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1. Introduction. 

Modern heavy-ion accelerators allow us to study the behavior of rapidly 

rotating nuclei. Much effort has been devoted in the last fifteen years both 

on the experimental as on the theoretical side to understand the rotational 

spectra of bands in the vicinity of the yrast line. A number of anomalous 

phenomena have been observed is this area and it turned out that they can be 

explained as an interplay of collective and single particle degrees of 

freedom: Alignment phenomena of one or several particles caused by the strong 

Coriolis field of the rotating core give us the essential key for a 

understanding of these phenomena. The most famous example is backbending in 

the discovered in the early seventies in the Rare earth region1), which can be 

understood by the Stephens-Simon effect2) as a sudden alignment of two 

neutrons in the i13/2 orbit. At the same time one has seen strongly disturbed 

bands 3) and decoupled bands4) in odd mass nuclei, which are characterized by 

the alignment of a single particle in the intruder orbit. Later on one has 

observed additional alignment phenomena, such as the alignment of h11/2 

protons 5), the alignment pattern in triaxial shapes6,7) or the alignment of 

one of the particles in an excited two-quasiparticle band (hybrid bandsB,9». 

In all these cases the alignment is caused by Fermions, namely neutrons 

or protons in intruder orbits with a large single particle angular momentum. 

On the other side collective nuclear excitations have also been described in 

terms of Bosons. In negative parity excitations, which we concentrate on in 

this paper, octupole Bosons playa crucial role. Most of the low lying low 

spin negative parity states in heavy deformed nuclei have been described as 

collective octupole vibrations, i.e. one-Boson excitations on the 

groundstate. Octupole Bosons carry 3 units of angular momentum. In the 
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Coriolis field of the rotating core they therefore feel a tendency to align, 

just as the single Fermions in the high spin intruder orbits 10). Because of 

the smaller amount of angu,lar momentum the corresponding Corio1is matrix 

elements are nearly a factor 2 smaller as in the case of i
13/2 

particles, but 

they are even at small angular velocities on the order of the splitting of the 

band heads with the quantum numbers K = 0, 1, 2, a, i.e. the Coriolis force, 

which drives alignment overcomes already in the region of not too high spins 

the residual interaction of the deformed field of the core, which tends to 

couple the octupole vibration along the symmetry axis. In a pure Boson 

picture one therefore finds pretty soon a value of 3~ for the aligned angular 

momentum' 1 ,12). 

In real nuclei, however, collective excitations consist of linear 

combinations of two-quasiparticle states. In a negative parity state, one of 

these Fermions sits in the high spin intruder orbit, i.e. in the Actinides in 

the i 13/2 orbit for protons or in the j1SIS orbit for neutrons. It therefore 

feels itself a strong Coriolis force, which tries to align it parallel to the 

rotational axis. At low spins this individual particle alignment ;s prevented 

by the relatively strong octupole correlations in the pair. It couples the 

two particles to spin 3~. Obviously the spins of the two partners are then 

antiparallel, similar to the particles in a Cooper-pair, where the partners 

are coupled to spin" zero. With increasing spin, however, the Coriolis force 

will become strong enough, to break the 3 pair, just as one Cooper-pair is 

broken in the backbending region. The question arises therefore, at which 

spin values this individual pair alignment will occur. Are the octupole 

correlations strong enough, to keep the octupole Boson together up to spin 

values large enough that we can observe the rotational alignment of the Boson, 
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or does the octupole pair break already before this alignment is achieved? 

Recent experiments in the Actinides13 ,14), where it is well known, that 

octupole correlations are strong, show indeed in some cases first alignment of 

the Boson and only later on individual pair alignment. 

