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* THE PREDICTION OF CORE-LEVEL BINDING-ENERGY SHIFTS FROM CNDO MOLECULAR ORBITALS 

D. W. DAVIS and D. A. SHIRLEY 

Department of Chemistry and Lawrence Berkeley Laboratory, University of California, 
Berkeley, California 94720 (U.S.A.) 

ABSTRACT 

A theory is described for calculating core-level binding-energy shifts 

with potential models that employ "intermediate-level" molecular-orbital wave-

functions. The relaxation-energy term in atomic core-level binding energies 

.is considered first. The ground-state potential model (GPM) and relaxation-

potential model (RPM) are developed for calculating core-level binding energy 

shifts in molecules from CNDO wavefunctions. It is shown that neglect of 

certain two- and three-center integrals in these models limits their accuracy 

when unlike molecules are compared. The models are modified by calculating 

( r -l ) integrals, to be sensitive to bond directions of p orbitals. The 

pp' modification, in which a subset of the neglected integrals is retained 

to recover invariance to coordinate transformations, is thereby necessitated. 

The GPM approach yields shifts in very good agreement with experiment when 

comparisons are restricted to similar molecules. The RPM version gives better 

agreement especially over wider classes of molecules. It also provides 

relaxation energies VR that can be combined with ab initio orbital energies 

to give binding energies. Several applications of these potential models 

are discussed. 

* Work performed under the auspices of the U. S. Atomic Energy Commission. 
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INTRODUCTION 

Chemical shifts in core-level binding energies (ESGA shifts) have 

. . . 1 
received a great deal of attention recently • Many workers have independently 

contributed theoretical insights into the origin of these shifts. It is now .. 
clear both that the shifts can be rather well understood at several levels 

of mathematical sophistication and that they are quite useful in interpreting 

chemical properties. As yet, however, the theoretical literature is rather 

fragmentary, with each contribution tending to emphasize a single aspect 

of the theory of core-level binding-energy shifts. The purpose of this paper 

is to develop part of the theory systematically in a way that will interrelate 

the several approximations that are commonly made in interpreting ESCA shifts. 

We do not presume to give a rigorous presentation. Instead, we aim rather 

directly toward simple models that any chemist can use to interpret shifts 

in terms of chemically useful concepts such as charge distributions in molecules. 

It is our hope that this paper will serve both as a badly-needed introduction 

to the theory and as a useful guide for anyone who wishes to use core level 

shifts for chemical purposes. 

The format of this paper is the development of core-level shift theory 

in atoms and molecules from the basic photoemission relation K = hv + Ei - Ef 

through several approximations to the potential models that can be used directly 

in "atomic-charge" analyses, in which the charge distributions in molecules 

are derived from core-level shifts. Many theoretical subleties are omitted, 

but the physical significance of the important approximations is discussed. 

There is, in our opinion, a rather exclusive relationship between the rigor 

of a given approach to binding-energy shift theory and the breadth of 

applicability of that approach. It is important to establish whether in this 
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hierarchy of theories there exists a range wherein the theories are both 

tractable, in the sense of being readily usable by anyone measuring shifts, 

and also sufficiently reliable and quantitative to yield really incisive chemical 

information. We believe that such a range does exist and that "intermediate 

level" molecular-orbital theories such as CNDO lie in this rangeo This is a 

central theme of the paper, and much of the early development is aimed toward 

the goal of applying CNDO theory to core-level shifts. 

Core-hole states and the relaxation energy in atoms are discussed in the 

next section. A method is given for approximating the relaxation energy in atoms. 

Potential models are introduced in the following sectiOn and the GPM (ground state 

potential) approximation is developed. The relaxation potential model (RPM) is 

then discussed. Typical applications and a summary of the model are given in 

the last section. 

CORE HOLE STATES AND APPROXIMATIONS 

In the x-ray photoemission of a core electron from orbital k of a 

molecule M, the-simplest process that can occur is a transition to an ion 

M(k) + in a 11 rE.laxed11 core hole final state: 

-+ 
photon + M -+ M(k) + e (1) 

Here the ion M{k)+ differs from the molecule M in two ways: an electron is 

missing from orbital k, and the passive orbitals have relaxed adiabatically 

to adjust to this modification in the molecular potential. Other processes 

are also possible. These include the "shake-up" and "shake-off" transitions, 

in which (respectively) more highly excited or doubly ionized final states 
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are reached, with the additional excitation energy being deducted from the 

photoelectron's kinetic energy: 

photon + M - +* 
-+ M(k) + e (shake-up) (2a) 

photon+ M (shake-off) ( 2b) 

These processes can appear as satellites, at lower kinetic energies, on the 

main photoemission line arising from the process in Equation (1). We will 

not discuss these two-electron processes but will be concerned only with the 

photoemission channel that reaches the relaxed core-hole final state. 

In considering the relaxation accompanying photoemission it is useful 

to define a hypothetical "unrelaxed" ionic final state IM(k)~ ) in which 

an electron has been removed from the core level k of the molecule M without 

any relaxation in the passive orbitals. This state does not exist in nature. 

2 Its virtue is that, according to Koopmans' Theorem the binding energy for 

the hypothetical process 

M -+ 
-+ 

M(k)KT + e 

is exactly -E (k), where E (k) is the orbital energy of the orbital k that 

(3) 

would be obtained from a Hartree-Fock calculation on M. 
0 3 

Manne and Aberg showed 

that the binding energy EB in the Hartree-Fock approximation is related to 

E by a sum rule 

-dk) = EB(k) + L i<M~IM(k)~ > 1
2 (E~- EB(k)) 

i 

(4) 
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where the sum is taken over all the excited states i .in the photoelectron 

spectrum. Thus the "orbital" binding energy -e: is the weighted average energy 

for these excited states plus the relaxed final state M(k)+. Since E~ > EB(k) 

for all i, it follows that -e: > ~(k). This is of course expected, as 

relaxation of the passive orbitals toward the hole should lower the energy. 

Binding energies are calculated in two ways. The first is suggested 

by Equation ( l). The corresponding energy-balance equation can be rearranged 

to 

( 5) 

where K is the photoelectron's kinetic energy. This equation suggests that 

EB(k) could be obtained as the difference between the calculated total energy 

-+ 
of the initial state, E(M) and that of the final state, E[M(k) ]. Although 

there are some problems associated with using variational methods on such 

highly-excited states, this approach works rather well in practice. Bagus 

demonstrated its applicability for calculating binding energies of core levels 

in atoms 4, and Schwartz extended it to molecules 5• Recently Moser, ~~.6 

have refined this method to include correlation and have obtained excellent 

agreement with experiment for the Ne(ls) binding energy. While this approach 

is thus capable of yielding accurate results for small systems, the feasibility 

of applying it to even medium-sized molecules is clearly limited at this time, 

and we shall not discuss it further. 

The second way of calculating binding energies is to start from the 

orbital energy -e: and correct for the relaxation energy ER of the passive 

orbitals, 
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(6) 

This method has an advantage in principle (provided that ER can somehow be 

estimated with reasonable accuracy) because a single SCF calculation of the 

molecular ground state yields orbital energies £ for all the one-electron 

orbitals of the, molecule. Hedin and Johansson7 have shown how this approach 

is related to direct hole-state calculations. They found 

~i) = ~ < i I v* - vii > (7) 

to a good approximation, where E~i) is the relaxation energy accompanying photo­

emission from orbital I i ) , while v* and V are respectively the "Fock potential" 

operators for the ith orbital in the relaxed hole state and in the ground state. 

