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Introduction 

COOLDOWN OF AN INFINITELY LON6 HOLLOW CYLINDER 
AND APPLICATION TO THE SSC COOLDOWN 

S. Caspi 

Lawrence Berkeley Laboratory 
University of California 

Berkeley, California 94120 

This writeup is an attempt to calculate some of the cooldown parameters of 

a long string of magnets such as the case might be for the SSC. Besides the 

cooldown time, temperature gradients along a magnet, and in the transverse 

direction, are influenced by the mass flow of the refrigerant. A number of 

assumptions and simplifications have been made so that an analytical solution 

can be obtained. 

In Part I of this report we assume a one dimensional model with a finite 

axial conductivity and infinite transverse conductivity. In Part II, we 

consider the cooldown in the transverse direction only. A common example for 

both parts points out the limitation of the assumptions made in Part I and 

suggests the need for a two dimensional time dependent model T = T(r,z,t). 

Part I - Axial Cooldown 

Statement of the Problem 

Consider an infinite hollow cylinder with radii R , R with an assigned 
1 2 

initial temperature T. A axis-symmetry frame of reference is constantly 
o 

moving along the cylinder (Z direction) at a velocity U with respect to the 

cylinder (Fig. 1). The bore (r , R ) to the left of the reference frame 
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(Z , 0) is filled with a fluid at T==Tf , which has a heat transfer coefficient 

h. The bore to the right (Z > 0) i5 empty and therefore adiabatic. The outer 

surface r=R is also adiabatic. 
2 

We would like to find out the axial temperature distribution under the 

following assumption. 

o Properties are constant 
o The transverse time constant is much shorter than the axial one 

and, therefore, the problem can be reduced to a one dimension case. 

~U 
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Fig. 1. An infinite'hollow cylinder 
and the moving frame of 
reference used in Part I. 

The solution of the diffusion equation :t = ~ '12 T can be reduced to 

-u :i = ~ '12 T for the traveling frame of reference. (See Eckert and Drake 

- , 
"Heat and Mass Transfer", pg. 114). For the one dimensional problem, we can 

write 

~T ~2T -u _v = ~ v 

az az2 
~ = (1 ) 

QI = heat flux per unit volume. 

At z < 0 

1 

At z > 0 QI = 0 or h = 0 
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Define 2 _ he 
• - KA 

so that equation (1) can be rewritten: 

-!l ae 
G az 

Boundary Conditions: 

z ... - 00 

z ~ 0 

Z > 0 

2 
- m e 

e = 0 

h = h 

e = 1 

h = 0 

(2) 

If we substitute e = e--(U/2G)Z f(Z), the solution to equation (2) including 

the boundary condition ;s 

where 

Z ~ 0 

Z ~ 0 
-2( U ) Z 

e = 1 - (1 - 8m) e ~ 

8m = Tm - Tf is the temperature at Z = O. 
To - Tf 

The exponent in the solution for Z ~ 0 can be simplified for the case 

(-Y-)2 » .a in the following way: 
2G 

[
1 ~ 1 (-ID- )2 + .... 

2 Ul2a 
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Equation (3) can now be rewritten 

z , 0 

Z ~ 0 
- U 

e = 1 - (1 - 8m)e ;Z 

am2 Z 
Under assumption (4) e-(U/G)Z« e U 

Relation (5) can be further simplified 

Z , 0 

Z ~ 0 e = 1 

(5) 

(6) 

This points out that most of the axial temperature gradient is laying in the 

convective region Z , o. 
In order to determine the characteristic length of this gradient, we 

rewrite (6) 

Z , 0 
(7) 

or for Z ~ 0 Z = ~2 I.n(:m) 

The velocity U can be estimated from the following enthalpy balance 

m 6hf = pA U 6ht or 
m 6hf 

U = pA 6ht 
(8) 

where m 6hf = rate of enthalpy Change per unit volume of the fluid 

p 6ht = enthalpy change of the tube per unit volume. 

