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ABSTRACT 
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Inelastic scattering is a source of much useful information about core 

polarization effects in nuclei near closed shells. Although there have been 

many theoretical treatments of core polarization effects reported in the 

literature, the results of these calculations have rarely been applied to the 

interpretation of inelastic scattering data. In the present paper we review 

the microscopic models for the treatment of inelastic proton and electron 

scattering and the microscopic models for the treatment of core polarization. 

Estimates are made of core excited admixtures in the wave functions for low-

1 . t t . 42c 50T. 89y 90z 207Pb and 209B1 .• · y1.ng s a es 1.n a, 1. , , r, , The resulting wave 

functions are used to calculate theoretical (p,p') cross sections and (e,e') 

form factors for comparison with available experimental data. "Realistic" G 

matrix interactions are used as the starting point in both the structure and the 

(p,p') calculations. In the structure calculations the interaction is modified 

by means of a "bootstrap" prescription to account for important long-range core 

correlations and in the (p,p') calculations it is modified by the addition of an 

imaginary component. It is concluded that the overall features of the experi-

mental data can be understood from these calculations. 
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I. INTRODUCTION 

The concept of core polarization is quite well known in the shell model 

interpretation of nuclei in the vicinity of closed shells. In the shell model _, 

a nuclear state is described in a restricted configuration space which presumably 

contains the bulk of its wave function, but not all its significant components. 

This restricted configuration space, commonly called the model space, usually 

consists of a few valence p,articles (holes) distributed among a small number of 

shell model orbitals outside (inside) an inert closed shell core. The term 

core polarization is generally associated with effects which are due to wave 

function admixtures not in the model space. The name arises because these 

admixtures most often will consist of core-excited configurations. Core polari­

zation can be taken into account by defining effective operators in the model 

space which may be calculated by means of perturbation theory. 

1 2 These ideas first appeared in the literature about twenty years ago ' 

when it was first noted that there were discrepancies between the predictions 

of the simple shell model and the experimental values for nuclear magnetic 

moments, quadrupole moments, y-transition rates, etc. Two different models 

were proposed at this time. One is a hybrid model in which the core is treated 

as a liquid drop which can be set into oscillation by interaction with the 

extra-core nucleons. 1 The other is a completely microscopic model
2 

in which 

the core is considered to be an assemblage of nucleons - any of which might 

be raised to higher, unoccupied levels as a result of the two body forces 

which couple them to the valence nucleons. 

In recent times this microscopic model has been pursued in considerably 

greater depth. The major impetus here .has. been the work of Brown and collabo-
~~.. ' •:· 

3-8 raters whose purpose was to gain an understanding of the properties of finite 
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nuclei using "realistic" forces~ i.e. interactions which can be derived directly 

from the free two-nucleon potential. As the nucleon-nucleon interaction is 

strong and singular~ the first step in this approach is to truncate to a large 

shell model basis by applying Brueckner Hartree-Fock theory to get rid of the 

short range two-nucleon correlations and replace the singular interaction by a 

smooth well-behaved one~ namely the bare G matrix. The second step is to 

truncate to the model space and to renormalize the bare G matrix to account 

for core polarization as described in the first paragraph above. The 

renormalized G matrix is the shell model effective interaction. 

d B 
4 ~ 8 d · f 1 · 'th 16o 40c Kuo an rown have ma e a systemat1c study o nuc el Wl , a, 

48c a, 56N. 
l, 

88 208 Sr, and Pb cores using second order perturbation theory in 

renormalizing the bare G matrix. They find that core polarization gives rise 

to a strong pairing effect wbich is the major feature of the observed spectra. 

Although the results of these calculations are quite impressive~ attempts9 to 

extend the perturbative treatment to higher orders have not met with the same 

success and the final status of core polarization and the effective interaction 

is still an open question. A similar situation prevails in regard to associated 

efforts10 to calculate nuclear magnetic moments~ quadrupole moments, and 

quadrupole transition rates. Lowest order perturbation theory provides a 

reasonable qualitative estimate of these effects, but there are still many 

ambiguities in the interpretation of the results of calculations which include 

higher order contributions. Much of this work has been reviewed recently 

by Barrett and Kirson. 11 

The purpose of the present paper is to present the results of calcu-

lations, similar to those of Ref. 10, but applied to the problem of inelastic 

scattering. In particular~ we consider inelastic electron scattering and inelastic 

' ' ' 
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proton scattering. Inelastic proton scattering at energies below 100 MeV is 

interesting, because the interaction between the incident proton and the bound 

nucleons is quite similar to the interaction between bound nucleons, i.e. the 

bare G matrix. 12 •13 Electron scattering is primarily sensitive to proton 

excitations in the target nucleus while proton scattering is most sensitive 

to neutron excitations.
14 

By comparing results for these two reactions a 

measure of both the proton and neutron components of the nuclear wave functions 

is obtained. In addition, inelastic scattering provides information about core 

polarization effects in transitions requiring large angular momentum transfer. 

Cross sections have been measured for transitions where there are up to 11 units 

of angular momentum transferred. This is to be contrasted with low momentum 

electromagnetic data which is essentially restricted to dipole, quadrupole, 

and some octupole phenomena. 

The first attempt at treating core polarization in inelastic proton 

' 15 scattering was made by Love and Satchler. They assume a hydrodynamical 

description of the core and showed that core polarization can give a large, 

even dominant, contribution to the cross section. The main purpose of the 

present paper is to show that the major features of inelastic scattering from 

nuclei near closed shells can be qualitatively understood in completely micro-

scopic calculations based on "realistic" interactions. In the calculations, 

core excited admixtures in the nuclear wave functions are estimated using lowest 

order perturhation theory and a "bootstrap" prescription which accounts for 

long range core correlations. Agassi and Schaeffer
16 

have previously made a 

similar, but considerably more limited study of these same effects. We also 

note that some results obtained with wave functions from the present paper 

17 18 
have previously been reported elsewhere. ' 

In the next section of this paper we give a brief description of the 
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theoretical treatment of inelastic proton and inelastic electron scattering. 

We review the theory of effective operators and describe our calculations in 
v 

Section III. The results of the calculations are discussed in Section IV 

and Section V contains the conclusions. 

,_; I , 

1.' I 

I 
'i, 

' 
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II. INELASTIC SCATTERING 

A. Inelastic Proton Scattering 

l. The Microscopic Model 

In the microscopic model proton-nucleus scattering is described in terms 

of a projectile-target interaction which has the form 

v =I 
i 

t. 
l..p ( 1) 

where t. is a two-body force acting between the projectile and the ith target 
lP 

nucleon. The two-body force t. has both real and imaginary parts, because, lp 

even in the most elaborate of reaction calculations, only a few of the allowed 

channels are treated explicitly. In principle, t. can be derived directly 
lP 

from the free two-nucleon potential. Such a calculation is not easy; however, 

as it requires the treatment of the repulsive hard cores which appear in the 

free two-nucleon potential combined with an explicit treatment of the excluded 

reaction channels. 

Although a program of this type has not been carried out in detail, a 

reasonable prescription fort. , applicable in the energy region below 100 MeV, 
lp . 

. 12 13 has been developed ln recent years. ' It is based on the assumptions that 

the real part oft. is not too different from the bound state G matrix and lp 

that the effects of the excluded reaction channels can be estimated perturba-

tively or treated phenomenologically. The first assumption has been tested in 

. 12-14 several calculatlons. Attempts to estimate the effect of the excluded 

reaction channels have, so far, been restricted to the case of elastic 

scattering. 12 •19 20 Satchler has proposed a method whereby the imaginary part 
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oft. for inelastic scattering calculations can be inferred from the imaginary lp 

part of the phenomenological optical potential for elastic scattering. This 

. . 13 18 20 21 method has proved to be useful 1n several calculat1ons. ' ' ' 

Additional comments concerning this prescription for t. may be found in 
J.P 

Ref. 13. 

Another problem which is encountered in any attempt to treat proton-

nucleus scattering in a microscopic model is the indistinguishability of the 

incident proton and the target nucleons. In this situation the Pauli principle 

requires that the wave function for the projectile-target system be completely 

antisymmetrized - which in turn gives rise to "knock-on" exchange amplitudes in the 

transition matrix elements. These are non-local in the projectile coordinate and 

they are quite important, particularly in the case of inelastic transitions. 22
, 23 ,l2

,13 

Computer codes are available which allow the inclusion of these exchan(Se amplitudes 

and their properties have been studied in some detail. 13 '
22

' 23 In this work we 

include these terms with a zero-range approximation developed previously. 12
,
24 

2. The Interaction 

In the present calculations we assume t. to be given by l.p 

t. l.p = t~ l.p 
+ •ti J. • l.p 

where R and I denote real and imaginary, respectively. 

R We take t. to be the long range part of the Ramada-Johnston (HJ) l.p 

(2) 

potential 25 '
4' 5' 12

, 13 with the closure approximation to the second order tensor 

contribution; We assume a 1.05 F separation distance and a closure energy 

denominator of 220 MeV. This is a local, even state central interaction which 

' 
J 

: i 

i 

;\J 
I 
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can be written 

(J 
p 

LBL-1951 

( 3) 

with q = p or n as i is a proton or neutron. The expression for the radial 

4 5 12 13 functions appearing in Eq. (3) have been given elsewhere ' ' ' and will not 

be repeated here. For orientation we note that 

(4) 

1 
with all components but gpp being attractive. 

We neglect the central interaction in odd states. This has been included 

in some calculations by fitting a regular functional form to the low energy 

nucleon-nucleon P-wave phase shifts12 •13 and its effect is not large. We do 

not include possible spin-orbit and tensor components in t~ . The properties 
l.p 

of these non-central interaction components have been discussed in detail 

26 27 elsewhere ' and are only of secondary importance for most of the transitions 

considered in this paper. 

I For t. we follow Ref. 20 and argue that the imaginary part of the optical 
l.p 

potential for elastic scattering is given by 

u1 (rp) = ( g.s. I ~ 
i 

With the assumption that 

t~ 
l.p 

t~ lg.s.) +exchange terms. lp . 

(q = p,n) 

( 5) 

( 6) 



-8- LBL-1951 

the two terms on the right of Eq. (5) are equal and 

UI(r ) = 2A (r ) p (r ) + 2A (r ) p (r ) P PP P P p pn p n p ' (7) 

where p and p are the ground state proton and neutron density functions. 
P n 

With the additional assumption that 

we obtain 

p = (N/Z) p n p 

= A(r ) p (r ) p p p 

A = 2 [~p + (N/Z)~n] 

( 8) 

(9) 

A can be determined by comparing directly UI and pp which are available from 

phenomenological analyses of elastic proton and electron scattering data. As 

APP and APP can not be determined separately from the data, we make the ansatz 

that A and A have the same radial shape and that their strengths are in the 
PP pn 

same ratio as the volume integrals of the corresponding components of t~ , i.e. 1p 

A =a.A 
pn PP 

12 For the long range part of the HJ potential a= 2.58. 

(10) 

In .the above paragraph it has been assumed that the imaginary part of 

the projectile-target interaction for inelastic scattering is proportional to 

28 that for elastic scattering. It has been argued that the various excluded 

channels contribute coherently to the imaginary part of the optical potential 

for elastic scattering, but that the separate contributions interfere to some 

\o.' I 

i 
I 

.. I 
I 

I 
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degree in the case of an inelastic excitation. 

LBL-1951 

This means that t: for elastic 
~p 

I 
scattering should be greater than t. for inelastic scattering. With this 

~p 

argument in mind we simply point out that the prescription outlined above gives, 

in all probability, an upper limit I on t. for inelastic transitions. We also 
~p 

mention that the assumption that a = 2.58 in Eq. (10) is tantamount to assuming 

that excluded channels which favor neutron excitation, e.g. (p,p') and (p,d), 

are more important than those which favor proton excitation, e.g. (p,2p). 

Although this does not seem unreasonable, this point has not been investigated 

in detail and could, in fact, be wrong. Fortunately, the results to be presented 

are not critically dependent on this assumption. 

3. The Distorted Wave Approximation 

The differential cross section for inelastic proton s.cattering can be 

written as follows 

(11) 

where ~ is the reduced mass of the projectile-target system, kf and ki are the 

final and initial relative wave numbers, J. is the initial spin of the target, 
~ 

Tfi is the transition amplitude, and the sum is over the initial and final 

projections of the projectile and target. In the distorted wave approximation 

the transition amplitude is given by 

where the x's are distorted waves and li} and If} are the initial and final 

states of the target. The first term in this equation is the direct amplitude 
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and the second is the "knock-on" exchange amplitude. With the approximation 

of Ref. 12 and 24, the exchange terms can be included by replacing V irt 

the first term of Eq. (12) by 

where 

v. 
lp 

v =I 
i 

v. 
lp 

= t~ + 2 i t~ + t~ (k 2 ) 1p 1p 1p L o(r. - r ) 
J. p 

(13) 

(14) 

For the imaginary component of V the direct and exchange amplitudes are equal 

I because t. , as defined in Eq. (6), is assumed to be a zero-range interaction. 
lp 

This accounts for the factor of 2 multiplying t:. in Eq. (14). The ~xchange 
J.P 

amplitude corresponding to the real part of V is given by the last term in 

Eq. (14) where t~ (kL2 ) is the Fourier transform of t~ evaluated at the lp lp 

wave number associated with the laboratory energy of the incident proton. 

To understand this approximation it is sufficient to consider the 

scattering of a free nucleon from another nucleon bound in a fixed potential 

well. On the average the bound nucleon is at rest with respect to the inci-

dent nucleon. In order for the incident nucleon to knock out the bound nucleon 

and be captured in the potential well it necessary that it impart all its 

momentum to the bound nucleon. This is a very high energy argument in that 

we ignore the spread of momentum components in the wave function for the bound 

nucleon as well as the effect of the binding potential; however, in practice 

it is found to work quite we1112 even for energ:ies below 100 MeV. 

v, 
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Noting that t~ and t~ (k 
2

) have essentially the same sign, we see 
1p 1p ---r.. ·· 

that the direct and exchange contributions in Eq. (14) are in phase. This is 

a direct consequence of the fact that the interaction being considered has 

only even state components. Exchange amplitudes for odd state interactions 

are out of phase with the direct amplitudes.12 ,13 '
22

' 23 This is a contributing 

factor in allowing us to neglect the odd state components of the projectile-target 

interaction. 

The essential point of the preceding development is that inelastic 

proton scattering cross sections can be understood reasonably well in local 

distorted wave calculations,' that is 

T . = /x(-)* c:r: ) 
fl f p (15) 

where V is a pseudo-potential, derived from a "realistic" interaction, which 

incorporates the major features of "knock-on" exchange, The relative strengths 

of the components of V are very nearly the same as the relative strengths of 

the components of the real part of V which have been given in Eq. ( 4). As we 

are interested in treating nuclear wave functions which contain many components, 

the reduction of the calculations to the form of Eq. (15) is important. In 

this situation an exact treatment of Eq. (12) can be very expensive or, in 

some eases, impossible to carry out. 

The evaluation of the integral in Eq. (15) is straightforward. 29 The 

procedure is to expand V in multipoles which correspond to definite orbital, 

spin, and total angular momentum transfer (LSJ). This expansion is given by 

v I s ( r ;r. ) (-l)J+S+MJ TLSJ (p) TLsJ (i) (q p,n) (16) = v = pqL p l -M . M 
i J J 

LSJ 
MJ 
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where v SL (r ;r.) is the Lth multipole coefficient in the Legendre expansion pq p ~ 

of v8 (r. ) and TMLSJ is the "spin-angle" tensor 
pq ~p J 

T~~J = 2 < LSMA!JMJ > iL YLM cr~ 
MI.. 

