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' THE NUCLEAR DROPLET MODEL FOR ARBITRARY SHAPES -

W. D. Myers and W. J. Swiatecki

Abstract

The Droplet Model of ﬁucleaf masses and density distribﬁtions,'
introduced in Ref. [1] for spherical cbnfigurétions,.is generaliéed to arbitrary
shapes. Eéuations in closed form are given for the neutron and_pfbton densify
non;uniformitiés induced by the electric.forces, and alsé for the dependence of
the neutron skih‘thickness on bositioﬁ on the nuclear surface. The
formulae for fhe correcfioﬁs to the nuclear energy associated with thése effects
are derived and this leads to a Droplet Model atomic mass formule which is ‘
presented with a preliminary set of coefficients adjusted to nuclear ground

state masses and fission barriers.




of Contents

AbStr&Ct. » o o .o ® & o 0o e 0. o e

I. Introduction. « ¢« o ¢ o o o

II. Degrees of Freedom. . . +

References. ©« 6 o e s s s s e s

' Tables. »

e« o o©o e o e e © e e o o .

e.

® e e o e

. III, Thé.Energy.ba . .'; e s e e e
A. Volume Energy e e .o
B. Surface Energy. . « « « o
C.‘ Coulomb Energy. . « « o o
‘D. Total Energy. + « « » . .
IV, Minimization of fhe'Energy. .
A, Variation with Respect to
' B. Variation with Respect to
C, Variation with Respect to
D. Variation with Respect to
E, Vafiation with Respect to
¥, The Equilibrium Energy Expressioh o o e
G. The Mass Formula: o o « o o o o ¢ o o &
'H. Density Distributions . .
V. The Shape Depéndences e o e o
v Acknowledgments o o o o o « o o o o
Footnotes . L T R )
X

LBL-1957

15

16

A7

19
22
2k
2k
26 -
27
29
30

31

34
36

38
39
Lo
41

43



- 1BLA195T

THE NUCLEAR DROPLET MODEL FOR ARBiTRARY SHAPES
W. D, Myers and W. J. Swiatecki
Lawrence Berkeley Laboratory |
University of California

Berkeley, California 94720

~ July 1973

I. INTRODUCTION

The Droplef Model was introduced in Ref. [1] as a refinement of the
‘Liquid Drép Model of average nuclear properties. It is a quel which takes
into account effegts assoéiated with the deviations ofAneutroﬁ and proton
- densities from cénstant bﬁik values, and the deviations of the effective
boundarieé of fhe neutron and proton‘distribﬁtions from a cbmmon surface.
The theory de&eioped in Ref. [1] was specialized from the outset to spherical
shapés. The purpose of th¢ present paper is to derive the equations of the
Droplet Model in their full generality, for arbitrary shapes. (An inforﬁal
account.of such a generélization was given in an unpublished feport, UCRIF19SM3,
1970. A number éf applicétions of the Droplet Model approach héve
been made in Refé; [2-8].)

In Ref;. {1,9-12] the background and motivation for the Droplet Moéel
have already been_discussed. We will not repeat that material here except
to sﬁress once again that the Droplet Model deals only with smOoth, avérage
nuclear properties and shell effects are outside the scbpe of the model.

In Sec, II of this work the degrees of freedom of the model are defined,

together with the constraints arising from the conservation of neutrons and

protons. In Sec, IIT the potential energy of the Droplet Model is written

~dcwn as a function of the degrees of freedom (in terms of Taylor expansions
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about the Liquid Drop Model configuration as starting point). In Sec. IV this

energy is minimized with respect to all degrees of freedom except the

'géometrical shape of the system, This yields a Droplet Model mass formula

(and expressions for constructing the predicted neutron and proton density
distributions) expressed as a function of the neutron and proton numbers and
the shape. Section V provides additional information on the shape dependences

of certain key functions entering the mass formula.
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II. DEGREES OF FREEDOM
.In general‘tyo functions of position pN(E) and,pz(f), whose spatial
integrals are N and Z, can SPecify,the time-averaged distribution of N neutrons
and- Z protons in a nucleus. In the idealized case of distributions with
sharp surfaces, i.e. such ﬁhat pN and pz‘are almost constant within two
surfaces ZN and'ZZ and zero outside, the shapes of the surfaces ZN and ZZ and
the functioné pN-and pz together constitute the degrees of freedom desgribing
the configuration of the system. Under certain assumptions this remains true
for leptodermous systems in which the‘density distributions are no longer
sharp, but the degree of diffuseness is small, so that the densities fall from
_their bulk vaiues to zero in a thin region around the surfaces ZN’ :Z (thin
compared to fhé dimensions of the system).  Such.thih—skinned density dis-
‘tributions may be thought of as derived from the sharp generating density
distributions by é normal shift of neutrons (or protons) from layers just
- inside the surféce ZN (or ZZ) to layers just outside, according to some
'diffuseneés prescription. The diffusenéss prescription might be, for examplé,
in the form of a folding or convolution operation in ﬁhich a short-range
fuﬁction is folded into the sharp generating distfibﬁtion to produce a diffuse
density distribution. (Such an approach has already been empléyed for the
generation of diffuse surface optical model or single-particle (shell model)
potential wells; see Refs. [13,14] for example. The influénce of the diffuseness
of the surface and of the range of nuclear forces on the nuclear surface energy
can also be approximated in a similar way (see Ref. [15]).) If now the
_ degreeé of freedom assoclated with the neutron and profon density
profiles in the surface are imagined eliminated 5y the requirement that

the energy of the system be stationary with respect to variations of
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these profiles, no new degrees of freedom are introduced by the 6ptimizéd
diffuseness and the resuiting leptodermous system continues to be described
by thg effective sharp surfaces ZN’ ZZ and the generating functions Pys Pge
-It.is importanﬁ to'Bear in mind the distinction between the actual
lept odermous .density distributions p;‘:tu&l s p;ctual » Which are diffuse
functionsvwith0ut unique sharp surfaces,'and the generating functions Pys pZ
which, together with the effective sharp surfaces ZN, ZZ’ serve as thé degrees

of freedom of- the leptodermous system. In what follows Py> Pg will always

stand for the generating functions and not for the actual density distributions

actual, _actual
Py Py .

