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We present a calculation of the macroscopic contribution to the dipole 

moment of a deformed (axially symmetric but reflection asymmetric) nucleus, 

using the Droplet Model. In addition to the familiar charge redistribution 

effect (which is worked out including a correction for the relative neutron 

excess (N-Z)/A and a second correction of relative order A-113 ), the Droplet 

Model predicts a contribution from the presence of a neutron skin. This 

contribution turns out to be of the same order as the redistribution effect 

and of opposite sign. The result is a reduction of the macroscopic 

contribution to the dipole moment to small or even negative values, as 

compared with earlier estimates. All the formulae are worked out for a 

nuclear shape specified by an arbitrary number of Legendre Polynomials. 
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1. Introduction 

In two recent papers1) Leander has examined a number of experiments on 

isotopes in the Ra-Th region indicating unusually fast El transitions. These 

transitions appear to be collective and associated with ground-state electric 

dipole moments. Indeed, it was noted earlier2•3) that the Coulomb repulsion 

of the protons can induce such moments in deformed nuclei that have odd-parity 

components in their intrinsic deformation in addition to the usual even-parity 

components. 

Both theory4) a~d experiment5) support the presence of octupole-deformed 

intrinsic equilibrium shapes in this region of nuclei, and Leander has made 

pioneering attempts to estimate what fraction of the observed electric dipole 

moment might be associated with the particular orbital configurations occupied 

in each nucleus (representing the microscopic or shell effects) and what 

fraction might be due to the octupole-induced polarization of the bulk nuclear 

matter (corresponding to a macroscopic or Liquid Drop Model effect). 

In the present paper we address ourselves to the calculation of this 

macroscopic contribution to the nuclear dipole moment of a deformed nucleus. 

We use the nuclear Droplet Model, formulated as a systematic improvement of 

the Liquid Drop Model. A guiding theme of the Droplet Model is that the 

requirement to work consistently to a definite order in the relevant expansion 

parameters makes it necessary to include two new sets of degrees of freedom 

specifying the nuclear configuration: the nucleon density non-uniformities 

and the neutron skin6•7). The inclusion of the former leads to a 

redistribution of the proton and neutron densities under the influence of the 

electrostatic forces, and this induces a slight dipole moment in deformed, 
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reflection asymmetric nuclei. This is the effect that had been studied 

already in the early papers of Strutinsky2) and Bohr and Mottelson 3) in 

connection with the dipole moment and in refs. 8•9•10 ) in connection with 

fission. The inclusion of the neutron skin degree of freedom also leads to a 

slight separation of the centers of mass of the neutrons and protons, 

resulting in another contribution to the dipole moment. This influence of the 

neutron skin on the dipole moment does not appear to have been studied 

before. As we shall see, the effect is, in most cases of interest, of a 

magnitude comparable with the charge-redistribution effect (and of opposite 

• I ) s1gn .. This means that a meaningful estimate of the macroscopic part of the 

nuclear dipole moment cannot be made without taking into account the neutron 

skin contribution in addition to the charge redistribution effect. 

In the next section, we present the- Droplet Model formula for the: dipole 

moment of a deformed nucleus and we illustrate the numerical values on~the 

examples of 222Th and 226Ra. In the Appendix we sketch the derivation' of 

this formula. 
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2. The Droplet Model formula for the dipole moment of a deformed nucleus 

The shell-effect averaged density distributions of the neutrons and 

protons in a nucleus may be specified by two smooth functions of position. 