(17) 

Inserting Eq. (16) into Eq. (15), performing the integration over the target 

coordinates and projectile spin coordinates, and carrying out the summations in 

Eq. (11), we obtain immediately the final expression for the differential cross 

section. 

dcr c~h2)2 kf 2Jf + 1 

2 IS~I 2 
d.Q= k. 2J. + 1 

~ ~ LSJ 
M 

SLM = 
.-L f (-)* cr: ) ~sJ * (; ) X~+)(~ )d3r ~ (r ) (18) SJ " xf p ) p YLM p ~ p p 
L 

L = [2L + 1]112 

We have ignored the effect of spin-orbit coupling in the optical potential in 

writing Eq. (18) although we do include it in the calculations. It gives rise 

to interference between amplitudes of the same J with different L and 8~ 29 In 

practice this interference is found to be weak. 

All information pertaining to the projectile-target interaction and the 

details of nuclear structure are contained in the radial form factors, F LSJ(rp)' 

which appear in Eq. (18). The nuclear structure information is confined to the 

radial nuclear transition densities which are defined by 

F~SJ ( r) = < fll L 
i 

o(r-r.) 
~ 

2 
r. 

1. 

TLSJ ( i) IIi ) {q = p,n) (19) 

. : 



·v 

... 

-13- LBL-1951 

where ( II II ) is a reduced matrix element 30 and the sum on i runs over 

target protons or neutrons as, ·q = p or n. The radial form factors are obtained 

by averaging V over the transition densities, i.e. 

F LSJ (rp) = L 
q=p,n 

!
00 

S . LSJ 2 
vpqL (rp;r) Fq (r) r dr 

0 . 
(20) 

With the approximations employed here, inelastic proton scattering is 

simply a one-body operator with respect to the target. This is quite evident 

from Eq. (18) - (20). The selection rules for the reaction are contained in 

Eq. (19). These are: 

L = M JSL) ( 21 ) 

. L 
Lm = ( -1) (22) 

There is some violation of the parity select~on rule, Eq. (22), when exchange 

. 13 22 23 1s treated exactly. ' ' Although it is possible to include the amplitudes 

which violate Eq. ( 22) in an approximate wa:y, 24 
'we ignore them here as they 

contribute little to the differential cross sections,. 

We distinguish between normal parity (~TI = (-l)J) and abnormal parity 

J+l amplitudes (6rr = (-1) ). In the fbrmer case the allowed values of LSJ are 

JOJ and JlJ and the reaction can proceed through the strong spin independent 

components of the projectile-target interaction. Neutron excitations will be 

most important here as v
0 ~ 3v0 . In the latter case the allowed values of 
pn PP 

LSJ are J ± llJ and the reaction can proceed only through the weaker spin 

dependent parts of the projectile-target interaction • We will 

see in Section III th~t' th~ effect· .of core p~larization is to enhance the 
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S = 0 transition densities while retarding the S = 1 transition densities. 

For most of the transitions which will be considered in Section IV, a single 

S = 0 amplitude will make the dominant contribution to the cross section. 

B. Inelastic Electron Scattering 

The differential cross section for inelastic electron scattering is 

given by 31 

do 
a.n= (23) 

2 where Z OM is the Matt cross section which describes the scattering of a high 

energy electron by a point charge Z, n is a recoil factor, 8 is the scattering 

angle, and q is the magnitude of the momentum transfer. F1 (q) and FT(q) are 

the longitudinal and transverse form factors, respectively. As a result of 

the difference in the angular dependence of the two terms in Eq. (23), it is 

possible to determine both F1 (q) and FT(q) from the experimental data. Since 

we will consider only cases where F1 (q) is dominant or where F1 (q) has been 

separated from FT(q), the following discussion will be confined to the 

longitudinal form factor. Details concerning the transverse form factor 

may be found in Ref. 31. 

We assume here a Born approximation treatment with a local wave number 

correction to account for Coulomb distortion. 31 This approach has been shown 

to be adequate, even for heavy nuclei, provided we don't require information 

14 inside the nuclear surface. With these assumptions the longitudinal form 

factor is given by 

2Jf+l 

2J.+l 
l 

(24) 

I 
i 

yl 

i 
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In this equation jJ(Kqr) is a spherical Bessel function and the factor K 

appearing in its argument defines the local wave number. . 31 14 It is gJ. ven by ' 

K = 1 - V (0)/E 
c ' 

(25) 

where V ( 0) is the Coulomb potential at the center of the target and E is the 
c 

energy of the incident electron. In addition P~h (r) is the radial charge 

. h . d. t . b t . 32 
transition density which is obtained by averaging t e proton charge J.S rJ. u J.on 

over the nuclear proton transition density defined in Eq. (19). The averaging 

integral is 

00 

J 1 J JOJ 2 Pch (r) = 
0 

Pp (r;r') Fp (r') r' dr' ( 26) 

where p/ (r;r') is the Jth multipole coefficient in the Legendre expansion of 

the proton charge distribution. The longitudinal form factor determined by 

inelastic electron scattering provides a measure of the s = 0 proton transition 

density, in contrast to inelastic proton scattering which, when a normal parity 

amplitude is dominant, is more sensitive to the S = 0 neutron transition density. 

In closing this section we note that the longitudinal electron scattering 

form factor, in the region of small q, is simply related to the reduced transi-

tion probabilities determined in y-decay measurements. To see this we replace 

the spherical Bessel function in Eq. (24) by the leading term in its power 

series which is valid for small argument and note that the averaging integral 

Eq. (26) conserves the Jth moment of FJOJ(r), 33 i.e. 
p 

J p~h (r) rJ+
2 

dr = J F~OJ(r) rJ+
2ar ( 27) 
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We obtain 

where B(EJt) is the reduced transition probability 

B(EJt) = 
2Jf+l 

2J.+l 
1 

LBL-1951 

' (28) 

(29) 

~ ! 
I 
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III. THEORY OF EFFECTIVE OPERATORS 

The theory of effective operators is quite well known and has been dis-

: 5-7 11 34 cussed ln many places. ' ' We briefly review it here, following closely 

a discussion due toM. Harvey, 34 in order to provide background for the 

calculations to be presented. 

A. Formal Theory 

1. The Effective Hamiltonian 

The nuclear Hamiltonianis generally written 

where H
0 

is an independent· particle Hamil toni an 

Ho = L Ti + L ui 
i i 

which has both kinetic and potential energy parts and 

G = .2 gij 
i<j 

( 30) 

( 31) 

( 32) 

is the residual interaction. We assume that the difficulties associated with 

the hard core in the free two-nucleon potential have already been dealt with, 

so that g ... is the bare G matrix interaction. It is usual to 
lJ 

express the eigenfunction of H in terms of the complete set of states belonging 

11/J > = ~ a. I¢. > ~ l l 

i 

= £.I¢. ) 
l l 

(33) 

(34) 
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Since the set of basis states {I~>} is in general infinite in dimension, it 

is necessary to truncate to a finite basis in order to perform a practical 

calculation. 

To affect this truncation the projection operators 

p = I: 1~-) <~.I 
1. 1. 

iEd 
(35) 

Q = I: 1~-) 
1. 

( ~-1 
1. 

iEd 

are introduced. In the above equation, d denotes the model space and the 

remaining space is referred to as the excluded space. Introducing the notation 

>t I 

(36) 

and noting that 

:£;'2 = p QP=PQ=O p + Q = l 

(37) 

it is straightforward to show that 

iill/Jp> = [H
0 

+ G] ll/Jp) = Ell/Jp) (38) 

a= G + G E 
Q a 

Ho 
(39) 

ll/Jp) = s ·G ll/Jp) E - H 0 
(40) 
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where the problem of diagonalizing H in an infinite basis has been replaced by 

the problem of diagonalizing an effective Hamiltonian H in a finite basis. 

G is the shell model effective interaction. 

Equations (38) - ( 40) are completely equivalent to Eqs. ( 33) - ( 34) for 

those eigenstates of H which have some overlap with the model space. Eq. (38) 

gives the exact eigenvalues as well as the exact model space projection of the 

wave functions for these states. The components of the wave functions in the 

excluded space are given by Eq. (40). The claim made in the first of the two 

preceding sentences may seem surprising., since the number of eigenstates of H 

which have nonvanishing overlap with the model space surely exceeds the dimen-

sionality of the model space. The solution to this problem comes in noting 

that G (hence H) depends upon the exact ·eigenvalue, so that Eq. (38) is not 

the usual eigenvalue problem. In practical calculations the energy denominator 

appearing in the expression for G is fixed in some average way. This limits 

the approach to the treatment of a few eigenstates of H which presumably have 

a large overlap with the model space. 

2. Normalization of Eigenfunctions 

The normalization of I "ljJ: ) and I¢ ) has not yet been specified. In p 

accord with convention we normalize llJJ ) to unity so that 
p 

The norm of I¢ ) is then given by 

(41) 
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(42) 

Using Eq. (40) it immediately follows that 

( 43) 

With this normalization convention the admixtures of the true wave function in 

the model space and excluded space are 

and 

respectively. If we write 

11/Jp ) = L ailcPi) 

ie:d 

2 
A2 = n - l 

Q 2 
n 

then the amplitude of lcP. ) (je:d) in the true wave function is 
J 

(44) 

(45) 

A. = a./n (je:d) (46) 
J J 

In addition we find that the admixture of lcP.) (j~d) in the true wave function is 
J 

A. =2 A. a .. (j~d) 
' J ]. Jl. 

(47) 

ie:d 

where 

< <P .1 Q G I cP. ) (ie:d) a .. = j~d Jl. J E'- H ]. 
0 

( 48) 

is the amplitude of the excluded space configuration I<Pj ) in the model space 

configuration lcP. ) . 
]. 

.. 

• I 

lo ; 
i 
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3. Effective Transition Operators 

The transition matrix element of a one-body operator, 

two eigenstates of H, iv/ ) and iv/ ) , is given by 

LBL-1951 

T = ~t. , taken between 
]_ ]_ 

(49) 

' -1 
The factor (ninf) is necessary becausethe wave functions of H have not been normal-

ized to unity. Just as it is possible to replace the eigenvalue problem for H 

in an infinite basis by an eigenvalue problem for an effective Hamiltonian in 

a finite model space, <T> fi can be expressed in terms of the matrix element of an 

effective, T, taken between model space wave functions. The proof is short 

and serves to define the effective transition operator. We write 

(50) 

Then we replace ll/.JQ) on the right by its expression in terms of ll/.Jp ) , Eq. (40), 

to obtain 

' 

where 

Q - Q-- Q Q 
T = T + T E - HO G + G E - HO T + G E - HO T .... E ...;-;x.._H_O G 

We also note that Eq. (51) can be rewritten as 

( T) fi = 2 
i,jEd 

< <1> .1 tl <1>. > 
]_ J 

(51) 

(52) 

(53) 
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B. Schematic Model and Discussion 

It is clear from the above development that a complete discussion of 

the nuclear.problem requires only a knowledge of the matrix elements 

( ¢.IGI¢. ) , ( ¢.IN2 1¢. ) and (¢.If!¢.> with (i,je:d). Actual calculation of 
l J l l l J . 

these matrix elements is not a trivial matter, unfortunately, and even though 

this problem has received a great deal of attention it has yet to be completely 

ll -solved. Two estimates of the matrix elements of T are made in this work. 

For the first estimate we use lowest order perturbation theory. In 

lowest order G, N2 , and Tare approximated by 

G~G+G 
Q 

(e:. + e:.)/2- n0 l J 
G 

(55) 

(56) 

where E has been suitably defined in terms of the eigenvalues of H0 • This 

approximation gives a coupling between the model space and the excluded space, 

but neglects entirely any configuration interaction in the excluded space. The 

latter is evident from the free propagators which appear in Eq. (54) and Eq. (56). 

• I 
! 
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The low lying spectra of nuclei which are 2 particles (2p) or 2 holes (2h) 

away from closed shells are reproduced quite well in calculations employing 

4-8 -Eq. (54). The matrix elements of 6G = G - G are strong and at tractive in 

cases of the interaction energy of two identical nucleons coupled to zero 

total angular momentum with the main contribution coming from 3p - lh or 

3h - lp states of energy 2~w. This is the pairing effect mentioned in the 

introduction of this paper. Calculations which use Eq. (55) and Eq. (56)
10 

provide at best a qualitative estimate of transition matrix elements in nuclei 

np or nh away from closed shells. The main contribution to 6T= T - T comes 

from (n+l)p-lh or (n+l)h-lp intermediate states of energy 2hw and lhw for positive 

and negative parity transitions, respectively. Matrix elements of 6T 

generally have the right sign and are of the correct order of magnitude, 

although they are typically underestimated. A specific difficulty occurs in 

effective charge calculations where it is found that polarization charges for 

valence protons are smaller than for valence neutrons which is in contradiction 

to experiment. 

Lowest order perturbation theory implies a rather direct relationship between 

the renormalization of G andT in the case of states arising from two like nucleons 

2 TI + + + 
in a (j ) configuration, i.e. (2j+l)/2 states with J = 0, 2 , ... (2j-l) . 

Specifically, pairing occurs as a result of coherent contributions from the 

coupling between the valence nucleons and core excitations of different 

multipolarity. . + On the other hand, transitions start1ng from the 0 state 

+ and ending on one of the higher spin states Jf depend only on the coupling 

between the valence nucleons and core excitations of multipolarity Jf. 

Ine~astic scattering affords an excellent opportunity to study the above relation, 

since it is the only source of experimental data which gives information on the 
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direct excitation of the higher spin states of these configurations. 

To see the above schematically 9 we make use of the hydrodynamical 

description of the core and closure which allows us to write analytic expres-

sions for the effective operators in the model space. Considering only 

coupling between the valence nucleons and normal parity core excitations 

we find1 •35 

-~ e1 k (r.) k (r.) * A A oG = YLM(ri) YLM(rj) v l. v J 
i<j 
I.M 

dU(r - R ) 
k (r) -R 

v = v v dR 
v 

where the sum on i and j runs only over the valence nucleons, U is the 
v 

potential which binds the valence nucleon to the core, R is the radius 
v 

parameter in this potential, and 

1 

CL 

L gives the effective strength of the coupling to 2 -pole core excitations. 

(57) 

(58) 

L c1 is the effective core stiffness parameter for 2 -pole excitations. In a 

physical nucleus, there are, of course, more than one core excitation of each 

multipolarity. The reduction of the effect of these core excitations to a 

single coupling constant is where closure enters this model. In a similar 

manner, we find the core polarization correction to the projectile target 

interaction for the (p,p') reaction to be given by15 •35 

ov = -L 
i 

LM 

01k(r )k (r. )Y1*M(r )YLM(r.) p v l p ]. 
(59) 

Jl 

! 

~I 

I 

! 
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where k(r ) is defined in the same way ask except that the optical·potential 
p v 

U replaces the bound state potential U • v 

Strictly Eq. (57) and Eq. (59) for oG and oV should contain some 

spin dependence. This comes from coupling between the valence nucleons and 

abnormal parity core excitations35 and has been neglected primarily as a 

matter of convenience. It turnq out that these spin dependent terms do not 

contribute to transitions between states of a (j
2 ) configuration as is shown 

in the Appendix. They do make a small contribution to the pairing energy, 

but we intend to compare Eq. (57) with appropriate two-body matrix elements 

rather than the experimental two-body spectra so their neglect causes no 

problem. 