Specifically, 

< i I vii > = 2;: (2Jij- Kij) = / L {2 < i(~) j (v) lr~~~ i(~) j (v) > 

J J 

( 8) 

where J. j and K; . are two-electron Coulomb and exchange integrals, r is an 
1 1J J..!V . 

interelectronic distance, i(JJ) means electron J..l in orbital i, etc., and the 

sum is taken over all occupied orbitals j. The physical meaning of Equations 

(7) and (8) is that the passive orbitals j collapse adiabatically "toward" 

the hole in the active orbital i during photoemission. Since each orbital j 

changes slightly, the relaxation energy is made up of differences between 

Coulomb and exchange integrals before and after relaxation, 
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* ~Jij = Jij Jo 0 

lJ 

* ( 9) ~Kij = Kij Ko o 
lJ 

Equations (7-9) are useful in understanding the origin of the relaxation energy, 

but they offer no immediate advantage in calculating binding energies, because 

they require hole-state wavefunctionso If one is going to carry out hole-state 

calculations, one may as well deduce~ from the total energies. However, the 

Hedin-Johansson model is a very useful starting point for further approximations, 

as discussed below. 

In free atoms, relaxation toward holes can be treated in three partso If 

the hole is in the shell with principal quantum number n, there is 11 inner-shell 

relaxation", by electrons in orbitals with n' < n, "intrashell relaxation", n' = n, 

and "outer shell relaxation", n' > n. Hedin and Johansson found that inner-shell 

relaxation is relatively very small (rv 10-2 eV). Intra-shell relaxation is somewhat 

larger. Outer-shell relaxation is by far the largest of the three in true 

core levels, for which there are a reasonably large number of electrons 

present in outer shells, with n' >no This term' can also be quite accurately 

estimated by a simple model8 that employs only ground-state two-electron 

atomic integrals, which have been calculated by Mann9. In this model it is 

recognized that electrons in the n shell shield electrons in the n' > n 

shell from the nucleus very effectively. Thus the adiabatically relaxed n' 

orbital in a hole state ion A(Z,;)+ is well simulated by the n' orbital in the 

ground state of the atom of next highest atomic number, A(Z + 1). The quantities 

required in Equation (9) are therefore approximated by 
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/1J.j(z)=:J .. (Z + 1)- J.j(Z) 
l. l.J l. 

Two objections to this approach may be made. First, the shielding 

of then' shellby the n shell is presumably not complete. Second, the 

.·- + · .. 
n orbital is different in the hole state ion A(Z,n) than in the atom 

A( Z + 1); this affects the two-electron integrals. The first objection is 

partially answered by the success of this "equivalent cores" approach in 

predicting binding ·energies8. It is discussed further below. The second 

objection is easily answered. It turns out that the extra-atomic contribution 

to ~ is very insensitive to the form of the hole-state orbital. This is 

convincingly demonstrated by comparing the values of 

(.....L) 

rn' Z+l 

and 

<1) 
r Z 

. . 0 
The reason for this comparison is that the Slater integral F accounts for 

(11) 

almost all (> 95%) of the outer-shell relaxation energy. If the orbital n is 

shrunk to a point at the nucleus, we have 

Lim 
n -+ point 

0 1 
F (nn') = <-> 

rn, 
(12) 

Thus a comparison of 11 ( 1/rn') and !1F0 (nn') gives an indication of how much 

ER would change if orbital n were altered in this drastic way. We have made 
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such a comparison for a number of cases. The results for argon, which are 

typical, are summarized in Table 1. In addition to estimates of ER for the 

ls, 2s, and 2p electrons from~ (1/r,), and ~F0 (nn')--the two quantities 
n 

that are directly comparable--we have also listed estimates from the full 

8 
"equivalent cores" treatment , labeled ~(F,G), from Hartree-Fock hole-state 

calculations, from optimized Hartree-Fock-Slater (OHFS) hole-state calculations10 , 

d f " . t" . f . f . t 1 b. d. . 11 an rom exper~men ; ~.e., rom a compar~son o exper~men a ~n ~ng energ~es 

with orbital energies from OHFS calculations
12

a 
. 1 

The < r- } values used for 

Table 1 were obtained from Mann's Hartree-Fock calculations13 • Since the 

estimates of ~· from ~ ( 1/r n, ) , corresponding to orbital n being shrunk all 

the way to a point, differs by only 2 eV from ~F0 , we conclude that ER is 

quite insensitive to small changes in this orbital. Thus we need not be 

concerned by the second objection given above to the use of Equation (10). 

Incidentally, the comparison in Table 1 (and others that we have made) shows 

0 only that total changes in ( 1/r ) and F from Z to Z + 1 are similar. The 

0 
actual values of ( 1/r ) and F can differ by larger amounts. 

The equivalent-cores model appears to estimate binding energies of true 

core levels as accurately as do the OHFS calculations, judged by comparison 

with the available data. 
8 

Comparisons with rare-gas data showed this to be 

true for Ar, Kr, and Xe. Since then core-level binding energies for the 4f712 

states in gaseous Pb and Bi have become available
14

• Table 2 compares these 

results with theoretical estimates based on the equivalent-core model8• The 

very good agreement again supports the use of this approximate model for core 

levelsa We conclude that the equivalent-cores approach provides good estimates 

of the total relaxation energy for core levels, although it only explicitly 



TABLE 1 

RELAXATION ENERGIES IN ARGON (IN eV) 

Orbital 
/1 ( 1/ · ) a ob 

rn' M' 

-
ls 4o.o. 38.1 

2s 13.3 11.1 

2p 13.3 11.3 

~sing ( r-1 ) values from ref. 13. 

bUsing F0 values from ref. 9. 

cSee ref. 8. 

~rom ref. 4. 

e From ref. 10. 

f 
ER = -£ (ref. 12) - EB (ref. 11). 

~from 

MF,G)c HF'd OHFSe 

37.0 32.2 31.8 

10.5 10.4 9.9 

11.1 11.5 11.1 

"Expt • uf 

34.1(7) 

9.7(5) 

10.5(5) 

I 
1-' 
0 
I 

~ 
1-' 
\0 
-.J 
0 
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TABLE 2 

THE 4f
7

/ 2 BINDING ENERGIES IN ATOMIC Pb AND Bi (IN MeV) 

Level 
a ~b -£ 

Pb(4f7/ 2 ) 154 11 

Bi(4f
7

/ 2 ) 175 11 

~ef. 12. The Pb value was interpolated. 

b Calculated as in ref. 8. 

c 
Ref. 14. 

164 

LBL-1970 . 

