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HAMILTONIAN SYSTEMS IN ACCELERATOR PHYSICS* 

L. JACKSON LASLETT 
Lawrence Berkeley Laboratory, University of California, Berkeley, 
CA 

Abstract General features of the design of annular particle 

accelerators or storage rings are outlined and the Hamiltonian 

character of individual-ion motion is indicated. Examples of phase 

plots are presented, for the motion in one spatial degree of freedom, 

of an ion subject to a periodic nonlinear focusing force. A canonical 

transformation describing coupled nonlinear motion also is given, 

and alternative types of graphical display are suggested for the 

investigation of long-term stability in such cases. 

In our work directed to the design of new accelerators we are driven 

more and more strongly into contact with the difficult and challenging 

problem of nonlinear orbital dynamics. As the machines become more 

advanced in their required performance and cost, it becomes increasingly 

important to steer a balanced course between designs that are excessively 

conservative or insufficiently so. It also is noteworthy that as the overall 

size becomes larger there is an understandable trend to use magnetic 

elements of small cross section, with current-carrying conductors close to 

the region reserved for the beam, so that the dynamical consequences of 

small constructional errors require particularly careful evaluation. 

It is my intent in these remarks to outline in very general and 

simplified terms the type of device with which we in the accelerator 

community are concerned and to suggest the type of Hamiltonian 

*This was supported by the Office of Energy Research, Office of Basic 
Energy Sciences,· U.S. Department of Energy under Contract 
DE-AC03-76SF00098. 



formulation one may adopt to characterize ion motion in such devices. It 

is my hope that such an outline will be helpful in assisting participants 

from other disciplines to make suggestions in the course of the Workshop 

that will prove helpful to us in our work. It will be noted that, perhaps 

mistakenly, I will be directing attention almost exclusively to issues of 

individual-particle motion and neglecting inter-particle interaction 

effects that also merit careful examination. 

One may visualize the device as an annular structure within which 

charged particles circulate, being confined by focusing forces to remain 

close to a closed equilibrium orbit. Some nonlinearities will be introduced 

into the dynamics deliberately, in order better to accommodate particles 

of somewhat different energies, and other nonlinearities will be present to 

some extent as a result of inadvertent errors in design or construction. 

We require well- focussed beam confinement to continue for hours or days 

in a storage-ring device, while the ions move with virtually the speed of 

light, so questions of long-term stability present issues of great 

importance. 

An individual ion circulating in the accelerator is acted on by 

spatially periodic guide and focusing fields. The basic period of such 

fields is one revolution (save for possible slow adiabatic changes), and 

ideally (save for construction errors) one revolution may involve passage 

in a periodic manner through several identical segments of the full ring. 

A Hamiltonian function to represent the particle motion thus conveniently 

may employ as an independent variable a distance s (measured around 

the ring, on an equilibrium or reference orbit) rather than the time. The 

structure of the accelerator accordingly may be described by terms that 

are s -dependent in a periodic manner. The action of R.F. electric fields, 

as would be required to maintain the bunching of a stored beam, then may 

be included through use of a dependent-variable pair such as particle 

energy and time. 

Use of such a single-particle Hamiltonian function suggests: 

the neglect of radiation (although radiation is 
beginning to become important for proton 
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accelerators at the higher energies now being 
considered), 

the omission of beam-gas and of beam-beam 
collisions, and 

deferred treatment of external time-dependent 
perturbations ("noise''). 

Adoption of a Hamiltonian then implies that the evolution of the 

canonical dependent variables should be in accord with the rules of 

Hamiltonian mechanics validity of Poisson-bracket conditions, 

conservation of phase-space volume, etc. Even if the detailed character 

of the Hamiltonian does not describe precisely the physical system of 

interest, we still may expect that the systems do have a Hamiltonian 

character and that the consequences thereof should follow. It thus would 

be unfortunate and misleading if, for example, an integration algorithm 

were adopted (for numerical solution of the differential equations) that 

generates erroneously a small but consistent damping of phase-space area 

or volume. The Hamiltonian character of the motion thus may be best 

described by transformations that inherently are strictly canonical in 

character (save for register-length round-off errors in numerical 

computations), and it is gratifying that Dr. Ruth has exhibited some 

explicit integration algorithms of this nature. 

