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ABSTRACT

Inelastic scattering is a source of much useful information about core
polarization effects in nuclei near closed shells. Although there have been
many theoretical treatments of core polarization effects reported in the
literature, the results of these calculations have rarely been applied to the
interpretation of inelastic scattering data. In the present paper we review
the microscopic models for the treatment of inelastic proton and electron
scattering and the microscopic models for the treatment of core polarization.
Estimates are made of core excited admixtures in the wave functions for low-

503, 89y, 905, 20Tpy,  pg 209

lying states in tha, Bi. The resulting wave
functions are used to calculate theoretical (p,p') cross sections and (e,e')
form factors for comparison with available experimental data. "Realistic" G
matrix interactions are used as the starting point in both the structure and the
(p,p') calculations. In the structure calculations the interaction is modified
by means of a "bootstrap" ﬁrescription to account for important long-range core

correlations and in the (p,p') calculations it is modified by the addition of an

imaginary component. It is concluded that the overall features of the experi-

mental data can be understood from these calculations.

*Work supported in part by the U. S. Energy Research and Development
Administration and the N.S.F.

tPresent address: Department of Physics and Astronomy, The Florlda State
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I. INTRODUCTION

The concept of core polarization is quite well known in the shell mocel
interpretation of nuclei in thc vicinity of closed shells. In the shell model
a nuclear state is deécribed in a restricted‘configuration space which presumably
contains the bulk of its wave funcfion, bo£.not all its significant components.
This restricted configuracion épace, commonly calledvthe model space, usually
consists of a few valence particlcs_(holes)bdistributed among a small number of
shell model orbitals outside (inside) an inert closed shell core. The term
core polarization is generally_associated with effects which are due to wave
function admixtures not in the»model space. The name arises because these
admixtures most often will consist_of core~excited configurations. Core polari-
zétion can be takcn into account by defining effective operators in the model
space which may be calculated by means of perturbation theory.

These ideas.first appeared in the literature about twenty years agol,z
when it was first noted that there were,discrepancies between the predictions
of the simple shell mcdel and the_expcrimental values for nucleaf magnetic
moments, quadrupole moments, y-transitionvrates,vetc. Two different models
were proposed at this time. One is a hybrid model in which the core is treated
as a liquid droﬁ which can bé»set into oscillation by icteraction with the |
extra-core nucleons.l The other is a completely microscopic model2 in which
the core is considered to be an assemblage of nucleons - any of which might
be raised to higher, unoccupied levels as a result of the two body forces
which couple them to the valence nucleons.

In recent times this microscopic model has been pursued in considerably
greater depth. The major impetus hcrc:haocbecnythe work of Brown and collabo-

rators3-8 whose purpose was to gain an understanding of the properties of finlte

'
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nuclei using "realistic" forces, i.e. interactions which can be derived directly
from the free two-nucleon potential._ As the nucleon-nucleon inferaction is
strong and singular, the first step in thié approach is to truﬁcate to a large
shell modei basis by applying Brueckner Hartree-Fock theory to get rid of the
short range two-nucleon correlations énd replace the singular interaction by a
smooth well-behaved one, namely the bafe G matrix. The second step is to
truncate to the model space and to renormalize the bare G matrix to account

for gorevpolarization as described in the first paragraph above. The
renormalized G matrix is the shell model effective interaction.

4,8 16 40

Kuo and Brown have made a systematic study of nuclei with =0, Ca,

uSCa, 56Ni, 888r, and 208Pb cores using second order perturbation theory in
renormalizing the bare G matrix. They find that coré polarization.gives rise
to a strong pairing effect which is the major feature of the obserﬁed spectra.
Aithough the results of these calcuiations are‘quite impressive, attempt39 to
extend the perturbative treatment to higher orders have not met with the same
success and the final sfatus of core polarization and the effective interaction
is still an open Question. A similar situation prevails in regard to associated
effortslo to calculate nuclear magnetic moments, guadrupole moments, and
quadrupole transition rates. Lowest order perturbation theory provides a
reasonable qualitative estimate of these effects, but there are still many
ambiguities iﬁ the interpretation of the results of calculations which include
higher order contributions. Much of thisywork has been reviewed recently
by Barrett and Kirson.ll

The purpose of the present paper is to present the results of calcu-
lations, similar to those of Ref. 10, But applied to the problem of inelastic

scattering. In particular, we consider inelastic electron scattering and inelastic
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proton scattering. Inelastic proton scattering at energies below 100 MeV is
interésting, because the interaction between the incident proton and the bound
_nucleons is quite similar to the interaction between bound nucleons, i.e. the
12,13 Electron scatteringvis'primarily seqsiﬁive to proton
excitations in the target nucleus while proton scattering is most sensitive
to neufron excitations.lu By comparing results for these two reactions a
measure‘of both the proton and neutron components of the nuclear wave functions
is obtained. In addition, inelastic scattering provides information about core
polarization effects in transitions requiring large angular momentum transfer.
Cross sections have been measured for transitions where there are up to 11 units
of angular momentum transferred. This is to be contrasted with low momentum
electromagnetic data which is essentially restricted to dipole, quadrupole,
and some octupole phenomena.

The first attempt at treating core polarization in inelastic proton

15

scattering was made by Love and Satchler. They assume a hydrodynamical
description of the core and showed that core polarization can give a large,
even dominant, contribution to the cross section. The main purpose of the
present paper is to show that the major features of inelastic scattering from
nuclei near closed shells can be qualitatively understood in completely micro-
scopic calculations based on "realistie" interactions. In the calculations,
core excited admixtures in the nuclear wave functions are estimated using lowest
order perturbation theory and a "bootstrap" prescription which accounts for
long range core correlations. Agassi and Schaefferl6 have previousl& made a
similar, but considerably more limited study of these same effects. We also
note that some results obtained with wave functions from the present paper
117,18

have previously been reported elsewhere.

In the next section of this paper we give a brief description of the
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theoretical treatment of inelastic proton and inelastic electron scattering.
We review the theory of effective opefators and describe our calculations in
Section ITI. The results of the calculations are discussed in Section IV

and Section V contains the conclusions.
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IT. INELASTIC SCATTERING

A. Inelastic Proton Scattering

1. The Microscopic Model

‘In the microscopic model proton-nucleus scattering is described in terms

of a projectile-target interaction which has the form

V=>Z tip , (1)

i

where tip is a two-body force acting between the projectile and the ith target
nucleon. The two-body force tip has both real and imaginary parts, because,
even in the most elaborate of reaction calculations, only a few of the allowed
channels are treated explicitly. In principle, tip can be derived directly
from the free two-nucleon potential. ’Such a calculation is not easy; however,
as it requires'the treatment of the repulsive hard corgs.which appear in the
free two-nucleon potential combined with an expliéit freatment §f the excluded
reaction channels.

Although a program of this type has not been carried out in detail, a
reasonable prescription for tip’ applicable in the energy region below 100 MeV,

12,13 It is based on the assumptions that

has been developed in recent years.
the real part of'tip is not too different frém thevbound state G matrix and
that the effects of the excluded reaction channels can be estimated perturba-
tively or treated phenomenologically. The first assumption has been tested in
several calculations.l?_lh Attempts to estimate the effect of the excluded

reaction channels have, so far, been restricted to the case of elastic

scattering.l2’l9 Satchler has proposed a methodzo whereby the imaginary part
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of tip for inelastic scattering calculations can be ipferredvfrom the imeginary
‘part of the phenomenological optical potential for elastic scattering. This
method has proved to be useful in several calculations.l3’18’20’21
Additional comments concerning this prescription for tip nay 5e found in
Ref. 13.

Another probiem-which is encountered in any attempt to treat proton-
nucleus scattering in a microscopic model is the indistinguishability of the

incident proton and the target nucleons. 1In this situation the Pauli principle

requires that the wave function for the projectile-target system be completely

antisymmetrized - which in turn gives rise to "knock-on" exchange amplitudes in the

transition matrix elements. These are non-local in the projectile coordinate and

they are quite,important, particularly in the case of inelastic transitions.

Computer codes are available which allow the'inclusion of these exchange amplitudes

and their properties have been studied in some detail.13’22’23 In this work we
include these terms with a zero-range approximation developed previously.lg’ey
2. The Interaction
In the present éalculations we assume tip to be given by
= 8 & gl , (2)

where R and I denote real and imaginary, respectively.
We take t?p to be the long range part of the Hamada-Johnston (HJ)
potentia&.25’h’5’12’13with the closure approximation to the second order tensor

contribution. We assume a 1.05 F separation distence and a closure energy

denominator of 220 MeV. This is a local, even state central interaction which

22,23,12,13
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can be written

R 0 1 = -
t, = g. = . + . g, « O
ip - &ip gpq (rlp) . gpq (rlp) i p : (3)

with g = porn as i is a proton or neutron. The expression for the radial

4,5,12,13 '

functions appearing in Eq. (3) have been given elsewhere and will not

be repeated here. For orientation we note that

O 3,0 ~ gt =a _3g¢ ‘ i
Eon  Sepp T 98y ¥ 738, (+)

with all components but g;p being attractive.

We neglect the central interaction in odd states. This has been included
in some calculations by fitting a regular functional form to the low energy

12,13 and its effect is not large. We do

nucleon-nucleon P-wave phase shifts

. . R :
not include possible spin-orbit and tensor components in tip' The properties
of these non-central interaction components have been discussed in detail

26,27

elsewhere and are only of secondary importance for most of the transitions

considered in this paper.
For tip we follow Ref. 20 and argue that the imaginary part of the optical

potential for elastic scattering is given by

= I , .
UI(rp) ={ g.s.| :SI tiplg.s. ) + exchange terms. (5)
' i

With the assumption that

 £¥ = A‘ (r:) 6(ri—§p) '(q = p,p) - (6).
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the two terms on the right of Eq. (5) are equal and

UI(rp) = 2App(rp) pp(rp) + 2Apn(rp) pn(rp) > (7)

where pp and pn_are the ground state proton and neutron density functions.

With the additional assumption that
op = (W/2) oy (8),
we obtain
UI(rp) = A(rp) pp(rp)
_ | (9)
A =2 (A + (W/2)A, ] .

A can be determined by comparing directly UI and pp which are aveilable from

phenomenologicalbanalyses of elastic proton and electron scattering data. As

A and Apn can not be determined separately from the data, we make the ansatz

PP

that App and APn have the same radial shape and that their strengths are in the

R

same ratio as the volume integrals of the corresponding cbmponents of tip

A =0 A . (10)
pn PP .

For the long range part of the HJ potential a = 2.58.12

In .the sbove paragraph it has been assumed that the imaginary part of
the projectile-targetvinteraction for inelastic scattering is proportional to
that for elastic scattering. It has been argued28 that the various excluded

channels contribute coherently to the imaginary part of the optical potential

for eléstic scattering, but that the separate contributions interfere to some

, 1.4
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degree in the case of an inelastic excitation. This means that ti for elastic
scattering should be greatef than tip for inélastié scattering. With:this
argument in mind we simply point out that the prescriptioﬁ 6utiined above gives,
in all probability, an upper limit on tip'for inelastic transitions. We also
mention that the assumption that a = 2.58-in Eq. (10) is tantamount to assuming
that excluded channels which favor ﬁeutron excitation, e.g. (p,p') and (p,d),

are more important than those which favor proton excitation, e.g. (p,2p).
Although this does not seem unreasonable, this point has not beeh investigated

in detail and could, in fact, be wrong. Fortunately, the reéults to be presented

are not critically dependent on this assumption.

3. The Distorted Wave Approximation

The differential cross section for inelastic préton scattering can be

written as follows

T e Coay

aQ orh?! kg 2(2Ji + 1) il >
where y is the reduced mass of the ﬁrojectile-target system, kf and ki are the
final and initial relative wave numbers, Ji is the initial spin of the térget,
Tfi is the traﬁsition amplitude; aﬁd the sum'is\ovér the initial and final
projections of the projectile and target. In thé distérted wave approximation
the transition amplitude is given by

i

T o= (-)¥ (¥ ) <f|Vli ) (+) (r )d3r + exchangé.terms (12)
£i Xg D X p’" p ’

where the X's are distorted waves and |i } and |f ) are the initial and final

states of the target. The first term in this equation is the direct amplitude
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and the second is the "knock-on" exchange amplitude. With the approximation

<.

of Ref. 12 and 24, the exchange terms can be included by replacing V in

the first term of Eq. (12) by

v =z Vip  ° (13) :

» |
where : - | ;
v, =t8 +2itl + R 1 ?) §(r; - Fp) . (14) ;

ip ip ip ip L

For the imaginary component of V the direct and exchange amplitudes are equal
because tip, as defined in Eq. (6), is assumed to be a zero-range interaction.
This accounts for the factor of 2 multiplying tip in Eq. (14). The exchange *;

amplitudé corresponding to the real part of V is given by the last term in

2
L)

wave number associated with the laboratory energy of the incident proton.

v
is the Fourier transform of t?p evaluated at the |

Eq. (14) where t?p (k
To understand this apﬁroximation it is sufficient to consider the
scattering of a free nucleon from another ﬁucleon bound in a fixed potential
well. On the average the bound nucleon is at rest with respect to the inci-
dent nucleon. In order for the incident nucleon to.knock out the bound nucleon ;
and be captured in the potential well it necessary that it impart all its
momentum to the bound nucleon. This is a very high energy argument in that
we ignore the spread of momentum components in the wave function for the bound
nucleon as well as the effect of the binding potential; however, in practice

it is found to work quite well12 even for energies below 100 MeV.
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Noting tha; t?p and t?p(k12) have essentially the same’sign, we see
that the direct ahd exchange contributions in Eq. (1L) are in phasé. This is
a direct consequence of the fact that the interaction being considered has
only even state components. Exchange amplitudes‘for 6dd‘state-interactions

are out of phase with the direct amplitudes . 2>13:%% ’23

This is a contributing
factor in allowing us to neglect the odd state_components of the projectile-target
intefactibn; |

The essential point of £he precéding development 1is that inelastic

proton écattering cross sections can be understood reasonably well in local

distorted wave calculatibns,‘that is

i

» _f F = 4515y oF) =y 43
Tﬁ-—/xf (rp) (glv]i) x _(rp) grp , (15)
where V is a pseudo-potential, derived from a "realistic" interaction, which
incorporates the major features of "knock-on" exchange. The relative strengths
of the components of V are very nearly the same as the relative strengths of

the components of the real part of V which have been given in Eq. (L). As we

are interested in treating nuclear wave functions which contain many components,

the reduction of the calculations to the form of Eq. (15) is important. In

this situation an exact treatment of Eq. (12) can be very expensive or, in
some cases, impossible to carry out.

The evaluation of the .integral in Egq. (15) is straightforward.29 The
procedure is to eipand V in multipoles which correspond to definite orbital,

spin, and total angular momentum transfer (LsJ). This expansion is given by

F=> v5 (v e (0T 2T () I 5y (g=pm)  (16)
cpglr TpT i -M M, -
1 v J J
LSJ
Mg
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S . . s s . . _
where vﬁqL (rp;ri) is the Lth multipole coefficient in the Legendre expansion vl
S' ‘ LSJ . ) " N " ) . ;
of qu (rip) and TMJ is -the "spin-angle’ tensor ;
J _z { .L S
W, " LSM)\IJMJ) i Y, 0 . , (17)
MA

Inserting Eq. (16) into Eq. (15), performing the integration over the target
coordinates and projectile spin coordinates, and carrying out the summations in
Eq. (11), we obtain immédiately the final expression for the differential cross é

section.

