O,s) (j) _ o Ev 
De: az + h1ni (O,s) - oQ.jNQ. v¢Q,(s), j~i where h1 = v - z (22) 

The second boundary condition is given by (18) for Voo and by (21) for Vf. 

Case 2. Consider again the governing (16) but now without advection, 

i.e. v=O. By (15) y vanishes, thus removing again the variable coefficient 

term from the differential difference equation. For this case, the specie 

diffusion coefficients Di need not be identical in order to obtain an analytical 

solution. TI1e advection free formulation is applicable to the rock fracture 
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problem ( ~ where one wishes to account for the diffusion of radioactive 

species into the rock from water filled fissures. Another possible appli-

cation can be found in the analysis of the diffusive migration of radio­

nuclide chains with small half-lives in a water saturated backfill region 

which surrounds a waste form (
2

). Backfill materials, such as Bentonite, 

• possess low permeability to water flow so that the principal mechanism of 

transport through the layer may occur by diffusion. In case of the rock 

fracture problem the domain can be either 0
00 

or Of while in the backfill 

problem it is of. 

At the present time there appear to be insufficient data to apply the 

formulation to the diffusion of specie with unequal diffusion coefficients. 

For this reason we conduct the analysis, assuming the radionuclides to 

satisfy equation (17). The solution given below can however be readily 

generalized to include unequal D~'s if desired. 

Since the boundary conditions remain of the same mathematical form 

as quoted in (18), (20), (21) and (22) it is seen that Case 2 is merely 

a special case of Case 1 obtained by setting v=O in the governing eq. (16) 

and assigning special values to h1 and h2 in equations (21) and (22) as well 

as to their right hand side functions. In the following we shall concentrate 

on the solution of Case 1. Although the solution procedures of this 

problem in 0
00 

and Of have certain common features, it is best to present 

their solutions separately. 

III. The Solution of the Problem in Of. 

TI1e solution of the system of equations (16) in Of is constructed with 

help of a finite Fourier transform with respect to the variable z. We define 

L 

n (j) (B s) 
~ m, -J K( 0 z) nn (j) (z,s) dz . - ..,m' ;v 

0 
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The Fourier kernel K(8 ,z) satisfies the Sturm-Liouville system m 

dk(8 ,0) 
-DE m 

dz 

The 8 's are the positive eigenvalues of this system. The kernel has the m 
form ( 3) 

where 

The eigenvalues .form a discrete, countable spectrum which is given by the 

solutions of the transcendental equation 

tan(BmL) = Bm~al+a2) 'm = 1,2 ... 
Bm - ala2 

If one applies the kernel to every term of equation (16) and integrates with 

respect to z over the interval (O,L) there results in view of (23), since y=O, 

L 2 (j) J d nt 
2 

(z,s) 

0 dz 
K(6 ,z) dz - ~ n(j) (6 s) = m Q. Q. m' 

The integral term J yields, with integration by parts, 
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(24) 

(25) 

(27) "' 

(28) 

(29) 

(30) 



L 2 (j) _ J d n2 (z,s) 
J = 2 K (S ,z) 

dz m 
0 

dKd(zSm ,z)}] 

{ 

dn (j) (z s) 
dz = K ( S m, z) 2 dz ' -

z=L 

- n
2 
(j) (z,s) 

By (25), (26) and (28) 

dK(Sm ,0) 
dz = alK(Sm,O) 

so that 

z=O 

J = K(Sm ,L) { dn~~~) (L ,s) + a2n~ (j) (L ,s)} -

{

dn2 (j)(o,s) } 
- K(Sm,O) dz - a1n2 (j)(O,s) 

On applying (:quations (21) and (22) together with 

vL 

2 (j) 
- S nn (S ,s) m :~v m 

(28) results in 

J = K(Sm,L) o2j D~ e-
2D N~(s) + K(Sm,O) o 2jN~ ~E ¢2(s) -

When this is substituted into (30), one obtains the difference equation 

where 

K(S ,0) 
+ m 

DE 

Equation (16b) transforms to 

n (j ) ( S s) = 0 , 2::j 
2-1 m' 
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(36) 
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.,. 

Equation (35) is solved in a recursive manner by setting j = 1 and letting 

9- run from 9- = 1 to 9- = i. This process is repeated for j = 2,3, ... i in order 

to obtain the solution for the i nuclides of the chain. 

Starting with j=l, and letting£ run through the values 1,2, ... i, one 
(1) 

takes from (37) n0 (Sm,s) = 0, so that (35) yields 

Next one takes j=2 and lets 9- run through the values 1,2,3,--,i 

From (37) one has n1 (
2)(Sm•?) = 0. Hence (35) yields 

(2) g2(Sm,s) 
n2 (Sm,s) = -z,---

sm + ll2 

Continuing in this manner one shows that in general, 

n. (j) (S s) 
1 m, 

where 

A.(j)g.(a s) 
= ~ ~ fJm' 

7T (Sm + lln) 

n=j 

i>j 
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A. (j) = 
l 

i-1 
1T v ' r r=j 

while for j=i one has 

(41) 

( 42) 

Equations (40)-(42) represent the solution of the difference equation (35)-(37). 

