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The work reported here was undertaken to find algebraic equations for 
the preferred habits of coherent thin-plate inclusions in anisotropic 
media on the assumption that the inclusion and matrix can be treated as 
linear elastic continua. The preferred habit minimizes the elastic 
energy, which depends on the elastic constants of the inclusion and the 
transformation strain connecting the lattices of the inclusion and the 
matrix. The paper presents four principal results concerning the pre
ferred thin-plate habit. First, the mathematical conditions that deter
mine the preferred habit are derived in compact form. Second, it is 
shown that these conditions are always satisfied when the transformation 
strain is dyadic and the habit is perpendicular to a vector of the dyad, 
reproducing a result that is given by Khatchaturyan [2] and included in 
the "crystallographic theory" of precipitate habits. Third, the extre
mal conditions are solved for orthorhombic symmetry, that is, when the 
elastic constants of the inclusion have orthorhombic symmetry with 
respect to the principal axes of the transformation stress. The results 
incorporate isotropic, cubic, hexagonal, and tetragonal (type II) symme
tries. They are specialized to determine the minimum-energy habit as a 
function of the transformation strain for three classes of inclusions: 
isotropic inclusions, cubic inclusions with tetragonal transformation 
strains, and hexagonal inclusions with hexagonal transformation strains. 
Finally, it is shown by counter-example that there is no general alge
braic solution for systems of arbitrary symmetry. 

1. IN'.I"RmUCTION 

It has been recognized since the work of Eshelby [1] that the 
state of a coherent inclusion in a crystalline solid can often be under
stood or predicted on the basis of a linear elastic model in which the 
matrix and inclusion are treated as elastic continua. The model has 
been successfully used to predict the energies, shapes, strains. and 
crystallographic habits of a variety of precipitates and structural 
transformation products [2]. 

A classic result of the linear elastic theory (first obtained 
by Khatchaturyan [3]) states that when the difference between the moduli 
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of the inclusion and the matrix can be ignored (the homogeneous case) 
the elastic energy of the inclusion is minimized when it has the form of 
a thin plate on a specific crystallographic plane. This plane is the 
preferred habit of the inclusion, at least in the limit of large size. 
The Khatchaturyan shape theorem offers an explanation for the frequent 
plate morphology of coherent precipitate phases and correctly identifies 
the preferred habits of many second-phase particles [2-10]. It incor
porates the infinitesimal form of the "crystallographic theory" of 
precipitate habits [11,12] as a special case. While the Khatchaturyan 
shape theorem does not always hold when the inclusion and matrix have 
different moduli [6,14], the plate morphology is favored in a great many 
inhomogeneous systems of physical interest, as shown by numerical calcu
lation [2,6,14] and experimental results [2-10]. 

The preferred habit of a thin-plate inclusion depends on the 
elastic constants of the inclusion and on the "transformation strain" 
that connects the lattices of the inclusion and the matrix. However, 
the dependence is suff(ciently complex that the preferred habit planes 
are only known for simple symmetries. Khatchaturyan and Airapetyan [4] 
found the preferred habits for a cubic inclusion in a cubic matrix, and 
showed that they are identical to the habits predicted by Cahn [15] for 
spinodal decomposition waves in cubic solutions. Wen, Kostlan, et al. 
[7] determined the preferred habit planes for a pseudo-cubic inclusion 
with a tetragonal transformation strain. Less symmetric cases have been 
solved numerically; for example, Mayo and Tsakalakos [7] found the 
preferred habits for selected hexagonal precipitates in aluminum. 

The present work was undertaken to find solvable algebraic 
expressions for the preferred habits of ani~otropic, thin-plate inclu
sions. Four principal results are presented. First, the mathematical 
conditions that determine the preferred habits are derived in compact 
form. Second, it is shown that these conditions are always satisfied 
when the transformation strain is dyadic and the habit is perpendicular 
to a vector of the dyad, reproducing a result that is given by Khatcha
turyan [2] and included in the "crystallographic theory" [11,12]. 
Third, the extremal conditions are solved for orthorhombic symmetry to 
obtain analytic expressions for the possible thin-plate habits. The 
results incorporate isotropic, cubic, hexagonal, and tetragonal (type 
II) symmetries. They are specialized to determine the minimum-energy 
habit as a function of the transformation strain for three particular 
classes of inclusions: isotropic inclusions, cubic inclusions with tet
ragonal transformation strains (the case treated in reference [7]), and 
hexagonal inclusions Yith tetragonal (or hexagonal) transformation 
strains. Finally, it is shown by counter-example that there is no 
algebraic solution for systems of arbitrary symmetry. 

