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Abstract 

Corrosion of molybdenum tubes used in actively 
water cooled particle accelerators has become a con
cern in both the positive and negative ion based neu
tral beam programs at the Lawrence Berkeley Laboratory 
(LBL). To ascertain the effect of dissolved oxygen 
concentration in the corrosion of molybdenum 
accelerator grid rails, weight loss from samples 
subjected to flowing Low Conductivity Water (LCW) of 
various oxygen concentrations- was monitored over 
several weeks. The results indicate that the 
corrosion of molybdenum tubes can be reduced to 
acceptable levels by limiting the oxygen 
concentration ,in the water. 

Introduction 

Long pulse positive' and negative2 ion based 
neutral beam accelerators designed at the Lawrence 
Berkeley Laboratory employ molybdenum tubes as 
electrodes. In these devices, water flowing at 
moderate velocities through the tube bore dissipates
the energy absorbed at the electrode surface on a 
continuous basis. While molybdenum- is usually 
cons i dered to have excellent res i stance to 'corros i ve _ 
attack by water, evidence of molybdenum, pentoxide 
("moly blue") formation was found after two _ day 
interruptions in the operation of the firs~ LBL Long 
Pulse Accelerator (LPA). During these ·periods of 
non-operation, the cooling water supply was turned 
off and inadve~tantly air was allowed to mix with the 
water trapped in the electrodes. The problem was 
remedied by maintaining a slight positive pressure in 
the cooling water circuits at all times. Subsequent 
accelerators containing water cooled molybdenum 
electrodes have all used cooling systems which 
ma i nta ina pos it i ve pressure when shutoff and oxygen 
concentrations of 20 ppb or less when operating. The 
longest accumulated running time on a LBL type long 
pu 1 se source is the approximately three years 
sustained by the 10 x 40 cm LPA. To date no failures 
have occurred due to molybdenum corrosion. 

The acquisition of the LBL type water cooled 
COl1ll1on Long Pulse Source (CLPS) by the three major 
U.S. fusion experiments, TFTR, Doublet III-D and 
MFTF-B, has brought into question the safe operating 
level of dissolved oxygen in the source cooling water 
supplies. To provide a quantitative answer, a series 
of tests were performed at LBL by flowing LCW with 
various oxygen concentrations through thin wall 
molybdenum tubes. 

Test specimens consisted of cOl1ll1ercially pure 
molybdenum tubes 76 11111 long having an outside 
diameter of 5.06 11111 and a wall thickness of 0.27 11111. 
Specimens were prepared by heating to 1000 °C for 
10 minutes in a hydrogen atmosphere to remove any 
surface oxides and/or contaminants. After firing, 
care was taken duri ng hand ling to prevent any new 
contamination. Clean specimens were weighed and then 
inserted into either the test section of the closed
loop water system in Figure 1 or into a test loop 
connected to the Laboratory's LCW supply. 
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Figure 1 Closed-loop water system for controlled 
oxygen tests. 

After periods of between 3 and 7 days, samples 
were removed, il1ll1ediately rinsed with alcohol and 
blown dry. These specimens were then weighed on an 
Ainsworth type BB balance to an accuracy of 0.3 mg Or 
0.01%. Following weighing, samples were reinserted 
and the test restarted. These procedures were 
repeated for cumulative test durations of from 400 to 
700 hours. All tests were performed simultaneously 
on two specimens connected in series. Tygon tubing 
was used to make connections between samples and 
between the samples and water supply. 

Tests can be grouped into two categories: 

1. multiple oxygen concentrations at a single flow 
rate 

2. fixed oxygen concentration at multiple flow rates. 

The flow rate for the first set of tests was selected 
to produce the same Reynolds number as prisent 'in the 
exit and gradient grid electrodes of the CLPS. Flow 
rates in the second set of tests were selected to 
cover a useful range of Reynolds numbers. Initial 
tests were performed at an oxygen concentration of 
80-100 ppb to match the conditions of the MFTF-B 
cooling water supply. Subsequent tests were 
performed at concentrations of 40-45 ppb and 
- 10,000 ppb. A sUl1ll1ary of the test parameters is 
given in the next section. 

Low oxygen concentration tests were performed 
using a small DXD Corp. model HPS-5000 closed-loop 
water supply specially modified for these tests. 
Auxi llary equipment included a Beckman, Model 7001, 
Oxygen Concentation Monitor and a LCW make-up line. 
The monitor sampled the water supplied to the test 
section, activating a solenoid valve in the LCW 
make-up line when the oxygen content dropped below a 
preset level. The make-up water was supplied by the 
Laboratory LCW system which contains a high dissolved 
oxygen concentration. A slight positive pressure of 
nitrogen was maintained over the water in the 
reservoir to prevent the intrusion of air. 