Computed results may be presented at "homologous points" in the 

structure -- perhaps at intervals of one revolution -- and working 

variables other than the canonical variables of our Hamiltonian of course 

may be employed for plotting. The issue remains, however, how best to 

present output data for problems involving more than a single pair of 

conjugate variables and it is attractive to consider to what extent we in 

practice can make use of the "surface-of -section" concept. 

Others from the accelerator community will present later in this 

Workshop some designs and illustrative results for a projected high-energy 

super-conducting "collider" (or 2-beam storage ring) now under active 

study, so I shall sketch here only very briefly the general characteristics 

of such a facility. Dipole magnets provide the required bending fields and 
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the focusing forces arise from the fields of magnetic quadrupole lenses. 

Such fields should be incorporated into our Hamiltonian description in 

such a way that they also are described in a manner that is rather 

realistic with respect to their Maxwellian character. Thus quadrupole 

fields that are focusing in one transverse direction are necessarily 

defocusing in the other. and to obtain a net focusing in the transverse 

plane a sequence of quadrupole lenses of suitable strength and alternating 

sign must be employed. Such lenses act to provide focusing (or 

de-focusing) forces that ideally might be regarded as having a linear 

dependence upon distance from the equilibrium orbit and, if this were 

strictly true, the transverse oscillations then would have the simple 

character described by the Floquet theory for solutions to linear 

differential equations with periodic coefficients. 

To accommodate simultaneously ions of even moderately different 

energies, however, it usually is desirable to supplement the quadrupole 

focusing by the inclusion at points around the ring of sextupole lens 

elements· -- and possibly also by the inclusion of elements of still higher 

multipole order. The transverse motion of the ions thus becomes 

susceptible to the many nonlinear resonances and potential stochastic 

behavior that can occur due to the presence of nonlinear elements 

deliberately introduced or inadvertently present in the focusing lattice. 

An additional complication arises from the fact that the kinetic 

energy of an individual ion may vary with time as a result of applied 

longitudinal RF fields provided by RF cavities situated at one or more 

locations around the ring. In the case of an accelerator such cavities of 

course are necessary to bring the ion energy up to the desired final value, 

but in a storage ring similar cavities may be desired in order that the 

beam may be confined longitudinally into individual bunches. Under these 

conditions individual ions will execute energy oscillations (typically at a 

rate that is quite slow compared to the frequency of the transverse 

oscillations). Additional dependent variables to be included in our 

s -dependent Hamiltonian function thus may become, as noted above, the 
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particle energy and time. Additional opportunities for coupling effects 

then arise through the mechanism of synchroton-betatron resonances. 

An early schematic configuration for a lattice formed of three 

super-periods (Figure 1) has been prepared by Dr. Garren to indicate the 

several types of insertions that must be included in a complete design and 

that act to break the short wavelength periodicity of a simple quadrupole 

sequence: 

Bend-free crossing insertions. 
Bend-free utility insertions. 
Regular insertions of sextupole lenses. 
Dispersion suppressors. 
Lumped compensatory corrections. 
R.F. stations. 

LA TIICE SCHEMATIC 

Cell Length: C = 200 m 
Phase Advance: 1.1 = 80° 
Circumference: 90 km 

/"0!11..,--- X",Experimental 
Straight 

S",Utility Straight 

XBL 855-2586 

FIGURE 1 Schematic diagram of a lattice with three super-periods. 

"Tracking studies" are undertaken to determine orbit characteristics 

such as aperture requirements and stability -- that may be expected 

for ions with various initial conditions moving in such devices. This 
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approach will be recognized as essentially deductive, in that the specific 

design characteristics of a particular device are provisionally assumed and 

the attempt then made to determine and evaluate the performance that 

might be expected. Interpretation of the performance so found in such a 

study of course then can be used to suggest desirable refinements in the 

design. It is desirable that the computations reflect accurately the 

Hamiltonian character of the particle motion, in that the evolution of the 

phase-space variables should be canonical. It also is desirable to include 

orbit computations for ions in a ring that is subject to some errors in its 

construction. Such computations should be carried forward for a 

sufficiently large number of turns in each case that the long-term 

character of the trajectories may be inferred, if possible, with some 

confidence. 