According to the Droplet Model, these functions may be imagined as resulting 

from applying a standard diffuseness prescription to two sharp-surfaced 

generating distributions, n(t) and p(t), say, vanishing abruptly outside two 

effective sharp surfaces tn and tp, respectively. The (small) normal 

distance from a point on the surface tp to the surface tn is referred to as 

the neutron skin t (a function of position on the surface). The location of a 

mean surface t may be defined by an appropriate weighting of the locations of 

tp and tn with the surface values of p and n, respectively, and this surface 

is used to specify the nuclear shape. The degrees of freedom in the Droplet 

Model are thus the shape of the surface t, the neutron skin function t and 

the deviations of the generating densities from their respective average 

values. (These deviations will be denoted by nand p.) According to the 

Droplet Model, the macroscopic nuclear energy is a definite function of these 

degrees of freedom and consists of a volume energy, a surface-layer energy and 

an electrostatic energy. Minimization of the total energy with respect to 

variations of t, n and p for a specified t gives algebraic Droplet Model 

expressions for the equilibrium values of these quantities. Substitution into 

the energy expression leads to the shape-dependent Droplet Model mass formula. 

On the other hand, with t, n and p determined, the dipole moment associated 

with any given shape E may also be written down algebraically. As shown in 

the Appendix, this dipole moment D, in units of the proton chargee, (i.e., 

d ~ D/e) turns out to be given by the following expression: 
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IX) 

d = c L:12(2. - 1)(!1. + 1)(8!1. + 9) 
2 2 a!l.a!l.+1 

~ !1.=2 5(2!1. + 1) (2!1. + 3) 

IX) 

- c ~(!1.- 1)(!1. + 1)(!1. + 3) 
s ~ (2!1. + 1)(2!1. + 3) 

!1.=2 

+terms of higher order in the a!l.•s ( 1) 

Here a!l. are the coefficients specifying the usual Legendre Polynomial 

expansion of the radius vector R(e), describing the surface t according to 

(2) 

The coefficients Cr and Cs are definite functions, given below, of the neutron 

and proton numbers N,Z and of the equivalent radius R0 of the nucleus in 

question, as well as of the relevant parameters specifying the volume energy 

per particle and the surface tension coefficient in the Droplet Model. The 

first term in eq.(1) describes essentially the "lightning rod" effect, 

according to which the electric charge, when allowed to redistribute itself, 

tends to move towards regions of the surface with large curvature. The second 

term describes the neutron skin effect according to which, even in the absence 

of any non-uniformities either in the densities n,p or the neutron skin 

thickness t, a dipole moment may appear (for non-zero t) because of the 

geometrical fact that the center of gravity of a uniform thin neutron layer 

around the surface t does not coincide, in general, with the center of 

gravity of the volume enclosed by t. 
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The estimates of the dipole moment according to refs. 2•3). in which the 

neutron skin contribution is disregarded and the redistribution effect is 

calculated to leading order only, correspond to taking Cs = 0 and 

Cr = AZe2/aJ. where A is the mass number and J is the symmetry energy 

coefficient (~33 MeV). As shown in the Appendix. a more accurate treatment. 

following from a consistent application of the Droplet Model, leads to 

C = (AZe2/8) [l+ 6L I +liA-1/3]. 
r J JK BQ ( 3) 

-
Cs = (3NZ/A)t = (2NZ/A)(I - &)RO (4) 

where 

_ I + (3c
1

/16Q)ZA-213 
& = ___ .:.....__ ___ _ 

1 + (9J/4Q)A-l/3 
( 5) 

In the above. I is the overall relative neutron excess. (N-Z)/A, & is the 

average relative neutron excess in the bulk [i.e. the average of 

(n - p)/(n + p) in the bulk], whose Droplet Model equilibrium value is given 

by eq.(5), and tis the average value of the neutron skin thickness, related 

to I and & by the •geometrical• expression 

-
t = (2/3)(I - &)R0 ( 6) 

The three Droplet Model coefficients appearing in eq.(3) are the 

compressibility coefficient K (~240 MeV), the density symmetry coefficient L 
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<~0-100 MeV) and the effective neutron-skin stiffness coefficient Q {~30 MeV). 

In eq.(5), c1 is the Coulomb energy coefficient, given by c1 = (3/5)e2tr0, 

where r0 = R0!A113 

We note that, compared to the older estimates of the dipole moment, 

eqs.(3},{4) introduce three new contributions: the neutron skin term 

(eq.(4)), a neutron-excess correction (the term in eq.(3) proportional to I) 

and the last term in eq.{3), which is a charge-redistribution-contribution 

associated with the non-uniformity of the neutron skin. 

