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Abstract 

The recently introduced theory of.self-consistent electron pairs is 

shown to be a viable computational method for the determination of ab 

initio correlated molecular wavefunctions. Features of this method ovet~ 

conventional approaches are presented including the convenient calculation 

of variationally additive pair correlation energies, the representation 

of the wavefunction directly in terms of basis functions, and computational 

efficiency for many types of studies of molecula·r systems. 

The self-consistent electron pairs method is an iterative scheme 

which, in its variational form, is equivalent to a configuration inter

action treatment including all single and double substitutions from a 

closed shell reference determinant. The computational efficiency of 

the method results from the use of simple operators. These operators 

are defined in terms of pair coefficient matrices which serve as a compact 

representation of the total wavefunction. With this formulation of the 

method, explicit use and manipulation of a configuration list is completely 

avoided. Furthermore, since at any point in the calculation of a wave

function only a few simple operators or other matrices are needed at the 

same time, the size limitations on computation approach those of one

configuration self-consistent field theory. This amounts to increasing 

the capability to study chemical systems with the inclusion of correlation 
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effects, especially with small-scale computing facilities. 

The computational application of the theory has been fully implemented 

and tested for a variety of chemical systems. The operations and manipu

lations required for the determination of a wavefunction are considered 

in detail and it is demonstrated that the efficiency of this method over 

conventional techniques increases with increasing basis function set 

size. A number of reductions of the general formulas used to express 

the theory of self-consistent electron pairs are derived and further 

enhance the computational efficiency of the method. Finally, the 

results of some representative studies of chemical systems are presented. 

These include calculations performed for comparison with configuration 

interaction results and more extensive studies on a small beryllium 

metal cluster and planar and non-planar·forms of allene. The interpretive 

value of pair correlation energies is indicated in the latter two studies. 
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Overview 

The development of science, according toT. S. Kuhn, 1 is guided by 

a set of paradigms. These paradigms are ~bstractly defined to include 

traditions and examples of scientific practice, theory, applications, and 

the models of scientific research. Now and then, contradictions or other 

difficulties arise within the paradigm of some field. Attempts are made 

to save the existing paradigm by classifying exceptions to it. Finally, 

however, the paradigm is replaced by a new and more useful one, which 

typically shows some similarity to ideas in force before the fall of the 

old paradigm. A scientific revolution is marked by the_general acceptance 

of the new paradigm throughout the field. 

Theoretical molecular electronic structure is a field whose paradigm 

is closely linked with a technological advance, the development of large

scale high-speed computers. Uprooted by this development was the notion 

that precise descriptions of molecular electronic structure were impossi~ 

ble. And thus a revolution in the development of modern physical 

chemistry occurred and its impact was the creation of a whole new field 

where chemistry is studied with computer programs completely dissected 

from laboratory experience. This new field, however, has been marked by 

segmentation and, one may argue, proliferation of different paradigms 

corresponding to different approaches used to approximate an exact 

answer. Part of the cause of this trend is that computational demands 

for studying real chemical systems are surpassing advancements in 

computer technology. Therefore, there has been a breakdown in the 

acceptance of traditional methods and a concomitant search for new 
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methods and new concepts. Even the technology which supports the field 

is being questioned as calculations are increasingly being performed on 

small rather than large-scale computers. 

Using Kuhn's analysis, we could identify these trends as signposts 

of an impending revolution. This revolution will manifest itself by 

the general acceptance of some new powerful way of answering questions 

raised by today's theoretical chemists. The self-consistent electron 

pairs method provides a clearly useful restructuring of the problem of 

electron correlation in molecules. As such, it might well be anticipated 

that this new method will play a participating role in some future change 

in the paradigm which underlies electronic structure research. 
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Introduction 

Increasingly over the past few years, electronic structure theory 

has become valuable in diverse areas of chemical research (see, for 

example, ref. 2). This has been made possible by the development of 

new computational methods which make real chemical problems tractable 

theoretical problems. Restricting the discussion to non-empirical or 

ab initio theoretical approaches, the standard division of methods is 

between one-configuration self-consistent field theory and methods 

which include correlation effects. The last division can be further 

broken down into variational and non-variational methods. Non-variational 

methods, while not as widely employed as variational techniques, have 

been used effectively in important calc~lations 3 -4 and show a lot of 

potential for future use; however, no discussion of these methods will 

be given since the self-consistent electron pairs method is most closely 

related to variational approaches. 

Before discussing ways of treating the electron correlation problem, 

it is, of course, necessary to identify the electron correlation problem 

and this requires a brief discussion of self-consistent field theory or 

SCF. The important concepts of SCF can be shown by considering only 

closed shell states, but SCF is certainly not limited to such types of 

systems. A closed shell SCF wavefunction is a product of spin-orbitals 

with an appropriate antisymmetrizer and normalization factor. (Ref. 5 

gives a careful discussion and unambiguous description of electronic 

structure terminology.) Each spin-orbital is a product of a spatial 

orbital, ¢i' and a spin function to indicate the relative spin projection, 

1 



"' 
i.e.,+~ or-~. Letting ljJO be the wavefunction, A be an antisyrrnne-

5-6 trizing operator, N be a normalization factor chosen so that 

<ljJ0 jljJ0> = 1, then with N electrons, the wavefunction is 

~O = N A ~ 1 (1) a(l) ~ 1 (2) 8(2) ~2 (3) a(3) ~2 (4) 8(4) 

... ~N/ 2 (N-l) a(N-1) ~N/ 2 (N) S(N) ( 1 ) 

A wavefunction where no orbitals are only partially occupied, such as 

(1), is termed a closed shell and can be written more compactly by 

deleting the identification of electrons as 1, 2, ... ,Nand realizing 

that there are the same number of a and 8 electrons in each spatial 

orbital. Furthermore, since the antisymmetrizer means forming the 

Slater determinant from the product in {J), we have 

(2) 

The rationalization for accepting this type of wavefunction is that for 

the most part electrons tend to move in the average field of the remaining 

particles. 7 Thus, their motion is instantaneously independent of one 

another and the total wavefunction can be written as a product of wave-

functions of individual particles. 

After applying the Born-Oppenheimer approximation8 to our molecular 

system the Hamiltonian operator corresponding to the energy due to the 

electrons (in atomic units 5) is 

2 
,.. N ( 'iJ. L Z ) l 
H=L--1 -L:~ +-L L 

i 2 a ria 2 i j~i 
1 

r .. 
lJ 

(3) 
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where there are L nuclei. The Hamiltonian can be rewritten as a sum of 

individual particl~ operators in the following way. 

" 
v~ l z 1 F. 1 :E et + I: = -y -

1 r. r .. 
et let jr!i lJ 

(4) 

" N " _l:E_,) H = l: (F. 
1 1 2 jr!i rij 

(5) 

The second term in (5) means that the problem is not strictly separable 

and thus, (2) must be regarded as an approximation to the true wave

function. If we are satisfied with this approximation and restrict the 

" wavefunction to the one configuration, we can write an operator, Fi' for 

each electron which assumes that the orbitals for the other electrons 

are fixed, and form an average field for the ith electron to move in. 

,...~ v~ L z 
F'~' = 1 ~ et + g~ 

i - T- Ll r. 1 
. et let 

(6) 

" " The superscript, ¢, on F and g is used to indicate that the form of this 

operator depends on the choice of the wavefunctions for the individual 

electrons and as such, it does not correspond to the exact operator in 

( 4). 

To understand the nature of 9f, let us first define a two-electron 

integral over orbitals. 

(; j I kR.) 
1 

= <¢ ·¢ .J-j¢k¢n> 
1 J r12 }4, 

(7) 

3 



Using the two-electron integrals we can define Coulomb, J, and exchange 

operators, K, that satisfy the following. 6•9 

(8) 

(9) 

Clearly, Jii and Kii depend on the choice of orbitals, ¢. Furthermore, the 

expressions for these operators are somewhat involved integral formulas 

requiring the use of permutation operators. However, since only matrix 

elements like those in (8) and (9) will be needed, the integration can be 

performed completely apart from the determination of the wavefunction. 

With our definition of gr. the value <¢il9tl¢i> should be the interaction 

of one electron in the ith orbital with ~11 remaining electrons. Using 
.. 

(7), performing all spin integrations, and collecting terms yielding 

( 10) 

This gives 

( 11 ) 

A¢ 1 
It should be clear from this construction that g. wi 11 equa 1 L-

1 . r .. 
J 1J 

exactly only_when the electrons are completely separated as in, say, two 

hydrogen atoms at infinite internuclear distance. Otherwise, g~ and F~ 
1 1 

are approximations to the true operator derived from the Hamiltonian and 
A 

the approximation making F dependent on the choice of orbitals is a 

4 



.•. 

consequence of restricting the wavefunction to have the form given by 

( 2). 

The goal of an SCF calculation is to determine the lowest energy forms 

of the occupied molecular orbitals using a finite expansion of the orbitals 

in terms of basis functions, X· 

( 12) 

We will assume that the functions, x, are orthonormal but as shown below 

this is not a requirement. From (11), it can be seen that the subscript 

in (6) is superfluous and we can operate with F on any given orbital. 
" F can be given as a numeric matrix operator provided that integral values 

(13) - (14) over the basis functions are .available. 

* .,2 L Zs 
. I = 1 d-r X [ v ~ ] 

aS a - T - ~ r
5 

Xs · 

1 . 
(aSI~v) = <y x81-lx" > 

"CL r 1 2 ll "\1 

( 13) 

( 14) 

The Coulomb and exchange operators can now be explicitly defined6' 10 using 

the orbital vector coefficients of (12). 

[ J i i 1 s t = 2: w . w . ( s t 1 ~v ) 
~\) ~, \11 

[ K i i ] = L \~ . W • ( SlJ I tv) st ~1 v1 
~\) 

Therefore, the matrix operator, F~, called the Fock operator is 

F~ = I + E ( 2J i i K i ; ) 
i 

( 15) 

( 16) 

( 17) 
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The eigenvalue problem is to vary the elements of W to obtain minimum 

values for<¢. IF¢1¢.>. This means that the operator, F¢, should be 
1 1 

transformed to the orbital basis (i.e., fromthe proper matrix elements) 

and diagonalize the result. 

( 18) 

( 19) 

The unitary transformation obtained from diagonalizing F¢¢ is applied to 

the orbital vectors. However, this is not the final solution since the 

Fock operator is dependent, through the J and K operators, on the orbital 

basis. Thus, transforming the orbitals changes the Fock operator. SCF, 

then, is not a one step diagonalization, which is possib.Je only when the 

operator is not basis dependent, but is iterative. The procedure can be 

listed as four simple steps as has been done by Flygare: 8 

1. Chaos~ a guess set of orbitals, w0; 

2. Determine F¢¢. 

3. Diagonalize F~¢ with U, a unitary matrix, and form 

{20) 

-4: If U is not equal to the identity matrix, return to 2. When U is 

the identity matrix, the process has achieved self-consistency. 

Defining the first order density matrix, largely for convenience, 

1\1 

= 2 L: w .wt. . s 1 1 
1 

(21) 
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"' 1 " and using (5), but replacing~ with g gives the total electronic 
j r ij 

energy. 

E e 1 = 1 L [ 0 0 l · · (I .. + F~ · ) 
ij lJ Jl Jl 

(22) 

Adding the nuclear repulsion energy, R, gives the total SCF energy, E0. 

(23) 

The final point to be made concerning an SCF calculation is the use of 

non-orthogonal basis functions. One can rewrite all of the above 

expressions in a form that resembles a simultaneous diagonalization of the 

overlap matrix and the Fock operator. 5,6,9 However, the transformation of 

orbitals between iterations is unitary and thus, if linear combinations of 

basis functions which are orthonormal are used in the first iteration, the 

orbitals in all following iterations will necessarily be orthonormal. 

Thus, a non-orthogonal basis can be used with all of the above expressions 

if the overlap matrix of trial functions is diagonalized and the resulting 

vectors normed to unity before iterating. The usefulness of closed shell 

SCF theory can be seen in the thousands of studies which have been done 

with it, an example of which is ref. 11. 

One purpose for discussing SCF is to make clear the approximation for 

the r:~ part of the Hamiltonian operator. This approximation is what may 
lJ 

be termed the electron correlation problem. Conceptually, the one-configura-

tio·n form of the SCF wavefunction suggests independent electrons moving 

in average fields of the other electrons. But the instantaneous interaction 

of two electrons is ignored. Including this interaction, and thus, solving 

7 



the Schrodinger equation with an exact Hamiltonian causes the motions of 

the electrons to be correlated with respect to each other. The approximation 

in the Hamiltonian in SCF was shown to be a direct consequence of restrict-

ing the wavefunction to a one-configuration form. Thus, to account for 

electron correlation we must include more configurations in the wavefunction. 

A configuration is a linear combination of Slater determinants which 

t f d . . d t' 1 t t' 12 rans arm accor 1ng to some sp1n an spa 1a symme ry representa 1ons. 

The Slater determinants are constructed by putting electrons into available 

spin-orbitals limited only by the dimensionality of the basis function set. 

A wavefunction can consist of some linear combination of configurations 

with expansion coefficients chosen to minimize the total energy. The 

procedure for calculating such a wavefunction involves constructing matrix 

elements of the true Hamiltonian operator between configurations. The 

eigenvector corresponding to the lowest root found from diagonalizing 

this matrix contains the optimum expansion coefficients of the configuration 

in the wavefunction. This method is called configuration interaction 5 • 6 ~ 8 

or CI. If all possible configurations are included, termed a full-CI 

calculation, then the only approximation in finding an eigenstate of (3) 

is that imposed Qy.·using a finite basis set expansion. 

