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Abstract 

A Simple Model for the Prediction of Coherent and 
Semicoherent Plate Precipitate Habit Planes 

U. Dahmen and K.H. Westmacott 

National Center for Electron Microscopy 
Materials and Molecular Research Division 

lawrence Berkeley laboratory 
University of California 

Berkeley, CA 94720 

A quantitative physical description of the processes that determine 

plate precipitate habit planes evolves when a transformation with strains 

of mixed sign is modelled as a tensile test. The state of stress in 

such a thin coherent plate is similar to that in a tensile bar. The 

tensile axis, and with it the habit plane, is determined by the elastic 

anisotropy in the coherent case and by the slip geometry in the 

semicoherent case. The physical connection between the habit planes 

predicted by the anisotropic strain energy minimum criterion and the 

invariant plane strain criterion of martensite theory lies in the 

~ifferent constraints i_mposed by elastic or plastic yielding. Examples 

of the application of the principles and comparisons with experimental 

observations are given. 

1. Introduction 

The theoretical prediction of plate precipitate habit planes from 

first principles is a basic problem in materials science. Two 

distinctly different approaches are, the phenomenological theory of 

martensite transformations (1-5) and the theory of elastic inclusions 

( 6-10). .. Martensite theory was formulated for diffusionless 

transformations but applications of its crysta 11 ographi c pri nci pl es 
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to diffusion-controlled precipitation reactions have often . met with 

good success (11-20). Linear elastic theory is strictly valid only 

for small strains but many studies have applied the theory successfully 

to transformations with strains larger than 5% (21-34). In spite of 

the considerable overlap in the predictions of the two theories, only 

few efforts have been made to compare and contrast their basic 

assumptions (35,20). 

The object of the present study is to develop a model of the 

physical principles underlying the formation of coherent and semicoherent 

precipitate plates, to apply its quantitative predictions to experimental 

observations, and to establish a connection between the two theories. 

2. The coherent plate 

The elastic strain energy of a very thin coherent disc-shaped 

inclusion is determined almost entirely by the components of the 

transformation strain in the plane of the disc (8,9). Thus an inclusion 

undergoing a transformation with principal strains e1, e1 and e3 along 

the [100], [010] and [001] axes forming a thin plate on the (001) plane 

{Fig. l(a)) 2 
1+\) 2 

has a strain energy of W = lJl-\1 e1 (8,9)(1J is the shear 

modulus and \) is Poisson's ratio). This expression is an approximation 

since it assumes that the precipitate aspect ratio c/a is infinitely 

sma 11. Note that the strain energy depends only on the strain e1 in 

the (001) plane. In this orientation the inclusion is like a thin 

elastic sheet under two-dimensional hydrostatic stress (Fig, l(b)). 

However, since e1 and e3 are assumed here to have opposite sign, another 

orientation c~n be found leaving the plate in the simple state of 

uniaxial stress as for example in a tensile test. As shown below this 

i 
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new orientation of the plate further reduces the strain energy. 

Consider a plate that is inclined to the (001) plane to contain 

a direction in the interface in which the transformation strain is 

zero. Such a direction must exist since the strain changes sign between 

e1 and e3. This is shown in a schematic in Fig. l(c) illustrating 

how a unit circle transforms to an ellipse by an expansion e3 along 

[001] and a contraction e1 along [100]. The angle e of this unextended 

line with the (001) plane is given by tan e =i-e1/e3'~ If a thin disc 

takes this orientation (see Fig. 2(d)) it is elastically distorted 

in its plane only by a uniaxial extension -e1 (with corresponding 

stress a, see Fig. l(e)) constraining the transformation strain e1, 

while the direction normal to it is free of transformation strain 

(unextended line). 

This is the geometrical condition of an invariant (unextended 

and unrotated) line in the interface as it is used for instance in 

martensite theory (4). However, in the elastic case considered here 

a better approximation is that of a stress-free rather than a strain-free 

.direction. The elastic strain -e1 along the [010] axis causes a Poisson 

contraction v e1, in the (010) plane. This is superimposed on the 

transformation strains in the (010) plane (shown in Fig. l(c)), e3 

and e1. Thus for a strain-free 1 ine tan e = ~ ej whi 1 e for C\ stress-
e3 

free line tan e = _e,1l+~) · The latter expression is identical to e3 ve 1 

Christian's solution (35) for the minimum strain energy. Since the 

strain energy is dominated by the uniaxial tension its magnitude is 

estimated simply as w = ~ E e12 = lJ (l+v)el2 (E is Young's modulus). 