99___11__25:2'1”2“; | 1
d.Q—( 3) ¥, &, +1 !

M _ i ()*— ~15J £ a0 (+),= 1.3 |
Bos - T xe | (F)) B (r) ¥p, (G)) T (F ) (18)
L= [2L +.1]l/2

We have ignored the effect of spin-orbit coupling in the optical potential in i

writing Eq. (18) although we do include it in the calculations. It gives rise }
29

to interference between amplitudes of the same J with different L and S. In
practice this interference is found to be weak.

All information pertaining to the projectile-target interaction and the
L3J '
r
(p),

which éppear in Eq. (18). The nuclear structure information is confined to the

details of nuclear structure are contained in the radial form factors, F

radial nuclear transition densities which are defined by

- — §(r-r.) :
FI;OJ (r) = <fn>, — ™7 ()11) S la=pm) , (19) I

i rs
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30

where { I I ) 1is a reduced matrix element and the sum on i runs over
target protons or neutrons as‘'g = p or n. The radial form factors are obtained

by averaging V over the transition densities, i.e.

. lo o] X
F LSJ(rp) = 2 f vpiL (rp;r) F&SJ (r) r2dr . (20)
- q=p,n O '
With the approximations employed here, inelastic proton scattering is
simply a one-body operator with respect to the target. This is qﬁite évident_
from Eq. (18) - (20). The selection rules for the reaction are contained in

Eq. (19). These are:

J = AJJI.T) ‘ S = A(

=

‘%-s) - . L =A(JSL) (21)

o= (1) (22)
There is some violation of the parity selectiop rule, Eq.,(22), when exchange

13,22,23

is treated exactly. Although it is possible to include the amplitudes

which violate Eq. (22) in an approximate way,zh‘we ignore them here as they
contribute little to the differential cross sections.
We distinguish between normal parity (Am = (—l)J) and abnormal parity

)J+l).

amplitudes (Am = (-1 In the former case the allowed values of ISJ are

JOJ and J1J and tﬁe reaction can proceed through the strong spin independent
components of the projectile-target interaction. Neutron excitations will be
most important Fere»as an ~ 3Vgp. In the latter case the allowed Qalues of
LSJ are J * 11J and the reaction can proceed only through the weaker spin
dependent parts of the projectile-target interaction. We will

see in Section III thdﬂ'thé'effect]pf core pblarization is to enhance the
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S = 0 transition densities while retarding the S = 1 transition densities.
For most of the transitions which will be considered in Section IV, a single

S = 0 amplitude will make the dominant contribution to the cross section.

B. Inelastic Electron Scattering

The differential cross section for inelastic electron scattering is

given by3l 5
: VAN
do _ M 2 : 26 2 ,
®ms %IFL(q)I + 1/2 (1 + 2 tan® 3) IFT(q)| R (23)

where ZQGM is the Mott cross sectibn which describes the scattering of a high -
energy electron by a point charge Z, N is a recoil factor, 8 is the scattering
angle, and q is the magnitude of the momentum transfer. FL(q) and FT(q) are
the longitudinal and transverse form factors, respectively. As a result of
the difference in the angular dependence of the tﬁo terms in Eq. (23), it is
possible to determine both FL(q) and FT(q) from the expérimentai data. Since
we will consider only cases where FL(q) is dominant or where FL(q) has been
separated from FT(q), tﬁe following discussion will be confined ﬁo the
longitudinal form factor. Details concerning the transverse form factor
may be found in Ref. 31.

We assume here a Born approximation treatment with a local wave number

31

correction to account for Coulomb distortion. This approach has been shown

to be adequate, even for heavy nuclei, provided we don't require information
inside the nuclear surfa,ce.l)'l With these assumptions the longitudinal form

factor is given by

[o0]

L 2d +1

2 2 2
ERCITERS. s S |[ 3 tear) o, (0) PParl® . (2w)
o2
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In this equation Jj.(kar) is a spherical Bessel function and the factor K
J

' . , L
appearing in its argument defines the local wave number. It is given by3l’l

=1 - Vé(O)jE o | (25)

where Vc(O) is the Coulomb potential et the center of the target aﬁd E is tﬁe
energy of the incident electron; Iﬁ addition pgh. (r) is the radial charge
transition density which is obtained by averagiﬁg the proton charge distribution32
over the nuclear proton transition density defined in Eq. (19). The averaging
integral is

( o

SORNED =f op (r3x') F0(x1) r2art (26)
[ °

’

where pr (r;r') is the Jth‘multipole coefficient in the Legendre expansion of
the proton charge distribution. The longitudinal form factor determined by
inelastic electron scattering provides a measure of the S = 0 proton transition
density, in contrast to inelastic protdn scattering which, when a normal parity
amplitude is dominant, is more sensitive to the S = 0 neutron transition density.
iﬁ closing thié section we note that the longitudinal electron scattering
form factor, in the region of small q, is éimply related to the reduced transi-
tion probabilities deﬁermined in y-decay measurements. To see this we replace
the spherical Bessel function in Eq. (24) vy the-leading term in its power
series which is valid for smﬁll argument and note that the averaging integral

Eq. (26) conserves the Jth moment of FgOJ(r),33 i.e.

/pih(r) rJ+2 dr = /F;OJ(r) rJ+2dr . (27)



We obtain

IFL(q)lijo -:%z — k@) pmst)

~16-

[(23+1) 112 ’

where B(EJ?) is the reduced transition probability

B(EJt) =

+
2Jf 1
2J . +1

1

‘ / o (r) rJ+2dr .
b
0

LBL-1951

(28)
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III. THEORY OF EFFECTIVE OPERATORS

The theory of effective operators is quite well known and has been dis-
5-7,11,3k

cussed in many places. We briefly review it here, following closely
a discussion due to M. Harvey,3h in order to provide background for the
‘calculations to be presented.

A. TPFormal Theory

1. The Effective Hamiltonian

The nuclear Hamiltonian is generally written

H=H +G ., _ ' (30)

0

where H. is an independent particle Hamiltonian

0
Hy ='ES T, + 25 U, : (31)
i i

-

which has both kinetic and potential energy parts and
G =,§S 83 | (32)

~ ' i<j - N
is the residual interaction. We assume that the difficulties associated with
the hard core in the free two-nucleon potentiél have already been dealt with,
so that g _ is the bare G matrix interaction. It is usual to

. ij
express the eigenfunction of H in terms of the complete set of states belonging

to HO.

HY ) = E|p) (33)

[0 = > oo, Hole; ) = egloy) (34)

i
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Since the set of basis states{|¢)} is in general infinite in dimension, it
is necessary to truncate to a finite basis in order to perform a practical
calculation.

To affect this truncation the projection operators

(35)

O
]
©
et
——~
-

are introduced. In the above equation, d denotes the model space and the -

remaining space is referred to as the excluded space. Introducing'the notation

o) = Pl o wp=aly (36)

and noting that

P° = P Q© =q P=Pe=0 P+Q=1 -

(37)
PH,Q = QH,P = 0 R

it is straightforward»to show that

Blyy) = [By + Gl [u) = Elyy) (38)

a=G+GF%%@ - | (39)
.8 g o |

W) = =5 C lup) , | , (k0)
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where the problem of diagonalizing H in an infinite basis has been replaced by
the problem of diagonalizing an effective Hamiltonian B in a finite basis.

G is the shell model effective interaction.

Equations (38) - (L40) are completely equivalent to Egs. (33) - (34) for
those eigenstates ova which have some overlap With the model space. Eq. (38)
gives thevexact’eigenvaluesAas well as the exact model space projection of the
wave functions for these states. The components of.the wave functions in the
excluded ébace are given by Eq. (40). The claim made in the first of the two
preceding sentences may seem'surprising, since‘the number of eigenstates of H
which have nonvanishing overlap with the model space surely exceeds the dimen-
sionality of the model space. The solution to this problem comes in noting
that G (hence H) depends upon the exact -eigenvalue, so that Eq. (38) is not
the usual eigenvalue problem. In practical calculations the energy denominator
appearing in the expression for @IiS‘fixed in some . average way. This limits
the approach to the treatment of é few eigenstates of H which presumably have
a large overlap with the model space.

2. Normalization of Eigenfunctions

The normalization of IwP) and |{ ) has not yet been specified. In

accord with convention we normalize pr ) to unity so that

Golily ) = B . | (41)

The norm of |y ) is then given:by'
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02 = (yly ) = Cpplup >+ <¢Q1¢Q > . (42)

Using Eq. (L40) it immediately follows that

n® = (Y| ly, ) = Cypl1 + G = ? e Gy, - (43)
, 0

With this normalization convention the admixtures of the true wave function in

the model space and excluded space are

Ag ) 35 | . .As _ g;_éiéL , (Lh)
n : n
respectively. If we write
0 = > ale) (15)

ied

then the amplitude of |<;bj > (jed) in the true wave function is

A= o/ (sea) . | (46)

In addition we find that the admixture of |¢j > (j¢d) in the true wave function is

= 3 )-l»
Ay aan Gt (47)
ied
where
_ = ied '
851 T <¢j| E- H, AG lo; ) (j¢d) (48)

is the amplitude of the excluded space configuration ]¢j ) in the model space

configuration l(bi ).
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3. Effective Transition Operators

. » taken between

The transition matrix element of a one-body operator, T = Ztl
i

two eigenstates of H, le > and lwf ), is given by

— — f 3 .
(T) =0 a7 |T1¢1>» . (49)

The factor (ninf)-l.is necessary because the wave functions of H have not been normal-
ized to unity. Just as it is possible to replace the eigenvalue problem for H

in an infinite basis by an eigenvalue problem for an effective Hamiltonian inv

a finite model space, (T)fi can be‘expressed iq terms of the matrix element of an

effective, T, taken between model space wave functions. The‘proof is short

and serves to define the effective transition operator. We write

(1), = ni_l nf'l(wf[ (P+Q) T(P+Q) I\pi> . (50)

Then we replace |¢Q ) on the right by its expression in terms of [wP >, BEq. (Lk0),

to obtain
-1 -1 f i
(T)fi=ni n, (\pP |TI1PP) , _ (51)
where
= _ Q 5. = Q7. =& Q Q -
T=T+ To——C+G=—=32—T+¢G T G . (52)
E - HO E ~ HO E - HO E - HO
We also note that Eq. (51) can be rewritten as
_ £ i = |
<T>ﬁ-z A as Golfle (53)
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B. Schematic Model and Discussion

It is clear from the above deﬁelopment that a complete discussion of
the nuclear problem requires only a knowledge of the matrix elements
<cpi|6|¢j ), <¢iIN2|¢i ) and <¢i|T|¢j> with (i,jed). Actual calculation of
these matrix elements is not a triviai matter, unfortunately, and even though
this problem has received a great deal of attention it has yet to be completely
solved.:Ll Two estimates of the matrix elements of T are made in this work.

For the first estimate we use lowest order perturbation theory. In

\

‘lowest order G, N2, and T are approximated by

Q o
GG+ G G (54)
, (e, + ej)/2 - Hy

NS &~ 1 » ' ' (55)
__ Q, Q . :
T=T+T — G+ G — T , (56)

J 0 i 0

where E has been suitably defined in terms of the eigenvalues of HO. This
approximation gives a coupling between the model space and the excluded space,
but neglects entirely any configuration interaction in the excluded space. The

latter is evident from the free propagators which appear in Eq. (54) and Eq. (56).
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The low lying spectra of nuclei which are 2 particles (2p) or 2 holes (2h)

away from closed shells are reproduced quite well in calculations employing

Eq. (51).%8

The matrix elements of 8G = G - G are strong and attractive in
cases of the interéction energy of two identical nucleons coupled to zero
total aﬁgular momentum with the main coﬁtribution coming from 3p - 1h or

3h - 1p states.of energy 2hw. This is the pairing effect mentioned in the
introduction of this paper. = Calculations which use Eg. (55) and Eq. (56)10
provide at best a quélitative estimate of transition matrix elements in nuclei
np orvﬁh away from ciosed shells. The main contribution to §T= T - T comes
from (n+l)p-1h or (n+l)h-1lp intermediate states of energy 2hw and 1hw for positive
and negative parity transitioné, respectively. Matrix elements of 6T
generally have fhe right sign and are of the correct order of magnitude,
although they are.typically underestimated. A speéific difficulty occurs in
effectiVé charge calculationsbwhere it is found that polarization charges for

valence protons are smaller than for valence neutrons which is in contradiction

to. experiment.

Lowest order perturbation theory implies a rather direet relationship between

the renormalization of G and T in the case of states arising from two like nucleons
in a (32) configuration, i.e. (2j+1)/2 states with I = 0+, 2+,...(2j-l)+
Specifically, pairing occurs as a result of coherent contributions from the
coupling between the valence nucleons and core excitations of different
multipolarity. On the other hand, transitions starting from the O+ state
and ending on one of the higher spin states J; depend only on the coupling
between the valence nucleons and core excitations of multipolarity Jf.
Inelastic scattering affords an ex0e11ent opportunity to study‘the above relation,

since it is the only source of experimental data which gives information on the
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direct excitation of the higher spin states of these configurations.

To see the above schématically, we make use of the hydrodynamical
description of the core and closure which allows us to write analytic expres-
sions for the effective operators in the model space. Considering only

coupling between the valence nucleons and normal parity core excitations

we findl?3?
66 = - 0y i (ry) K (r)) YE(F) YD)
i<
M (57)
au(r - R ) |
ky(r) = Ry —gm ’
v

where the sum on i and j runs only over the valence nucleons, Uv is the
potential which binds the valence nucleon to the core, Rv is the radius

parameter in this potential, and

L , - (58)

gives the effective strength of the coupling to 2L-pole core excitations.

CL is the effective core stiffness parameter for 2L—pole‘excitations. In a
physical nucleus, there are, of course, more than one core excitation of each
multipolarity. The reduction of the effect of these core excitations to a
single coupling constant is where closure enters this model. In a similar
manner, we find the core polarization correction to the projectile target

interaction for the (p,p') reaction to be given by15’35

8V = =D opklr K (r Yh(8)Y(8) , (59)

i
M

b
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where k(rp) is defined in the same way as kv except that the optical potential
U replaces the bbund state potential Uv' |

Strictly Eq. (57) and Eq. (59) for 8G and 8V should contain some
"spih dependence. This comes from coupling between the valence nucleons and
abnormal parity core excitations35 and has been neglected primarily as a
matter of convenience. vIt turns out that these spin dependent terms do not
contribute to tranéitions between states of a (j2) configuration as is shown
in the Appendix. vThey do make a small contribution.to the pairing energy,
but we intend to compare Eq. (57) with éppropriate two-body matrix elements
rather than the experimental twq-body spectra so their neglect causes no
problem.