Including all configurations can become an immense problem for rr~ny 

chemical systems. Thus, one attempts to reduce the computational effort 
-1 while still minimizing the approximation of r .. by removing configurations 
lJ 

which are the least important in the expansion of the wavefunction. The 

most obvious cut off point, and probably the most often used in CI calcula-

tions, is excluding configurations that have more than two-electrons in 

orbitals differing from some reference configurations. 13 Slater-Condon 

formulae show that the Hamiltonian matrix element between the reference 

8 
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configuration and the excluded configurations will be identically zero. 

If the reference configuration dominates the wavefunction, the effect 

of the excluded higher-order substituted configurations will be small. 

All that is needed is a reference configuration and the discussion of 

SCF theory makes the SCF wavefunction a likely choice. 

CI is certainly a straightforward method for obtaining correlated 

wavefunctions, but it should be realized that typically the CI matrix 

is quite large, so that its construction and diagonalization are not 

trivial tasks. An early idea to reduce the effort involved in a CI 

calculation was the Independent Electron Pair Approximation14 (IEPA). 

This approach neglected the interaction between substituted configurations 

from different pairs of orbitals occupied in the reference configuration. 

This gave independent pair contributions to the correlation energy, but 

they were not variational and the results were potentially disastrous. 15 

The effectiveness of conventional CI in studying chemical problems 

is shown by the many efforts made to extend or otherwise improve the 

method. Bender, Davidson and SchaeferS,lS have performed numerous calcula

tions with the it~rative natural orbital method where the form of the 

orbitals is improved by diagonalizing the first order reduced density 

matrix. Each iteration, of course, is a complete CI calculation. A major 
17 accomplishment was the pseudo natural orbital (PNO-CI) method of Meyer. 

PNO-CI takes advantage of the use of sets of non-orthogonal orbitals and 

in so doing can greatly reduce the number of configurations which need to 

be included in the wavefunction. Because of this, the method is quite 

useful in large-scale calculations. 

The direct CI method introduced by Roos18 makes use of an iterative 

scheme to achieve substantial computational efficiency. In this method, 
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configuration expansion coefficients are calculated directly while processing 

the two-electron integrals list. The new vector.method of Bender19 has 

some similarity as an iterative scheme to Roes' method. It uses a second 

quantized form of the Hamiltonian operator and has the same generality in 

usage as conventional CI. One other recent development has been the treat

ment of two-electron systems using a simple operator formalism by Ahlrichs 

and Driessler. 20 

The newest correlation energy method is the theory of self-consistent 

electron pairs (SCEP) due to Meyer, 21 and is the subject of this writing. 

SCEP makes use of an efficient operator formalism and determines the 

wavefunction iteratively. A report22 on the comwutational implementation 

of the method has been presented along with several sample calculations. 

Given here is a detailed account of the operations and manipulations 

involved in SCEP and the simplifications which can be made in the general 

theoretical formulas when actually calculating a wavefunction. The 

computational development and testing of SCEP has occurred over a period 

of nearly one year. During this time, the efficiency of the computer 

program has been improved by several orders of magnitude and the time 

dependence of the method on basis set size, number of electrons, etc., has 

been carefully analyzed. This is essential for critically evaluating the 

method and for applying SCEP theory in the best manner. 

The SCEP method is currently limited to closed shell reference 

configurations and in its variational form, is equivalent to a CI 

expansion including singly and doubly substituted configurations from the 

reference determinant. Extension of the method is certainly anticipated, 

but with the effort made in developing the closed shell form, it may be of 

interest to provide some perspective on the types of~ initio studies 

10 



undertaken in current research. Figure 1 represents one impression of 

the kinds of calculations performed ranging up to nearly exact results 

in one corner. With increasing accuracy, though, increasing effort is 

required. The range of applicability of SCEP is shown by a dotted line. 

As discussed later, the method becomes more attractive for extended basis 

sets and current experience indicates it may not be competitive with 

conventional CI for small basis sets. Figure 2 attempts to display a 

comparison of how much interesting chemistry involves primarily closed 

shell systems while in fairness showing that the effort required to study 

closed shells is substantially less than other types of states. The 

conclusion to be drawn from these representations is that SCEP, even in 

its current limited form, can be applied to a lot of chemical problems and 

is a method which can be used for achieving relatively quite accurate 

results. 

11 



Figure 1. 

The approach to an exact solution of the Schrodinger equation 

within the Born-Oppenheimer approximation depends on the inclusion 

of correlation effects and the adequacy of the basis function set. 

On one axis are given arbitrary and qualitative cut-offs such as 

calculations involving a minimum basis set, double zeta (DZ) set, 

and extended basis sets, e.g., double zeta plus polarization functions 

(DZ + P). The vertical axis ranges from one-configuration through a 

full-CI expansion. The estimated range of practicable application of 

SCEP is given ~y:the dotted line. The three blocks represent divisions 

into which a lot of calculations fall. As shown, calculations become 

more difficult and extensive when approaching the upper right corner, 

representing the .greatest accuracy. 

12 



Complete 
expanston 

Single and 
double 
su bst itut ions 

A few 
configurations· 

Basis set • 

t 
Correlation 

effects 

SCF~~~L-~-Y~~~~~ 

Minimum DZ DZ+P 

XBL 767-3239 

13 



Figure 2. 

Some arbitrary divisions among types of studies of electronic 

states in chemical systems is given. On the left is an estimate, if 

possible, of how much of today's interesting chemistry may fall into 

each division. An even more difficult estimate, considering the many 

different theoretical approaches, is the amount of effort required to 

study various states in an equivalent way and this is shown on the 

right. 
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Self-Consistent Electron Pair Theory 

To demonstrate the computational efficiency of SCEP, it is necessary 

to discuss its simple operator formalism and pair. coefficient matrix 

structure of the wavefunction. With the earlier discussion of SCF and Cl, 

it is easiest to lead into this by using an explicit configuration 

representation of the wavefunction as in CI. So, let us consider a 

wavefunction confined to the Hilbert space which includes a closed shell 

reference determinant, ~O' and all doubly substituted configurations which 

can be constructed from ~O within a given finite set of basis functions. 

The wavefunction, ~' will then have the form · 

~ = ~o + 1: 
i ,j 

1: 1: cij,ab,p ~ij,ab,p a,b p 
(24) 

where ~·. · b is a linear combination of Slater determinants formed by lJ,a ,p 
replacing orbitals li> and lj> in ~O with Ia> and lb> virtual orbitals. 

li> and lj> will be referred to as internal orbitals and the virtuals 

will also be called external orbitals. The linear combination of 

determinants, or a configuration, is formed to transform as the closed 

shell reference configuration with respect to space and spin symmetry. 

Since a closed shell is totally symmetric in spatial symmetry and is a 

singlet spin state, [i> and lj> must be coupled as Ia> and lb>. For 
--

i F j and a F b, p = l will imply a singlet coupling of li> and lj> while 

p = -1 will imply triplet coupling. Now, defining the index P=(ij,p) as 

corresponding to an internal pair, and defining ~P as a doubly substituted 

function, 

~P = 1: c.. b ~.. b ab lJ,a ,p lJ,a ,p (25) 

16 



the wavefunction can be rewritten as, 

(26) 

The usefulness of (26) is seen by looking at elements of the 

Hamiltonian matrix between configurations. The configuration wij,ab,p 

with p = 1 is a sum of four Slater determinants. 

w. . b = 2
1 · {det I~ i ex j S aex bS I lJ,a ,p 

+ det 1~ jex iS aex bSI 

+ det I~ iex jS bex asl 

+ det 1~ jex iS bex aS!} (27) 

where ¢ is the set of doubly occupied orbitals and ex and B indicate spin. 

Slater-Condon formulae6' 13 can be used to evaluate the Hamiltonian matrix 

element between this configuration and the reference configuration. 

<wij,ab,p1Hiw0> = 1 {{jalib) + (ialjb) + (jblia) + (iblja)} {28) 

v1here the two-electron integrals are those defined by (7). This result 

can be generalized for any configuration, e.g., i = j, or a= b, or 

p = -1. 

1 . -1/2 r,:;-: <w. . b I HI w0> = -2 [ ( 1 + c b)( 1 + c .. ) 1 v2-p lJ,a ,p a 1J . 

{(jalib) + p(iajjb) + p(jblia) + (ibjja)} (29) 

The relationship between a two-electron integral over orbitals (7) 

and a two-electron integral over basis functions (14) is, of course just 

a simple transformation. 

17 



( i j I kt) = 2: 2: 
a8 ~v 

Jj>a <ilo li> <kl (~alv8) 
1-' ~ \) 

(30) 

Substituting (30) into (29) and rearranging gives 

1 -1 /2 r,::-
<lj; . . b 1 H lw0> = -2 [ ( 1 + c b)( 1 + c . J. ) 1 v 2 -p 1J,a ,p a 1 

2: ~ (~alvB) [!i><jl + plj><i ll v [pja><bj + lb><aj]af3 (31) 
aS ~v ~ 

With li>r = Wri as in (12), then the vector cross product li><jl yields 

a square matrix 

(32) 

This is similar to'the expression for the SCF density matrix, D0, given 

by (21) and indeed, one can write 

N 
D0 = 2~ lk><kl 

k 
(33) 

Expression (31) looks somewhat like a matrix multiplication operation 

and so, it is convenient to break it into matrices. First, we generalize 

(16) and write an expression for a generalized exchange operator, Kij. 

Though it's not yet needed, the expression for a generalized Coulomb 

operator is similar. 

(34) 

(35) 
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The other matrix will·. be ~b, an external pair coefficient matrix for 

the specific ab substitution. 

~b = (2 + 2oab)-112 [Ia> <bl + Plb> <all (36) 

Expression (31) can now be rewritten as 

<1/J. · b IHI1/J > = P FP (2 + 26 .. )-112 Tr[C~b (Kij + pKji)] (37) 
lJ,a ,p o lJ -r 

The relationship between Kij and Kji is trivial. 

= 2: I i > <j I ( s~ I t\1) 
\) ~ 

~\) 

since {¢i} are real 

since (aBiyo) = (yolaB) 

That is, 

(38) 

(39) 

where the relation for the Coulomb operators can be proved in a similar 

way. 

Since (34) and (35) define operators in terms of vector cross products 

or matrices we can write generally, 
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[K(R)]st = L R~v (s~jtv) 
~\) 

[J(R)]st = L 
~\) 

R ( s t I~\)) 
~\) 

(40) 

( 41) 

where R is some matrix. If we now define the internal pair coefficient 

matrix, CP' analogous to (36) 

cP = (2 + 2o .. )-112 [ji> <jl + pjj> <ill 
lJ 

then we can futher reduce (37) using (40) and (34) to show (43). 

K(Cp) = (2 + 26 .. )-112 (Kij + pKj i) 
lJ 

J ( Cp) = ( 2 + 26 .. ) - 1 12 
lJ 

(Jij + pJji) 

This leaves 

(42) 

(43) 

(44) 

(45) 

From (42) and (36) it can be seen that a coefficient matrix is symmetric 

if p = 1 and antisymmetric if p = -1. Thus, the transpose of a 

coefficient matrix for triplet coupled electrons is just the negative 

of the coefficient matrix. For convenience in writing expressions, we 

notice that the transpose of any coefficient matrix is, then, p times 

the matrix. Following Meyer21 in using brackets, < ~. to indicate the 

trace of a matrix or possibly matrix expression, gives 

~ 

<\j! .. b IHI\j! > = $p <~~bj K(Cp)> lJ,a ,p o .,. (46) 
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From (46) and the steps leading up to it, it can be seen that the 

only thing that depends on the external orbitals of the doubly substituted 

f . . . cab con 1gurat1on 1s ~ . Thus, the Hamiltonian matrix element for another 

substitution from the internal pair is easily found QY. replacing ~b 

with the appropriate external pair coefficient matrix for another specific 

substitution, e.g. 

r;;-: cd t 
<1Ji. · d IHI~Ji > = v2-p. <~ K(Cp)> 

lJ,C ,p 0 -. 
(47) 

At this point, it should be clear that the reason for using an operator 

formalism in SCEP is the convenience in obtaining a whole set of matrix 

elements. If there are N occupied orbitals, then there are M = N2 

internal pairs. In the type of matrix elements considered so far all we 

need are a few generalized exchange operators, specifically N(N + l)/2 

by using (43), and then from matrix operations alone and no additional 

manipulation of the two-electron integrals, we obtain all Hamiltonian 

matrix elements between the reference determinants and the set of doubly 

substituted configurations. If there are K basis functions, then there 

are~ N(K- N) (1 + N(K- N)) such Hamiltonian matrix elements. 
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Representation of the Wavefunction 

Consideration of· the Hamiltonian matrix elements between substituted 

configurations leads to the construction of another type of generalized 

exchange operator and an expression analogous to (47). This in turn suggests 

a representation for the total wavefunction. Let us first look at the 

matrix element between two doubly substituted configurations where the 

substitutions are from the same internal pair,, the configurations have 

no external orbitals in common, and the remaining internal electrons 

are singlet coupled. Each configuration will have the form of (27) and 

applying the Slater-Condon rules once again to the sum of determinants 

and collecting the unique two-electron integrals gives 

<ltJ. · d· !Hi~P·. · b > = [(1 + o d)(l + ob)J-l/Z {(adibc)+(acibd)} (48) lJ,c,p lJ,a ,p . c a 

As was done for matrix elements with the reference determinant, we can 

generalize this result for triplet coupling, substitute in the expansion 

for the two~electron integrals in (30) and are left with 

= [(1 + ocd)(l + oab)J-112 L: L: (llaivB) · 
a8 IJV 

[id> <cl +pic> <diJIJV [Ia> <bl + plb:> <a1Jal3 

This result can be written in operator form in two ways: 

t 
<,1,.. d I H i'~o.. b > = <Ccd K(Cab)> 
'~'lJ ,c ,p '~'1J ,a ,p .:::P .:::P 

(49) 

. (50) 

(51) 



It may seem at this point that SCEP is merely an operator scheme for 

constructing the Hamiltonian CI matrix. If this were true, there would 

be little advantage to SCE~ since the effort required to obtain all the 

matrix elements considered so far from the generalized Coulomb and 

exchange operators is about equal to the effort to transform the two

electron integrals from basis functions to the orbital basis as in (30). 

