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I. Introduction 

The growing interest in chaotic Hamiltonian dynamical systems has naturally been accom

panied by the search for corresponding attributes of wave systems. The eikonal (WKB or semi

classical) approximation to the solution of a wave problem establishes the connection with an 

associated dynamical system (the characteristic trajectories of the eik:onal equation) and thereby 

provides a basis for examining the ways in which the structure of the phase space of these tra

jectories is reflected in the properties of the wave solution. Despite the fact that the applicability 

of this asymptotic method to a system characterized by nonintegrable trajectories has not been 

placed on a firm theoretical foundation, it has nonetheless provided the basis for many observa

tions and predictions concerning various aspects of the associated wave problem. 

In this paper1 we expand on the results reported in our previous Lette~ by investigating sta

tistical properties of a model wave equation for which, depending upon a single parameter, the 

corresponding dynamical system is either integrable or chaotic. Specifically, for the Helmholtz 

equation in a two-dimensional stadium-shaped region we examine the spatial structure of eigen

functions (by means of their spatial correlation and probability distribution of wave amplitude) 

and the the statistics of the spectrum. In particular, Berry's3•4 predictions for the spatial proper

ties of individual "chaotic" eigenfunctions (based on the nature of the Wigner function) is dis

cussed in relation to our particular problem in Section II; the results of our numerical tests and 

the comparison with this theory appear in Section III. In Section IV, we construct the probabil

ity distribution of wave amplitude P (\jf) for an individual eigenfunction, as well as for a super

position of neighboring modes. The sensitivity of the eigenvalues and eigenfunctions to varia

tion in parameter (especially near the classical transition from integrability to chaos) is studied in 

Section V. A statistical description of the spectrum in terms of neighboring level spacings is 

presented in Section VI. Among the conclusions in Section VII, we suggest that whereas the 

Liouville density in the phase space of an ergodic Hamiltonian dynamical system eventually 

spreads uniformly over the energy surface, the expectation of similar behavior of analogous pro

perties of the corresponding wave system may not be realized. 
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II. Review of Theory 

We consider the Helmholtz equation (V2 + k71
2)Vn (!) = 0 ih the two-dimensional 

stadium-bounded region (Fig. 1) with 'I' = 0 on the boundary. 2•5-9 The shape of the boundary 

is governed by the parameter y, defined to be the ratio of the half-length a of the straight section 

to the semicircle radius R. We hold the area constant ( = 7t) so that the mean density of eigen

values does not change as this parameter is varied (the equation is solved at fixed y). This wave 

problem can be viewed as the time-independent SchrOdinger equation for the motion of a parti

cle (mass m, energy En = tc ron = tc 2k71
212m and momentum I!. = tc !!_) in such a two

dimensional region (potential V (!) = 0 inside, V (~) = oo on the boundary). The wave equa

tion also describes transverse TM modes in a cylindrical electromagnetic cavity (or waveguide) 

with stadium cross-section (wave frequency (1)71 = ck71 with longitudinal wavenumber kz = 0). 

It will be helpful to bear these applications in mind as we discuss and interpret our results in the 

following Sections. 

The connection between this wave problem and a classical dynamical system is provided 

by the .eikonal approximation. 10 In this method (also known as the WKB or semiclassical 

approximation) the solution 'If(!) is assumed to have the form 'f(!) - A (!)exp[i <!>(!)], where 

the phase<!>(!) is taken to be much more rapidly varying than the amplitude A(!). Substituting 

this form into the wave equation, the magnitudes of the derivatives of the phase and amplitude 

are ordered as I V<j> I >> lA - 1VA I; defining the local wave vector!!_(!) as the gradient of the 

phase, this is the statement that a typical wavelength of 'f(!) is much shorter than the 

scalelength of variation of its amplitude (here, taken to. be the radius R ), or I!!_ I R » 1. This 

assumption leads to the lowest order partial differential equation for the eikonal phase: 

[V<J>(!)f = kx2 + ky2 = k71
2. Since the eigenvalue k71 is related to the wave frequency 0>71 in both 

the SchrOdinger and cavity mode equations, we write the eikonal equation in the form 

(1) 

which defines the local dispersion relation .Q(! ,!!_) (i.e., the relationship between the wave 
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vector !_ and the frequency ro, which may in general depend on position ::!)· In the case of the 

Schr&linger equation we have .Q = 2mH (! ,p)llr 2, where H (!_ ,p_) is the classical Hamiltonian; 

here, the value of .Q is proportional to either the classical energy E or the wave function fre

quency ro. In view of the correspondence with classical mechanics, one may identify the eikonal 

equation (1) as the Hamilton-Jacobi equation associated with the dynamical system generated by 

the Hamiltonian (or local dispersion relation) .Q(!_,!_) (where the phase <!>(!_) plays the role of 

Hamilton's characteristic a~tion function). The characteristic trajectories, or rays, of this 

dynamical system are governed by Hamilton's equations 

dx d.Q 
= 

dt dk 
dk d.Q 

=-- (2) 
dt dX 

For this system, the rays in ! -space are simply straight lines with specular reflection from the 

boundary. 

In the case of a circular boundary (y = 0), a typical single ray trajectory is confined to an 

annulus (Fig. 2 ) depending on initial conditions. This is due to the rotational symmetry which 

makes the angular momentum a constant of the motion in addition to the value of n (the 

"energy"). The presence of two constants of the motion in a system with two degrees of freedom 

implies 11 that a trajectory in the four-dimensional (x ,k) phase space lies on a two-dimensional 

surface which is a torus. This is an example of an integrable dynamical system. In the noncircu

lar stadium geometry (y > 0), however, the presence of the short straight section (of any length) 

breaks the circular symmetry and thus destroys the conservation of angular momentum. As 

shown in Fig. 3, a single typical trajectory appears to cover the entire interior of the stadium. 

Indeed, it has been shown 12•13 that almost all ray trajectories ergodically cover the three

dimensional surface of constant n = ro (the only integral of the motion) in phase space; further

more, Bunimovich 12 has shown that this billiard system is mixing. There are, however, special 

trajectories which are not chaotic: these are the periodic orbits such as the ones which bounce 

vertically between the straight sections, or horizontally on the midline of the stadium. The ini

tial conditions which generate these orbits constitute only a set of measure zero in phase space 

and the trajectories are unstable to perturbations in initial conditions. 
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The generalization of the traditional asymptotic semiclassical quantization methods for 

one-dimensional systems (e.g., the Bohr-Sommerfeld rules) to systems with more than one 

degree of freedom is the Einstein-Brillouin-Keller (EBK) method. 14-16 This method (for a 

good discussion, see Percival 17 ) can be applied only to integrable Hamiltonian ray systems 

because it is based on the quantization of the action variables. As such, the procedure requires 

the transformation of the Ha~ltonian Q(!,!) to a new Hamiltonian 0(£) which is a function of 

the action variables !_ alone. For integrable systems with N degrees of freedom, the N actions 

are defined as11 

I ::: - 1 J., k·dx 
- 21t 'Y - -

! 

(3) 

where theN paths {I:} are N irreducible and independent circuits around theN -torus in phase 

space on which the trajectories lie. Each of these actions is then quantized as 

I --+ I = m + l.a 
- .:..{!! - 4-

(4) 

where the m are integers (m = 0,1,2, ... ) and the numbers a are Maslov indices 10 which are 

related to the topological structure of the torus in phase space. These conditions discretize the set 

of classical tori and implicitly determine the eigenvalues com = km in the wave spectrum by set-
- -

ting co!!! = Q~ ). The interpretation of this quantization procedure is that a short wavelength 

normal mode of an N -dimensional wave system labelled by N integers corresponds roughly to 

the family of trajectories of the associated integrable dynamical system which lie on the phase 

space N -torus labelled by the corresponding values of theN actions (given by quantization con

ditions (4)). 

