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Abstract: 

Fluctuations and the Nuclear Mei~sner Effect 

in Rapidly Rotating Nuclei.* 

L.F.Cantot , p.Ring* and J.O.Rasmussen 
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University of California 
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LBL-195l9 

The phase transition from a superfluid system to a normal fluid system in 

nuclei under the influence of a strong Coriolis field is investigated by the 

Generator Coordinate Method (GCM). It allows to take into account 

fluctuations of the orientation in gauge space connected with the violation of 

number symmetry in the BCS-approach as well as fluctuations of the 

gap-parameter connected with a virtual admixture of pairing vibrations in the 

wave function at the yrast line. The strange behavior of the experimental 

moments of inertia in the nucleus l6BHf is well reproduced in this theory. 

The pairing collapse of the neutrons, however, is completely washed out by the 

fluctuations. 
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Superf1uid systems are, characterized by the fact. that a short range 

effective interaction produces binding of particles in time-reversed orbits 

and the formation of a condensate of Bosons.The influence of an external 

field. which violates time reversal symmetry can break these pairs. In a 

sufficiently strong field one therefore finds a phase transition from 

superfluidity to normal fluidity. The best example for such a transition is 

Meissner-Effect in a superconductor: Under the influence of a sufficiently 

strong magnetic field superconductivity breaks down.In ~n infinite system this 

is a sharp phase transition and the corresponding order parameter. the pairing 

gap. goes abruptly to zero. 

In nuclei Mottelson and valatin1) predicted a similar effect: under the 

influence of a strong Coriolis field in rapidly rotating nuclei the superfluid 

behavior of heavy nuclei should disappear. a phase transition to a normal 

fluid should occur .. 

Many attempts have been made to see this transition experimentally. Most 

of them were devoted to search for anomalies in the rotational spectra. which 

can be measured by (HI.xn)-reactions with great accuracy; In fact one has 

found such anomalies. as the backbending Phenomenon2). but it was soon 

realized, that it could not be attributed to a pairing collapse, but to a 

sudden alignment of one pair of nucleons with large single particle angular 

momenta 3). It turned out, that the moment of inertia, which can be deduced 

from the spectra is of limited value to characterize a phase transition from 

superfluid to normal fluid in a rotating system: Only at low spins pairing 

correlations produce a energy gap in the quasiparticle spectrum. In cases of 

alignment quasiparticle energies can vanish even when pairing correlations are 

still strong, because the pairing field is in such a situation no longer 
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diagonal. One than has nuclear gapless superconductivity4) and in such a 

situation it is difficult to observe the still existing superfluidity from the 

spectrum. In fact after a few alignments one can assume to a first 

approximation, that the quasiparticle energies are distributed statistically, 

a situation, which causes the moment of inertia to be close to the rigid body 

value. Model calculations 5) show, that this occurs even for a constant 

pairing field. 

The experimental search for a pairing collapse should therefore 

concentrate not so much on spectra as on other nuclear properties, which 

indicate a phase transition more clearly. Of course the most direct evidence 

for a phase transition should be given by the order parameters themselves, 

i.e. by the pair-transfer matrix elements <A+2,II(a+a+)0IA,I>. So far it 

seems to be very difficult to measure those at high spins6). We therefore 

have at the moment to rely on theoretical investigations about the possibility 

of a pairing collapse in rapidly rotating nuclei. 

In most of these investigations mean field theory has been used. General 

considerations show that this approximation is very suitable in the case of 

large particle numbers or strong interactions, where perturbation theory 

breaks down. In the case of pairing correlations mean field theory is 

BCS-theory or HFB-theory. In fact one has found in all self-consistent 

solutions of the cranked HFB-equations7-9) a pairing collapse: In the Rare 

Earth region usually neutron pairing vanishes between 20 and 30 ~ and proton 

pairing vanishes between 40 and 50~. The question is, however, how reliable 

is the mean field approximation in this context. The total number of 

particles in such heavy nuclei is certainly large. The crucial quantity is, 

however not the total particle number, but only the number of particles 
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participating in the collective process of pairing. This is in fact not a 

very large number. Considering an average level spacing of 200 to 300 keV one 

finds only 3 to 5 pairs of particles in an energy interval of a pairing energy 

of 1 MeV. This is a rather small number and one therefore has to be very 

careful in drawing conclusions from the mean field approximation. In a way 

such an approximation shows already for small particle numbers features of the 

infinite system. where it becomes eventually exact. There are a number of 

investigations of the transition from the superfluid to the normal phase in 

exactly soluble models10-12 ). in which the mean field approximation seems to 

work relatively well. One has to bear in mind. however. that these models 

usually show a large degeneracy at the Fermi surface not observed in realistic 

nuclei. They are therefore not very helpful in the present context. 