What SCEP does to reduce the effort to obtain the wavefunction is use an 

iterative scheme where, in effect, only matrix elements between configura

tions and the total wavefunction (from the last iteration) are needed. 

If there are J configurations, there are J(J + 1)/2 unique CI matrix 

elements to be constructed. SCEP will need only J elements per iteration 

and while these elements will typically be more complex than the CI 

elements, which are between individual configurations rather than with 

the total wavefunction, their construction will be facilitated by 

reductions made possible by the operator formalism. 

If ~ is a solution to HI~> = El~> then we may write 

<l!J.!H-Eil./J> = 0 
1 

(52) 

where l!Ji is some vector in the Hilbert space in which 1./J is defined, for 

example, one configuration in a CI v1avefunction. Let us assume we have 

a trial wavefunction, ~·, and wish to test it with (52) to see if it is 

the desired solution. In SCEP, the form of the wavefunction is that 

given by (26), so we can test each configuration or each 1./Jp· 

(53) 
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The first term on the right of (53) is particularly easy to calculate. 

Using (46) and (25) produces 

. bt 
c .. ' <~ K(Cp)> lJ,ab,p --. (54) 

At this point, we define the external pair coefficient matrices, fp• 

C = ""'c cab .... n £.- . . b vn --.,- a:::b lJ,a ,p--.,-
(55) 

so that (54) becomes 

(56) 

These external pair coefficient matrices can be shown to be a 

representation of the wavefunction. That is, given the set of internal 

orbitals which represent 1jJ
0

, the set of f_p's provides all information 

about the wavefunction as do the set of orbitals and expansion coefficients 

of the CI wavefunction of (24). 

Before showing how the external pair coefficient matrices can be used 

to obtain the desired wavefunction it is useful to establish more clearly 

the relationship between a CI representation and an SCEP representation. 

Expression (55) somewhat assumes that we will use a CI wavefuncti.on to 

construct each fp· In fact, (55) is never performed explicitly and, as 

will be shown, the pair coefficient matrices are obtained quite directly. 

The question which arises, then, is can we relate some given fp to CI 

expansion coefficients. Beginning with (55) the following operations 

may be performed. 
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~ = L: c .. b ria> <bl + plb> <aiJ (2 + 2cab)-112 
a~o 1J,a ,p 

~S~s = L: c. . b rIa> < b I + pI b> <a I] SrI r> <s I + pIs> < r I ] 
-.-. a>b 1J,a ,p 

(2 + 26 )-l/2 (2 + 26 )-1/ 2 
ab rs 

= ~c .. b ria> <slob +Pia> <rlcSb + Plb> <sicS + P2 ib> <rio ] 1J,a ,p r s ar as 
a~ 

(2 + 26 b)-112 (2 + 26 ) -l/2 
a · rs 

The overlap matrix, S, is used since the orbitals are defined in terms 

of non-orthogonal basis functions. To obtain the CI expansion coefficient 

for the rs doubly substituted configuration, we multiply by the overlap 

matrix again and take the trace. 

(2 + 26 )-112 (2 + 26· )-112 
ab rs 

= P cij,rs,p (57) 

From this result, we can write 

(58) 

which h~ghlights the representation of components of the wavefunction 

by coefficient matrices. 

By using (40~ external pair coefficient generalized exchange 
· ab t 

operators, K(fp), can be defined. Then the value <fp K(fp)> will 
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be the sum of Hamiltonian matrix elements between the ab configuration 

and all configurations differing by two external orbitals, e.g., the 

cd configuration with a 1 c, b i c, and b 1 d, multiplied by the 

expansion coefficient of the cd configuration plus part of the Hamiltonian 

matrix elements for configurations differing by less than two external 

orbitals. Furthermore, analogous to (56), the value <ft K(~)> is 

part of the value <wpiH-Eiwp> which is used in (53). 
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Pair Fock Operators 

The iterative improvement in the wavefunction performed in an SCEP 

calculation is by first order perturbation theory. Let us assume that 

we have some arbitrary wavefunction which does not satisfy (52): that 

is <w; IH-Eiw> F 0. We can make a first order improvement in the wave

function by adding ~i times some factor to the wavefunction. The 

condition for choosing the factor is that the new wavefunction satisfy 

(52): 

(59) 

Defining two matrix elements determines a;. 

(60) 

( 61 ) 

T./ 
1 E. a; = - 1 (62) 

If w has only two components, say ~0 and ~i' then this improvement gives 

the desired wavefunction. However, if there are more than two components, 

the correction for each ith component is made independent of all other 

components. Thus, it will be necessary to iterate until no further 

improvement in the wavefunction is possible which occurs when T. = 0 for 
1 

all i. The iterative result is a self-consistent result since the matrix 

elements T. depend on the improvement in the wavefunction made with 
1 

elements Tj. That is, the T matrix elements are changed when the 
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wavefunction is improved by (62) in much the same way as the Fock 

operator in SCF is changed when the orbitals are changed after 

di agona 1 i zing the Fock rna tri x. 

In SCEP similar matrix elements are defined: 

(63) 

(64) 

In practice, an exact value for E~b is not necessary since this energy 

denominator will affect convergence, but not the final result which 

depends only on T~b. With (63) and (64), the first order improvement 

in the wavefunction is 

, ( n+ 1 ) = 
liip (65) 

Remembering the definition of the external pair coefficient matrices we 

improve the representation of the wavefunction in a similar way. 

(66) 

What is needed at this point is the means for calculating the set 
ab of matrix elements, Tp . It is clear from the earlier discussion that 

bt · f Tab · cab d · I f t · we can o a1n part o p us1ng ~ an var1ous operators. n ac , 1t 

is possible to define a total operator, GP, such that 

.l-

T~b = <lJ!~bJH-EJIJ!> = <~bl Gp> (67) 
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The operator GP corresponds to (H-E) I~> but can be constructed only so 

that it is appropriate for the one pair, P. Hence, GP' G0, GR ... 

must all be constructed to get the complete set ofT matrix elements 

needed to perform (66) for all fp· The definition of GP' showing why 

it is specific to one pair, is 

where Fpp and FPQ are pair Fock operators. The first term in (68) 

corresponds ~o Hl~0> which is seen by comparing with (47) or (56). 

(68) 

The second term corresponds to (H-E)I~p> while the last term is HIQ~P~Q>. 
The manipulations involving the pair Fock operators are about the 

most extensive of any in SCEP. Rather-than deriving the expression for 

the FPQ•s as has been done by Meyer, 21 we will instead use the expression 

to show how these operators give the desired matrix elements in some 

representative cases. First, 

(69) 

where 

If Q = (kl ,q) and P = (ij,p), then DQP becomes 
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(71) 

As will be s-hown in Section III, (71) will always reduce to two or 

fewer terms. K(DQP) and J(DQP) can then be constructed from one or two 

Kij and Jij operators. It can easily be shown that FPQ = F;P and 

therefore, for M internal pairs, at most M(M + 1)/2 pair Fock operators 

are required. One thing to be noticed about the FQP operators is that 

they only involve internal pair operators and internal pair coefficient 

matrices. Thus, these operators will not change between iterations. 

In CI terms, the FQP operators will give all matrix element information 

which involves two-electron integrals over the orbitals wher;:e none of 

the four orbital indices of the integral correspond to external orbitals. 

The K(fp) operator in Gp (58) is used where two-electron integrals over 

externals are needed. In this manner, all information about the 

wavefunction which is not changed from one iteration to the next is 

completely separated from that which has to be updated. 

The first specific example of using FQP operators is to calculate 

the rna tri x e 1 ement Eab = < ltJ~b I H l1t~~b > which is needed to obtain a 

value of T~b· For illustration, we will use P = (ii,1) and a= b. With 

I as the one-electron operator matrix, the energy of the reference 

configuration is 

E = 
0 

occupied 
2: 
k 

occupied 11 11 
< k I 2 I + ~ ( 2J - K ) I k > ( 72) 

1 

~~a is also a closed shell so the energy of this configuration is like 
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.. 

( 72). 

Eaa = 2:< k 12r + 2Jaa _ Kaa + 2:: (2J 11 - Kll)lk > 

Orbital 

k;Ci 

+ <·ai2I + 2Jaa 

energies for the 

£:.= <illli>+ 
1 

E:a = < a I I I a > + 

1 ;C i 

_ Kaa ~ 2: (2J 11 - K11 )1a > 
1 ;C i 

ith and ath orbitals are 

Then, Eaa - E
0 

can be rewritten as 

= 2E: - 2E: . + < i I K i i I i > + < a I Kaa I a > a 1 

+ 2 < a I K i i - 2J i i I a > 

(73) 

(74) 

(75) 

(76) 

For the specific case being considered, the required pair Fock matrix 

is Fpp which, after using (71), is 

Using (67) and (68) and taking fp = ~a we form the matrix element for 

the aa double substitution in an attempt to determine Eaa in terms 

-2 < i I F I i > + < i I K i i I i > 0 . (78) 

Realizing that E:a =< aiF
0

1a > and comparing (78) with (76) indicates 

31 



(79) 

This result can be rewritten as 

Another case to consider is the matrix element between two 

doubly substituted configurations from the same internal pair where 

the two configurations have no external orbitals in common. The pair 

Fock operator will be ~hat of (77) and for convenience we will use the 

configurations ~~a and ~~b As discussed earlier, the Hamiltonian 

matrix element between these two configurations is, according to (50) 

(81) 

Since this term will be included in the K(.f_p) operator in Gp• we must 

expect < Cbbt2F CaaS> to give a zero contribution. Writing this 
~ pp~ 

out explicitly, 

bb7 aa < .f_p 2Fpp.f_p S> = 2 < b IS I a > < a IF +K i i -2J i i-S < i I F I i > 
0 0 

+~S<iiKiili >lb> (82) 

Si nee < b IS I a > = 0 by orthogona 1 ity of the orbi ta 1 s, the term does 

indeed become zero. 

A different type of case than the first two is the matrix element 

between double substitutions from different internal pairs. Reductions 

of (69) for all possible internal pair groupings are considered in 

Section III and given in detail in the Supplementary Tables, so for 

this example a fairly trivial case is selected for illustration: 

P = (ii,l) and Q = (jj,l). Since no internal orbitals are in common, 
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DQP = 0 as can be seen by (71). Thus, the pair Fock operator 

consists of only one term: 

F QP = ~ < j I K;; I j > (83) 

The Hamiltonian matrix element of interest is 

< \jJ~a I H I \jJQa > = ( i j I i j) (84) 

"I Ki i I . = < J J > (85) 

Now this can be easily related to the pair Fock operator. 

(86) 

If the external orbitals for the two double substitutions were not 

the same, then the two configurations would differ by more than two 

orbitals and Slater-Condon rules would give a zero Hamiltonian matrix 

element. This, of course, is accounted for with the overlap matrix 

elements as in (82). However, since the overlap matrix is part of the 

operator, we could use a linear combination of the orbitals a, b, c, ... , 

for the internal pair P to form the external orbitals a', b', c', ... ' 
for the internal pair Q. All the above expressions would remain valid 

because if c' has a non-zero overlap with a, it would have a Hamiltonian 

matrix element proportional to < c' ISla >. This, in fact, is quite 

important for it means that different sets of external orbitals can be 

used with the different internal pairs and that orthogonality between 

the sets of externals is not required. The sets of externals, as shown 

below, can then be chosen to improve the convergence behavior of the 

iterative scheme. 
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The discussion of the relation between Hamiltonian matrix 

elements and pair Fock operators for the three cases mentioned above 

neither proves nor derives the expression for the FQP operators. 