If the particle motion is confined to a single spatial degree of 

freedom, signficant orbit characteristics can be displayed appropriately 

by means of phase plots of the type we illustrate here for trajectories 

governed by the differential equation 

d2x 1 2 
2 = -A X + S X COS Z . 

dz 
( 1) 

Plots of Px = dx/d z vs. x at one-period intervals (say at z = 0, mod. 

211 in this instance) then assume the form illustrated by Figure 2 for 

several different initial conditions, when the coefficient A is assigned 

such a value that oscillations of infinitesimal amplitude advance in phase 

by 60° per period. The tune for larger amplitude oscillations is reduced 

from this value and one notes on the diagram the presence of a 

pronounced order-7 island system (c = 36017 ~ 51.43°). An apparently 

smooth phase trajectory may be present surrounding this island system, 

but a grossly stochastic behavior is seen to develop in association with 

additional island systems at somewhat greater amplitude. Additional 

structure may be expected to be present, of course, in such a diagram. 

Thus the presence of an order-13/2 system (c = 2x360/l3 ~ 55. 3846°) is 

readily established in the interior (Figure 3) and a portion of the island 
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0.30.-------------------, 

1 
P, 

-0.30 ....._ _____________ ____, 

-3.25 3.25 

X8L 855-2584 

FIGURE 2 Phase plot for solutions to Eq. ( 1) at z = 0 mod . 211', 
with the coefficient A assigned a value such that a0 = 60°. Note 
the presence of a prominent order-7 system and gross stochastic 
behavior beginning at somewhat greater amplitude. 

0.30,.....-----------------, 

1 
P, 

-0.30....._ _____________ ~ 
-3.25 3.25 

X8L 855-2583 

FIGURE 3 Phase plot similar to Figure 2, with inclusion of stable 
and unstable fixed points of order 13/2. 
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structure for this system is illustrated on a detailed plot constructed to a 

suitable scale (Figure 4). 

l 

x---.. 

XBL 855-2585 

FIGURE 4 Detail showing phase trajectories in the neighborhood of 
some of the order 13/2 fixed points plotted in Figure 3. 

The presentation of orbit characteristics becomes more difficult 

when the motion takes place in a phase space with a greater number of 

dimensions. In such cases one is interested not only in the ranges of 

excursion of the relevant variables but also will be concerned with the 

issue of long-term stability for coupled motion. Graphical presentations 

that provide a clear indication of gradual amplitude growth, or 

"diffusion," accordingly would be particularly useful. (A method of 

presentation that frequently has been adopted by other workers 

investigating mappings in multi-dimensional phase space is that which 

employs one or more surfaces of section, but this technique may not be 

directly applicable here.) One must recognize that the process of 

diffusion in certain problems involving coupled motion unfortunately 

sometimes can be sufficiently slow as to become evident computationally 

only in runs of very long duration. 
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An illustration of coupled motion, for which it may be informative 

to investigate the merits of possible alternative graphical techniques, is 

provided by the canonical mapping 

xn+1 = xn cos ax + Pxn sin c:J 
+ 1 2 sin c:J 

X 2 Yn X 

sin 1 2 p = -x c:J + p cos c:J +- y cos c:J 

xn+1 n x xn X 2 n X 

Yn+1 = Yn cos c:J + p sin c:J + X y sin c:J 
Y Yn y n n y 

p = -y sin 0' + p cos c:J + X y COS c:J (2a-d) 
Yn+1 n Y Yn y n n y 

(This mapping may be regarded as representing ion transport through one 

period of a periodic structure formed by a thin nonlinear lens and a 

subsequent channel with linear focusing. Behavior similar to that to be 

reported here also is found if, to represent Maxwellian forces more 

adequately, the quadratic factors y2 in the first two equations are each 

replaced by y2-x 2.) This mapping is responsive to, amongst others, the 

sum and difference resonances 

a + 2c:s = 2• and a - 2c:s = 0 
X y X y ' 

and it is of interest here to consider operation at a point ax = 0.210(2•), 

a y = 0.120(2•) that is close to the line ax - 2ay = 0 but is rather 

remote from other resonances. Proximity to the difference resonance 

results in a behavior such that x and y motions can exchange 

amplitudes repeatedly. One finds, however (e.g., with double-precision 

computations on the LBL CDC-6600 computer), that such runs may 

ultimately become grossly unstable -- although perhaps only after several 

hundred thousand iterations of the mapping. 