EB(expt) 

144.0(5) 

164.9(5) 
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considers outer-shell relaxation. In fact it is not clear why these estimates 

are so accurateo Omission of intra-shell relaxation may be compensated in 

part in this approach by systematic over-estimation of the outer-shell con-

tributiono This point is illustrated in Table 3, in which the contributions 

of various shells to the relaxation energies of the ls, 2s, and 2p holes in 

atomic potassium, calculated both for hole states 7 and by the equivalent-cores 

8 
approach , are compared. Since the latter model makes no allowance for intra-

shell relaxation, it is suitable only for core states. If the equivalent-

cores model for relaxation works this well in atoms it should certainly be 

valid in molecules, because the additional (extra-atomic) electrons are further 

removed from the active core. Thus in the next section we shall use it with 

confidence in connection with chemical shifts and relaxation in molecules. 

CHEMICAL SHIFTS AND THE GROUND-STATE POTENTIAL MODEL ( GPM) 

In progressing from atoms to molecules we encounter qualitatively more 

difficult problems in calculating core-level binding energies. From a purely 

computational point of view the straightforward approach of taking total energy 

differences quickly becomes impractical as molecules become larger, and it 

is necessary to seek viable approximations. In doing so it is very important 

to remember the physical principles that emerged in considering the binding 

energies of core levels in atoms. One could regard those binding energies 

as being affected by two factors: the electrostatic potential energy V experienced 

by the core electron in the ground state before ionization, and a relaxation 

* potential energy V - V (Equation (7)) that arises from redistribution of electronic 

charge during ionization. Both of these factors are more complex in molecules 
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TABLE 3 

CONTRIBUTIONS OF INDIVIDUAL SHELLS TO HOLE-STATE RELAXATION ENERGY IN POTASSIUM 
(eV) . 

Passive Active Orbital 

Orbitals lsa lsb 2sa 2sb 2pa 2pb 

ls 1.43 o.oo 0.01 

2s 3.17 5n3l 0.26 0.52 

2p 15.32 18.99 l. 73 2.24 

3s 2.27 2.77 1.40 2.33 1.58 2.36 

3p 9.39 9.51 6.30 8.10 6.65 8.30 

4s 1.25 0.84 1.13 0.80 1.18 0.81 

Total 32.83 37.42 10.82 11.23 12.18 11.47 

~rom ref. 7. 

b Calculated as in ref. 8. 
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than in atoms. Consideration of only the first factor leads with several 

approximations to formUlation of a ground~state potential model (GPM), discussed 

below, that appears to be quite reliable in predicting binding-energy shifts 

among restricted sets of molecules. If both factors are considered, the same 

approximations yield a relaxation potential model (RPM), which is treated in 

Section IV. 

The ground-state electrostatic potential affects the binding energy 

of a core level I i ) directly through the orbital energy 

e:i = £~ + L ( 2J ij - Kij) 

j 

0 
Here the one-electron energy e:. is the expectation value of the operator 

~ 

- ~ v2- L 
nuclei 

Z /r 
n n 

(13) 

0 
In an atomic system there is only one nucleus and e:. can be regarded as essentially 

l 

constant. Atomic core level binding-energy shifts would thus arise (in the 

GPM approximation) through alteration of the sum in Equation (13). For example, 

to estimate the shift in binding energy of the ith core level in going from 

. + an atom A to a uniposi ti ve 10n A formed by loss of a valence electron from 

the kth orbital, one could simply delete from the sum the term corresponding 

to that valence orbital. Thus the difference 
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is a rather good estimate of the binding-energy shift15 • In molecules the 

distribution of electronic charge is less clear-cut, and the estimation of 

shifts is !:. priori much more involved. The sum E Z /r must be made over all 
n n 

the nuclei in each molecule. Also, the sum E(2J .. - K .. ) may be taken over 
l.J l.J 

entirely different orbitals from one molecule to another. Thus there is no 

procedure analogous to omitting a single orbital as was done above for the 

atomic case. Instead shifts must be estimated by calculating differences in 

the electrostatic potential of a given core orbital from one molecule to 

another. Basch
16 

and Schwartz17 showed that shifts in the orbital energy of 

level i and in, its potential energy are quite accurately related by 

(14) 

Basch further showed that it isn't actually necessary to calculate the 

potential energy shifts of core electrons: shifts in the potential energy of 

an electron at the nucleus, ~V , provide a very good approximation to ~Vi, and 
n 

(15) 

The use of ~V is equivalent to allowing the core orbital i to collapse to n 

a point at the nucleus in calculating electrostatic repulsion integrals. The 

latter then become one-electron, rather than two-electron, integra~s (and the 

exchange integrals are neglected), and the computation is greatly simplified. 

It is simplified further by the use of a theory such as CNDo18
, which assigns 

all of the electronic charge to specific atoms in a molecule. . 11 19 
S1.egbahn, ~ al. ' 

used the host-atom charges q., plus the "external" molecular potential, V., as 
1. 1. 

determined from CNDO calculations, to fit experimental shifts o~ to the equation 
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kqi + vi + Jl, ' (16) 

h k d 0 1 . t f"tt d t t L t D . ~t ~1. 20 , 21 , were an N are eas -squares 1 e cons an s. a er, av1s, 

realized that fitting was not necessary: the CNDO model can be used directly 

to estimate shifts that are in quite good agreement with experiment, as 

described below. 

Since CNDO theory already has several severe approximations, the way 

in which V. is calculated using this theory is somewhat arbitrary.· The problem 
l 

is to construct; an approach that is consistent with the CNDO philosophy--neglect 

of differential overlap--while still being tractable and physically reasonable. 

Other workers have simply set 

. ' (17) 

where eq. is the net charge ori atom j. This "point-charge" approach has much 
J 

to recommend it. It is very easy to use, intuitively appealing, and a good 

approximation. There is, however, a straightforward way to improve on the 

point-charge model: -1 namely, the direct calculation of r matrix elements. 

This leads, as discussed below, to the "pp'" model for calculating Vi. 

In CNDO theory molecular orbitals 1jJ i are written as linear com-

binations of Slater atomic orbitals ¢. 
J 

(18) 

The zero differential overlap approximation 
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(19) 

leads to the normalization condition 

L c~j = 1 (20) 

j 

for the (real) coefficients C... Now since the error introduced by Equation (19)-­
~J 

Slater orbitals on different centers do not in fact have zero overlap--is not 

automatically propagated through new applications of the theory, it becomes 

necessary to make compensating approximations in applying CNDO wavefUnctions in 

new ways. Let us write out a general expression for the contribution of the 

electrons in a molecule to the potential at the nucleus of atom a, 

n 2 v: = ('{I I L;. I'¥ ) 
. ~a 
~ 

(21) 

Here i refers to the coordinates of the ith electron in then-electron molecule, 

and'¥ is the antisymmetrized product of the molecular orbitals {~.}. Because 
J 

1/r. is a one-electron operator and the molecular orbitals are orthogonal 
~a 

(they are eigenfunctions of the Fock operator, which is Hermitian18 ), one gets 

for ve 
a 

When the molecular orbitals {lJI. } are expanded in terms of the atomic orbitals 
~ 
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n 

v: = L LL cij cik J¢j(i) (e2/ria) ¢k(i) dTi 
i j k 

Ve can be reduced to three terms of the form 
a 

+ L 
i,j#k,k 

LBL-1970 

(22) 
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In this notation the indices j and k refer to atomic orbitals. The index 

i refers, for brevity, both to the individual occupied molecular orbitals and 

to the coordinates of electrons in those orbitals. The superscript b refers 

to atoms other than a, while c refers to any atom. The first term in 

Equation (22) is easily identified: clearly 

(23) 

ij 

where ez' is the core charge of atom a, given by the nuclear charge minus the 
a 

number of core electrons that are not considered in CNDO theory, and eqa is the 

net charge on a (see Equation (16)). Va in Equation (22) is just e2 < 1/r > 
a a 

evaluated for electrons in atomic orbitals centered on atom a. 