As examples, we consider the nuciei 50Ti and 90Zr both of which have
two valence protons. The results of lowest order microscopic calculations8’36
for the low lying spectra of these nuclei are compared with experiment in
Fig. 1. Results obtained with (G + 8G) and without (G) the inclusion of core
polarization are both shown. In the calculation for 50Ti a full f-p shell

model space has been assumed for the two valence protons.8 The resulting

+ 4+

+
, and 6 states are, however, almost

90

pure (lf$/2) wave functions. In the calculation for ~ Zr the model space

wave functions for the lowest O+, 2, 4
for the two valence protons included both the (lgg/g) and (2pi/2) configura-
tions.36 This explains the appearance of two 0+ states in results for this
nucleus.

The theoretical results with core polarization (G + 8G) are in good
agreement with experiment'in both cases. The pairing effect is quite
evident. The multipole decomposition of the pairing matrix elements appearing:
in these calculations has been given in Ref. 8 and Ref. 36. Using Eq. (57)

.

we obtain the following results for the pairing energy
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}E: Eg(j)

J

Ep(j) <(j2)J = 0|6G|(j2)J= 0)

(60)

'Ei(j) <k )P <juyjnj> er :

where (kv) denotes the radial expectation of kv(r)‘and the sum on J runs over

_even values only. Assuming (kv) ~'50 MeV and comparing Eq. (60) with thé
matrix elements of Ref. 8 and Ref. 36, we obtain the values. of GJ and CJ
listed in Table I. From the table, we see that the core of SOTi is somewhat
softer than that of 9OZr and that J = 2 éore excitations give the dominant
contribution to the pairing energy in both cases. The values of GJ decrease
steadily with increasing multipolarity; however, the core coupling is by no
means negligible even for the highest core multipoles.

With the values of BJ determined above, it is straightforward to
estimate the corresponding effect of core polarization in inelastic proton
scattering. One simply constructs the valence radial.form factor according
to the prescription of Sec. II.A. and adds to it the core correction

GF*LSJ(rp) = _GLJGSO% (jllYJllj) (k) BJk(rp) (61)

which_follows directly from Eq. (59). Cross sections have been calculated

for the excitation of the 2% and 4 levels in 201 and the 2+, h+, 6" ana 8"
states in 90Zr in this manner. The 5OTJ'. calculations were made for incident
proton energies of 17.5 and 40 MeV to allow comparison with the experimental
90

data of Ref. 37 and 38. The 7Zr calculations were made for an incident

proton energy of 18.8 MeV for comparison with the experimental data of Rev. 39.

The optical parameters used in the calculations are tabulated in Table XII.

G e m e e
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The results are compared with the data in Figs. 2 and 3. The quantity ELSJ

. P
shown with each cross section is the enhancement factor for core polarization.

This is defined by

OLSJ - (ELSJ)OLSJ

1 v 2 . (62)

where 0 and Ov are tﬁe theoretical integrated cross sections with and without
the inclusion of core polarization. The introduction of this enhancement
factor is analogous to fhe use of effective charges in describing electric
y-transitions.

The theoretical results shown in Figs. 2 and 3 are in good qualitative
agreement with experiment with the possible exception of the result for the
8+ excitation in 9OZr. It is suspected that multipole excitation might be
important fof this‘trénéition at this energy.18 We also ﬁote from the values
of ep that core polarization leads to an increase in the valence cross
section by at least an order of magnitude in each case. We conclude that

.there is a striking consistency in the effect of core polarization on the
low lying energy spectra of these nuclei and on the (p,p') cross sections
for the excitation of these low lying states.

The aboﬁe results were previously.reported elsewhere,ho in less
detail than given here, by two of the present authors. The parameters for

50

Ti from Table I were subsequently used in the calculation of theoretical

51V.38

(p,p') cross sections for low lying excitations in This nucleus has

three valence protons and the dominant configuration for the low lying states

3
T/2

experiment which tends to indicate that the effects of core polarization can

is (1f7,.). The theoretical results were found to be in good agreement with

be factorized, as lowest order perturbation theory implies, at least when
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51

the number of valence nucleons is small. A more recent (e,e') study of v

has provided evidence which contradicts this conclusion to some degree.

To improve on first order estimates of 8T it is'necessary to include
the effect of configuration interaction in the excluded space, which requires
higher order perturbatioh theory. Formally these effects can be seen by

rewriting Egs. (39), (43), and (52) in the explicit representation.

.

N2=1+G—-ﬁ——26 | (64)
(E—HO—G) '

T=T+To—2=G+0

- Q Q Q
E-H -G E-H -G T+G R, G T TG ¢ . (65)

These relations are similar in strgcture to the'lowest order perturbative
expressions in that the coupling between the model space and the excluded
space is given by G interactions alone (G interactions appear on the right
hand side in Egs. (39), (43), and (52)); however, the propagators in

Egs. (63) - (65) project onto eigenstates of H in the excluded space instead
of eigenstates of HO as is true in the case of the lowest order perturbative
expressions. The spectrum of H differs from that of H_ due to the effect of

0

G interactions in the excluded space and this in turn affects the results
— 2 -
for G, N, and T.
Equations (63) - (65) cannot be evaluated exactly because it is
impossible to diagonalize H in the excluded space which is still infinite;

however, it is possible to evaluate these relations approximately by making
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suitable truncations in the excluded space. The effects of configuration
interaction in the space of p-h excitations of the core_is well established
from the T.D.A. and R.P.A. calculations of Gillet and colla,bora.’cors,)42 i.e.
it gives rise to low lying normal parity vibrational étates which are nearly
iso-scalar in character and pushes the iso-vector core excitations up in
energy. Transitions provide many clear examples that these, or related and
possibly more complicated, effects are important. For example, it has
already been mentioned that experiment indicates that valence neutrons and
protons have approximately equal polarization charges. This implies that
the dominant coupling occurs with iso-scalar core excitatioms. Resuits
obtained for inelastic proton scattering and y-transitions using the
hydrodynamical core modells’hB—h6 provide another example of this same effect.
Here, at least for transitions of low multipolarity, the coupling constants
GJ deduced from fits to inelastic proton scattering cross sections using

Eq. (59) are found to be nearly equal to those required to reproduce the

effective charge,15 i.e.

: ’ 3Z.
Ja  _ ¢ gJ J
ee_ff - eq * eJ L eRc <kv) /€x") (66)
where e =1 or O for g = p or n, Zc is the core charge, Rc its radius, and

the radial expectations () are taken with respect to the radial wave functions
of the valence nucleons. The GJ in Eq. (59) and Eq. (66) are only equal in

35 (Note that our

the 1imit of coupling to iso-scalar core excitations.
schematic discussion of the relationship between the pairing effect and the

enhancement of (p,p') cross sections required no reference to the iso-spin

nature of the coupling between the core and the valence protons.) A third
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and perhaps even more striking example of the importance of configgration
interaction in the excluded space is seen in nuclei around 208Pb where there
are clear cut cases of coupling between valence nucleons and low lying
vibrational states of the core.h3’17
Including only the effect of configuration interaction in the core
by meané of the T.D.A. or R.P.A. apbroximations seems to provide the best
estimate of transition matrix elements insofar as agreement with experiment
is'concerned.lo These calculations are equivalent to assuming a particle-
vibrationél model and preserve the factorizability of core polarization
effects. Similar calculations for G result in an overestimation of the

. , 9,11
pairing enhergy.

One would like to find a suitable approximation for
evaluating Egs. (63) - (65) which would improve the lowest order estimates

of the transition matrix elements and at the same time preserve the lowest
order results of Kuo and Brown for the effective interaction. So far this
has not been accomplished.ll In fact, the most.completé treatment of the
effect of configuration interaction in the excluded space which has been
made to datell leads to results for G which are not much different than those
for G and results for f which are similar tolthose obtained using first order
perturbation theory.

Harvey has suggested3h that a possible way of "bootstrapping' the
effect on T of configuration interaction in the excluded space might be to
use Eq. (43) aﬁd Eq. (52) approximating G by a two-body interaction G' which
fits the'two-body spectra. He points out that this procedure was followed by
Horie and Arima2 in their early calculations. Owing to the‘uncertéinty in

the perturbative treatment of these higher order effectsll and faced with

the need of including some estimate of the effect of core correlations, we

U RS

e e

"z



-31- LBL-1951

have crudely followed this approach for our second estimate of the matrix
elements of T. Specifically, we have repeated the first order calculations

using the renormalized core coupling interaction

= _ yo¥ ra o T

R DI RN R N ER R rMCRE (67)
i<
IM

where Pj-proqects ontb triplet iso-spin states and the GJ are fixed from the
pairing matrix elements of Ref. 8‘and Ref. 36 in the manner described above.
This interaction is somewhat incomplete in that it does not contain any spin
dependence and is missing some small renormalization terms which act in iso-
spin singlet states. It does, however, contain the major components required
to fit the two-body spectra. In Section IV, it will be seen that the results
obtained using this interaction are similar to those obtained using the "bare"

: 10,1
G and treating core correlations in the T.D.A. approximation.™ 1

C. Explicit Expressions for Matrix Elements of T

In this section we construct the explicit expression for the reduced
matrix element of T between two model space states; This is obtained directly
from the expressions for the-ampiitudes of the excluded space configurations
in the model space configurations and the reduced matrix elements for T
between two model space states and between a model spacé state aﬁd an excluded
space state. _Wé consider only one body operators which fransform like the
"spin—angle" tensor defined in Eq. (17) and throughout this section the use of
G is intended to imply either G or G'.

We define the model space states by’

6.0 = o, (n)J. M) =27 (n)|C) , (68)
M 1490 o, I M
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+
where Z (n) creates an np or nh state with quantum numbers a., J., M
alJlMl 1 1 1

by operating on the closed shell state lC) . Jl and Ml-denote the total ‘ o
angular momentum and projection while al represents all other quantum i
M i

numbers required to completely specify. the state.

In first order only (n+l)p-lh'[}n+l)h—lp] and np(nh) intermediate

states can contribute to the renormalization of T. We include only the

former with the remark that the latter are best included in the model space

whenever they are important. The (n+l)p-lh [(n+l)h—lp] excluded space states’

are defined by

e el Y i

657 = lop(n)dy, (ph)I 5 30
(69)
_ _ +. + .
= z (7, JCM2MC|J3 M, ) 2 0LerMg(n) A M(ph)|c >, |
Cc C 1
MM |
2c
where ;
+ C ™  _+ : - l
A JCMC(ph) =Z‘ <Jp Iy, mp—mh|JcMc>(-l) a.p a, (70)
mpmh ' :

creates a p-h pair with angular momentum 'Jé and projection Mc’ In writing
Eq. (69) it has been assumed that p and h are distinct from any of the

particle or hole states contained in Z+a2J2M2(n)’ i.e. we neglect the %
Pauli principle in intermediate states. The error introduced by making i

this simplification should not be serious because we consider only cases where

n is relatively small.
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The amplitude of the excluded space state with energy ¢
g . aZJgph
in the model space state with energy Ea J is easily found to be
11 '
‘ Jd, - dJ
’ - . _ 2. 1 »~ o Ae]
a(a2J2,(ph)Jc,J3|alJl) = 6J1J3(—l) JPJ2Jl
(71)
Jc Jc
x Z 8, .(a2J2,Otlel;JaJY)0.qq,(JPJh,JaJY)/(SalJl - Eangph) R
JaJY ,
qQ
where
Jc 1
s s - 2 4—i A+
_Sq (Gng,lel,JaJy) JGJC (a2(n)J2"AJc(aY)"al(n)Jl) (72)
is a spectroscopic amplitude which depends only on the structure of the
valence configurations, and
i~ t
J J o4 —T0 3 32 Ip da 7
SACFAEERE PR E L
P I ‘o Y "hoc
(73)

GERCR LRV N
is the Jth multipole coefficient of the couplihg interaction. The indices
g and q' which appear in Eq. (72) and (73) specify the charge state of the
valence particles (jajy) and the cére'excitaﬁion (jpjh), respectively. This
in turn determines whiéh component of g is effective in the polarizing process.
The subscript a on the two-body ﬁatrix element in Eq. (73) indicates that the

J
matrix element is antisymmetrized but not normalized. The values of ch for
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the transitions of interest in this work are given in the Appendix. It is the

4 , J
separation of the amplitude of eq. (66) into a geometrical factor ch and
I v
a dynamical factor aq;, which give rise to the factorizability of core polari-

J
zation effects in lowest order. Additional factorization of aq:, into valence

and core parts is the essential feature built into all phenomenological models

15,35,47,48

for effective operators.

v : J J
We also note the following symmetry relations for ch and aq;,.

J J - J + j - ;h, AR N -lf.\—l J
¢ Loos Yy = (LY 1 2 - Yy 035373 ¢ s s
8. (alJl,a2J2,JaJY) (-1) 2%a"1 Ty 8, (G2J2,alJl,JYJa) (74)
J ' Jg = dv + 3 = I J
C s . . a Y h A A /;'-l ’.*-1 (¢ s s .
o , = (-1 : a 3,
qq,(jpah JaJY) (-1) Ipdydy, Ip qq,(Jth JYJa) (75)

As an example of the usefulness of these relations, we observe that they
may be used to show that
- JlA

3571

. J
- _ 2
a(o‘ng(Ph)Jc’Jllo‘lJl) = (-1) 91

in cases when there is only one active orbit in the states alJl and Opdss
. .7LSJ
The reduced matrix element of a one body operator T taken between
a model space and an excluded space state is

(¢EH oy =38 S $

BEY 3
| o0, dyJ, J, TP

where the superscripts LSJ have been added to T since we consider operators

which transform like the "spin-angle" tensor of Eq. (17). The subscript g

a(alJl,(ph)Jc;leang) (76)

a=1 LSJ ‘
J ( t j. ) .
jp" . "Jh (77)

e e e e e
v
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appearing on tLSJ in this equation is a charge index. It is needed because,
in general tLSJ will not be the same for a proton p~-h pair and a neutron p-h
pair. The main point to notice about the result is that the p-h pair is pro-

duced solely by the action of T, with the valence nucleons serving merely as

TLSJ

spectators. The result for the reversed matrix element <¢M” H¢E> will

not be given since it easily derived from the following conjugation relation

for operators of the "spin-angle" type.

S+T4T, 5050

1sJ _
Ith> = (-1) b a (JbllT

_ LSJ
(JaHT g, ’(78)

The reduced matrix element of TLSJ between two model space states is simply

; o J e LSJ,, .
ual(n)Jl} = z 8, (00705077 33,d,) (3 e g, (79)
| Iy .

v q .
Use of the above results for the matrix elements of T and G and the

TLSJ
Cay (n)a T

associated symmetry and conjugation relations in Eq. (56) leads directly to
the expression for the reduced matrix element of the renormalized transition
operator taken between two model space states. This is the essential relation

for the calculations of this work. The result is

=LSJ
(af(n)Jf”T ”ai(n)Ji)

J -
| E Sq(afJf,aiJi,JaJY)

JaJY
q
x <ja"tiSJ"Jy) + ZE: € -i t g —i 'Pph
Lo h
th aiJi afprh afJf aiJip
q|
R o 8
x F o (3.3.,3.3.) , (80)

Q" "phTa%y’]
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where Pph acts to the right and means to interchange jp and jh’ and

J =3, 2.2 2o-1
J s s s oa N - o) h j 3.3 J A . . LSJ
F . = (-1 h o . ¢t
qq.(Jth JaJY) (-1) P qq.(JPJh JaJY)_ Iy

q' ij). (81)

In Eq. (80) the first term on the left is the normal valence contribution and
the second term is the core polarization contribution. Using Eq. (75) and

.Eq. (78) in Eq. (81) we also note that

U S+JT -3 -3 aal_J ,.
P_.F = (-1 F . ). 82
oh qq.(Jth,JaJY) (-1) o "0y Jody qq.(Jth Iyda (82)

D. Enhancement and Retardation of Transition Operators

The expression for the reduced matrix element of T given in the.
preceding section can be reduced further by specializing to the case of a
zero~-range coupling interaction, i.e.