*This work was supported by U.S. Department of Energy under contract no. DE-AC03-76SF00098. 



Nitrogen gas was also used to flush air from the 
system after specimen insertion. Valving, not shown 
in Figure 1, was incorporated to back-fill and purge 
reinserted samples of air prior to test resumption. 

High oxygen concentration tests were performed by 
placing samples into a piping run connected directly 
to the laboratory LCW system. The test loop 
consisted of a pressure regulator and two parallel 
11 nes conta i ni ng flow control va 1 ves, shutoff valves 
and fl ow meters. Two 1 i nes were needed to perform 
simultaneous tests at different flow rates. No 
effort was made to control the oxygen concentration 
in these tests. However, periodically, the oxygen 
content was measured using a modified Winkler3 
method and found to be -10 mgtl (10000 ppb). 

Results and Discussion 

Data for weight loss of samples subjected to 
flowing water containing 10,000 ppb and SO-lOa ppb of 
dissolved oxygen are plotted in Figure 2. As 
illustrated by the least squares fit superimposed 
upon this data, after a short initial period, weight 
loss linearly increased with time. The 10,000 ppb 
test results are for a single pair of specimens, 
while the SO-lOa ppb results were gathered from four 
specimens run at two different times. Note the 
re1ati.ve1y rapid attack by water when high oxygen 
concentrations are present. 
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Figure 2 Weight loss as a function of time for oxygen 
concentrations of SO-100 ppb and 10,000 ppb 
by weight. 

Results from tests using water with 40-45 ppb 
oxygen are plotted in Figure 3. The first pair of 
specimens (17 and lS) exhibited an initial weight 
gain followed by a slow steady decline. When this 
test was repeated (specimens 20 and 21), an apparent 
asymtotic weight gain of 0.2% occurred during the 450 
hour test period. 

Two pairs of samples run concurrently at LCW flow 
rates of 6.3 mlls and 0.95 mlls, shown in Figure 4, 
also incurred a linear weight loss with time. As 
evident in these plots, the high flow specimens show 
total weight losses 2% in excess of the low flow 
spec imens whi le the rate of loss at both flow rates 
is nearly equal. 
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Figure 3 Weight loss as a function of time for oxygen 
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Figure 4 Weight loss as a function of time for 
Reynolds number flows of 3,100 and 20,600. 

The time rate of weight change determined by the 
slope of the least squares fit to the data in Figures 
2-4 is proportional to the change in wall thickness. 
Table 1 contains a summary of test conditions and the 
resultant rate of attack. 

Table 1 Summary of Corrosion Tests on 
Molybdenum in Flowing Water 

Test Flow Reynolds Oxygen Corrosion 
Number Concentration Rate 

(mlls) (ppb by weight) (lII1l/yr) 

1 3S 12300 40-45 0.002* 
2 3S 12300 80-100 0.030 
3 38 12300 -10,000 0.760 
4 63 20600 -10,000 0.870 
5 9.5 3100 -10,000 0.880 
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The Reynolds number of the flow appears to have 
little or no effect on the rate of attack. The 
discrepancy between the loss rate at Re = 12,300 and 
the higher and lower flow tests, at 10,000 ppb, 
indicate that other, uncontrolled, parameters play an 
important role. These parameters may include the pH, 
temperature and resistivity. Water temperatures 
varied between 10-30 °C over the duration of these 
tests. The conductivity of the laboratory LCW, 
supposed to be 1 micromho/cm or better, at times 
measured as high as 18 micromho/cm. These variations 
may also explain the discrepancies between the two 
sets of data at the 40-45 ppb level. The net weight 
gain of up to 0.2% in samples 20 and 21 can be 
explained by the formation of a 0.005 mm thick oxide 
layer. An adhering Mn02 layer is commonly formed 
on Molybdenum exposed to air below 8000 C.4 

The foregoing tests show that the amount of 
dissolved oxygen has a profound effect on the rate of 
attack by water on molybdenum. The typical electrode 
wall thicknesses of 0.4 to 0.5 mm clearly precludes 
the use of air-saturated LCW. For practical 
lifetimes of LBL-type actively cooled accelerators, 
oxygen concentrations of <80 ppb and perhaps as low 
as 40 ppb should be maintained. 
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