The second term in Equation (22) involves two-center integrals, but 

only one atomic orbital in each integral. To a good approximation 

2 2 
<cpbj(i)l-e-I<P~(i)) ~ e (24) 

ria J - Rab 

In fact this relation is exact if <P~(i) is an 
J 

s orbital. It also holds under 

one of the usual assumptions of CNDO theory: that "other-center" integrals 

are independent of symmetry type. In this approximation, to which we shall 

return below, we would have the point-charge version of the CNDO potential 

model. This second term in Equation (22) is related to the V. term in Equation 
l 

(16). 

The third term in Equation (22) involves two- and three-center 

integrals, with the atomic orbitals always on different centers. In the 

point-charge version of the CNDO-GPM approach, these integrals are all neglected, 
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and in the pp' version all but a certain subset are neglected. This is a 

very dubious approximation, because the integrals in this third term are not 

all small: for adjacent centers, the two-center integrals in the third 

term are comparable to the largest integrals in the second term. In 

rationalizing the neglect of the third term one might argue that this 

approximation is required for consistency since the integrals in this term 

involve differential overlap. Let us study this statement more closely, by 

means of a simple example. 

Consider a diatomic molecule AB with an unpolarized bonding molecular 

orbital ll/1 ) which is a linear combination of atomic orbitals centered on 

A and B 

ll/1> =CjA> +CjB> 

In a rigorous theory the potential at nucleus A arising from an electron in 

ll/1 ) would be given by 

(25) 

where S = <AjB) is the overlap integral and we have assumed spherical symmetry 

for j B ) to obtain the second term in brackets. In fact the three terms in 

brackets are related respectively to the three terms in Equation ( 22). In 

the CNDO approximation we would set S = 0 and (according to the approximation 

now under discussion) (A(i)j(l/riA)jB(i)) = 0, obtaining 

VCNDO 

2 e 
=2 [ (A ( i) j..l:.._j A ( i) ) + _l._ J 

r RAB 
iA 

(26) 
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On comparing these two potentials, we find that the CNDO approximations 

incur an error·of 

(27) 

One would expect this error to be small because the last term in square brackets 

should tend to cancel with the other terms. The cancellation would be exact 

if the off-diag9rial element of 1/r were exact1y the arithmetic mean of the two 

diagonal elements, times the overlap integral. This sounds intuitively like 

a reasonably good approximation: in fact it turns out to be more accurate than 

one might expect. To evaluate VCNDO- VRIG in an important set of cases, we 

have evaluated the 1/r integrals for the electrostatic potential energy at a 

carbon nucleus, arising from an electron in an unpolarized C - X bond, with 

X= C, N, 0, and F, and RC-X = 1.48 A, using the standard CND0/2 wavefunctions 

in a 2p
0 

- 2p~ orientation. The results appear in Table 4. The difference 

V CNDO - VRIG in Column 5 is encouragingly small {~ 0.6 eV), thereby supporting 

in a quantitative way the approximation of dropping the third term in 

Equation (22). We should also note from this example, however, that 

VCNDO - VRIG is not zero, and that the above estimate was based on the 

potential arising from a single electron. Thus we might expect, and indeed 

detailed comparisons with experiment have shown, that the CNDO potential 

approximation will have good predictive value for binding-energy shifts among 

similar molecules, because there can be considerable cancellation of 

VCNDO - VRIG terms. B,y the same token, we must not expect such good 

agreement when unlike molecules are compared, especially if the number of 



TABLE 4 

ESTIMATE OF THE ERROR INCURRED, IN THE POTENTIAL ENERGY OF AN ELECTRON AT THE C NUCLEUS DUE TO AN ELECTRON IN THE 
C-X 2pa - 2pa BOND, BY THE CNDO APPROXIMATION. R = 1.48 A. ENERGIES ARE IN a.u. EXCEPT AS NOTED. 

s = 
X 

( 2pa(C) j2pa(X) } 

c 0.332 

N 0.319 

0 0.291 

F 0.257 

A = 
2 

1e+S ( 2p a ( C ) I r 1 j2p a (X) } 
c 

Oo167 

0.148 

0.128 

0.108 

B = 
1 ·[s 2 'i+S .2 (2pa(C) ~~.j2p (C) } . , rx. a 

0.145 

0.141 

0.132 

0.119 

+L] R ex 
VCNDO - VRIG 

= B - A 

-0.022(-0.59 eV) 

-0.007(-0.20 eV) 

0.004(0.10 eV) 

0.011(0. 30 eV) . 
I 
1\) 
1\) 
I 

t-i 
tJ:j 

1 
'f-J 
\0 
-..J 
0. 
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bonds to the central atom can vary. This is a general observation about the 

CNDO potential model and it applies to both the GPM and the RPM modifications. 

Returning now to the second term in Equation (22), the usual point-

charge approximation to these two-center, one-orbital integrals (i.e., Equation (24)) 

is unnecessarily crude. With very little additional computing investment 

it is possible to evaluate the 1/r integrals directly. This allows a much 

more realistic evaluation of the contribution to the core-level potential 

at the central atom that arises from occupied p orbitals on neighboring 

atoms, a matter of some chemical importance. In the strict CNDO model (the 

point-charge model} an occupied atomic orbital on a neighboring atom would 

2 
contribute a term e /R to the potential of the central atom whether the 

orbital in question had s or p character and (in the case of p character) 

regardless of its orientation. This result is exact for s orbitals or for 

filled shells, if exchange is neglected. It is, however, not very accurate 

for directed p orbitals. The region of the p orbital nearer the central 

atom will contribute most heavily to the 1/r integrals, and p
0 

orbitals will 

therefore contribute more heavily than Pn orbitals to the potential. Thus, 

for example, for two carbon atoms at an internuclear distance RAB = 1. 50 A, 

the n = 2 orbitals on atom B contribute to the potential energies at atom A 

in the amounts 

VA ( 2poB) = (2p0 B(i)ll/riAI2p0 B(i) = 10.77 eV 

2 
VA(2sB) < 2sB ( i) ll/r iA l2sB ( i) > 

e 
9.60 eV = = --= 

RAB 

VA( 2pnB) = < 2pnB(i) ll/riAI2PnB(i) > = 9.01 eV 
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These values were calculated using CNDO wavefunctions.. We note that 

2 
[VA(2paB) + 2VA(2p1TB)]/3 = e /RAE' as expected in view of Unsold's Theorem. It 

is interesting to note the possibility of an atom B being slightly positively 

charged and yet exerting a repulsive potential on a core electron on atom A. 

This could happen if the electron population in the p orbitals of atom B were 

concentrated on Pa orbitals. To avoid situations of this type and to 

establish some sensitivity to a versus 'IT bonding, we have therefore modified 

the CNDO potential model to include calculated 1/r integrals rather than 

just using point-charge estimates. 