Introducing (8) into (7), a characteristic length Z = ~ can be expressed as 

~ = ~ tn(8m) 
h 21fRl e 

( 9) 

Cpf = specific heat of the fluid. 
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Note that expression (9) represents a thermal balance between the heat 

convected away and the heat radiating by the tube. 

Since U 0 tit 

. 
~om 

The characteristic time T is independent of the flow rate and is written as: 

(10) 

M = pV = pA~ of the tube 

S = cross section area of the tube annulus. 

The time corresponds to the ratio between the total thermal mass and the heat 

transfer area. 

Note that m will effect the axial temperature gradient (eq. 9), but not the 

cooldown time of the characteristic length, which is only effected by the 

geometry and thermal properties. 

Example 

For Helium at 80 < T < 300 K 

The heat transfer coefficient 

e = 1 

e = 0.01 

9,n(_'_} 
0.1 

tn(_l_} 
.01 

Cpf = 5.2 J/gr/K 

h = 0.15 W/cm2 /K 

R = 1.5 cm 
1 

= 2.3} 
= 4.6 

take tn(~} ~ 4 
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Use equation (9) . 

If we take m = 100 grlsec, we get ~ = 15 m. 

To calculate the characteristic time T (eq. 10) (the time it takes to 

cooldown the characteristic length ~). 

For iron p = 7.9 (gr/cc) 

e = 0.39 (J/gr/K) 
pw 

T = 7.9 • 1000·0.39 tn(8m) ~ 15 min. 
0.15 • • • 3 e 

and the velocity U = ~ ~ 1.6 cm/sec. 
T 

Part II - Transverse Cooldown 

The cooldown of an infinite hollow cylinder is calculated to estimate the 

transverse cooldown time of a sse type magnet. The cylinder. with radii a and 

b (Fig. 2.). initially at To is put into a medium with constant temperature 

Tf . The external surface r=b is adiabatic. the heat transfer coefficient at 

r=a is h and the thermal diffusiyity 0 is assumed constant. 

The· two dimensional time dependent heat transfer problem is written as 

ae = 0 1 L (r ae) 
at r ar ar 

t = 0 e = 1 

t > 0 r=a ae = h e 
ar K 

r=b ae = 0 
ar 
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h=O 

Fig." 2. Cross section of an infinite hollow cylinder used in Part II. 

The solution to equation (1) with its boundary conditions can be found in 

·Conduction of Heat in Solids," Carslow and Jaeger, Pg. 332, or "Analytical 

Heat Diffusion Theory." A.V. Luikov, pg. 281. 

F(~n) = [P~nJ1(a~n) + Jo(a~n)]2 - (p2~n2 + 1)J12(b~n) 

Co(r.~n) = Jo(r~n) [P~nY1(a~n) + Yo(a~n)] 

~n are the e1gn values of 

p~ [J&(a~)Y&(b~) - J1(b~)Y1(a~)] 

+ Jo(a~)Y1(b~) - J1(b~)Yo(a~) = 0 

K K 
P = ii a=-

pCp 

Note that for large ~ we get '\. _ n1l' 
"'n - - . b-a 
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Exa!I)le 

Equation (2) was solved on a computer using the following parameters: 

a • 1.5 c. 

b • 5.9 CII 

K = 0.65 w/cm/K 

h = 0.153 w/cm2 /K 

G = 0.211 cm2 /sec 

The values of ~n are: 

~ = .128, .804, 1.485, 2.183~ 2.881, ..•.. n . 
The solution of eas a function of rand t is plotted in Fig. 3. 

The time constant ~ for this geometry is of the order of ~ = 5 min. 

This should be compared with the equivalent axial cooldown characteristic time 

of T • 15 min. for a one dimensional model with a characteristic length of 

~ = 15 m. The assumption, therefore, of infinite conductivity in the 

transverse direction is not valid in the axial model and the cooldown problem 

should be solved for the case where T = T(r,z,t). 
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Fig. 3. The temperature across the cylinder at time 
intervals of 1 min. 
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