1 - -

@t I 8- T (83)

0

(1,2) = (
gqq' s 8q

We pursue this here as it allows us to derive a general rule concerning the
phase of the contribution from core polarization. Calculations using typical

finite~-range interactions produce results consistent with this rule.
The derivation requires further specification of the form of the
t

one-body operator of interest. We consider only one-body operators which can

be written

J LSJTLSJ - BLSJ'hLSJTLSJ ‘ (84)
q q 9 4q

———— e
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L .
where T 5J is the spin-angle tensor defined in Eq. (17) and fESJ contains the
L
radial dependence of the operator, thJ, as well as the coupling constant,
LSJ LSJ _ L LSJ _ . ' .
Bq , e.g. hq = 6S06LJr and Bq = eq in the case of an electrlc
Y-transition.
In the case of a zero-range interaction the direct and exchange

pérts of two-body matrix elements are identical and the multipole coefficient

of Eq. (73) can be factorized, i.e.

i U o S S +J,. 4.L8J,.
qq.(apah Jody ) 5 z : gqq,( ) 4, 3y
LS
(85)
. 4. LSJT
X (Ja"T "jy) I(RPthazY).

The reduced matrix elements in Eq. (85) contain only integrations over spin

and angular coordinates and I is a radial overlap -integral

©o

2
T8 gy 08 = fo u (0)uy (e ()u ()rfar (86)

where the u(r) denote single particle radial wave functions. The factorization

of aéq, further implies that

J
P_F
ph aq'

e s s s _J e s s
(Jth,JaJY) = qu,(Jth,JaJY) (87)
which is easily demonstrated using Eq. (78) and Eq. (85) in Eq. (82). Use of
Tg. (8h), (85), and (86) in Eq. (80) we obtain the desired result for the

matrix element of T in the case of a zero-range coupling interaction. This is
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=LS dJ
( ) o
0, ()T JF e (m)a) ztséagfﬂfiﬂ@Y)
J J :
oy
Q

SN FRRS b W

oYy q

E . L's'Jy, . LSJ
+ <Ja”T ”JO(,>HL'S'(U"Y)

L's!

where

¥j2 g,

Hi?g,&x,Y) = - E 2_€(Ph) 5 g, (3 "TLSJ"jh)
; &= c“(ph) - @ 7 @’ P

39

ql

LSJ, ,LSJ
4,2 I(zpzazhz ) (hv) oy B

L'S'J
j T ,
Y ph "q'

X (J

and

)ph = f up(r)hg?Juh(r)rzdr

LBL-1951
~

(88)

(89)

(90)

(91)

The phase rule of interest appliés only to a single pair of active

valence orbitals, i.e. fixed jaqu. The phase relation between different terms

in the sum over jaqu is a function of the model space configurations and not
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of core polarization. Restricting consideration to a fixed set of values for

jaqu we have only to consider the sum over L' and 8' in Eq. (88). Due to
parity and angular momentum selection rules, there are only two allowed sets
of values of L'S' for given LSJ. It is sufficient to note that one set is
L'S' = LS and the other is L'S' # LS.

| For the first set, L'S' = LS, we note that the sign of each term in

‘the sum over jp and Jh in Eq. (89) is given by

S LSJ 1sJ ‘
- }E: 840" Pq' 'ph I(zpzazth) Byr ’
q' ‘

where it has been assumed that sg(ph) > Q2. We then argue that the important

terms in the sum over jp and jh are those where
up(r)uh(r) z ud(r)uy(r) .
This is sufficient to guarantee that for these important terms

I( Qpﬂ,a-sthLY) >0

LSJ LSJ
(h ? z (h ) .
qQ' ph q ay
. . . . LSJ . .
Considering only the contribution from the term HLS to the renormalization

(o]
of the matrix element of TLUJ, we conclude that the relative signs of the

valenice and core contribution are given by
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(TS gl
Q' fi q

LST, ~_) ,LST S
DD
(8 doi < Byt Bqq

(92)

LSJ

Lrgr with L'S! # LS can,

Finally'we argue that the contribution from the term H
in fact, be neglected, because the various terms comprising this quantity have
random phases.

Using Eq. (92) it is é simple matter to compute the relative sign of
the valence contribution and the core polarization contribution for a given

one-body operator. For inelastic proton scattering we have BESJ = VS from

pq
Eq. (14). Using the fact that Viq ~ giq and the relationship between the
components of giq‘given in BEq. (4), it immediately follows that the valence
and core contribution are in phase for S = 0 amplitudes and out of phase for
S = 1 amplitudes, i.e. the S = 0 amplitude are enhanced while the S = 1
amplitudes are retarded.
For longitudinal electron scattering and electric y-transitions
LSJ . 0 . .
S =0 and B =e =0o0orl, as q =p or n. Since g is attractive, we
Q q . ’ Pq _
conclude that the valence and core contributions are in phase for this case.
For magnetic y-transitions S = 1 and BzSJ = uq which is positive or negative
as ¢ = p or n. Using Eq. (4) we find that the valence and core contributions
are out of phase. These results demonstrate that there is a close correspon-
dehce between the effects of core polarization in inelastic proton scattering
and in electromagnetic interactions.
It is possible to go one step beyond Eqs. (88) - (91) and write a

. . J s s
closed coordinate space expression Tor 8T . This is
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RO (93)

SJ '
L S Y
J Q i
1 J

L'S'
where the sum on i runs only over the valence nucleons and ¢ = p or n, as i

designates a proton or a neutron. The radial factors in Eq. (93) are

given by
Lrgg e (ph) | l*3142 LSJ
St (ri) = _ z 5 5 5 (3l ”jh>
Q &~ ¢ (ph) - Q" P
' J.d
h
pq' (9%)
) L'S'J, . gt LSJ LSJ !
x (JPHT "Jh) Bqq" qu <hqv )phup(ri)uh(ri)'

An operator of this form has been used to fit the magnetic moments in the Pb

-region-.h8 The force strehgths giq, were treated as adjustable parameters in

obtaining the fit. This approach could be extended to other one-body operators.
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Iv. -RESULTS

In this section we present the results of our calculations

s . 42 50 ., 89 20 20 209_.
for selected transitions in Ca, Ti, Y, Zr, 7Pb, and Bi. The
. 50,,. 90 . . . .
nuclides Ti and Zr have already been discussed in connection with the
schematic model in Sec, III.B .. They have two valence protons outside
48 88 . 42 .
of Ca and Sr cores, respectively. -~ Ca has two valence neutrons outside
0 . 20
a 4 Ca core; 89Y has one valence proton outside a 885r core; 7Pb has one

209Bi has a single valence

. 208 . P

valence neutron hole in a Pb core; while
. 208 s . .

proton outside a Pb core. The transitions we have considered are summarized

in Table II. The initial and final model space wave function assumed in

each case are specified in the table.

A. Parameters of the Calculations

"For the first order estimates of 8T we have used the long range part

. . . 9 A . .
of the Kallio-Kolltveit (KK) potentlal4 for G. This is an S-wave interaction

which gives matrix elements which are in rough agreement with those obtained
with the more realistic H’J'interaction.5 The S-wave form of the KK force
greatly simplifies the calculation of two-body matrix elements. This feature
has made this interaction popular in the past10 and it is also the main
reason why it has been chosen here. The differences between the KK and HJ
interaction are well within the accuracy of the models being used in this
work, so there is no real inconsistency in using the KK force for G in
calculating the bound state matrix elements and using the HJ interaction for

R .
tip in calculating the (p,p') cross sections.
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: 50 9 . . . .
For Ti and 0Zr, in the calculations of 6T using the renormalized

coupling interaction defined in Eq. (67), we have used the values of

P

. . 9 .
6L = 1/Ci given in Table I. The 0Zr parameters were also used in the

-

. 89 4?2
calculations for Y. For Ca we have used Cg = 6020 MeV, Cg = 355 Mev,

P

4 578 MeV, and Cg = 1050 MeV and 'in the Pb region we have used Cg = 3790 MeV,

cg 1040 MeV, CZ = 1580 MeV, cg = 2450 MeV, and cg = 3650 MeV. These last

it -

two sets of values have been determined from matrix elements given in
Ref. 8 in the same manner that was used to determine the values given
in Table I. It is interesting to note the large increase in the stiffness
of the core in passing from the Ca region to the Pb region.
We do not actually evaluate the radial integrals (kv) which arise

in the calculation of the matrix elements of G'. Instead we assume that

2
<kv>13(kv>24 = 2500 f(nln3,n2n4) MeV

where n(=1, 2, ..., ©) denotes the principle gquantum number which charac-

terizes the shape of the radial wave functions. The factor

|nl-n3| + |n2-n4| n_+4n_+n_+n,k~4

£(nninn) = (-1) (0.75y 1 2 34

13 2

has the value unity when n1=n2=n3=n4=1, i.e., when all of the radial wave

functions have good overlap with kv(r), and is appropriately smaller and
properly phased when there are shape differences between the radial wave

functions and kv(r).

Harmonic oscillator radial wave functions have been used throughout

. . . -1
in the calculations. The oscillator well parameter O = (Mw/h)l/zF has been
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fixed according to

Thevenergy denominators used in the calculationsvwere taken for the most part
from the zero deformation axis of thé.ﬁilsson scheme.50 In some cases they
were taken from experiment. The Nilsson energies for the first 40 single
particle states are given in Table IiI as a function of hw. In the taﬁle
each'single particle state has been assigned an identification number as a
matter of convenience.

The range of intermediate states used in estimating 6T for the
various transitions being considered is summarized in Table IV. All possible
(n+1)p;lh [ (n+1)h-1p] stateé which can be obtained by raising a core nucleon
from one of the sihgle particle states designated as a hole level to one of
the single particle stateé designated as a particle level have been included
in the calculations of 8T. 1Inspection of the table will show that we have
"approximately"” followed the rule of including all (n+l)p-1h [ (n+l)h-1p]
intermediate states with energies up to 2hw for positive parity transitions
and 1lhw for negative parity transitions.

Experimental sihgle particle energies have been used for the 1lhw

positive parity core excitations which enter the calculations of 6T for

: cas . 50_. 90 X ' . X .
transitions in OTl and Zr. The energies of these particular core excitations

are relatively small and the Nilsson scheme cannot be expected to be

reliable in these cases. Specifically, we use experimental energy splittings

-1 -1 -1 . .
| for the 2p3/2 - lf7/2, 2p1/2 - 1f7/2, and lf5/2 - 1f7/2 neutron excitations
in “°ri, the 2 -2t 2 - 1£°1 , and 2 - 1£7%. proton
r e 2Py /5 T “P3 1 “P1) 5/2" P1/2 772 P
: B -1
excitations in 90Zr, and the 24 1 3s 2d

s/2 ~ Ygsa0 38y, T 199,50 255 = 194,
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' - . , .9 . '
and lg7/2 - 1g9/2 neutron excitations in 0Zr. The experimental energy
splittings are, respectively, 4.80, 6.82, and 8.75 MeV8, 3.5, 4.0, and

5.5 MeVSl,SZ 51,52

, and 4.50, 5.53, 6.50, and 7.17 MeV which are typically
larger than the values which would be deduced from Table III. For the
calculations in the Pb region we chose to use experimental energy values in
all cases Qhere they were available, namely proton levels #11-22 and 24 and
neutron levels #16-29 and 32.53 The Nilsson energies were used for the
other levels with some slight modifications. These.were to increase the
Nilsson energies for proton. orbitals #23, 25 and_above by 2.41 MeV, so that
llevel.#23 would not fall below level #24, and to make the neutron levels

#30 and 31 degenerate with level #32 instead of below it as the Nilsson

scheme suggests.
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B. Wave Furnctions

It is useful to examine the most important core admixtures in the
various model space configurations being treated. Due to space limitations
we consider only two typical examples here. More complete information can
be obtained from the authors by request.

Tables V and VI contain the amplitudes of the most important

.2 = . . 2, + . .
l(j )J, (ph)J;0) core admixtures in the |(] YO ) model space configurations

5 9 .
for 0Ti(j = 2) and OZr(J = 199/2). These tables contain all the

lf7/
information needed to describe the |(j2)0+) -> |(j2)J+) transitions in these
nuclei, since the amplitudes of the l(jz)o,(pE)J;J) core admixtures in
the'](jz)J+> are easily obtained from the given amplitudes by means of

Eq. (76).

It is apparent from the takles that the number of core admixtures
that make iﬁportant contributions are not large in com?arison to the total
number of allowed admixtures. There are two factors which limit the number
of qonfigurations which make important contributions. The first is the
requirement of good overl&p between the radial wave functions for the p-h
pair and the active valence particles, e.g. see the discussion in Sec. III.D.

The second is that l(jz)J,(pﬁ)J;0> admixtures where the p and h orbits are

co-planar are heavily favored. This condition, which may be stated

JOJ"jh) which enter in the

is a éroperty of the reduced matrix elements (jp"T
calculation of the Jth multipole coefficient of the coupling interaction,
e.g. see Eq. (85) for the multipole coefficient in the zero range limit.

- +
The same |(j2)J,(ph)J,0) admixtures which mix strongly with the l(jz)o )
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configﬁrations also produce the largest matrix elements of T because the

. . . . JOJ), . "
latter, Eq. (77), are also proporticnal to <]p”T- ”3}3. These points are
summarized explicitly in the zero-range expression for the matrix elements

of T, Egs. (88)-(91), where it is seen that dominant terms are proportional to

75,0 T g 80

‘We also note that_the.amplitﬁdes for some of the positive parity
lhw excitations are quite large, particularly in the calculations where G*
has been used. Our estimate of these large admixtures is undoubﬁedly
unreliable and it would appear necessary to include the second order terms
in estimating 8T to improve this situation. Additional indications that
~ the secénd order terms may be important in some cases will be seen in the
next section.

Agassi and Schaeffer16 have previously_reported the results of a
first order estimate of the effect of core polarization in the excitation
of 2+ states in various nuclei. The-Of > 2+ transition in 90Zr is the only
point of overlap between the calculations of Ref. 16 and the present work.
Agassi and Schaeffer obtained -a particularly small core polarization effect
in this case while we obtain a large effect as will be seen in the next
section. From their published amplitudes we find that the core coupling
interaction they have used is quite similar to the KK force used in fhe
present work, however, we note that they have used a much smaller excluded
space than we have (all 2hw excitations) and thus they have missed several

important core admixtures.
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C. Radial Transition Densities and Radial Form Factors

Before examining the (e,e') form factors and (p,p') differential cross
sections which are the final results of this paper, it is useful to discuss
the radial transition densities and radial form factors which provide the
link between the wave functions described in the preceding section and these
final results. The radial transition densities and the radial form factors
were defined in Sec. II; These functions are the matrix elements of the one
bodyvoperators for which we are calculating the renormalization due to.core
polarization.