With the diffuseness of the actual density distributions taken care

of by an optimized diffuseness or convolution operation, it is now possible

to insist that only generating functions Py> Py need be considered that

deviate little from standard nuclear matter values all the way up to the

surfaces Zys Zge (This is in contrast tovpaétual; p;gtual which exhibit

a drastic change of behavior;-a decrease towards zero--on approaching the -

Z.) - The smallness of the non-uniformities of the generating

functions ensbles one to make use of Taylor expansions in powers of these

surfaces ZN’ Z

deviations from constancy..

More specificélly_the Droplet Model of saturating, leptodermous, two-
component systems (suéh as ﬁuclei) results from meking expansions of
properties of interest (such as the_ehergy) in powers of three small quanti—

ties (functions of position). These are as follows: the small deviations

. I : v
of the two generating densities pN and Py from the corresponding standard

nuclear matter values, and the small (varisble) separation between the

effective sharp surfaces ZN and ZZ;
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With these expansions in mind it is convenient to introduce a mean.

effective sha;p surface I and a (thin) neutron skin thickness t in place of

-the surfaces Iy and I,. The neutron skiﬁ thickness t is simply the outward
normal distance from the surfacé\ZZ to the (neighboring) surface Iye (It is
& function of position on these surfaces.) The mean surface I is introduced

to represent the mean location of the surfaces ZN’ z the mean being

7
appropriately weighted with the surface values of the'genérating densifies
p; and p;. The weighting is such that inside any cylinder erected.in the
normal direction on a surface elemént, the excess of neutrons in the geherating
distribution between I and ZN (assuming, for definiteﬁess, that ZN is outside
Z) is the éame as.the deficiencyvpf protons between ZZ and 2. (That is, the
number of protons that would be needed to extend the proton generating |
function frog ZZ to Z.) This meéns that if n denotes.a normal coordinate
across the ﬁeighboring surfaces ZN and ZZ then the poéition ova ié given by
W5 8 : v ‘
. éN Py * By pZ  - o | o .l | . (1)

] S
fy * Py

where ny and n, are the values of n locating ZN and ZZ. The neutron skin

thickness is
t= Oy = By s T . : (2)

which may now be regarded as a (small) function of position on the mean
surface IL.
We shall further introduce the following small functions in place

of the generating densities pN(E) and pz(f):

an s




e(r)

and

8(r) =

~

where o(r) =
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_q felx) - 93) ' S
] ( P | o | | _.'(3)

() = o, (x)
p(r) >

()

py(r) + pz(r), and p_ is the equilibrium density of standard

nuclear matter (related to the sfandard nuclear radius constant ry by

o, = (%-nrg)_l. Inverting the above relations we find
o, =%p (1 - 3é)(1 + 6)‘ | : (5)
N 270 '
b, =2p (1-3€)1-6) \ (6)
. Z 270 * : :

We also find it convenient to introduce the averages € and § (numbers)

L

and the functions . .of position € and 8 defined by

E(g)

o7
e

The averages

' implies that

=e(r) - €
=6(r)-F . o | (7)

are taken over the volume enclosed by the mean surface I. (This

the generating functions Py and Py originallyldefined only

within the respective surfaces ZN and_ZZ, are imagined to be extrapolated,

when necessary, to the neighboring mean surface L.)

The following conservation conditions must be satisfied by the

guantities t, E; E; €, 8. The total number of neutrons is given by
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W Jff o

N =
Z:I\I
Jf tpz < o ‘ N o :
= pN ——-S--pN f hlgher.powers of ‘t . (8)
actual . T . R !
Note that since pN is obtained from pN by moving & certain number of

neutrons from inside'ZN to outside ZN the vdiﬁme»integral of the generating
function pN taken over the inside of ZN represents correctly the total number
of neutrons., This integralvis then written as an integral.ovef the insiae of
the mean surface I plus the excess neutrons betwéen Z and Zﬁ. Thié»éxcéss

is ah integral over the Surface I of the distance bétween ZN"and-Z (equal to

' tp;/ps) times the relevant surface density p;. vThus
, P, P . v _
N =N +[(ZN)t',' | (9)
r g p : v - R

‘where N_ is the "reference neutron number" (the number of neutrons inside the

reference surface L). We shall use the symbol fV to denote a volume integral

over the inside of ‘I, and fS to denote the surface integral over I. In such

surface integrals it is unnecessary to keep the superscripts s ‘on Py and_pz.

Similarly the total proton number is

Py P : |
Z=Zr'[(NoZ)t ’ | S (1)

S
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where Zr is the number of protons that the surface LI would contain if the
‘reference function Py were extrapolated.up to I.

Using Eqs. (5) and (6) we find

N=Nr+7l:po' fvt(l- 36)(1",62)
s -
z='zr'-%p§ft(1-3s)(1-62) - ! (11)
'S : : L
where
N o=Zop [}'(lv— 3e)(1 + 6)
r 2 o
v
A\ , :

The total number of particies is given by

=3
]

wez=w vz mo, [ (-3

(1 - BE)pOV . _ - _ ' (13)

'Y

i in virtue of the definition of the average €. Here V stands for the volume

w
inside the reference surface L. If we define a standard volume VO as the volume

that A particies would occupy at standard nuclear matter density, and if we-

introduce equivalent reference and standard radii R and RO by

b3 b3
S TR =V, 3 ™RSO =V, (1k4)
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we find that

(%)= -
or

R = Ro(l + € + higher powers of &) . L (16)

Thus € is to first order a scale parameter relating the linear scale of the

mean reference shape I of volume V to a similar shape with standard volume.

From the quantities Nr’ Zr we may form the reference rélative neutron

excess I_, defined as (N_ - Z )/(N_ + Z ). Thus
r v r r r r’t

) | | :
= = - S :
Ir = 3% Po _/; (1 3§)(2 ) | O an

~

On

to lowest order in small quantities. The actual relative neutron excess is

I=(N-2)/(N+ Z), which may be written as

%{%po f (1 - 38)(26).*%%' [ t(1 - 3e)(1 - 62)]
v S -

jr t(1-3e)(1-62) . o (18)
S

—
]

]
-
2]
~+
Bfe®

This results in a relation between § and a surface integral over t which,

to lowest order in small quantities, may be written as

- | po rO '. - |
S~I- v [T s ' (19)
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where T = t/ro. This equation gives the avefage of the relative neutron excess
fuﬁction gi(the aﬁerage bulk neutron excess) in terms of thebactual relative
neutron_excess I and a surface integral over the neutron skih‘phickness T
Introducing the surface average of T, denoted‘by ?; and the de&iation T

defined by

T=T1T=-T ,

we may re-~write Eq; (19) as

A
P ry S

(1 -.E) ' ’ -(20)

where S is the ares of the éurface L. This is a proportionality relation

betweeﬁ the surface average of the neutron skin thickness T and the difference

,between the actual relative neutron excess I and the bulk aVerage neutron excess 31
The net result of the transformations discussed in this secfion is that

the original degrees of freedom ZN’ ZZ, pN, pZ have been transformed to the

following set

™M
"

the mean shape of the system,

a scale factor,

o
-

M

the density nonuniformity'function,

O

, the average relative neutron excess in the bulk,

O

, the neutron excess nonuniformity function,

-1

the neutron skin nonuniformity function.