The results presented here are derived under the constraint 
that the inclusion has a thin-plate form. They hold whether or not the 
thin-plate morphology minimizes the elastic energy. 

2. TBE BLASTIC ENERGY Oil A COIIEUN'I'. 111IN-PLATE INCLUSION 

The elastic energy of a system that contains a coherent elas
tic inclusion is derived in detail by Eshelby [1] and by Khatchaturyan 
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[2,3]. The derivation below roughly follows Khatchaturyan [2] and is 
included to establish several results that will be needed in the follow
ing. The derivation is based on the modified Eshelby cycle [1,2], that 
creates the inclusion through a series of imaginary operations that 
bring it into the correct final state. 

A. The Bshelby Cycle 

First, a volume (V) is cut out of the matrix (which has volume 
VT>>V and is free of stress) and transformed into an equivalent quantity 
of the inclusion phase. The transformation generally changes the size 
and shape of the extracted volume; this stress-free distortion defines 
the transformation strain, a•. Next, the inclusion is deformed by a 
surface traction that reverses the transformation strain. The resulting 
elastic stress within the inclusion is the negative of the transforma
tion stress: 

atj = A.ijkl 8 kl (2.1) 

where 4 is the fourth-order tensor of isothermal elastic constants of 
the inclusion phase. Finally, the inclusion is replaced in the vacant 
hole in the matrix, welded to ensure coherency, and allowed to relax to 
equilibrium by deforming itself and the matrix around it. The relaxa
tion introduces a displacement field, u(r) (measured with respect to the 
relaxed confir,uration of the matrix), with the associated strain field 

a .. ( r) = ( 1/2) [ u . , . + uJ. ,
1
.] 

1J . 1 J 

The stress field is 

aij(r) = [lijkl8 kCa!jle(r) + lijkl 8 kl[1-6(r)] 

= [Alijkl 8 kl-a!jle(r) + lijkl 8 kl 

(2.2) 

(2.3) 

where the fourth-order tensor 4' is the elastic modulus of the matrix, 
A). is the modulus difference 

(2.4) 

the Einstein summation convention is assumed, and 6(r) is the shape 
function of the inclusion, equal to 1 when the position vector r falls 
within the inclusion and to 0 otherwise. 

I 

B. The Bquilibri .. Straia Fielcl ia the Thia-plate Liait 

If we now introduce the assumption that the strain has a 
constant value, a•, within the inclusion, as we shall show that it does 
in the thin-plate limit, and define the "effective transformation 
stress", 

a•. = a9. - A.)... -~ 1 a•. 1J 1J 1Ja. 1J 
(2.5) 

then the stress field can be written 

(2.6) 
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Mechanical equilibrium (Cauchy's First Law) requires that the divergence 
of the stress vanish. Hence 

(2.7) 

whose Fourier transform is 

(2.8) 

The solution to this equation is 

= - (2.9) 

where the matrix elastic tensor o•• is defined by its inverse: 

and e is a unit vector in the direction of k. The deformation gradient 
is 

u i, j ( k) = ik j u i ( k) 
(2.11) 

= ej0i,~arlel8(k) 

In the thin-plate limit the inclusion is an arbitrarily thin 
plate whose orientation is specified by the normal vector, n. The shape 
function, 8(k), vanishes unle~s t. is almost parallel ton •. Since the 
factor modifying 8(k) depends only on the direction of k, the reverse 
Fourier transform of equation (2.11) in the thin-plate limit is 

ui' j (r) = njl1i~a{1n 18(r) (2.12) 