When 1/r integrals are computed a certain subset of the integrals in 

the third term of Equation (22) must be retained if the calculated potentials 

are to be invariant to coordinate transformations. These integrals are of the 

form ( pB ll/r A I p~ ) , where pB and p~ are two different p orbitals on atom B. 

We have briefly alluded to this "pp' approximation" elsewhere, but have not 

explained it in detail before. It can be understood easily by referring to 

Figure l. Let us calculate the potential at atom A arising from an electron in 

an orbital pB centered on atom B and directed toward A in a Pa orientation. If the 

coordinate axes are chosen to corresp'ond'to a and 1T orientations as in Figure l(a), 

only the diagonal elements ( p I rA-ll p ) and ( p I rA-ll p ) need be considered. In 
X X y · y 

this example pB = px anyway: however, even if pB were a linear combination of px 

and p the off-diagonal elements ( p I rA-ll p ) would vanish by symmetry. 
y X y 

Now suppose the aXes were canted as in Figure l(b): this will nearly 

always happen for some bonds in real molecules of any size. In this case the 

occupied a orbital may be written as 

=Cp +Cpy 
X X y 
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and 

( -1 } = 
rA c2 (p IrA-liP ) + c2 (p IrA-liP } + 2C c (p IrA-liP } 

X X . X y y y X y X y (28) 

The last term clearly does not vanish by symmetry (although it is very small), 

and it must be retained to preserve invariance to coordinate transformations. 

Although integrals of this form are technically a subset of the third term in 

Equation (22); their retention is consistent with our other approximations if 

-1 the r integrals are calculated rather· than estimated as point charges. In 

-1 
fact the calculation of the r integrals leads to an inequivalence of 

(p0Bir~
1 1PcrB} and (p'ITBir~1 1P'ITB} which then requires that <p)r~1 1py} be 

retained. Since (pBir~1 1PB) is an absolute maximum in the a orientation 

and an absolute minimum in the 'IT orientation, it is obvious that ( r~1 } would 

be too small if the third term were omitted in Equation (28) (note that 

C2 2 ) + c = 1 0 

X y 
In going from Equation (28) to the point-charge approximation, 

however, the first two integrals must be replaced by 1/RAB and the third by 

zero. 

This completes our deri.,;ation of the ground-state potential model (GPM) for 

core-level binding-energy shifts, using CNDO molecular orbitals. The next section 

contains a summary of the approximations that are involved in the GPM, together 

with some calculated results. GPM results have been compared with experiment 

20-23 elsewhere • We will not repeat.these comparisons here, but will simply 

summarize the results by noting: (1) the pp' modification of the GPM 

usually shows agreement with experiment superior to that of the point-charge 

version; (2) the GPM shifts in C, N, 0, and F usually show agreement with experiment 

to within a few tenths of an electron volt provided that comparisons are 
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·restricted to similarly-bonded compounds. Figure 2 shows.as an example a 

comparison of GPM predictions with experiment for C(ls) and F(ls) shifts in 

fluorinated methanes. 

THE RELAXATION POTENTIAL MODEL (RPM) 

In the second section the effect of relaxation on atomic binding energies was 

discussed, but the GPM approach calculates binding-energy shifts without regard 

to relaxationo It is straightforward to include relaxation in molecules by 

using an "equivalent-cores" approximation similar to that described for atoms 

in that section. In CNDO theory this approximation is introduced very simply, 

by replacing the active atom with an atom of the next element (thus N for C, 

F for 0, etc.) and repeating the calculation using the same molecular 

geometry but one fewer electron. This approximation can be derived from a 

result discovered by Liberman
24 

and derived by Hedin and Johansson6• In terms 

of the ls binding energy this result is 

1 [s(ls) + E(ls)*J 
2 

(29) 

where E(ls) and E(ls)* are respectively the ls orbital energies in the ground 

state and the ls hole state. Writing this relation in the form of binding energy 

shifts between two molecules, we can make the following series of approximations: 

b.EB -- ~ [b.E(ls) + b.E(ls)*J ( 30a) 

llEB 
1 [b.V(ls) * ( 30b) :::;_ + 6V(ls) ] 
2 

b.~ :::;_ 1 [llv + llv*J (30c) 
2 n n 

b.~ ::::_ 1 [b.V + b.V (Z + 1)] (30d) 
2 n n 
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Here Equation (30b) refers to the approximation of replacing ls orbital-energy 

shifts by shifts in the potential energies of the ls orbitals. Equation (30c) 

is the further approximation of using shifts in the potential at the nucleus, 

and Equation (30d) is the equivalent-cores approximation. Combining the 

relaxation correction with the potential model for binding-energy shifts, 

we therefore arrive at expression Equation (30d) for the Relaxation Potential 

Model (RPM), to be compared with the GPM expression 

= -11V 
n 

It is instructive to rewrite Equation (30d) 

-t,V . n 

where 

(31) 

(32) 

(33) 

is the relaxation energy in the RPM approximation. Table 5 lists values of 

VR(C ls) for the fluorinated methanes, and compares them with estimates from 

ab initio hole•state calculations. The good agreement of VR with ab initio 

results (which are themselves apparently quite sensitive to the basis set 

chosen) is very encouraging: Of special note is agreement in the trend in 

VR from cH4 to CF4~-a decrease of ~ 1 eV--which alone is important in estimates 

of binding-energy shifts. We shall discuss these two topics in turn. 

The relaxation energies VR estimated above are expected to be fairly 

accurate for essentially the same reasons that applied to the analogous atomic 
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TABLE 5· 

CARBON ls RELAXATION ENERGIES IN THE FLUOROMETHANES (eV) 

Molecule Ab Initio Ia,c Ab Initio II b ,c ·d 
VR 

'·e 
VR 

CH4 14.31 12.1 15.89 14.4 

CH F 
3 

13.78 . 11.6 15.92 14.4 

CH2F2 13.69 11.8 l5a73 14.2 

CHF
3 

13.58 11.7 15.38 13.9 

CF4 13.53 14.91 13.5 

~rom E. Clementi and A. Routh, Int. J. Quantum Chem • .§., 525 (1972) •. 

b From C. R. Brundle, M. B. Robin, and H. Basch, J. Chem. Phys. TI_, 2196 (1970). 

c Ref. a employed a slightly larger basis set than ref. b; the relaxation 

energies were determined by subtracting the calculated binding energy 

(E - E ) from the calculated orbital energy. ion ground state 

~rom Equation (33). 

e ' 6 VR = 0.905 VR. See Table· and related discussion. 
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relaxation energies estimates in Table l. In fact these molecular estimates 

might be expected to be somewhat better because the error incurred by substituting 

tJ. ( 1/r } values for changes in combinations of Coulomb ahd exchange integrals 

is maximal for valence electrons on the central atom. Thus since exchange 

between the central atom's ls electrons and electrons in orbitals on other 

atoms is negligible anyway, its neglect in the above tJ. ( 1/r } approximation to 

VR is of no consequence. It should be emphasized that while the objections to 

the approximations made in the GPM approach (see the discussion following 

Equation (22)) are equally valid for the V (Z + 1) term in the RPM approximation, 
n 

these objections apply with much less force to the RPM estimation of the 

difference VR in Equation (33). The reason for this is that the VR estimate 

is closely related to electrostatics in that it measures the response of a 

charge distribution to the sudden appearance of a positive charge. Errors 

in the charge distribution are of less consequence in estimates of VR, for 

which the molecular geometry is fixed, than in predicting !:J.V from one molecule 

to another. 