The average neutron skin thickness T is not an independent degree of

freedom but is given uniquely in terms of § by Eq. (20). (Alternatively one
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could regard T as an independent degree of fréedom'and § as a'deriﬁed
quantity.)
Conservastion of neutron and proton numbers is ensured'by the

conditions

,/'Z'=o . f5'=0' o o - (a1)
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III., THE ENERGY
In the Droplet Model, as in the Liquid Drop Model, there are three
. . ’ !
cOmponenté in the energy: a volume energy EV’ a surface energy ES,and a
Coulomb energy EC, The volume energy is assumed to be ah integrai over.the
volume.inside Ziof an energy density which is a function of the generating

densities pN'and pZ (or equivalently of € and §). The surface energy is

assumed to be an integral over the surface I of a éurface energy density vy

which is a‘function'ofvthe'cohditions‘prevailing in the immediate neighborhood

of the relevant point on the surface. The possibility of splitting up the
main part of the nuclear energy into a volume and a surface term has its
roots in the approximately leptodérmous nature of most nuclei, as a result

of which the major modifications of the energy caused by the presence of the

" surface can be localized to a relatively thin surface region} A discussion of

the precise coﬁditions under which a given system of interactiﬁg particles

may be treated as leptodermous, and the'division of the energy into a volume
term ahd a surface term can be achieved, is outside the scope of the present.
work and will not be discussed here. Examples of the limitations of a
leptodermous approach are afforded by situations where the range of interactions
is not small compared to the size of the system (e.g. atoms); or when quantum
;Qnditions inv&lving the whole extension of the system are the focus of
attention (e.g. shell effects.in nuclei). The degree of validi}y of the
leptodefmous apbroach wheh the interactions do have a short ranée (and

shell effects are absent) has been illustrated in Réf. [l]. The limitations
imposed by shell effects have been illustrated in Ref. [11]. Methods to
supplement a leptodermous treatment of nuclei by incorporation pf shell effects

, |
are reviewed in Refs. [14,24], and are a subject of continued study.
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For the present we assume the validity of the leptpdermoﬁé approach

and write the total energy, including Coulomb energy, as - .

E=E +'E_+E

\' S C ’

where -

Ev=f_be ’ : : (22)

SR P(r.) o, () py(z,) |
B, = ez[fj’ [f[ ri, 351 AL | (2h)
. - T2 ,
L, I, | | o

It
o

The three terms will be discussed one by one.’

A. Volume Exﬁergy.

In the volume.énergy we ﬁave written the enefgy denéity'as a product
of the generéting density p times a local energy per barticle e (ﬁot tovﬁe
confused with the ﬁnit of charge e in Eq. (24)). This energy per particle,

: considered as-a function of pN and pZ,.has-a ninimum for pN, pZ corresponding '

to standard nuclear matter, i.e. for pg = p, = %-pd (or € = 0, § =0). We write

a Taylor expansion tp second order in € and 62 as follows

L

1 -L€62+_-J2=M6 +oeee ~ (25)

e = -a f J62 + §'K€

2

.
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(The terms retained are necessary and sufficient for the resulting Droplet

Model mass formula to be accurate to terms of felative order Ih,'IeAe/3 and

A1/3--see Ref. [1], p. 416.) The coefficients a., J, K, L, M are discussed, and’

l’
their magnitudes éstimated,»in Ref. [1].

Inserting the expressions for e, Eq. (25), into Eq. (22) we find
Lo [ . 2. 1.2 2. 1. .0
h.v = f o) [-—ul + J8T + .2— Ke™ - Led® + = M8 ]
v .
N 212 =x2 1 | ~2 1 ~2
, [—al+J§ +§K€ - Led +2M6JA+pof(J6 +.§Ke)
. v | _

+ higher order terms . | : (26)

In arriving at Eq. (26) we replaced € by €+ € and 6 by §+ g

—2)2

used Eq. (21), neglected terms beyond EQ,.E{5)2 and (§7)7, and kept only the

~

leading terms in € and §.

B. Surface Energz '

As mentioned above, the sgrface enérgy coefficient vy will'be assumed
to be a function only of local propefties of the surface. These include the
values of € andvd on the surface L, and the 1o¢al,neutron skin thickness t.
In addition, Y may depend on the mean local curvature K of the surface (the

sum of the reciprocals of the principal radii of cufvature, i.e.,

We accordingly write the following Taylor expansion for Y,

2 2

—— k _'-‘L_ _]; - ® e \ |
Y S, Y EF T Yt Vg 88 + 5 v 6 R + . (27)
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Suffixes denofe qifferentiations with respect to the quantities.iﬁdicéted;
evaluated at € = t = § =K = 0, In the above €, § stgnd fof €g Gs’ the
values of 6;‘6‘onvthe surface L. The terms retained in the expansidn are
again necessary and sufficient for our purpbses (Ref. tl]).

It is more convenient in what féllows to use thé expansion-of the
quantity hnriy.(wifh dimension of an energy). Thus we writé
2

lmrey=a + Fe_ + HT® + 2PT8_ - G8° +
o 2 s - s~ s

5 a,r K f ' (28)

where we have ﬁsed'ro'for the unit of length (1 = t/ro)‘and have introduced.
the coefficients a, and ag to establish contact with the standard notation
for.the nucleér sﬁrféce energy coefficient and the curvature correction
coefficient. (For estimates of all the cdefficienté see Ref., [1]. It will.

turn out that F is identically zero.)