The purpose of this paper is to present a unified microscopic theory for 

these complex alignment phenomena. For a microscopic theory of octupole 

excitations based on the ground state the random phase approximation (RPA) has 

been used by a number of authors lS- 20). In this theory the octupole Bosons 

are treated on a microscopic basis as superposition of a large number of 

two-quasiparticle configurations. They are kept together by the correlations 

induced through a residual octupole-octupole force. In a deformed field one 

finds a splitting between the different K-quantum numbers. For the 

description of the rotational bands on top of these band heads several methods 

have been used: Neergard and voge1 2l ,22) couple the RPA-Boson determined 

microscopically at spin zero to a rotor just in the sense of the 

particle-plus-rotor model. They diagonalize the corresponding Coriolis 

interaction and describe in this way the alignment of the Boson. This method 

is mixed microscopic-macroscopic: vibrational degrees of freedom are treated 

microscopically and rotational degrees of freedom are treated 

macroscopically. Apart from the fact, that it is not clear, if such a model 

can describe the alignment process properly, since it is well known that the 

particle-plus-rotor model is not able to describe the particle alignment 

quantitatively because of the missing attenuation of the Coriolis force 3,23), 

this method does not include the degree of freedom of individual particle 

alignment, i.e. the collective pair is never broken. P.Vogel therefore 

introduced a different method 10): he coupled two particles to the rotor 
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in the sense of the Stephens-Simon mode1 2). Octupole correlations are 

introduced by a residual octupole-octupole force, which is diagonalized in the 

two-particle space. This method includes in principle all the important 

degrees of freedom, the attenuation problem is however not solved and it 

requires a considerable numerical effort, since the number of two-particle 

configurations, which is needed for a microscopic description of the aligning 

Boson grows rapidly. Severe restrictions have to be made and no quantitative 

comparison with experiment is possible. 
24-26 In the meantime Cranked RPA theory has been developed ) and has been 

applied with great success for the description of rotational bands with 

positive parity27,28). In this paper we apply this method to negative parity 

bands in the Actinide region. At spin zero it corresponds precisely to the 

old RPA theory, which is very successful in the description of the band 

heads. For finite spins it treats the alignment mechanisms for Bosons and 

Fermions on the same microscopic level and it is well know, that the Cranking 

model has the proper amount of Coriolis attenuation23 ,29). We use the 

parameter space of ref. 30. which provides an excellent description of the 

yrast levels in the entire deformed Actinide region. The only additional 

parameters are the !orce parameters of the octupole-interaction, which are 

adjusted at spin zero and one additional parameter, which determines the 

alignment at high spin. We then are able to describe the high spin region for 

a series of Actinide nuclei, which show a rather different alignment pattern, 

practically with only one parameter. We find rather good, sometimes even 

quantitative agreement for the spectra and the alignment plots. 
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The RPA formalism in the context of negative parity is briefly outlined 

in section 2 and the details of our model are discussed. In section 3 we 

present numerical results for the nuclei 232Th , 236U and 238u. A 

conclusion is given in section 4. 



6 

2. Microscopic Theory of Excited Rotational Bands of Negative Parity 

We start with the microscopic Hamiltonian 

H = E - 1 ~ x oto 
2 ~ p p p 

p 

(1 ) 

It describes the motion of the valence particles in the spherical oscillator 

shells N = 5,6 for protons and N = 6,7 for neutrons. £i are spherical 

single particle energies. They are calculated in the Nilsson model with the 

usual parameters K = 0.0577, K = 0.0635 and p = 0.65, p = 0.325. 
11' \) 11'. \) 

The effective residual interaction is assumed to be of separable form. It 

contains the following essential degrees of freedom: quadrupole, octupole and 

hexadecupole in the ph-channel and monopole pairing in the pp-channel. We use 

operators symmetrized with respect to signature, namely the multi pole 

operators: 

QAP =L ~T ~I r2
C-l" (VAllAl + r"(-)'Y'_I"I)I~ '!'m' (2) 

<r2>N m V2(1 + 6 ) nml po 

where r = ±l for P ~ 0 and r = (_)f.. 
P 0 

with ~ = (5 + 3/2)(2Z/A)1/3 ~ - (6 + 3/2)(2N/A)1/3 
11' v 

for A = 2, 4, a similar operator for A = 3 (see eq.(2l» and the pairing 

operators 

( 3) 

for protons and neutrons (~ = 1I',v) 
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The first step is the calculation of the mean field. We assume that it 

preserves parity, i.e. we do not consider stable octupole deformations, which 

is a reasonable assumption in the region of nuclei under consideration. We 

thus find for the groundstate a deformed and superfluid mean field of the form: 

HO = E - (32Q20 - (34Q40 + L A
T

( p! + P't) 