From the above argument we may infer that it is worthwhile to evaluate 

the error incurred in the RPM estimate of VR by the tJ. (1/r} approximation. 

To this end we have compared in Table 6 the values of VR(ls) as calculated 

. 2 2 2 3 in the equivalent-cores approximation for atonuc C(2s 2p ) , N(2s 2p ) , 

2 4 2 5 8 13 0(2s 2p ), and F(2s 2p ), using Mann's ' atomic integrals. This comparison 

shows the RPM estimates to be 8 - 10% high. Applying the ratio 

VR(!:J.F,G) 

VR (( 1/r ) ) = 0.905 
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TABLE 6 

ATOMIC ls-ORBITAL RELAXATION ENERGIES FROM EQUIVALENT-CORES ESTIMATES (IN eV), 
USING MANN'S INTEGRALS (REFS. 8, 13) 

Method C(2s 22p2 ) N(2s 22p3 ) 0(2s 22p4)·· F(2s22p5) 

!::, ( r -1 ) 19.0 23.5 27.8 32.2 

a 
t::.Fo 17.75 22.0 26.3 30.6 

f::.(F,G)b. 17.2 21.4 25.6 29.8 

t::,(F ,G) jf::, ( r-l ) . 0.905 0.911 0.921 0.925 

~sing ls ~ 2s,p Coulomb integrals only. 

bu . s1.ng Coulomb and ·exchange integrals. 
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for atomic carbon in Table 6 to the RPM estimates of VR in Table 5 (an admittedly 

' rather crude correction), we obtain the values of VR = 0.905 shown in the last 

column of Table 5. They agree quite well with the ab initio values, thereby 

increasing our confidence in the RPM approach for estimating VR. 

One possible application of VR (or v;) values obtained from the RPM 

model would be in calculating binding energies in molecules for which ab initio 

orbital energies in the ground state were availableo For a molecule containing 

N inequivalent atoms, this approach would yield all N core-level binding energies 

without the N additional ab initio hole-state calculations that would otherwise 

be required. The binding energies would be given by 

(34) 

where i refers to any of the inequivalent· core-level holes. 

We turn now to trends in VR. These can be best understood if we establish 

an intuitive picture of the dynamic relaxation process that accompanies photo-

emission. In atoms this relaxation occurs adiabatically, as discussed in the 

second section.. The relaxation energy is a consequence of the increase in the 

repulsive contribution to the potential of the core level by electrons in 

outer orbitals, due to their relaxing toward the core-level hole. The same 

effect occurs in molecules, but with a larger relaxation energy because 

additional electrons can relax toward the hole through bonds. In fact 

calculated values of VR' which are set out for a number of molecules in 

Table 7, show a marked tendency to increase with molecular size. A nice 

intuitive way to think of this relaxation phenomenon is to consider the 

fate of the unbalanced "positive" hole-state charge that is created on 
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TABLE 7 

CALCULATED POTENTIALS (IN eV) AND CHARGES (IN UNITS OF lei) 

Molecule V(Z) V(Z + l) VR q(Z) q(Z + l) 

Carbon Nuclei 

co 88.21 112.03 11.92 +0.04 +0.58 

C02 82.31 108.02 12.86 +0.54 +0. 76 

HCN 88.57 117.36 14.40 +0.03 +0.21 

CF4 77.75 107.56 14.91 +0.81 +0.73 

HCOOH 84.37 114.98 15.31 +0.38 +0.37 

CF
3
H 80.34 111.10 15.38 +0.61 +0.51 

C2H4 88.89 119.74 15.43 -0.06 -0.01 

C2H2 89.27 120.42 15.58 -0.06 -0.08 

CF2H2 83.06 114.52 15.73 +0.40 +0.30 

CH -3 
c*F 

3 
8o.84 112.56 15.86 +0.60 +0.54 

CH4 88.88 120.65 15.89 -0.05 -0.09 

CFH
3 

85.89 117.73 15.92 +0.18 +0.10 

* C F
3

CH2NH2 80.89 112.88 16.00 +0,60 +0.54 

H3c - c*F H 
2 83.22 115.44 16.11 +0,42 +0.36 

CH
3

0H 87.01 119.27 16.13 +0.14 +0.07 

CF3 - CF3 
79.18 Ill. 56 16.19 +0.56 +0.48 

* 83,02 115.51 16.25 +0.44 +0,40 H2C = C F2 
* H

3
C - C FH2 85.82 118.42 16.30 -0.05 -0.06 

* C F3 - CF2 - CF3 79.11 111.94 16.42 +0.58 +0.50 

CH -3 
CH3 

88.54 121.56 16.50 o.oo -0.03 

CH = 2 
c*HF 85.93 118.97 16.52 +0.21 +0.18 

* 88.10 121.15 16.53 +0.21 +0.16 C H · - CH F 
3 2 

continued 
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TABLE 7 (continued) 

Molecule V(Z) V(Z + 1) VB q(Z) q(Z + 1) 

Carbon Nuclei 

H C/
0

'CH 
2 2 86.95 120.01 16.53 +0.09 +0.06 

* 82.57 16.58 +0.34 CHF = C F 115.73 +0.39 2 
* C H3cH2NH2 88.69 121.94 16.65 -0.03 -0.05 

* C H3 - CHF2 87.70 121.12 16.71 -0.08 -0.10 

* 87.18 120.68 16.75 C H3 - CF
3 

-0.11 -0.11 

c*H = 2 CHF 88.66 122.42 16.88 -0.11 -0.10 

* (C H
3

)2CHN02 87.50 121.35 16.93 -0.02 -0.05 

c*HF = CF2 85.28 119.20 16.96 +0.07 +0.05 

* C H2 = CF2 88.30 122.28 16.99 -0.18 -0.16 

CH3No2 85.87 119.86 16.99 -0.03 -0.09 

* CF3 - C F2 - CF
3 

80.93 115.52 17.30 +0.28 +0.22 

1,3,5-C6H3F3 (CF carbon) 84.50 119.36 17.43 +0.28 +0.26 

(cH
3

)2c*HN02 85.79 120.92 17.57 +0.05 +0.03 

cyclo c4F6 (CF2 carbon) 80.85 116.10 17.63 +0.37 +0.29 

cyclo C4F8 81.16 116.45 17.65 +0.33 +0.24 

para c6H4F2 (CF carbon) 85.40 120.70 17.65 +0.22 +0.19 

C6H6 88.31 123.68 17.69 +0.01 +0.01 

para c6H4F2 (CH carbon) 87.63 123.23 17.80 -0.03 -0.03 

1,3,5-C6F3H3 (CH carbon) 87.91 123.79 17.94 -0.14 -0.12 

C6F6 83.68 119.58 17.95 +0.16 +0.13 

cyclo c4F6 (CF carbon) 84.03 119.96 17.97 +0.13 +0.08 

continued 
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TABLE 7 (continued) 