Inserting the expression for y, Eq. (28), into Eq. (23) we find

S N o 21
Es = ) > f [a2 + Fe + HT” + 2P18 - G&™ + > a3ro|<:,
) TTI'O g : _

a

2/3 — 1 2 2
> A Bs(l + 2€) + 3 PTo [ [Fe + Hrv +. 2PT8 - G§ }

3 B, + higher order terms . . ; (29)

In Eq. (29) we made use of the transformations

. 5 o
1 fa =Sa.2 . .hnRo.(-R_) s
hnrz g 2 hﬂre 2 hﬂr2 Ro lmR2

o : o




o
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. 22/3

= 8

5 1+ 2€) o B; + higher order terms , (30)

where S is the area of the reference surface L énd B_s is this area in units
: 5 o : ‘ _ :
of 4mR™, (the area of the sphere of the same volume) and (R/R‘o)2 ~ 1+ 2€ in

virtue of Eq. (16).

Similarly
a
3 1 e = o3 ’
hn2[233ro,’<_8ﬂr fK'
r 0
o S _ - S
_ 1/3 . . -
=a_ A B, + terms of higher order in € |, (31)

3 k

where Bk is the total integrated curvature of the surface I in units of 8mR,

the total integratéd curvature of the sphere of the same volume,

C. Coulomb Energy

The Coulomb energy in Eq. (24) is the usual double integral over the
inside of ZZ of the proton densities p, at points 1 and 2 divided by the

distance r A probability of approach function P(rl2) is included to allow

12°
for the anticorrelation of protons in identical spin states required by the
exclusion principle. Thisvieads to the "exchange correction" to the Coulomb
energy, which may be Writteﬁ asl —ch'Zh/3/Al/3, *ith c) = %‘(3/éﬂ)2/3 i where
cy = %-%E-. (See, for example, Ref. [1], p. 407.) The diffuseness correction
that should be applied to the Coulomb energy of a sharp, but arbitrarily
éhaped; distributibn 6f charge can Be shown to be a mulfiplicative.factor

(1~ %'82 + oeee), where B = b/RZ (see Refs. [17,18]). Here b 1is the "surface

width" defined by Slssmann (Ref. [19]), and R, is the radius of the effective



~20- . LBL-195T

sharp sphere (the sphere with the same volume as. the shafp distfibution in
question)., We shall disregard the slight modificaﬁion‘of the diffﬁseness

correction caused by the redistribution of chargev(See'Ref; [1], p. L96)

1/3

and we shall also disregard the difference between R and roA . To this

Z

: 2
order the diffuseness correction may be written as -c 27 /A, where

c ‘:2

3 .2
{

-oC
'

Py

3

cl(b/ro)g. For a Fermi (or Woods-Saxon) charge profile, given by

. -1 i . ' . . :
1+ exp [(r = c)/al}” ™, the width b 1is related to the parameter a by

b = (n//?)a; wé'shall use the value b = 0.99 fm which corresponds to a = 0,55 fm.

Both the diffuseness and exchange corrections are independent of the shape of

ZZ (to first order in the diffuseness). With these corrections out of the way

the formula for the Coulomb energy is -derived most simply by first ﬁritiﬁg down
a "reference Couiomb energy", which iévwhat the Coulomb energy would be if the
generating density bZ were extended to the reference surface X, aﬁd then
correcting. for thgvexcess of charge in the layer between ZZ and X. -Thus we

write

8] 2 B .
) le_ eL- . p p
n . 3 r _ ‘ ~ N "7
LC =3 T BC + e [ v pZ e‘/'S t 5 VS +. corr. v (32)

Here Z is the reference proton number given by Eq. (10), and the
first term gives the Coulomb energy of a uniform distribution of Zr protons

inside the shape ., The quantity Bc'stands for the Coulomb energy of this
2 ' :

shape in units of‘g-ZrRe » the Coulomb energy of a sharp'sphere of the same
volume. The second term corrects this Coulomb energy for the'(émail)
deviatioﬁ of_the.protbn distributidn'pz from its averége Bé (5% standg for

pZ - Eé). It is a volume ihtegral of éSé, times the electric potential‘of thé‘

uniform charge distribution esi inside I, which we denote by fc'
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The third term corrects the "ré.ference Coulemb enérgy" for the layer
v of prbtons bétween ZZ -and L, which experience a pét_ential Vg (t‘.he.value of | v at
the surface I), and which have ﬁo be "shaved off" in order to arrive at the
sharp charge distribution bounded by ZZ‘ The last term stands f‘or the sum of
the exéhange and diffuseness ;corr.ections..'

5

Using‘Eq. (10) the first term may be re-written as follows

2 2 | , , |
;ZreBzgzgegB.q_é_eQZB [t'prZ
5 R c 5 R c 5 R Te¢ . D
. 7s
2 2 ) - b P \_ ' .
L3828 [ o(i)s
= R (;-e)Bc+e t(,o')v . (33)

o S

Here v stands for the average of v taken over the volume of L which average,

to sufficient accuracy, is equal to -g-%z- Bc (because half the average potential

times the total charge is the ‘Coulomb energy). Combining all terms we find

3422 - - Py P
_ 372 e - ~ N Z2 (= _
E--_-5 ov(l-s)Bc+e,/;,va+e[t 5 (v vs)fco;'r.

S S

Expressing py, Py» t in terms of €, §, T we obtain

v

7

2 . N R
- 4 - L ~ _l [~
Ec°°1;7§<1--€-)3c-eepof<3€+3’>v FPTo) T

e, Zh/3/A1'/3

- C ﬁ _{ ’ . : . .
"3 A , ' :
| orl (e, 23z . | (34)
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Here V stands for v - v.

D. Total Energy

'The total Droplet Model energy of N neutrons and Z protons, as & function

~

of the degrees of freedom I, €, €, O, 8, T now reads

.LBL~-1957

e

1
2

E(N,Z; L, €, €5 8, 85 T) = [‘al‘* 752 + L kE° - 125° + —MSJ‘J'A.

2

KEz) + A2/3 azﬁs(l + 2€)

(J32‘+

o f

o+
g
o]
P

+ % P r . jf (Fe + HT2 + 2P18 - GGE) + Al

+
v

3. A e

or (ch/2l/3)Z '

In the above € stands for € + €, stands for 8 + 8 and T

with T given by Eq. (20), which ma& now be written as

T=(I-8D ,

where

1/3
S~ 3B .