In order to illustrate the relative magnitudes of the various 

contributions, we present below numerical results based on using the following 

set of recent Droplet Model parameters11 ): J = 32.5 MeV, K = 240 MeV, L = 0, 

Q = 29.4 Mev, r0 = 1.16 fm (~ c1 = 0.744816 MeV). We use eqs.(l)-(5) to 

calculate the macroscopic dipole moments for 222Th and 226Ra, for which 

1 1 t d d t t d f t . . . f 4) 0 114 ca cu a e groun -s a e e orma 1ons are g1ven 1n re . as ~ 2 = . , 

~ 3 = 0.096, ~4 = 0.0678 and ~ 2 = 0.159, ~ 3 = 0.083, ~4 = 0.0872, 

respectively. (The deformation parameters ~~ are related to a~ 

by a~= vf(2~ + l)/4ff ~~). The result of this calculation is as follows: 

d = 0.1564 + 0.0 + 0.0548- 0.1880 = 0.0232 fm 

for 222Th, and 

d = 0.1832 + 0.0 + 0.0624- 0.2620 = -0.0164 fm 

for 226 Ra. 

(7) 

(8) 

• 
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) 

The first three contributions to d in these equations correspond to the 

three terms in eq.{3) and the last {negative) contribution corresponds to the 

neutron-skin effect represented by eq.(4). 

The most striking feature of these results is the importance of the 

neutron-skin contribution which, in the above examples, tends to wipe out the 

redistribution contribution, leaving a final dipole moment several times 

smaller than would be given by the simplest redistribution calculation (i.e. 

by the first term in eq.{3)). This would be bad news for interpretations of 

the estimated empirical values of the dipole moments that rely on a theory 

without the neutron-skin term1). sui how sen~itive is· this conclusion to 

possible changes of the Droplet Model parameters, some of which are not 
., . 

determined accurately? We have repeated the calculation with an older set of 

Droplet Model parameters [J = 36;8-MeV, K = 240 MeV, l = 100 MeV, Q = 17 MeV, 
. 7 

ro = 1.18 fm )] with the following result: 

d = d~1381 + 0.0653 + 0.0926 - 0.2996 = -0.0036 fm (9) 

222 . for Th, and 

d = 0.1618 + 0.0895 + 0.1078 - 0.4161 = -0.0570 fm (10) 

for 226 Ra. 

The neutron-skin term is even larger now (because of the smaller value of the 

neutron-skin stiffriess coefficient Q), resulting in small negative dipole 

moments in both Th and Ra. But, conversely, could Q be even larger than the 
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J,,,:,; i ·:.. ' 

value assumed in the more recent fit (29.4 Me~)? The extreme assumption of an 

infinite Q (no neutron skin at all) would give 

C = (AZe2/8) [l + 6ILJ 
r J KJ ( 11 ) 

With L = 0, this would reduce to the old redistribution calculation (first 

terms in eqs.(7,8)). With L = 100 the result would be even bigger, by a 

factor of 1 + (6IL/K) ~ 1 + (6 x 0.2 x 100/240) ~ 1.5. But is it reasonable 

to take Q = oo? The answer would seem to be rather definitely NO, on several 

counts. First, fits of the Droplet Model mass formula to nuclear masses and 

fission barriers give invariably a finite Q, with typical values indicated 

above. (The finiteness of Q is directly responsible for the surface symmetry 

energy in the mass formula. The existence of this term seems today beyond 

doubt, although its precise value is still subject to substantial 

uncertainty.) Second, the analysis of the systematics of nuclear radii, 

especially of the isotope and isotone shifts, seems to point unambiguously to 

a finite Q, with a value in .general agreement with that deduced from fits to 

nuclear masses 12 ). (Further unpublished studies along those lines indicate 

that a large value of Q tends to be associated with a small value of L, so 

that the choice Q = oo, L = 100 would be particularly inappropriate.) Third, 

the extensive studies of the trend with mass number A of the giant dipole 

resonance energies, which have established with considerable precision a 

behaviour intermediate between A-113 and A-116 , point directly to the 

participation of the Goldhaber-Teller mode in dipole oscillations. This 

• 
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mode, an overall oscillation of protons against neutrons, involves the neutron 

skin degree of freedom and the associated effective stiffness coefficient Q. 