Molecule V(Z) V(Z + 1) v · . . · R q(Z) q(Z + 1) 

Nitroe;en Nuclei 

NO 132.43 163.89 15.73 +O.o4a +0.50a 

N2 133.22 166.56 16.67 o.oo +0.38 

* 124.82 161.26 NN 0 18.22 +0.47 +0.56 

HCN 134.47 171.46 18.50 -0.10 +0.21 

NH
3 

135.54 173.56 19.01 -0.23 -0.10 

N*No 132.52 170.99 19.24 -0.15 +0.15 

NF
3 

125.34 163.98 19.32 +o.36 +0.44 

CH 3NH2 135.17 174.67 19.75 -0.19 -0.05 

H2N - NH2 134.46 174.41 19.98 -0.13 -0.03 

NF2 131.24 171.35 20.00 +0.23a +0.53a 

CH
3

No2 124.22 164.22 20.00 +0.50 +0.48 

N02 125.58 166.36 20.39 +0.48a +0.63a 

(CH3)2CHN02 124.67 165.61 20.;47 +0.47 +0.46 

c6H
5

No2 125.04 166.26 20.61 +0.47 +0.47 

NOF
3 

119.46 160.71 20.63 +0.70 +0.58 

N2F4 127.76 173.73 22.99 +0.16 +0.07 

O~fien Nuclei 

02 185.30 214.06 14.38 o.ooa +0.30a 

NO 185.94 226.63 20.35 -0.04a +0.30a 

N02 188.29 228.98 20.35 -0.24a +O.l2a 

H2o 192.22 233.47 20.63 -0.41 -0.04 

NNO 191.02 233.80 21.39 -0.32 +0.15 

co 187.39 230.31 21.46 -0.04 +0.25 

(continued) 
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TABLE 7 (continued) 

Molecule V(Z) V(Z +l) VR q(Z) q(Z + 1) 

Oxygen Nuclei 

CH30H 189.97 234.32 22~18 -0.26 -0.47 

Hco*oH 191.38 237.97 22.36 -0.30 o.oo 

CH3cH20H 190.12 235.44 22.66 -0.26 +0.03 

c2H4o 189.79 235.42 22.82 .. -0.21 +0 .11 

CH
3

No2 191.33 237.60 23.14 -0.33 +0.03 

Hcoo*H 188.16 232.88 23.30 -0.24 +0 .07 

(CH
3

)2CHN02 19L58 238.65 23.54 -0.33 +0.01 

c6H
5

No2 19L88 239.45 23.79 -0.34 o.oo 

(CH
3

CH2)20 189.92 238.24 24.16 -0.23 +0.02 

c4H4o (furan) 189.10 237.64 24.27 -0.19 +0.05 

~e values were calculated by R. 1. Martin for ref. 27 using INDO orbitals. 
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photoemission. The inward polarization of negative electronic charge to 

shield the core hole is approximately describable as outward expansion of a 

unit of positive charge due to self-repulsion. Thus we would expect the 

final state of a diatomic molecule to show an electron population distribution 

similar to the initial state, but with an additional charge of rv + e/2 on each 

atom (this does not imply that the core hole is delocalized: it is not). 

Similarly in a symmetrical molecule such as cH4 or CF 4 the C(ls) hole state 

should have rv + e/4 additional charge on each ligand. This picture is only 

qualitative: it doesn't account for subtle chemical effects in a highly-polar 

molecule. Nevertheless it.gives a perhaps surprisingly accurate prediction 

of charge distributions in final states. Table 7 lists, in addition to VR, 

V , and V (Z + 1), the RPM estimates of initial- and final-state central-atom 
n n · 

charges in the molecules listed. From these charges we can deduce that the 

additional charges after ls photoemission on the two atoms of N
2 

and CO are 

* * * N (+0.38)- N(t0.62), C (+0.54)- 0(+0.46), and C(+0.7l)- 0 (+0.29), in rough 

agreement with the above estimates of +1/2 for each atom. In CH 4 and CF4 the 

ligand atoms gain +0.26 and +0.27 units of charge, respectively, in excellent 

agreement with the predictions. 

Entries in Table 7 are listed in order of increasing VR. The predicted 

. 20-23 shifts have been compared with exper1ment elsewhere • For brevity we 

shall simply note here that agreement is very good, especially for the RPM 

approximation. A few applications of the results in Table 7 are made in the next 

section. To indicate the importance of the relaxation energy tenn, we note 

the total range of ls binding-energy shifts for these second-row elements is 

rv 12 eV or less, while VR can vary by up to 10 eV (although exclusion of 

di- and triatomics reduces this range to 4 eV). Relaxation therefore cannot 
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be neglected in assessing binding-energy shifts. Even ab initio orbital energies 

should not correlate well with experimental binding energies if molecules with 

very different relaxation energies are compared. 

We close this section by noting from Table 7 three additional trends 

in VR for C(ls) holes, apart from the major trend of an increase of VR with 

molecular size. These are a (related) increase in VR as ligands are added to 

an atom, a slight decrease in VR on substitution of F for H, and a tendency 

for unsaturated or cyclic systems to have large values of VR. 

APPLICATIONS AND SUMMARY 

The principle object of this paper was to describe the calculation 

of core-level binding-energy shifts from potential models that were applicable 

to "intermediate-level" molecular wavefunctions. Comparisons with experiment 

20-23 are described in detail elsewhere • In this section we simply indicate 

some of the applications of both GPM and RPM theory. Finally a brief summary 

is given of the approximations entailed in these two approaches. 

Some Applications of the GPM Method 

D t . 1 d . . . th . t 20- 23 h h th t GPM e a1 e compar1sons Wl exper1men ave s own a pre-

dictions based on CND0/2 wavefunctions give core-level shifts in excellent 

agreement with experiment, provided that only similar molecules are compared. 

From the discussions in the last section and following Equation (22) we may infer 

that "similar" in this context would preclude comparison of large and small 

molecules, of molecules with different numbers of bonds to the central atom, 

of cyclic or unsaturated molecules with saturated, straight-chain molecules, 

and perhaps of fluorine-substituted with unsubstituted hydrocarbons. In fact 
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only the first three restrictions are quantitatively very important. Thus 

standard deviations of from 0.1 to 0.4 eV in comparisons between theoretical 

GPM C(ls) shifts and experiment were obtained for fluorinated alkanes22 , 

21 .• 23 23 
benzenes , ethanes , and ethylenes • The advantages of comparing only 

molecules with the same number of bonds to the central atom have been noted 

for O(ls) shifts
23 • 

The atomic-charge (or ACHARGE) analysis
21

, which has been reported 

· a1 · · "1 · t 21 , 25 ' 26 . 1 ly l t d t th GPM d l · ln sever ·very Slml ar varlan s · , ls c ose . re a e o e mo e 

in its point-charge version. The difference is that ACHARGE yields an experi-

mental set of atomic charges {qi} from the measured binding-energy shifts {oi} 

through solutipn of the equation 

(35) 

where the matrix elements A .. depend only on molecular geometry and the atomic 
lJ 

integral Va in Equation ( 22) (or k in Equation ( 16)). ACHARGE atomic charges 
a 

generally show very good to excellent agreement with CNDO charges. We have discussed 

21 23 . this conclusion elsewhere ' . · and Wlll simply illustrate it here by plotting 

in Figure 3 the two sets of charges for H, c, and F as derived from27 fluorinated 

21 23 hydrocarbons ' • These values of q (ACHARGE) were all obtained from binding 

energies measured in gases. We believe that they are to be preferred over 

results from solids 25 , 26 , for which lack of a suitable reference level precludes 

a rigorous determination of shifts. The good agreement in Figure 3 suggests that 

chemists may have in binding-energy shifts an operational means for determining 

that elusive quantity, the atomic charge. 