If one wants to go beyond the mean field approximation. one has to take 

into account fluctuations. One way to do this is the Random Phase 

Approximation(RPA). It is well known. however that fluctuations can become 

very large in the region of the phase transition. In fact the RPA. which is a 

theory for small amplitudes around the mean field theory. breaks down exactly. 

at the point where the mean field shows the sharp phase transition. We 

therefore use in this paper a method. which goes essentially beyond the mean 

field approximation. the Generator Coordinate Method. It yields in many cases 

the exact solution13 ) and it has the general advantage to be based on a 

variational principle. In particular it contains the mean field and the 

random phase approximation as limiting cases. The conclusions we can draw 

from such a calculation are therefore clearly more general. The disadvantage 

of the method is. that it is numerically rather demanding and thus requires a 

considerable computational effort. 
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Certainly we are not able to solve the realistic manybody problem 

exactly: We include fluctuations of large amplitude, but we cannot include all 

kind of fluctuations. Since we are dealing with a very special type of 

collective motion,namely the pairing degree of freedom, we restrict ourselves 

to fluctuations in the order parameter, the gap. In addition we have to take 

into account the fact that phase transitions are connected with violations of 

synmetries: A BCS-wavefunction is a superposition of different particle 

numbers, i.e. it has a definite orientation in gauge space just as a deformed 

shape has an orientation in the three-dimensional ordinary space. In addition 

to the fluctuations in the gap, we therefore have to take into account 

fluctuations around this fixed orientation. This can be done in a rather 

simple way by the GCM method: The wavefunction is chosen to be a superposition 

of HFB-functions with different orientations in gauge space. Symmetry 

considerations determine the corresponding weight function completely: One 

ends up with a projection onto good particle number14 ,lS). 

For our numerical applications we start from the Baranger-Kumar 

Hamiltonian16 ) 

(1) 

which has proven to be very successful for a microscopic investigation of the 

interplay between quadrupole, pairing and rotational degrees of freedom in 

heavy deformed nuclei. We use the parameters of ref. 16. Only the strength 

parameters Gp and Gn of the pairing force are adjusted to the experimental gap 

parameters at spin zero. In the nucleus 16BHf , which we investigate in the 

following, this means Gp = 2S.92/A (MeV) and Gn = 22.4/A (MeV), which are 

very close to the values of ref. 16. 
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In the spirit of the cranking model we minimize the expectation value of 

the Hamiltonian in the rotating frame 

( 2) 

The angular velocity c.) is determined by the constraint <l'IJxl'l'> = ,,'1(1+1). 

For the variational functions we use the GCM-ansatz 

IY> = ~ dA f(A)pN1t(A» (3) 

o 

pn is a projector onto good particle number and the GCM-basis states It(6» 

are generalized Slater determinants (HFB-functions) in a rotating superfluid 

mean field. They are found as eigenstates of the generalized single particle 

Hamiltonian 

6 (S+ + S ) - 6 (s+ + S ) 
P P P n n n 

(4) 

£ are the spherical single particle energies of the Hamiltonian (1), and At 

are chemical potentials determined in each case by the constraint on the 

particle numbers <tiN It> = Z or N. Q is the quadrupole operator and ~ is 
't 

the deformation parameter. Since we are interested only in the pairing degree 

of freedom, and since the nucleus l68Hf , which we investigate in the 

following is relatively stiff against shape changes, we keep ~ fixed at the 

mean field value for spin zero (~ = 0.274). + The operators S create 
't 



Cooper-pairs for protons and neutrons. 