The mere presence of the A-116 component in the trend of the resonance 

energies attests to the finiteness of Q, and a more quantitative theory leads 

to a value consistent, once more, with the values deduced from fits to nuclear 

masses. 13 ) Lastly, Thomas-Fermi or Hartree-Fock calculations with effective 

(Seyler-Blanchard or Skyrme) interactions, applied to a study of the nuclear 

surface, give finite values of Q, ranging from -17 MeV to -60 Mev7•14). 

It would seem from all this that a finite value of Q, of the general 

order of 30 MeV (with an uncertainty of probably less than a factor of two) 

has to be accepted at this time. This implies a considerable reduction from 

the previously estimated macroscopic contribution to the dipole moments of 

deformed nuclei. Any apparent disagreement with experimental estimates which 

this may cause1) could be an indication of several possible shortcomings in 

the analysis of dipole moments, among which the following should be 

investigated. First the assumptions underlying the experimental estimates 

themselves should be scrutinized. Second, the difficult question of 

estimating the microscopic (individual particle) contribution to the dipole 

moment should be examined further. Third, the reliability and precision of 

the estimated values of a 2, a 3, a 4 (and perhaps also a 5 and a 6) should be 

investigated: because of the cancellations of relatively large contributions 

and because of the growing sensitivity of the neutron-skin term to higher 

multipoles (see eq.(l)), a fairly accurate determination of the nuclear shape 

is necessary for a reliable estimate of the macroscopic dipole moment. 

Without being able at this time to make a closer analysis of the relation 

of the macroscopic theory to the experimental determinations of the dipole 

~\ .. 
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moments of nuclei, we hope that the relatively accurate Droplet Model 

expression for the macroscopic part, eq.(l), will be of help in improving our 

understanding of this aspect of nuclear structure. 

v 
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Appendix 

1. Effect of surface diffuseness on the dipole moment 

As described in sec. 2, the Droplet Model neutron and proton densities 

are obtained by applying a diffuseness prescription to sharp-surfaced 

generating densities n(t), p(t) bounded by effective sharp surfaces 

rn and rp. Assuming the diffuseness prescription to be in the form of a 

folding (convolution) operation with a finite-ranged spherically symmetric 

function, the discussion of the effect of the diffuseness on the dipole moment 
~ 

may be trivially disposed of: the center of gravity of each infinitesimal 

element of the densities n or p is unaffected by the convolution, and hence 

the centers of gravity of the whole distributions are also unaffected and the 

dipole moment remains unchanged. [Note that the result is very general: the 

folding functions may be different for the neutrons and protons, their range 

need not be small compared to the nuclear size and the independence on the 

folding operation extends to arbitrary multipole moments 15 )]. It follows that 

the results derived below for the sharp generating densities n,p continue to 

hold exactly for diffuse distributions obtained by a folding operation. 

2. Expression for the dipole moment 

~ 

Denoting the center of mass location of the protons and neutrons by rp 
~ ~ 

and rn, and of the nucleus as a whole by rA, the dipole moment may be 

written as 
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= zNe(r _ 1 > 
A p n 

where the integrals are over the volumes Vp,vn enclosed by IP and In, 

respectively. Writing p = p + p, n = n + n, where p,n are the volume 

averages of p,n, we find for d (:::0/e) the expression 

~!~-+ 1 j~ ~ ~ !-+ 1 j~\ 
~ P P r - N n n ~ + ~P p r - Vn n r~ 

Writing Vn = VP + 6, where 6 is the volume of the neutron skin, assumed 

small, we may rewrite the last term as 

NZ 
~A· 

~- ~~)(ft +It~ 

~p(~pt - ~Itt) 
where the surface integrals are over the surface Ip. 