T 

The parameters (32 and (34 for quadrupole and hexadecupole deformation 

and the gap parameters Ap and An depend in principle on the strength 

parameters of the residual interaction. In order to avoid additional 

(4) 

parameters in our model, we use, however, the experimental values given in 

Table 1. We also neglect stretching and Coriolis-anti-pairing effect, i.e. we 

use the same deformation- and gap-parameters for all spins. As has been shown 

in ref. 30 this is a very reasonable approximation for the Actinides in the 

mass region 230 < A < 250 and for spin values I < 30~. For finite angular 

momenta we then only.have to add the Coriolis term 

H = H - Co) J (5) 
Co) 0 x 

We thus end up with a rotating basis. The wave functions of the levels 

at the yrast line are obtained by constructing a generalized Slater 

determinant .in filling up this rotating deformed mean field from the bottom. 

Excellent agreement with experimental data on the yrast line is obtained in 

this way in ref. 27. In the present paper we use the same basis and calculate 

vibrations of small amplitude around this quasistatic rotating solution. We 
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concentrate on states with negative parity. Therefore only the 

octupole-octupole part of the residual interaction in eq.(l) plays a role in 

the following considerations. 

The Cranked RPA approximation is obtained most easily by representing the 

Hamiltonian in the rotating frame by Bosons 24 ). For an arbitrary single 

particle operator 0 we have the quasiparticle representation in the basis 

which diagonalizes H . 
(0) 

k<k' kk' 

( 6) 

<0> is the expectation value of 0 in the rotating shell model. In terms of 

Bosons operators t 
Akk ' it has the form 

0 = <0> + L 20 t 
°kk,Akk ' 

02 
+ °kk,Akk ' +L 11 t 

°kk,AklAk'l + ... 

k<k' kk'l 

Inserting these representation for the operators E, J and 0 in the x p 

Hamiltonian (1) and taking into account only up to quadratic terms in the 

Boson operators A~k' we find in the rotating frame: 

HI = H - w Jx = <HI> + L 
kk'l 

+tL L 
p kk'll' 

(7) 

( 8) 

where Ek are the quasiparticle energies, the eigenvalues of the operator Hw 

(eq.(S». In this approximation the Hamiltonian is a quadratic expression in 

t the operators Akk" Akk,o It can be diagonalized 

• 
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HI = ERPA + ~ QpB:Bp 
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9 

in terms of collective Bosons by the ansatz 

(9) 

(10) 

ERPA is the RPA-energy of the corresponding Boson-vacuum, which represents a 

correlated wave function for the levels at the yrast line26 ). Q are the 
p 

excitation energies of the one-Boson excitations. They describe collective 

bands above the yrast line. The amplitudes X~k' and Y~k' are obtained by the 

solution of the RPA-equation. Since we violate nearly all symmetries the 

number of two-quasi-:particle configurations is extremely large. However, the 

diagonalization of the RPA-equation is extremely simplified by the fact, that 

we use a separable interaction. Using the Brown-Bolsterli trick3l ) we end up 

with a nonlinear eigenvalue problem, whose dimension is just the number of 

separable terms in the Hamiltonian: 

(11 ) 

where the energy dependent matrix S is given by 

20* 02 
__ ~ 0 pkk I 0 pkk I 

S I (Q) 
pp Q - Ek - Ek' 

k<k' 

(12 ) 

and the quantities dP are defined as the 0 -strength of the corresponding 
p p 

eigenstate: 

(13 ) 
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In order to find the proper normalization we have to calculate the 

RPA-amplitudes: 

and (14 ) 

which are normalized to one 

(15 ) 

In the present case we are only interested in excitations with negative 

parity. Therefore we have only the octupole operators Q3~ in eq.(12). 

Signature symmetry decomposes the matrix S, whose dimension is 7x7 into a 3x3 

matrix with positive signature (K = +1. +2, +3) and a 4x4 matrix with negative 

signature (K = O. -1. -2, -3). We calculate in each case the few lowest 

e;genstates. 

For each value of the cranking frequency w we obtain in this way a 

number of excitations, which form as a function of w rotational bands 

"parallel" to the yrast line. In order to obtain discrete energies for fixed 

values of the angular momentum we have to use the cranking condition: 

(16) 

for each one-Boson state I~>. 1 c is a core moment of inertia, which takes 

care of the fact, that our configuration space is too small as to reproduce 

the full experimental moment of inertia. It has been adjusted to the 
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excitation energy of the 2-level on the yrast line in ref. 30. We have ~c = 

17.2 (MeV)-l for 232Th ,\c = 14.0 (MeV)-l for 236U and fc = 13.6 (MeV)-l 

for 238U• In all these cases the quantity <~IJ~~> ~ K2 for small I-values. 