Equation (2.12) shows that the displacement gradient, and hence the 
strain, is constant within the inclusion and zero outside. It can be 
recast in the form 

~kmnum'n = nt.0ijajrnl 

where the fourth order tensor ~ is 

~kmn = 0 im0kn + nkal;LUpqmnnq 

Using the identity 

~ n nn - n n•n 
"~it.mn n"mj - k"ij 

(2.13) 

(2.14) 

(2.15) ~. 

where gn is the elastic tensor of the inclusion phase in the direction 
n, the constant strain within the inclusion can be written 

= n nn ao n j"ik k1 1 

= n.q~ 
J 1 

where q~ is the conjugate vector 
1 

(2.16) 

... 
' 
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q~ = Q~k<Jkl nl (2.17) 

Equation (2.16) shows that the deformation gradient within the inclusion 
has a dyadic form that insures that there is no strain in the habit 
plane; the habit plane is an invariant plane of the crystallographic 
transformation that connects the relaxed state of the matrix to the 
strained state of the inclusion. the inclusion strain in the thin-plate 
limit is independent of the elastic constants of the matrix. 

It is easily shown (and is physically obvious) that there is 
no traction on the habit plane: 

~jnj = atjnj + Aijklnjnkq~ 

= - a 0 n + <o•>_1.q• - 0 ij j il 1 -

(2 .18) 

C. The Elastic Eaeray 

Using the Eshelby cycle the elastic contribution to the Helm
holtz free energy of the system can be written 

(2.19) 

where AF 0 is the self-energy of the inclusion, that is, the elastic 
energy stored in the inclusion when it is deformed to reverse the trans
formation strain, and AF 1 is the relaxation energy, the elastic energy 
recovered when the inclusion and matrix deform to relax the transforma
tion stress. The self-energy is 

AFO = (V/2)a1jatj (2.20) 

Using equation (2.16) the relaxation energy of a thin plate with normal 
e can be written 

AF1 = (V/2)af!.u.,. 
1J 1 J 

= (V/2)B 1 (e) 

where B1 (e) is the relaxation energy function 

= e ao qe i ij j 

= e ao ne ao e i ijujk kl 1 

(2.21) 

(2.22) 

Since AF 0 is independent of the inclusion shape and habit, the 
preferred thin-plate habits are those directions, n, that maximize the 
relaxation energy function, B1 (e). 

Note that B1 (e) depends on the elastic constants of the inclu
sion, but is independent of the elastic constants of the matrix. The 
relaxation energy function depends on the matrix phase only through its 
structure: the transformation strain, a•. that determines a• provides a 
coherent connection between the matrix and the inclusion. 
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Also note that the symmetry of B1 (e) with respect to ortho
gonal transformations of the vector, e, is the joint symmetry of a• and 
0°. The transformation stress tensor has at least orthorhombic symmetry 
with respect to its principal axes (a1 , i=1,2,3), since 

(2.23) 

where the ai are the three principal stresses. The symmetry group of 
B1 (e) is at least the union of the orthorhombic group and the symmetry 
of the inclusion phase with respect to the principal axes of the trans
formation stress. 

3. CONJIDOHS GOVERNING 'DIE IIAXIMA OF B1 (e) 

Our problem is to find the directions, a, that maximize B1 (e) 
for given ~ and a•. Since 

B 1 (a) = B 1 (ka) (3.1) 

for all non-zero constants k, there is no formal restriction on the 
magnitude of a, which can be normalized after it is found. The maxima 
satisfy the relations 

aB1 (a)/ani = 0 (3.2) 

.&niH~j&nj = &ni[a 2B1 (e)/anianj]&nj ~ 0 (3.3) 

where 6a is an arbitrary vector and a• is the Hessian of B1 (a). 

A. The &treaa of B1 (e) 

The extrema of B1 (e) satisfy equation (3.2), from which we can 
obtain the following theorem: 

If D extremizes B1 (e) and q• is the vector conjugate to a, then q• also 
extremizes B1 (e) and a is the vector conjugate to q8 • Mathematically, 

q~ = 0~. a 0 -~n~ 
1 1J JA. ... => 

when D extremizes B1 (e). 