Inserting in eq.(A.2), we find 

d = d 1 + d k. vo ume s 1n 

(A .1) 

(A.2) 

(A.3) 
t· 

(A.4) 
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where 

(A. 5) 

(A.6) 

where ;t is the location of the center of mass of the neutron skin and V is 

the volume inside the mean surface I. Note that we have replaced integrals 

over the proton volume by integrals over the mean volume. This is permitted 

in the above expression, since we are working consistently to first order in 

the small quantities p,n,t(or 6), without cross terms between them. 

3. Droplet Model expressions for p,n 

According to the Droplet Model 6•7) the density non-uniformities p,n 

follow from making stationary the bulk energy (consisting of nuclear and 

electrostatic contributions). The presence of the neutron skin or of an 

overall compression or dilatation of the nucleus plays no role to the 

relevant order in small quantities. -It follows that expressions for p 

-and n may be thought of as derived in an idealized situation where N neutrons 

and Z protons are put in a common standard volume 4~R~/3, and the bulk energy 

is minimized. We shall go over this calculation o~ce again, rather than 

simply use the results of refs. 6•7), in order to include a small refinement in 

the expressions for nand p proportional to the relative neutron excess I. 

This refinement was not relevant in the context of the Droplet Model mass 

formula where I, as well as p,n,t, were consistently treated as small 

quantities. The present derivation considers the smallness of I as a separate 
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assumption that may or may not be introduced at a later stage of the 

calculation. 

The bulk energy to be minimized may be written as 

E • J ( n + t epv) (A.7) 

where n is the nuclear energy density in the bulk, v is the electric 

potential due to the protons and the integral is over the standard volume. 

Introducing the total and differential densities 

P = n + P (A. B) 

w = n - p (A.9) 

we may write 

1 [n(p,w) + 4 e(p - w)V] (A.lO) 

The stationarity of E for variations of p and w that conserve the particle 

numbers requires that 

£.!!. + l ev 
r 

= constant (A.ll) ap 2 
\i' 

£.!!. 1 constant (A.l2) - - ev = aw 2 

Assume now a Taylor expansion for n in the form 
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n = n0 + n (p- ~) + n (w- ~) + -2
1 n · (p- ~) 2 

+ n (p- ~)(w- ~) 
p w pp pw 

1 ( -, 2 + 2 nww w - w (A.13) 

where ~ = n + p = Po is the standard nuclear matter density and 

~ = n- p = ~0 1. The quantities n , n , n etc. are repeated derivatives 
p pp pw 

of n with respect to p and w, evaluated at p = p, w = w. Inserting 

eq.(A.13) into eqs.(A.11),(A.12) and subtracting from the latter their average 

values, we find 

- 1 -n w + npwp = - ev 
ww 2 

- 1 -n ppp + n w = - - ev 
pw 2 

where p = n + p, w = n - p and v is the deviation of v from its average 

value v. Solving for n,p we find 

~ 

n = - ev (n - n )/(n n - 2> 4 ww pp pp ww npw 

~ 

p = - ev (n + n + 2n )/(n n - n 2) 
4 ww pp pw pp ww pw 

(A.14) 

(A.15) 
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4. The volume redistribution contribution to the dipole moment 

Using the above result, eq.(A.5) now becomes: 

n + n + l(n + n ) ( J ) = ! pp. pw ww2 pw - ev t 
n n - n 

pp ww . pw 

(A.l6) 

In order to relate the various second derivatives of n to more familiar 

coefficients, we write the volume energy density in the canonical Droplet 

Model form, i.e., as the density times the energy per particle expressed in 

terms of the relative neutron excess &, where & = w/p, and of the dilatation 

factor £, where £ = (p0 - p)/3p0 . Thus 

n(p,w) = p (w)2 K (Po - P)2 
+ J - + - -

P 2 3p0 

where a
1

,J,K,L,M are Droplet Model parameters. (A.17) 