For large angular momenta, where K-mixing occurs it is small against 1(1+1) 

and can be neglected. We are therefore never faced with the problem to 

calculate the expectation value of this two-body-operators. 

The Cranking condition (16) has been derived from an approximate angular 

momentum projection. 32 ,33). In the case of even parity bands this derivation 

also shows that even values of the angular momentum correspond to positive 

signature and odd values correspond to negative signature34). An extension of 

these considerations to negative parity bands is straightforward since we 

consider the parity as a good quantum number. 

Great care has to be taken in the calculation of the expectation value 

<J > of the RPA-states in eq.(16). As has been shown in ref. 26 we do not x 
have to worry about this condition in linear order: Starting at a point at 

the yrast line with a fixed I-value, determined from the usual cranking 

conditi on 

(17) 

we obtain the excitation energy of anyone-Boson state with the same I-value 

as the eigenvalue Q of the CRPA-equation at the same cranking frequency, 
~ 

because in linear order there ;s a cancellation between two effects: i) the 

one-Boson state has in general a average angular momentum somewhat different 

from that of the yrast state (the Boson vacuum) and we therefore should in 

principle choose a slightly different w-value for the solution of the 
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CRPA-equation. ii) The excitation energy Q at the new w-value is different 
p 

from the excitation energy of the old w-value. This cancellation, however, 

is true only ~n linea~ order. If the Boson carries a large amount of angular 

momentum, as we find it in aligning configurations, the linear approximation 

is not good enough. We have to calculate in each case the full expectation 

value of the one-Boson configurations: 

(18) 

Using this expression in eq.(16) we find to each angular momentum I for the 

one-Boson state a cranking frequency different from the value at the yrast 

line. The laboratory energy of the one-Boson configuration is given by the 

express~on 

E(I) = <RPAIB H BtIRPA> 
p p 

= <RPAIB (H - w J )BtIRPA> + w<RPAIB J B+IRPA> 
~ x p ~ x ~ 

We neglect ground state correlations and replace the expectation values 

<RPAI ... IRPA> by the corresponding RSM-results at the corrected angular 

velocity. We thus find 

In fact it turned out, that this correction is crucial for a 

(19) 

(20) 

understanding of the experimental alignment patterns. Without it we would 

~ . . 
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obtain in all cases a very early individual particle alignment, we would not 

find in our theory the alignment of the unbroken octupole Boson. 

A final remark has to be made about the violation of translational 

symmetry. It is well known that, in cases where the static mean-field 

approximation violates symmetries, one finds spurious excitations in the 

theoretical spectra. In our case the mean field violates translational 

invariance as well as rotational symmetry and number symmetry for protons and 

neutrons. However only translational symmetry are essential, because the 

spurious excitations connected with breaking of rotational and number symmetry 

have positive parity. The spurious excitation connected with translational 

symmetry is the center of mass motion. Its operator is the linear momentum 

~, which has negative parity. It should show up in the negative parity 

channel. In fact one finds in text books 34 ), that the RPA has the advantage 

of separating the corresponding spurious excitations exactly. They should 

show up with zero excitation energy and should be easily removable. However, 

this is only true, if the mean field is calculated selfconsistently with a 

translational invariant force. In our case we do not use translational 

invariant forces. Even our entire model is not translational invariant, 

because we restrict our calculation to a limited configuration space of a few 

shells in a translational symmetry violating oscillator potential. The center 

of mass motion therefore does not separate exactly, we can have spurious 

admixtures in all low lying one-Boson excitations. A number of recipes have 

been invented to deal with such a situation35- 3B ). We used the method of 

refs. 36 and 37 and solved the RPA-equations for an effective Hamiltonian, 

which restores translational symmetry. This procedure, however, produced only 

very small corrections, which means that in the cases under consideration the 
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spurious center off mass motion is relatively well separated from the octupole 

excitation. In Fig.1 we show the overlap of the octupole state with the 

spurious states characterized by Py aAd Pz for the K = 0- bands (the 

corresponding quantity for Px vanishes identically in this case). It stays in 

all cases below 5%. At zero angular momentum only Pz contributes. With 

increasing angular momentum we find because of the K-mixing also contributions 

of Py. They stay however for ,all angular momenta smaller than 1%. We 

therefore understand, why the'correction for spurious admixtures has so little 

influence on our results. In general such a correction turned out to be 

unnecessary. 
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3. Numerical Results 