This is only about third of the (W 2lJ l+v 2 one energy = 1-v el ) 
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of a plate on the (001) plane, i.e. one without inclination (Fig. l(a)). 

In an isotropic crystal the tensile stress constraining the plate 

could be in any direction in the (001) plane containing the uniform 

strain e1. The final precipitate would be a plate inclined by 6° about 

this direction. In the preceding section this was chosen arbitrarily 

to be [010] see Fig. l(d,e)). In an anisotropic crystal this tensile 

axis should lie in a soft direction in the (001) plane to lower the 

strain energy further. The problem of minimum strain energy is then 

reduced to finding the direction~ in the (001) plane with the smallest 

Young's modulus. This direction will become the "tensile axis" in 

the stressed precipitate. 

In general Young's modulus in the direction of unit vector~ is 

E (.£) = Cijkl PiPjPkPl (36,37) where Cijkl is the tensor of elastic 

constants and the summation convention is implied. For a cubic crystal, 

this simplifies to E (£) = c
11 

- (2cn - 2qz - 4c44) (p12P22 + pz2p32 

+ p32p12) and since P3 = 0 (£_lies in the (001) plane) and Pl2 + P22 

= 1 (.P., is a unit vector), E (~) = c11 -(2cn- 2c12- 4c44) P12(1-pl2). 

The two extrema are at Pl2 = 1 and Pl2 = ~, i.e. along the direction 

<100> or <110>. Which of these directions is the minimum depends on 

the sign of (2cn - 2c12 -4c44), more commonly expressed through the 

ani sot ropy ratio A = 2c~..4 If A > 1, the <1 00> directions are 
c11-c12 

soft and if A < 1, the <110> directions are soft. Since the tensile 

axis is contained in the habit plane and constitutes the axis of rotation 

for the plate the minimum energy habit plane is of the type {Okl} if 

A>l and {hhl} if A < 1. The same prediction was made by Wen et al. 

(33) who obtained an exact solution for this case of tetragonal strains 
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using Khachaturyan•s formulation of the elastic inclusion problem (10). 

They plotted the angle e of the habit plane inclination as a function 

of the tet ragona 1 i ty ratio n = ( e3 - e1 ) /e1 and obtai ned the so 1 i d 

curve shown in Fig. 2. 

Substitution in the simple geometrical approximation of a 

strain-free line given earlier yields tan e = ~ -1/{n+ n: which, when 

plotted, (dashed line) is seen to be within a few degrees of the exact 

result. (actually within the experimental error limits of coherent 

habit plane determinations). The more accurate approximation of a 

stress-free line leads to the expression tan e ~-~:~+v r. When plotted 

in Fig. 2 with v = 1/3, this superimposes on the solid line, i.e. is 

identical to the exact result even though an isotropic and average 

value for \) was assumed. 

To sunmarize; an inclination of the plate forming an invariant 

line in the interface lowers the strain energy by about two thirds. 

The effect of elastic anisotropy is to select the axis of inclination. 

The predicted habit plane is { Okl} with k/1 ~ -vel /ej if A > 1 and {hhl} 

with the same angle of inclination if A < 1. Since the strain energy 

is mainly due to the elastic distortion of the inclusion, A should 

be strictly the anisotropy ratio of the precipitate. 

As shown in Fig. 3 this situation may be represented in a stereogram 

in an [001] orientation, i.e. the direction of the unique strain e3. 

The habit plane is determined by the elastically soft tensile direction 

R in the (001) plane (either <100>, solid lines, or <110>, dashed lines) 

and an invariant line (more accurately a stress-free line) normal to 

it. This invariant line is simply the direction, normal tq the tensile 
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axis £, lying on the cone of unextended lines (4,17,19). Fig. 3 

illustrates this for a crystal with an anisotropy ratio A>l, i.e. the 

tensile axis is [100]. The transformation strain in this example is 

characterized by n ~ -45, i.e. the cone of unextended lines makes an 
0 

angle of '\,9 with the (001) plane. The (okl) habit plane normal is 

shown by a star and the invariant line by an open circle. 