/3,

3 B

2 - N 1 ~
ClA—llch'(l—E)—-e—epof(36*'5)v.—.'n'eporo.j;’fv

(35)

stands for T + T,

(36)
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since

> and S = hﬂrz A2/3 B
: e}
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IV. MINIMIZATION. OF THE ENERGY
We shall now write down the conditions for the energy Ofia fixed
shape I to be stationary with respect to arbitrary small variations SE, 63,

8T, 68, 8¢ (in that>order).v

A. Variation with Respect to &

The variation with respect to € gives

SE = f (poK’é‘-%epov) € + -;— pOrOF‘ [ se - : (37)
v , S o

The»&bove expreésion consists of two distinét terms‘and, in general,
the vanishing of the sum for arbitrary GE'implies the Vanishiﬁg of the two
terms separately. This,is‘because one cannot-—except‘for a singular type of
8¢ discussed below—-balanée off a surfaqe integral by a félume integral.

The vanishing of the first term in Eq. (37)vfor all particle-conserving
GE/implies that | |

KE"'% ev. = constant . : o e V (38)

The wvanishing of fhe second term for all particle conserving §e can‘only be
" ensured if F = 0.
The above argument may be made more precise by formally converting
the surface integral in Eq. (37) into a volume integral. Thus, introducing
the Dirac delta fuﬁctidn 8(n) of the normel across the surface I, we may write

fa(n) aE:[f dn §(n) 6€=-2-_[6€ . (39)

v - “Zs S

*
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Hence Eq. (37) becomes

=0 ~_ 3 2 e o '
GE.— P, '/” [Ke -Sevtzry F G(n)} §e . _ | (k0)

v . : ,
If this is to vanish for arbitrary particle~conserving € the expression.in

the square brackets must be a constant. Hence

>K€ - 2ev = constant - %-ro F 8(n) . (41)

This equation shows that, unleés F is zero, the condition for
1equilibriumvagainst changes in € would formally lead to an e@uilibrium dis-
tribution for E, ahd thus for thé generating denéity p, which has a §-type
singularity.at the surface. (It is clear that fhe presence of the term g-ev
does not change the argument: the electric potential is not singular evén if
the density is singular at the surface and so it cannot cancel out the
S-function singularityo) Cbnsequently; if the energy expreséidn'(BS) is to
have nonsingular eqﬁilibrium solutions for the generating function b, it is
nééesééry thaf in the Taylor expansion of the surface energy there should be
no linear term in €.

'EquiQalent nroofs of the vahishing of F are described in Ref. (1],

p. 420. The prediction of fhe vanishing of F has also been vefified numerically
in a Thomas-Fermi treatﬁent pf.the nuclear surface; Ref. [1], p. LéT.

With F set equal to éero we may determine the constant in Eq. (38) by
taking an average of this equation over the volume inside €. Subtracting this

average from Eq.v(38) then leads to the‘following equétion for €
i

E==v , | | | (k)
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where ;‘= v - V.
‘Thus the net result bf demanding the vanishing of the variation in

Eq. (37) has resulted in two equations, Eq. (h2) and Eq. (43) below:

F=0 . ' | (43)
Equation (42) is an explicit solution for the equilibrium distribution €
since, for the small nonuniformities considered here, one may evaluate the
right-hand side of Eq. (42) by using the unperturbed (uniform) distribution
of the protons.

~

B.. Variation with Respect to 8

~

‘Next we take a variation of Eq. (35) with respect to §,

8E = po [ [ng_ % ev] 5(5) + % pOr;3 f (ept - ‘2G5) 5(3) o . (hL)
v , ' o

S

As before the separate vanishing of the volume and surface terms (or

a more formal argument involving a Dirac delta function) leads to two

equations

238 - %-ev»vf constant | ‘ - : | (L5)
and

Pr-cs_=0 , | o (46)

" where 65 is the value of 8§ on the surface L.
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Subtracting from Eq. (145) its volume average leads to
T=9% . | o (¥7)

Again ¥V may be evaluated for a uniform proton distribution.

C, Variation with Respect to ?

The veriation with respect to ?'gives

| L L 1. _
SE = [ [§ R (oHT + .QPG) -7 eporov} 8t . | (48)
S : - S

If this expression is to vanish for all variations 6?'which satisfy

fS 8T = 0, the expression in square brackets must be a constant:

2 . 1 o~
»§-poro (HT + Pés) - eP T v, = constant K (49)

Subtracting the surface average of this equafion’all constant terms

drop out and we{find

2o, [+ 2, -5 -1 eor (¥, - D=0 . (50)

where g stands for the surface average of 3; (which is the value on the
surface of the deviation of 8§ from its bulk average). Similarly v is the

surface average of ;;.. Usihg Eq. (47) and its surface average we may express

~ :. ) ~ ~
v GS - 6§ in terms of v =V

-
~

~ ~ ie = _ . ’ '
Gs - § = ﬂ'}'(vs - V) . , : . (51)
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Inserting this in Eq. (50) leads to the following expliéit_solutioﬁ'for T

T35 -V - 52

. ojw
olo

where Q is given by

Q=2 o R P

Before proceeding with the remaining variations note the following.

If from Eq. (46) we subtract its surface average we find

T’.= 7 (55 v— §)
= %-?% ¥, - H . , (54)

This is a second relation between T and 3; - V. If it is to be
consistent with the previous one, Eq. (52), the following relation between
the coefficients @, G, J, P must hold

_34Jp . . _ -
Eliminating Q between Eqs. (53) and (55) we find the following relation-

between H, P, G, and J:

), | 58

S s}

2
(1 - 3

mi

g_3
P 2

or
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GH + P2

- 3 :
P =39 -

This condition on the coefficients in the Taylor expansions of the
voiume and surface energies is analogous to the condition'F = 0, discussed
previously. It is‘related to the separate vanishing of the surfacé térm in
the variaﬁion (L4), which ensures the existence of.nonéingﬁlar solutions for
the generating densities. As with the vanishing of F, alternative proofs of
Eq. (56) are given in Ref. [lj, p. 418, and the relation has been verified
_numericaily in Ref. [1], p. L66.