As examples, we consider the nuclei 50Ti and 90zr both of which have 

two valence protons. Th ult f 1 t d . . 1 1 t• 8,36 e res s o owes or er m1croscop1c ca cu a 1ons 

for the low lying spectra of these nuclei are compared with experiment in 

Fig. 1. Results obtained with (G + oG) and without (G) the inclusion of core 

polarization are both shown. In the calculation for 50Ti a full f-p shell 

8 model space has been assumed for the two valence protons. The resulting 

+ + + + 
wave functions for the lowest 0 , 2 , 4 , and 6 states are, however, almost 

pure (lf~/2 ) wave functions. 90 In the calculation for Zr the model space 

2 2 for the two valence protons included both the (lg
912

) and (2p
112

) configura-

t . 36 1ons. This explains the appearance of two 0+ states in results for this 

nucleus. 

The theoretical results with core polarization (G + oG) are in good 

agreement 'with experiment in both cases.. The pairing effect is quite 

evident. The multipole decomposition of the pairing matrix elements appearing 

in these calculations has been given in Ref. 8 and Ref. 36. Using Eq. (57) 

we obtain the following results for the pairing energy 



-26- LBL-1951 

E (.) p J = ( (j2)J = o!oG!(j
2
)J= 0} = I: EJ (.) 

p J 
j 

(60) 
EJ (.) -< k > 

2 
< j II Y .llj > 2e. = . p J v J J 

where ( k } denotes the radial expectation of k (r) and the sum on J runs over 
v v 

even values only. Assuming ( k } ::: 50 MeV and comparing Eq. (60) with the 
v 

matrix elements of Ref. 8 and Ref. 36, we obtain the values.of 83 and CJ 

listed in Table I. From the table, we see that the core of 50Ti is somewhat 

softer than that of 90zr and that J = 2 core excitations give the dominant 

contribution to the pairing energy in both cases. The values of e
3 

decrease 

steadily with increasing multipolarity; however, the core coupling is by no 

means negligible even for the highest core multipoles. 

With the values of e
3 

determined above, it is straightforward to 

estimate the corresponding effect of core polarization in inelastic proton 

scattering. One simply constructs the valence radial form factor according 

to the prescription of Sec. II.A. and adds to it the core correction 

(61) 

which follows directly from Eq. (59). Cross sections have been calculated 

. . 2+ 4+ . 50 . + 4+ 6+ 8+ for the excltat1on of the and levels 1n T1 and the 2 , , and 

states in 90zr in this manner. The 50Ti calculations were made for incident 

proton energies of 17.5 and 40 MeV to allow comparison with the experimental 

data of Ref. 37 and 38. The 90zr calculations were made for an incident 

proton energy of 18.8 MeV for comparison with the experimental data of Rev. 39. 

The optical parameters used in the calculations are tabulated in Table XII. 

li 

I 
I 
! 
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The results are compared with the data in Figs. 2 and 3. LSJ The quantity £ 
p 

shown with each cross section is the enhancement factor for core polarization. 

This is defined by 

aLSJ = (£LSJ)aLSJ 
p v (62) 

where a and a are the theoretical integrated cross sections with ·and without v 

the inclusion of core polarization. The introduction of this enhancement 

factor is analogous to the use of effective charges in describing electric 

y-transi tions. 

The theoretical results shown in Figs. 2 and 3 are in good qualitative 

agreement with experiment with the possible exception of the result for the 

8+ excitation in 90zr. It is suspected that multipole excitation might be 

18 important for this transition at this energy. We also note from the values 

of £ that core polarization leads to an increase in the valence cross 
p 

section by at least an order of magnitude in each case. We conclude that 

there is a striking consistency in the effect of core polarization on the 

low lying energy spectra of these nuclei and on the (p,p') cross sections 

for the excitation of these low lying states. 

The above results were previously reported elsewhere,
40 

in less 

detail than given here, by two of the present authors. The parameters for 

50
Ti from Table I were subsequently used in the calculation of theoretical 

(p,p') cross sections for low lying excitations in 51v. 38 This nucleus has 

three valence protons and the dominant configuration for the low lying states 

is (lf~/2 ). The theoretical results were found to be in good agreement with 

experiment which tends to indicate.that the effects of core polarization can 

be factorized, as lowest order perturbation theory implies,. at least when 
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the number of valence nucleons is small. A more recent (e,e') study of 51v 
41 has provided evidence which contradicts this conclusion to some degree. 

To improve on first order estimates of aT it is necessary to include 

the effect of configuration interaction in the excluded space, which requires 

higher order perturbation theory. Formally these effects can be seen by 

rewriting Eqs. (39), (43), and (52) in the explicit representation. 

- Q G = G + G G 
E-H -G 0 

N2 = l + G s G 
2 

(E-H -G) 
0 

- Q Q 
T = T + T E-H -G G + G E-HO-G 

0 . 
T + G Q G 

(64) 

These relations are similar in structure to the lowest order perturbative 

expressions in that the coupling between the model space and the excluded 

space is given by G interactions alone (G interactions appear on the right 

hand side in Eqs. (39), (43), and (52)); however, the propagators in 

Eqs. (63) - (65) project onto eigenstates of H in the excluded space instead 

of eigenstates of H0 as is true in the case of the lowest order perturbative 

expressions. The spectrum of H differs from that of H
0 

due to the effect of 

G interactions in the excluded space and this in turn affects the results 

for G, N2 , and f. 

Equations (63) - (65) cannot be evaluated exactly because it is 

impossible to diagonalize H in the excluded space which is still infinite; 

however, it is possible to evaluate these relations approximately by making 

.. , 

• i 
I 

I 

·, 

i 
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suitable truncations in the excluded space. The effects of configuration 

interaction in the space of p-h excitations of the core is well established 

from the T.D.A. and R.P.A. calculations of Gillet and collaborators,
42 

i.e. 

it gives rise to low lying normal parity vibrational states which are nearly 

iso-scalar in character and pushes the iso-vector core excitations up in 

energy. Transitions provide many clear examples that these, or related and 

possibly more complicated, effects are important. For example, it has 

already been mentioned that experiment indicates that valence neutrons and 

protons have approximately equal polarization charges. This implies that 

the dominant coupling occurs with iso-scalar core excitations. Results 

obtained for inelastic proton scattering and y-transitions using the 

15 43-46 hydrodynamical core model ' provide another example of this same effect. 

Here, at least for transitions of low multipolarity, the coupling constants 

eJ deduced from fits to inelastic proton scattering cross sections using 

Eq. (59) are found to be nearly equal to those required to reproduce the 

effective charge,15 i.e. 

(66) 

where e = 1 or 0 for q = p or n, Z is the core charge, R its radius, and 
q c c 

the radial expectations() are taken with respect to the radial wave functions 

of the valence nucleons. The eJ in Eq. (59) and Eq. (66) are only equal in 

th 1 . . t f 1" t . al . t t. 35 e 1m1 o coup 1ng o 1so-sc ar core exc1 a 1ons. (Note that our 

schematic discussion of the relationship between the pairing effect and the 

enhancement of (p,p') cross sections required no reference to the iso-spin 

nature of the coupling between the core and the valence protons.) A third 
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and perhaps even more striking example of the importance of configuration 

. t t . . th 1 d d . . 1 . d 208Pb h 1n erac 1on 1n e exc u e space 1s seen 1n nuc e1 aroun w ere there 

are clear cut cases of coupling between valence nucleons and low lying 

vibrational states of the core. 43 •17 

Including only the effect of configuration interaction in the core 

by means of the T.D.A. or R.P.A. approximations seems to provide the best 

estimate of transition matrix elements insofar as agreement with experiment 

. d 10 1s concerne . These calculations are equivalent to assuming a particle-

vibrational model and preserve the factorizability of core polarization 

effects. Similar calculations for G result in an overestimation of the 

pairing energy. 9•11 
One would like to find a suitable approximation for 

evaluating Eqs. (63) - (65) which would improve the lowest order estimates 

of the transition matrix elements and at the same time preserve the lowest 

order results of Kuo and Brown for the effective interaction. So far this 

has not been accomplished.
11 

In fact, the most complete treatment of the 

effect of configuration interaction in the excluded space which has been 

11 
made to date leads to results for G which are not much different than those 

-for G and results for T which are similar to those obtained using first order 

perturbation theory. 

34 Harvey has suggested that a possible way of "bootstrapping" the 

effect on f of configuration interaction in the excluded space might be to 

use Eq. (43) and Eq. (52) approximating G by a two-body interaction G' which 

fits the two-body spectra. He points out that this procedure was followed by 

Rorie and Arima2 in their early calculations. Owing to the uncertainty in 

the perturbative treatment of these higher order effects11 and faced with 

the need of including some estimate of the effect of core correlations, we 

.l ., 

' "! 



'II 

-31- LBL-1951 

have crudely followed this approach for our second estimate of the matrix 

elements of f. Specifically, we have repeated the first order calculations 

using the renormalized core coupling interaction 

G' = G -

i<j 
JM 

eJk (r. )k (r )yJM* (r. )YJM(r.) pT 
VlVj l J 1 

(67) 

where P J proj_ects onto triplet iso-spin states and the 8 J are fixed from the 

pairing matrix elements of Ref. 8 and Ref. 36 in the manner described above. 

This interaction is somewhat incomplete in that it does not contain any spin 

dependence and is missing some small renormalization terms which act in iso-

spin singlet states. It does, however, contain the major components required 

to fit the two-body spectra. In Section IV, it will be seen that the results 

obtained using this interaction are similar to those obtained using the "bare" 

G d . . . T D A . . 10 , 11 an treat1ng core correlat1ons 1n the . . . approx1mat1on. 

C. Explicit Expressions for Matrix Elements of f 

In this section we construct the explicit expression for the reduced 

matrix element of f between two model space states. This is obtained directly 

from the expressions for the amplitudes of the excluded space configurations 

in the model space configurations and the reduced matrix elements for T 

between two model space states and between a model space state and an excluded 

space state. We consider only one body operators which transform like the 

"spin-angle" tensor defined in Eq. (17) and throughout this section the use of 

G is intended to imply either G or G'. 

We define the model·space states by 

(68) 
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where Z+ J M (n) creates an np or nh state with quantum numbers a
1

, J
1

, M
1 al 1 1 

by operating on the closed shell state lc> . J
1 

and M
1 

denote the total 

angular momentum and projection whil~ a
1 

represents all other quantum 

numbers required to completely specify the state. 

In first order only (n+l)p-lh [(n+l)h-lp) and np(nh) intermediate 

states can contribute to the renormalization of T • We include only the 

former with the remark that the latter are best included in the model space 

whenever they are important. The (n+l)p-lh [(n+l)h-lp) excluded space states 

are defined by 

= 

= 

where 

j -~ 
( j j h m -m. I J M ) ( -1) h 

p p n c c 

(69) 

(70) 

creates a p-h pair with angular momentum J and projection M . In writing 
c c 

Eq. (69) it has been assumed that p and h are distinct from any of the 

+ particle or hole states contained in Z J M (n)~ i.e. we neglect the 
a2 2 2 

Pauli principle in intermediate states. The error introduced by making 

this simplification should not be serious because we consider only cases where 

n is relatively small. 

' 
i 

"I 
I 

•'I 
! 
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The amplitude of the excluded space state with energy £ J 
. . a2 2ph 

in the model space state with energy £ is easily found to be 
alJl 

(71) 

X 

where 

J'aj~l < a 2(n)J211A:S (ay)lla1 (n)J1> (72) 
c 

is a spectroscopic amplitude which depends only on the structure of the 

valence configurations, and 

J 

aq~' (jpjh,jajy) = 

(73) 

is the Jth multipole coefficient of.the coupling interaction. The indices 

q and q' which appear in Eq. (72) and (73) specify the charge state of the 

valence particles (jajy) and the core excitation (jpjh), respectively. This 

in turn determines which component of g is effective in the polarizing process. 

The subscript a on the two-body matrix element in Eq. 

matrix element is antisymmetrized but not normalized. 

(73) indicates that the 
J 

The values of S c for 
q 
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the transitions of interest in this work are given in the Appendix. It is the 
J 

separation of the amplitude of eq. (66) 
J 

into a geometrical factor S c and 
q 

a dynamical factor a c, which give rise to the factorizability of 
qq J 

core polari-

zation effects in lowest order. Additional factorization of a c, qq into valence 

and core parts is the essential feature built into all phenomenological models 

. 15 35 47 48 for effect1ve operators. ~ ~ ~ 

J J 
We also note the following symmetry relations for S c and a c,. 

q qq 

J 
8qc(a1Jl~a2J2;jajy) = 

J 

aq~,(jpjh~jajy) = 
J 

aq~' (jhjp~jyja) 

As an example of the usefulness of these relations~ we observe that they 

may be used to show that 

in cases when there is only one active orbit in the states a
1

J
1 

and a2J2 ~ 

i.e. ja = jy = j. 

The reduced matrix element of a one body operator TLSJ taken between 

a model space and an excluded space state is 

< cp 11 rLsJII cp > 
E M 

where the superscripts LSJ have be~n added to T since we consider operators 

which transform like the "spin-angle" tensor of Eq. (17). The subscript q 

(74) 

(75) 

(76) 

(77) 

i 

I . 

' . 
' 
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appearing on tLSJ in this equation is a charge index. It is needed because, 

in general tLSJ will not be the same for a proton p-h pair and a neutron p-h 

pair. The main point to notice about the result is that the p-h pair is pro-

duced solely by the action of T, with the valence nucleons serving merely as 

spectators. The result for the reversed matrix element < <1>~1 T18
JII <I>E) will 

not be given since it easily derived from the following conjugation relation 

for operators of the "spin-angle" type. 

(78) 

The reduced matrix element of TLSJ between two model space states is simply 

= 
jajy 

q 

(79) 

Use of the above results for the matrix elements of T and G and the 

associated symmetry and conjugation relations in Eq. (56) leads directly to 

the expression for the reduced matrix element of the renormalized transition 

operator taken between two model space states. This is the essential relation 

for the calculations of this work. The result is 

q' 

(80) 
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where Pph acts to the right and means to interchange jp and jh, and 

In Eq. (80) the first term on the left is the normal valence contribution and 

the second term is the core polarization,contribution. Using Eq. (75) and 

Eq. (78) in Eq. (81) we also note that 

(-l)s + J - j - j A A-1 J ( ) = a Y jNjy F 1 j jh,jvjN · 
u. qq p ·I ':"' 

D. Enhancement and Retardation of Transition Operators 

The expression for the reduced matrix element of T given in the 

preceding section can be reduced further by specializing to the case of a 

zero-range coupling interaction, i.e. 

g I (1,2) 
qq 

=(o +1 a gqql gqql 1 

(82) 

(83) 

We pursue this here as it allows us to derive a general rule concerning the 

phase of the contribution from core polarization. Calculations using typical 

finite-range interactions produce results consistent with this rule. 

The derivation requires further specification of the form of the 

one-body operator of interest. We consider only one-body operators which can 

be written 

= 8LSJh LSJ TLSJ 
q q 

(84) 

I 

~! 
I 
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where TLSJ is the spin-angle tensor defined in Eq. (17) an~ fLSJ contains the 
q 

LSJ 
radial dependence of the operator, h , as well as the coupling constant, 

q 

BLSJ hLSJ = ' e.g. q q 

y-transition. 