However, it is intended that these examples establish that: 1) CI 

type matrix elements between individual configurations can be 

determined from SCEP type operators, 2) the representation of the 

wavefunction can be collected into pair coefficient matrices, fp, 

and that operators can be defined in terms of the fp which will give 

Hamiltonian matrix elements with the total wavefunction, 3) overall 

pair operators, GP in (68), can be written generally enough to give all 

< ~~biH - El~ > for all double substitutions from P, and 4} different 

non-orthogonal sets of external orbitals can be used with different 

internal pairs in defining the fp•s and the specific substitutions. 
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Selection of External Orbitals 

Optimal convergence conditions of the first order perturbation 

iteration scheme used in SCEP is achieved when the configurations are 

least interacting. Indeed, in the limit of completely noninteracting 

configurations, which of course cannot really be achieved, one iteration 

would be sufficient. An approach which has been used in SCEP calculations 

to date to reduce the interaction between configurations is to select 

special sets of external orbitals for each internal pair. These externals 

are selected to minimize, on the average, matrix elements of the type 

abl I cd <wp H Wp > where no more than one external in the two configurations 

is in common. As considered above, the pair Fock operator will give 

the necessary matrix elements which we seek to minimize. Part of these 

elements are the following: 

..&. 

ab' cd 
= <fp K(fp )> a r c, b r c, b r d 

<~b' K(~d)> = [(2 + 2oab)(2 + 2oad)J-112 '{2<biKadla> 

+ 2<d!Jaalb>} 

(87) 

(88) 

Two approximations are made. First, the exchange operator contributions 

will generally be smaller than the Coulomb operator matrix elements. Thus, 

the exchange operators are neglected. The Coulomb operator in (88) would 

require an integrals pass and the number of such operators would be 

potentially large since the operators are over external rather than 

internal orbitals. Fortunately, approximations can be made at this 
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stage since the choice of externalsdoes not affect the final result and 

will hopefully only improve convergence. The chosen approximation is, 

with P = (ij,p) · 

(89) 

As Meyer has explained, 21 this is a reasonable approximation when assuming 

that the more important external· orbitals, as far as minimizing the inter

action of the configurations is concerned, are located in the space of 
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the i and j internal orbitals. This approximation is particularly convenient 

since the same substitution of operators is made for all externals. Thus, 
1 . . . . 

adding 2 (J
11 + JJJ) to FPP gives an operator which will give the matrix 

elements which we seek to minimize. We then transform this operator to the 

orbital basis with the matrix of orbital vectors, W, 

(90) 

The transformation which diagonalizes V yields the desired set of orbitals. 

However, we have assumed throughout that the same set of internal orbitals 

are used to define each internal pair and that any set of externals are 

· orthogona 1 to the i nterna 1 s. Thus, in transforming vJ we cannot a 11 ow the 

internals to mix with the externals. This, of course, is easily accomplished 

by zeroing out elements of V between internals and externals. 

The eigenvalues of V serve as good approximations for the energy 

denominators of (64). 

( 91 ) 



Inclusion of Singly Substituted Configurations 

In the previous section, only double substitutions from the reference 

determinant have been considered.· Operators were developed which give 

the necessary matrix elements to find an iterative self-consistent 

solution of the wavefunction. The final result is the lowest energy 

expansion of the wavefunction in the space of the reference determinant 

plus double substitutions. Single substitutions, however, are likely to 

be important. If the reference determinant is constructed from SCF 

orbitals, then the single substitutions will have zero Hamiltonian matrix 

elements with the reference determinant (see appendix) but will still have 

an interaction with the doubly substituted configurations. The approach 

which will be used to include singly substituted configurations into the 

wavefunction will be to hold 1jJ = 1jJ
0 

+ L\jlp fixed and iteratively diagonal ize 
p 

a Hamiltonian CI matrix whose rows and columns are labeled by 1jJ and the 

singly substituted configurations, 1jJ~. 

The wavefunction including the singles is designated 

1jJ = 1jJ + s L 
i , a 

The iterative diagonalization follows the first-order perturbation 

improvement used with the doubles. 22 Matrix elements are found 

a a
1 

I a E. = <1jJ. H-E 1jJ.> 
1 1 1 

and the wavefunction is improved according to 

(92) 

(93) 

(94) 
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. (n+l) = w(n) - L w~ R~/E~ 
lfis s . 1 1 1 

1 , a 
(95) 

To find E~ and R~, matrix elements of the general form <w~IH-EI~~> are 
1 1 1 J 

a required. For Ri' matrix elements of the singles with ware also needed. 

Construction of these matrix elements, desi9nated T~, is fairly involved 

but only requires operators which are all known after the last doubl~s 

iteration. The expression forT~ as given by Meyer21 is 

T~ = <w~IHiw> 
1 1 

= J2 <a IF - L SCnK(Cpt) j2:"p I i> 
0 p -r 

+ L J2-p)(2 + 2c5.k) <aiSfpF - K(fp)lk> 
P=(ik,p) 1 0 

By defining a simple set of singles Fock operators, Fij, 

6 .. F + 2K i j 
1J 0 

.. Jij- S<iiF lj> 
0 

and once again applying Slater-Condon rules gives 

<w~IH-EI~~> = <aiFijlb>- (E-E )6 .. c b 
1 J o 1J a 

(96) 

(97) 

(98) 

On the first iteration R~(l) = T~. 
later iterations is 

After collecting all terms, R~ on 
1 

R~(n) = T~- (E-E) C~(n-1) + ~ <aiFij!b> C~(n-l) 
1 1 0 1 ~b J J, 

(99) 
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Thus, the iterative improvement in the singles expansion coefficients 

indicated by (95) is 

C~(n+l) = C~(n) ___ 1 R~(n+l) 
1 1 E~ 1 

1 

(100) 

Since ~ was held fixed when the singles were included, the effect 

of the singles on the doubly substituted configurations has been neglected; 

that is, the doubles were not relaxed to account for the effect of the 

singles. This effect is quite small and as discussed in Section IV will 

usually be negligible compared to the total correlation energy. However, 

it is worth noting this restriction, because in a conventional CI calcula-

tion the doubles are naturally fully relaxed with respect to all other 

configurations. Thus, the energy of a singles and doubles CI ·treatment 

will not be identical to the SCEP energy. 
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Pair Correlation Energies 

Given the wavefunction of (26), the energy is obtained from the 

simple variational energy expression: 

E = <~IHI~>/<~1~> ( 1 01 ) 

= E + {<~ IH-E I L~p> + < L~piH-E 1~>}/<~1~>. 
0 0 0 p p . 0 . 

= E + L:<~piH-E I~ + ~>/<~1~> 
0 p 0 0 

( 102) 

We now define pair correlation energies, Ep, as 

Ep =<~pi H-E I~ + ~>/<~1~> 0 0 . 
( 103) 

Then with (102) these are seen to be variationally additive: 

( 104) 

The pair correlation energies in (103) are easily calculated with the 

external pair coefficient matrices and the operators used to improve 

the wavefunction. <~I~> is given by 

<~I~> = 1.0 +L: <~ s fp S> 
p . 

( 105) 

Calculating the total energy of the wavefunction including single 

configurations as given by (92) 
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E = <~ jHI~ >/<~ I~> s ' sl s s 

2 
=·{<~I HI~>+ 2: c~ <~~!HI~ >l1<~1~> + 2: c~} s . 1 1 s '/I . 1 

1,a 1a 

A Ra . f t convergence, i 1s o course zero. Thus, 

E = E + :Ee:p + 2: c~ T~/<~1~> 
o P ia 1 1 

( 106) 

( 1 07) 

( 1 08) 

( 109) 

Pair correlation energies are somewhat useful quantitites since they 

give the correlation contribution of each individual pair of electrons. 

Such a detailed breakdown of correlation effects is likely to be as use-

ful as an interpretattve aid in understanding electronic structure as 

orbital energies are in SCF. The pair correlation energies obtained·· in 

SCEP are not unique to this method. From the discussions above concerning 

the relationship between CI configurations and the ~P functions, it should 

be obvious that one can collect up energy contributions using (103) and 

(25) and obtain the e:P. The distinction between SCEP and CI is that SCEP 

gives pair correlation energies directly from it~ operator structure and, 

in fact, this is the only way the total energy is found. In addition, the 

pair correlation energies defined by (103) are unambiguous: they are always 

additive with the reference configuration energy to give the. total energy. 

To maintain this unambiguity, CI calculated e:P must follow (103) even though 

other redistributions of the contributions to the total energy are possible. 
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Improvement of the Orbitals 

The method as described so far amounts to finding the best 

wavefunction in the space of a reference determinant and all double 

substitutions and then including singly substituted configurations. 

We term a calculation which follows the method through this point a 

"fixed-ljJ
0

" calculation,since no attempt has been made to find a better 

set of internal orbitals. However, since the representation of the wave~ 

function is directly in terms of basis functions, one would hope that 

not much additional effort would be required to determine the wave-

function after making some small improvement in-the internal orbitals. 

In fact, the set .of fp 1
S can be rotated to any new orbital basis and 

another set of iterations performed using the rotated fp Is as the 

starting point. 

To improve the internal orbitals the singly substituted configurations 

are approximately absorbed into the reference configuration. After several 

such cycles, the orbitals would have the form where singly substituted 

configurations would have identically zero expansion coefficients in the 

wavefunction and the orbitals are termed Brueckner orbitals. 23-26 Some 

additional discussion is given in the appendix. Several schemes are 

possible for making an approximate absorption of the singles and the one 

which has been used exclusively to date is 

1 i I> = 1 i > + ~ L c~ I a> 
v2 a 

where li 1 > are the new set of orbitals. Following (110), the new 

( 11 0) 

orbitals are symmetrically reorthogonalized in a three step procedure: 
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Lowdin's orthogonalization27 method is applied to the internal orbitals, 

Schmidt orthogonalization is used to zero out the overlap of the externals 

with the internals, and finally the Lowdin procedure is applied to the 

externals. 

Defining a rotation operator, R, as 

R = L I t I> <tIs 
t 

gives the~ in the It'> basis: 

( 111 ) 

( 112) 

Since the~ are linear combinations of ~b we can see how this 

rotation operator works by looking at one specific doubly substituted 

pair coefficient matrix. 
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~b' =· {L:It'> <t!S} (2 + 26 b)-112 [ja> <bl + pjb> <al] {LSir> <r'j} 
t a r 

( 113) 

= (2 + 26 )-112 
ab L it'> {<t!Sia> <blSir> + p<tiS/b> <aiSir>} <r'l 

= ( 2 + 26 ) -l 12 
ab 

t,r 

= (2 + 26ab)-112 [ja'> <b' I + pjb'> <a' IJ 

In (116) the pair coefficient matrix is formed from the new set of 

( 114) 

( 115) 

( 116) 

orbitals so that all orthogonality conditions used in SCEP are maintained. 

Looking at (113) to (116), one may realize that R can be used to rotate 



the ~·s determined at one molecular geometry to the orbital basis at 

another geometry so long as S is taken as the overlap matrix at the 

initial geometry. 

The overall SCEP method, then, begins with a closed-shell reference 

determinant and a set of internal or occupied orbitals and external or 

virtual orbitals, presumably from an SCF calculation. Two sets of internal 

operators, Jij and Kij, are constructed for all. internal pairs using the 

two-electron integrals list. With these operators, pair Fock operators, 

FPQ' are defined. The diagonal pair Fock operators, FPP' are used to 

select different sets of external orbitals for each internal pair. Sets 

of doubles iterations are performed with each iteration requiring the 

construction of the generalized external exchange operators, K(~). 

Improvement of the wavefunction is made by first-order perturbation 
. . 

and is perfonned for all substitutions from one pair at a time. Finally, 

the singly substituted configurations are included in the wavefunction. 

If de·sired the orbitals can be ·modified and the cycle repeated. Figure 

3 is an outline of the method. 
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Figure 3. 

The SCEP method involves several steps of constructing 

operators used to determine the wavefunction. At two points, 

the list of two-electron integrals is used to calculate some of 

the operators. Iterations are preformed for the doubly substituted 

configurations, following which the singles are included. The 

calculation can then be terminated, the 11 fixed-tj; 11 treatment, or the 
0 

orbitals can be improved or otherwise modified and the procedure 

repeated. 
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The Density Matrix and Density Function 

Calculation of one-electron properties, 5 such as the dipole moment 

or net atomic charges, is done with the first order reduced density 

matrix. In this section, some considerations of the general density 

function and density matrices of correlated wavefunctions are given 

along with expressions for the first order reduced density matrix in 

the SCEP formalism. 

The density function, p, is defined in the following way 

If~ is given as a linear combination of some basis functions, ¢1, 

~ =LC. ¢. 
. 1 1 
1 

then one may define a density matrix, D, as a representation of the 

density function in the following way: 

2: c. * 4>~ = c. ¢. . . 1 J 1 J 1J 

2: D .. * = ¢. 4>. . . 1 J 1 J 1J 
* where D .. = C. C. 1J 1 J 

(117) 

( 118) 

( 119) 

( 120) 

( 121 ) 

At this point, no information contained in the original wavefunction ~ 

has been lost in the density matrix because the N expansion coefficients, 

C., could easily be obtained from the N2 elements of Din about the same 
1 
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way CI-like expansion coefficients are obtained from ~n external pair 

coefficient matrix (57). 

In a CI wavefunction (118) is the expansion over determinants so 

that the density matrix defined by (121) is also over determinants. 

The Slater determinants are products of orthonormal orbitals, ¢1, so 

that we could write 

p = L D .. p .. 
ij lJ lJ 

* p .. = ~. ~. 
lJ 1 J 

We could then try to find a density matrix representation for (123); 

( 122) 

( 123) 

however, the product nature of each ~i means that such a density matrix 

will have 2N dimensions and N2N elements where N is the number of occupied 

spin orbitals in the determinant. If we did find such matrices, which 

would be difficult but straightforward, the total density function, p, 

could be given directly in terms of orbitals, though the representation 

matrix would be quite large. One could continue and perform a simpler 

step of transforming this representation into the basis of the set of 

functions used to construct the orbitals. The point of this discussion 

is that we can represent the density function in a variety of bases and 

at no point is any information contained in ~ lost by the manipulations. 

The density function and matrices considered above would be useful 

if there were some operator of interest which corresponded to an 

interaction among all particles in the system. Fortunately, most 

properties of interest involve interactions of one particle with another. 

Even the total energy involves interaction between no more than two 
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electrons with two other electrons. We thus seek to reduce the density 

function and density matrix by asking what is the probability function, 

not for N electrons as was done in (117), but forM electrons where M 

is less than N. The answer is to integrate over the coordinates of the 

N-M e1ectrons6 which reduces the dimensionality of the density matrix 

to 2(N-M). Each integration necessarily loses some of the information 

contained in the original p; that is, it is not possible to map 

unambiguously the re'duced density function onto the wavefunction space. 