D. Variation with Respect to &

We next take the variation with respect to S. vSince-gé = -D in virtue
' as '
of Eq. (36), we find

SE = §(%) { (23 - 2L's;"+ MEe) Fa

+ fs [_ S pr, DlHT + P8) + S p r  (PT - G8) + péro D JJ} . (57)
The terms in L and M are of higher order in small quantities.thaﬁ the leading
term 2J in the first line, and may be disregérded. In ﬁhe second line
PT - GS vanishes on account of Eq. (46). ‘The remaining terms in the squafe
k bracket add up to a constant.in virtue of Eq. (49), and so the square braéket

may be repleced by its surface average. The surface integral then reduces

to this average times the surface area S, equal to hﬂriA2/3Bs. -The%vanishing

of the coefficient of 8(8) then leads to
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- - - — 2: .1:]_.
2AJ6 + SD p_r [- 3 (HT + P§) - §-PGS tyevy =0 .
Expressing 8 in terms of v (Eq. (47)) and T in terms of § (Eq. (36)), and
using the definitions of S and ﬁ (note that porOSD = 2A) leads to
3

= .3 = 2Py _ |
S(HD + 37 - P) -HID +3ev (1-S3) =0 . (58)

Using the definition of Q (Eq. (53)) we find the following explicit solution

for &:

3 ev 3 23
T = T8 _ 1'w e /a)z B X (59)
1+—3—Q1D- 1 +%(J/Q)A'l/3 B_ |

In the last expression we introduced the quantity BV; defined as the

integral fS V in units of its value for a spherical shape of the same volume. -

E. Variation with Respect to €

The last variation of the energy in Eq. (35) is with-respect to €.
SE ='(KAE LAEQ +v2A2/3 a.B - ¢ 22 B ) 6e
- 27s lAIZB c’ :
Its vanishing gives

£ = (-f28.2A-l

<2 2 =L/3

/3BS+L6 +c 2 A Bc)/K. . o '(60')
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We now have explicit equations (Egs. (k2), (47), (52), (59), (60)) for the

values of E, 8, ?; 3} and € that make the energy in Eq. (35) stationary. It

remains to substitute these equilibrium solutions in the energy equation.

¥. The Equilibrium Energz;Expréssion

The result of substituting the equilibrium values for E} E; g‘may be
written down at once by remembering that the value of a function consisting
of a linear and a quadratic térm is, after minimization, equal to minus the
quadratic term evaluated at thé equilibrium point. Thus all the terms
containing'E-may be combined into a contribution - %-KAEQ,'where € is given
bevK. (60). Note that this energy decrease is the result of an increase
of % KAEQ'in the bulk nuclear energy and a decrease of maghitude --KAE2 in the
surface, Coulomb, and "dehsity-éymmetry" energies (the iast one is the term
_14e89),

Similarly substitution of the equilibrium values of € and § gives

an energy decrease

-0, f (08% + £ 1&%) = —p % (5 + ) f o (61)
v ) o ) v .
which consists of .an increase of this amount in the bulk nuclear enefgy and ‘a
decrease of double this amount in the Coulomb energy. By introdﬁcing the shape-
dependent quantity Br’ defined as the value of fV ?2 in units of the cor-
respohding integral for the sphere, we may write Eq. (61) as

; 2 ,1/3
-c2Z A Br s
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2
c

c, = 35z (1 +18/K) .

To evaluate the result of‘substituting the equilibrium values of § -

and T in Eq._(35) we first simplify the surface integrals in that equation as

follows

The two

2

j' (Fe + H12 + 2PTS - Gdg) = S
S .

m\“‘ﬂ

= ‘/r QT2 | (usiné Egs. (55), (56)). (62)
S : ‘

surface integrals in Eq. (35) can then be written as

%‘;po‘rO /; (QT - f— ev)

= %-porO 'j; g-ﬁ(%g § - 33%) S (using Eqs. (46), (47))
=207, f 3L E+ DG+ 8) - 3%)  (using Eq. (55))

~2
5 _ %)

Wik

= 2o r_(9/8)(3°/Q) ij (
S

2
_9 (:2,\%2 ,2/3 3. e ~2
=F /s A %-m%%z‘év

(£ +2) v®  (using Egs. (43), (46))
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- % (52/Q)78 42/3 By - o5 2B, | - (63)

~ where Bw is the value of fq 32 in uﬁits of the same integral evaluated for a
sphere, and cg = g% (ci/Q). The term cs Z2 B is a surfa¢e redistribution energy
associated with the nonuniformity of the neutron skin.thickness caused by the
electrostatic forces.

Collecting together all contributions the final minimized Droplet
Model energy formula may be written in the following form

R S =i %MXJ‘] A

E(N,Z; shape) = [-a 5

1

+ [ae + % (Je/Q)E,e] a2/3 B +a 233

3 X
+ e g2 p~1/3 B - o 72 173 B_ - .cs 72 B, - ¢, 72 p~1
- { | : | | (64)
or (ch/21/3)Z
where
5 - [1 + 33 (c,/Q) 2 a2/3 Bv] /[1 + ¢ (3/Q) Am1/3 35] - (65)
€ = [-2&2 a3 B, + 5% + c; 22 /3 B, ] KoL - (66)

For convenience we collect together the definitions of the constants cy*eCs

32 .2
) =% , c, = (c7/336)(1/7 +18/K) ,

La 3 [
[e]
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cg = g-cl (b/ro)2 , where b = Of99 fm
o=t D3, o =gl . | (67)

The shape-dependent functionals Bs’ Bc’ Bk’ Br’ Bv’ Bw will be .
discussed further in the next section.

In using the energy formula (6L4) in practice one first calculates &
given in terms of known qusentities by Eq. (65), then € given in terms of §

by Eq. (66). One then inserts these values of § and € in Eq. (6L).

G. The Mass Formula
A preliminary, but illustrative, set of values for the adjustable

parameters entering the theory is,

' 15.986 MeV,

o
n

1
a, = 20.76 MeV,
a3 = 0 MeV,

J = 36.5 MeV,
Q = 17 MeV,
K =240  MeV,

L = 100 MeV,

.M= 0 MeV,

1.175 fm

2
]

i}

0.99 fm | | | ‘ ~ (68)
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hence

¢, = 0.73531
¢2 = 0,00016477 ,
ey = 1.39501 ?
c5 = 0.00049695 . - o - (69)

The coefficientS‘giveh above resulf in a mass formﬁla‘that reproducesl
fairly well nuclear ground state masses and fission barriers after these havé
been corrected for three non-smooth terms

1) Sheli effects

2) An even-odd term of the form

11 MeV/V/A for odd nuclei
(even-odd) = { - 0 for odd mass nuclei

~-11 MeV/Y/A for even nuclei

' 3) A "Wigner term" of the form

| At for N =12 = cad
(Wigner) = 30 MeV | |I| + -
0 otherwise
For a discussion of one form of the Wigner term see Ref. [18]. The
form used gbove is suggested by more recent considerations.