6 

G are pairing parameters for the 
T 

corresponding pairing fields. Our generator coordinate is the gap parameter 

for neutrons 

(5 ) 

the "pairing deformation" of the wave function, rather than the "pairing 

deformation" cS of the potential. For the sake of simplicity we do not 

investigate in the following the pairing properties of protons and keep cS p at 

the experimental value cS p = 0.85 (MeV) for all angular momenta. 

Our GCM wave function Iv> is therefore a superposition of number 

projected mean field functions It(A» and the Generator Coordinate is the 

pairing deformation of neutrons. The variation with respect to the weight 

function f(A) yields the well known Griffin-Hill-Wheeler equation17 ,18), 

which is solved by discretization. As the kernels of this integral equation 

are highly singular special care has to be taken13 ). We insured convergence 

with respect to the discretization and with respect to the cut off parame~er 

of the corresponding zero eigenvalues of the norm. More details of this 

calculation will be given in a separate paper19 ). 

Recent experiments in DareSbury20) have found for a number of nuclei in 

the Hf-region a very constant value for the moment of inertia above spin 20 

~, close to the rigid body value. It has been suggested that this behavior 

signifies for a sudden pairing collapse at spin 20~. In this letter we will 

concentrate on the case 168Hf . In Fig.l we compare moments of inertia 

obtained in four different theories with the experimental values. The lower 

part shows mean field theories, namely simple HFB and number projected HFB, 

the upper part shows two versions of the GCM method. In one case we used 
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simple HFB-functions as generating functions; in the second case we used 

number projected HFB-functions, as in eq.(3) 

We find in all theories more or less the same behavior: a steep increase 

of the moment of inertia for angular momenta between 10 and 20 ~ and rather 

~ constant values above 20~. The increase between 10 and 20 ~ is connected 

• 

with the sudden alignment of a pair of neutrons in the j=13/2 orbit. The 

experimental increase is somewhat steeper than the theoretical one. We 

understand this as a shortcoming of the Cranking approximation used in all 

four theories. It is well known that this approximation without angular 

momentum projection washes out level crossing phenomena, but we do not 

concentrate on this problem in this paper. We are interested in the region 

above 20~. Here all four theories show rather constant values for the 

moment of inertia, in agreement with the experimental data. Only the simple 

HFB-approach shows a small kink close to spin 22~. It has its origin in the 

sudden pairing collapse in this theory at this point. In the other three 

theories this kink is washed out. 

In Fig.2 we show the GCM-"wavefunctions". Since the GCM-basis states 

It(A» and pNlt(A» are neither orthogonal nor linear independent, the 

weight-functions f(A) in eq.(3 are not uniquely determined by the 

Hill-Wheeler equation13 ). In particular they depend on the discretization 

procedure. We therefore show in Fig.2 the "covariant components" of the GCM 

representation, the overlap integrals 

~(A) = <t(A)I~> (6) 

They measure the probability to find a basis state It(A» or pNlt(A» in 
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the GCM-function I~>. We also plot the collective potential in the rotating 

system 

(7) 

It is given by the diagonal element of the Hamilton kernel in the Hill-Wheeler 

equation. Using the parameter 6 as a classical coordinate this quantity is 

just the potential energy for a classical Hamilton function describing the 

collective motion in the pairing degree of freedom2l ,22). The Griffin-Hill­

Wheeler equation contains in addition off-diagonal elements, which produce the 

kinetic energy and correction to the potential, and it provides a fully 

quantum mechanical description. In a simplified picture we can visualize the 

quantity .(6) as being the wave function of the zero point oscillation in 

the potential V(6). In the simple mean field theory we have only one 

generalized Slater determinant (eventually projected onto good particle 

number). According to the variational principle it is the function, which 

corresponds to the minimum in the potential V(6): We see that the GCM theory 

changes this picture considerably. Now the wavefunction contains 

contributions with rather different gap parameters. Note that the maxima in 

wavefunctions generally do not occur at the same 6 as the potential minimum. 

Such a result implies a non constant inertial parameter in the pairing 

coordinate. 