As we discussed in section 2, the calculation has been carried out in two 

steps: 

In the first step the basis of the rotating shell model (RSM) is 

determined. We used for this purpose the HFB-wave functions and the 

quas;-particle energies determined in ref. 30. There the RSM-equations are 

solved by the gradient method. We therefore have for each angular momentum at 

the yrast line Iyrast' the corresponding angular velocity w (Table 2). In 

the following we use Iyrast as reference. We have to keep in mind, however, 

that the angular momentum of the corresponding one-Boson states can differ 

from this value. 

In the second step we transform the octupole operators to the rotating 

quasiparticle bases. In particular we use the following form of the residual 

interaction in the negative parity channel 

1 
V = - '2 

with the operators 

(21 ) 

(22) 

(Y r Y ) ~ml ata 
31~1 - ~ 3-1~1 ~ m ml (23) 

The interaction (21) depends on two parameters: The factors ~ determine the 
T 
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relative strength of the octupole correlations for protons and neutrons. They 

are defined in the spirit of Baranger and Kumar39 ): 

C11f = (2!)n ·(24) 

Different values for n were used: n = 0, 1, 2. In Table 3 we compare the 

results obtained in this ways. We find in agreement with earlier 

investigations of Neergard and voge1 21 ) that the parameter n has little 

influence on the results for small spins. For high spins this is no longer 

true. In the region, where the octupole pairs break and a pair of individual 

particles aligns, this parameter determines, which type of particles align 

first. This parameter determines in some extension the relative amount of 

protons and neutrons in the pair. A large value of n (C1 > 1) favours the 
v 

presence of neutrons and disfavours the protons. We therefore use n as a 

parameter to reproduce the experimental alignment patterns as good as 

possible. Best agreement is found for n = 2 and we use in the following only 

this value for all three nuclei under consideration. 

In order to reproduce the band heads properly K-dependent coupling 

constants have to be used 20- 22 ). The bandheads are determined for angular 

velocity w = o. We therefore have no K-mixing and can determine the coupling 

constants x3K for each K-value separately in such a way that the experimental 

bandhead energy ~ is obtained as solution of the RPA-equation (1'). 

(25) 

The values for x3K 3 = x3KA are given in Table 4. For all three nuclei we 

" 
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- - -
find roughly x31 ~ x30' x32 ~ 1.6 x30 and x33 ~ 2.4 x30' Qualitatively we 

can understand this K-dependence of the force parameters by the arguments 

of selfconsistency applied by Neergard21 ). Using his method we would obtain 
- - -

for a deformation ~ = 0.25 the relations x31 = 0.68 x30' x32 = 1.37 x30' 
- - --
x33 = 2.17 x30 and for ~ = 0.3 x31 = 0.61 x30' x32 = 1.45 x30' x33 = 

2.50 x30' These values are in qualitative agreement with the parameters 

found by our fit to the experimental band head energies. 

In Fig.2 we show theoretical and experimental spectra for the low lying 

bands with negative parity in the nuclei 232Th , 236U and 238U. The 

theoretical energies are obtained according to the prescription given in 

eq.(20). In view of the fact, that we adjusted only the band heads and use 

only one parameter n = 2 for all tree nuclei the overall agreement between 

theory and experiment is rather satisfactory. 