We turn next to the Laplace inversion process with respect to the t variable. 

By (15), with Dn = D, 

2 Kn 
8m + ~n = Til (s + an) 

where 

a - D (8 2 +a). n- K m n 
n 

Hence (40) becomes 

n. (j) (8 s) - D 
l m' - r c. (j) 

with 

(j) c. = l l-1 
1T 

n=j 

l 

A.(j) 
l = c;) 

l 

7T 

n=j 

i-1 
1T 

n=j 

/.. 

(s + a ) 
n 

n 

Now the inverse of ( ! . (s + an)) -l is 
n=J 

e 
l 

7T 

-a t 
n 

r=j (a - a ) 
rfn r n 
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-a t 
n If one applies the convolution theorem to g. (S , t) and e , equations 

J m 
(40) and (41) yield, with the * symbol denoting the convolution integral, 

i 
I 

n=j 

-a t 
gj (Sm' t) *e n 

i 
1T 

n=j 
(a -a ) r n 

(i) - D * -ai t n. (S ,t) --K g.(S ,t) e 
1 m . 1 m 

1 

i>j 

This is followed by the Fourier inversion with respect to the z variable. 

The inverse transform of (23) is given by (with~ now replaced by i inn~ (j)), 

n. (j) (z,t) = 
1 

co 

I K(S , z) n. (j) (S , t), i~j 
m 1 m m=l 

The ni (j)(Sm,t) in the summation are taken from equations (48) and (49). The 

inversion can be shown to be valid if n. (j)(z,t) is continuous and satisfies 
1 

Dirichlet conditions on 0 ~ z ~ L with t in the domain t > 0. From (44) one 
2 separates tte S dependence as follows 

m 

(48) 

(49) 

(50) 

a -a = r s 2 
+ y (51) 

n r rnm rn 

where 

There results with (48), (51), on substitution into (SO), the inverse function 
-a t 

K(S ,z)g.(S ,t)*e n m 1 m n. (j) (z,t) = .Q_ C (j) 
i co 

I I 1 K. i 
1 n=j m=l 

and for n. (i)(z,t) from (49) and (50), 
1 

co -a. t 
n. (i)(z,t)- D I K(S ,z)g. (S ,t)*e 1 

1 - Ki m=l m 1 m 
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On re-introducing the erPonential multiplier of (13) into the last two equa-

tions, one obtains all component parts of the solution for the chain member 

N. (z,t). Their substitution into (6b) yields the general (non-recursive) 
l 

solution in Vf, 

N. (z, t) 
l 

e
(w)z nK. ~ -a.t i-1 

= L K(8 ,z)g.(Sm,t)*e 1 
+ I c (j) 

1 

i 00 

I I 

-a t 
K(8m,z)gj(Sm,t)*e ~ 

1 m=l m 1 j=l n=l m=l l 2 
r:j(rnr8m + Ynr) 

rlh 

It is readily verified that the dimensional terms in these equations have the 

following units (cgs) 

K1(8m,z) = [cm-l/2), gJ.(8m,t) = [ gm972], * = [sec], aj = 
(em) 

_ ( j-i) _ (cm
2 J 2 _ [ 1 J _ ( 1 ] ci (j) - (sec) ' r rn - sec ' 8m - ~ ' Ym - sec 

It follows from this that Ni(z,t) = [;3], as required. 

[ s!c) 

' D = [~~] 

The form of the solution (55) does not explicitly exhibit the steady state 

form of the solution Ni(z,oo) .. This limiting form is contained in the convol­

ution time integrals and it results on letting t ~ 00 • Alternately if one sets 

s = 0 in (45) (for i > j) and proceeds with the Fourier inversion with respect 

to z, follm.,ring the indicated steps, one is led to N. (z ,oo). The resulting 
l 

series can in some instances be summed in terms of elementary functions. 

IV. The Solution of the Problem in V . 
00 

The solution of the system of equations (16) in V follows along similar 
00 

steps to that given in section III. In order to exhibit the correspondence of 

the solution method with the previous work we indicate corresponding equations 

by a dash mark. 