As our model system of rays bouncing inside a circular boundary is integrable, the EBK 

quantization procedure can be carried out as follows. The two irreducible paths {I:} required for v 

·the action integrals (3) can be visualized by "inflating" the picture of the trajectory in Fig. 2 into 

a torus: from the inner radius of the orbit, the ray moves outward over the top of the torus, 

reflects at the outer boundary and then continues back toward the inner minimum radius along 
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the bottom of the torus. The two irreducible paths are then the long way around the torus (the 

angular direction) and the short way around the torus (the radial direction); i.e., { .r.} = (8,r ). In 

this case, these two paths can be separated by expressing the Hamiltonian n in canonical polar 

variables, 

2 - 2 ki 
co = kn = Q(r ,k, ,k a) = k, + 2 

r 
(5) 

In this form, it is evident that ka is a constant of the motion and is in fact the angular momentum 

L, or angular action I a defined by (3). The radial action I, is given by the integral around the 

radial direction (from the inner radius a ro.L = L f{ij) to the perimeter and back) 

I, = - 1- tf.. k, (r ;L ,co) dr 
21t 'f 

(6) 

where kn2 = ro is the value of Q. This relation I, (L ,ro) now implicitly defines a new Hamil

tonian Q(L J,) in action-angle variables (by replacing kn2 with Q in (6)), as well as the transfor

mation I, (r ,k, ,k a) from the canonical set of polar variables to action-angle variables by using 

(5) to express kn2 in terms of r, k, and ka in (6). 

The quantization of the actions by (4) can be shown16 to be 

L=m m ,n = 0,1,2, ... (7) 

The term 3/4 in the definiton of In is the Maslov index for the projection of the radial motion in 

phase space onto x -space (which accounts for the focusing of the rays along the inside of the 

annulus and their reflection from the boundary). The substitution of these conditions into (6) 

discretizes the set of classical tori and implicitly determines the eigenvalues in the wave spec

trum, rom,n = Q(m Jn ). These expressions were first derived by Keller and Rubinow 16 and 

yield eigenvalues which are in very good agreement with the exact spectrum (the zeros of Bessel 

functions). 



-6-

If the ray system is not integrable (as in our case of rays bouncing inside a stadium boun

dary) then the EBK quantization procedure fails (the set of N actions does not exist). It is not 

known in this case what the correspondence is between normal modes of the wave system and 

objects in the ray phase space (such as the tori for integrable systems), if indeed there is any ~ 

correspondence at all. It is one of the goals of this paper to examine the solutions of the wave 

equation in the stadium geometry in an attempt to discover and elucidate such a connection. This 

investigation will be carried out in the light of Berry's3•4 conjectures on the statistical properties 

of eigenfunctions of the SchrOdi.nger equation based on the phase space structure of classical ray 

systems which are chaotic. 

As the description of the ergodic properties of a Hamiltonian ray system is most natural in 

the (:!, ~) phase space, it is advantageous to explore the implications of such behavior for the 

corresponding normal modes in terms of a phase space representation of the waves. An example 

of such a quantity is the Wigner function, 18 which may be defined in terms of the :!. -space 

representation of a wave 'Jf(x) in N dimensions as 

(8) 

The properties and applications of this function have been discussed by many authors. 3.4·19 It 

is of interest because it is often regarded as a candidate for a wave analogy of the classical Liou

ville density of the associated ray system. The transform in (8) is invertible and yields the pro

duct 

(9) 

while the projection onto:!. -space is 

[

oo dNk 
I 'Jf(X) I 2 = W (x ,k) N 

- -- (21t) 
(10) 
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For a wave which is rapidly oscillating on ! -space (such as in the eikonal approximation) 

the Wigner function is in general a rapidly varying function on phase space. Berry3 has intro

duced the local spatial average of the Wigner function 

with 

1/U 

<W(!,!)> - ~~ J- W(! +§..,!)dN s 
-1/U 

lim~=O 
A.--+0 

but 

(11) 

where A. is a typical wavelength of 'I'(!) and ~ is the smoothing length. (Thus we consider local 

averages over many wavelengths of increasingly shorter wavelength modes, IJ ~ ~ 0). This 

averaging process eliminates some of the oscillatory nature of the Wigner function (typical of 

quantum or physical optics effects) and, together with the tendency to shorter wavelength, 

allows one to make predictions for <W > based on its intetpretation in terms of classical 

mechanics or geometrical optics. 

For time-independent integrable ray systems with N degrees of freedom, Berry4 has taken 

the crudest approximation 

(12) 

where !J!,!) is the set of N actions expressed in terms of! and !, and the~ are their 

corresponding quantized values in the EBK analysis. This expression was obtained4 by using an 

eikonal representation for 'I'(!) in (8) and performing the integral in the stationary phase approx

imation. Although Balasz20 has shown that the Wigner function can be a o-function only on 

linear subspaces of phase space, this approximation conforms to the expectation based on the 

correspondence between the classical phase space tori and stationary states of the wave system. 

As we have noted, the correspondence between normal modes and objects in the classical 

phase space of nonintegrable ray systems is unknown. However, the analogy between the 
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Wigner function and the classical Liouville density has led Berry and Voros21 to take as a crude 

approximation for time-independent ergodic ray systems 

::: - 1-B(Q(x ,k)- ron) r --n 
(13) 

which is a one-dimensional B-function selecting the 2N -1 dimensional surface (with volume 

r n) corresponding to the eigenfrequency ron. Although Voros21 has to some extent justified this 

approximation, its status is more that of a conjecture and indeed a proposal for the definition of 

chaos in stationary states of wave systems. 

The verification of these hypotheses (particularly (13)) is an important step in determining 

the criteria for and the nature of what has become known as quantum chaos and its relation to 

corresponding classical concepts. The Wigner function, however, is a difficult quantity to con

struct and study numerically for systems with more than one degree of freedom, due to its 

definition in terms of a multiple Fourier integral (8) over wave functions which themselves must 

be computed numerically in nonseparable geometry. Instead of investigating the Wigner func

tion associated with a normal mode directly, one can gain some insight by studying the eigen

function itself. This is because, as Berry3 points out, the approximations (12) and (13) when 

substituted into (10) and (9) have implications for statistical properties of the individual eigen

f~nctions 'lf(X ). In this way, predictions for the local average intensity 

(14) 

and the spatial correlation function 

- -
1-<'lf(X + ..!.s )'If* (x - l.s )> 

IT(!) - 2- - 2-
(15) 

may be computed for either the integrable or chaotic case. Here the local average < > is 

defined as in (11). We note that this definition of the spatial correlation differs from that used 

recently by Shapiro and Goelman;6 we believe that (15) is a more natural definition in that it 

does not rely on the prescription of some "self-avoiding space-filling path in coordinate space." 
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Furthermore, the present definition coincides with the standard correlation function studied in 

wave propagation and turbulence theory when the local spatial average < > is interpreted as an 

ensemble average; in that case, the averaged Wigner function can be properly interpreted as the 

local spectral function of the wave. 