For the first order reduced density matrix, pl, N- M = 1. Since 

a Slater determinant is a sum of products, several integrations are 

necessary for all the cross products between the terms in the sum when 
1 calculating p . Fortunately, Slater-Condon rules can be applied 

. 1 d. 10 y1 e 1 ng 

0~. = 0 1J if ¢i and ¢j differ by more than one spin-orbital 

1 
= 8aB 6ij + 6ak ~B1 (1 - 8 . . ) [0 .. J B 1J a 1J 

where 1 D .. 
1J 

is defined by the reduction to first order of (123): 

1 * 1 
Pij = 2: <Pa <Pa [D .. l B 

aB 1J a 

This 1 eaves 

1 = 2: D .. 2: 1 * p [0 .. l B <Pa <Pa . . , J B 1J a lJ a 

(124) 

(125) 

(126) 

( 127) 

A useful simplification is to work in terms of orbitals (since we know 

the overall spin of the state) instead of spin-orbitals. Thus, 
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integrating over spins and labeling row and column indices by orbitals 
. l 0 g1ves 

l [0 .. ] Q = 26 a 6 .. + (1 - 6 .. )6 k 00 n 
1 J af:J a.., 1 J 1 J a ..,A-

If desired, we can define pl directly in terms of the basis 

functions used to construct the orbitals. Using (12) 

=LL: 
r s 

\vhere 

The final density matrix now becomes 

0. . [ 0 ~ . ] a [ oaB 'X] Xr X *s 
1J 1J a.., rs 

(128) 

(130) 

( 1 31 ) 

( 132) 

If the wavefunction were restricted to one closed shell determinant, 

an SCF wavefunction, expression (132) reduces to 

1 - ~ [0 ] * P - 4J o rs Xr Xs 
rs 

where 0 was previously given by (21). 
0 

In SCEP, the wavefunction is given directly in terms of basis 

( 133) 

functions so we will be most interested in density matrices given in 
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terms of the basis functions. All that is necessary is to use (55) 

and rearrange the summation in (132) so that it is over electron 

pairs: 

(134) 

when only doubles are included in the wavefunction. ~P is defined 

analogous to (70). 

D 2 C S Ct 
.:::.0 p = ~ ..::.p 

With singles included in the wavefunction, the first order reduced 

d "t t . . 28 ens1 y rna r1x 1s: 

where 

o1 = L: c~ I i > <a I 
i , a 

( 135) 

( 136) 

The actual calculation of an SCEP first order density matrix is simple 

involving several matrix multiplications. Furthermore, as already 

mentioned and as will be discussed more fully in Section III, DQP will 

a 1 ways reduce to one or _two terms. This and other reductions make 

the calculation of D or o5 quite fast computationally. 
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Computational Aspects 

An important feature of any new calculational method is its 

dependence on the size of the problem. One might conceivably formulate 

some approach which is particularly fast for small syste~s but is 

limited in application because of the increase in effort with an 

increase in the size of the problem. In this section, a comparison 

wi 11 be made v-1i th convention a 1 CI in order to demonstrate that SCEP 

is a generally efficient scheme but becomes even more advantageous than 

CI in larger problems. 

There are two main types of operations in an SCEP calculation. The 

first is the processing of the two-electron integrals in setting up 

generalized Coulomb and exchange operators while the second is the 

collection of all matrix operations. If there are K basis functions in 

some given calculation there will be I< K4 two-electron integrals. If 

there are N occupied orbitals, and M = N2 electron pairs, then there will 

be M of the K(£p) operators (on each iteration), N(N + 1)/2 of the Kij 

operators and N(N + 1)/2 of the Jij operators to construct. Since the 

external operators are either symmetric (p = 1) or antisymmetric (p = -1) 

then determining K(f_p) for P=(ij,1) and K(~) for Q=(ij,-1) requires no 

more work than calculating one square exchange operator, since fp and~' 

and the corresponding exchange operators, together have only K2 unique 

elements. Therefore, only N(N + 1)/2 external exchange operators need to 

formed on each doubles iteration. We can now count the construction of 

Kij and Jij as an additional iteration since it has the same dependence 
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for integrals processing. Assuming a constant iteration number since 

we are always able to achieve convergence in seven iterations, we are 

left with an I[N(N + 1)/2] dependence for operations involving the two-

electron integrals. The analagous step in CI is transforming the 

integrals over basis functions to integrals over orbitals. The 

transformation is given by (30) which, if performed directly, requires 

K8 multiplications. Of course, this transformation is normally done in 

steps, called quarter-transformations, which overall require about K5 

multiplications~9 

As discussed in Section II, the SCEP calculation is performed one 

pair at a time; that is, Gp is set up for one pair and ~P is improved 

and then processing of the next pair begins. As a result, much of the 

. computational effort is matrix multiplication, matrix addition, 

multiplication of a matrix by a constant and inputting and outputting a 

matrix to external storage. These processes are, respectively, K3, K2, 

K2 and constant dependent processes and the number of times each process 

is performed increases with the number of pairs, M. In constructing GP' 

there is an additional dependence on M because of inclusion of the FQP 

operator sum. Hence, the dominant dependence from the matrix manipulations 

is as much as M2K3. 

The M2K3 dependence can be reduced by looki.ng at the individual FQP 

operators and realizing that there are three possibilities: FQP has all 

unique elements, or it is equal to a constant times the overlap matrix, 

or it is zero. Only in the first of these three cases is it necessary 

to perform a matrix multiplication in forming GP. To see the non-trivial 
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types of FQP operators we consider the DQP matrices, for by (69) 

if DQP .= 0, FQP will be one of th~ last two of the three possible 

cases, i.e. trivial. Expression (71) shows that DQP will always be 

zero if P has no orbitals in common with Q. Table I provides 

reductions of ·(71) for all other cases and it can be seen that~ 
~It "D~n\5 J,"-·1~ +·vo or Jt~,J)f!f' ~ft"-tS, 
two-additiona.l--cases-rs...-aga.~ef"G-. In Table I, it has been 

assumed that P ~ Q since the DPQ matrices from (70) are 

(137) 

With N as the number of occupied orbitals, a given orbital will occur 

in 2N-1 pairs. Hence, with the ij pair of electrons there can be no 

more than 4N-2 pairs which have less than two orbitals in common with 

ij. Thus, the method's dependence due to FQP multiplications is not 
2 3 . 3 3 3 M K but some\'lha t 1 ess. than 4N ( MK ) = 4N K . If one rigorous 1 y adds 

up all the multiplications which are required the result is: 

· N-1 
R = {N4 - N2)/2 + N - I: (2J3 - 3J2) (138) 

J=2 

The summation in (138) cancels the N4 dependence and Table II shows 

the reduction in effort implied by (138) for selected values of N. 

Large values of N are given to show that the N3 dependence dominates, 

though slowly. 

For comparison with CI we first count up the number of configurations. 

For K basis functions, there are the foilowing number of configurations 

N(N + l){K- N)(K- N + 1)/4 + N(N - l)(K- N)(K- N - 1)/4 

(139) 
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Table I. DQP Matrices. 

p = (ij,p) ~ Q = (kl,q) DQP 
--~----------------

i < j - p 

i i . 1 

i i 

i i 

i j 

i j 

i j 

i j 

i j 

1 

1 

1 

1 

1 

1 

1 

i j -1 

i j -1 

i j -1 

i j -1 

k < 1 -
i i 

i j 

q 

1 

1 

2li><il 

,1"2' lj > <il 

. i j -1 . - .f;-1( I j '> < ~ l 
------·-·· ' 

i j 1 

i j -1 

j j 1 

j k 1 

j k ~1 

I ; > < ; I +· I j > < j I 

li> <il-lj> <jl 

I'Z jj > <ii 

I k .> < i r 
lk .. >. <'i r 

; j -1 ~; > < ; I + I j > < j I 

j j 1 ·-~--~-~l! (.;.I 

j k 1 I tc· > < i.l -
j k -1 - l·k .> < i i 
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Table II. Numbers of FQP Operators. 

Number of Number of Unique FQP Non-trivial 
Orbitals Pairs Operators FQP Operators 

N H = N2 M(M + 1)/2 R R/N3 

1 1 1 1 1.0 
2 4 10 8 1.0 

3 9 .45 35 1.296 

4 16 136 93 1.453 

5 25 325 194 1.552 

6 36 666 350 1.620 
7 49 1 225 573 1.671 

8 64 2 080 875 1.709 

9 81 3 321 1 268 1.739 

10 100 5 050 1 764 1.764 

12 144 10 440 3 113 1.802 
14 196 19 306 5 018 1.829 

16 256 32· 896 7 575 1.849 

18 324 52· 650 10 880 1.866 

20 400 80 200 15 029 1.879 

25 625 195 625 29 724 1. 902 
30 900 405 450 51 794 1. 918 
40 1 600 1 280 800 124 059 1.938 

50 2 500 3 126 250 243 824 1. 951 -. 



where the first term is for internal (and external) electrons singlet 

coupled and the second term is for triplet coupling giving the total 

number of doubly substituted configurations with a closed shell 

reference determinant. Expression (139) can be summed to give an 

approximate number of configurations, N2(K-N) 2. Construction of most 

of the CI matrix elenents involves fetching one or two values from the 

transformed two-electron integrals list and while constructing some 

of the elements is more involved, on the average, setting up the CI 

matrix varies as the number of non-zero elements. Any two configurations 

which differ by two or fewerorbitals will have non-zero CI matrix elements. 

Considering the N2(K-N) 2 configurations as (K-N) 2 substitutions from 

each of N2 internal pairs, each configuration would have a CI matrix 

element with somewhat more than (K~N) 2 other configurations. As a result, 

the overall dependence is larger than N2(K-N) 4 or roughly N2K4. 

Diagonalization of the CI matrix is at best dependent to the first power 

on the number of non-zero elements. Therefore, in CI the number of 

required operations increases as K5 for the integrals transformation and 

N2K4 for remaining steps. 

A comparison of CI and SCEP dependencies is summarized in Table III. 

To draw some conclusions from this comparison, we consider the increase 

in the number of operations when the number of electrons in the systems 

is increased and the number of basis functions increased proportionately 

to provide an equivalent description, i.e. fixed K toN ratio. From 

Table III, it can be seen that CI appears to be favored in comparing 

the dependencies of the increased effort with the larger problem. 
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Table III. Comparison of SCEP and CI. The dependence on 

K, the number of basis functions, and N, the 

number of occupied orbitals, is given using a, b, 

c, d and e, as constants. 

SCEP CI 

Coulomb and ~N{N+l)K4 
Exchange Operators 

Process Pairs: 

Other Multiplies N2K3 

Matrix Addition, etc. N2K2 

Input/Output N2 

TOTAL DEPENDENCE 

aN2K4 + bN3K3 + cN2K3 

+ dN2K2 + e 

FIXED ~ DEPENDENCE 

aK5 + bK6 

FIXED N DEPENDENCE 

Integrals 
Transformation 

Construct CI Matrix 
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Alternatively, we cou!d fix the number of electrons and argue that 

SCEP seems preferable in going to a larger problem, where larger 

problem now means a bigger basis set. Taken together, these two 

ways of comparing SCEP and CI indicate that for some given N there 

will be a cut-off number of basis functions, KN' at which SCEP will 

be more efficient for larger basis sets and CI will be more efficient 

for smaller sets. Our experience with the still preliminary version of 

the SCEP computer program suggests that for small molecular systems, 

say N up to 5, KN seems to be at about double-zeta size and seems 

more efficient than CI for extended basis sets. KN will probably 

increase slowly with N but on the basis of this experience, the SCEP 

line in Figure 2 was drawn. Whatever the precise cut-offs are, it is 

clear that at some point SCEP is the desirable approach if one is 

interested in using larger and larger basis sets to provide increasingly 

better descriptions of a molecule•s electronic structure . 
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Calculation of the First Order Reduced Density Matri~ 

Calculation of the density matrices in (134) or (136) involves 

double summations over electron pairs. Furthermore, the terms in the 

sums require several matrix multiplications as in (135). Thus, at first 

glance, calculation of D might appear to be quite time consuming. In -

fact, though it is not ,.instantaneous .. , it can be made reasonable. 

Looking at (134) specifically, we use Table I to remove all zero-valued 

DQP 's and thus'· as with the F QP opera tors reduce the effort by a factor 

of N. A reduction by a factor of two can be realized by noting that 

< QpQS > will be zero if p f q. For example, with fp = ~b and 

fq = fQd, (135) gives 

~P = [(l+cab)(1+ccd)l-~[lc >< dl+qld ><ells (140) 

[pia>< bl+lb ><all 

< ~pS> = [{l+cab)(l+ccdlf~ [p <diS Ia >< biSic >+q <diS Ia >< biSic > 

+pq < cIs I a > < b Is I d >+ < cIs I a>< b Is I d > 1 

= [(l+cab)(l+ccd)(~[(p+q) <diS Ia >< biSic > (141) 

+p ( p+q) < c I s I a > < b Is I d > 1 

= 0 if p+q = 0. 

The next step is to take t~e list of external pair coefficient 

matrices, fp' and multiply each times the overlap matrix and store the 

result. This requires M K3 operations. However, when this is done, 
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calculation of the non-zero. <~ps > is just a K2 process which is 

relatively unimportant. All the remaining operations consist of 

matrix addition or multiplying a matrix by a constant, again both K2 

processes. Thus, M K3 is the dominant dependence in determining 0 

with some additional effort required to find 05. This reduction in 

effort is quite nice,since brute force application of (134) would give 

an M2K3 dependence and the calculation of 0 could easily approach an 

iteration time. 
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Selected Chemical Applications 

Small systems with less than ten basis functions were typically 

used in testing the SCEP computer program as it was being developed, 

but when the program appeared to working reasonably well at all stages, 

the interest turned to testing the method both with respect to the 

quality of the wavefunction and the computational features of the 

method, such as speed and size limits. Two cases used to test the 

method were water and methylene and results are given in Tables IV and V. 