In order to see the alignment pattern more clearly we have to go more 

into the details: In Fig.3 we show as an example the low lying uncorrelated 

two-quasiparticle energies in.the RSM for negative signature as a function of 

the Yrast angular momentum (the corresponding angular velocities are given in 

Table 2). For the characterization of the q~asiparticle components the 

following notation is used: p,n means proton or neutron with signature +i, 

p(dash), n(dash) means proton or neutron with signature -i. The first of the 

two indices gives the number of corresponding quasiparticle energy (1 is the 

lowest, 2 the next, and so on). The second index (+ or -) indicates the 

parity. For increasing angular momentum most of these two-quasiparticle 

energies decrease with rather different slopes, indicating a rather different 

amount of alignment. 
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In Fig.4 we show the low lying eigenvalues of the RPA-equation (eq.(11» 

for the three nuclei 232Th , 236U and 238U. We observe a considerable 

lowering of the collective states characterized by the quantum numbers K = 0, 

1, 2 and 3. For spin zero these are exact quantum numbers. For higher spin 

values we have some K-mixing by the Coriolis force. 

The alignment pattern in the lowest band with negative parity (K = 0-) 

for the different nuclei is given in Fig.5. The theoretical aligned angular 

momentum i is the angular momentum component parallel to the rotational axis 

carried by the Boson. It is given by 

i th = <RPAIB J BtIRPA> - <RPAIJ IRPA> = Jll (25) 
~ x ~ x ~~ 

In Fig.5 we show these values as a function of the cranking frequency. We 

also indicate the contributions coming from neutrons and protons. The three 

nuclei show a rather different behavior: in the two U-nuclei we first observe 

Boson-alignment: a value close to 3~ is reached rather soon. The neutron 

contribution is definitely larger as the proton contribution, but for all 

angular velocities smaller than 200 keV no particle alignment is observed. In 

232Th the situation is different. We see in the theory only a rather weak 

indication of Boson alignment. At an angular velocity of w ~ 140 keV the 

alignment increases strongly. The octupole-pair is broken and the proton in 

the j = 13/2 shell decouples. 

We also compare in Fig.5 our theoretical results with the experiment. 

For the definition of the experimental alignment the yrast line was used as 

reference. A VMI-model was fitted to the low lying members of the yrast line 

and for constant angular velocity the experimental alignment is defined as the 
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difference between the full angular momentum and the VMI-value for the angular 

momentum of the yrast line. Although this definition of alignment is somewhat 

different from the theoretical alignment in Fig.S. we still observe a 

surprisingly good qualitative agreement in the alignment pattern for the three 

nuclei: In 232Th very soon particle alignment sets in and Boson alignment 

cannot develop. In 236U and 238U we see only Boson alignment. Although we 

can reproduce these pattern rather nicely in our theory. we do not obtain 

quantitative agreement. As often observed in calculations30 ) Cranking theory 

produces somewhat too much of alignment. 

In order to demonstrate even more clearly the different behavior of the 

K = 0- bands in these three nuclei we show in Fig.6 to what extend the 

maximally aligned configuration (i 13/2 with signature +i for the protons and 

j1S/2 with signature -i for the neutrons) are occupied in the "collective 

pair" obtained as the lowest solution of the RPA-equation. We find a steep 

proton alignment in the nucleus 232Th • but nearly no individual particle 

alignment in the two other cases. 
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4. Conclusions 

Based on calculations within the Rotating Shell Model in ref. 30. which 

give a very satisfying description of the yrast configurations in Actinide 

nuclei. the Cranked RPA equations are solved for low lying negative parity 

bands in the three nuclei 232Th • 236U and 238U. A separable 

octupole-octupole interaction is used. whose strength parameters are adjusted 

to the experimental band head energies. 

We are thus able to describe in a unique microscopic framework the 

complicated interplay between collective degrees of freedom. as static 

multipole deformations and pairing. rotation and dynamic octupole vibrations 

on one side. and the single particle degrees of freedom dominated by the large 

angular momentum of the intruder orbits on the other side. 

In detail we observe in some cases rather strongly bound collective 

pairs. which align together as a octupole Boson in the Coriolis field of the 

rotating core. in other cases the collective nature disappears rather soon. 

the octupole Bosons breaks up and we find the alignment of single particles in 

the intruder orbits. Cranked RPA theory includes all these degrees of freedom 

and we find nice agreement with the experimental results. Depending on the 

nature of the quasiparticles in the vicinity of the Fermi surface and the 

strength of the residual forces it can describe as well pure two-quasiparticle 

configurations as collective Bosons. whose internal correlation energy is 

large enough to avoid a too early break up in individual particles. 

In detail we find. that we have to take the Cranking condition fully. 