Evaluating the second derivatives at p = Po· w = p0I, we find 

2I 2 L K 6MI 4 K n - -(J - -) + - + --::::: - + terms of higher order in I PP Po 3 9p0 Po 9p0 
(A.l8) 

(A.l9) 
v 

npw = 
2I L _ 6MI 3 

'-'< _ .?1. (J _ 1.) 
( J - 3) -- 3 + ... Po Po Po 

(A.20) 

If at this stage one decides to retain, in the expressions for n and p, terms 

linear in I, one finds 
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- 1 - 18 1 2 n - - ev p (-- - - + terms in I and higher) - 8 0 K J (A.21) 

P = ~ ev Po (l~ + J- 3 ~ (1 - 3~)I +terms in I2 and higher] (A.22) 

In the last equation, the term linear in I is the refinement that we choose to 

keep in the present context, but which would not contribute to the standard 

Droplet Model mass formula. Eq.(A.l6) now becomes 

- + pw + - + higher powers 
[ 

1 n I 

nww nwwnpp npp 

(A.23) 

where~ stands for (-v)/(Ze/R0) (i.e., for the negative of the non-uniformity 

-+ -+ of the electric potential in units of Ze/R0). (stands for r/R0, and the bar 

-+ denotes the volume average of ~(. Even for heavy nuclei, the value of I is 

only a little over 0.2, so the neglect of higher powers of I may not be a 

serious approximation, but the term in I could be significant. 

5. The neutron skin contribution to the dipole moment 

From the definition of askin we have 

~skin = (NZ/A)(AIV) (j! A - ; :j!) 
(t + t)r 

( 
f - - -+) 

= (NZ/A)(A/V) tA - St . (A.24) 

where t is the average skin thickness, t is the deviation of t from t and S 

stands for the area of the surface I. It follows that 
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d k. = d f + d f d. t .b t• s 1n sur ace sur ace re 1s r1 u 1on 

where 

(A.25) 

dsurf red 
.:..,_ - ...... = -(NZ/A)(A/Vt)<t r> (A.26) 

Here rs locates the center of gravity of an infinitesimal uniform layer on 
-~ _ ..... 

the surface r and <t r> stands for the surface average of t r. 

Since vn = N/n, VP = Z/p and v = A/(n + p), the quantity A/Vis given 

by 

~ = 
vn - v N/A Z/A p = v v - - - - - -

n/(n + p) p/(n + p) 

= 2(1 - 6) 
l::: 2(1 - 6} (A.27) 

-2 1 - 6 

- - - -
where 6 = (n- p)/(n + p). (This definition of 6 is, strictly speaking, 

different from the standard Droplet Model definition, namely 
-
6 = (n ~ p)/(n + p). The difference is readily shown to be of higher order 

in n,p.) Using also the relation A/t = S, so that A/Vt = 38s/R0, where 

Bs is the area of the shape in question in units of the area of the standard 

sphere, we find 

dsurf 
- -+ -+ = (2NZ/A)(I - 6)R0(( - <(>) 

d surf red 
~-+ = -(3NZ/A)B <t (> 

s 

(A.28) 

(A.29) 

i' 
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According to the Droplet Model 6) the non-uniformity of the neutron skin is 

proportional to the non-uniformity on the surface of the electric potential 

- 3 era -
t = - - (v - <vs>) 8 Q s 

or, using the notation of the previous section, 

2 
t = _ 3Ze A-l/3(<1l _ <~>) BQ . 'I' 

(It is understood that <ll in this equation refers to its value on the 

surface.) Using the approximation NZ/A = (A/4)(1 - I2) ~ A/4, eq.(A.29) 

becomes 

(A.30) 

(A.31) 

It will be shown in the next section that the following remarkable relation 

holds between the volume and surface moments of <ll for a slightly distorted 

sphere 

~ ~ 5 ~ 
<<!l(> - <<!l><(> = - <jl( 6 

and·also that Bs = 1 to the required order in the distortion parameters. It 

follows that 

d = (AZe2/B)(l5/8Q)A-113 <llC surf red 
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and this part of the neutron skin contribution can therefore be combined with 

the volume redistribution term, eq.(A.21). This leads to eq.(3) for the-

coefficient cr. 