(55) 

We introduce an (infinite) Fourier transform with respect to the z variable 
00 

nQ, (j) (p,s) = J K(p,z) nQ, (j) (z,s)dz 
0 11-14 
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The Fourier kernel K(p,z) satisfies 

d2K(p,z) 2 
+ p K(p,z) = 0 O~z<oo 

dz 2 

-D£ dK(p,O) + h
1 

K(p,O) = 0 
dz 

and instead of (26), K(p,z) satsfies a boundedness condition as z ~ oo. The 

solution to this problem is given by ( 
3

) 

K(p,z) =-If 
7T 

pcos(pz) + a1sin(pz) 

{ 2 2J 1/2 
p + al 

(24') 

(25') 

(27') 

p replaces the eigenvalues 8 in (24), and it represents a continuous spectrum 
m 

of range O~<oo. One now transforms (16) with help of (23'). This leads to a 

set of equation steps comparable to (30)-(35), except that Lis replaced by (oo). 

On account of the boundedness of K(p,z) and its derivative and in view of (18) 

the contribution to J at z = oo vanishes leaving us with 

n.~~, J (p,s) - \)i-lni-1 (p,s) + c.~~, .g (p,s) ---,2,.----- ' ki C) _ { (j) J 1 
J i p +~ 

i 

(35') 

where 

(36 I) 

and 

(37') 

The steps of the solution of the difference equation (35') are identical to 

those in section III leading, on inverting with respect tot, to equations 

(48), (49) with Sm replaced by p. However, the Fourier inversion with respect 

to z is in·place of (50) given by 

00 

n . (j) (z,t) JK( ) (j) ( t)d 1 = p' z ni p' p' i ~ j (50') 

0 
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Hence all steps between equations (51) to (55) remain unchanged except for 
00 

the replacement of Sm by p and that of the summation I 
m=l 

The result is the general (non-recursive) solution in V , 
00 

) dp. 

-a t ~ 

iil c. (j) I !00 K(p,z)g~(p,t)*e n 
• J dp 

V CD 

2D z D 1 -a. t 
Ni (z,t) = e K. · K(p,z)gi (p,t)*e 1 dp + 

1 0. j=l 1 n=l 
0 

1 ( 2 • 
1T. rnrP + Ynr) 

r=J 
r~n 

O~z<oo, t>O, i=1,2, .. 

(55') 

with gi(p,t) prescribed by (36'). One verifies by dimensional arguments of the 

right hand side of (55') that Ni(z,t) = [!ffi3). 

V. The Advective-Dispersive Far Field Migration of Radionuclide Chains in Vf 

We illustrate the theory with an application of the diffusive and advective 

transport of radionuclide chains ·in the finite span Vf : O<z<L. It is assumed 

that the chains orginate ~t the repository boundary z = 0. Subject to a release 

rate, which is a particular form of (3) i.e. 

N.(O,t) = N? ¢.(t), t>O i = 1,2, ... 
1 1 1 

At the biosphere boundary 

N.(L,t) = 0, t>O, i = 1,2 ... 
1 

These boundary conditions are special cases of (3) and (19) for which the 

original problem was solved. By specializing the parameters in the previous 

section III, the solution to the present problem is obtained by a limiting 

procedure. 

First the Kernel function K(S z) is constructed from the equation system m, 
(24) to (26) with homogeneous boundary conditions of Type I. The comparison 

shows that in the present case D=O in (25), (26), so that a1 = a2 = oo in (28). 
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I. 

~. 

).· 

r: 

" ·' 

With this (27) yields in the limit the kernel function 

K(Sm,z) = ~ sin(Smz) 

The eigenvalues Sm are determined from (29) which reduces to 

sinS L = 0 
m 

with the positive solutions 

m1T 
sm = r-' m = 0,1,2, ... 

(58) 

(59) 

(60) 

Now the theory developed in Section III, and specifically the set of equation 

(31) to (35), assumes that the boundary condition for K(Sm,z) at z=O and z=L 

are of Type III, i.e. of the form of (25), (26) 

dK(Sm ,o) 
- DE dz + h1K(Sm,O) = 0 (61) 

Since in the present case the boundary conditions are of Type I and thus do 

not involve the derivative term, one must fon;~lly make the following limiting 

replacements in (36) 

1 dK(S ,L) m 
= - h2 dz 

_ l dK(Sm,O) 
- h

1 
dz -

] ] 

(62) 

Further, a comparison of (57) with (19) shows that Ni(t) = 0 so that N~(s)- 0. 

This leaves only the second term in (36) which reduces with the above to 

(63) 

With K(S ,z) and g.(S ,t) determined the solution of the problem is given by m 1 m 

(55). 
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The quantity of principal interest is the specie transport through the 

biosphere boundary at z=L which in view of (57) reduces to 

• aN. (L,t) 
l mi (t) = -De: az (64) 

which will be investigated in the future. 
As a second application consider the transport of the radionuclide chains 

vL 
by diffusion only, so that v=O in (55). Aside from the term e2D being re-

2 
placed by unity, one ITRlSt delete the term (~D) in the expression for aSI. in 

(15). Recall that y(SI.) = 0. For the present boundary condition (56) a compar­

ison with (22) shows that v can formally be set to unity so that no further 

changes are needed in (55) other than those mentioned. 
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