The LSJ = 202 trantition densities for O+ - 2+ transitions in 50Ti and

90 c . . 209, ‘s
- ->
Z;, the lh9 5 2f transition in Bi, and the 3pl/2 2f5/2 transition

/ 7/2
in 207Pb are sﬁown in fig. 4. The valence transition densities as well as
the complete proton and neutron transition densities [D+C(p) and D+C(n) ]
obtained with core polarization included are shown in each case. We have shown
the results obtained using the renormalized core céupling interaction, although
for our purposes here the first order resuits would have served equally well.
For the first three. transitions the valence transition densities have shapes
which are very similar to the complete proton and neutron transition densities.
This is a typical feature of the transition densities obtained for most of the
transitions considered in this work. It was anticipated in the overlap #rgument
used in the discussion of the enhancement and retardation effects due to éore
polarizétion given in Sec. III. D. The resulté for the 3pl/2 -+ 2f5/2 tr?nsi—
tion in 207Pb is a case where the differences in shape between the valence
transition densities and the complete proton and neutron transition densities

are the largest. Even here the differences are not too great in the important

surface region.
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The radial form factors obtained by averaging the real part of V over
the transition densities of Fig. 4 are shown in Fig.>5. The distributions
in Fig. 5 are quite similar to those shown iﬂ Fig. 4, except that the neutron
functions are increased in size relative to the proton functions. This occurs
because Vgn A 3Vgp. The main point is that the projectile-target interaction
acts much like an overall scaling factor for the transition densities. Because
of the finite range of fhis interaction the averaging does tend to smear out
the transition densities slightly. This has the effect of reducing, to some
degree, the importance of #ny shape differences between the various transition
density functions.

The above discussion suggests that the results for the ke,e') and
(p,p') reactions can bé qualitatively understood by comparing the relative
magnitudés of a single moment of the va:ious transition density functions,
most logically the lowest momént, land by introducing appropriate scaling
factors which are characteristic of these reactions. For (p,p') the scaling.
factors are the relative strengths of the various components of the projectile-
target interaction and for (e,e') the scaling factors are the nucleon charges,
i.e. ep = 1 and e = 0. A comparison of this type is useful, because it
allows the general features of the results to be displayed in a transparent
and compact form. The (p,p'") differéntial cross sectiohs and (e,e') form /
féctors do show some sensitivity to higher moments of the transition densities,14
so any fine details in the results can only be seen by calculating these

quantities as prescribed in Sec. II. These final results will be shown in the

next section, after we make this rough comparison.
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To make this comparison in cases where there are valence protons, we
divide the complete proton transition density into valence and core parts and

introduce the parameters

(o]
, f P27y ¢ T2,
LSJ o Fe

A = : : (95)
p fooFLSJ(r) L2
0 Yo
[e o]
LSJ L+2
f F (r) r dr ,
apsg 40 — (96)
+
n waLSJ(r) r dr
o J, &

which measure the contribution to the nuclear transition densities from core
polarization relative to the valence transition density. We then assume that
the effect of core polarization on the (p,p') cross sections can be aciequafely
charactérized by the enhancement factor which was introduced in Eq. (6;2); Ih

LsJ

terms of A and )\I?SJ this factor is approximately given by

LSJ -
£ (p) = 1+ )\p + as)h ’ (97)
S B . . 0] 0 »
where g =V /v . In a similar fashion we introduce the effective charge

= a8
e ff (98)

P 1+ }\JOJ
p

to characterize the effect of core polarization on the (e,e') form factors. The

effective charge has precise meaning for inelastic electron scattering in the

low g 1limit, corresponding to yY-decay, because only the lowest moment of the

proton transition densities come into consideration here. This was pointed
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out at the end of Sec. II-B, In cases where there are valence neutrons the

. e L o
definitions of l:SJ and )HSJ are modified

e o)
LSJ L+2
\IST ./o‘ Py ()xdr
p f“FLSJ(r)rL+2dr
0 v
o
_ f -F::SJ (r)rL+2 ar
AE8T 1 0 c
Q0
n f FLSJ(r)rL+2dr
0 v
and
e m) = 1 4 ot ADST 4 \L8T
p 5 p n
JJn 4307
eff o) *

As it is sometimes. convenient to talk in terms

. . L
contributions to € SJ(q) and eJq
P eff

(101) and (102) in terms of these

, it is also

quantities.

LSJ 0 LSJ 1 LSJ
= i +
ep (q) 1+ “s(q”‘o “s(q”‘l
Jq 1,303 , ,J0J
€ fs eq-kz(lo Xl ) ’

where

(99)

(100)

(101)

(102)

of the iso-scalar and iso~-vector

useful to give Egs. (97), (98),

These expressions are

(103)

(104)
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}\LSJ - )\LSJ + }\LSJ ALSJ - >\LSJ - )\LSJ (105)
0 P n 1 P - 'n
Qg = % W v YN = Lo - (106)
S 2 'pp  pn’ pq s 2 'pp  pn’'pg °

Equations analagous to those Jjust given have previously been used by
. 22 . )
Atkinson and Madsen to compute enhancement factors for normal parity

transitions in (p,p') scattering from known effective charges; They assumed

J . . . .
A o7 . Using these relations in this
n - -

iso-scalar coupling and so took AEOJ =

manner is quite similar to the application of the schematic model made by
Love and Satchler.15 These relations might also be used as the basis for a
phenomenological study of the available experimental data. Schaeffer23 has
. . e, LSJ | .
used scaling factors, similar to the Xq introduced here, in a study of some
experimental (p,p') and y-decay data for collective excitations in various
nuclei. The purpose of this study was to gain information about the relationship
between the proton and neutron transition densities for transition of this
. LSJT . LsJ .. :
type. In the present work we obtain Kp and Xn directly from the c¢alculations
and this scheme is only being used to summarize our results.
Table VII contains the results we have obtained using first order
pefturbation theory for all of the allowed S = O transition densities which

AJOJ AJOJ

s . JOJ
occur in the ¢ases being considered. The parameters, p ' "n ’ AO ,

and AiOJ are shown in eéch case with the corresponding values of E;OJ and
e’ computed according to Egs. (97), (98), (101), and (102) or the

eff

equivalent relations Egs. (103)-(106). 1In these'computations we have used
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ao = 2.75 which is satisfactory for our choice of V as was discussed in

Sec. II.A.2. Corresponding to this value for a

0
o’ ¥e have ao(p) = 1.88,

1, 0 1 . . . .
ao(p) = -0.88, ao(n) = 0.68, and ao(n) = =0.32 in the iso-spin notation.

Also shown in Table VII are values of e;OJ and eiff which have been

estimated from the available experimental data. The experimental values of

egOJ have been obtained by taking the square roots of the ratios of the

éxperimental and theoretical valence integrated cross sections. Only the
real part of V has been used in calculating the theoretical valence cross
sections as we wish to'keep separéte the effect of the imaginary part of v
which will be discussed later. The experimental data was taken from the
references indicated in the table and the experimental integrated cross

sections have been determined by normalizing the results of DWBA collective

69

model calculations to the experimental differential cross sections. For

transitions where data is available at more than one incident proton energy,

the experimental eiOJ shown are average values. 1In all but a few instances

the experimental egQJ were found to be nearly energy independent. The

optical model parameters used in calcﬁlating the collective model cross
sections and the theoretical valence cross sections have been taken from
the same references where the experimental data was found. Most of these

parameter sets have been included in Table XII. For 2pl/2 > lg9/2

89 209

transition in Y and the 1h + 2f transition in Bi it was not

9/2 T/2
possible to determine the experimental egOJ because more than one LSJ-transfer
is observed to contribute to the experimental cross section in these

cases.
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The references containing the data which was used to determine the
experimental values of egff are also shown in Table VII. Generally there was
more than one piece of data available for each determination. For transitions
where electron scatteriné data was available two methods were used to extract
the experimental effective charge. One of these methods was to determine
eiff from the values of B(EJ!) obtained from transition densities which were
fitted to the experimental form factors. The second method was to normalize
the peak value of theoretical valence form factors to the peak value of the
experimental form factors. It has been suggested70 that the second method ié
somewhat more reliable than the firsﬁ. The sensitivity of the experimental
effective charées to the theoretical radial wave functions was also checked.

In most cases the changes in the effective'charge due to reasonable changes

in the radial wave functions were well within the variations notéd in the
experimental data itself. An. exception to this is the lh9/2 > 2f7/2 transition
209

in Bi where harmonic oscillator radial wave functions and finite well wave

. 2
functlons71 produced values for e

of £ which differed by nearly a factor of two.

The experimental values for eJ

of £ shown in Table VII are averages of the values

determined from the various sets of experimental data according to the methods
described above. The uncertainties shown are average deviations which are
mainly due to fluctuations in the experimental data.

Table VIII contains a summary of the results we have obtained for the
S = 0 transition densities in the calculations using the renormalized core
coupling interaction of Eg. (67). The format of this table is identical to

that of Table VII.
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The results obtained for the S = 1 transition densities using first

order perturbation theory are shown in Table IX. In calculating the

theoretical values of eLIJ; it was assumed that al = =0.,20 which corresponds
A 0 1 ~ 0 1

to al(p) = 0.40, ul(p) = 0.60, ul(n) = -2,00, and al(n) = -3,00, These are
again satisfactory for our choice of V.. No experimental values for SLlJ

are shown because S = 1 amplitudes were not found to be dominant in any of

the transitions which we have considered.' The results for the S = 1 transition
densities obtained using G' for the cere eoupling interaction do not differ
greatly from the first ordernresults; therefore, they have not been shown.

The differences are small because we have assumed that G'-G is spin-independent.
Even if the appropriate spin dependence had been included in a'—G, the results
would not have been effect greatly. The main thing to notice in Table IX is
the retardation of the S = 1 amplitudes compared to the enhancement of the

S = 0 amplitudes apparent from Tables VII and VIII.

From Table VII we see that the first order célculations predict important
core polarization corrections for the S = 0 amplitudes, even for thevhighest
multipoles considered. In all cases, however, the correction fall somewhat
short of experiment. The most notable feature of these calculations is that
they predict a large iso-vector component in the S = 0 transition densities.

This is not born out experimentélly for the transition where both electromagnetic

and proton scattering data are available. This may be seen by comparing the

. . . . JOJ
theoretical and experimental results for the polarization charge (Gegff = Apo )
and the corresponding factor for proton scattering (GepOJ = egOJ - 1). For

the cases where there are valence proﬁons the first order calculations give a
v . JoJ J . .
better estimate of 6€p than they do of 6eeff while the reverse is true for

the transition involving valence neutrons.
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From Table VIII we see that the main effect of interactions in the
excluded space, as determined by our calculations using G' as the core coupling
interéction, is to increase the iso-scalar components of the S = O transition
densities relative to the iso-vector components which in turn brings improved
agreement with experiment. The magnitude of this effect decreases with
inéreasing multipolarity. In Table X we compare the results of our fi;st
order calculations and our calculation uging G' with the first order and TDA

results of Siegal and Zamick10 for LSJ = 202 and the lf7 5 > 1f neutron

/ 7/2
transition assuming a 4OCa core. We conclude that our result obtained using
G' is consistent with the estimate of excluded space interactions using the
TDA. it was not possible to make a similar comparison for any of the higher
mulitpoles we have considered; however, the decrease in the importance of
excludéd space interactions with increasing multipolarity, predicted by our
calculations with é-, is consistent with the results of TDA and RPA calcu-
lations42 for closed shell cores which indicate that the collectivity of
core excitations decrease with increasing multipolarity.

Although the results obtained with G' are a definite improvement over
the first order results for 6T, some important discrepancies still appear in
Table XI. One is that the theoretical values of E;OJ fall off somewhat faster
with increasing multipole than do the experimental values. In the next
section it will be seen that this discrepancy is removed when the imaginary
part of V is introduced.

Another discrepancy is the relatively poor values obtained for the
effective charge in the case of the 0+ > 2+ traﬁsitions in42Ca and 9OZr

. + + oL . .
while the theoretical ei for the 0 =+ 2 transition in SOTl appears to be

ff
+ + s . 42 50 _.
adequate. The B(E2) for the 6 > 4 transitions in Ca and Ti and the
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-

-+ + . . 90 . . 59
8 + 6 transition in Zr have been determined experimentally. ' 72 The

. 2
experimental values of e

off for these transitions are compared with the

. theoretical results we have obtained using G and G' in Table XI. We note

. . . 2 s
that our model for core polarization predicts that eeff for the transitions

2
between the two upper states of a (j- ) configuration should be the same
] + +
as for the 0 - 2 transition. This is born out by the data only in the -

50 42 . 2, .
case of Ti. For Ca our theoretical result for e is in quite good

eff

' . . + + P . .
agreement with the experimental value for the 6 + 4 transition which is
. + + f s .
only about half the value required for the 0 - 2 transition. Experimentally
. o 90 ' .
the situation is about the same for =~ Zr. We conclude that it is necessary

to include second order terms in estimating 87 in order to resolve these
N : . . : 73,74
discrepancies. This is consistent with the suggestion of others

that 4p-2h admixtures are important in 42Ca and 90Zr

The final discrepancy we note is that the calculations fail to
. 3 ©.303 . .
reproduce the large values of €off and Ep required to explain the

: ( ' 47
1h -+ 1i transition in 209Bi. It is well known  that there are
9/2 3/2
important contributions to this transition from admi&tures of low-lying
particle-vibration states in the single particle states, i.e. |1h9/2 X 3_;13/2)

208
P

and x 37;9/2) where 3~ is the first excited state of the b

Ili13/2 v
core. It would be pogsible to reproduce this effect by introducing a spin-
independentiJ = 3 component in é-; hoﬁéver, since we have no independent
way of fixing the strength of this component a more reasonable approach
would be to introduce these admixtures explicitly. This has been done

' elsewhere17 and a reasonable deséription of the (p,p') cross sections for
this_transition has been obtained. In these calculations it was necessary

to include both the contribution from these low-lying particle-vibration

admixtures and the contribution due to admixtures of states formed from
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higher lying 3 core excitations. The results shown in Tables VII and

VIII for the lh9 > 1 transition are representative of the latter

i
/2 13/2
contribution only.
A previous.estimate of the (p,p') cross section for the 1h9/2 > 2f7/2
s . 209_. 17 . .
transition in Bi has also been made. The first order wave functions
of this work were used in this calculation. The calculations predicted
important contributions to the cross section from all allowed JOJ amplitudes.
This result was found to be consistent with the experimental data. An
estimate of the modification of the first order results due "to the additiohv
of contributions from low-1lying particle-vibration admixtures was also made.
Specifically, contributions from the particle-vibration states formed from

+

, + o+ + s 208 e
the first 2 , 4 , 6 - and 8 excitations of the Pb core were introduced.

. . . . JO . 202
With these contributions, the first order Ep J were increased to Ep = 6.94,

8404 = 6.56, 8206 = 5,17, and Ezog = 4.03. These values are in good agreement
with the results we have obtained using G' as the core coupling interaction.
This is another indication that the effect of core correlations can be
reproduced by using a rather simple effective intéraction in calculating T.