To prove the theorem we first differentiate B1 (e): 

dB 1 (e) = d(e. 8~. q~) = q~a~ .de. + e. 8~ .dq~ 
1 lJ J J J 1 1 1 1J J 

The differential of q 0 can be found from equation (2.18) 

from which 

0 = d(a~jej) = (daij>ej + aijdej 

= Aijkl[ekdq~+q:de 1 lej + aijdej 

= (Oe>i~dq~ + (Aijklejq:+ail)del 

(3.4) 

(3.5) 

(3.6) 

.. 
' 



-"' ., 

v 

o d e e.a .. q. 
1 lJ J 

- 7 -

= _ o nO ( ~ 0 + 0 ) d eiaijujl Almnpem~ alp ep 

= - qj(2aj i +aj i)de i 

Substituting equation (3. 7) into (3 ;s), 

dB 1 (e) = -2(qjaji)dei 

(3.7) 

(3.8) 

If -e=n, an extremum of B1 (e), then equation (3.8) must hold for arbitra
ry dei. It follows that 

~.q~ = 0 =- aq.q~ +A,. ·~ 1q~q~1 lJ J lJ J lJA J A 

= - o B + (nq)-1 a . . q. u .. n. 
lJ J lJ J 

(3 0 9) 

which establishes (3.4). 

The relation (3.4) has the consequence that 

(3.10) 

Hence the habit specified by the conjugate vector qn is degenerate with 
the habit specified by a. Equation (3.10) is automatically satisfied 
when the directions of n and q are related by a symmetry operation from 
the symmetry group of B1 (e). 

It is useful to distinguish three classes of extrema. Class 
!: the conjugate vector, q•, is proportional to n: 

q 8 = kn (3.11) 

for some non-zero constant k. In this case 

(3 .12) 

and a is an eigenvector of the tensor A.ijklnjnk. Class 1: the conjugate 
vector is not proportional to a. Class ~: tlie conjugate vector is zero. 
In this case 

aq .n. = 0 
lJ J 

(3 .13) 

and B 1 (n) = 0. Habit planes of class 3 minimize B1 (e) and need not be 
cons ide red. 

B. The Beaaiaa Matrix 

The Hessian matrix, a•, of B 1 (a) can be found by differenti
ating equation (3.8) for o=a. The result is, after some algebra, 

Hij = 2[(~k+w~i>o~l(~j+wjj> - (Oq>iil (3 .14} 

where we have used the symbols .• and .•T for the tensors 

(3 .15} 
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(3.16) 

When the vector n maximizes B1 (e) the Hessian matrix is negative semi
definite [equation (3.3)]. 

4.. 'DIB PREFHRUD HABIT WHEN a• IS DYADIC 

As a first example let the transformation strain be dyadic 

a • = (a 0 /2 )[ 1n + n1] (4.1) 

where e 0 is an arbitrary constant and 1 and n are arbitrary unit vec
tors. It is simple to show that. independent of the symmetry of the 
elastic constants. the preferred shape is a thin plate perpendicular to 
either nor 1 [2]. 

First let the plate have habit n. Then, by the first of 
equations (3.4) 

(4.2) 

The vector n satisfies the second of equations (3.4). It follows that n 
and 1 are degenerate extrema of B1 (e). The extremal values are 

(4.3) 

with which 

4Fel = 0 (4.4) 

Since 4Fel cannot be negative. the habits n and 1 minimize the elastic 
energy. 

Equation (4.4) generates the "crystallographic theory" of 
inclusion habits [7,8] in the linear case. When the inclusion is a thin 
plate with the habit n or 1 the total strain within it is 

N = (e 0 /2)[n1 + 1n] - a• = 0 (4.5) 

It follows that • and 1 are invariant planes of the transformation con
necting the lattices of the inclusion and the matrix. The preferred ha
bits can be found directly from a• by identifying its invariant planes. 

Reversing the analysis, any invariant plane connecting the 
matrix and inclusion lattices is a strain-free habit for a thin-plate 
inclusion. Hence, as emphasized by Christian [16], the crystallographic 
theory remains valid when the transformation strain is large and the 
linear elastic model does not hold. 