3. The semicoherent plate 

The tensile test analogy can be carried further. Consider a thin 

plate in a state of uniaxial tension. If it deforms plastically it 

is most likely to do so on the slip system with the highest resolved 

shear stress. This depends on the relative position of the tensile 

axis and the slip system·; and the resolved shear stress is a maximum 

if both the slip plane and the slip direction make an angle of 45° with 

the tensile axis. The problem of finding a direction in the (001) 

plane with a low Young's modulus in the elastic case now translates 

to finding the tensile direction in the (001) plane with the highest 

Schmid factor R = cos ¢ cos). (where ¢and). are.the angles of the tensile 

axis with the slip direction and the slip plane normal, respectively) 

for an available slip system. For a given slip plane the slip direction 

is linked to the tensile axis by the geometrical restriction of 

maintaining an unrotated and undistorted habit plane. The calculation 

of the slip direction is a lengthy process and as a first approximation 

it may be assumed that the Schmid factor is maximized when the tensile 

axis makes an angle of ). = 45° with the slip plane. For slip on the 

(101) plane this direction is [100], as shown in the stereogram in 

Fig. 4(a). The invariant line must be located at the intersection 
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of the cone of unextended lines with the slip plane so that it remains 

unaffected by the plastic deformation, a condition well-known from 

martensite theory. The resulting habit plane contains the [100] tensile 

axis and is therefore of the type (Okl) , where k and 1 are given 

by the invariant line condition. The similarity between this 

semicoherent case and the coherent case for A>l is also apparent from 

the stereograms in Fig. 3 and 4. 

If the slip plane is not one of the {lOll planes inclined 4SO to 

the (001) plane, but one of the {110} planes normal to (001) (see Fig. 

4(b)) the tensile axis in the (001) plane, and at 45°to the (110) plane 

is again [100]. Again an (Okl) habit will result, but k and 1 are 

now given by the invariant line on the (110) rather than the (101) 

slip plane. 

It must be kept in mind that even though the slip planes and the 

soft tensile axes are expressed in terms of crystal directions of the 

bee matrix crysta 1, the important properties are those of the 

corresponding directions in the precipitate crystal. Thus the elastic 

·constants or slip geometry in the precipitate determine the habit planes, 

and the discussion in terms of the bee matrix is only a convenient 

tool·. 

4. Comparison with experimental observations 

Experimental results for each of the three cases of uniaxial tension 

listed above are available. The transformation strains for bet a" 

precipitates in Fe-N alloys are small enough to be in the coherent 

elastic range. The formation of fcc y' precipitates in bee Fe-N alloys 

constitutes an example of large transformation strains with slip occuring 
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on the inclined {101} bee slip planes (see Fig. 4(a)). Hexagonal 

Mo2C carbide in bee Mo is a case of large transformation strains with 

slip on the vertical {110} bee slip planes (Fig. 4(b)). 

4.1 a" Fe15N2 (bet) in Fe (bee) 

The transformation strain is tetragonal (strictly cylindrically 

syrrmet ric} and using 

=<-o.on?~o.on2~ ). 
0.0971 

the lattice parameters of Jack (38), £ij 

Since the anisotropy ratio A, is greater than 

unity for Fe the habit plane predicted for a " is (okl) with k/1 

~ ~:~~~~ , a plane that is inclined about 8.5 ° with respect to (001). 

Hong et al. (39) have calculated a strain energy minimum for (001) 

plates with aspect ratio less than 11.35. A recent TEM analysis (40) 

has shown that each a" particle is made up of thin segments inclined 

0 • 
about 10 w1th respect to (001). Several such segments, inclined about 

different axes form a puckered sheet giving the typical rosette contrast 

in TEM. (Fig. 5). The overall habit of the puckered sheet is (001 ). 

However, the anisotropy predicted by the tensile direction with the 

lowest Young's modulus was not observed here, although evidence exists 

.to suggest a directionality occurs when a" is formed at low aging 

temperature ( 41). Experimenta 1 observations thus confirm the predicted 

rotation required to form a stress-free line in the interface. But 

instead of a single plate with {okl} habit a further reduction in energy 

u 

is apparently achieved by grouping several variants in a puckered sheet ~ 

arranging their tensile axes in a star-like pattern. 