We have attempted to test the accuracy o:( these asymptotic forms of the Wigner function 

by numerically investigating II(!) and C (:!:,.:0 for individual eigenfunctions of the Helmholtz 

equation in both the circular (y = 0) and stadium (y > 0) geometry. In the integrable circular 

case, we have from (12) 

(16) 

where we have used I 9 = L = k 9 for the angular action. For the radial action function 

Ir (:!_,!) = Ir (r ,kr ,ka) we substitute co = Q(r ,kr ,ka) from (5) into (6) to obtain 

[ ll/2 l R 2 2 2 r2 -1 kar 
I r (r ,kr ,k e) = - kr r + k 9 (1 - -2 ) - k aCOS 

r R R ...jk 2r2 + k 2 
r 9 

(17) 

The quantization rules (7) have been used in (16) for the~. When (16) is inserted into (10), one 

finds the local average intensity 

(r ~ R) (18) 

for a short wavelength eigenmode of the circle with semiclassi~al eigenvalue km ,n. We observe 

that rrm,n (r) is just the classical density of rays with the quantized values of the actions!_. This 

expression is correctly normalized on the annular region between the boundary of the circle and 

the radial turning point aro.m = mlkm,n (where it becomes infinite), and is proportional to 

kr-1(r) in that annulus. The singularity at aro,m .is of coll!Se "softened" when wave effects are 

considered; this is an example of the caustic phenomenon observed in regions of:!. -space where 

rays focus. 
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The spatial correlation function is obtained by inserting (16) into (9) and dividing by 

IIm,n (r) 

where (r ,9) are the coordinates of a point ! inside the circle, s is the distance measured from ! , 

and <1> is the angle of§_ (relative to the positive x -axis). Again, this expression is valid only in . 
the classically allowed annulus. Note the definite anisotropy in the angle <1> at a fixed point (r ,9) 

due to the contribution to 'Jf(X) of only two (ingoing and outgoing) local wave vectors, 

!±(r) = (k a.±kr (r) ). Thus, for§_ along the radial direction ( <1> = 9) the correlation function has 

the spatial dependence of the local radial wavenumber C = coskr (r )s while for§_ in the angular 

direction (<I> = 9±7t/2) the variation is that of the angular wavenumber C = exp±ims /r (for 

small s, s lr = the angular deviation from the point !)· We also note that for r ::: a ro.m, C is 

approximately constant in the radial direction indicative of the transverse correlation in the caus

tic region due to the focusing of rays. 

These expressions for II and C are in agreement with the more general formulas derived by 

Berry in Ref.[3] (when made specific to the present problem). In that work, he also discusses the 

general presence in integrable systems of caustic singularities in II and the anisotropy in C due 

to only a finite number of local wave vectors contributing to 'I' at each point x. He also predicts 

the form of II and C for a relatively general ergodic system (of which the stadium withy> 0 is a 

simple example), based on the assumption (13). Thus we have upon substitution of (13) into 

(10) the local intensity for a wave in the (ergodic) stadium geometry 

(20) 

where A is the area of the stadium ( = 1t). This uniform intensity conforms to expectation 

based on the ergodic nature of the rays which densely cover the interior of the stadium. It should 

be remembered that this is the average local intensity; i.e., the short wavelength oscillations of 
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the mode have been averaged out, so that it is a prediction of uniform average intensity. The 

correlation function is computed with (13) in (9): 

(21) 

Here kn2 = ron, and the integral has been computed using polar variables and Bessel's identity. 

Following Berry, 3 we observe that expressions (20) and (21) for the ergodic stadium are 

strikingly different from the corresponding formulas (18) and (19) for the integrable circle in two 

important respects: (i) The local average intensity in the circle is dominated by t~e caustic . 

singularity while no caustics are expected to exist in the stadium, and (ii) the correlation func,. 

tion in the circle is nonuniform in ! and anisotropic in ! (being influenced by a finite number of 

local wave vectors), whereas in the stadium it is expected to be uniform and isotropic. This iso

tropy of C seems reasonable based on the ergodicity of the underlying rays: almost every point 

x in the interior of the stadium will be "visited" (approached arbitrarily closely) by any ergodic 

trajectory infinitely many times as t -+ oo (and the angle of! will" take on almost all values in 

this neighborhood of!). Thus, if a normal mode of the stadium in some sense corresponds to an 

infinite-time ergodic' trajectory, it could be thought of as being composed of an infinite number 

of local eikonal contributions with an almost continuous local wave vector spectrum. 

lll. Numerical Results 

We have numerically solved the boundary value wave problem discussed in the previous 

Section using a boundary integral technique developed by Riddell. 22 This method permits the 

independent investigation of any region of the spectrum (i.e., without computing all lower eigen

values) as well as the capability of constructing the values of any particular eigenfunction over 

an arbitrary domain within the bounded region (even at just one point). These are important 
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properties because in order to test the predictions of Section II one must examine short 

wavelength eigenmodes for comparison with semiclassical theories. The geometry of Fig. 1 

admits reflection symmetries across the axes, which give rise to four independent parities of 

solutions; we have restricted our study to the odd-odd class (nodal lines on axes). In a 

compromise between large eigenvalues and numerical accuracy, we have concentrated on a 

small part of the spectrum near kn ::: 65, which is approximately 200 levels above the ground 

state in this parity class; in this regime there are typically 15-20 wavelengths across the interior. 

We have tested the precision of our numerical technique in the case of the circle against the 

exact analytical solutions Jm(km,nr)sinm9 (m even, for odd-odd modes). In the range 

50< k < 100, 97% of our numerically obtained eigenvalues have ±0.001 absolute error, while 

90% have error less than ±0.0005. Furthermore, numerically constructed eigenfunctions were 

found to have relative error of about 10-4. We assume that these error estimates carry over to 

the case of the stadium. 

A perspective view of a typical circular (y = 0) eigenfunction is shown in Fig. 4, wher~ 

I 'Jf 12 is plotted in the positive quadrant for k40,5 = 65.012 (angular quantum number m = 40, 

radial index n = 5). The visual comparison of I 'Jf 12 with the classical probability density is 

apparent: (i) in the classically disallowed region (r < a Ctl,m) the amplitude is vanishingly small; 

(ii) the caustic region formed by the first and largest peak of J 40,5(k 40,5r) corresponds to the 

focusing of the geometrical optics rays along the inside rim of the annulus; and (iii) the radial 

decay of amplitude (smoothing over the rapid wave oscillations) within the annulus appears to 

verify Eq.(18). 

In Fig. 5, we plot the local correlation function C (! ,£) for this mode. As a typical example 

we have chosen the point ! = (r ,9) = (0.866,0.867) and have computed the correlation as a 

function of Is I at three angles <1> = 0, 1t/4, 1t/2. The crosses denote the numerical data and are 

compared to the solid curve representing the theoretical prediction based on the real part of 

Eq.(19). It should be noted that the local average indicated in (15) was in practice carried out for 

this case over an area encompassing only about two wavelengths as opposed to the limiting pro

cess stated in (11); numerically we may examine eigenmodes with large (but finite) 

... 
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wavenumber, but due to (15) we must smooth only over regions where the local average inten

sity IT remains somewhat uniform. Nevertheless, we may conclude two things on the basis of 

these results: (i) The Wigner function for eigenstates of systems which are classically integrable 

appears to be concentrated on the torus in phase space corresponding to the semiclassically 

quantized values of the actions (because expression (19) was derived from the approximation 

(12)), and (ii) the part of the spectrum we are examining is probably "asymptotic" enough to test 

predictions based on semiclassical arguments. 