6. Evaluation of integrals 

In order to evaluate the dipole moment we need alt,ogether two volume 

integrals, ( and ~(. and three surface integrals, <(>, <~> and <~> for a 

shape (assumed axially symmetric) specified by eq.(2). We shall work these 

out to the lowest non-vanishing order in the expansion coefficients a~. As 

we shall see, this means terms of second order and, because a dipole moment 

can couple spherical harmonics differing only by ~~ = ±1 (the parity 

requirement having eliminated ~~ = 0) the surviving terms are all of the form 

atat+l. Since the sphere is a shape for which the volume, the surface energy 

and the Coulomb energy are stationary with respect to the a~•s and, since by 

a straightforward symmetry argument, terms in a~at+1 do not appear in those 

expressions, there is no need to introduce a volume normalisation factor in 

eq.(2), and it is also an adequate approximation to put Bs ~ 1~ Be~ 1. 

(Be is the Coulomb energy of the shape in units of its value for a sphere.) 

With the shape assumed axially symmetric about the z-axis, the only 

surviving component of the dipole moment~ is along this axis and will be 

denoted by d. We may also drop the vector symbol over (, so that the five 

integrals to be evaluated are (, ~(. <(>, <~>and <~(>, where ( now 

stands for z/R0. 

16 The center of mass of a slightly deformed sphere, as given in ref. ), 

leads to 
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(XI 

--~ 9(!1. + 1) 
(-~ (2!1. + 1)(2!1. + 3) a!l.a!l.+l (A. 35) 

!1.=2 

The surface average of ( is given by 

<C> = RQ1 j . 2•R
2
s1ne cose -..{R

2
de2 + dR/j 2~R slne VR2de2 + dR2 

0 . . . 0 

1 

~ t f dpF\ ( p) '\(1 + F-2(dF/de) 2 

-1 

1 

_l J - 2 

-1 
1 _lf - 2 

-1 

l.l = cose 
I 

F = dF/dl.l 

Using the relations 

( 1 - ,2)p• = !1.(!1. + 1) (P p ) 
.. !1. 2!1. + 1 !1.-1 - !1.+ 1 (A.36) 

(A.37) 

and 
••• 

1 

J 2(!1. + 1) 
(2!1. + 1)(2!1. + 3) 

(A.38) 

-1 
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if the 11 triangle relation 11 is satisfied by (1,R.,R.+1), and zero otherwise, we 

find 

co 

= '"""(R. + 1)(R.2 + 2R. + 6) 
<C> ~ (2R. + 1)(2R. + 3) . aR.aR.+1 

R.=2 

From refs. 2•10 ) we may deduce that the electric potential non-uniformity 

function ~ at a point specified by r,e may be written as 

co 

'""'3 -LJ 2R. + 1 
R.=2 

Since, in the dipole moment expression, the surface average <~> enters 

multiplied by <C>, which is of order aR.aR.+1 (see eq.(A.32)),we need<~> 

only to lowest order (i.e. for a
1 

= 0). 

<.+.> - l 
't' - 5 

to sufficient accuracy. 

The volume average ~C is given by 

1t' R 

It fo 11 ows that 

~c -R-1 
- 0 (i 3rJ 3 1t'Ro J dr de ~ 21fr3sine cose 

6=0 r=O 
1 

L 
[ m 3 3 4 1 6 3 

= 2 dlJP 1 - 40 F + i2 F -~ ( 2l + 1 )( l + 4) 

Proceeding as before, we find 

co 

.+.7' =2:12(!1. - 1)(!1. + 1)(8!1. + 9) 

.... ~ 2 2 a!!.a!!.+1 
!1.=2 5(2!1. + 1) (2!1. + 3) 

Fl+4~lpl] 

(A.39) 

(A.40) 

(A.41) 

(A.42) 

I 

"•· 
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The evaluation of <$C> proceeds similarly and we find 