Thus & preliminary Droplet Model atomic mass formuls (without shell

effects) is

M(N,Z; shape) = M N+ MZ + Eq. (6k) 34 (odd-even) + (Wigner) . (70)
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In the above

M
n

8.07169 MeV

and

M

q 7.?8922 MeV

are the respecﬁive masses of the neutron and of the hydrogenvatom on the carbon
scale; Ref. [22], The odd-even and Wigner terms are takén to be independent
of shape (except that when--as in fission-—a.nucleus divides into two
fragments, these terms are calculatedHfor the separate fragments);

We hope to give & fuller discussion of the relation of the Droplet
Model theory to experimental datavon a future occasion, but one important feature
should be pointed out.. The value ro % 1.175 fm found for thé radius constant of
standard nuclear matter leads (through Egs. (65)5 (66), (7T1), (73)) to effective
sharp radii for the proton distributions which agree closely with the experimental

result of approximately 1.128 - Al/3

fm (Ref. [20]). Thus, it appears that the
use of the mass formula Eq. (70) removes the disturbing discrepancy noted in
Ref. [21] between experimental charge radii and radii deduced from nuclear masses

1

by means of a Liquid Drop Model mass formula.

H. Density Distributions

If, in addition to the energy, one.is interested in displaying the
equilibrium density distributions of the N neutrons and Z protons associated
with the assumed shape Z,'oﬁe proceeds as follows. First one draws the shape
L, making sure that its volume V is reiated to the volume Vé of A particles at
. standard nuclear matter density by (VO/V)3 =1 - 3t (Eq. (13)), where € is
given by Eq. (66). Next one constructs the generating densities Py> Py using

Egs. (5,6). In these equations € = € + € and 8§ = § + 8, where €, €, §, § are

‘given by Egs. (66), (L2), (65), and (L7), respecti&ely.‘ From the value of §
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evaluated at the‘sﬁrface 2 one now calculsates the neutron skin fhiekness T

using Eq. (46), which in virtue of Eq. (55) may also be written as

=32
T=33%
or
_3J ' ' -
t =3 3 o Gs . _ 3 - (11)
~ One is now in a position to construct the effective sharp surfaées
ZN, Z-Z by normal displacements Nys Dy from the surface Z,. where nys 0, are

obtained by inverting Egs. (1), (2). Note that if we take the origin of the

normal coordinate to be on I then Eq. (1) becomes

s s _ _ ' ‘ ‘ _
iy Py * 0y Pz =0 . | : (72)
Heﬁce
pS
1 Vg 1
ezt m =gy
. P
oS ‘ L
- _ix,.__ 1 : : .
n, = -3 s t=-3 t(1 + as) . . | | (73)

The generating functions‘pN, pz are extrapolated, whenbnecessary, to

the surfaces ZN, ZZ' We now have the cemplete picture of the‘generating

distributions for the neutrons and protons. In order to construct the actual

diffuse neutren or froton density distribution if is-neceesary te diffuse the
generating distfibution in_a‘way that leaves the position of the effective
sharp eurface,unchanged (i.e., in such a way that the number of parficles
remo#ed from inside the sufface equals the number of particles placed outside
it). This coﬁld be achieved by folding in a.short—range function into the
generating densities, or simply by constructing an appropriate fall-off profilev

whose effective sharp surface coincides with ZN'or XZ’ as the case may be. The

surface width b ‘of this profile should be about 0,99 fm, to agree with experiment.
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V. THE SHAPE DEPENDENCES
When Egs. (65), (66) are substituted into Eq.A(6h)va Droplet Model
energy expression is obtained which is a function of N, Z and the nuclear

shape only. Regardless of the complexity of the shape the only relevant

characteristics gre.the'six shape_dependences Bs’ Bc, Bk’ Br’ Bv’ and Bw whose v

definitions are summarized in Table I. Some of these dependences (Bs and Bc)
are well known, others (Bk and Br) are less familiar, and some of them

v
appendix to a recent paper that investigates the influence of curvature

and compressibility effects on fission barriers (Ref. [5]) Hasse gives an

extremely useful compilation of formulae for calculating these’shapé dependences.

The relationship between his notation and ours is given in Table II along with
the formulae for calculating the B'é when symmetric shapes close to a sphere
are being considered.

Table III contains a listing of the numerical values of the B's for
a one parameter family of Shapes, of special relevancé to fission. A member
of this family is specified by a parameter y; which is equal to one minus
the fissility»parameter‘ X at which that member is‘a séddle-point shape
in the Liqﬁid Drop Model.  (See Ref. [23].) For y = O the shape is a sphere,
for -small values of y it is a prolate spheroid, for y = 0.2 it is an

approkimate cylinder with rounded ends, for y = 0.4 it is an hour-glass

figure which, with increasing ¥y, tends to two equal tangent spheres at y = 1.

(B. and Bw) are new. (For references to the.earlier work see Ref..[S].) In an
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~ FOOTNOTES
lFor Z not too different from A/2 one may write the exchange ¢orrection

simply as —(ch/21/3)z’

°In Ref, [1] in Eq. (3.7) on p. 418, and again on p. 426, this relation was
written with the factor (1 - %-%) on the wrong side of the equation.

3The set of coefficients gi#en above was determined using the seéond form
of the exchange correction (i.e., —(ch/2l/3)Z) and must not be used in

conjunction with the first form.
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TABLE I

Definitions of shape -dependences for a uniform sharp surfaced den51ty

distribution of arbitrary shape.a’b

jo3)
1}

s [ do/(hﬁR2)
S
fw(r) at/(E o° ®%) ©
v
T d
. fslfdc/(81TR)

| - 35Ty ©
r fv [W(g)] dr/(1575 ™ R)

os)
L}

jos)
il

oe]
i

B, = fsv?(g) /(- ig ? 7Y
B, - fs-[mg)l w0/ (5 10 ¥)

%3ee also Ref. [5];

bAs was discusséd earlier, there are now four new B's in addition to the two
familiar ones BS and Bc. They are defined in the usual‘way so as to have the
value unity for a sphere. 1In each case the quantity Bi is calculated by
performing the indicated integral over the volume V or surface S of the given
shape and dividing by the value that the integral would have for a sphere.of
.equal volume. As written here the denominators are in terms of R, the radius

of such a sphere.