In Fig. 6 we display a perspective view of I 'I' 12 in the positive quadrant for a typical eigen

function in the stadium geometry (y = 1). The eigenvalue k = 65.326 is again approximately 

200 levels above the ground state of the Odd-odd parity class (since, although we have stretched 

the circle into a stadium, we have kept the area constant). The irregular distribution of I 'I' 12 

over the stadium is in striking contrast to that in the circle, and the connection of such a 

"random-looking" eigenfunction with an underlying ergodic classical system seems at first 

appealing. On the basis of the ergodic nature of almost all trajectories in the stadium however, 

one would expect a more uniform distribution of amplitude than that which is observed in 

Fig. 6a; in fact, the semiclassical prediction of (20) . seems not to be borne out in this case. 

Instead, we would characterize the appearance of this mode as consisting of many small local

ized regions (of several wavelengths) with relatively high intensity somewhat randomly inter

spersed among larger areas of much lower intensity. As previously noted, 2•23 the nodal curves 

as in Fig; 6b appear to wander randomly through the domain. Although this behavior is fre

quently mentioned as a symptom of wave chaos, we feel this feature should only be emphasized 

to the extent that it facilitates the visualization of the local wave vector spectrum: the random 

weaving of these contours tends to indicate an isotropic distribution of local wave vectors as 

predicted by Eqs.(l3) and (21). 

The numerical computation of the correlation function C (! .~) for this mode is presented in 

Fig. 7 (again denoted with crosses) and compared to the prediction (21) at three angles of!· The 

agreement with theory here is not as definite as in the circular case and the expected isotropy is 

not fully realized. These results were obtained by replacing the local average in (15) by an 
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average over the entire stadium (even though the local intensity I o/ 12 is evidently not uniform) 

since any local average performed as in the case of the circle for finite wavenumber would pro

duce anisotropy in the correlation. Similar (and in fact worse) agreement1 with theory has been 

found for other randomly selected modes, including ones near k = 100 (nearly 600 levels above 

the ground state). If we assume that stadium modes in this part of the spectrum can be con

sidered to be "asymptotic" in the same sense as circular modes in the same range, then we must 

conclude that the prediction (13) is not substantiated. In other words, these results seem to indi

cate that the Wigner function corresponding to these modes exhibits more structure on the 

energy surface than does the classical invariant Liouville density for an ergodic trajectory. Thus, 

both the distribution of intensity and the behavior of the spatial correlation suggest that an indi

vidual eigenmode of the stadium does not correspond to an ergodic family of orbits (but possi

bly, to only a finite-time subset of ergodic orbits). 

We have constructed1 a number of eigenfunctions in this region of the spectrum (k = 65), 

as well as several in the regime k ::: 1 00; six consecutive modes in each range are shown in 

Fig. 8. Most of the modes (approximately 80%) are similar to the one pictured in Fig. 6 in that 

they share the property of random intensity distribution and anisotropic correlation. A small 

number of modes (about 10% ), however, were observed to have a more uniform intensity distri

bution. In contrast, the remaining 10% of the eigenfunctions we constructed were surprising 

because they· appeared to correspond to periodic ray trajectories. Examples of this are the modes 

shown in Figs. 8d and 8i; these "bouncing ball" modes seem to be associated with ray trajec

tories which bounce between the straight sides of the stadium (although the waves do exhibit a 

finite value of kx ). In later work, Taylor and Brumer7 and Heller8 have also observed this type 

of mode. Although "bouncing ball" modes were predicted by Keller and Rubinow16 to exist for 

arbitrarily shaped two-dimensional regions, their arguments assume that the boundary was 

everywhere focusing and that the ray system was integrable. Although there is no firm theoreti

cal foundation for quantizing ergodic ray systems and constructing normal modes in .terms of 

periodic orbits (which are in general isolated and unstable to perturbation), Heller8 has recently 

given arguments for the existence of such periodic orbit modes in the spectrum of a general 

.. 
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ergodic ray/wave system. Bai, Hose, Stefanski and Taylor9 have also offered an explanation of 

bouncing ball modes based on an adiabatic quantization procedure. Another class of mode we 

observed is represented by those in Fig. 8f,g; this "whispering gallery" type of mode was also 

predicted by Keller and Rubin ow, although again the arguments were based on the existence of a 

torus corresponding to an integrable family of orbits which skips around the boundary. 

Percival17 has introduced the term irregular to describe modes corresponding to classically 

nonintegrable Hamiltonians (whereas integrable ray systems would possess regular modes). In 

view of the different types of modes found in the spectrum of the stadium, some of which appear 

more similar to the regular modes of the circle than to the majority of stadium modes, we pro

pose to further differentiate the types of irregular modes. Thus, we refer to the majority of sta

dium modes (as in Fig. 6) as chaotic waves, and term the more regular-looking triodes (as in 

Figs. 8d,i,f,g) localized waves. Here this is suggested as a primarily subjective visual distinction, 

but in the next Section we shall consider a quantitative measure of the difference between these 

classes of modes. 

IV. Amplitude Distribution: P('lf) 

Berry3 has proposed a simple quantitative measure for distinguishing between regular and 

irregular waves, loosely based on the concepts of eikonal theory. If one assumes that the wave 'If 

at a point:!. in the stadium can be written as a sum of eikonal ~·wavelets", each contribution aris

ing from successive passes through an arbitrarily small neighborhood of:!. along a single chaotic 

trajectory, then 'If(:!_) would have the form 

(22) 

Since in this model the rays propagate freely between reflections from the boundary, the phase of 
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the jth contribution to 'If is simply proportional to the total pathlength Lj between the U-1) and 

jtharrival "near"!: <l>j(!) = J!:d! = l!£.lLj. Now,asthissystemismixing,theLj'smaybe 

considered to be independent random variables. With these assumptions, one concludes on the 

basis of the central limit theorem that 'If(!) is a gaussian random variable for all ! . Thus, the 

probability of finding the value 'If at any point inside the stadium, without knowledge of the sur

rounding values, is distributed as a gaussian, P (\j!) - e -~'11
2

• 

Naturally, this should be viewed as only a qualitative argument (indeed, this is probably not 

even a correct interpretation of a stadium mode at all). Other amplitude and phase contributions 

(such as those due to boundary reflections and possible focusing) have been ignored, and nothing 

has been said about quantization. It does, however, serve to convey this general idea: if an 

irregular wave supported by chaotic rays may be represented by a superposition of a large (possi

bly infinite) number of eikonal wavelets, then the chaotic paths of the rays could produce a phase 

decorrelation of the individual contributions, yielding a gaussian random variable at each point. 

This is a simple statistical test to perform. Evaluating a single normalized eigenfunction 'JI 

at approximately 5000 points in the interior of the quadrant, the probability distribution P ('JI) is 

constructed as a normalized histogram with 100 bins. For eigenfunctions normalized to unity in 

the quadrant of area 7t/4, the width of the npmerical distribution P ('If) is --/4/7t: 

(23) 

This is true for all modes at all values of y. Therefore, each numerical P ('JI) at any value of y 

may be compared with the same standard normalized gaussian prediction 

P o('lf) = 2-312 exp( -mf/8) (24) 

The result for the stadium mode of Fig. 6 at k = 65.326 is displayed in Fig. 9. Despite the 

rough form of the numerical data, it seems that the general shape of the probability distribution 

is fairly well described by the gaussian prediction. Actually, the jagged peaks are due to the 

finite wavelength of the mode, as each peak in the distribution represents a local minimum or 
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maximum in the wave (a wave peak). When the wavelength is shortened (larger eigenvalue) 

each mode contains more waves and the peaks in P ('If) tend to coalesce. Figure 9 is typical of 

the general agreement with this theory found for all of the chaotic type of"{ = 1 stadium modes 

examined. Similar results have been reported by Shapiro and Goelman,6 although their experi

mental histogram for P ('If) is not compared with a standard gaussian curve, and these authors 

seem to be unaware of Berry's prediction. 