A sequence of figures was presented at the Workshop to illustrate 

various ways in which such behavior (and potential instability) might be 

depicted. The various runs were initiated with 

x : various (0.50, 0.55, 0.60, 0.64, and 0.65) 
0 

= 0 
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Yo = l.Oxl0-6 

py = 0 . 
0 

Runs were continued, in each case for which it was possible, through 

l.6xl0
6 

applications of the mapping, but the run launched with 

x0 = 0.65 was found to become grossly unstable after a smaller number 

of iterations. One is able to observe, moreover, indications of diffusion in 

some of the runs initialized with smaller values of x 0 and may 

experience doubt concerning the ultimate stability of such cases. 

Shown here (Figures 5-7) are three types of plot as examples for 

depicting the motion, initiated with x0 = 0.65, through (a) 450 ODD and 

(b) 900 DOD applications of the transformation: 

2.0r-------------, 2.0.--------------, 

1 I 

-2.0l:------------= 
-2.0 X--- 2.0 

-2.0 1..,------x===:::::::;:--2. -2.0 X 2.0 
(a) (b) 

XBL 855·2577 
XBL 855·2578 

FIGURE 5 p vs . x. Such a plot reveals the y motion only 
through its inffuence on the x motion. This influence of course can 
be very substantial, as is seen, and indeed can lead at times to 
repeated virtual suppression of the x amplitude. For economy in 
plotting one may elect to plot, as here, only values computed for 
(say) every zoth iteration. 
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2.0 r--------------, 2.0.-----------------., 

I 
Sy 

o.:---:-'---~;x===:::;--2.o 0. Sx 2.0 
(a) 

XBL 855-2580 
XBL 855·2579 

2 2 2 2 
FIGURE 6 S = p + y vs. Sx = Px + x . The quantities Sx 
and Sy are q~adrafic forms that for the linearized mapping would 
individually be constants of the motion. They thus respectively 
represent in a sense the squared x and y amplitudes and may be 
regarded as approximately proportional to action variables Jx and 
Jy. A trend toward progressively greater amplitudes is indicated by 
tflese results. For economy in plottin~ one again may elect to plot 
only values computed for (say) every 20 h iteration. 

2.0.---------------, 2.0....--------------

I 
Sy 

I , 

~ 

0~ 
o. --~siXx==::::::;;--2.2.0 

Sy~· 

'\ 
0. ~·~'--------~ 

(a) (b) 0. Sx --• 2.0 

XBL 855·2581 XBLBSS-2582 

FIGURE 7 Similar to Figure 6,
2
save that points are plotted only if 

the contributions of p~ and p to the respective t~tals S x and 
s.v are each relatively small. Pf'otting is omitted if Px > Sx/64 or 
ii p~ > Sy/64. 
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The quantities S x and Sy may be regarded as having a closer 

relationship to the squared amplitudes or to action variables when plotted 

selectively in the manner illustrated by Figure 7, and the resulting 

displays are seen to have a more localized or slender character. With 

adoption here of a strong restriction on the magnitudes of Px and Py, it 

is advisable to plot every point for which the imposed selection criteria 

are fulfilled. It is appropriate to point out that adoption of this method of 

selection unfortunately may lead to the omission of much relevant 

amplitude data if the phases of p x and Py fail to become small 

simultaneously -- as indeed has been observed to occur in some coupling 

runs performed in the neighborhood of the "x ::: "y resonance. 

The particular mapping adopted here for illustration of course is 

only one example of a mechanism for obtaining coupling, and the initial 

conditions selected also are somewhat special. It is hoped, however, that 

this example and the figures that are presented will stimulate further 

consideration of issues concerning the long-term stability of coupled 

motion. 

12 



' 

This report was done with support from the 
Department of Energy. Any conclusions or opinions 
expressed in this report represent solely those of the 
author(s) and not necessarily those of The Regents of 
the University of California, the Lawrence Berkeley 
Laboratory or the Department of Energy. 

Reference to a company or product name does 
not imply approval or recommendation of the 
product by the University of California or the U.S. 
Department of Energy to the exclusion of others that 
may be suitable. 



~....;... -.... 

LAWRENCE BERKELEY LAB ORA TORY 
TECHNICAL INFORMATION DEPARTMENT 

UNIVERSITY OF CALIFORNIA 

BERKELEY, CALIFORNIA 94720 

~ .. -