In the case of a zero-range interaction the direct and exchange 

parts of two-body matrix elements are identical and the multipole coefficient 

of Eq. (73) can be factorized, i.e. 

I(t th.t t ). p (l y 

(85) 

The reduced matrix elements in Eq. (85) contain only integrations over spin 

and angular coordinates and I is a radial overlap -integral 

I(t th,t t ) 
P a Y 

00 

=;; 2 u (r)u (r)~ (r)u (r)r dr 
p a n y 

(86) 

where the u(r) denote single particle radial wave functions. The factorization 

J of a , further implies that 
qq 

(87) 

which is easily demonstrated using Eq. (78) and Eq. (85) in Eq. (82). Use of 

l'~q. (811), (85), and (86) in Eq. (80) we obtn.in the desired result for the 

matrix element of f in the case of a zero-range coupling interaction. This is 
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= "" SJ (a.fJf,a..J. ;j j ) L.Jq 11a.y 
j j 
a Y 

: I < . II TLSJII . > < h LSJ > BLSJ l Ja Jy q a.y q 

LSJ 
HL I s I (a. , y ) = -"' £(ph) 

L..J 2(. ) 2 e: ph - Q 
jpjh 

ql 

X < • II TL Is I Jll j > I ( R, R, R,hR, ) < hLSJ} BLSJ 
J p . h p a y q I ph q I 

( hLSJ} 
ql ph 

e:(ph) = e: - e: 
p h 

= LSJ 2 u (r)h 1 ~ (r)r dr 
P q n 

LBL-1951 

" 

(88) 

(89) 

. (90) 

(91) 

The phase rule of interest applies only to a single pair of active 

valence orbitals, i.e. fixed j j q. The phase relation between different terms 
a Y 

in the sum over ja.jyq is a function of the model space configurations and not 
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of core polarization. Restricting consideration to a fixed set of values for 

j j q we have only to consider the sum over L' and S' in Eq. (88). Due to a y 

parity and angular momentum selection rules, there are only two allowed sets 

of values of L'S' for given LSJ. It is sufficient to note that one set is 

L'S' = LS and the other is L'S' 1 LS. 

For the first set, L'S' = LS, we note that the sign of each term in 

the sum over jp and jh in Eq. (89) is given by 

q' 

2 2 where it has been assumed that E (ph) > Q . We then argue that the important 

terms in the sum over jp and jh are those where 

u (r)u (r) a y 

This is sufficient to guarantee that for these important terms 

I(R- R- R,h,Q, ) > 0 
P a Y 

( hLSJ) 
q ay 

Considering only the contribution from the term H~~J to the renormalization 

_LSJ 
of the matrix element of 1 • we conclude that the relative signs of the 

valence and core contribution are given by 
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(92) 

Finally we argue that the contribution from the term H~~~' with L'S' # LS can~ 

in fact~ be neglected~ because the various terms comprising this quantity have 

random phases. 

Using Eq. (92) it is a simple matter to compute the relative sign of 

the valence contribution and the core polarization contribution for a given 

one-body operator. 
. LSJ -S For inelastic proton scatter1ng we have B = V from q pq 

Eq. (14). -s s Using the fact that V - g and the relationship between the pq pq 

components of g8 ·given in Eq. (4)~ it immediately follows that the valence pq 

and core contribution are in phase for S = 0 amplitudes and out of phase for 

S = 1 amplitudes~ i.e. the S = 0 amplitude are enhanced while the S = l 

amplitudes are retarded. 

For longitudinal electron scattering and electric y-transitions 

LSJ 
S = 0 and B = e = 0 or 1~ as q = p or n. 

q q . 
0 

Since g is attractive~ we 
pq 

conclude that the valence and core contributions are in phase for this case. 

LSJ 
For magnetic y-transitions S = l and B = ~ which is positive or negative 

q q 

as q = p or n. Using Eq. (4) we find that the valence and core contributions 

are out of phase. These results demonstrate that there is a close correspon-

dence between the effects of core polarization in inelastic proton scattering 

and in electromagnetic interactions. 

It is possible to go one step beyond Eqs. (88) - (91) and write a 

closed coordinate space expression for oTJ. This is 

,. 
: 

I • 

I 



o-fMSJ = "' 
J LJ 

i 
L'S' 
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otL'S'J(r.)TML'S'J(i) 
q ]. J 

(93) 

where the sum on i runs only over the valence nucleons and q = p or n, as i 

designates a proton or a neutron. The radial factors in Eq. (93) are 

given by 

otL'S'J(r.) = -"' 
q ]. LJ 

E:(ph) 
2 2 

£ (ph) - Q . 

(94) 

An operator of this form has been used to fit the magnetic moments in the Pb 

. 48 · regJ.on. The force strengths g8 , were treated as adjustable parameters in 
qq 

obtaining the fit. This approach could be extended to other one-body operators. 
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rv. RESULTS 

In this section we present the results of our calculations 

. . . 42 50 . 89 90 207 b d 209 . 
for selected trans1t1ons 1n Ca, T1, Y, Zr, P , an B1. The 

nuclides 
50

Ti and 
90

zr have already been discussed in connection with the 

schematic model in Sec. III.B •. They have two valence protons outside 

48 88 42 
of Ca and Sr cores, respectively. Ca has two valence neutrons outside 

a 
40

ca core; 
89

Y has one valence proton outside a 
88

sr core; 
207

Pb has one 

1 t h 1 · 208 b . h'l 209B· h ' 1 1 va ence neu ron o e 1n a P core; w 1 e 1 as a s1ng e va ence 

208 
proton outside a Pb core. The transitions we have considered are summarized 

in Table II. The initial and final model space wave function assumed in 

each case are specified in the table. 

A. Parameters of the Calculations 

· For the first order estimates of 8f we have used the long range part 

of the Kallio-Kolltveit (KK) potential
49 

for G. This is an S-wave interaction 

which gives matrix elements which are in rough agreement with those obtained 

with the more realistic HJ interaction.
5 

The s-wave form of the KK force 

greatly simplifies the calculation of two-body matrix elements. This feature 

h d th . . t t. 1 . th 10 d . . 1 h . as rna e 1s 1n erac 1on popu ar 1n e past an 1t 1s a so t e ma1n 

reason why it has been chosen here. The differences between the KK and HJ 

interaction are well within the accuracy of the models being used in this 

work, so there is no real inconsistency in using the KK force for G in 

calculating the bound state matrix elements and using the HJ interaction for 

R 
t. in calculating the (p,p') cross sections. 

1p 
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50 . 90 
For T~ and Zr, in the calculations of oT using the renormalized 

coupling interaction defined in Eq. (67), we have used the values of 

eP = l/Cp given in Table I. 
L L 

90 
The Zr parameters were also used in the 

calculations for 
89

Y. For 
42

ca we have used ~ = 6020 MeV, ~ = 355 MeV, 

~ = 578 MeV, and ~ = 1050 MeV and in the Pb region we have used ~ 3790 MeV, 

~ = 1040 MeV, ~ = 1580 MeV, ~ = 2450 MeV, and ~ = 3650 MeV. These last 

two sets of values have been determined from matrix elements given in 

Ref. 8 in the same manner that was used to determine the values given 

in Table I. It is interesting to note the large increase in the stiffness 

of the core in passing from the Ca region to the Pb region. 

We do not actually evaluate the radial integrals ( k ) which arise 
v 

in the calculation of the matrix elements of G'. Instead we assume that 

where n(=l, 2, .•. , oo) denotes the principle quantum number which charac-

terizes the shape of the radial wave functions. The factor 

has the value unity when n =n =n =n =1 i.e., when all of the radial wave 1 2 3 4 , 

functions have good overlap with k (r), and is appropriately smaller and 
v 

properly phased when there are shape differences between the radial wave 

functions and k (r). 
v 

Harmonic oscillator radial wave functions have been used throughout 

in the calculations. 
1/2 -1 

The oscillator well parameter a = (MW/h) F has been 



31 
fixed according to 
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The energy denominators used in the calculations were taken for the most part 

from the zero deformation axis of the Nilsson scheme.
50 

In some cases they 

were taken from experiment. The Nilsson energies for the first 40 single 

particle states are given in Table III as a function of hw. In the table 

each single particle state has been assigned an identification number as a 

matter of convenience. 

The range of intermediate states used in estimating eST for the 

various transitions being considered is summarized in Table IV. All possible 

(n+l)p-lh [(n+l)h-lp] states which can be obtained by raising a core nucleon 

from one of the single particle states designated as a hole level to one of 

the single particle states designated as a particle level have been included 

in the calculations of eST. Inspection of the table will show that we have 

"approximately" followed the rule of including all (n+l)p-lh {(n+l)h-lp] 

intermediate states with energies up to 2hw for positive parity transitions 

and lhw for negative parity transitions. 

Experimental single particle energies have been used for the lhw 

positive parity core excitations which ,enter the calculations of eST for 

50 . 90 
transitions in Tl. and Zr. The energies of these particular core excitations 

are relatively small and the Nilsson scheme cannot be expected to be 

reliable in these cases. Specifically, we use experimental energy splittings 

for the 2p
312 

-
-1 

lf7/2' 2P1/2 -
-1 

lf
712

, and 1f
512 

-
-1 

1f
712 

neutron excitations 

. 50 . h 1n T1, t e 2p
112 

-
. -1 

2P3/2' 2P1/2 
-1 

- lf5/2' 
-1 

and 2p
112 

- 1f
712 

proton 

90 
excitations in Zr, and the 2d

512 
-

-1 
lg9/2' 

-1 -1 
351/2 - lg9/2'. 2d'3/2 - 1g9/2 
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d 1 -1 . . . 90 
an lg

712 
- g

912 
neutron exc1tat1ons 1n Zr. The experimental energy 

. 8 
splittings are, respectively, 4.80, 6.82, and 8.75 MeV, 3.5, 4.0, and 

5.5 Mev
51

•
52

, and 4.50, 5.53, 6.50, and 7.17 Mev
51

•
52 

which are typically 

larger than the values which would be deduced from Table III. For the 

calculations in the Pb region we chose to use experimental energy values in 

all cases where they were available, namely proton levels #11-22 and 24 and 

neutron levels #16-29 and 32.
53 

The Nilsson energies were used for the 

other levels with some slight modifications. These were to increase the 

Nilsson energies for proton orbitals #23, 25 and above by 2.41 MeV, so that 

level #23 would not fall below level #24, and to make the neutron levels 

#30 and 31 degenerate with level #32 instead of below it as the Nilsson 

scheme suggests. 
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B. Wave Functions 

It is useful to examine the most important core admixtures in the 

various model space configurations being treated. Due to space limitations 

we consider only two typical examples here. More complete information can 

be obtained from the authors by request. 

Tables V and VI contain the amplitudes of the most important 

I 2 -
(j )J, (ph)J;O) core admixtures in the I (j

2
)0+) model space configurations 

for 
50

Ti(j = lf
712

> and 
90

zr(J = lg
912

>. These tables contain all the 

information needed to describe the I (j
2

)0+) ~ I (j 2)J+) transitions in these 

nuclei, since the amplitudes of the I (j
2
)0,(ph)J;J) core admixtures in 

the I (j
2

)J+) are easily obtained from the given amplitudes by means of 

Eq. (76). 

It is apparent from the tables that the number of core admixtures 

that make important contributions are not large in comparison to the total 

number of allowed admixtures. There are two factors which +imit the number 

of configurations which make important contributions. The first is the 

requirement of good overl.ap between the radial wave functions for the p-h 

pair and the active valence particles, e.g. see the discussion in Sec. III.D. 

The second is that I (j
2
)J, (ph)J;O) admixtures where the p and h orbits are 

co-planar are heavily favored. This condition, which may be stated 

is a property of the reduced matrix elements (jpiiTJOJIIjh) which enter in the 

calculation of the Jth mul~ipole coefficient of the coupling interaction, 

e.g. see Eq. (85) for the multipole coefficient in the zero range limit. 

The same I (j 2)J, (ph)J,O) admixtures which mix strongly with the I (j 2 )0+) 
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configurations also produce the largest matrix elements of T because the 

latter, Eq. (77), are also proportional· to ( jpll TJOJII jJ. These points are 

summarized explicitly in the zero-range expression for the matrix elements 

ofT, Eqs. (88)-(91), where it is seen that dominant terms are proportional to 

We also note that the amplitudes for some of the positive parity 

lhw excitations are quite large, particularly in the calculations where G' 

has been used. Our estimate of these large admixtures is undoubtedly 

unreliable and it would appear necessary to include the second order terms 

in estimating oT to improve this situation. Additional indications that 

the second order terms may be important in some cases will be seen in the 

next section. 

Agassi and Schaeffer
16 

have previously reported the results of a 

first order estimate of the effect of core polarization in the excitation 

of 2+ states in various nuclei. The 0+ + 2+ transition in 
90

zr is the only 

point of overlap between the calculations of Ref. 16 and the present work. 

Agassi and Schaeffer obtained a particularly small core polarization effect 

in this case while we obtain a large effect as will be seen in the next 

section. From their published amplitudes we find that the core coupling 

interaction they have used is quite .similar to the KK force used in the 

present work, however, we note that they have used a much smaller excluded 

space than we have (all 2hw excitations) and thus they have missed several 

important core admixtures. 
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c. Radial Transition Densities and Radial Form Factors 

Before examining the (e,e') form factors and (p,p') differential cross 

sections which are the final results of this paper, it is useful to discuss 

the radial transition densities and radial form factors which provide the 

.link between the wave functions described in the preceding section and these 

final results. The radial transition densities and the radial form factors 

were defined in Sec. II. These functions are the matrix elements of the one 

body operators for which we are calculating the renormalization due to core 

polarization. 

The LSJ + + . . . 50 . d 202 trantition densities for 0 ~ 2 trans~t~ons ~n T~ an 

90 
Zr, the lh

912 
~ 2f

712 
transition in 

209
Bi, and the 3p

112 
~ 2f

512 
transition 

in 
207

Pb are shown in fig. 4. The valence transition densities as well :as 

the complete proton and neutron transition densities [D+C(p) and D+C(n)] 

obtained with core polarization included are shown in each case. We have shown 

the results obtained using the renormalized core coupling interaction, although 

for our purposes her~ the first order results would have served equally well. 

For the first three transitions the valence transition densities have shapes 

which are very similar to the complete proton and neutron transition densities. 