E2 effective charges are'known64 for several transitions in the Pb
region where there is no inelastic scattering data available. As an additional
check on the consistency of our calculations we have calculated these effective
charges. The results have been included in Table XI. The agreement between
théory and experiment is quite good, with the possible exception of the result

for the 1lh lh9/2 proton transition.

>
9/2
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D. Cross Sections and Form Factors

In this section we coméare‘our theoretical (p,p') cross sections and
(e,e') form factors directly with experiﬁent. The discussion will be
brief since many of the important points have already béen covered above.
The optical model parameters used in the DWA calculations are summarized
in Table XII. ‘Thé ground sﬁate proton‘density parameters.ﬁsed in estimating
the imaginary pért of V arévsumﬁarized in Table XIII.

5
1. 4 Ca

The theoretical (p,p') cross sections for the excitatibn of the
first 2+ and 4+ states in 42Ca are compared with the 22.9 Mev experimental
data of Ref. 56 in Fig. 6. The dotted curves D(HJ) are the results
obtainedbusing énly tﬁé real part of V and the valence wave functions of
Table II. The solid [D + CkHJ)] and dashed [D + C(HJ + Im] curves are the
results obtaiﬁed with the transition densities‘qf Table VIII using only
the real part of V and both the real and imaginary parts of v, respectively.
We do not show the results obtained with the transition densities of
Table VII, because the differences between the calculations using G and G'
have beeﬁ adequately discussed in the preceding section. The values of
.Ep shown in the figure are the équare roots of the ratios of the D + C(HJ)
and D(HJ) integrated cross sections. They differ somewhat from the values

based on Eq. (101) and Eq. (103) which were given in Table VIII as expected.



-60- LBL-1951

The value of €1 provides a measure of the importance of the imaginary

part of V, i.e. €2

I is the ratio of the D + C(HJ + IM) and D + C(HJ) integrated

' cross sectionms.

The agreement between experiment and tﬁe theoretical results
with core polarization included is quite reasonable. We see clearly
that the effect of core polarization decreases only slowly with increasing
multipole. The theoretical cfoss sectiens obtained with the imaginary
component of V included in the calculations have slightly sharper structure
than the cross sections obtained using only the real part of V. The
shape of the experimental differential cross sections favor the former.
We also note that the effect of the imaginary part of V increases with )
increasing multipole; |

The theoretical (e,e') form factor for the excitation of the
first 2+ state in 42Ca is compared with the data of Ref. 65 in Fig. 7.
In the calculation we have used the transition density of Table VIII.
There is no valence form factor in this case, beeause the a%sumed model
Spacelconsists only of neutron configurations. The theoret{cal result
falls short of the data by about a factor of three as was p&inted eut
previously. This deficiency in the theoretical wave functions does not
show up in (p,p') results because neutron excitations are dominant

there.

2. 5OTi o ' T

The theoretical (p,p') cross sections for the excitation of the first
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+ + 50 i o
2 and 4 states in Ti are compared with the 17.5 and 40.0 MeV data
of Refs. 37 and 38 in Fig. 8. The format of the figure is the same as
that of Fig. 6. With the exception of the values of Ep, the results for
0. o 42

Ti have the same general characteristics as the results for Ca. The
: . 50_. 42 _
increase in the values of ep for  Ti, compared to Ca, is not due to an
. . . . 50
increase in the strength of core polarization in Ti. It only reflects

, 50, |
that the valence cross section D(HJ) for Ti are smaller, because the
model space includes only proton configurations in this case.
The theoretical (e,e') form factors for the excitation of the

. + + . 50 . . :
first 2 and 4 states in = Ti are compared with the data of Refs. 54
and 58 in Fig. 9. Here we have shown the results obtained using the
wave function of Table II (D) and the transition densities of Table VIII
(D + C). The results here show rather clearly the importance of E4
polarization.

90
3. 2r

The theoretical (p,p') cross sections for the excitation of the first

+ o+ _+ _+

2,4 ,6,8, and 5 states in 20

Zr are coméared with the 18.8 and
61.2 MeV data of Refs. 39 and 43 in Figs. 10, 11, and 12. The LSJ = 515
contribution to the 5 cross section was found‘to be negligible and has
not been shownf Results for the excitation of these same levels by 40 MeV
protons have previously been presented elsewhere.l

Again the overall agreement between experiment and the theoretical
résults with core polarization included is reasonable. Relative to the

- _ + o+ + L, ) +
results for the 2 , 4 , and 6 -excitations, the cross sections for the 8 and
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57 levels appear to be underestimated at 18.8 MeV, The situation is somewhat
improved at 61.2 MeV. This improvement is also evident in the 40 MeV results. Col-
lective model calculationé8'39'43for the 8+ and 5 excitations yield considerably
larger values of BLat 18.8 MeV than at 40 and 61.2 MeV, This is simply
an'indication that multiple excitation is important for these levels at the
lower energies.

Thé imaginary part of V is essential in‘reproducing the forward peaks
of the 61.2 MeV cross sections for all of the excitations except the 2+ level.
It is also important in giving the correct multipole dependence for the
theoretical cross sections; TheSé same observations were made with respect
to the 40 MeV results for these same excitations.18 These effects do not
shdw ﬁp‘so clearly at 18.8 MeV partly because of the difficulty in reproducing
the 8+ and 5~ cross sections aﬁ this energy and partly because the shapes of
the angular distributions are not so distinctive at the lower energies. The
latter remark applies equally well to the 22,9 MéV results for 42Ca and the
17.5 MeV results for 5OTi. The effect of the iméginary part of V is starting
to show up in the results for 50Ti at 40 MeV; however, the picture is not
complete because of the limited range of multipoles which are available in this
case.

The increasing importance of the imaginary part of V with increasing
multipole is a result of the zero-range form of tip in contrast to the finite-
range form of t?p. The results we have obtained do not undeniably establish
that the phenomenological treatment20 of the imaginary part of V is coriect.

We can conclude, however, that the multipole dependence obtained in the

calculations using only the real part of V is inadequate and it is interesting
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that the simple prescription for including the imaginary part of v gives
reasonable results.

Even with the iméginary part of V included there are still some
deficiencies in the ?%:2 MeV resﬁlts. These occur mainly at back angles
where the D + C{HJ+Im) results have more‘structure than the data for the 2+,
4+, 6+, and 5 excitations. 1In addition, the D + C(HJ+Im) results for the
8+ state appears to underestimate the back angle cross section. It has been

27,4
shown™ "’ 3

that the inclusion of a spin-orbit component in V can improve these
results. In addition, the presence of contfibutions from this interaction
component does provide some direct evidence of the decreasing importance of
' . . A Coo - .. 18
core correlations with increasing multipolarity .
The theoretical (e,e') form factors for the excitation of the first
+ + .90 ' s ' ' . :
2 and 4 states in Zr are compared with the experimental data of Refs.
58, 60, and 61 in Fig. 13. 'The format of the figure is the éame as Fig. 9.
Here again we have an example of important E4 polarization.

89Y

4.
The theoretical (p,p') cross sections for the first 9/2+ excitation
in 89Y are conmpared with the 18.9,)24.5("and 61.2 MeV experimental cross
sections of Refs. 76, 77, and 46 in Fig. 14. There are four allowed
LSJ—aﬁplitudes for this transition. These are LSJ = 314, 514, 505, and 515.
The contributions from the 514 and 515-amplitudes-were found to be negligible.
The 505~amplitude was found to be dominant, but the contribution from the
314—amplitude is appreciabléf particularly at forward angles. - This is con-
sistnet with the fact that the 9/2+ level in 89Y is known to decay by M4

. . 81
Y-emission.
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In Fig. 14 we have shown the LSJ = 314 and 505 cross sections obtained

using.the real part of V and the transition densities of Table VIII and IX.

We have also shown the suﬁ of these two cross sections. As before these

curves are labeled D + C(HJ). The valence results, D(HJ), have not been

shown. _The fourth curve shown D + C(HJ+Im) is the sum of the LSJ = 314 and

505 cross sections obtained using both the real and imaginary parts of V.,

For the»LSJ = 505 cross section at 24,5 MeV, ep = 3.16 and EI = 1.37. At

18.9 and 61.2 MeV € and €_ for the LSJ = 505 cross section have the same
values that were given in Fig. 12 for the excitation of the 5 state in 90Zr

at these energies. (It is shown in the Appendix that the LSJ = 505 form factois
for the 1/2— -+ 9/2+ transition in 89Y and the O+ + 5 transition in_gOZr are
essentially the same in our model.) For the LSJ = 314 cross sections, Ep = 0.51,
0.52, '‘and 6,50 at 18.9, 24.5, and 61.2 MeV._ For this cross section, EI = 1.0
at all energies, because we have taken the imaginary part Qf.G to be spin
ihdependent.

From Fig. 14 we see that the theoretical calculations do not reproduce
the energy dependgnce of the ekperimental cross sections exactly. The theoretical
results are in good agreement with the data at the lower energies, but a bit
too high at 61.2'MeV. A similar discrepancy was noted %n the results for the
5 level in 90Zr, except that the theoretical results were a liftle low at

18.8 MeV and in fairly good agreement with the'data at 61.2.MeV. There is a
noticable difference in shape, at forward angles, between t%e 61.2 MeV
experimental cross sections for the 9/2+ excitation in Y ;nd the SL
excitation in 90Zr. This is consistent with the presence og'the 1LSJ = 314
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contribution to the former. It appears that the LSJ = 505 contribuﬁion to
the 89Y cross section is'slightly overestimated in our caldulaﬁion, so this
effect does not show up quite so clearly in our theoretical results. We
conclude that .the LSJ = 505 contribution to the cross section for the 9/2+
state in 89Y_is somewhat smaller than the corresponding contribution to the
cross»section for the 5 state in 90Zx, a feature which cannot be reproduced
with the simple model for core polarization that we are using.

5. 297pp

. The theoretical (p,p') cross sections for.the excitation of‘the first
four Single barticle states in 207Pb are compared with the 20,2 MeV experimental
data of Ref, 65 in Fig. 15. Results for the excitation of these same levels
at 39.5 MeV have previously been presented elsewhere.46 Contributions from
S=1 amplitudes were found to be negligible in all cases and only S=0 con-
tributions to the cross sections are shown in the figure. There are two
interesting aspects to the results. YOne is that €P for the 7/2_ excitation
which goes by LSJ = 404 transfer is comparable to Ep for the 5/2_ and 3/2-
excitations which proceed with LSJ = 202 transfer.  Other evidence for large
1=4 core polarization in the Pb region was seen previously in the cross
section for the excitation»of the 2f7/2 single particle state in 209Bi by
61.2 MeV protons.17 The other interesting feature is that therevis a shape
difference between the cross section for the 3/2_ level and 5/2—,level both
of which are excited by LSJ = 202 transfer. v Although the theoretical

results do not give a completely accurate reproduction of the experimental

data, they do show this shape difference rather nicely. The difference in



-66- LBL-1951

shapes is due to the differences in the radial wave functions for the valence
neutrons in the two final states. Similar effects are not seen in the lighter
nuclei, because the radial wave functions tend to be more similar there, at

least for the cases we have considered.

. . ' ., 209_, . .
Theoretical (p,p') cross sections for states in Bi obtained using
the wave functions of this work have been discussed in detail elsewhere 7 and

will not be discussed here.
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V. . CONCLUSIONS

IWe have shown that‘a fair sized sampling of experimental inelastic
electron and proton scattéring data for nuclei near closed sheli§ can be
understbod, at least‘qualitatiVely,bin calculations whicﬁ assume to a first
épproximation‘that'the interaction between tﬁo bound nucleons and between a
bound and a continuum nucleon are given by G matrix interactions derived
from free two-nucleon potenfials.' In’the éalculations, the (e,e') reaction
was treéted using a modified Born approximation. The'(p,p') reaction was
treated using the distorted wave approximation énd’thé’G matrix interaction
was modified to account for.“knock—on" exchange and excluded reaction channéls.
Core polarization was treated in lowest order and with the G matrix inter-
action renormalized to roughly aééounﬁ fof the'effect of long range core
correlations. The resulté'cleariy show thatvcore polafization effects are
large'and persiét as the mﬁltipoiarity of the transitions increaéé. Théy
also show that the motions of target'protons and neutrons aré strongly |
correlated although there may bé some'weakening in the correlation for
transitions where the L-transfer exceeds 5.

Although our resulté indicate a strong correlation between protoﬁ énd
neutron motions in the excitation of tﬁe levels considered, in detail there
are small differences between proton and neutron motions even for the L = 2
traﬁsitions. Brown and Madsen82 have recently discussed some of the expeéted
differences and it would surely be ihteresting to examine our results more
carefully in this regard. This can in principle be done on the basis of the
data we have consideredl4; but it requires consideragly greaterxr care in the
calculations than we have expended and thus must be postponed until a later

83 sl + -
date. Forthcoming data for the excitation of nuclear levels by ™ and T
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inelastic.scattering should provide additional information concerning these
differences.

Finally we note that the use of an “effective" core coupling inter-
action in a first order treatment of the renormalization of one body operators
was found to give reasonable results in the sense that it does seem to account
for some of the effects attributable to collecfive correlations in the core.
It would be interesting to pursue this further taking care to.include the
second.érder terms that we have ignored. Other interaction choices might also
be invéstigated, for example the recent "effective" interaction of Schiffer

8
and True. 4
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APPENDIX

In this appendix we give the wvalues of the spectroscopic amplitudes

Si for the specific transitions we are considering. Sé is defined in Eq. (71)

1. Single Particle Transitions

For a transition between two single particle states,

. ~ _ +
lai(n)JiMi y = Inlzlglml y = ay [c) (B.1)
‘ _ o - +
lo (n)T M. ) = [ngfejom. ) = a, [C) (B.2)
_ Eq. (T4) gives
st 3 m b33 3) = 8. . 6. . . (B.3)
E O A g A T S Sils 24 Jidy Jflg

-

Inserting this result in Eq. (80) we obtain

(n ol T lng 500 = e ™ | (B.b)

1 J . .
2 Q—E(ph Y ¥ Za=e(on) Pph FqQ'(jpjh’JfJi) ?
J Jh :
q'

where Q and €(ph) have been defined in Eq. (91).

2, Single Hole Transition

For a tranéition between two single hole states,

J—m

l_(xi(n)JiMi ) ln121J1 »=my ) = (-l) IC ) . (B.5)
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: . o Jm .

— ~1 .
lop()a M,y = |n 237t = ()T Tafoy (B.6)
Eq, (T4) gives

S 41 _F
J -1 -1 . JiTdemd A Ay

S (n L. 3. ,n,2.3.733.3.) = (-1) j. . 8. . 8, (B.7
g ffYf TiTiYi *Yafy Ji qf Jida Jedy )
Inserting this result in Eq. (80) and then making use of the conjugation

relation Eq. (78) and the permutation property of Fiq, given in Eq. (82), we find

. =1ysLSJI . =1 _ S LSJ, '
<nf£f3f T IlniJLiJi y = -(-1) Ejfﬂtq ij (B.8)

1 1 T e s s
+ 2 3W on ¥ minq'<Jth’iji)]
jpjh » _
g -

The matrix elements fqr a single hole transition differ from the
matrix elements for a single particle transition by an overall phase which
depends on the particular operator being considered. This is of no conse-
quence in this work because we are only interested in tﬁe square of these
matrix elements. Another difference is that the position of PPh has'been
shifted from the second to the first term inside the brackets. This has
nearly a negligible effect because €(ph) is typically much greater than Q and
the effect Of.Pph on FiQ’ is weak as may be seen from Eq. (87) which is valid
for the case of a zero range coupling interaction. We conclude that single

particle transitions and single hole transitions are equivalent for all

practical purposes.