“For notational convenience the quantity W(r), which 1is proportional to the
" Coulomb potentlal, is deflned by the expression W(r) .—i—“. For a

r
12
sphere W(r) = omR2[1 - = (r/R) ] for r < R. v

dThe symbol K represents the local curvature of the surface, which is defined

in terms of the principel radii of curvature, Rl and Ry, by the expression

S R |
< =R} + Ry

(continued)
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TABLE T  (continued)

eT_he quantity W(r), which is proportional to the deviation of the Coulomb

potential from its average value, is defined by the ex?reésion

W(r) = W(r) - W, where W = W(r)/% TRS. For a sphére W = g— RS and
~ ~ - v o~ o .
W(r) = 2 w1 - 2 (e/m)°)
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TABLE IT

Shape dependences for a slightly distorted sphere.a

Our Hasse's

. . General expression
notation notation p

Aal[l + a2P2(cose) + ahPh(cose)]

2]
I

lei-talo 2ol 2ot o2l - Red
B, Bau R 2-3—§.a§%+ai---
Be Béoul 1'%“2"1’2?“3*5% g g?ai% = -
By Bourv 1+ %-ag +,I%§ ag - l$§ g 3§ 2 o * ai et
RS S B RE L
B, /Esrlb 1'%-“2'?%‘?‘3‘1233 g 135 glﬁio‘i
B, B, .1+Oo¢§+0a§-§j—§:ag 17* §h+%%ai.

aBaééd on Ref, [5].

bHasse tabulates formulae for the quantity B , Wwhere B_ = /E- .
srl v srl
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TABLE IIT
Shape dependences for y-family shapes.a'-
B, B, Bk Br B, B,
0.00 1.00000 1;00000 1.00000 1.00000 1.00000 1.00000
0.02 1.00086 0.99957 1.00087 1.00085 0.99957 1.00000
0.0k4 1.00338 0.99827 1.00352 1.003k41 0.99826 0.99995
0.06 1.00750 0.99609 1.00799 1.00746 0.99605 0.99977
0.08 1.01319 0.99303 1.01433 1.01267 0.99285 0.99927
0.10 1.020k4) 0.98905 1.02265 1.01857 0.98855 0.99819
0.12 1.02927 0.98409 1.03306 1.02446 0.98298 0.99619
0.1k4 1.03974 . 0.97807 1.0k576 1.0294kL 0.97591 0.99278
0.16 1.05195 0.97088 1.06099 1.03232 .0.96706 0.98736
0.18 1.06604 0.96239 1.07910 1.031k46 0.9560L4 0.97908
0.20 1.08224 0.95238 1.10056 1.02469 0.94238 0.96685 .
0.22 1.10085 0.94060 1.12603 1,00906 . 0.92546 0.94915
0.24 1.12229 0.92667 1.15651 0.98048 0.90k450 0.92390
0.26 1.1k4717 0.91008 1.19348 0.93335 0.87854 0.88812
0.28 1.17623 0.89017 1.2391% 0.86045 0.8L669 0.83771
0.30 1.20963  0.8666k  1.20500  0.75626  0.80959 0.76880
0.32 1.24296 0.84250 1.35951 0.6371L 0.77505 . 0.68918
0.3k 1.26532 0.82584 1.41013 0.55370 0.75660 0.6298k4
0.36 1.27619 0.81749 1.44103 0.51320 0.75132 0.59866
0.38 1.28126 0.81347 1.46026 0.49390 0.75123 0.58281
0.40 1.28362 0.81155 1.47339 0.4841YL 0.75297 0.574k2
0.42 1.28458 0.81073 1.48308 0.47907 0.75532 0.56995
0.L44 1.28477 0.81057 1.49068 0.47657 0.75783 0.56TTh
0.46 1.28450 0.81081 1.49692 0.47559 0.76032 0.56694
0.48 1.28394 0.81134 1.50226 0.47557 0.76272 0.56T706
0.50 1.28320 0.81206 1.5069L 0.47620 0.76497 0.56783
0.52 1.28235 0.81294 1.5111k 0.47730 0.76709 0.56906
0.5k 1.281k1 0.81394 1.51502 0.47875 0.76906 0.57065
0.56 1.28042 - 0.81503 1.51864 0.L4804L8 0.77090 0.57252
0.58 1.27941  0.81622 1.52208 0.L82L5 0.77260 0.57463
0.60 1.27837 0.817u48 1.52539 0.L48463 0.77419 0.57696
0.62 1.27732 0.81882 1.52861 0.48703 . 0.77566 0.57948
0.6k 1.27627 0.82024 1.53177 0.4896L 0.77703 0.58220
0.66 1.27522 0.8217Tk 1.53490 0.492k6 0.77830 0.58513
0.68 1.27418 . 0.82333 1.53803 0.49553 0.77949 0.58827

- (continued)

I\
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TABLE III (continued)

¥ Bs-. | Bc | Bk Br Bv Bw
0.70 1.27314 0.82501 1.54117 0.49886 - 0.78059 0.59166
0.72 1.27210 0.82679 1.54h73 0.50248 0.78163 0.59531
0.7+ ~ 1.27108 0.82869 1.54762. 0.50645 0.78259 . 0.59929
0.76 1.27006 0.83072 1.55096 0.51082 0.78350 0.60364
0.78 1.26906 0.83291 1.55440 0.51568 0.78435 0.60843
0.80 1.26806 0.83528 1.55798 0.52111 0.78516 0.61377
0.82  1.2670T - 0.83788 1.56173 0.52728  0.78594 0.61979
0.8k 1.26610 0.8L0Th 1.56567 0.53k436 " 0.78669 0.62669
0.86 1.2651k 0.84396 ~  1.56980 0.54265 0.78T42 0.634T2
0.88 1.26418 o.8h763 1.57413 0.55256 0.78816 0.64430
0.90 1.26325 - 0.85190 1.57860 0.56h75 : 0.78892 0.65696
0.92 = 1.26233 0.85699 1.58301  0.5802k 0.78973 0.67097
0.9k 1.26147 .0.86321 1.58688 0.60062 0.79063 0.69056
0.96b ' ' , '
0.98b _ :
1.00¢ 1.25992 o.é92hh 1.587L0 - 0.72236 0.79370 0.80816

®The shape parameterization is that of Nix (Ref. [14]), and the values of B, and
B, are from Ref, [25]. The quantity B, was calculated with a computer '

program provided by Hasse (private communication). We are indebted to Peter

Moller for actually'carrying out the calculation of Br’ Bv and Bw‘
bThe shape parameterization fails in this region.

cTouéhing spheres.
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