The GPM method is also useful in calculating diamagnetic shielding 

corrections for NMR spectra. 
16 . 

Basch showed the connection between the average 
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d 
diamagnetic shielding constant oAv and binding-energy shifts. This can be 

•tt 16 wr1 en 

d 
!J.aAv (in ppm) eV) (36) 

after substitution of appropriate values for physical constants. 

Since this pp' GPM calculation predicts binding energies to~ l eV, 

it follows that this equation gives diamagnetic shielding constants to 

~ l ppm or better in most cases. 

Typical Applications of the RPM Method 

The RPM method is likely to be of particular value in calculating shifts 

for cases in which variations in VR can affect the observed shifts. Thus the 

N(ls) shifts in several small molecules are predicted much better by RPM than 

by GPM calculations, with standard deviations of 1.3 eV and 2.35 eV, respectively
22

• 

The C(ls) shift in carbon monoxide is very badly predicted by the GPM 

method because CO is compared with larger molecules. The predicted value for 

EB(C ls;CO) is relatively too low in GPM because CO has a much smaller value 

of VR than the other molecules. The RPM approach brings CO into reasonable 

22 
agreement • 

There are also cases in which poor agreement between GPM predictions 

and experiment is obtained even though chemically similar compounds are being 

compared. Ammonia and the methylamines provide an example. The GPM theory 



-40- LBL-1970 

predicts EB(N ls) to increase by l eV from NH
3 

to (CH
3

)
3

N, whereas it in fact 

decreases by 0.8 eV in excellent agreement with RPM predictions23 • Similar 

behavior has been observed and explained in nitroxides 27 ~ 

A solid-state problem of some interest is the relative C(ls) binding 

energies in graphite and diamond. The most accurate experimental values of 

28 29 
EB(C ls) for these two cases are ' 

EF(C ls, diamond) - 284.44(7) eV 
B 

E~(C ls, graphite) = 284.68(20) eV 

Since the graphite work function is known to be 4.6 v30
, we also have its 

binding energy relative to the vacuum level, 

E~(C ls, graphite) = 289.3 eV 

CNDO calculations for these (infinite) lattices are of course not possible, 

but we have calculated C(ls) relaxation energies using the RPM method for a 

number of two-dimensional hexagonal arrays of carbon atoms, to simulate the 

graphite lattice" The outer carbons were taken as being bonded to avoid 

"dangling bonds" .and open orbitals, so this calculation was in fact done on 

the most central carbon atoms in the planar aromatic molecules benzene, 

anthracene, etc., as shown in Table 8. There is a clear tendency for VR(C(ls)) 

to increase with increasing molecular size. We plotted VR against (nc = number 

)-1/2 -l/2 of carbons , and extrapolated to nc = 0 to obtain the limiting value 
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TABLE 8 

POTENTIAL AT CARBON ATOMS IN MOLECULES SIMULATING GRAPHITE ENVIRONMENT (IN eV) 

a 
Molecule 

0 
CD 

co 

6 

10 

13 

16 

32 

V(Z) 

88.31 

87.79 

88.03 

87.77 

87.91 

~otential is calculated at carbon indicated by ".C". 

V(Z + l) 

123.68 17.69 

123.93 18.07 

125.36 18.66 

125.03 18.63 

126.18 19.14 
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-1/2 The nc plot :was chosen in the expectation that the excess positive charge 

1/2 ·. 
in the relaxed final st.ate would go to a radius R ex: nc on the outside of the 

1 ° . t t 0 2 /R 2; l/2 h h 1 t t mo ecule, when ~t would exer a po ent~al V ~ e · ~ e nc on t e o e s a e. 

A 1/nc extrapolation would yield essentially the same result. Since the 

measured G(ls) binding energy. in benzene is 290.4 ev
21

, an additional relaxation 

energy of 1,6 eV would give EB(graphite, theory) = 288.8 eV. An alternative esti­

mate of 289.3 eV was obtained by extrapolating the RPM estimates of EB, and comparing 

with the benzene value. Thus we estimate a "best value" of 

EB(graphite, theory)= 289.0 ± 0.3 eV 

in good agreement with the experimental value of 289.3 eV. Thus it is possible 

to make an estimate of a core-level binding energy in a solid from RPM theory. 

A similar estimate was made for diamond, based on only methane and neopentane. 

The result was 

EB(diamond, theory) = 288.2 ± 0.5 eV 

This could be compared with experiment if the work function of diamond were 

known. 

Summary of the GPM and RPM Approximations 

The two models for calculating core-level binding-energy shifts from 

CNDO wavefunctions may be summarized as follaws: 

1. In both cases the core-level shifts are approximated by shifts in 

the potential at the nucleus: ~~ ~ -~Vn. Thus the spatial extent of the core 

state is neglected, as are shifts in exchange terms involving it. 

2o In the point-charge modification of GPM or RPM, the potential due 

to other atoms is approximated by a term of the form L:q/R. This version is 

most directly comparable with the ACHARGE model. 
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3. 
--1 In the pp' modification of GPM or RPM, r integrals are calculated. 

For invariance to coordinate transformations this necessitates retention of 

certain additional (pp') terms in the potential. 

4. In the RPM approach, the effect of a core hole state on the potential 

is simulated by repeating the CNDO calculation with the nuclear charge on the 

central atom increased by one unit. Binding energy shifts are then given by 

-(l/2)t.[V (Z) + V (Z + 1)], and the relaxation energy by (l/2)[V (Z + l) - V (Z)]. n n n n 

All these 'modifications are remarkably successful in predicting core-

level binding-energy shifts. ·. The pp 1 modification of RPM is the soundest 

theoretically and it also agrees best with experl.ment. 
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FIGURE CAPI'IONS 

Figure L Illustration of the necessity for retaining the (pI r -liP' ) matrix 

elements. In (a), the x coordinate axis is collinear with the A- B bond; 

thus p
0 

= p and only ( p I r -ll p ) matrix elements need be considered in 
X X X 

calculating the potential at A due to this orbital. In (b) the axes are 

tilted and ( p I r -ll p ) are nonzero and must be retained. 
X y 

Figure 2. Comparison of C(ls) shifts from various GPM calculations with 

experiment for the fluorinated methanes. 

Figure 3. Atomic charges on C, F, and H in units of lei from CND0/2 calculations, 

versus charges derived from ACHARGE analysis of binding energy shifts, for 

27 fluorinated hydrocarbons. The range of charges found on the following 

types of atom are indicated: F, H, and carbon bonded to H (CH); to 

fluorine (CF) and to two, three, or four fluorines (CF2' CF3' CF4). 
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