4.2 y' Fe4N (fcc) in Fe (bee) 

As for a" Fe15N2, the transformation strain is tetragonal. Using 

the lattice parameters at the aging temperature of 300°C, abcc = 0.28678 
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-0.0643 
nm, afcc = 0.3795 nm, we obtain e:ij = ( -0.0643 ). These 

0.3233 
strains are large and the habit plane must be determined by the criterion 

of maximum Schmid factor. y' slips on {111} fcc planes derived from 

the inclined {101} bee slip planes. Hence this is the case illustrated 

in Fig. 4(a). 

The predicted (okl) habit plane defined by the [-0.38, 0.85, 

0.38] invariant line and the [100] tensile axis is (0,-0.41,0.91). To 

test that [100] was indeed the tensile axis in the (001) plane with 

the highest resolved shear stress, other nearby (hkl) habit planes 

were calculated using Ledbetter and Wayman's computer program for 

martensite crystallography (42). The Schmid factor was confirmed to 

be a maximum for the [100] axis. 

The predicted (0,-0.41 ,0.91) habit agrees exactly with the 

experimental observations (43). Fig. 6(a) shows a TEM image of a typical 

y• plate. The parallel striations are interfacial dislocations along 

the invariant line direction. Often two sets of striations are found 

within a single plate. As detailed elsewhere (43) this means that 

the habit plane is of the type {okl}, i.e. it contains a <100> direction. 

Usually two variants form in a V-shaped grouping, and the habit plane 

can thus be measured accurately from the angle of inclination ( 4t> ) 

between the two variants. The slip plane is the required {111} fcc 

plane as evidenced by the <111> streaking seen in electron diffraction 

patterns of extracted plates (43,44) Fig. 6(b)). 

4.3 Mo2C (hcp) in Mo (bee) 

A further test of the concept is found in the formation of 

semicoherent plates of Mo2C (hcp) in Mo {bee). Using the lattice 
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parameters abcc = 0.3147 nm, ahcp = 0.3002 nm, Chcp = 0.4724 nm, the 

transformation strain tensor is: 

when referred to 

f:ij = { 
[110], [llO] 

0.17 
0.06 ). 

-0.05 
and [001] axes 

Pitsch-Schrader lattice correspondence (16,45) 

(45). In the 

these directions 

transform to [0001], [OliO] and [2liO], respectively. Fig. 7 shows 

that since all three principal strains are different the cone of 

unextended lines now has an elliptical cross section. Due to the 

crystallography of the hexagonal MozC precipitate, (0001) is the slip 

plane. This is derived from the vertical (110) bee slip plane, 

corresponding to the case shown in Fig. 4(b). Again, the tensile axis 

in the (001) plane (the plane of unmixed strains) at 4~ to the (110) 

bee I (0001) hcp slip plane is [100]. The invariant line at the 

intersection of the cone of unextended lines with the (110) slip plane 

-
is "-[113]. The resulting (Okl) habit plane containing the [100] tensile 

-
axis and the [113] invariant line is (031}, indicated by a star in 

Fig. 7. Again, this agrees with the experimental observations (Fig . 

. 8) showing an MozC carbide plate with [113] interfacial dislocations, 

(031) habit and slip on (0001) hcp I (110) bee planes (45). 

As in the example of y' Fe4N above, the habit plane with the tensile 

axis of maximum Schmid factor was also calculated exactly by 

systematically varying the slip direction while keeping the slip plane 

constant. The tensile axis so determined was 1.5° from [100], close 

enough to make an experimental distinction in small plates impossible. 

Within experimental accuracy the assumed [100] tensile axis is thus 

the direction in the (001) plane with maximum Schmid factor. 

... 
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5. Discussion 

In the three cases considered here the tensile test analogy yields 

simple and accurate predictions for precipitate habit planes. The 

tens i1 e axis must be a soft direction in the plane of unmixed strain 

-in our examples the {001) plane. For coherent precipitates the tensile 

axis must be elastically soft, i.e. have a low elastic modulus, and 

for semicoherent precipitates it must be plastically soft, 

oriented for the maximum Schmid factor on the slip system. 

i.e. be 

In all 

three cases considered the tensile axis is very close to <100> and 

the resulting habit plane is {Okl}, where k and 1 are given by the 

invariant line condition. 