In contrast, the bouncing ball modes possess a somewhat different characteristic probability 

distribution as shown in Fig. 10. While the "wings" of the numerical P ('If) seem to fit the gaus

sian prediction, there is a definite disagreement near 'If = 0. Of course, this central peak is 

readily explained in view of the localized bouncing ball mode structure shown in Fig. 8d: it 

reflects the large semicircular ends of the stadium where these modes are evanescent. In fact, 

the distribution for bouncing ball modes is similar to those found for circular modes. 

Figure 11 shows P ('If) for the circular mode shown in Fig. 4. Here, the effect of an evanes

cent region is overwhelming: this is due to the large interior disk where the high angular momen

tum mode has very low amplitude. Furthermore, the probability of finding large values of 'I' is 

greater for the circular mode than for the chaotic stadium mode: this reflects the existence of the 

caustic region in Fig. 4. We conclude that a regular mode is characterized by a non-gaussian 

probability distribution; in this case, P ('If) displays a balance between the extremes of high and 

low amplitude regions (since the width of P ('If) is constant) and in this way it describes the dom

inant features of this type of mode. By this measurement, localized stadium modes (such as 

bouncing ball modes) are similar to regular modes, even though the nature of the ray-wave 

correspondence which this association entails remains unexplained. 

In order to quantify these obserVations, for each mode studied we have measured the fit to 

the proposed gaussian (24) by computing the residual defined by 

1 n [ 12 
P2 = - L P ('Jii) - P o('Jii )J 

n i = 1 

(25) 

Here, n is the number of bins in the histogram P ('If) (we have used n = 100). This quantity 
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was evaluated for sample eigenfunctions with 60 S k S 70 at both y = 0 andy = 1; in addi

tion, we have also investigated the trend in p as y takes on intermediate values. The results are 

shown in the graph of p vs. yin Fig. 12. 

At y = 0, the residual p varies over a wide range from the worst fit (large p) for high angu

lar momentum modes to the best for low angular momentum modes (small m ). Almost all 

modes examined for y ~ 0.25 exhibit a uniformly better fit to the predicted gaussian by an aver

age factor of about four. The obvious exceptions to this general behavior (denoted by the 

squares) are the bouncing ball modes, which have values of p typical of low angular momentum 

circular modes; this again is consistent with earlier remarks. The intermediate value of 

y = 0.125 represents the case where the wavelength of the modes in this range of the spectrum 

is comparable to the irregularity in the boundary (the length of the straight section) and appears 

to mark a transition between systems with regular and irregular modes (at least as far as this 

measurement is concerned). If this transition is truly a wave effect (the mode "sensing" the irre

gularity) then the threshold should decrease to lower values of y as the wavelength is shortened 

as in the ray limit (where rays are ergodic for all y > 0). In the next Section, however, we 

present an observation which would seem to contradict this idea of a "wave threshold". 

We have also considered the statistics of a linear superposition of two neighboring levels 

'VI and 'V2 

'Va =: 'Vl + "o/2 cosa (26) 

where a is a relative phase and 'Va is properly normalized. The average probability distribution 

P('V) (27) 

is then computed by constructing the histogram P ('Va) at 13 values of a for 0 S a S 1t and 

averaging. 

In the circular case, the levels chosen were the high angular momentum mode of Fig. 4 and . 

a neighboring low angular momentum mode with k4,19 = 65.067 for which Ilk = 0.055. An 

lo' 

.. 
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example of the superposed mode structure at a single value of a is shown in Fig. 13; although 

the nodal and intensity patterns for this combination appears somewhat "irregular", they are not 

quite as random as those found for chaotic stadium modes. The average P (\jf) is displayed in 

Fig. 14 and the residual p of the fit to the standard gaussian is plotted in Fig. 12 as the cross at 

y = 0. The fit is now better than for any pure state, including that for chaotic stadium modes, 

despite the fairly ordinary appearance of the wave function. One reason for this is the smoothing 

out of the "wings" of the probability distribution due to the better statistics involved in the 

averaging: the jagged peaks have coalesced with the varying amplitude of the wave peaks at dif

ferent values of a. Note that the central peak of P (\jf) near 'V = 0 persists. 

For they = 1 stadium, we have studied the superposition of k 1 = 65.326 and k 2 = 65.412 

(M = 0.086). The averaged distribution P ('Jf) shown in Fig. 15 is now an extremely good fit 

due to the averaging process; this is confirmed by its value of pin Fig. 12 (the cross at y = 1). It 

seems that the net effect of averaging over the relative phase of two superposed modes is about a 

factor of three in the value of p gauging the fit to the standard gaussian. The superposition of 

many modes and subsequent averaging may produce better gaussian statistics even for the circu

lar case. 

We have also studied the statistics of the normal derivative 'l'Tt = d'Jfldrt evaluated on the 

boundary for regular and irregular modes. As a comparison, both Berry24 and Ott and Manhei

me~5 have suggested that the mean square value of the normal derivative of an irregular mode 

should satisfy 

(28) 

where the average on the left is over the boundary and that on the right is over the interior (i.e., 

by (23) it is equai to the width 'l'~ = 4/7t). We have tested this hypothesis and have examined 

the distribution P ('Jf11). Numerically, we could sample the normal derivative at only 50-100 

points along the one-dimensional boundary, as opposed to the approximately 5000 interior sam

ple points available for constructing P ('Jf). In order to increase the statistics, we considered the 

superposition 
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(29) 

and have allowed 91 and 92-to vary independently in 0 ~ 9 ~ 1t (keeping \jf[~] properly normal

ized). The averaged distribution of normal derivative is thus constructed in analogy with (27) 

(30) 

For the case of regular modes at "( = 0, we again examined the combination of the low and 

high angular momentum modes previously introduced. The distribution P (\jf11) shown in Fig. 16 

has a root mean square of 61.87, which is to be compared with the value k :: 65.0 (for both 

modes) to be used in .(28). The distribution for the superposition of the two irregular modes at 

"( = 1 (k 1 = 65.326,k 2 = 65.412) is shown in Fig. 17, where the width is 61.07. In both cases 

the root mean square is near the predicted value (although (28) does not apply to regular modes) 

and, perhaps surprisingly, P ('1'11) for the superposition of two irregular modes is fairly well

approximated by a gaussian. 

These results tend to substantiate the prediction that chaotic irregular modes can be charac

terized as gaussian random functions. They also point out that in terms of P (\jf) as a criterion, 

the classification of regular and irregular waves based on corresponding ray properties may need 

refinement (at least for this system) in order to account for the anomalous properties of bouncing 

ball modes. Moreover, while most stadium modes are chaotic by this standard, they do not man

ifest the uniform intensity expected from a primitive concept of ray-wave correspondence. As 

previously argued, these are also aspects of higher eigenvalue ranges so that they do not appear 

to be finite ~avelength effects. 
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V. Variation of Modes with y 

We have observed another peculiar qualitative aspect of the contrast between stadium and 

circular eigenfunctions in terms of the differing properties of the corresponding rays. As previ

ously stated, almost all orbits in the stadium are ergodic for all values of y > 0, whereas the 

graph of p vs. yin Fig. 12 seems to indicate that in order for wave functions to become chaotic, y 

has to be large enough for the wavelength to "sense" the straight section a in the boundary. 