.. 
I 



- 9 -

5. 'DIE PJmllEUFJ) HABIT OF AN ORDIOIBOIIBIC INCLUSION 

The most general situation for which we have found algebraic 
solutions for the extremal habits is when B1 (e) has orthorhombic symme
try. 

Let the relaxed state of the inclusion be referred to orthogo
nal axes that coincide with the principal axes of the transformation 
stress, a•. Let the elastic constants of the inclusion phase be refer
red to the same axes. Our solution is valid when the rotated matrix of 
elastic constants has at least orthorhombic symmetry, that is, when 
.).ijk.l is zero unless i=j and k=i or i=k. and j=l. The symmetry of B1 (e) 
is always at least orthorhombic when the inclusion has orthorhombic or 
higher symmetry and the principal axes of the transformation stress 
coincide with its crystal axes. B1 (e) is at least orthorhombic when the 
inclusion is isotropic. 

To facilitate the solution we express the elastic constants in 
the Voigt form: 

cmn = .).ijk.l (5.1) 

where the symmetric pairs (ij) and (k.l) are changed into m and n by the 
relations (11)->1, (22)->2, (33)-}3, (23)->4, (13)->5, (12)-}6. The 6x6 
matrix of the c~n is symmetric. When the system is orthorhombic the 
matrix [cij] is L17] 

ell c12 c13 0 0 0 

c22 c23 0 0 0 
[c ij] = c33 0 0 0 (5.2) 

c44 0 0 

c55 0 

c66 

The matrix is symmetric across the diagonal. The matrix (5.2) incorpo
rates the isotropic, cubic, hexagonal, and type II tetragonal symmetries 
(two two-fold or mirror plane axes perpendicular to the four-fold axis). 

The solution to the orthorhombic problem follows with the aid 
of the following theorem: 

If B 1 (e) has orthorhombic or higher symmetry and the direction n pro
vides an extremum of B1 (e), then the elements of the conjugate vector, 
q•, satisfy the relations 

(5.3) 

Hence the direction q/lql is related to a by a symmetry operation of the 
orthorhombic system. 

To prove this theorem we define the second order tensor a• by 
the relations 

(5.4) 



- 10 -

where the superscript index i is not summed, and define the vector 

(5.5) 

When a• is diagonal the symmetry relation 

• o - o n qiaijnj - niaijq j (5.6) 

implies the three conditions 

M o q .. a.'L.n .... 
1J Ja. .... (5.7) 

which become, after substituting equations (3.4), 

M (hR)-1 M ( q)-1 q . . u- ..... q.... - n . . 0 ..... n.... = 0 
1J Ja. .... 1J Ja. .... 

(5.8) 

Equation (5.8) is equivalent to the the matrix equation 

(5.9) 

which holds only if [qsxas] vanishes or of it is parallel to the vector 
(c55c66)el+<c 44 c66)e2+(c 44 c 55 >e3• But the latter has only positive 
components, and hence cannot parallel the vector product of two vectors 
that both have positive components. It follows that 

(5.10) 

Equation (5.10) shows that when B1 (e) is orthorhombic all of its extrema 
satisfy the relation 

q~ = ± kn. 
1 1 

(5.11) 

where t. is a constant, which establishes equation (5.3). 

Since the sign of t. and choice of n3 are arbitrary the two 
classes of extrema identified in Section 3 reduce to the two cases 

[q~,qi,qjl = k[n1 ,n2,n31 

[q~,qi,qjl = t.[-n1,-n2,n31 

(5.12) 

(5.13) 

The other extrema of class 2 can be found by adjusting the sign and re
indexing. 