This is a typical feature of the transition densities obtained for most of the 

transitions considered in this work. It was anticipated in the overlap argument 

used in the discussion of the enhancement and retardation effects due to core 

polarization given in Sec. III. D. The results for the 3p
112 

~ 2f
512 

transi-

. . 207 b . h h . . 
t~on ~n P ~s a case w ere t e d~fferences ~n shape between the valence 

transition densities and the complete proton and neutron transition densities 

are the largest. Even here the differences are not too great in the important 

surface region. 
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The radial form. factors obtained by averaging the real part of V over 

the transition densities of Fig. 4 are shown in Fig. 5. The distributions 

in Fig. 5 are quite similar to those shown in Fig. 4, except that the neutron 

functions are increased in size relative to the proton functions. This occurs 

-0 because V 
pn 

The main point is that the projectile-target interaction 

acts much like an overall scaling factor for the transition densities. Because 

of the finite range of this interaction the averaging does tend to smear out 

the transition densities slightly. This has the effect of reducing, to some 

degree, the importance of any shape differences between the various transition 

density functions. 
I 

The above discussion suggests that the results for the (e,e') and 

(p,p') reactions can be qualitatively understood by comparing the relative 

magnitudes of a single moment of the various transition density functions, 

most logically the lowest moment, and by introducing appropriate scaling 

factors which are characteristic of these reactions. For (p,p') the scaling 

factors are the relative strengths of the various components of the projectile-

target interaction and for (e,e') the scaling factors are the nucleon charges, 

i.e. e : 1 and e = o. A comparison of this type is useful, because it 
P n 

allows the general features of the results to be displayed in a transparent 

and compact form. The (p,p') differential cross sections and (e,e') form I 

factors do show some sensitivity to higher moments of the transition densities,
14 

so any fine details in the results can only be seen by calculating these 

quantities as prescribed in Sec. II. These final results will be shown in the 

next section, after we make this rough comparison. 
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To make this comparison in cases where there are valence protons, we 

divide the complete proton transition density into valence and core parts and 

introduce the parameters 

1oo FLSJ {r} L+2d r r 
A.LSJ 0 PC 

= L+2d. p f oo FLSJ {r} r r 
Pv 

0 

(95} 

00 

fa F~SJ {r} L+2d 
ALSJ 

r r 
= 

n [ ooFLSJ {r} L+2d r r 
0 Pv 

{96) 

which measure the contribution to the nuclear transition densities from core 

polarization relative to the valence transition density. We then assume that 

the effect of core polarization on ~he (p,p'} cross sections can be adequately 

characterized by the enhancement fac,tor which was introduced in Eq. (62} . In 

terms of ALSJ and ALSJ this factor is approximately given by 
P n 

£LSJ(p} 
p 

1 + ALSJ + a ALSJ 
P s·n. 

(97) 

In a similar fashion we introduce the effective charge 

= 1 + A.JOJ 
p 

(98) 

to characterize the effect of core polarization on the {e,e'} form factors. The 

effective charge has precise meaning for inelastic electron scattering in the 

low q limit, corresponding to y-decay, because only the lowest moment of the 

proton transition densities come into consideration here. This was pointed 
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out at the end of Sec. II-B. In cases where there are valence neutrons the 

definitions of ALSJ and ALSJ are modified 
P n 

ALSJ 
loo FLSJ (r)rL+2dr 

= p 
p 1 oo F~SJ (r)rL+2dr 

0 v 

(99) 

LSJ ' 
1~ F~SJ (r)rL+2dr 

0 c 
A 1 oo FLSJ (r)rL+2dr n 

0 nv 

(100) 

and 

e:LSJ (n) 1 + -1 ALSJ + ALSJ = as p p n 
(101) 

Jn AJOJ 
eeff p (102) 

As it is sometimes convenient to talk in terms of the iso-scalar and iso-vector 

LSJ Jq 
contributions to Ep (q) and eeff , it is also useful to give Eqs. (97), (98), 

(101) and (102) in terms of these quantities. These expressions are 

where 

ELSJ(q) 
p 

= .!_(,JOJ + ,JOJ) 
eq + 2 /\.0 /\.1 

{103) 

(104) 
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0 

= 

= 
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1 
a.s(q) = 

LBL-1951 

(105) 

1 s s s 
(V - V )/V 

2 pp pn pq 
(106) 

Equations analagous to those just given have previously been used by 

22 
Atkinson and Madsen to compute enhancement factors for normal parity 

transitions in (p,p') scattering from known effective charges. They assumed 

iso-scalar coupling and so took .AJOJ = .AJOJ 
p n 

Using these rel~tions in this 

manner is quite similar to the application of the schematic model made by 

15 
Love and Satchler. .These relations might also be used as the basis for a 

phenomenological study of the available experimental data. 
23 

Schaeffer has 

1 . f ' '1 h "~LSJ ' od d h ' d f used sea ~ng actors, s~~ ar to t e A ~ntr uce ere, ~n a stu y o some 
q 

experimental (p,p') andy-decay data for collective excitations in various 

nuclei. The purpose of this study was to gain information about the relationship 

between the proton and neutron transition densities for transition of this 

k · "ILSJ d "~LSJ d' 1 f h 1 1 . In the pre$ent wor we obta~n A an A ~rect y rom t e ea cu at~ons 
P n 

type. 

and this scheme is only being used to summarize our results. 

Table VII contains the results we have obtained using first order 

perturbation theory for all of the allowed S = 0 transition densities which 

occur in the ca·ses being considered. The parameters, .A~OJ, .A~OJ, A.~OJ, 

and .AJOJ are shown in each case with the corresponding values of EJOJ and 
1· p 

J 
eeff computed according to Eqs. (97), (98), (101), and (102) or the 

equivalent relations Eqs. (103)-(106). In these computations we have used 
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-a = 2.75 which is satisfactory for our choice of Vas was discussed in 
0 

Sec. II.A.2. Corresponding to this value for a 0 , 

a~(p) = -0.88, a~(n) = 0.68, and a~(n) = -0.32 in 

0 
we have a 0 (p) = 1.88, 

the ·iso-spin notation. 

. JOJ J 
Also shown 1n Table VII are values of £ and e ff which have been . p e 

estimated from the available experimental data. The experimental values of 

JOJ £ have been obtained by taking the square roots of the ratios of the 
p. 

experimental and theoretical valence integrated cross sections. Only the 

real part of V has been used in calculating the theoretical valence cross 

sections as we wish to keep separate the effect of the imaginary part of V 

which will be discussed later. The experimental data was taken from the 

references indicated in the table and the experimental integrated cross 

sections have been determined by normalizing the results of DWBA collective 

model calculations69 to the experimental differential cross sections. For 

transitions where data is available at more than one incident proton energy, 

the experimental 

the experimental 

£JOJ shown are average values. In all but a few instances 
p 

£JOJ were found to be nearly energy independent. The 
p 

optical model parameters used in calculating the collective model cross 

sections and the theoretical valence cross sections have been taken from 

the same references where the experimental data was found. Most of these 

parameter sets have been included iri Table XII. For 2p
112 

~ lg
912 

transition in 89y and the lh
912 

~ 2f
712 

transition in 209Bi it was not 

possible to determine the experimental £JOJ because more than one LSJ-transfer . p 

is observed to contribute to the experimental cross section in these 

cases. 
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The references containing the data which was used to determine the 

J 
experimental values of eeff are also shown in Table VII. Generally there was 

more than one piece of data available for each determination. For transitions 

where electron scattering data was available two methods were used to extract 

the experimental effective charge. One of these methods was to determine 

J 
eeff from the values of B(EJt) obtained from transition densities which were 

fitted to the experimental form factors. The second method was to normalize 

the peak value of theoretical valence form factors to the peak value of the 

experimental form factors. 
70 

It has been suggested that the second method is 

somewhat more reliable than the first. The sensitivity of the experimental 

effective charges to the theoretical radial wave functions was also checked. 

In most cases the changes in the effective charge due to reasonable changes 

in the radial wave functions were well within the variations noted in the 

experimental data itself. An. exception to this is the lh
912 

+ 2f
712 

transition 

. 209 . h h . "11 d" .1 f . d f" . 1n B1 w ere armon1c osc1 ator ra 1a wave unct1ons an 1n1te well wave 

functions
71 

produced values for e~ff which differed by nearly a factor of two. 

J 
The experimental values for eeff shown in Table VII are averages of the values 

determined from the various sets of experimental data according to the methods 

described above. The uncertainties shown are average deviations which are 

mainly due to fluctuations in the experimental data. 

Table VIII contains a summary of the results we have obtained for the 

S = 0 transition densities in the calculations using the renormalized core 

coupling interaction of Eq. (67). The format of this table is identical to 

that of Table VII. 
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The results obtained for the S = 1 transition densities using first 

order perturbation theory are shown in Table IX. In calculating the 

theoretical values of e:11J, it 
p 

was assumed that a
1 

= -0.20 which corresponds 

. 0 1 
to a

1 
(p) = 0.40, a

1 
(p) = 0.60, 

0 1 
a

1 
(n) = -2.00, and a

1 
(n) = -3.00. These are 

again satisfactory for our choice of V .. No experimental values for e:LlJ 
p 

are shown because S = 1 amplitudes were not found to be dominant in any of 

the transitions which we have considered. The results for the S = 1 transition 

densities obtained using G' for the core coupling interaction do not differ 

greatly from the first order results; therefore, they have not been shown. 

The differences are small because we have assumed that G'-G is spin-independent. 

Even if the appropriate spin dependence had been included in G'-G, the results 

would not have been effect greatly. The main thing to notice in Table IX is 

the retardation of the s = 1 amplitudes compared to the enhancement of the 

s = 0 amplitudes apparent from Tables VII and VIII. 

From Table VII we see that the first order calculations predict important 

core polarization corrections for the S = 0 amplitudes, even for the highest 

multipoles considered. In all cases, however, the correction fall somewhat 

short of experiment. The most notable feature of these calculations is that 

they predict a large iso-vector component in the S = 0 transition densities. 

This is not born out experimentally for the transition where both electromagnetic 

and proton scattering data are available. This may be seen by comparing the 

h . . h 1 ' ' . h ( cS J -- 'JOJ) t eoret1cal and exper1mental results for t e po ar1zat1on c arge eeff Ap 

h . . . (0 JOJ JOJ 1) and t e correspond1ng factor for proton scatter1ng £ = £ - • p p For 

the cases where there are valence protons the first order calculations give a 

better estimate of cSe:~OJ than they do of cSe~ff while tha reverse is true for 

the transition involying valence neutrons. 
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From Table VIII we see that the main effect of interactions in the 

excluded space, as determined by our calculations using G' as the core coupling 

interaction, is to increase the iso-scalar components of the S = 0 transition 

densities relative to the iso-vector components which in turn brings improved 

agreement with experiment. The magnitude of this effect decreases with 

increasing multipolarity. In Table X we compare the results of our first 

order calculations and our calculation u~ing G' with the first order and TDA 

1 f . 1 d . k10 f 202 h lf lf resu ts o S1ega an Zam1c or LSJ = and t e 
712 

+ 
112 

neutron 

40 
transition assuming a Ca core. We conclude ·that our result obtained using 

G' is consistent with the estimate of excluded space interactions using the 

TDA. It was not possible to make a similar comparison for any of the higher 

mulitpoles we have considered; however, the decrease in the importance of 

excluded space interactions with increasing multipolarity, predicted by our 

calculations with G', is consistent with the results of TDA and RPA calcu­

lations42 for closed shell cores which indicate that the collectivity of 

core excitations decrease with increasing multipolarity. 

Although the results obtained with G' are a definite improvement over 

the first order results for oT, some important discrepancies still appear in 

Table XI. One is that the theoretical values of EJOJ fall off somewhat faster 
p 

with increasing multipole than do the experimental values. In the next 

section it will be seen that this discrepancy is removed when the imaginary 

part of V is introduced. 

Another discrepancy is the relatively poor values obtained for the 

ff . h . h f h 0+ 2+ . . . 42 90 e ect1ve c arge 1n t e case o t e + trans1t1ons 1n Ca and Zr 

h . 1 h h . 1 2 f h 0+ 2+ . . . w 1 e t e t eoret1ca eeff or t e _+ trans1t1on 1n 50 . b T1 appears to e 

adequate. The B(E2) for the 6+ + 4+ transitions in 
42

ca and 
50

Ti and the 
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8
+ 6+ . . . 90 . 59,72 

-+ transl.tl.on l.n Zr have been determined experJ.mentally. The 

2 
experimental values of eeff for these transitions are compared with the 

. theoretical results we have obtained using G and G' in Table XI. We note 

that our model for core polarization predicts that e!ff for the transitions 

between the two upper states of a (j
2

) configuration should be the same 

- + + 
as for the 0 -+ 2 transition. This is born out by the data only in the 

f 
50 . 42 . 2 . . . 

case o Tl.. For Ca our theoretJ.cal result for eeff l.S l.n quJ.te good 

agreement with the experimental value for the 6+ -+ 4+ transition which is 

only about half ~he value required for the 0+ -+ 2+ transition. Experimentally 

90 
the situation is about the same for · Zr. We conclude that it is necessary 

to include second order terms in estimating oT in order to resolve these 

73 74 
discrepancies. This is consistent with the suggestion of others • 

th t 4 2h dm
. . . 42 d 90 a p- a J.xtures are l.mportant l.n Ca an Zr 

The final discrepancy we note is that the calculations fail to 

3 - 303 . 
reproduce the large values of eeff and £P requJ.red to explain the 

. . . . 209 . 
lh

912 
-+ 11

312 
transJ.tJ.on J.n Bl.. 

47 
It is well known that there are 

important contributions to this transition from admi1tures of low-lying 

particle-vibration states in the single particle states, i.e. llh
912 

x 3-;13/2} 

and lli
1312 

x 3-;9/2) where 3 
. 208 

is the first excited state of the Pb 

core. It would be possible to reproduce this effect by introducing a spin-

independent J 3 component in G'; however, since we have no independent 

way of fixing the strength of this component a more reasonable approach 

would be to introduce these admixtures explicitly. This has been done 

17 elsewhere and a reasonable description of the (p,p') cross sections for 

this transition has been obtained. In these calculations it was necessary 

to include both the contribution from these low-lying particle-vibration 

admixtures and the contribution due to admixtures of states formed from 
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higher lying 3 core excitations. The results shown in Tables VII and 

VIII for the lh
912 

~ li
1312 

transition are representative of the latter 

contribution only. 

A previous estimate of the (p,p') cross section for the lh
912 

~ 2f
712 

. . . 209 . h 17 trans1t1on 1n Bl as also been made. The first order wave functions 

of this work were used in this calculation. The calculations predicted 

important contributions to the cross section from all allowed JOJ amplitudes. 

This result was found to be consistent with the experimental data. An 

estimate of the modification of the first order results due"to the addition 

of contributions from low-lying particle-vibration admixtures was also made. 

Specifically, contributions from the particle-vibration states formed from 

the first 2+, 4+, 6+ and 8+ excitations of the 208Pb core were introduced. 

Wl. th h . b . h f. d JOJ . d 202 6 94 t ese contr1 ut1ons, t e 1rst or er £ were 1ncrease to £ = . , 

6.56, £606 
p 

p p 

5.17, and £
808 

= 4.03. These values are in good agreement 
p 

with the results we have obtained using G' as the core coupling interaction. 

This is another indication that the effect of core correlations can be 

reproduced by using a rather simple effective interaction in calculating f. 

E2 effective charges are known
64 

for several transitions in the Pb 

region where there is no inelastic scattering data available. As an additional 

check on the consistency of our calculations we have calculated these effective 

charges. The results have been included in Table XI. The agreement between 

theory and experiment is quite good, with the possible exception of the result 

for the lh
912 

~ lh
912 

proton transition. 

i 
I _, 



-59- LBL-1951 

D. Cross Sections and Form Factors 

In this section we compare our theoretical (p,p') cross sections and 

(e,e') form factors directly with experiment. The discussion will be 

brief since many of the important points have already been covered above. 

The optical model parameters used in the DWA calculations are summarized 

in Table XII. The ground state proton density parameters used in estimating 

the imaginary part of V are summarized in Table XIII. 

l. 
42 

Ca 

The theoretical (p,p') cross sections for the excitation of the 

f . 2+ d 4+ . 42 d . h h 22 9 . 1 1rst an states 1n Ca are compare w1t t e . MeV exper1menta 

data of Ref. 56 in Fig. 6. The dotted curves D(HJ) are the results 

-obtained using only the real part of V and the valence wave functions of 

Table II. The solid [D + C(HJ)] and dashed [D + C(HJ + Im] curves are the 

results obtained with the transition densities of Table VIII using only 

the real part of V and both the real and imaginary parts of V, respectively. 