Not only does the tensile test analogy describe the transition 

from coherent to semicoherent inclusions physically as the change from 

elastic to plastic yielding,. it also allows a remarkably simple and 

accurate prediction of coherent and semicoherent precipitate habit 

planes. At first glance, this simplicity is in contrast to the more 

complicated habit plane calculations of martensite theory {5). However, 

··a closer examination shows the irrational {hkl} habit planes predicted 

by martensite theory result from the geometri ca 1 constraints imposed 

by assuming rational slip elements (e.g. (101)/[iOl]). The assumption 

in the present analysis that [100] is the optimum tensile axis gives 

a simple (Okl) form to the habit plane. But the necessary slip direction 

in the low-index slip plane is irrational and as lengthy to calculate 

as the irrational habit plane with low-index slip elements. The apparent 

simplicity stems from the fact that the (irrational) slip direction 

is only of secondary importance for the habit plane determination. 
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The habit plane is fully prescribed by the invariant line at the 

intersection of the cone of unextended lines with the slip plane and 

by the tensile ax·is. The Schmid factor is expected to be large for 

a tensile axis at 45° to the shear plane. The tensile axis must also 

lie in the plane of unmixed principal strains, the (001) planes in 

the three examples given. Thus [1 00] is the tensi 1 e axis and ( Okl) 

the habit plane only to first approximation. In order to calculate 

exactly the direction in the (001) plane for which the Schmid factor 

is a maximum, the slip direction must also be known accurately and 

thus the entire calculation must be carried out exactly as for martensite 

with an irrational {hkl} habit plane (42). 

In the case of Fe4N Y • in Fe it was found that [1 00] is indeed 

the direction of maximum Schmidt factor. For MozC in Mo the maximum 

occurs in a direction less than 1.5° from [100]. Considering 

experimenta 1 errors inherent in the determination of habit planes of 

small plates, e.g. the fact that they are often wedge-shaped instead 

of plane parallel in cross section (43,45,46), the use of [100] as 

the direction with the highest resolved shear stress on the slip system 

is justified. The orientation relationships calculated for [100] tensile 

axes and slip on the inclined (101) planes for y•Fe4N and on the vertical 

(110) planes for MozC also agree with those measured experimentally 

(43,45). It appears from these limited data that a 45° angle to the 

slip plane is a good approximation for the tensile axis if the slip 

plane is rational and the slip direction irrational. 

The use of an irrational slip direction with a rational slip plane 

is not new. Crocker and Bilby (47) explored various such combinations 
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by using a double shear model for the lattice invariant deformation 

in martensite theory, for example by allowing two different slip 

directions (Burgers vectors} on a single slip plane. As a criterion 

for optimization they used the smallest minimum of the shape shear 

m1 and of the lattice invariant shear m2. The shear m2 is directly 

related to the density of interfacial (anticoherency) dislocations 

(48,49) and m1 relates to the energy of accommodation of the semicoherent 

plate. 

It is instructive to compare the present criterion of maximum 

Schmid factor to the minimum in shape shear m1 and lattice invariant 

shear m2. In the case of y' Fe4N the minimum shape shear m1 occurs 

for a (iol] slip direction, the minimum lattice invariant shear m2 

for a [-0.66, 0.36, 0.66] direction and the maximum Schmid factor 

for the direction [-0.69, 0.22, 0.69], which lies between the minimum 

for m1 and m2. The corresponding habit planes range over 7.~. 

In t·1o2C precipitates the minimum for both m1 (0.29) and mz (0.18) 

lie at the rational slip direction [llO]. The maximum Schmid factor 

:criterion requires [0.68, -0.68, 0.26] to be the slip direction with 

m1 = 0.31 and m2 = 0.21. The corresponding habit planes are 10.~ apart. 

It thus appears that optimization of the tensile axis takes precedence 

over both m1 and m2 minimization although the latter deviations are 

quite small. 

Bowles and Tegart (11) and Otte and ~1assalski (12) have applied 

martensite crystallography to nucleation-and-growth transformations, 

assuming rational shear elements. However no fine scale TEM observations 

existed at the time to allow an exact comparison of theory with localized 
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microstructure, and the small discrepancies between theory and available 

data were discussed in terms of irrational shear elements and a 

dilatation parameter. 

Finally, it is interesting to note that throughout it was assumed 

that the lattice invariant shear occurs in the inclusion rather than 

the matrix. Mathematically there is no difference whether the lattice 

invariant deformation occurs before or after the transformation, but 

physically there is a clear distinction. The faulting observed on 

the slip planes of Fe4N and Mo2C is clear evidence for slip within 

the particle even though the matrix is much softer. The faulting also 

. allowed a clear identification of the operating slip plane. 