It is useful to divide the extrema into three types: (1) the 
extrema [100], [010], and [001], each of which is a solution to the 
orthorhombic form of (3.4); (2) extrema of the type [ht.l], h,t.,l non
zero; (3) extrema of the type [hOI], h,l non-zero (the [hkO]and [Ot.l] 
extrema can be found by re-indexin~. Given orthorhombic symmetry the 
direction n' with components ni =- ni maximizes B1 (e) if n does. It 
therefore suffices to consider the octant of positive components. 

r 

v 
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We require algebraic expressions for the extrema of types 
[hkl] and [hOl], each of which may be of class 1 (5.12) or class 2 
( 5 .13) • 

Bxtreaa of the Type (hkl] 

Since a• is diagonal we define the vector 

(5.14) 

where the ai are the principal stresses. Using this notation the equa
tion 

nA o 
u . . a .'-nk 1J J&. = Q~ .n~kakv = q~ 1J J 1 

has the solution 

v { M -1 ....- -1 M)-1 M a a. = (n ) .. (u-:-).k(n klln 1 q 1 1J J m m 

where the elements of the matrix G~1 = {(nM>i}<o•>j~<nM>ti} are 

I 2 2 2 2 
[c11+c66n2/n1+c55n3/n1 1 c12+c66 c13+c55 

I 
2 2 2 2 G" = I c12+c66 [c22+c66n1/n2+c44n3/n21 c23+c44 

I 2 2 2 2 I c13+c55 c23+c44 [c33+c55n1/n3+c44n2/n31 

Given equation (5.17), (5.16) can be written in the form 

-1 v _ M 
k ai - L1jnjknk 

where L is a 3x3 matrix. The solution of equation (5.18) is 

n~ = k-1 L-:-~a'! 
1 lJ J 

= k'-1L'? .a'! 
J 1 J 

(5.15) 

(5.16) 

I 
I 
I (5 .17) 
I 
I 

(5.18) 

(5.19) 

where Lc is the cofactor of L and the constant k' can be used to normal-
i z e a. 

For the [hkl] extremum of of class 1, 

ell a3 a2 
L = a3 c22 al (5.20) 

a2 al c33 

where 

al = c23 + 2c44 (5.21) 

a2 c13 + 2c55 (5.22) 

a3 = c12 + 2c66 (5.23) 
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The solution is 

(5.24) 

For the [hkl] extrema of class 2, 

L= (5.25) 

and the solution is 

nf = k'-1 {[c~3-c22c33]a1 + [c33°3-c13c23]aa + [-c23°3-c13c22]a•}. 
(5.26) 

n~ = k'-1 {[c33°3-c13c23]a1 + [c213-c11c33]aa + [-c13°3+c11c23]a•} 

2 -1 2 
n3 = k' {[-c13c22+c23°3]a1 + [-c11c23+c13°3]aa + [c11c22-a3]a•} 

In both cases the normalizing constant k' is obtained by 
summing the bracketed terms on the right hand side to ensure that 

nf + n~ + ni = 1 

The solution only has physical meaning when 0 ~ nt "' 1 for all i. 

B. Kxtreaa of the Type [hOI] 

Equations (5.15-19) still apply, but 

.• = n1elel + n3e3e3 

(5.27) 

(5.28) 

so L and Lc can now be written as (2x2) matrices. Choosing k so that qj 
• + ( ) = kn3 , q1 = - kn1 positive for class 1, negative for class 2 there are 

two solutions. 

For the [hOl] extrema of class 1, 

L = (5.29) 

and the solution is 

(5 .30) 

where, as before, k' is chosen to normalize a, 

k' (5 .31) 

and the solution is only relevant when 0 ~ ni ~ 1. 

,. 
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For the [hOl] extrema of class 2 

L= (5.32) 

and 

(5.33) 

where 

(5.34) 

6. EUJIPLES 

To illustrate the application of the formulae in Section 5 we 
consider three specific examples: (1) isotropic inclusions with arbitra
ry transformation strains; (2) cubic inclusions with tetragonal trans
formation strains (equivalent to the case considered by Wen, et al. 
[7]); and (3) hexagonal inclusions with hexagonal transformation strains 
(incorporating the examples treated by Mayo and Tsakalakos [8]). 