Thus, even though the modes in the range of the spectrum near k = 65 meet the eikonal condi

tion for y-::0 (kR (y) :::: 65, IJR :::: 0.1), the values of ka = kyR or a /A. = yR !A. are a factor of 

y smaller. (Recall that a, the half-length of the straight section, and R, the radius of the semicir

cle, are both y-dependent since the area is held constant: R (y) = [1 + (4y/7t)r1' 2). For these 

modes, the threshold y for irregularity should be such that, 

1 :::: a(y) = 
1

R(y) = ~ 1+ 4y 
[ ] 

-112 

A. A. A. 1t 
(31) 

which fork :::: 65 gives 'Y :::: 0.1 as observed in Fig. 12. , 

In an attempt to observe this wave transition, we have followed the evolution of several 

eigenvalues and eigenfunctions as y is increased slightly above zero. Figure 18 is a graph of the 

trajectories of six eigenvalues as a function of y, for 0 S y S 0.07. The parenthetical number 

labelling each curve refers to the value of m (angular momentum) of that mode at y = 0. 

Immediately obvious is the quite disparate behavior of the high and low angular momentum 

modes, the latter displaying much greater sensitivity to the change in boundary shape even at 

very small y. A similar sensitivity of low angular momentum modes to perturbation has been 

noticed by Taboz-26 in a different problem, but here these modes seem to be "feeling" the straight 

section in a regime much lower than the threshold (31) . 

Equally striking is the evolution of the eigenfunctions of the low angular momentum 

modes. The pictures in Fig. 19 depict the changes in J 2(k 2,20r )sin29 at 0.01 intervals for 

0 S y S 0.07. Particularly interesting are the mode structures at y = 0.02 and y = 0.05. 



-22-

Further analysis shows that near y = 0.05, the eigenvalue of this mode is very near another 

eigenvalue (although not shown in Fig. 18) so that this fairly chaotic pattern may be due to the 

mixing of nearly degenerate modes. This effect of the collision of eigenvalue trajectories will be 

discussed below. 

The structure of the mode in Fig. 19c is very reminiscent of that found in stadium bouncing 

ball modes. In the interval 0 ~ y ~ 0.02, the nodal line which at y = 0 was the positive x -axis 

has swung radially leaving behind a large section of the quadrant with very small amplitude. 

This could be interpreted as an effect of spontaneous circular symmetry breaking compatible 

with the ray picture: the low angular momentum mode represents ahnost diametrically oscillat

ing rays (with a w,m ::::: 0.03), so that as y is increased slightly the most stable family of rays (i.e., 

the ones bouncing between the straight sections) with nearly this property are "favored" to 

represent the mode. Although there is no rigorous theory for this correspondence (since even the 

low angular momentum ray torus in phase space is destroyed when ydiffers from zero), it would 

be interesting to determine if the bouncing ball modes observed at y = 1 do indeed originate 

from small m modes at y = 0. 

The rather insensitive behavior of the high angular -momentum eigenvalues in Fig. 18 is 

accompanied by only a slight change in the eigenfunctions. Figure 20 shows that the rapidly 

oscillating angular structure of an m = 48 mode is modulated so that the amplitude is dimin

ished near 9 = 1t/4 (although the caustic peak seems unaffected). These whispering gallery type 

modes may persist and evolve into similar structures such as the mode shown in Fig. f, but this 

connection has not been investigated. 

In the next Section, the spectrum of eigenvalues will be analyzed statistically at different y 

in terms of the probability distribution of neighboring energy level spacings P (M ), forE = ·k 2. 

The graph of eigenvalue evolution in Fig. 18 has a bearing in this regard as it reveals several 

instances of apparent eigenvalue trajectory crossings. Such an intersection implies a degeneracy 

of modes at that value of y, and as such is an important contribution to P (M) at M = 0. It is 

common lore that eigenvalues generically do not cross under perturbation and that such a degen

eracy marks a symmetry of the system. Although there has been much discussion27-29 of this 
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phenomenon and its relation to the integrability of the corresponding ray system, we shall not 

address the general question of eigenvalue crossings for the present system, except in the light of 

Fig. 18 and the computation of P (M ). It is important to remember that the two-fold degeneracy 

of modes in the circle (sinm 9 and cosm 9, due to the continuous angular symmetry) is removed 

when the modes are separated into reflection parity classes. Therefore, crossings or near degen

eracies due to this effect do not appear in Fig. 18 or in P (M ). 

Considering the wide range of eigenvalue sensitivity to boundary perturbation exhibited in 

Fig. 18, it is natural to expect the several crossings indicated. However, it is difficult to deter

mine numerically whether these trajectories actually intersect or narrowly avoid each other as 

schematically illustrated in the inset; the numerical error in the eigenvalue produces an uncer

tainty in both trajectories in a small neighborhood of the apparent crossing. Even the computa

tion of the eigenfunctions of the two modes involved at values of y before and after the intersec

tion is not necessarily a good test because in the vicinity of the near degeneracy there is consid

erable mixing and the identity of the eigenvalue-eigenfunction association is lost. 

The behavior of the eigenvalues as a function of y near y = 1 is similar to that found for 

small y, that is, most modes are fairly insensitive to changes in the boundary, but there are 

exceptions. The eigenvalues of bouncing ball modes in this regime follow trajectories which can 

be understood in terms of the fact that they are quite accurately given by a rectangular quantiza

tion formula 

dk 
dy 

= 

::: 

1t2[ m2 + ~] = ~ [1 + ~] (m2+fn2) 
a2 R2 i 1t 

2k k [ (m lyn )
2 

] 

4y+1t 'Y 1+(mlyni 
(32) 

2k 
4y+ 1t 

where the approximation n » m has been made corresponding to these modes with large ky. 

From this it is clear that both the first and second derivatives are of the order of k. Other authors 

29•30 have used t~e second derivatives (or second differences) of eigenvalue trajectories to 
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classify the regular and irregular spectrum, noting that irregular modes are generally more sensi

tive to perturbation. This result is contradictory in that respect; bouncing ball modes (which 

seem to share more of the properties of regular modes) are very sensitive, whereas the chaotic 

irregular stadium modes are stable and insensitive to perturbation. 

Whispering gallery modes on the other hand are much less sensitive. Considering an 

approximate one-dimensional perimeter quantization rule, one has 

k = _2_1t_n_ = n [1 + (4y/7t)] 112 

4a + 27tR 1 + (2y/7t) 

~[[~+~rJn [~+~Jl 
(33) 

dk -= 
dy 

At y = 1, the numerical factor in brackets is about 0.052 which greatly diminishes the depen

dence on k . In fact, for very small y, 

dk =~ 
dy ~ 

which explains the insensitivity of high angular momentum modes near"( = 0. 

VI. Statistics of the Spectrum 

In addition to the striking qualitative and quantitative differences between circular and sta

dium eigenfunctions presented in the previous Sections, we have also statistically compared the 

eigenvalue spectra of the circular and stadium cases. Many authors 27-36 have considered dif

ferent properties of the spectrum in order to characterize the nature of quantum chaos and its 

relation to the ergodic properties of the corresponding classical system. A statistical description 

of the spectrum in terms of the probability distribution of neighboring level separations has 

received particular attention, and in a previous Lette~ we first reported numerical results on this 
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measurement for the present problem. In more recent work, Bohigas, Giannoni and Schmit, 33 

Casati, Chirikov and Guarneri, 34 Seligman, Verbaarschot and Zirnbauer, 35 and others 36 have 

attempted to relate this and other statistics (for the spectra of other Hamiltonians) to similar 

statistics found for ensembles of random matrices. Here, we analyze our results for the stadium 

in the light of recent theoretical investigations which describe the tendency of levels to "cluster" 

or "repel" depending on the nature of the underlying ray phase space. 