\
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- 3. Transitions Between Two Particle States

For a transition between two particle states,

o (g, ) = (39, ;M ) = 25 (33ymy 30 a"aj|C) | (.9)
mm,
lap(n)a M.y = [(33, )94 = 25 K szmeIJfo ) a+ag|C_) > (8.10)
- _
2

the spectroscopic amplitude is given by

T N \-1/2 172, 345, +
533327, (33)7;303y) = (@ + 5331) (1 + 6552) (-1)77175,
| J
. o N S | £+ (3 3. 7.
x |1+ ()78, o+ (1) Ts, 08, L6 (1) Cef t
J. V3, J I,
§. . 6. .8, .(-1) 3t (B.11)
Jqdp dod Jyd J Jed

In the special case Jy=J, =J, J, and J, must be even and Eq. (B.11)

reduces to

Ji¢s2 .2 s s 7.3 |
=8, . 6. . (=1) 27.J . (B.12)
Sq((J )st(.] )Ji’JdJY) Ja:J J J- ( , 1 J J 3
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For this case we find

PPy = —(-1)725 5100 I (B.13)
* R K 3.3
LSJy o 1 st 0.7, .
[ JHt 5 + }'ETSE)(I + (-1) )$qu(apah,aa}]
i dy
p'n
q'

where we have again used Eq. (82). It is interesting to nqte that when Ji =0,
then J = Jf is even, And the second term on the right hand side of Eq. (B.13)
vanishes when S = 1. The valence contribution given by the first term on

the right of Eq. (B.i3) vanishes in this case also; so, core polarization

does not break the valence selection rule. When Ji = 0 and S = 0, the factor
in parenthegis in the square.brackets becomes 2 and core polarization is

effective.

Another case of particular interest here is the transition between the

states

[ai(n)JiMi ) a|(jlg)Ji=O M;=0) + bl(jgz)Ji=O M;=0 ) ~ (B.1L)

lop(n)a M, ) = [ (35009 Mp ) . | (B.15)

+ - L
This corresponds to the description of the 0 to 5 transition in 9OZr given

in Table II. In this case we find

N 3 '
J ~-1 =1 1 f A =l
S (o d.ye.J.35 d.)=vV2 3 a jod, 8, .8, . =(-1) b 3.3, 6,
g it icYady f 21 "3, Jydy 1¢2 aJl J J
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1

Inserting this expression into Eq. (80) and again making use of Eq. (78) and

Eq. (82), we obtain

“TLSJ“G. ) o a=1) A A1 _ S (s LSdy, .. )
(and g I \/ETJf aJ,d]" + (-1)p( x J2"tq I3

| 1 1 I |
* :E: 38(12) = e(ph) © €(21) - Ethngph qu.(apah,JQJlﬂ (B.17)

These expressions differ from those for the single particle transition jl > 32

only by an overall constant. With j, = 2p s Jm = 1g ,a=0.8,b=0.6,
Y17 TR1i/2 e 9/2

]

Jf = 5, and S = 0, this constant has the value 1.02. With S 1 the constant

is 0.507. We conclude that the important LSJ = 505 amplitude for the 0+ > 5
90 ‘

transition in Zr is nearly identical to the corresponding amplitude for the

89

2p, ), * 18y, transition in Y. The LSJ = 515 amplitude for the 90+ tran-

sition is reduced in magnitude in comparison to corresponding amplitude for

89

the Y transition.
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Table I. Core Coupling Constants Determined from

Bound State Pairing Matrix Elements.

Nuclide J J aEg(j) (Mev) 6, (Mev™) c; (Me)
1 p 0 -0.033 "1.78xio;h 5610
Op; 12,5 2 ~0.753 3.18x1073 314
/5 L -0.460 2.20X1073 455
1 /p 6 -0.233 1.55x1o“3 645
lg 0 -0.020 1.01X1o"u 9920
9/2 _
- leg/, > -0.578 2.38x1073 420
900 lgy,, 4 -0.359 © 1.58x1073 633
leg,p 6 -0.218 1.14x1073 877
184 /0 8 -0.122 9.OOXlO—h 1110
2Py /5 0 -~ =0.210 1.22%1073 - 820
aValues for 5OTi are from Ref. 8 and values for 90Zr are from Ref. 36.
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Summary of transitions considered in this work.

Table II. Initial and final
model space wave functions are given in each case.
a il i T f b
Target 3, I¢M ) 3. |¢M ) 0 (MeV)
ot |(1f7/22)2f>_ -1.52
. N + 2
42ca(2n) ot |(1f7/22 0) 4 I(1f7/2 )4 ) -2.76
6t l(1f7/22) 6) ~3.19
2* l(1f7/22)2 ) ~1.56
503 (2p) ot |(1f7/22)0 ) 4t |(1f7/22 ya ) ~2.68
6" |(1f7/22)6 ) -3.20
- +
89¢ (1p) 1/2 lzpl/2 ) 9s2* |1g9/2 ) -0.91
2t |(1g9/22)2 ) -2.18
+
4" |(199/22)4 ) -3.08
90 + 0. 8|(2“-’1/2 yo) + 2,
Zr (2p) 0 +0. 6!(199/2 )0 ? 6 l(1953/2 )6 -3.45
gt l(lgg/22)8 ) -3.60
5 |(1<_:;9/2 2p; /)5 Y -2:32
5/2” lzfs/z'1 ) -0.57
3/2" 13p3/2—l ) -0.89
207Pb(l - 1/2° |3 -1 + T
n P1/2 13/2 11;13/2 ) -1.63
772" lzf7/2'1 ) -2.33
, 772" 2 -0.90 |
209, + 7/2
Bi (1p) 9/2 |1h9/2 N / |
13/2 |1i13/2 ) -1.61

SThe number and type of valence nucleons is indicated in parenthesis.
This column lists experimental Q-value which is not to be confused with
theoretical Q-value defined in Eq. (91).
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Table III,. Single‘Parficle Energies for Spherical
Potential as Determined by Nilsson.
# e n2j" .nzj/h“b # N n23" Enzj/ﬁQb

1 0 151/2+ 1.50 21 5 28, 15 6.43
2 1 1p3/2‘ 2.45 22 5 3pl/2 - 6.56
1 1p) /o~ 2.60 23 2g9/2+ 6.85

k 2 ld5/2+ 3.10 2l 6 lill/2+ 6.91
5 > 231/2+ 3.50 25 7 Vs 7.03
6 2 1d3/2+ 3.65 26 6 3d5/2+ 7.27
7 3 1, b1k o7 6 2g7/2+ 7.30
8 3 2035 b.L2 28 6 hsl/2+ 7.50
9 3 1t " L.k9 29 6 3d3/2+ 7.52
10 3 2p1/é—_ h.s57 30 T 2hll/2’ 7.65
11 4 lg9/2+ 4.85 31 1k17/2+_ 7.66
12 k4 2d5/2+ 5.27 32 T 31370 7.78
13 l lg7/2+ 5.30 33 7 3075 8.11
14 4 3sl/2+ 5.50 3l 7 2hy " 8.20
15 4 2d3/2+ 5.52 35 9 129/5 8.25
16 5 1y /p” 5.58 36 8 2113/2+.- 8.36
17 5 2f7/2_ 6.08 37 T hp3/2' 8.hk
18 5 1h9/2' 6.13 | 38 7 3f5/2' 8.46
19 6 1113/2+ 6.26 39 8 1k15/2+ 8.56
20 5 30575 6.11 o 7 bpy 1y 8.59

(continued)
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‘Table III. (cont.)

N = 2(n-1) + £ is the major shell quantum number .

nij/hm = N - 0.05 j(j+1) + 0.05 (1-p) R(%+1) + 1.5375 where hw determines

the major shell separation and:

p=0.00 N =0,1,2
w=0.35 N =3
U= 0.45 N =4,5,6

=
1

0.140 . N=7




Teble IV. Zarticle and hole levels used to form intermediate states in the perturbative calculations of &T.

Transitions Hole Levels Particle Levels
Tzrget : (Jg) Protoné Neutrons : Protons Neutrons
“2cq : oF 46" # 2-6 # 226 # 7-15 # 7-15
0p; | 2* 4t 6" # 2-6 # 2.7 # 7-15 # 8-15
39y 92" #7-9 # 7-11 | #10-23 #12-23
90z, , ot tetst # 4-9 # 4-11 . #10-23  hie-e3
Pgr 5 # 7-9 # 7-11 #10-23 #12-23
2Top - 3/27,5/27,7/2" # T7-16 #11-22 #17-35 #23-35
207py | 13/2% ‘ #11-16 . m6-22 #17-30 . #23-3L
20933 7/2" # 7-26 #11-22 | #17-35 #23-35
20934 | 13/2" #11-16 #16-22 #17-30  #23-3)

TS6T-191
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Table V. Core admixtures in ground’stéte_of SOTi.
a((1£, 23, whya; o] e, 2o
772" ’ 7/2
_ € (ph) _ :
ph (MeV) protons - neutrons
J=2 J=4 J=6 J=2 J=4 J=6
1. ,.-1d_ 15.5 -.06 -.02 -.01 -.19 -.10 -.05
9/2 " "5/2 . . .
/2 5/ -.22  -.08  _.03 -.26 0 -.13 -.06
-1
1g. ,.-1d 17.7 -.05 -.03 -.14 -.07
772" 7%3/2 . .
/ / -.17 -.07 ~.19 -.09
~1p7% 20.9 04
5,571y /5 : o
/ / -.08
2p3/2—lf;§2 1.8 .30 .15
.38 A5
-1
1£_ . -1f 8.8 -.11 -.1k -.16
5/2 “77/2 -.16 -, 17 -.16
1g —2s7t 14.3 03 10
2 l L —. —.
Y /2 -.07 -.11
1g s-l 19.3 02 oé
772" 2 . : :
/ 4 .04 .07
lg. ,.-1d. 12.7 -.04 -.04 -.07 -.09
2 2 -
9/2 73/2 -.09  -.09 .09 -.12
-1 '
lg.,.-1d 20.5 .01 .02 .02 .0k .05 .06
2 . .
Tz .0k .05 .05 _ .06 .07 .08
-1
-1p 22.5 .02 .03 .05 .07
5/2 3/2 .03 .04 .06 .08
2pl/2—lf;$2 6.8 ) -.12
-.14
-1p 1 18.0 04 01 :
7 2 - -l -
/ 3/2 -.11 -0
~1p72 16.4 —’03
1,2 1/2 e

%The first entry for a given pﬁ and J is the amplitude obtained using first order
perturbation theory and the second entry is the amplltude obtained using the
renormalized coupling interaction.
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Table VI, Core admixtures in (199/2) configuration in 90Zr.
2 - 2 a
a((lgy 5)3, (ph)3; 0] (1gg 2)0)
- € (ph) :
ph (MeV) pro#ons neutrons
=2 J=4 J=6  J=8 J=2 J=4 J=6 J=8
1h —1et 12.5 06 02 -.01 'oo. 17 10 06 03
1 ll 2 .7 2 . e ) T —‘. T e T . T iy
/ / -.22 -.08 -.04 _.00 -.25 -.13 -.08 -.04
-1
1h_ ,.-1f 14.5 -.05 -.03 -.02 -.13 -.07 -.04
9/2 775/2 -.17 -.08 -.04 -.19 -.10 -.05
1g. ,.-1d_ 15.0 ~.05 -.03 -.12  -.06
7/2 773/2 -.12  -.05 -.15  -.07
-1
2F. ,.-2p 15.0 -.01 -.01 -.04 -.02
/2 73/2 -.11 -.04 -.09 -.04
-1 ) ’
1i -1g 13.0 -.16 -.10 -.06 ~-.04
13/2 ~79/2 -.24 -.11 -.05 ~-.01
2d —1q'l 4.5 21 12 07
5/2 779/2 .31 .13 .05
-1
/1h -1f 9.5 -.04 -.04 -.03 -.06 -.07 -.08
172 =572 -.08 =-.07 =-.07 -.07 -.09 -.10
_l :
1h -2p 10.5 -.04 -.01 -.11 -.05
1172 ~73/2 -.08 -.03 ~.13  -.06
g, ,.-1d. 17.0 .01 .02 .02 : .03 .04 .06
7/2 77572 .02 .03 .ol .04 .05 .07
g, ,.-2s_% 16.0 02 06
772 7172 .03 : .07
1i ~1a-t 26.0 02 o1 00 : 04 02 01
2 L] L4 - - - - .
1372 775/ .04 . 00 -.01 .06 .02 .00
-1
1h_ ,.-2p 14.0 -.06
9/2"“P1,2 o8
1g 2-19‘12 7.2 -.07 -.10 -.10 ~-.12
7/2 779/ .12 -.13  -.12 -.12
1h9/2-1f;}2 17.5 .00 .02 . .02 .02 .03 .04 .04 .04
.03 .04 .04 .04 .04 - .05 .05 .06

(continued)
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Table VI. (continued)

2 - 2
a((lgy 5)3, (eh)3; 0| (19, 5)0)®

- € (ph)
ph (MeV) protons : ~neutrons
J=2 J=4 J=6 J=8 J=2 J=4 J=6 =8
lh9/2—2p;;2 15.5 - .01 .02 ' .03 .05
© .03 .04 .04 .06
1113/2 1}2 25.0 ' .01 ‘ .03
- .01 .03
10y p" 2pli2 9.0 -.08
. -.09
24, ) 1g9i2 6.5 3 . =.05 -.08
-.07" -.09
1i . .-1a.t 24.0 .01 .01 .02 .02
13/2 77372 .02 .01 .02 .02
2p. ,.-2p.t 3.5 -.10
1/27F3/2 | 5
291/2—1f;§é 4.0 .10
.24
lg. ,.-lda.t 13.5 -.04 -.01 '-.01
9/2" %2
-.14 -.02 .02
2p) /o=l 5.5 :.22
lg9/2—231;2 12.5 . -.03
-.04
199/2-1d;i2 1.5 -.03 -.03
-.06 -.05

%The .first entry for a given pﬁ and J is the amplitude obtained using first order
perturbation theory and the second entry is the amplitude obtalned using the
renormalized coupling interaction.