In comparison with CI results, the water calculations using a 35 

function basis set were within 4 x 10-5 au of the CI results. This 

small differerice, again, is due to the effect of the singles on the 

doubles which are not relaxed when the singles are included in the 

wavefunction. The same value could be achieved by diagonalizing a CI 

matrix which includes the reference configuration and double 

substitutions and then diagonalizing a s~ller CI matrix which. 

includes the total wavefunction from the.first diagonalization and the 

singly substituted configurations. Measured as a percentage of the 

correlation energy, this neglected effect is very small. 

Several methylene calculations were performed with basis sets up 

to 42 functions .. The set of methylene calculations with different 

basis sets gave some interesting comparisons in pair correlation 

energies~ 2 The reason for this seems to be that the improvement in 

using larger basis sets can give a relatively better improvement in the 

correlated description of one pair of electrons over another. This 

suggests that examination of pair correlation energies could well be 
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Table IV. Fixed-~ Water Molecule Calculations. 
0 

Energy (CI) Energy (SCEP) 

14 Functions, Frozen Core d 
-76.135 310 

14 Functions d -76.148 067 -

35 Functions, Frozen Core c -76.278 910 -76.278 870 

35 Functions c -76.297 392 -76.297 354 

50 Functions, Frozen Coree - -76.284 370 

Correlation ·configurations b Percent of c 
Energy a Correlation 
Difference c2v c1 Valence/Total 

- 224 703 41.2 

- 451 1081 37.5 

0.018% 2032 7381 74.6 

0.015% 3238 11476 66.7 

- 4631 16471 75.8 

a The difference is relative to a conventional CI result and measures the effect of the singly 

substituted configurations on the doubly substituted configurations. It has been calculated by 

taking the difference of the Cl and SCEP results and giving that as a percentage of the 

correlation energy obtained in the CI calculation. 

b The number of configurations is the number required to obtain an equivalent Cl result. The 

()) 
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Table IV continued. 

c1 or no symmetry configurations are of interest since.the current SCEP program does not 

take advantage of symmetry. 

c The CI results for 35 basis functions and the estimates of total and valence correlation 

energy are from Rosenberg and Shavitt30 and the same set of functions and molecular geometry 

were used here. The 35 function set was completely uncontracted to yield the 50 function set. 

The SCF energy obtained with this basis was -76.052394 compared with the 35 function SCF energy 

of -76.050698. 

d A double zeta basis 31 was used with the geometry given by Bender and Schaefer~2 

,' 
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Table V. Fixed-~0 Methylene Calculations. 

a Basis Set - A 

SCF Energy -38.86153 -38.86153 -38.88979 -38.89239 

Sum of Pair Energies -0.09480 -0.08214 -0.13570 -0.14635 

Singles Contribution -0.00022 -0.00022 -0.00092 -0.00088 

Correlation Energy -0.09502 -0.08237 -0.13661 -0.14723 

Total Energy -38.95655 -38.94390 -39.02640 -39.03962 

a · 31 
Set A is a 14 basis function double zeta set of Dunning contracted 

functions. Set B used a much larger basis set of 32 contracted 

functions as in the calculations of Bender, Schaefer and Mclaughlin. 33 

Set C consisted of 42 functions. Huzinaga•s 34 (lOs 6p) carbon basis 

and (Ss) hydrogen basis were contracted to (6s 4p) and {3s), 

respectively, using Dunning•s scheme~5 A scale factor of 1.49 was 

used for hydrogen and a set of hydrogen p functions with exponent 1.0 

was added. Carbon d functions with exponents 1.3088 and 0.38768 were 

included as in the calculations of Bender et a1. 36 A 1.11 ~bond length 
0 and 102.4 bond angle were used. The last column, to our knowledge, 
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is the largest methylene calculation yet performed and gives a lower 

energy than the previous best singlet methylene energy of Pakiari et al~7 

b Frozen core (la 1 orbital). 



useful in the selection of basis sets. Indeed, if one finds a dominant 

correlation effect localized in one or two electron pairs, one could 

justifiably improve the· basis set with just a few additional functions 

selected for the one or two pairs. 

Methylene with 42 basis functions represented a fairly large 

calculation especially considering that it was carried out on a Harris 

100 mini-computer with 32K of 43-bit words. This calculation would 

require that over 2900 configurations be included in an equivalent 

CI calculation. The out-of-core storage and computer memory for such a 

CI calculation begin to touch the limits of the system, while SCEP 

handles the problem routinely. Indeed, remembering that symmetry has 

not yet been included into the SCEP calculational approach, this 

methylene calculation really involved over.6000 configurations (c1 
symmetry). To establish. further the potential for the new method, the 

water calculations with the 35 and 50 function sets were performed. 

Water has two more electrons than methylene and thus, the number of 

configurations in a singles and doubles configuration expansion is 

larger for a given size basis set than in methylene. The largest 

water calculation would require 4631 symmetry adapted configurations 

and over 16,000 in no symmetry. The apparent practical limits for CI 

on the Harris 100 are 48 functions and around 9000 configurations or 

determinants. Furthermore, the water calculation does not represent 

the SCEP limit, just the largest performed. With the current program 

version which keeps six square arrays in core at any one time, the 

basis function limit on the Harris 100 is 56. But the method only 

requires about 3~ arrays in core for the necessary manipulations and 
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therefore, the limit could be raised to 67. And of course, with only 

operators being kept in core, there is no limit on the number of 

configurations. The computation times for the water calculations 

with the large basis sets were about 2 hours for the first 35 function 

calculation, 4 hours for the next, and 6 hours for 50 functions. These 

were done with a still preliminary program version which had some 

notable inefficiencies that become important with increasing numbers 

of electrons. More recently, the 42 function methylene calculation 

was found to require 75 minutes and the 32 function calculation 35 

minutes. Relative to the other steps in the calculation, finding 

integrals and an SCF wavefunction, obtaining a correlated wavefunction 

with SCEP in these cases is not too expensive . 
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Convergence 

The efficiency of the method can be completely lost if convergence 

is poor. As a consequence, test calculations were made on several 

differing systems to test convergence. The first such system was the 

diatomic LiH. A basis set of 30 functions was used and it was found 

that five doubles iterations were required for convergence (to 10-6 au) 

in the fixed-~0 treatment as shown in Table VI. The calculation 

through this point required under nine minutes of execution time on the 

Harris 100 which is reasonable in comparison with SCF times (about 

one-fourth the time for a like number of iterations). Convergence in 

so few iterations in LiH is the result of the small interaction 

between pairs of electrons. The structure of the molecule may be 

described as Li+H- which corresponds to two spatially removed pairs. 

This small interaction means self-consistency is easy to achieve, 

especially with the optimally selected sets of external orbitals. 

Calculations on systems where electron pairs were interacting 

were not as successful. Simple water calculations required up to nine 

doubles iterations with any basis set; and double zeta calculations 

on acetylene and formaldehyde required even more. From this, several 

refinements in the iteration scheme were developed. The earliest such 

refinement involved using an estimate for the correlation energy in 

the (H-E) operator on the second iteration. On each iteration, the pair 

coefficient matrices are improved, but on the first iteration, the 

initial matrices are zero-valued so there is no correlation energy 

calculated in the first iteration. The energy for the wavefunction 
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Table VI. 

Doubles 
Iteration 

1c 

2 

3 

4 

5 

Singles 

6 

7 . 
' 

8 

9 

Singles 

10 

Convergence of the LiH Calculation~ In this calculation, 

the sets of doubles iterations have each been carried to 

the same convergence limit to show the nature of the 

iterative approach. However, the same final result is 

obtained by using larger limit for all but the last set(s) 

of iterations. Thus, with a limit of 10-3 au for the first 

set and 10-5 for the second set, several iterations can be 

saved. 

Energy Energy Change < wlw > v . b anance 

-7.983 770 8 1.0 0.022 614 4 

-8.038 043 5 -0.054 272 7 1. 022 614 0.000 411 7 

-8.038 885 5 -0.000 842 0 1. 022 778 0.000 013 4 

-8.038 901 9 -0.000 016 4 1.023 332 0.000 000 9 

-8.038 902 8 -0.000 000 9 1. 023 335 0.000 000 1 

-8.039 400 0 -0.000 497 2 

-8.039 404 8 -0.000 004 8 1.023 378 0.000 036 9 

-3.039 440 6 -0.000 035 8 1. 024 421 0.000 001 9 

-8.039 442 7 -0.000 002 1 1. 024 596 0.000 000 2 

-8.039 442 9 -0.000 000 2 1. 024 668 0.0 

-8.039 459 3 -0.000 016 4 

-8.039 457 7 +0.000 001 6 1. 024 685 0.000 003 8 
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Table VI continued. 

Doubles .Energy Energy Change <wll.P> Variance 
Iteration 

11 -8.039 461 1 -0.000 003 4 1.024 917 0.000 000 2 

12 -8.039 461 3 -0.000 000 2 1.024 971 0.0 

Singles -8.039 463 0 -0.000 001 7 

13 -8.039 463 0 0.0 1. 025 058 0.0 

a The LiH· basis set consisted of 30 uncontracted function. Huzinaga•s 34 

Li (lOs) and H (5s) sets were used along with a Li (4p) set of 

Williams38 and a set of H p functions with exponent of 1.0. The 

internuclear distance was 3.015 bohrs. 

b The variance is the sum, for each (P,ab), of the square of T~b divided 

by E=b It represents the sum of the squares of the changes in 

configuration expansion coefficients. 
c The first iteration requires substantially less computational effort 

than following iterations since fp = 0 and matrix elements are ca1culated 

only with w
0

. The energy through this iteration is just the SCF 

energy. 
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produced in the first iteration is only calculated in the second 

iteration. However, using the reference determinant's energy, E
0

, 

in constructing (H-E) pair operators would displace the operator by 

an amount equal to the correlation energy. Not surprisingly, then, 

it was found that convergence was aided by making a guess of the 

correlation energy during the first iteration and using this in 

(H-E) on the second. This guess is the energy improvement according 

to first order perturbation theory, i.e. the sum of -(T~b) 2/E~~ In 

practice, this estimate is most often too large and thus, is scaled 

down by a factor of 0.6. It is possible to include such an estimate 

in later iterations, but this was found to be of little value. 

The estimate of the correlation energy for use in the second 

iteration's set of pair operators could, of course, affect convergence 

by no more than one iteration, since after the second iteration a true 

variational correlation energy would have been calculated for use in 

(H-E). Thus, there were other problems in the iterative scheme and 

these seemed to be in the choice of the energy denominators, E~b 

In general, it seemed that these denominators were too small and 

actual oscillations in the value of <\lll\ll > could be seen between 

iterations. Two weighting approaches were tried, the first of which 

was to multiply the energy denominators by some factor greater than 1.0. 

However, while this did have an effect, it was not the best approach 

since some of the E~b were already large numbers and making them larger 

by the same factor as the samll E~b,s delayed convergence. Obviously, 

an additive constant might be more useful. Hence, tests were made 

where each energy denominator was increased by some constant, say 0.2. 
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This helped convergence in difficult cases and reduced to seven 

the number of iterations required for water. But in going from one 

molecule to another, it seemed that new experience was needed to 

select the best additive constant. 

After quite a few test cases, it became apparent that the best 

chaise of an additive constant was what the final correlation energy 

turned out to be. Looking at (91) shows that the E~b,s change from 

one iteration to the next only by the calculated correlation energy. 

Once again, on the first iteration this was zero making the E~b·s 

smaller than their final values. With this realization, the final 

working scheme is to use an additive constant on the first and second 

iterations roughly approximating the anticipated correlation energy. 

Then, on later iterations, this additive constant is scaled down 

proportionately to the correlation energy which is now being included 

in each E~b· With this technique, we have been able to achieve 

convergence of the doubles for all test cases in seven or fewer 

iterations (to 10-6 au). The water calculation shown in Table VII, 

for instance, required seven iterations and the 42 basis function 

methylene calculation mentioned above required six iterations. 

Table VI also shows convergence of the absorbed singles procedure 

for which LiH is not a very good case. Typically, though, the change 

in the orbitals in satisfying the Brueckner condition (see appendix) 

is small. Thus, the pair coefficient matrices are little changed 

after the orbitals are modified so that only two doubles iterations 

might then be required. The number of orbital improvements to reduce 

72 

... 



. . 

Table VII. Convergence in an H20 Calculation~ 

Doubles Energy <~PI Ill > Diagonal Pair Energiesb 

Iteration (2a 1 2a 1) (1b2 1b2) (3a 1 3a1) 

1 -76.050 698 1 1.0 0.0 0.0 0.0 

2 -76.263 503 4 1.080 820 -0.009 732 -0.020 573 -0.019 390 

3 -76.277 002 8 1. 051 512 -0.010 364 -0.022 042 -0.020 650 

4 -76.277 607 8 1. 057 179 -0.010 306 -0.022 028 -0.020 625 

5 -76.277 681 4 1.055 051 -0.010 342 -0.022 076 -0.020 663 

6 -76.277 686 9 1.055 595 -0.010 335 -0.022 069 -0.020 657 

7 -76.277 687 4 1.055 440 -0.010 338 . -0.022 073 -0.020 660 

Singles -76.278 869 8 

a 

{lb1 1b1) 

0.0 

-0.019 205 

-0.020 458 

-0.020 449 

-0.020 482 

-0.020 476 

-0.020 478 

b 
Fixed-.p

0 
calculation as in the third line of Table IV. 