Two angular velocities are considered in Fig.2. At w = 0.0 both 

energy surfaces (with and without number projection) show well pronounced 

minima at 6 ~ 1 (MeV). The number projected energy is lowered, because the 

spurious energy coming from the symmetry violation is removed. The GCM wave 
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functions are rather similar in both cases. At w = 0.4 (MeV) the situation 

is very different. At this point we are already beyond the pairing collapse 

in HFB-theory. i.e. the unprojected energy surface shows a minimum at 6 = 

0.0. The number projected wave functions contain more correlations and the 

corresponding energy surface has. a minimum at 6 = 0.5 (MeV). That means 

the pairing collapse is considerably smeared out now. a fact which has been 

seen already in earlier investigations9•5•23 ). Because of the different 

behavior of the energy surface. we also find differences in the 

GCM-wavefunctions. Without number projection it has its maximum at zero gap; 

with number projection the maximum is shifted to finite values of 6. In both 

cases we observe again considerable fluctuations. 

There has been a much discussion about how to define the gap parameter in 

theories going beyond the HFB-approach. We use the definition 

A = G 'V<s+s> (8) 

In HFB-theory the above expression gives the pairing deformation of the 

wavefunction. usually called the gap parameter. In the extended theories it 

measures the energy of the pairing correlations (the so called exchange term 

G v4 is. of course. neglected in all our calculations. i.e. A vanishes in 

the case 6 = 0). It is evident that this gain in energy by pairing is 

partially compensated by the energy we have to add to the system in order to 

scatter the particles around the Fermi surface. The so called correlation 

energy. which is the difference in total energy between a system with pairing 

and without pairing is therefore considerably smaller. We believe that the 

crucial quantity for measuring pairing correlations ;s only that part of the 
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energy gained by the pairing. In all our calculations the effective gap 

parameter is delivered through eQ.(8). 

In Fig.3 we show this effective gap parameter for different theories as a 

function of the angular momentum: In HFB-theory we observe a pairing collapse 

at I = 22~. In all theories which go beyond this simple mean field 

approximation this sharp phase transition is smeared out. Surprisingly, there 

is little difference between the method of number projection before variation, 

which takes into account fluctuations in the gauge angle but neglects the 

virtual admixtures of pairing vibrations, and the full GCM-theory with number 

projection. This result seems to indicate that the most important 

fluctuations for a proper description of pairing in nuclei are those treated 

in the symmetry conserving mean field theory. Additional correlations coming 

from virtual admixtures of pairing vibrations seem to play only a minor role. 

Summarizing the results of these investigations, we must conclude that 

the sharp pairing collapse found in many HFB-calculations for high angular 

velocities is completely washed out if one includes fluctuations. In 

particular we see that the surprisingly constant moments of inertia near rigid 

body values in several nuclei in the Hf region for spins above 20 ~ by no 

means are any indication for a pairing collapse. The absence of a sharp phase 

transition was shown already earlier by number-projected HFB theory5). From 

the present work this absence is not changed, when we go a step further and 

include in addition fluctuations caused by pairing vibrations in the framework 

of a Generator Coordinate Method. 
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Figure Captions: 

Fig .1 

Fig.2 

Fig.3 

Moments of inertia at the yrast line in 16BHf . The experimental 

values of ref. 20 (full triangles) are compared in the lower part 

with mean field approximations and in the upper part with 

calculations based on the GCM method. For the dashed lines no 

number projection has been used. Full lines represent calculations 

with number projection. No core moment-of-inertia has been used. 

GCM-"wavefunctions" cp(fl) and energy surfaces for two angular 

velocities in the nucleus l6BHf . Both quantities are given as 

function of the generator coordinate fl,the pairing deformation of 

the underlying unprojected HFB-function defined in eq.(5). The 

"wave functions" are defined in eq.(6). The energy surfaces V(fl) 

correspond to the rotating frame. Dashed lines correspond to 

calculations without number projection. Full lines include exact 

number projection. 

Effective gap parameters defined in eq.(B) as a function of the 

angular momentum I. At 1=0 all theories show the experimental 

values of fl. This has been achieved by a minor adjustment of the 

strength parameter Gn in each calculation. Dashed lines correspond 

to a calculation without number projection; full lines include exact 

number projection. 
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