Table VII. Parameters for S 0 transition densities obtained from first order calculations.
L a . a
Transition ‘ Theory Experiment
Target m JOJ JOJ . JOJ JOJ J JOJ J JOJ
€
Je (303) Xp An AO Kl e fs Ep € fr o
420, 2% (202) 0.68 0.23 0.91 0.45 0.68 1.47 1.7¢.1° 2.03°
4t (4049) 0.48 0.17 0.65 0.31 0.48 1.34 - 2.12°
6" (606) 0.22 0.08 0.30 0.14 0.22 1.16 - -
Ops 2% (202) 0.22 0.88 1.10 -0.66 1.22 3.65 1.7+.2% 5.34°
4" (404) 0.16 0.70 0.86 -0.54 1.16 3.09 1.a:1f 4.86°
6" (606) 0.07 0.43 0.50 -0.36 1.07 2.25 = -
89 + 5
Y a/2% (505) 0.28 0.74 1.02 -0.46 1.28 3.32 — -
Oy 2% (202) 0.31 1.22 1.53 -0.91 1.31 4.92 2.8t .49 6.45h
at (404) 0.23 1 0.97 1.20 -0.74 1.23 '3.90 2.1%.3% 5,300
6" (606) 0.12 0.74 0.86 -0.62 1.12 3.16 - 4.94"
8" (808) 0.08 0.45 0.53 -0.37 1.08 2.54 - 6.35"
57 (505) 0.28 0.74 1.02 -0.46 1.28 3.32 1.4%.1) 4.550
2075y, 5/27 (202) 0.62 0.38 1.00 0.24 0.62 1.60 93+.01%  2.50%
372" (202) 0.58 0.36 0.94 0.22 0.58 1.57 75+.02% - 1.01%
1372% (707) 0.39 0.32 0.71 0.07 0.39 1.46 - © o307t
- ‘ ‘ 2
772" (404) 0.61 0.39 1.00 0.22 0.61 1.61 — 2.63
(continued)
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Table VII. (continued)

: Transition Theorya Experimenta
Target JTfT (303) >\;OJ )\iOJ )\gOJ }\iOJ eiff . E;OJ esz . E:gOJ
209, 7727 (202) 0.38 1.25 1.63 -0.87  1.38 4.82 2.3t.6" -

(404) 0.33 1.22 1.55 -0.89 1.33 4.68 - -

(606) 0.26 1.16 1.42 -0.90 1.26 4.44 - -

(808) 0.18 1.00 1.18 -0.82 1.18 3.93 - -

13727 (303) 0.38 1.32  1.70 -0.94 1.38 5.01 5.3t.7" 24.0°

’ (505) 0.24 1.10 '1.34 © -0.86 1.24 4.27 = -
(707) 0.14 0.81 0.95 -0.67 1.14 3.38 - -

(909) 0.08 0.53 0.61 -0.45  1.08 2.54 - -

(11011)  0.01 0.37 0.38 -0.36 1.01 2.03 - -

aSee text for comments on the manner in which the numbers listed in these columns have been obtained.

bRef. 54 and-55

IRef. 58-61.

zRef. 42 and 65

-

h

Cref. 56. d

Ref. 18, 39, and 46.

Mpef. 66 and 67.

Ref. 54 and 57-59. ®Ref. 44 and 45.

fRef. 54 and 58,

TRef. 58. Jref. 62 and 63. Kpef. 64,

PRef. 66-68. CRef. 17.

TS6T~1d1



Table VIII. Parameters for S = 0 transition densities obtained using renormalized coupling interaction.

Transition ‘Theorya Experimenta
Target
T J0J JOJ JoJ JOJ 3 303 3 303
J. (JoJ) . A A A A
g (909) o n 0 1 Ceff o Ceff o
42 +

ca 2% (202) 0.98 0.83 1.81 0.15 0.98 2.18 1.7+.1 2.03
a* (404 0.61 0.41 1.02 0.20 0.61 1.62 - 2.12
6" (606) 0.25 0.14 0.39 0.11 0.25 1.23 - -

50 . + - '

i 2% (202) 0.81 1.36 2.17 -0.55 1.81 5.61 1.74.2 5.34
at (409 0.40 © 0.90° 1.30 -0.50 1:40 3.95 1.44.1 4.86
6t (606) 0.18 0.49 0.67 ~0.31 1.18 2.53 - -

89 + . v .

Y 9/2% (505) 0.35 0.79 1.14 -0.44 1.35 3.52 - -

90 + ) .

7r 2% (202) 1.30 2.07 3.37 ~0.77 2.30 7.95 2.8+.4 6.45
a* (404) 0.66 1.37 2.06 -0.71 1.69 5.43 2.1+.3 5.39
6t (606) 0.33 0.89 1.25 -0.56 1.33 3.78 - 4.94
gt (s08) 0.16 0.49 0.76 -0.33 1.16 2.51 - 6.35
57 (505) 0.35 0.79 1.14 -0.44 1.35 3.52 1.4%.1 4.55

207 -
Pb 5,2 (202) 0.85 1.10 1.95 -0.25 0.85 2.41 .,93:.01 2.50
3727 (202) 0.87 1.20 2.07 -0.33 0.87 2.51 .754.02 1.91
1372 (707 0.41 0.59 1.00 -0.18 0.41 1.74 - 3.07.
772" (404) 0.78 0.82 1.60 -0.04 0.78 2.10 -  2.63
(continued)
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Table VIII.

(continued)
Transition Experimenta
Target T JoJg JoJ JoJ JoJ J JoJ J JoJ
Je (J0J) Ap An >‘o )‘1 S ff ep ot sp
20954 7/2° (202) 0.87 1.63 2.50 -0.76 1.87 6.35 2.3%.6 -
(404) 0.80 1.65 2.45 ~0.85 1.80 6.34 - -
(606) 1 0.60 1.39 1.99 -0.79 1.60 5.42 - -
(808) 0.36 - 1.06 1.42 -0.70 1.36 4.28 - -
13727 (303) 0.14 1.42 1.56 -1.28 1.14 5.05 5,3%.7 24.0
(505) 0.14 1.05 1.19 -0.91 1.14 4.03 - -
(707) 0.12 0.68 0.80 -0.56 1.12 2.99 — -
(909) 0.05 . 0.49 0.54 -0.44 1.05 2.39 - -
(11011) 0.02 0.35 0.37 -0.33 1.02 1.98 - -

See text for comments on the manner in which the numbers listed in these columns have been obtalned.

" for experlmental values have been given in Table VII.

References
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Table IX. Parameters for S = 1 transition densities obtained from first order
calculations.
Transition

Target Jg (LIJ)_ A;IJ_ AEIJ XEIJ AiIJ E;IJ
89y _9/2+ (314) -0.45 0.08 -0.37 -0.53 0.53
(514) -0.28 0.05 -0.23 -0.33 0.71
(515) -0.25 0.05 -0.20 -0.30 0.74
90z 57 (515) ~0.25 0.05 ~0.20 - -0.30 0.74
2075y, 5727 (212) 0.05 -0.41 0.36 0.46 0.34
(213) 0.03 -0.32 0.29 0.35 0.53
(413) 0.04 -0.27 . 0.23 0.31 0.53
3/2° (011) 0.05 = -0.20 0.15 0.25 © 0.55
(211) 0.09 -0.44  0.35 0.53 0.11
(212) 0.06 ~0.39 0.33 0.45 . 0.31
13/2% (516) 0.05 ~0.45 0.40 0.50 0.30
(716) 0.02 -0.11 . 0.09 0.13 ©0.79
(717) 0.03 -0.29. 0.26 0.32 0.56
7727 (213) 0.06 -0.42 0.36 0.48 0.28
(413) 0.08 <0.34 0.26 0.42 0.26
(414) 0.06 -0.38 0.32 0.44 0.32

209 772" (011)° - - - - -
(211) -0.28 0.06  -0.22 -0.34 0.71
(212) -0.38 0.09 -0.29 -0.47 0.61
(213) -0.40 0.11 -0.29 -0.51 0.58
(413) -0.23 0.09 -0.14 -0.32 0.76
(414) -0.32 0.10 -0.22 -0.42 0.66
(415) -0.38 0.11 -0.27 -0.49 0.60
(615) -0.16 0.09 -0.07 -0.25 0.82
(616) -0.25 0.09 -0.16 -0.34 0.73

(continued)
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Table IX. (continued)

Transition

Target Jg (L) A;IJ AEIJ ABIJ AiIJ EII;IJ
(617) ~0.33 0.11 -0.22 ~0.44 0.65
(817) ~0.09 0.08 -0.01 ~0.17 0.90
(818) -0.17 0.09 -0.08 -0.26 0.84
13/2% (112) -0.33 0.10 -0.23 -0.43 0.65
(312) ~0.22 0.09 ~0.13 -0.31 0.77
(313) -0.30 0.11 -0.19 -0.41 0.68
(314) -0.29 0.11 -0.18 -0.40 0.69
(514) ~0.21 0.09 -0.22 -0.30 0.88
(515) ~0.22 0.10 -0.12 -0.32 0.77
(516) -0.23 0.09 -0.14 -0.32 0.75
(716) -0.13 0.08 -0.05 ~0.21 0.86
(717) -0.13 0.08 -0.05 -0.21 0.86
(718) -0.16 0.06 ~0.10 ~0.22 0.83
(918) -0.04 0.06 0.02 -0.01 0.94
(919) -0.07 0.05 -0.02 -0.12 0.92
(9110) -0.13 0.03 -0.10 -0.16 0.87
(11110) 0.00 0.04 0.04 -0.04 0.99
(11111) -0.04 0.03 -0.01 ~0.07 0.95

. . . . . 011
%The valence transition is strictly forbidden in this case so A cannot be
Core polarization does not break this selection rule to any great

defined.
extent.




Table X. Comparison of the results of this work (PW) for some gquadrupole transitions with results obtained

previously by Siegal and Zamick.

a | b <., a b
PW (GKK) SZ (GKK) PW(G") SZ (TDA)

Core Transition

202 202 202 202 202 202 202 202

Yo _ M % M Yo M Ao M
40 ' . ' N :

-> - -— - -
Ca lf7/2 ;f7/2 0.91 0.45 0.80 0.38 1.81 0.15 1.86 =-0.30

3pW denotes present work.
coupling interaction.

GKK refers to first order calculations and G' refers to calculations with renormalized

bsz denotes Siegal and Zamick.lO -TDA refers to the treatment of excluded spéce interactions in the TDA .

approximation.

_VG_
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Table X1. Effective charges for some quadrupole transitions not considered in
. Tables II, XII, and VIII.

Theory Experiment
Nuclide Transition e2 » (G_.) e2 (é') e2
. . eff KK eff eff
42 _ .

Ca 6 > 4" 0.68 0.98 0.8+.1%
>0y 6f > 4t 1.22 1.81 1.8%.32
90y, gt > 6" 1.31 2.30 2.1+.1°

208 . c
+ > .3 2.27 - 1.5+.1
Pb + p lhy ,, > 1hy o 1.35
208 » c
Pb + -~ .37 0.55 0.42+.01
n »3<515/2 251/2 0 ( )c
- .36 "1.04 0.84%.07
299,52 7 2997 0 ( )
208 -1 c
+ i -+ 1i . .22 0.96%.04
Pb n 1113/2 1113/2 0.81 1 ( )
b

qRef. 72. Ref. 59. Cref. 64.




Table XII. Optical parameters used in the present calculations.

Systema E \Y% r a W, W r ' a' v r a
. (o] _ o] (o] S S S
(MeV) (MeV) (F) (F) (MeV) (MeV) - (F) (F) (MeV) (F) (F)
42 b
Ca + p 22.9 46.9 1.18 .700 1.30 6.80 1.30 .600 6.00 . 1.05 .700
S0 4 > 17.5 48.3 1.24 .600 0.00 10.68 1.26 .520 10.00 1.24 .600
20m; pd 40.0 44,9 1.16 .750 7.82 1.14 1.37 .630 6.04 1.06 .738
8y .+ pe 18.9 52.6 1.20 .700 0.00 9.80 1.25  .650 5.70 1.20 .700
89Y + pf 24.5 46.6 1.23 .627 0.00 10.9 1.28 .536 7.00 '1.23 .627
8y + pJ 61.2 39.5 1.20 .693 5.12 2.54 1.40 .534 6.92 1.00 .861
9er + ph 18.8 52.0 1.20 .700  0.00 9.25 1.25 ° .650 6.20 1.20 .700
9OZr + pJ 61.2 39.5 1.20 .693 5.12 2.54 1.40 .534 6.92 1.00 .861
207 i - .
Pb + p 20.2 53.0 1.25 .650 0.00 10.0 1.25 .760 6.00 1.20 .470

%We write the optical potential

P
x, -1 . x' -1 , o] x' =1 2 14 s, ~1
Us=-V(1+e?) " -iW(l+e” ) "+ 4wy 55 (L+e” ) "+ (h/mﬂc) VoTa A+e) ,
where 1/3 1/3 . 1/3
r-rA r-r 'A r - rA
_ o) , o) S
X =—— , ' = —m—/— X = — ,
a a s a
and to which is added the Coulomb potential of a uniformly charged sphere of radius 1.25Al/3.
Pref. 56.  Cref. 75.  Jmef. 45.  ®Rref. 76.  Tref. 77.  IRref. 78.  PRef. 46.  ‘Ref. 65.

_96:-
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Téble XIII. Parameters for ground state proton distributions.
. .a
Nuclide po c a
-3
(F (F) (F)
42 b

Ca .069 3.83 .595
50, ..

Ti .073 3.92 .553
89y .073 4.80 .568
902,° .074 4.85 .568

20754 .063 6.63 .527

%1t is assumed that the density distribution is given by

pp(r) = po[l + egp(

Pref. s4. “Ref. 79.

dRef. 80.

r - C
a -
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Figure Captions
. 50,_.. 90 . _ ' . .
Fig. 1. Spectra of Ti and Zr showing pairing effect due to core polarization.
Fig. 2. Theoretical (p,p') differential cross section obtained with schematic
model for the first 2% and 4% states in 50Ti with Ep = 17.5 and 40.0 MeV.
Results with (D) and without (D+C) core polarization are shown.

Fig. 3. Theoretical (p,p') differential cross sections obtained with schematic

. + + + + ) )
model for first 2 , 4 , 6 , and 8 states in 90Zr with Ep = 18.8 MeV,
Fig. 4. Transition densities for I=2 transitions in 50Ti, 90Zr, 207Pb, and
209%; .

Fig. 5. Form factors obtained from transition densities of Fig. 4. -
. Y . + + . . .
Fig. 6. Theoretical (p,p') cross sections for first 2 and 4 excitations in
42Ca with E_ = 22.9 MeV.
P
. . , + ., 42
Fig. 7. Theoretical (e,e') form factor for first 2 state in Ca.
. . ) . . + + . 50_.
Fig. 8. Theoretical (p,p') cross sections for first 2 and 4 states in Ti
with Ep = 17.5 and 40.0 MeV.
. ' . . + + . 50 .
Fig. 9. Theoretical (e,e') form factors for first 2 and 4 states in Ti.

+  +
, 6, and 8"

. +
Fig. 10. Theoretical (p,p') cross sections for first 2 , 4
. . .90 . :

excitations in Zxr with Ep = 18.8 MeV.
Fig. 1l1. Same as Fig. 10 with Ep = 61,2 MeV,
Fig. 12. Theoretical (p,p') cross sections for excitation of first 5 level

.90 '

in Zr at Ep = 18.8 and 61.2 MeV.

Fig. 13. Theoretical (e,e') form factors for first 2% and 4% excitations in

9OZrJ
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Fig. 14. Theoretical (p,p') cross sections for 2pl/2 single proton

- 1
99,2
transition in °2Yy with £, = 18.9, 24.5, and 61.2 MeV.

Fig. 15. Theoretical (p,p') cross sections for neutron hole transitions in

207Pb with Ep = 20.2 MeV.
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