A. The Isotropic Iacl11sioa 

When the inclusion is isotropic the orthorhombic elastic con
stants reduce to the set 

ell = c22 = c33 = al = a2 = a3 = 2JJ.(l-u)(l-2u)-l (6.1) 

c12 = c13 = c23 = 2JJ.u(1-2u) -l (6.2) 

c44 = Cs5 = c66 = J.1 ( 6.3) 

where 11 is the shear modulus and u is Poisson's ratio. It can easily be 
shown that the extrema of types [hkl] and [hOl] are either imaginary or 
zero. The only relevant extrema are the habits [001], [010], [100]: 

a = e 1 (i = 1,2,3) (6.4) 

where the e 1 are the orthogonal principal axes of the stress. 

In an isotropic system the tensor ga is [2] 

a -1 -1 0 .. = 11 & .. - [2J.1(1-u)] n.n. 
lJ lJ 1 J 

( 6.5) 

The values of B1 (e) for the three habits specified by equation (6.4) are 

B1(e t") = (ai)2o• 11 

= c!f<ai)2 
(6.6) 

where ai is the principal stress along o 1. Choosing la 1 l ~ la 1 l ~ la3 l, 
the preferred habit of a thin-plate inclusion is 
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a = e 3 => I a 3 I = max { I ai I } (6.7) 

If a 2 = a 3 then B 1 {e) is isotropic in the plane containing e 2 
and e 3 • and the habit can lie anywhere in the plane. If a• is spherical 
the thin-plate habit is arbitrary. 

~ Cubic Iacluaioa with a Tetraaoaal Traasforaatioa Strain 

When the inclusion is cubic the orthorhombic elastic constants 
reduce to the set 

(6.8) 

(6.9) 

(6.10) 

moreover. 

111 = ~ = a3 = ell + 2c44 (6.11) 

ell - al = ell - c12 - 2c44 = c444 (6.12) 

where 4 is the anisotropy factor. If a• is tetragonal and e3 is the 
tetragonal axis then a• is also tetragonal with principal stresses a 1 = 
a 2 I a 3 • 

The type 1 extrema [100] and [010] are degenerate. The extre
mum [0011 is unique. The type 2 ([hk11) solutions are: 

(1) for q = ka 

ng = [(c 11 +a)a' - 2aa1 1/[ac44(2a1 +cr 1 )1 (6.13) 

In both cases 

(6.15) 

The extrema (6.13) and (6.14) are. respectively. the extrema 
L2 and L1 identified in reference [7] for the habits of type [hhl1. 
Together with the extrema [1001 and [001] they govern the preferred 
habit when 4 > 0. 

The type 3 ([hOl]) solutions are: 

(1) for q = ka 

ni = [ c 11 a
1 -aa 1 1 I [a(a 1 +a') 1 (6.16) 

r 
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(2) for [q1 .q2 ,q3J = tl-n1 .o.n3 l 

ni = [c11a'-c12a1]/[(cll+c33)(a•-a1)] (6.17) 

In both cases 

(6.18) 

These are, respectively, the extrema L2 and L1 identified in reference 
[7] for habits of the type [hOI]. The extremum L2 , equation (6.16), 
minimizes B1 (o). When 4..; 0 the preferred habit is determined by the 
the extremum L1 , equation (6.17), together.with the extrema [100] and 
[001]. 

, The preferred habits are identified in reference [7] as a 
function of the anisotropy factor and the tetragonality of the transfer
mat ion strain. 

C. Boxasonal Inclusion with a Boxasonal Transforaation Strata 

When the inclusion is hexagonal the orthorhombic elastic con
stants reduce to the set 

ell = c22 I= c33 (6.19) 

c13 = c23 I= c12 (6.20) 

c44 = css (6.21) 

c66 = (1/2)[c11-cl2] (6.22) 

where o 3 is the hexagonal axis. The hexagonal system has the property 
that B1(o) is isotropic in the basal plane of the hexagon. When a• is 
hexagonal or tetragonal on the ·s'ame axes it is also isotropic in the 
basal plane. Then all directions in the basal plane are equivalent, and 
the extremal habits have the form [hOl] where the direction of the axis 
o1 is arbitrary. 