Quite a different result was found in a recent study of 

needle-shaped precipitates in Cu-Cr (fcc/bee) and Fe-Cu (bee/fcc) alloys 

(19). Here the crystallography of the matrix slip planes was the 

determining factor. The needles in both alloys were found to lie along 

the invariant lines formed by the intersections of the cone of unextended 

lines with the matrix slip planes. A likely interpretation of this 

·difference is that due to the different states of stress in needles 

and plates (needles are more complex) plastic accommodation occurs 

within the plates but in the matrix surrounding the needles. 

6. SuiTITlary and Conclusions 

By recognizing that at its minimum strain energy orientation a 

thin coherent plate precipitate with tetragonal transformation strains 

of mixed sign is approximately in a state of uniaxial stress, its optimum 

orientation in an elastically anisotropic cubic matrix becomes simple 

to predict from first principles. The habit plane must contain a 

stress-free line (approximately a strain-free, or invariant, line) 
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and an elastically soft direction in the plane of unmixed principal 

strains, and will therefore be of the type {Okl} if A>l or {hhl} if 

A<l. The inclination e of the habit plane with respect to the plane 

of unmixed principal strains is given by the ratio of the mixed principal 

strains tan e i- =~' 
The transition from a coherent to semicoherent plate is modelled 

after a tensile test providing a physical picture of the connection 

between the theory of elastic ~nclusions and martensite theory. Loss 

of coherency (the lattice-invariant shear of martensite theory) occurs 

in the precipitate on a rational slip plane in an irrational direction 

with the tensile axis being a "plastically soft" direction in the plane 

of unmixed principal strains, i.e. the direction with the highest Schmid 

factor on the slip system. 

Comparison with experimental results on habit planes and orientation 

relationships of three different alloy systems agree well with the 

model. To within experimental accuracy, in all three alloys the 

predicted tensile axis is <100> and the predicted and observed habit 

.planes are of the type {Okl}. 
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FIGURE CAPTIONS 

Fig. 1. (a) Thin plate precipitate on the {001) plane and (b) its 

state of two-dimensi ona 1 hydrostatic stress. (c) the transformation 

strain is depicted schematically in the [010] projection with 

unextended lines at an angle e to the (001) plane. In its optimum 

orientation (d) the thin plate is inclined and contains an invariant 

line in the interface. Its state of uniaxial stress along [010] 

is illustrated in (e). 

Fig. 2. Plot of predicted angle e of plate inclination vs. 

tetragonality ration = (eJ-el)lel. The dashed curve shows the 

strain-free (invariant) line approximation while the solid curve 

represents the exact result (33) and the stress-free line 

approximation. 

Fig. 3. [001] stereogram illustrating the predicted habit plane 

(solid great circle) for anisotropy ratio A>l and tetragonality 

"' ratio 11 - -45. The pole of the (Okl) habit plane is marked by a 

star, the invariant line by an open circle. The elastically soft 

directions in the (001) plane are shown as solid lines along [100] 

and [010] (A>l) and dashed lines along [110) and [110] (A<l). 

Fig. 4. [DOl] stereograms showing habit planes determined by the 

[100) "tensile axis" and. the invariant line (open circle) at the 

intersection of the cone of unextended lines with the inclined (101) 

slip plane in (a) and the vertical (110) slip plane in (b). The 

habit plane poles are marked by a star. 

Fig. 5. Rosette contrast typical of bet a " Fe16N2 particles in 

bee Fe-N alloy. 
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Fig. 6. (a) Inclined plate of fcc y' Fe4N in bee Fe showing 

interfacial lines (see arrows) along invariant line directions. The 

<110> selected area diffraction pattern (b) from an extracted y' 

particle shows <111> streaking due to faults resulting from slip 

on {111} planes. 

Fig. 7. [001] stereogram with an elliptical cone of unextended 

lines for hcp Mo2C in bee Mo with the invariant line (open circle) 

at the intersection of the cone with the (110)/(0001) slip plane. 

The (Okl) habit plane pole and trace are shown as a star and a solid 

great circle. 

Fig. 8. (a) Inclined plate of hcp Mo2C in bee Mo showing interfacial 

lines along invariant line direction (see arrows). The -diffraction 

pattern in (b) shows streaking of the precipitate reflections in 

the [0001] direction (see arrow) associated with faults due to slip 

on (0001) slip planes (45). 
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