As stated in the numerical analysis of Section ill, we have considered eigenvalues of only 

one parity (odd-odd), and due to computational restrictions we have limited our investigation to 

the region of the spectrum 50 < k < 100. In two dimensions, the mean asymptotic density of 

eigenvalues is 

n(k)dk = 21t~k dk = tk dk 
(21t) 

(34) 

(since the area A = const. = 1t). Using this, the number of eigenvalues (of a single parity) 

expected in this range· is approximately 450, with k = 50 about 150 levels above the ground 

state. We shall be interested in theoretical results concerning the statistics of the energy eigen

value E = k2, which in two dimensions is more appropriate as the density n(E) is constant due 

to (34). Thus for a single parity p, we expect the density and average separation to be 

dk _!_k_1 n(E)=n(k) dE = 2 2k 

np(E) 1 1 (35) = -n(E) = 
16 4 

till = np-1(E) = 16 

In the circular (y = 0) case, we numerically computed 451 odd-odd parity eigenvalues in 

this range of the spectrum. As a check, these results may be compared with the exact number of 

454 obtained using standard Bessel function routines. The discrepency in number is due to our 

numerical procedure which missed 16 eigenvalues while determining 13 "spurious" ones. Com

paring individual eigenvalues, we determined our reliable error in k to be ±0.001; this is an 

error in E of about ±0.2 (fork near 100). We assume this estimate to be valid even when 'Y > 0. 
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From the eigenvalue data for the circle, we compute the level spacings and construct 3: his

togram for the probability distribution P (M) with bin size t:.B E = 2. In Fig. 21a we present 

the results obtained from the numerical eigenvalues, and in Fig. 21b is the distribution using the 

exact eigenvalues. The numerical omission of some eigenvalues and inclusion of several spuri

ous ones is largely responsible for the disagreement between these two histograms although the 

general structure is the same for both. The feature to be emphasized is the fact that the distribu

tion is peaked at M = 0, signifying that the spectrum is clustered; this is countered by the 

existence of a rather long tail (values of M up to 71 were observed) in order to maintain the 

average value given by (35) (numerically M = 16.654, exactly M = 16.544 due to the 

absence of the m = 0 modes for odd-odd parity). Berry and Tabo~7 have shown that for a gen

eric integrable Hamiltonian, the distribution P (M) is of exponential form (Poisson statistics) 

when effects of the average eigenvalue density dependence on E are subtracted (these do not 

appear in two dimensions). 

The distribution in Fig. 21 has the appearance of an exponential, but in order to test this 

hypothesis we have instead studied the cumulative probability 

llE 

N(M) = J P(s)ds 
0 

(36) 

of level separations less than M. With our statistics, this is a smoother function of t:.E and does 

not depend on the choice of a bin size as does the histogram. Thus, if the normalized probability 

distribution has the form 

P(M) = ae~ (37) 

then 

N(M) = 1-e~ (38) 

The experimental N (M) from our numerical data and the best one-parameter fit of the form 

(38) (demanding normalization) are displayed in Fig. 22; this fit was obtained for the value of 

... 



-27-

a = 1120.77. Since for a normalized distribution of this form a-1 = M, this result for the 

mean level separation is in disagreement with numerical evidence and the asymptotic theory of 

(35). We therefore conclude that, although the probability distribution of level spacings P (M) 

for the circular (integrable) case exhibits the characteristics of the prediction (37) indicating 

level clustering, it must not be of this simple form. There are two possible explanations: (i) the 

circular case is too special (i.e., it does not meet the genericity requirements of Ref.[37]), or (ii) 

we have not investigated a large enough region of the spectrum to include more "asymptotic" 

eigenvalues. 

For the nonintegrable stadium("( = 1), we have numerically computed 445 eigenvalues in 

the same range of the spectrum. The histogram representing the spacing distribution P (M) is 

shown in Fig. 23, again with bin size 11.8 E = 2. By comparison with the circular case, this dis

tribution indicates a more uniform arrangement of the eigenvalues; very few small or large spac

ings were detected while the distribution is peaked near the average value (35). Zaslavskii32 has 

attempted to explain this tendency of the levels to "repel" (the behavior of P (M) as M ~ 0) 

in terms of the Kolmogorov entropy of the associated dynamical system. The authors in 

Refs.[33-36] have tried to relate this feature to the similar behavior exhibited by the eigenvalues 

of random matrices as studied by Wigner, Dyson, Mehta and others 38 In these theories, it is 

found that P (M) has the form 

(39) 

so that the repulsion is modelled by 

for (M /M) « 1 (40) 

Again, we test this prediction by attempting to fit the integral of (39) to the smoother 

numerical N (M) shown in Fig. 24. The best two-parameter fit (demanding normalization) 

yields the values a = 0.71,p = 0.0025. The average value M of the normalized theoretical 

curve with these parameters is 16.1, as compared with the data average of 16.4. 
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Zaslavskii has related the exponent a. to the K -entropy K by 

a.= C!lnK (41) 

where C is some constant that depends on the system. Using extremely simplified formulas 

given in Ref.[32], we find for the stadium that K = 2y = 2 so that the constant C in (41) is 

0.49; this is in remarkable agreement with the value of about 1/2 calculated by Zaslavskii and 

Filonenko39 for skipping electrons. Actually, one should measure the dependence of a. on K (or 

y) in order to test the validity of the prediction (41). 

VII. Conclusion 

We have numerically examined the statistical properties of short wavelength eigenfunctions 

and eigenvalue spectrum of the solutions of the Helmholtz equation in a stadium-shaped two

dimensional region. These results were analyzed with a view towards understanding the features 

of the waves and spectrum in terms of the properties of the corresponding geometrical optics 

rays, which for the stadium are ergodic. We also compared our numerical findings with theoreti

cal predictions based on semiclassical arguments applied to bound nonintegrable Hamiltonian 

systems. Our results can be summarized as follows: 

(1) Most eigenfunctions for the stadium appear to be composed of small regions (of several 

wavelengths) with relatively high intensity randomly interspersed among larger areas of low 

amplitude. This chaotic wave structure differs considerably from the uniform intensity distribu

tion over the interior of the stadium which would be expected on the basis of the ergodic nature 

of the rays. 

(2) Many eigenfunctions are quite regular in appearance and share many of the features of 

circular modes. Moreover, most of these localized modes display an obvious relationship with 

underlying periodic ray trajectories. This is especially so for the largest class of this type which 

.. 
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correspond to the family of bouncing ball orbits. Also in this category are the whispering gallery 

modes which appear to have been identified. 

These qualitative remarks contrasting the wide variety of eigenmode structures found in the 

stadium with the comparatively ordinary circular modes have been substantiated to a degree with 

a statistical analysis. The construction of the probability distribution P (\jf) has provided one 

method for distinguishing between the circular and the localized stadium modes on the one hand 

and the chaotic stadium modes on the other. The principal conclusion is 

(3) Chaotic eigenfunctions may be described by gaussian statistics (i.e., P (\jf) and 

P (d\jflifrl) are well-approximated by a gaussian distribution). This result supports the idea that a 

wave constructed from many contributions at a point due to the multiple random passages of 

mixing ray trajectories is phase decorrelated. In this respect, the chaotic nature of most stadium 

modes seems to be related to the similar behavior of the corresponding rays despite the fact that 

the eigenfunctions do not exhibit uniform intensity over the interior. Like circular modes, the 

localized stadium eigenfunctions (such as bouncing ball modes) exhibit extremely non-gaussian 

distributions. 