We do not show the results obtained with the transition densities of 

Table VII, because the differences between the calculations using G and G' 

have been adequately discussed in the preceding section. The values of 

£ shown in the figure are the square roots of the ratios of the D + C(HJ) 
p 

and D(HJ) integrated cross sections. They differ somewhat from the values 

based on Eq. (101) and Eq. (103) which were given in Table VIII as expected. 
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The value of £
1 

provides a measure of the importance of the imaginary 

part of V, i.e. £i is the ratio of the D + C(HJ + IM) and D + C(HJ) integrated 

cross sections. 

The agreement between experiment and the theoretical results 

with core polarization included is quite reasonable. We see clearly 

tliat the effect of core polarization decreases only slowly with increasing 

multipole. The theoretical cross sections obtained with the imaginary 

component of V included in the calculations have slightly sharper structure 

than the cross sections obtained using only the real part of V. The 

shape of the experimental differential cross sections favor the former. 

We also note that the effect of the imaginary part of V increases with 

increasing multipole. 

The theoretical (e,e') form factor for the excitation of the 

first 2+ state in 42ca is compared with the data of Ref. 65 in Fig. 7. 

In the calculation we have used the transition density of Table VIII. 

There is no valence form factor in this case, because the assumed model 

space consists only of neutron configurations. J The theoret1cal result 

falls short of the data by about a factor of three as was pdinted out 

previously. This deficiency in the theoretical wave functions does not 

show up in (p,p') results because neutron excitations are dominant 

there. 

The theoretical (p,p') cross sections for the excitation of the first 

--
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+ + 50 . 
2 and 4 states in Tl. are compared with the 17.5 and 40.0 MeV data 

of Refs. 37 and 38 in Fig. 8. The format of the figure is the same as 

that of Fig. 6. With the exception of the values of £ , the results for 
p 

50 . 42 
T1. have the same general characteristics as the results for Ca. The 

. . h f f 50 . 42 . 1.ncrease 1.n t e values o £ or T1., compared to Ca, 1.s not due to an 
p 

increase in the strength of core polarization in 
50

Ti. It only reflects 

that the valence cross section D(HJ) for 
50

Ti are smaller, because the 

model space includes only proton configurations in this case. 

The theoretical (e,e') form factors for the excitation of the 

f . + 4+ . 50 . . 1.rst 2 and states 1.n Tl. are compared w1.th the data of Refs. 54 

and 58 in Fig. 9. Here we have shown the results obtained using the 

wave function of Table II (D) and the transition densities of Table VIII 

(D +C). The results here show rather clearly the importance of E4 

polarization. 

3. 
90 

Zr 

+ 4+ 
2 r I 

The theoretical (p,p') cross sections for the excitation of the first 

6+, + 8 , and 5 states in 90zr are compared with the 18.8 and 

61.2 MeV data of Refs. 39 and 43 in Figs. 10, 11, anrl 12. The LSJ m 515 

contribution to the 5 cross section was found to be negligible and has 

not been shown. Results for.the excitation of these same levels by 40 MeV 

18 
protons have previously been presented elsewhere. 

Again the overall agreement between experiment and the theoretical 

results with core polarization included is reasonable. Relative to the 

. + + + . + results for the 2 , 4 , and 6 excitations, the cross sect1.ons for the 8 and 
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5- levels appear to be underestimated at 18.8 MeV. The situation is somewhat 

improved at 61.2 MeV. This improvement is also evident in the 40 MeV results. Col­

lective model calculationJ
8

'
39

'
43 

for the 8+ and 5 excitations yield considerably 

larger values of BLat 18.8 MeV than at 40 and 61.2 MeV. This is simply 

an indication that multiple excitation is important for these levels at the 

lower energies. 

The imaginary part of v is essential in reproducing the forward peaks 

of the 61.2 MeV cross sections for all of the excitations except the 2+ level. 

It is also important in giving the correct multipole dependence for the 

theoretical cross sections. These same observations were made with respect 

to the 40 MeV results for these same excitations.
18 

These effects do not 

show up so ~learly at 18.8 MeV partly because of the difficulty in reproducing 

the 8+ and s- cross sections at this energy and partly because the shapes of 

the angular distributions are not so distinctive at the lower energies. The 

42 
latter remark applies equally well to the 22.9 MeV results for Ca and the 

5 f 
50 . 

17. MeV results or T~. The effect of the imaginary part of V is starting 

to show up in the results for 
50

Ti at 40 MeV; however, the picture is not 

complete because of the limited range of multipoles which are available in this 

case. 

The increasing importance of the imaginary part of V with increasing 

I 
multipole is a result of the zero-range form of t. in contrast to the finite­

~p 

R 
range form of t. 

~p 

The results we have obtained do not undeniably establish 

20 
that the phenomenological treatment of the imaginary part of V is correct. 

We can conclude, however, that the multipole dependence obtained in the 

calculations using only the real part of V is inadequate and it is interesting 
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-that the simple prescription for including the imaginary part of V gives 

reasonable results. 

-Even with the imaginary part of V included there are still some 

deficiencies in the 61.2 MeV results. These occur mainly at back angles 

where the D + C(HJ+Im) results have more structure than the data for the 2+, 

+ 6 , and 5 excitations. In addition, the D +.C(HJ+Im) results for the 

8+ state appears to underestimate the back angle cross section. It has been 

27,43 . 
shown that the inclusion of a spin-orbit component in V can improve these 

results. In addition, the presence of contributions from this interaction 

component does provide some direct evidence of the decreasing importance of 

core correlations with increasing multipolarity
18 

The theoretical (e,e') form factors for the excitation of the first 

2+ 4+ . 90 . h h . 1 d f and states 1.n Zr are compared w.1.t t e exper1.menta ata of Re s. 

58, 60, and 61 in Fig. 13. The format of the figure is the same as Fig. 9. 

Here again we have an example of important E4 polarization. 

The theoretical (p,p') cross sections for the first 9/2+ excitation 

in 89
y are compared with the 18.9,· 24.5, and 61.2 MeV experimental cross 

sections of Refs. 76, 77, and 46 in Fig. 14. There are four allowed 

LSJ-amplitudes for this transition. These are LSJ= 314, 514, 505, and 515. 

The contributions from the 514 and 515-amplitudes were found to be negligible. 

The 50S-amplitude was found to be dominant, but the contribution from the 

314-amplitude is appreciable, particularly at forward angles. This is con­

sistnet with the fact that the 9/2+ level in 89
y is known to decay by M4 

. . 81 
y-eml.SSl.on. . 
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In Fig. 14 we have shown the LSJ = 314 and 505 cross sections obtained 

using the real part of V and the transition densities of Table VIII and IX. 

we have also shown the sum of these two cross sections. As before these 

curves are labeled D + C(HJ). The valence results, D(HJ), have not been 

shown. The fourth curve shown D + C(HJ+Im) is the sum of the LSJ = 314 and 

505 cross sections obtained using both the real and imaginary parts of v. 

For the LSJ = 505 cross section at 24.5 MeV, Ep = 3.16 and £I = 1.37. At 

18.9 and 61.2 MeV Ep and £I for the LSJ = 505 cross section have the same 

values that were given in Fig. 12 for the excitation of the 5- state in 90zr 

at these energies. (It is shown in the Appendix that the LSJ = 505 form factors 

for the 1/2 ~ 9/2+ transition in 89
y and the 0+ ~ 5- transition in 

90
zr are 

essentially the same in our model.) For the LSJ = 314 cross sections, £ = 0.51, p 

0.52, and 0.50 at 18.9, 24.5, and 61.2 MeV. For this cross section, £I 1.0 

-
at all energies, because we have taken the imaginary part of V to be spin 

independent. 

From ;Fig. 14 we see that the theoretical calculations do not reproduce 

the energy dependence of the experimental cross sections exactly. The theoretical 

results are in good agreement with the data at the lower energies, but a bit 

too high at 61.2 MeV. A similar discrepancy was noted in the results for the 
! 

5 level in 
90

zr, except that the.theoretical results were a little low at 

18.8 MeV and in fairly good agreement with the data at 61.2 MeV. There is a 

noticable difference in shape, at forward angles, between the 61.2 MeV 
I I 89 i -

experimental cross sections for the 9/2+ excitation in Y and the 5 

90 
excitation in Zr. 

I 
This is consistent with the presence of the LSJ = 314 
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contribution to the former.. It appears that the LSJ = 505 contribution to 

the 
89

Y cross section is slightly overestimated in our calculation, so this 

effect does not show up quite so clearly in our theoretical results. We 

conclude that .. the LSJ = 505 contribution to the cross section for the 9/2+ 

state in 
89

Y is somewhat smaller than the corresponding contribution to the 

cross section for the 5 
90 

state in Zr, a feature which cannot be reproduced 

with·the simple•model for core polarization that we are using. 

5. 
207 

Pb 

The theoretical (p,p') cross sections for the excitation of the first 

four single particle states in 
207

Pb are compared with the 20.2 MeV experimental 

data of Ref. 65 in Fig. 15. Results for the excitation of these same levels 

46 
at 39.5 MeV have previously been presented elsewhere. Contributions from 

S=l amplitudes were found to be negligible in all cases and only S=O con-

tributions to the cross sections are shown in the figure. There are two 

interesting aspects to the results. One is that £ for the 7/2 excitation 
p 

which goes by LSJ = 404 transfer is comparable to £ for the 5/2- and 3/2-
p 

excitations which proceed with LSJ = 202 transfer. Other evidence for large 

L=4 core polarization in the Pb region was seen previously in the cross 

section for the excitation of the 2f
712 

single particle state in 
209

Bi by 

17 61.2 MeV protons. The other interesting feature is that there is a shape 

difference between the cross section for the 3/2- level and 5/2- level both 

of which are excited by LSJ = 202 transfer. Although the theoretical 

results do not give a completely accurate reproduction of the experimental 

data, they do show this shape difference rather nicely. The difference in 
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shapes is due to the differences in the radial wave functions for the valence 

neutrons in the two final states. Similar effects are not seen in the lighter 

nuclei, because the rad,ial wave functions tend to be more similar there, at 

least for the cases we have considered. 

6. 
209 . 

B1 

h . ( ' ) . f . . 209 . b . d . T eoret1cal p,p cross sect1ons or states 1n B1 o ta1ne us1ng 

17 
the wave functions of this work have been discussed in detail elsewhere and 

will not be discussed here. 
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V. CONCLUSIONS 

We have shown that a fair sized sampling of experimental inelastic 

electron and proton scattering data for nuclei near closed shells can be 

understood, at least qualitatively, in calculations which assume to a first 

approximation that the interaction between two bound nucleons and between a 

bound and a continuum nucleon are given by G matrix interactions derived 

from free two-nucleon po~entials. In the calculations, the (e,e') reaction 

was treated using a modified Born approximation. The (p,p') reaction was 

treated using the distorted wave approximation ana the G matrix interaction 

was modified to account for "knock-on" exchange and excluded reaction channels. 

Core poiarization was treated in lowest order and with the G matrix inter-

action renormalized to roughly account for the effect of long range core 

correlations. The results clearly show that core polarization effects are 

large and persist as the multipolarity of the transitions increase. They 

also show that the motions of target protons and neutrons are strongly 

correlated although there may be some weakening in the correlation for 

transitions where the L-trarisfer exceeds 5. 

Although our results indicate a strong correlation between proton and 

neutron motions in the excitation of the levels considered, in detail there 

are small differences between proton and neutron motions even for the L = 2 

transitions. 
82 

Brown and Madsen have recently discussed some of the expected 

differences and it would surely be interesting to examine our results more 

carefully in this regard. This can in principle be done on the basis of the 

data we have considered
14

, but it requires considerably greater care in the 

calculations than we have expended and thus must be postponed until a later 

date. 
83 + 

Forthcoming data for the excitation of nuclear levels by ~ and ~ 
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inelastic scattering should provide additional information concerning these 

differences. 

Finally we note that the use of an "effective" core coupling inter­

action in a first order treatment of the renorrnalization of one body operators 

was found to give reasonable results in the sense that it does seem to account 

for some of the effects attributable. to collective correlations in the core. 

It would be interesting to pursue this further taking care to include the 

second order terms that we have ignored. Other interaction choices might also 

be investigated, for example the recent "effective" interaction of Schiffer 

84 
and True. 
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APPENDIX 

In this appendix we give the values of the spectroscopic amplitudes 

SJ for the specific transitions we are considering. 
g_ 

SJ is defined in Eq. (71) 
q 

1. Single Particle Transitions 

For a transition between two single particle states, 

Ia. (n)J.M. ) 
~ l l 

ln.R..j.m. ,) 
l l l l 

_ Eq. ((4) gives 

SJ(nfQ.fjf,n.R..j.;j j ) 
q ~ ~ ~ a Y 

Inserting this result in Eq. ( 80) we obtain 

+ .~ fQ-ECph) 
JpJh 

q' 

where Q and E(ph) have been defined in Eq. (91). 

2. Single Hole Transition 

For a transition between two single hole states, 

l j.-m. 
Ia. (n)J.M. ) = ln. R..j-:- ,-m. ) = (-1) 

1 1 
a.lc) 

l l l l l l ' l l 

(B.l) 

(B. 2) 

(B. 3) 

(B.4) 

(B.5) 
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Eq. (.74) gives 

SJ( n .-1 n .-1 . . ) nf;vfJf ,n.;v.J. ;J J q ~ ~ ~ a y 

j -m 
= ( -1) f f af I C ) 

' (B.6) 

j .+jf-J "' 1 
= (-1) ~ j4 3-f 6. j 6. j 

... Ji a Jf Y 
(B. 7) 

Inserting this result in Eq. (80) and then making use of the conjugation 

relation Eq. (78) and the permutation property of FJ 1 given in Eq. (82), we find qq 

= -( -1 )8 ~ j lltLSJilj .> 
[ f q ~ 

(B. 8) 

+ I I Q-~ (ph) p ph + -Q-~(ph) l F~q' ( jpjh ,jfji >] 
jpjh 

q' 

The matrix elements for a single hole transition differ from the 

matrix elements for a single particle transition by an overall phase which 

depends on the particular operator being considered. This is of no conse-

quence in this work because we are only interested in the square of these 

matrix elements. Another difference is that the position of Pph has been 

shifted from the second to the first term inside the brackets. This has 

nearly a negligible effect because E(ph) is typically much greater than Q and 

J the effect of Ph on F 1 is weak as may be seen from Eq. (87) which is valid 
. p qq 

for the case of a zero range coupling interaction. We conclude that single 

particle transitions and single hole transitions are equivalent for all 

practical purposes. 
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3. Transitions Between Two Particle States 

For a transition between two particle states, 

lai (n)JiMi > = I ( jjl )JiMi) = 2 ( jjl ~ IJiMi) a+a{lc) 

~ 

laf(n)J~f) - I ( jj2)J~f) = L < jj2mm21JfMf) a+a;lc > 
mm2 

the spectroscopic amplitude is given by 

LBL-1951 

(B.9) 

(B.lO) 

(B.ll) 

In the special case jl = j
2 

= j , Ji and Jf must be even and Eq. (B.ll) 

reduces to 

(B.l2) 



For this case we find 

where we have again used Eq. (82). 
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(B.l3) 

It is interesting to note that when J. = 0, 
1. 

then J = Jf is even, and the second term on the right hand side of Eq. (B.l3) 

vanishes when S = 1. The valence contribution given by the first term on 

the right of Eq. (B.l3) vanishes in this case also; so, core polarization 

does not break the valence selection rule. When J. = 0 and S = 0, the factor 
1. 

in parenthesis in the square brackets becomes 2 and core polarization is 

effective. 