The la 1 orbital was frozen to substitution so there were 16 pair~ with the occupancy 1ai2ailb~3ailb~. 
""-.1 
w 



the singles contribution to the total energy to less than 10-6 au is 

usually two, so that three sets of doubles iterations are needed. 

Realizing that full convergence is not necessary in the first two sets 

of doubles iterations, a calculation where the singly substituted 

configurations are fully absorbed should not require more than about 

twice the amount of computation needed to obtain the fixed-w result. . 0 

In Table VIII are given the iteration results for a calculation 

on the BH molecule. Unlike LiH, the electron pairs in BH are interacting 

so it is interesting to consider not only stability of the energy in the 

iterative improvement of the wavefunction, but also the stability of the 

wavefunction itself. The dipole moment provides some measure of the 

variations of the wavefunction since it is dependent on the first order 

·density matrix. As seen in Table VIII, changes in the dipole moment 

become small after the fifth iteration as do changes in the energy. 

Inclusion of the singly substituted configurations, of course, 

dramatically changes the first order reduced density matrix and thus, 

can be quite important in one electron properties such as the dipole 

moment. The important conclusion is that the iterative part of SCEP 

can converge to stable and hence, accurate properties which is not 

always the case even in one-configuration SCF. 
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Table VIII. Convergence in a Fixed-w
0 

BH Calculation~ 

Doubles Iteration Energy Dipole Moment (Debyes) 

1b -25.108 641 1.6218 

2 -25.201 502 1.6018 

3 -25.204 211 1.6195 

4 -25.204 298 1. 6146 

5 -25.204 312 1.6180 

6 -25.204 314 1. 6173 

7 -25.204 315 1. 6178 

Singles -25.205 002 1.4425 

a The internuclear difference was 2.33 bohrs and a basis set of 19 

functions 39. was used. 
b The first itereation energy and dipole moment are the SCF results. 
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The Be4 Cluster 

Th . f t t d. 40-42 b 11 . t 1 t h e a1m o recen s u 1es on ery 1um a om c us ers as 

been to provide an understanding of catalysis at a molecular level. 

An important consideration in such studies is the rate at which the 

properties of the clusters approach those of the bulk metal surface. 

One measure of how well small clusters model a large surface is the 

difference between the dissociation energy per atom and the atomic 

cohesive energy of the bulk. SCF wavefunctions have been used almost 

exclusively to study the chemisorption of atomic hydrogen on beryllium 

clusters42 since correlated wavefunctions for system.s up to the largest 

studied, Be36 , would be immensely difficult simply because of the size 

of the problem. However, it has been predicted41 that the SCF 

wavefunctions may be quite reasonable for the properties being studied. 

In the case of the cluster dissociation energy one might at first 

expect that correlation effects would increase the dissociation energy 

since there is greater electron correlation in the cluster than in the 

separated atoms: However, a one-configuration SCF wavefunction provides 

a balancing effect since in the dissociated limit it allows only 1s22s2 

atomic occupancies. In the cluster, p functions contribute substantially 

yielding roughly sp hybridization. The p orbitals in the Be atom are 

very near in energy with the valence s orbitals and thus, a two

configuration wavefunction is most appropriate for the atom~3-44 

Restricting the atom's wavefunction to one configuration may balance 

the neglect of correlation effects in the cluster. 

Since Be4 was previously used to study basis set effects41 in Ben 
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clusters, it was an obvious choice for studying correlation effects 

with SCEP to check the assertion that SCF wavefunctions adequately, 

if not fortuitously, can give correct cluster dissociation energies. 

A contracted basis set (9s/Ss) of gaussian functions optimized for 

the atom by van Duijneveldt45 was used along with a (4p/2p) basis of 
46 Yarkony et ~· In Table IX are given the results of the calculations. 

The internuclear separation was optimized both for SCF and SCEP. In 

addition to these calculations, SCEP/CEPA-2 calculations were 

performed. CEPA-2 (Coupled Electron Pair Approximation47 ) is a 

non-variational treatment which approximately includes effects of 

triply and quadruply substituted configurations. CEPA-2 calculations 

using the SCEP method require no more effort than variational SCEP 

calcu1ations~8 The results given in Table IX required about seven 

hours each and are equivalent to CI expansion including up to several 

thousand configurations. Except for CEPA-2 calculations, convergence 

was achieved in seven iterations. The SCF dissociation energy is only 

1.6 kcals below the SCEP energy and the CEPA-2 results suggest that 

inclusion of higher order substituted configurations would slightly 

lower the SCEP result, because of the mare accurate description at the 

dissociation limit, making it even closer to the SCF value. 

Given in Table X are selected pair correlation energies for the 

tetrahedral Be4 cluster. The interpretative value of pair energies is 

seen by the change in the correlation contribution of electron pairs 

including the 2a 1 electrons. Correlation effects are not quite as 

important in these orbitals because of the sp hybridization in the 
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Table IX. Tetrahedral Be4. Energies are given in au unless otherwise indicated. 

Geometry RBe-Be 

SCF Optimum 2.096 R 

SCEP Optimum 2.114 ft 

Separated Atoms oo 

6E (Be4 + 4Be) 
in kcal/mole 

E(SCF) 

-58.34322 

-58.34310 

-58.28915 

33.9 

E(SCEP) 

-58.48923 

-58.48934 

-58.43270 

35.5 

Correlation 
Energy 

-0.14601 

-0.14624 

-0.14355 

E(CEPA) 

-58.51884 

-58.46619 

33.0 

........ 
CX> 



. · 

Table X.· Pair energies, Ep, in a.u. for Be4 at its 

determined equilibrium geometry and separated 

atom limit. 

Pair = (i j' R = 2.114 Angstroms 
b 

R = 100 3ohrs 

2a1 2a1 1 -0.0059 -0.0357 

2a1 2t2 1 -0.0066 0.0 

2a1 2t2 -1 -0.0036 0.0 

2t2 2t2 1 -0.0164 -0.0357 

Singles Contribution -0.0021 -0.0009 

Total Correlation Energy -0.1463 -0.1435 

a 

b 

These pair energies are the sum over the three components of 

the degenerate t orbitals divided by three to give the energy 

per actual pair of electrons, the first pair excepted, of course • 

Localized orbitals were used at 100 bohrs (see ref. 48). 
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clu~ter. In the separated atoms, correlation effects from 2a1 
electrons increase to that of the now degenerate t orbital electrons. 

Hence the balancing of correlation effects which makes SCF a 

reasonable way to study the Ben clusters is ·seen to be due to a 

balancing of correlation effects from different electron pairs. 
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Allene 

Allene is somewhat important as a representative calculation for 

SCEP because it is of the size of other small organic molecules which 

we have studied11 ' 49- 51 exclusively with SCF methods, but where 

correlation effects are certainly important in placing excited states 

energetically accurately and describing them structurally. The problem 

of interest in allene was the internal rotation potential for the 

ground state since previous SCF studies52- 53 have predicted that 

the o2d symmetry closed shell ground state correlates with an open 

shell o2h planar state and thus that the o2h closed shell is an 

excited state. A double-zeta basis set of Dunning31 contracted 

gaussian functions were used and geometries for closed shell and planar 

open shell states were optimized with SCF. SCEP calculations were then 

performed for the planar and non-planar closed shell states. It was 

thought that correlation effects in the planar form, if greater than 

the non-planar form, could place the closed shell state as the lowest 

state (see Figure 4). However, as the results in Table XI show, 

correlation effects do just the reverse: the separation between the 

two closed shells is greater than predicted by SCF by up to 10%. To 

understand this, increasing numbers of lower-lying electrons were 

frozen to substitution in the calculations in Table XI. Then comparing 

pair energies shows that the lb3g electrons in the planar form 

contribute much less correlation energy than the 2e (D2d) electrons. 

The 2e orbital correlates by symmetry with a lb3g and a lb2u planar 

orbitals. The lb2u electrons do not change substantially in their 
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Figure 4. 

Qualitative representation of the correlation of the lowest 

electronic states between the planar (D2h) and non-planar (D2d) 

structures of allene. The dotted line shows the avoided crossing. 
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Table XI. Correlation Effects in Allene Closed Shell States. 

Frozen Electron 1 A1 Energy (au) 

Orbitalsa Pairsa 02d - 90 
0 

SCF -115.8303 

SCEP 9 4 -115.8884 

SCEP 7 16 -115;9394 

SCEP 6 25 -115.9739 

1A Energy (au) 
g 

o2h - Planar 

-115.7195 

-115.7651 

-115.8165 

-115.8524 

Difference (kcal) 

69.5 

77.4 

77.1 

76.2 

a Orbitals were frozen to substitution in SCEP on the basis of orbital energies. In the o2d 

structure, the degenerate e orbitals have been counted as two to compare with the o2h 

wavefunctions where no orbital is occupied by more than two electrons. The number of pairs is 

the number from which substitutions have been included. 

" 

(X) 
.p. 



correlation contribution. This probably suggests a more delocalized 

structure for the lb39 orbital than the 2e or lb2u orbitals. 54 
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Summary and Outlook 

The method of.self-consistent electron pairs represents a 

new and certainly clever approach to the electron correlation 

problem. Constructing an operator formalism which makes possible 

pair by pair improvement in the wavefunction is in itself quite nice. 

But the SCEP approach seems truly impressive because it produces 

operators which collect up all the information contained in a variety 

of types of Hamiltonian matrix elements and is used without relying 

on any complicated logic scheme to handle all the types of elements. 

Furthermore, SCEP is general enough to work with non-orthogonal basis 

sets and even non-orthogonal sets of externals. All this is made 

possible by restricting the wavefunction to a configuration space of 

single and double substitutions, but within this restriction, SCEP 

poses as a radically new concept in electronic structure. 

The work described here is primarily implementation of the theory 

along with some refinements, computational tests using the method and 
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the demonstration of SCEP as a viable approach. What has been presented, 

then, are the detailed expressions used in actually working with 

self-consistent electron pairs and, where derivations have not been 

given, representative examples of how the SCEP operator formalism 

functions. Finally, a careful breakdown of the operations at a level 

important to computation was develope~ and then calculations on real 

chemical systems were given. The intended conclusions to be drawn from 

this are the following advantages and limitations of SCEP. 



1. The wavefunction is given directly in terms of basis functions 

rather than orbitals, as in CI. This has important implications, 

the most obvious of \'ihich is that an explicit transformation of 

the two-electron integrals from basis functions to orbitals, a 

potentially expensive operati.on, is avoided. Furthermore, the 

representation of the wavefunction by external pair coefficient 

matrices allows one to improve the orbitals in any desired way, 

or even go to a different geometry with different orbitals, with 

less than the expense of a whole new calculation, as would be the 

case for CI. All that is required is to rotate trivially the 

coefficient matrices and begin the iterations. The representation 

also makes calculation of the first order reduced density matrix 

quite easy,and as Meyer21 has shown, the second order reduced 

density matrix can also be obtianed directly. As a result, the 

highly effective Gradient Method of Pulay55 which requires the 

second order density matrix can be applied to a correlated 

wavefunction. 

2. Pair contributions to the total energy are conveniently obtained 

in SCEP and while this is not unique to. SCEP, the pair correlation 

energies are of definite interpretative value. 

3. Different sets of external orbitals can be used for different 

internal pairs and these externals can be chosen to improve 

convergence, which is important to any iterative method. 

4. The amount of computer core required for an SCEP calculation is 
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small compared to that required for an equivalent CI calculation. 

This is, of course, a direct result of the operator formulation of 

SCEP. At any one time in an SCEP calculation all the required 

information is contained in a few small arrays, either operators 

or coefficient matrices. Thus, the basis function limit for a 

given amount of computer core can be quite large, even approaching 

the limits of one-configuration SCF calculations (which also 

require just a few arrays). Quite important is that an explicit 

configuration list is not used in SCEP; the singly and doubly 

substituted configurations are implicitly defined by the method. 

This has an attractive consequence: there is no configuration 

limit in SCEP. That is, if some number of singles and doubles 

configurations can· be defined for a given system with a certain 

number of basis functions, then the calculation can be performed 

spanning the whole space of the set of configurations provided 

only that the number of basis functions is within the computer 

core imposed limit. (For the Harris 100 mini-computer, the programs• 

current basis function limit is 56 with 67 possible. The maximum 

number of configurations for a given basis set size would occur 

when the number of occupied orbitals is about half the number of 

functions. Thus, it would be possible with this small scale 

computer system to do calculations including over 600,000 

configurations with the current function limit and over one 

million with a function limit of 67. Of course, external storage 

of operators could at some point limit this.) In general, this can 

not be said of any CI method. 
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5. The method shows computational efficiency and the increase in 

effort for larger basis sets,and hence, more accurate descriptions, 

is less than conventional CI. 

6. The method•s notable limitations are that it is defined for 

singly and doubly substituted configurations and is restricted to 

systems dominated by a closed shell determinant. 

The first five points indicate that SCEP is an important method 

and that future theoretical work is needed to overcome the limitations 

in the last point. Features which can be included in the near term are 

the incorporation of symmetry transformations which would reduce the 

computational effort in symmetrical systems and integrating the Gradient 

Method with SCEP. Overcoming SCEP 1 S limitations is far from impossible. 