ClO 

--~ (1. <$(> LJ 
1.=2 

+ 1)(41.4 + 161.3 + 1231.2 + 641. - 72) 
5(21. + 1) 2(21. + 3) 2 ~~.~1.+1 

Using eqs.(A.39),(AA1) and (A.43) we now find 

<$(> - <$><(> = 

(A.43) 

= t ['" 
1.=2 

+ 1)(41.
4 

+ 161.3 + 1231.2 + 641.- 72) (1. + 1)(1.2 + 21. + 6)] 
5(21. + 1) 2(21. + 3) 2 - 5(21. + 1)(21. + 3) ~~.~1.+1 

ClO 

=2: 
1.=2 

2(1.- 1)(1. + 1)(81. + 9) = ~ ~r 
2. 2 ~n~n+1 6 ~~ 

(21. + 1) (21. + 3) ~ ~ 
(A.44) 

We suspect that there is a way of proving this relation that is more 

general than the explicit working out of the expansions for the separate terms 

in the equation, and which relies instead on the general properties of the 

electric potential for a slightly distorted sphere. We have not succeeded so 

far in finding such a proof. 



24 

Acknowledgemerits 

One of us (C.O.D.) would like to thank members of the Theory Group at the 

Lawrence Berkeley Laboratory for their hospitality, and the Consejo Nacional 

de Investigaciones Cientificas y Technicas, Argentina, for financial support. 

This work was supported in part by the Director, Office of Energy 

Research, Division of Nuclear Physics of the Office of High Energy and Nuclear 

Physics of the U.S. Department of Energy under Contract DE-AC03-76SF00098. 



""i 

·(, 

25 

References 

1. G.A. Leander, Proc. Fifth Int. Symp. on Capture Gamma-Ray Spectroscopy 

and Related Topics, Sept. 1984, S. Raman editor; Proc. Niels Bohr 

Centennial Conf. on "Nuclear Structure 1985." Copenhagen, Denmark, May 

1985, eds. R.A. Broglia, G.B. Hagemann and B. Herskind. 

2. V. Strutinsky, Atomnaya Energiya i (1956) 150; J. Nucl. Energy i (1957) 

523 

3. A. Bohr and B.R. Mottelson, Nucl. Phys. i (1957) 529; ~ (1959) 687 

4. W. Nazarewicz, et al., Nucl. Phys. A429 (1984) 269-295 

5. G.A. Leander and R.K. Sheline, Nucl. Phys. A413 (1984) 375 

6. W.O. Myers and W.J. Swiatecki, Ann. Phys. (N.Y.) 84 (1974) 186-210 

7. W.O. Myers, Droplet Model of Atomic Nuclei (IFI/Plenum Data, New York, 

1977) 

8. R.D. Present, Phys. Rev. I£ (1947) 7 

9. W.J. Swiatecki, Phys. Rev. 83 (1951) 178; J. de Physique, suppl. nr. 8-9, 

33 (1972) C5-45 

10. R.W. Hasse, Pramana 11 (1978) 441-55 

· 11. P. Moller, et a1., Proc. 7th Int. Conf. Atomic Masses (AMC0-7) (1984) 

12. 

13. 

14. 

15. 

16. 

457-465 

W.O. Myers and K.-H. Schmidt, Nucl. Phys A410 (1983) 61-73 

W.O. Myers, et al., Phys. Rev. C15 (1977) 2032 

K. Ko1ehmainen, et al., Lawrence Berkeley Laboratory report LBL-18513 

( 1984) 

W.O. Myers, Nukleonika £l (1976) 3 

W.J. Swiatecki, Phys. Rev. 104 (1956} 993 



This report was done with support from the 
Department of Energy. Any conclusions or opinions 
expressed in this report represent solely those of the 
author(s) and not necessarily those of The Regents of 
the University of California, the Lawrence Berkeley 
Laboratory or the Department of Energy. 

Reference to a company or product name does 
not imply approval or recommendation of the 
product by the University of California or the U.S. 
Department of Energy to the exclusion of others that 
may be suitable. 




