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Abstract 

The Jaynes maximum-entropy principle is used to derive the standard expression 
for the entropy of a set of weakly interacting waves. 
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In discussions of classical wave kinetic equations, use is made of an 

expression for the wave entropyp as a functional of the mean density of wave 

action in ray phase space, :](Ji,!,), and having the property of increasing 

monotonically in time as J evolves. The standard choice1is 

(1) 

with the integration element d3x d3~ /(2~) 3 . 

It would clearly be desirable to have a classical derivation of this 

expression. Up to now, one has appealed to the quantum expression, 2 and taken 

the classical limit of large occupation number. A classical derivation can be 

based on Jaynes' maximum entropy principle, 3 and provides a striking 

illustration of its utility. In this note, we review the Jaynes algorithm in 

performing this derivation. 

We begin by recognizing that (Ji.!.) space is not a continuum, but rather a 

set of cells, whose size is determined by Fourier's uncertainty principle. 

Hence we rewrite Eq. (1) as 

S(J) = IlnJi, (2) 

where J1 is the mean action in the i th cell. 

Following Planck, we characterize each cell as an oscillator. possibly 

nonlinear. With (J 1, ei) as the action-angle variables for the i th 

oscillator. we introduce the corresponding probability density P; (Ji. ei), 

( 2 ) 
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and have 

-J1 = fdJ; Jde1 P;<J1,e1) J 1 

= IdJ; P;(J;) J;. 

The Jaynes prescription3 is to introduce the information-theoretic 

(Gibbs-Shannon) entropy S(p), as a functional of the system distribution 

function p: 

S(p) = - IP ln p, 

and maximize it with respect top, subject to the constraint (3). This 

determines the "best" p, as a parametric function of the given -data {J;l· 

When we carry out this procedure, we obtain, not surprisingly, the Gibbs 

distribution: 

Since Eq. (4) can be considered as S =- <lnp>, we form <lnp> from (5): 

<lnp> (J) =I; (- ln Ji - 1), 

(3) 

( 4) 

( 5) 

(6) 

and finally obtain the desired expression (2), after discarding the constant 

term in (6). Thus the entropy associated with the data {J;} is the 

information-theoretic entropy of the best distribution consistent with those 

data. 

( 3 ) 
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I am indebted to Steven M. Omohundro, not only for stressing the 

importance of Jaynes• principle, but also for providing, in his Ph.D. thesis, 4 

the basic mathematical underpinning for that principle. 
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