Another case of particular interest here is the transition between the 

states 

Ia. (n)J.M. ) = al (j 1
2

)J.=O M.=O) + bl (j
2

2 )J.=O M.=O) 
1. l l l l l l 

(B.14) 

(B.l5) 

This corresponds to the description of the 0+ to 5- tran~ition in 90zr given 

in Table II. In this case we find 

SJ(afJf,a.J.;j jy) q 1 1 a 
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Inserting this expression into Eq. (80) and again making use of Eq. (78) and 

Eq. (82), we obtain 

These expressions differ from those for the single particle transition jl + j 2 

only by an overall constant. With jl = 2p
112

, j 2 = lg
912

, a = 0.8, b = 0.6, 

Jf = 5, and S = 0, this constant has the value 1.02. With S = 1 the constant 

is 0.507. We conclude that the important LSJ = 505 amplitude for the 0+ + 5-

transition in 90zr is nearly identical to the corresponding amplitude for the 

2p
112 

+ lg
912 

transition in 89Y. 90 The LSJ = 515 amplitude for the Zr tran-

sition is reduced in magnitude in comparison to corresponding amplitude for 

the 89y transition. 
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Table I. Core Coupling Constants Determined from 

Bound State Pairing Matrix Elements . · 

Nuclide J J aEJ(•) 
p J (MeV) e

3 
(MeV-1 ) CJ (MeV) 

lf7/2 0 -0.033 1.78Xl0-4 
5610 

50Ti 
lf7/2 2 -0.753 3.18XJ..o-3 314 

1f7/2 4 -0.460 2. 20 XJ..0-3 455 

lf7/2 6 -0.233 1.55XJ..0-3 645 

lg9/2 0 -0.020 l.OlXJ..0-4 
9920 

• 
2.38X10-3 

lg9/2 2 -0.578 420 

90zr 
lg9/2 4 -0.359 1. 58X10-3 633 

lg9/2 6 -0.218 l.l4X1Q-3 877 

lg9/2 8 -0.122 9,QQX1Q-4 1110 

2Pl/2 0 -0.210 1.22Xl0-J 820 

aValues for 50Ti are from Ref. 8 and values for 90zr are from Ref. 36. 
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Table II. Summary of transitions considered in this work. Initial and final 

model space wave functions are given in each case. 

a 
Target 

42ca (2n) · 

50
Ti(2p) 

90 
Zr(2p) 

'209Bi (lp) 

1T 
J. 

l. 

1/2 

1/2 I -1 } 3Pl/2 

llh9/2 } 

7T 
Jf 

5-

5/2-

3/2-

13/2+ 

7/2-

13/2+ 

I ,f } b 
'I' Q (MeV) 

M 

I <H
712 

2
>i > -1.52 

I <H
712 

2
>4 > -2.76 

I (lf
71

/>6 > -3.19 

I <H71/> 2 > -1.56 

l<lf7/2
2
)4> -2.68 

I <H
71

/>6 > -3.2o 

llg9/2 } -0.91 

I c1g
912

2
>2 > -2.18 

I ug
912 

2
> 4 > -3 .o8 

I <lg
912

2
>6 > -3.45 

I ng
912 

2
> 8 > -3. 6o 

I c1g
912 

2p
112

> 5 > -2 ~ 32 

l2f5/2-l} -0.57 

l3p3/2-l} -0.89 

I -1 ) li -1.63 
13/2 

l2f7/2-l} -2.33 

l2f7/2} -0.90 

llil3/2} -1.61 

a 
bThe number and type of valence nucleons is indicated in parenthesis. 
This column lists experimental Q-value which is not to be confused with 

theoretical Q-value defined in Eq. (91). 
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Table III. Single .Particle Energies for Spherical 

Potential as Determined by Nilsson. 

Na _q,·1T b Na _q,·1T b # n J En.Q.j/hw # n J E _q, .;hw n J 

lsl/2 
+ 1.50 1 0 21 5 2f5/2 6.43 

2 1 lp3/2 
- 2.45 22 5 3Pl/2 

- 6.56 

3 1 lpl/2 - 2.60 23 6 2g9/2 
+ 6.85 

4 2 ld5/2 
+ 3.40 24 6 + 6.91 lill/2 

2sl/2 
+ 

5 2 3.50 25 7 ljl5/2 7.03 

6 2 ld3/2 
+ 3.65 26 6 3d5/2 

+ 7.27 

7 3 lf7/2 
- 4.14 27 6 2g7/2 

+ 7.30 

8 3 2P3/2 
- 4.42 28 6 4sl/2 

+ 7.50 

9 3 lf5/2 
- 4.49 29 6 + 

3d3/2 7.52 

10 3 2Pl/2 
- 4.57 30 7 2hll/2 

- 7.65 

11 4 lg9/2 
+ 4.85 31 8 + 7.66 lkl7/2 

4 2d5/2 
+ 5.27 32 7 ljl3/2 

- 7.78 12 

13 4 lg7/2 
+ 5.30 33 - 8.11 7 3f7/2 

14 4 3sl/2 
+ 5.50 34 7 - 8.20 2h9/2 

4 + 5.52 35 9 ltl9/2 
- 8.25 15 2d3/2 

16 5 lhll/2 5. 58 36 8 2il3/2 
+ 8.36 

17 5 2f7/2 6.08 37 7 4P3/2 
- 8.44 

18 5 lh9/2 
- 6.13 38 - 8.46 7 3f5/2 

19 6 lil3/2 
+ 6.26 8 + 8.56 39 lkl5/2 

20 5 3P3/2 ~ 6.41 4o 7 4Pl/2 
- 8.59 

(continued) 
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Table III. (cont. ) 

a N = 2(n-l) + Q, is the major shell quantum number. 

bE 0 ./hw = N- 0.05 j(j+l) + 0.05 (1-~) Q.(Q.+l) + 1.5375 where hw determines 
n.q 

the major shell separation and: 

~ = 0.00 N = 0,1,2 

~ = 0.35 N = 3 

~ = 0.45 N = 4,5,6 

~ = 0.40 N = 7 



Table IV. ~~rticle and hole levels used to form intermediate states in the perturbative calculations of oT. 

Transitions Hole Levels Particle Levels 

Target (JTr) 
f Protons Neutrons Protons Neutrons 

4:::> 2+ 4+ 6+ # 2-6 # 2-6 # 7-15 # 7-15 -ca 
' ' 

50m. 2+ 4+ 6+ # 2-6 # 2-7 # 7-15 # 8-15 .l.~ ' ' 
89 y 9/2+ # 7-9 # 7-11 #10-23 #12-23 

90zr 2+ 4+ 6+ 8+ 
' ' ' 

# 4-9 # 4-11 #10-23 #12-23 

90zr 5 - # 7-9 # 7-11 #10-23 #12-23 

207?b 3/2-;5/2-,7/2- # 7-16 #11-22 #17-35 #23-35 

207Pb 13/2+ 
I 

#11-16 #16-22 #17-30 #23-34 

209Bi 7/2- # 7-16 #11-22 #17-35 #23-35 

209~. 
.b~ 13/2+ #11-16 #16-22 #17-30 #23-34 

I 
C) 
,;:. 
I 

&; 
~ ..... 
\D 
0'1 ..... 



ph 

Table V. 

£(ph) 

(MeV) 

15.5 

17.7 

20.9 

4.8 

8.8 

14.3 

19.3 

12.7 

20.5 

22.5 

6.8 

18.0 

16.4 
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. • 50 
Core admixtures in ground state. of Ti. 

J=2 

-.06 
-.22 

-.05 
-.17 

-.04 
-.08 

.01 

. 04 

.02 

.03 

-.04 
-.11 

protons 

J=4 

-.02 
-.08 

-.03 
-.07 

-.03 
-.07 

.02 

.04 

-.04 
-.09 

.. 02 
.05 

.03 

.04 

-.01 
-.01 

-.03 
-.06 

J=6 

-.01 
-.03 

-.04 
-.09 

.02 

.05 

·neutrons 

J=2 

-.19 
-.26 

-.14 
-.19 

.30 

.38 

-.11 
-.16 

.04 

.06 

.05 

.06 

J=4 

-.10 
-.13 

-.07 
-.09 

.15 

.15 

-.14 
-.17 

-.10 
-.11 

.06 

.07 

-.07 
-.09 

.05 

.07 

.07 

.08 

-.12 
-.t4 

J=6 

-.05 
-.06 

-.16 
-.16 

-.09 
-.12 

.06 

.08 

aThe first entry for a given ph and J is the amplitude obtained using first order 
perturbation theory and the second entry is the amplitude obtained using the 
renormalized coupling interaction. 
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Table VI. Core admixtures in 
2 

(lq9/2) configuration in 90Zr. 

2 
a ( ( lq 9/2 ) J' 

- I 2 a (ph) J ~ 0 (lq9/2)0) 

e:(ph) 
ph (MeV) 

protons neutrons 

J=2 J=4 J=6 J=8 J=2 J=4 J=6 J=8 

-1 
12.5 -.06 -.02 -.01 -.17 -.10 -.06 lhll/2-lf7/2 -.00 -.03 

-.22 -.08 -.04 -.00 -.25 -.13 -.08 -.04 

-1 
14.5 -.05 -.03 -.02 -.13 -.07 -.04 lh9/2-lf5/2 

-.17 -.08 -.04 -.19 -.10 -.05 

-1 
15.0 -.05 -.03 -.12 -.06 lq7/2-ld3/2 

-.12 -.05 -.15 -.07 

-1 
15.0 -.01 -.01 -.04 -.02 2f7/2- 2P3/2 

-.11 -.04 -.09 -.04 

. -1 13.0 -.16 -.10 -.06 -.04 ll.l3/2-lq9/2 
-.24 -.11 -.05 -.01 

-1 4.5 .21 .12 .07 2d5/2-lg9/2 
.31 .13 .05 

-1 
9.5 -.04 -.04 -.03 -.06 -.07 -.08 rlhll/2 -lf5/2 

-.08 -.07 -.07 -.07 -.09 -.10 

-1 
10.5 -.04 -.01 -.11 -.05 lhl1/2-2p3/2 

-.08 -.03 -.13 -.06 

-1 
17.0 .01 .02 .02 • 03 . 04 .06 lq7/2-ld5/2 

. 02 .03 .01 • 04 • 05 .07 

-1 
16.0 .02 .06 

lq7/2-251/2 
.03 .07 

-1 
26.0 .02 .00 .04 • 02 . 01 li13/2-ld5/2 .01 

.04 .00 -.01 .06 .02 .00 

-1 14.0 -.06 
lh9/2- 2Pl/2 

-.08 

-1 
7.2 -.07 -.10 -.10 -.12 

lg7/2- 1g9/2 
-.12 -.13 -.12 -.12 

-1 17.5 .00 .02 .02 .02 .03 . 04 • 04 .04 
lh9/2-lf7/2 

. 03 . 04 .04 .04 • 04 .05 .05 .06 

(continued) 
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Table VI. (continued) 

2 
a ( ( lg 9/2 ) J , - I 2 a (ph) J ; 0 ( 1g 9/2 ) 0 ) 

£(ph) 
ph 

(MeV) protons neutrons 

J=2 J=4 J=6 J=8 J=2 J=4 J=6 J=8 

-1 
lh9/2-2P3/2 15.5 .01 .02 • 03 .05 

.03 .04 .04 .06 

H1312-2s~~2 25.0 .01 .03 
.01 . 03 

-1 
lhll/2 - 2pl/2 9.0 -.08 

-.09 

-1 2d3/2-lg9/2 6.5 -.05 -.08 
-.07 -.09 

. -1 
24.0 1113/2-ld3/2 .01 .01 . 02 .02 

. 02 .01 . 02 .02 

-1 
3.5 2P_l/2-2P3/2 -.10 

-.37 

-1 
.10 2Pl/2-lf5/2 4.0 
.24 

-1 
1g9/2-1d5/2 13.5 -.04 -.01 -.01 

-.14 -.02 .02 

2P1/2-lf7/2 5.5 -.06 
-.12 

-1 
12.5 -.03 lg9/2-2sl/2 

-.04 

-1 
11.5 -.03 -.03 1g9/2-ld3/2 

-.06 -.05 

aThe first entry for a given ph and J is the amplitude obtained using first order 
perturbation theory and the second entry is the amplitude obtained using the 
renormalized coupling interaction. 



Table VII. Parameters for S = 0 transition densities obtained from first order calculations. 

Transition Theory 
a . ta Expen.men 

Target 
J; (JOJ) 

AJOJ AJOJ A.JOJ ;,_JOJ J JOJ J E:JOJ 
eeff E: eeff p n 0 1 p p 

42 
Ca 2+ (202) 0.68 0.23 0.91 0.45 0.68 1.47 l.7±.lb 2.03c 

4+ (404) 0.48 0.17 0.65 0.31 0.48 l. 34 - 2.12c 

6+ (606) 0.22 0.08 0.30 0.14 0.22 1.16 

SOTi 2+ (202) 0.22 0.88 1.10 -0.66 1.22 3.65 l. 7±. 2d 5.34e 

4+. (404) 0.16 0.70 0.86 -0.54 1.16 3.09 l.4±.lf 4.86e 

6+ (606) 0.07 0.43 0.50 -0.36 1.07 2.25 

89y 9/2+ (505) 0.28 0.74 1.02 -0.46 1.28 3.32 - - I 
co 
00 
I 

90 
Zr 2+ (202) 0.31 1.22 1. 53 -0.91 1.31 4. 92 2. 8± Ag 6.45h 

4+ (404) 0.23 0.97 1. 20 -0~74 l. 23 3.90 2.1±.3i 5.39h 

6+ (606) 0.12 0.74 0.86 -0.62 1.12 3.16 - 4.94h 

8+ (808) 0.08 0.45 0.53 -0.37 1.08 2.54 - 6.35h 
- l. 4± .1j 4.55h 5 (505) 0.28 0.74 1.02 -0.46 1.28 3.32 

207Pb - .93±.0lk 2.50.Q, 5/2 (202) 0.62 0.38 1.00 0.24 0.62 1.60 
- . 75±. 02k 

.Q, 
3/2 (202) 0.58 0.36 0.94 0.22 0.58 1.57 1.91 

13/2 + ( 707)· 0.39 0.32 o. 71 0.07 0.39 1.46 - 3.07.Q, 

- 1.61 2.6} 7/2 (404) 0.61 0.39 1.00 0.22 0.61 - &; 
(continued) t"i 

I 
1-' 
1.0 
(}1 
1-' 

--
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Table VII. (continued) 

Transition Theory 
a . a 

Expen.ment 
Target ~ A.JOJ A.JOJ A.JOJ A.JOJ J JOJ 

J~ (JOJ) eeff e: 
p n 0 1 p 

J JOJ 
eeff e:p 

209Bi -
7/2 (202) 0.38 1.25 1.63 -0.87 1.38 4.82 2.3±.6m 

(404) 0.33 1.22 1.55 -0.89 1.33 4.68 

(606) 0.26 1.16 1.42 -0.90 1.26 4.44 

(808) 0.18 1.00 1.18 -0.82 1.18 3.93 
-

13/2+ (303) 0.38 1. 32 1. 70 -0.94 1. 38 5.01 5.3±.7n 24.00 

(505) 0.24 1.10 1.34 -0.86 1.24 4.27 

(707) 0.14 0.81 0.95 -0.67 1.14 3.38 

(909) 0.08 0.53 0.61 -0.45 1.08 2.54 

(11011) o.o1 0.37 0.38 -0.36 1.01 2.03 

asee text for comments on the manner in which the numbers listed in these columns have been obtained. 

b 
Ref. 54 and 55. CRef. 56. 

d . 
Ref. 54 and 57-59. eRe f. 44 and 45. f 

Ref. 54 and 58. 

gRef. 58-61. 
h 

Ref. 18, 39, and 46. 
i 

Ref. 58. jRef. 62 and 63. 
k 

Ref. 64. 