The relevant extrema are [001], [100], and the two extrema of 
type [hOI]. Defining the parameter 

( 6.23) 

the extrema can be written: 

(1) for q =· kn 

n~ = 1 - nf = [c 11 a'-aa 1 1 I [ (c 33 -a)a1 +(c11-a)a' 1 (6.24) 

(2) for [q1 ,q2 ,q3 ] = [-n1 ,o,n31 

n~ = 1 - nf = [c11a'-ci3 a 1 ]/[(c11 +c 13 Ha'-a 1 )] (6.25) 

The extremum (6.21) minimizes B1 (o). The general solution for 
the preferred thin-plate habit can be found by comparing the· value of 
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B1 (e) at the extremum given by (6.21) to its values at [100] and [001]. 
The transformation strain is, in dyadic form, 

(6.26} 

where a 0 is the constant strain in the basal plane, '1\ is the ."tetragon
ality factor" [7], 

(6.27) 

and a33 is the strain along the hexagonal axis. We can set a0 =1 without 
loss of generality. The principal' stresses are then 

a 1 = (c11+c12+c13) + c13'1\ 

aJ = (c33+2c13) + c33'1\ 

The preferred habit is given as a function of '1\ by the relations 

where 

= 0 

= 1 

'1\ 0 = [c13(c11-c12-c13)+c11c33]/[ci3-c11c33] 

'1\ 1 = [c13(c11+c13-c12)-c12c33]/[ci3-c11c33] 

(6.28} 

(6.29) 

(6.30} 

(6.31} 

(6.32) 

Equations (6.30) include the results of Mayo and Tsakalakos 
[8] for the habits of hexagonal precipitates in aluminum as a special 
case. 

7. UNSOLVABIUTY Oil 1;11E DICLIHIC PROBLBII 

While the problem of determining the preferred thin-plate ha
bit is solvable for orthorhombic and higher symmetries, it is not alge
braically solvable in general. To establish this we show that the 
problem cannot always be solved for the particular case of an isotropic 
transformation stress in a triclinic inclusion. 

Khatchaturyan and Airapetyan [4] showed that for a spherical 
transformation stress the (111) directions maximize the relaxation ener
gy of a cubic crystal with positive anisotropy. In this case all the 
absolute maxima of B1 (e) occur at non-trivial solutions to equation 
(3.12): 

( 7 .1) 

If we perturb the elastic constants slightly we can produce a neighbor
hood (in the 21-dimensional space of triclinic elastic constants) of 
almost cubic elastic constants, all with the property that the absolute 

r 
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maxima of the relaxation energy fall at solutions to (7.1). 

By analytic continuation, if an algebraic formula for solving 
(7.1) exists and works for the perturbed set of elastic constants de
scribed above then the same formula applies when the elastic constants 
are replaced by complex constants. However, there are admissable sets 
of complex constants for which equation (7.1) cannot be solved. 

For example, consider the set 

~1111 = 2~3333 = 2 

~1112=~1121=~1211=~2111=~3323=~3332=~3233=~2333 = i(2/3>
112 

(7.2) 

(otherwise) 

Using these constants and setting n3=1 (recall that a need not be a unit 
vector) the vector equation (7.1) reduces to the simultaneous equations 

The solution is 

2ni +3(2/3) 112infn2 = [1+3(2/3)112 in2Jn1 

(2/3)112 in1
3+(2/3) 112 i = [1+3 (2/ 3> 11 2 in2 J n2 

ni - (3/ 2)n1 + 1 = 0 

(7.3) 

(7.4) 

which can be shown to be irreducible (for example, by Kronecker's method 
[18]). A classic result of Galois theory [18] states that an irreduc
ible quintic of the form x5 +px+q is solvable if and only if its resol
vent sixth degree equation, 

(7 .5) 

has at least one rational solution. But for p=-(3/2) and q=1 this equa.:... 
tion has no rational roots. 

. 
It follows that the problem of determining the preferred thin-

plate habit has no general algebraic solution when B~(e) has triclinic 
symmetry. Note that triclinic symmetry my result either from the crys
tal symmetry of the inclusion or from the mismatch between the crystal 
axes of the inclusion and the principal axes of the transformation 
stress. 
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