Because of the large single particle angular momenta involved in aligning 

configurations the linear approximation commonly used in CRPA theory26) breaks 

down here. 
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Tables 

Table 1 Deformation and gap parameters of the RSM-potential in eq.(4) 

The experimental values are taken from ref. 40 

232Th 236U 238u 

13 2 0.238 0.259 0.283 

134 0.130 0.124 0.059 

~p 1.075 0.952 0.864 

~n 0.750 0.665 0.644 
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Table 2 Cranking frequencies corresponding to fixed angular momentum values 

at the yrast line Iyrast 

Iyrast 
232Th 236U 238U 

0 0.0 0.0 0.0 .. 
2 0.040 0.031 0.031 

4 0.011 0.061 0.061 

6 0.102 0.095 0.096 

8 0.130 0.122 0.124 

10 0.156 0.141 0.149 

12 0.180 0.169 0.111 

14 0.200 0.188 0.186 

16 0.218 0.204 0.195 

18 0.234 0.216 0.202 

20 0.241 0.225 0.201 

22 0.246 0.233 0.213 

24 0.246 0.240 0.221 

26 0.245 0.241 0.231 

28 0.246 0.254 0.244 

30 0.254 0.263 0.253 
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Table 3 Influence of the parameter n of eq.(24) on excitation energies Q 

and aligned angular momenta J!l for different spin values I = 4 and 

I = 18 in the low lying K = 0- band of the nuclei 232Th • 236U and 

238u. Only relative quantities are given. 

232Th 236u 238U 

1=4 I = 18 I = 4 I = 18 I = 4 I = 18 
n Q Jll 

x Q J11 
x Q Jll 

x Q J 11 
x Q J11 

x Q J11 
x 

0 l. l. l. l. l. l. 1. 1. l. l. 1. 1. 

1 1.005 0.913 1.26 0.949 0.994 0.969 9.914 1.011 0.992 0.965 0.894 1.1 

2 1.009 0.951 1.492 0.906 0.991 0.952 0.912 1.049 0.983 0.913 0.813 1.20 
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Table 4 The coupling constants X3K = X3K • A3 determined by eq.(25) in 

units of MeV fm -6 

'" 232Th 236U 238U 

• ~30 158.1 166.5 164.7 

~31 161.6 153.3 149.2 

~32 245.6 231.4 221.0 

x33 393.2 413.7 391.5 
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Figure Capti6ns 

Fig.1 

Fig.2 

Fig.3 

Fig.4 

Fig.S 

Overlaps between the 3- octupole excitation and the spurious center 

of mass motions characterized by Py and Pz for the tree nuclei 

232Th , 236u and 238U. The overlaps are normalized in the 

following way: Sp = <RPAIP BtIRPA>I<HFBIP P IHFB> y,z y,z y,z y,z 

Theoretical and experimental spectra for low lying bands with 

negative parity in the nuclei 232Th , 236U and 238U. The 

experimental data are from ref. 40 (232Th ) and ref. 41 in 238U. 

Two-quasiparticle energies of the rotating shell model (RSM) for the 

negative signature in 232Th . Details are explained in the text 

Low lying eigenfrequencies of the RPA-equation (eq.(ll» with 

negative parity as a function of the angular momentum on the yrast 

line. The collective octupole bands are characterized by the 

quantum numbers K = 0, 1,.2 and 3, which are exact quantum numbers 

for spin zero. 2qp indicates a rather pure two-quasiparticle 

configuration. 

Aligned angular momentum i for the low lying negative parity band 

(K = 0-) in the nuclei 232Th , 236u and 238U as a function of the 

cranking frequency. The full lines are theoretical values obtained 

from the RPA-calculation according to eq.(S). Proton- and neutron 

contributions to these theoretical results are given by dashed 

lines. The theoretical values are compared with experimental 

aligned angular momenta as defined in ref. 11 (dashed-dotted 

lines). 



Fig.6 
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Structure of the lowest lying RPA solution (K = 0- band) as a 

function of the angular momentum for the three nuclei 232Th , 

236U and 238U. ~= ~ IxPkk
' 

12 are the RPA-amplitudes of 
kk' 

eQ.(10)" and the index k runs over all levels in the i13/2 orbit with 

signature ±i for the protons and over all levels in the j1S/2 orbit 

with signature ±i for the neutrons. 
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