R, 
Ref. 42 and 65. mRef. 66 and 67. nRef. 66-68. 0

Ref. 17. 

I 

~ 
I 

fu 
t" 
I 

1-' 
1.0 
U1 
1-' 



Table VIII. Parameters for S = 0- transition densities obtained using renorrnalized coupling interaction. 

Transition Theory 
a . a ExperJ.rnent 

Target 
J; (JOJ) AJOJ AJOJ AJOJ A.JOJ J E:JOJ J E:JOJ 

eeff e 
p n 0 1 p eff p 

42 
Ca 2+ (202) 0.98 0.83 1.81 0.15 0.98 2.18 1. 7±.1 2.03 

4+ (404) 0.61 0.41 1.02 0.20 0.61 1.62 - 2.12 

6+ (606) 0.25 0.14 0.39 0.11 0.25 1.23 

50Ti 2+ (202) 0.81 1. 36 2.17 -0.55 1.81 5.61 1. 7±. 2 5.34 

4+ (404) 0.40 0.90 1.30 -0.50 1;40 3.95 1. 4±.1 4.86 

6+ (606) 0.18 0.49 0.67 -0.31 1.18 2.53 

I 

89y 9/2+ (505) 
1.0 

0.35 0.79 1.14 -0.44 1.35 3.52 - - 0 
I 

90Zr 2+ (202) 1. 30 2.07 3.37 -0.77 2.30 7.95 2.8±.4 6.45 

4+ (404) 0.66 1.37 2.06 -0.71 1.69 5.43 2.1±.3 5.39 

6+ (606) 0.33 0.89 1.25 -0.56 1. 33 3.78 - 4.94 

8+ (808) 0.16 0.49 0.76 -0-33 1.16 2.51 - 6.35 

5 (505) 0.35 0.79 1.14 -0.44 1.35 3.52 1.4±.1 4.55 

207Pb 5/2 (202) 0.85 1.10 1.95 -0.25 0.85 2.41 .93±.01 2.50 
-3/2 (202) 0.87 1.20 2.07 -0.33 0.87 2.51 .75±.02 1.91 

13/2+ (707) 0.41 0.59 1.00 -0.18 0.41 1. 74 - 3 .07,, 

- -0.04 0.78 2.10 2.63 7/2 (404) 0.78 0.82 1.60 - t-< 
to 

(continued) t-< 
I 

1-' 
\.0 
(J1 

1-' 

··, 



Table VIII. (continued) 

Transition Theory 
a . a 

Exper1.ment 
Target 

J; (JOJ) A.JOJ A.JOJ A.JOJ A.JOJ J e:JOJ J E:JOJ 
p n 0 1 eeff p eeff p 

209 . 
Bl. 7/2 (202) 0.87 1.63 2.50 -0.76 1.87 6.35 2.3±.6 

:,;\. (404) 0.80 1.65 2.45 -0.85 1.80 6.34 

(606) 0.60 1.39 1.99 -0.79 1.60 5.42 

(808) o. 36 1.06 1.42 -0.70 1.36 4.28 

13/2+ (303) 0.14 1.42 1.56 -1.28 1.14 5.05 5.3±.7 24.0 

(505) 0.14 1.05 1.19 -0.91 1.14 4.03 

(707) 0.12 0.68• 0.80 -0.56 1.12 2.99 

(909) 0.05 0.49 0.54 -0.44 1.05 2.39 

(11011) 0.02 0.35 0.37 -0.33 1.02 1.98 - -

asee text for comments on the manner in which the numbers listed in these columns have been obtained. References 
for experimental values have been given in Table VII. 

I 
\.0 ,_. 
I 

g 
) 
I-' 
\.0 
Ul 
I-' 
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Table IX. Parameters for S = 1 transition densities obtained from first order 
calculations. 

Transition 
Target 

7T ALIJ ALIJ ALIJ ALIJ LIJ 
Jf (LIJ) E 

p n 0 1 p 

89y 9/2+ (314) -0.45 0.08 -0.37 -0.53 0.53 

(514) -0.28 0.05 -0.23 -0.33 0.71 

(515) -0.25 0.05 -0.20 -0.30 0.74 

90Zr 5 (515) -0.25 0.05 -0.20 -0.30 0.74 

207Pb 5/2 (212) 0.05 -0.41 0.36 0.46 0.34 

(213) 0.03 -0.32 0.29 0.35 0.53 

(413) 0.04 -0.27 0.23 0.31 0.53 

3/2 (011) 0.05 -0.20 0.15 0.25 0.55 

(211) 0.09 -0.44 0.35 0.53 0.11 

(212) 0.06 -0.39 0.33 0.45 0.31 

13/2+ (516) 0.05 -0.45 0.40 0.50 0.30 

(716) 0.02 -0.11 0.09 0.13 0.79 

(717) 0.03 -0.29· 0.26 0.32 0.56 

7/2 (213) 0.06 -0.42 0.36 0.48 0.28 

(413) 0.08 .;,0.34 0.26 0.42 0.26 

(414) 0.06 -0.38 0.32 ·0 .44 0.32 

209 0 - (011)a Bl 7/2 

(211) -0.28 0.06 -0.22 -0.34 0. 71 

(212) -0.38 0.09 -0.29 -0.47 0.61 

(213) -0.40 0.11 -0.29 -0.51 0.58 

(413) -0.23 0.09 -0.14 -0.32 0.16 

(414) -0.32 0.10 -0.22 -0.42 0.66 

(415) -0.38 0.11 -0.27 -0.49 0.60 

(615) -0.16 0.09 -0.07 -0.25 0.82 

(616) -0.25 0.09 -0.16 -0.34 0.73 

(continued) 
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Table IX. (continued) 

Transition 
Target 

1T A.LIJ A.LIJ A.LIJ A.LIJ ELIJ 
Jf (LIJ) 

p n 0 l p 

(617) -0.33 0.11 -0.22 -0.44 0.65 

(817) -0.09 0.08 -0.01 -0.17 0.90 

(818) -0.17 0.09 -0.08 -0.26 0.84 

13/2+ (],12) -0.33 0.10 -0.23 -0.43 0.65 

(312) -0.22 0.09 -0.13 -0.31 0.77 

( 313) -0.30 0.11 -0.19 -0.41 0.68 

(314) -0.29 0.11 -0.18 -0.40 0.69 

(514) -0.21 0.09 -0.22 -0.30 0.88 

(515) -0.22 0.10 -0.12 -0.32 o. 77 

(516) -0.23 0.09 -0.14 -0.32 0.75 .• 
(716) -0.13 0.08 -0.05 -0.21 0.86 

(717) -0.13 0.08 -0.05 -0.21 0.86 

(718) -0.16 0.06 -0.10 -0.22 0.83 

(918) -0.04 0.06 0.02 -0.01 0.94 

(919) -0.07 0.05 -0.02 -0.12 0.92 

(9110) -0.13 0.03 -0.10 -0.16 0.87 

. (11110) 0.00 0.04 0.04 -0.04 0.99 

(11111) -0.04 0.03 -0.01 -0.07 0.95 

aThe valence transition is strictly forbidden in this case so .\011 cannot be 
defined. Core polarization does not break this selection rule to any great 
extent. 



Table X. Comparison of the results of this work (PW) for some quadrupole transitions with results obtained 
previously by Siegal and Zamick. 

PW(GKK)a SZ(GKK)b PW (G') a SZ(TDA)b 

Core Transition 
A.2o2 

0 
A.202 

1 
A.202 

0 
A.202 

1 
A.202 

0 
A.202 

1 
A.202 

0 
A.202 

1 

40Ca 
lf7/2 -+ lf7/2 0.91 -0.45 0.80 -0.38 1.81 -0.15 1.86 -0.30 

aPW denotes present work. GKK refers to first order calculations and G' refers to calculations with renormalized 
coupling interaction. 

b d . 1 d . k 10 sz enotes s~ega an Zam~c . TDA refers to the treatment of excluded space interactions in the TDA 
approximation. 

I 
~ 
~ 
I 

~ 
t-< 
I 

1-' 
1.0 
l.n 
1-' 



-95- LBL-1951 

Table Xl. Effective charges for some quadrupole transitions not considered in 
Tables II, XII, and VIII. 

i' 
! 
! 

Theory Experiment 

Nuclide 2 
(GKK) 

2 (G I) 
2 

Transition e e 
eff 

e 
eff eff 

42 + 4+ 0.68 
. a 

Ca 6 + 0.98 0.8±.1 

SOTi + 4+ 1.22 1.81 l.8±.3a 6 + 

90Zr 8+ + 
l. 31 2.30 2.l±.lb + 6 

208Pb + p lh9/2 + lh9/2 1.35 2.27 l.S±.lc 

208Pb + n 3d5/2 + 2sl/2 0.37 0.55 (0.42±.01) c 

2g9/2 
+ 2g9/2 0.36 1.04 (0.84±.07)c 

'. 208Pb -1 (0.96±.04) c + n 
li13L2 

+ 
li13L2 

0.81 1.22 

aRef. 72. 
b 

Ref. 59. cRef. 64. 



Table XII. Optical parameters used in the present calculations. 

a 
System 

42 b 
Ca + p 

SOTi + pc 

SOTi + pd 

89 e 
y + p 

89y + pf 

89y + pg 

90 h 
Zr + p 

90zr + Pg 

207Pb + pi 

E 

(MeV) 

22.9 

17.5 

40.0 

18.9 

24.5 

61.2 

18.8 

61.2 

20.2 

v 

(MeV) 

46.9 

48.3 

44.9 

52.6 

46.6 

39.5 

52.0 

39.5 

53.0 

awe write the optical potential 

r 
0 

(F) 

1.18 

1.24 

1.16 

1.20 

1.23 

1.20 

1.20 

1.20 

1.25 

a 

(F) 

.700 

.600 

.750 

.700 

.627 

.693 

.700 

.693 

.650 

w 

(MeV) 

1.30 

0.00 

7.82 

0.00 

0.00 

5.12 

0.00 

5.12 

0.00 

w 
0 

(MeV) 

6.80 

10.68 

1.14 

9.80 

10.9 

2.54 

9.25 

2.54 

10.0 

r ' 
0 

(F) 

1.30 

1.26 

1.37 

1.25 

1.28 

1.40 

1.25 

1.40 

1.25 

a' 

(F) 

.600 

.520 

.630 

.650 

.536 

.534 

.650 

.534 

.760 

v 
s 

(MeV) 

6.00 

10.00 

6.04 

5.70 

7.00 

6.92 

6.20 

6.92 

6.00 

X x -1 x' -1 d x' -1 2 1 d s -1 
U = -V(l + e ) - iW(l + e ) + 4iw0 dx' (1 + e ) + (h/m c) V - --d (1 + e ) 

where 
r - r Al/3 r - r 'Al/3 

X = 0 
a 

x' = o 
a' X = 

s 

r -

a 
s 

7f s r r 

and to which is added the Coulomb potential of a uniformly charged sphere of radius 1.2SA113 • 

r 
s 

(F) 

1.05 

1.24 

1.06 

1.20 

'1. 23 

1.00 

1.20 

1.00 

1.20 

b 
Ref. 56. 

c 
Ref. 75. 

d 
Ref. 45. 

e 
Ref. 76. 

f 
Ref. 77. 

g 
Ref. 78. 

h 
Ref. 46. 

i 
Ref. 65. 

a 
s 

(F) 

.700 

.600 

.738 

.700 

.627 

.861 

.700 

.861 

.470 

!. 
1.0 
0"1 
I 

5; 
t"i 
I 

1-' 
1.0 
L11 
1-' 
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Table XIII. Parameters for ground state proton distributions. 

a 
Nuclide Po c a 

(F-3) (F) (F) 

42 b 
Ca .069 3.83 .595 

50Tib .073 3.92 .553 

89Yc .073 4.80 .568 

90Zrc .074 4.85 .568 

207Pbd .063 6.63 .527 

art is assumed that the density distribution is given by 

p (r) = p [1 + exp(r- c)]-l 
p o a 

b 
Ref. 54. 

c 
Ref. 79. 

d 
Ref. 80. 
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Figure Captions 

. 50 . 90 h . . . F1g. 1. Spectra of Tl and Zr s ow1ng pa1r1ng effect due to core polarization. 

Fig. 2. Theoretical (p 1 p') differential cross section obtained with schematic 

model for the first 2+ and 4+ states in 50Ti with E = 17.5 and 40.0 MeV. 
p 

Results with (D) and without (D+C) core polarization are shown. 

Fig. 3. Theoretical (p 1 p') differential cross sections obtained with schematic 

+ + + + . 90 . 
model for first 2 , 4 , 6 1 and 8 states 1n Zr w1th E = 18.8 MeV. 

p 

Fig. 4. Transition densities for L=2 transitions in 
50

Ti, 
90

zr, 
207

Pb, and 

209 . 
Bl. 

Fig. 5. Form factors obtained from transition densities of Fig. 4. 

Fig. 6. Theoretical (p,p') cross sections for first 2+ and 4+ excitations in 

42
ca with E = 22.9 MeV. 

p 

Fig. 7. 
+ 42 

Theoretical (e 1 e') form factor for first 2 state in Ca. 

Fig. 8. Theoretical (p,p') cross sections for first 2+ and 4+ states in 
50

Ti 

Fig. 

Fig. 

with E = 17.5 and 40.0 MeV. 
p 

9. Theoretical (e 1 e') form factors for 

10. Theoretical (p ,pI) cross sections 

. . . 90 . h exc1tat1ons 1n Zr w1t E 
p 

18.8 MeV. 

first 2+ 

for first 

Fig. 11. Same as Fig. 10 with E = 61.2 MeV. . p 

and 4+ states in 
50 . 

Tl. 

2+ 4+ 6+ + , 
' I and 8 

Fig. 12. Theoretical (p 1 p') cross sections for excitation of first 5 level 

in 
90 

Zr at E = 18.8 and 61.2 MeV. 
p 

Fig. 13~ Theoretical (e,e') form factors for first 2+ and 4+ excitations in 

90 . 
zr 



Fig. 14. Theoretical (p tP I) 

. . . 89 
trans1t1on 1n Y with E 

p 

Fig. 15. Theoretical (p,p I) 

207
Pb with E 

p 
20.2 MeV. 
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cross sections for 2pl/2 -+ lg9/2 single proton 

- 18.91 24.5, and 61.2 MeV. 

cross sections for neutron hole transitions in 
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