All that is needed to describe systems dominated by open-shell 

configurations is a set of somewhat more complicated operators. One 

could also extend the operator formalism so as to include single and 

double substitutions from more than one reference configuration and 

this would mean that the effects of higher order substituted 

configurations could be accounted for accurately. Therefore, it seems 

that SCEP is a highly workable, efficient approach to the correlation 

problem which has closed shells as its immediate area of application 

and its extension to a larger class of systems anticipated. 
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Appendix: Brillouin and Brueckner Conditions 

The many-body theory developed by Brueckner23- 26 ~ 56 - 58 leads 

to a criterion, termed the Brueckner condition~ for selecting an 

orbital basis for a wavefunction expanded over configurations and 

determined variationally or perturbatively. The Brueckner condition 

has a very simple form: 

c~ = o , (Al) 

where C~ is the expansion coefficient of the singly substituted 

configuration w~- The intention of the Brueckner condition is that 

selecting orbitals where the single substitutions vanish will yield 

the lowest~ or nearly lowest energy. However, Nesbet59 tends to 

refute this notion, though isolating cases where using the Brueckner 

condition can yield the lowest energy wavefunction. But~ as Nesbet 

has carefully demonstrated, the Brueckner condition can not, in general, 

be proven to be equivalent with the condition for the minimization of 

'the energy of the wavefunction by variation of the orbitals, and therefore, 

the usefulness of the Brueckner condition may need to be decided rather 

empirically. Since Nesbet's work there has been no abundance of 

molecular calculations which sought to determine Brueckner orbitals. 

Indeed, it is quite likely that work discussed here includes the first 

calculations where the Brueckner condition was fully satisfied in a 

molecular system. The ease with which orbitals may be modified in SCEP 

suggested some examination of the Brueckner condition. 

For a given wavefunction ~ the condition for minimization of the 
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energy is that the change in energy with first order variations in 

the wavefunction is zero. Let us define an incremental change in 

the wavefunction using a parameter, E. 

6~ = ~· oE (A2) 

where ~· is orthogonal with ~. Then using the variational energy 

expression for a normalized wavefunction gives 

E + 6E = < ~ + 6~1 H I~ + 61/; >/< ~ + 6~1~ + 6~> (A3) 

6E = 2 < o~l H 1~ > + < 6~1 H 16~ > - E<o~l6l/J>/(l + <oi)Ji6~>) 

(A4) 
Thus, to minimize the total energy, dE/dE = 0. 

dE/ de: = 2 < ~I I H I~ > = 0 (AS) 

An equivalent approach was given in (59) to (62} and the general 

result where ~· is not restricted to be orthogonal wi·th ~ is 

< I)J'IH - El~ > = 0 (A6) 

If ~ is a configuration expansion the variations 6~ can be 

variations in the expansion coefficients, as in (59), or variations in 

the orbitals. Assuming that the expansion coefficients are optimally 

determined or at least fixed, the variations in the orbitals have the 

following linked form. 

6¢ = -<P· oe: a , (A?) 

In each configuration I)JL we make variations using (A7). 
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(A8) 

where ~~,a is the one or two configurations formed by replacing the 

ith orbital in the configuration with the ath orbital or by replacing 

the ath with the ;th. Simultaneous replacement of two orbitals is 

discarded as a second order variation. 

If the wavefunction under consideration has the trivial form that 

it is restricted to one configuration, ~0 , then (A6) with the variations 

given by (A7) reduces to 

<~~I H I~ > = 0 
1 0 

(A9) 

This is Brillouin's theorem6 which shows that the Hartree-Fock energy 

is· stcibl~ with respect to first order variations in the orbitals~ 

In light of the discussion of SCF in the introduction, this explains 

why restricting a wavefunction to one configuration is not a completely 

bad approximation since the best one configuration wavefunction has 

zero interaction with the first level of substituted configurations. 

In addition, (A9) points out thatas an alternative to solving the 

Hartree-Fock self-consistent field problem, one could achieve the same 

result, though with a different set of orbitals, by diagonalizing a CI 

matrix that included the reference configuration and the single 

substitutions. 

Brueckner theory attempts to perform more ambitiously the same 

analysis but with a more complex wavefunction, typically, one including 

double substitutions. Let us take the following general configuration 

· wavefunction, 
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1jJ = C 1jJ + 2: CL1jJL o o L 
(AlO) 

Applying (A6) yields 

(All) 

Condition (All) is a rigorous statement of the condition for the best 

choice of orbitals in any type of configuration expansion. Brueckner•s 

condition, on the other hand, is that the singly substituted 

configurations will have a zero Hamiltonian matrix element with the 

total wavefunction and thus, will have a zero expansion coefficient. 

But this clearly amounts to approximating the summation term in (All) 

as zero. As Nesbet has indicated~9 this might serve as a reasonable 

approximation since most of the neglected terms depend quadratically 

on the CL coefficients. It should also be noticed that assuming 

the reference configuration dominates, (All) will look approximately 

like the Brillouin condition. Hence, it has been believed that 

Brueckner orbitals are close to Hartree-Fock orbitals~0 

Using the absorbed singles treatment of SCEP, the Brueckner orbitals 

for methylene with the 42 basis function set were found. As shown in 

Tab 1 e X II, the Brueckner orb ita 1 s give a higher energy result than even 

Hartree-Fock orbitals. This, of course, is not always the case because 

the Brueckner orbitals for LiH as shown in Table VI improve the energy 

relative to using Hartree-Fock orbitals. What is important is that 

the Brueckner condition seems to be too approximate to apply with 
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certainty. One observation made in looking at Brueckner condition results 

is that it is a more dependable condition for selecting the orbitals 



for an expansion which includes doubles but not the singles. That is, 

the Brueckner orbital total energy result is often lower than the energy 

obtained using Hartree-Fock orbitals in an expansion restricted to the 

reference configuration and double substitutions. 
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The difficulty with the Brueckner condition is that for molecular 

systems it can easily become a bad approximation to (All) since it is not 

even correct to first order in the CL coefficients. 61 The correct 

condition shows that the singles do not vanish independently. As an 

experiment, the singles were forced to become important using the 

following condition in the hope of better satisfying the energy 

stability condition. 

<w~IH - Eiw + C w > = 0 
1 0 0 

(A12) 

With w corresponding to the wavefunction which includes both singly 

and doubly substituted configurations, the improvement in orbitals 

indicated by (Al2) is 

ct>~ = cp • .+Ji; "ct> (C~ - <i IF la>)/E~ (Al3) 
1 1 ~a 1 o 1 

This can then be used in place of (110). Note that in (A13), C
0 

has 

been approximated as 1 which is reasonable if the reference configuration 

dominates. Test calculations were performed with this new orbital 

improvement scheme on water and the results are given in Table XIII. It 

is found that after a fe\v iterations using (Al3), a set of orbitals 

was found that give a lower energy wavefunction than Brueckner or 

Hartree-Fock orbitals. Extensive application of this new condition 

for choosing orbitals is not anticipated since it is a 

difficult condition to apply. What is interesting is that it suggests 



Table XII. Brueckner Orbitals for Methylene. Basis Set C as in 

Table V was used and the lowest occupied orbital was 

frozen to substitution. 

Hartree-Fock Orbitals Brueckner Orbitals 

Reference Determinant Energy -38.892 387 -38.891 365 

Sum of Pair Energies -0.146 353 -0.148 137 

Tota 1 Energy -38.039 621 -39.039 501 
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Table XIII. Improved Orbitals for Water. The 14 function double 

Reference 

zeta basis set, as in Table IV results, was used and 

the lowest occupied orbital was frozen to substitution. 

Hartree-Fock 
Orbitals 

-76.009 294 

Brueckner 
Orbitals 

-76.008 468 

Improved 
Orbitals 

-76.005 460 
Determinant Energy 

Sum of Pair -0.125 228 -0.126 533 -0.122 364 
Energies 

Singles -0.000 788 -0.009 183 
Contribution 

Total Energy -76.135 310 -76.135 001 -76.135 591 
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that better approximations to (All) than the Brueckner condition 

might be found. Furthermore, in the water calculation, using (Al3) 

caused the singly substituted configurations to become more 

important in the wavefunction, the opposite of the Breuckner 

condition's result. 
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Supplementary Tables 

In using or understanding the SCEP computer program, some 

additional information may be helpful. Specifically, Table XIV 

gives an integral identifying scheme used in the POLYATOM 62 

program package. This scheme, which attaches an extra index to 

each integral label, has been found to be quite helpful in 

efficiently processing the two-electron integrals list. Table XV 

gives a complete breakdown of the constru-ction of F QP operators 

for all possible cases. This may be useful in some applications 

where storage of the rather long list of FQP operators is 

undesirable and one chooses instead to construct each operator every 

time it is needed. 
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Table XIV. The MU Indexing Scheme for Two-Electron Integrals. 

MU Index Label 

1 (iilii) 

2 {ijlij) i 

3 (;; 1 kk) i 

4 {ii lil) i 

5 (iilkl) i 

6 (ijljj) i 

7 {ijlkk) i 

> j 

> k 

> 1 

> k > 1 

> j 

> j > k 

Number of 
Integral sa 

1 

4 

2 

4 

4 

4 

4 

a Since only unique integrals need to be stored, each label 

represents all integrals which are equivalent by permutation 

of the indices, e.g. (12134) = (21134) = (12143) = (34112), etc. 
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Table XV. Explicit Construction of FQP Operators. 

p Q 1 
1 i 1 1 i i 1 F + K i i - 2J i i - s { < i I F I i > - ~2 < i I K i i I i >) 

0 0 

2 i i 1 i j 1 2-!2(Kij ~ 2Jijj_ S( < iiF
0

Ij >-8-~< iiK11 U >) 

3 i i 1 i j -1 -(3 ~/2) Kij 

4 i i 1 j j 1 ~S<jiKiijj > 

5 i i 1 j k 1 S<:jiKiilk > 

6 i i 1 j k -1 0 

7 i j 1 i j 1 F
0 

+ ~(K11 +Kjj)-Jii_Jjj_S[<ijF0Ii >+<jiF
0

Ij >-~(<jiKijli >+<iiKij_lj >}] 

8 i j 1 i j -1 ( 3 ~I 2) ( K i i - Kj j) 

9 i j 1 i k 1 ~Kj k - Jj k - s [ < j IF I k > - !z{ < k I K i j I i > + < i I K i j I k >)] 
0 

10 i j 1 i k -1 -(3 ~/2) Kjk 

...... 
0 
0 

-.:, . •' 



_,_ , •1.. 

11 i j 1 j k 1 

12 i j 1 j k -1 

13 i j 1 k 1 1 

14 i j 1 k 1 -1 

15 i j -1 i j -1 

16 i j -1 i k -1 

17 i j -1 j k -1 

18 i j -1 k 1 -1 

19 i j 1 k j 1 

20 i j 1 k j -1 

21 i j -1 k j -1 

., 

!2K i k - J i k - s [ < i I F I k > - ~ ( < k I K i j I j > + < j I K i j I k > ) 1 
0 

- ( 3~2 I 2 ) K i k 

!2S(<11Kijl"k > + <kiKijll >) 

0 

F + (312)(K11+Kjj)-Jii_Jjj_S[< iiF li >+<jiF lj >-~(< iiKijlj >-<jiKijli >)] 
0 0 0 

( 312) Kj k - Jj k -~S ( < j I F I k > - < i I K i j I k > + < k I K i j I i >) 
0 

(312)Kik + Jik +~S(< iiF
0

Ik >+ < kiKijlj >- < jiKijlk >) 

-~S ( < 11 K i j I k > - < k I K i j 11 >) 

~K i k - J 1 k -. ~s ( < i 1 F 1 k > - < j 1 K 1 j 1 k > - < k 1 K 1 j I k > ) 
0 

(3-~12) Kik 

( 3 I 2 ) K i k - J i k - !2S ( < i I F 0 I k > - < j I K i j I k > + . < k I K i j I j > ) 

I-' 
0 
I-' 



Notation 

Wherever possible the following were used as notation 

conventions. 

MATRICES 

C coefficient matrix 

D density matrix 

F Fock or Fock-like operator 

G pair operator 

H Hamiltonian operator 

I the one-electron part of the Hamiltonian 

operator 

J Coulomb operator 

K . exchange operator 

R rotation operator 

S overlap matrix {operator) 

T operator transformed to some final basis 

U unitary transformation 

W orbital eigenvector array 

[A] .. or A .. 
1J 1J 

the ij element of the array A 

A ij or AP the ij or P particular matrix among some 

set of similar matrices, A 
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INDICES 

NUMBERS 

SYMBOLS 

i j k 1 

a b c d 

a. s y 0 ll \) 

r s t u v w 

I i > 

n, 

p Q 

p q 

I 

K 

L 

M 

N 

m 

Ia > 

I i > a. 

(ijlkl) 

(a.Biyo) 

occupied orbitals; also, specific 

configurations or determinants 

virtual or external orbitals 

basis functions 

summation indices 

electron pairs 

spin coupling 

the number of two-electron integrals 

the number of basis functions 

the numbei of nuclear centers 

the number of electron pairs 

the number of occupied orbitals 

iteration numbers 

orbital coefficient vectors or orbitals 

the a.th coefficient in the basis set 

expansion of the ;th orbital 

two-electron integrals in the orbital 

basis 

two-electron integrals over basis 

functions 
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ENERGY VALUES 

~ orbitals (function form) 

x · basis functions 

¢ configurations or determinants 

w wavefunction or wavefunction components 

At adjoint of A 

A refers to external orbitals when A 

would refer to internal orbitals 

p density functions 

E total energy 

E
0 

reference configuration energy 

£p pair correlation energy 
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