Considering the apparent contradiction noted in (1) above between the ergodic nature of the 

rays and the nonuniform intensity distribution observed in chaotic stadium modes, we have 

attempted to illuminate the correspondence between these normal modes and some object in the 

ray phase space. Therefore, we have numerically computed the local spatial correlation for 

several regular and chaotic modes, and have compared our results with theoretical predictions 

derived from rather crude assumptions for the locally averaged Wigner function. The numerical 

evidence seems to infer the following conclusions: 

( 4) The locally averaged Wigner function associated with a short wavelength regular mode 

of an N -dimensional integrable ray system can be fairly well-approximated by an N

dimensional delta function in phase space which is nonzero only on the torus which corresponds 

to the mode in the eikonal (EBK) theory. 

This conclusion was inferred from the extremely accurate matching of the numerical corre

lation function of sample circular modes with the prediction based on this singular behavior of 
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the locally smoothed Wigner function. In this way, the Wigner function provides a realization of 

the correspondence between regular modes and integrable rays. 

(5) The locally averaged Wigner function constructed from asymptotic irregular modes is 

probably not described as simply by a one dimensional delta function on the frequency surface 

corresponding to the frequency eigenvalue. It may have more complicated structure either 

within this surface or in the transverse direction off the manifold. This is to some extent corro

borated by the uneven intensity distribution observed in chaotic stadium modes. 

Again, this is a judgement inferred from the comparison of the numerical correlation data 

with theory based on just such a delta function assumption; here the agreement was not as clear 

as in the circular case. Since the Wigner function itself was not explicidy constructed, the 

correspondence between chaotic modes and chaotic rays (if indeed one exists) remains uncer

tain. 

(6) Finally, the spectrum of the stadium geometry can be characterized by a distribution of 

neighboring level spacings which is similar to the. Wigner distribution found for ensembles of 

random matrices. 
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Figures 

Figure 1. Stadium boundary for the Helmholtz equation. The boundary shape is governed by 

the parameter y = · aIR with the restriction that the area remain constant ( = 1t). 

Figure 2. Typical example of a single trajectory in the (y = 0) circle. Due to conservation of 

angular momentum, every orbit is confined to evolve within an annulus between some 

minimum radius and the outer radius of the circle. 

Figure 3. Typical example of a single trajectory in they = 1 stadium boundary. 

Figure 4. Intensity distribution I 'l'm,n 1
2(x ,y) in positive quadrant (x ,y > 0) of the (y = 0) cir

cle. This mode is 'l'm,n = 'Jf4o,s = J 40(k40,5r)sin409 with eigenvalue k40,5 = 65.012. 

Figure 5. Locally averaged spatial correlation function C (!.~) for circular (y = 0) mode of 

Fig. 4. The point x is fixed at (r ,9) = (0.866,0.867) and the correlation is plotted as a 

function of I! I for three angles <j) of ! relative to the x -axis. Crosses denote numerical 

measurements, solid line is theory based on the real part of Eq.(19). (a) <1> = 0. (b) 

<j) = 7tl4. (c) <j) = 7t/2. 

Figure 6. Typical eigenfunction structure for y = 1 stadium, again plotted in the positive qua

drant (this eigenvalue is k = 65.326). (a) Perspective of intensity distribution. (b) Nodal 

curves. 

Figure 7. Locally averaged spatial correlation function for y = 1 stadium mode of Fig. 6. The 

reference point! is fixed at (x ,y) = (0.76,0.46) and C (!~)is plotted against I! I for three 

angles <1> of! relative to the x -axis. Crosses denote numerical measurements, solid curve is 

theory based on Eq.(21). (a) <1> = 0. (b) <1> = 7t/4. (c) <1> = 7tl2. 

Figure 8. Intensity distribution for six successive modes near k :::: 65 (a-f) and k :::: 100 (g-1). 

(a) k = 65.036. (b) k = 65.326. (c) k = 65.412. (d) k = 65.0556 (bouncing ball 

mode). (e) k = 65.656 (spike near boundary due to numerical error). (f) k = 65.736 

(whispering gallery mode). (g) k = 100.107 (whispering ·gallery mode). (h) 

k = 100.144. (i) k = 100.202 (bouncing ball mode). (j) k = 100.269. (k) k = 100.297. 

(1) k = 100.386. 

Figure 9. Probability distribution P ('I') for y = 1 stadium mode of .Fig. 6 and comparison to 

gaussian prediction (24). Each jagged peak in the numerical data is due to a wave "crest" 

or "trough" in the eigenfunction. 

.. 
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Figure 10. Probability distribution P ('If) for y = 1 bouncing ball stadium mode of Fig. 8d. 

Large central peak is due to the large number of small values of 'I' sampled in the semicir

cular ends of the stadium. 

Figure 11. Probability distribution P ('If) for y = 0 high angular momentum mode of Fig. 4. The 

peak near 'If = 0 represents the contribution from the large evanescent central disk region 

exhibited by this mode; the shift to the right of zero of this peak is due to (an unsatisfac

tory) binning procedure. 

Figure 12. Variation of residual parameter p with y. Dots at each value of y denote separate 

measurements on different individual eigenfunctions; squares denote measurements on 

bouncing ball modes; crosses denote superposition averages. 

Figure 13. (a) Intensity distribution for linear superposition of neighboring low and high angular 

momentum circular modes k = 65.012, 65.067. (b) Nodal structure of same superposition. 

Figure 14. Averaged probability distribution P ('If) for the superposition of low and high angular 

momentum circular modes with standard gaussian comparison. 

Figure 15. Averaged probability distribution P ('If) for y = 1' stadium superposition 

(k = 65.326, 65.412) and gaussian comparison. 

Figure 16. Averaged probability distribution of normal derivative P ('I'll) for superposition of the 

two circular modes of Fig. 13 and gaussian comparison with same numerically determined 

width ( = 61.87). 

Figure 17. Averaged probability distribution of normal derivative P ('I'll) for superposition of the 

two stadium modes (k = 65.326, 65.412) and gaussian comparison with same numerically 

determined width ( = 61.07). 

Figure 18. Evolution of six eigenvalues as y is increased from zero. Numbers in parentheses 

denote angular mode number m at y = 0. The inset schematically illustrates the possibility 

of an avoided eigenvalue degeneracy at the several trajectory intersections indicated in the 

main figure. 

Figure 19. (a) Intensity distribution of y = 0 circular mode J 2(kz.20r )sin29. (b) Intensity struc

ture of the same mode at y = 0.01. (c) y = 0.02. (d) y = 0.03. (e) y = 0.04. 

- (f) 'Y = 0.05. (g) 'Y = 0.06. (h) 'Y = 0.07. 
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Figure 20. (a) Intensity distribution of the mode at y = 0.0125 which ev.olves from the circular 

high angular momentum mode J 48(k48,3r)sin488 at y = 0. Note the diminished amplitude 

at the rim of the circle near e = 7t/4. (b) Nodal structure of the same mode. 

Figure 21. Histograms measuring probability P (6.£) of neighboring circular eigenvalue 

(E = k2) spacings with bin size ~BE = 2. Smooth curve is best exponential fit (37) 

determined by examining the cumulative distribution N (M ). (a) Numerically obtained 

eigenvalues. (b) Exact eigenvalues. 

Figure 22. Cumulative distribution N (M) of circular eigenvalue spacings. Solid smooth curve 

is best numerical fit of the form (38). 

Figure 23. Histogram P (M) for y = 1 stadium eigenvalue spacings with bin size ~BE = 2. 

Smooth curve is best fit of the form (39) determined by examining the cumulative distribu

tionN(M). 

Figure 24. Cumulative distribution N (M) of stadium eigenvalue spacings with best-fit predic

tion (smooth solid curve) based on the integral of Eq.(39). 
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