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, ABSTRACT 

We investigate relativistic heavy-ion scattering in terms of a coherent 

droplet model, where the colliding nuclei are treated as droplets of nuclear 

matter with no internal structure. The interaction between nuclei is assumed 

to be proportional to the amount of interpenetrating matter. We take the matter 

distribution from electron scattering experiments, and relate the interaction 

parameter by optical theorem to the total' cross section. 

We have performed calculations at incident kinetic energies at 2.1 GeV/ 

4 12 i6 b . ' nucleon for He, C, and 0, and o ta1n a general diffraction pattern,in the 

differential cross section. We also show some interesting scaling property among 

heaVy-ion scattering, as compared to particle-nucleus or black-sphere scattering • 

...... ....... -
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I. INTRODUCTION 

There are some interesting speculations on the interaction of hadron 

matter at relativistic energies, such as the energies now available at Bevatron up to 

2.1 GeV/nucleon. 1 Due to the large coherent aggregation of nucleons in the 

colliding nuclei, a state of enormous energy density may be obtained, where 

many species of hadrons and mesons may coexist. Aside from this speculation, 

the properties of nucleus-nucleus scattering are of interest in many fields, 

such as cosmic ray physics, particle physics and also nuclear physics. 

In cosmic ray measurement, the secondary beam resulting from collisions 

of the primary cosmic ray with atmospheric nuclei must be separated out in 

order to study the composition of the primary cosmic ray. Such correction to 

the data requires a detail knowledge of the interaction length and fragment-

ation of nucleus-nucleus collision. 

2 
In terms of "nuclear democracy", a nucleus with A nucleons is just an 

elementary particle with baryon number A. It is therefore interesting to study 

the particle physics aspect of nucleus-nucleus interaction. If the asymptotic 

region is attained, then a test of general concepts, such as limiting frag-

mentation, facterization, and diffractive dissociation should be possible. 

However, these reaction phenomenons usually require change of many degrees of 

freedom of the system; their detailed treatments are quite complicated. 

In this report, we shall study a simple aspect of heavy-ion collision, 

i.e., the elastic scattering, which involves minimal change of degree of 

freedom. In keeping with the "nuclear democracy", our main interest is to see 

whether the nucleus-nucleus elastic scattering could be interpreted as sim~le 

hadron, e.g., proton-proton and pion-proton, collisions. It is well known that 

high energy elastic scattering atsnall angles generally depends only on the 

') 
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matter distributions of the colliding objects. For nucleus-nucleus collision, 

the diffraction peak in the differential cross section, as we shall see, is 

surprisingly independent of the detail of the matter distribution. To demon-

strate this point further, we compare our results to the extreme case of a 

sharp cut-off model, where interaction takes place only within a cut-off impact 

parameter. We also predict a scaling property in heavy-ion differential cross 

sections, which is compared to proton-proton and proton-nucleus scattering 

measurements. 

II. BASIC FORMULATION 

High-energy hadron elastic scattering from the nucleus has been.quite 

successfully interpreted in terms of the multiple-diffraction theory of Glauber. 3 

Recently the Glauber theory has been generalized by Czyz and Maximon4 to the case 

of composite-particle scattering at high energies. They have obtained a complete 

multiple scattering series in terms of elementary scattering amplitudes between 

the basic constituents and the densities of the composite particles. Such a 

series may be reduced to a simple form in the optical limit when the numbers of 

constitutents (A and B) are large and the elementary scatte:dqg cross· section 
} 

cr is bound as cr ~(AxB)-1 . Czyz and Maximon4 have also presented some model 

studies of the sensitivity of the diffraction pattern to the input parameters, 

both in multiple-scattering calculation and in the optical limit. 

In this note, we would, however, like to take a slightly different point 

of view concerning nucleus-nucleus scattering at very high energies, although the 

formulation itself is equivalent to the optical limit of the Glauber theory. We 

think that it is useful, at such energies, to disregard the internal structure or 

•.' 
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constitutents of the nucleus and take the nucleus to be a distribution of 

nuclear matter. The collision of two nuclei could then be discussed on the 

same footing as proton-proton scatterning, where no quarks or partons are neces-

sary in the interpretation of their elastic scattering. 

This coherent droplet model was first proposed by Chou and Yang5 in 

their discussion of elementary particle scattering. Durand and Lipes6 have 

applied the model to proton-proton elastic scattering and have shown a dif

fraction pattern which has recently been verified by experiments at CERN. 7 

With this success, it is therefore of particular interest to study this model 

further in nucleus-nucleus high energy elastic scattering which may shed some 

light in the similarity in the hadron and nuclear interactions. 

Following the coherent droplet model, we assume that 1) the elastic 

scattering is primarily diffractive, resulting from the absorption of the in-

cident wave into inelastic channels, and 2) the absorption is proportional, for 

any impact parameter, to the total amount of interpenetrating nuclear matter. 

From assumption 2) , we have th S-matrix at impact parameter b as 

(1) 

.. 
where x is a possibly energy-dependent proportionality constant and p(b) are 

the two-dimensional densities (or the blackness of the objects). 5 In analogy 

with the absorption of a wave propagating through a medium, we may write the 

complete elastic scattering amplitude as 

F(g) = ~~ J d~ exp[iq .• b] { 1 - S(b) } 
.. 2 
q is the momentum transfer, k is the incident momentum, and q 

(2) 

where 

2 = 2k (1-cos 8). We note that, in the optical limit of.the Glauber thoery, 
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we have an identical expression, Eq. (2), for the scattering amplitude. In the 

case of the ·Glauber theory, the parameter x is complex and related to the nucleon

nucleon scattering amplitudes. 4 In our calculation, :X is simply taken to be a 

constant to be determined by the total cross section. 

Equation (2) is a convenient starting point for calculations using impact-

~arameter formalism. As an alternative, we would like to use angular momentum 

representation (or the partial wave expansion). To carry out the transformation, 

we first define the form factor G(q) as two dimensional Fourier transform of 

the density 

f 
2-+ +-+ 

(-+) d q -iq•bG(+) pb = 2 e q 
(21T) 

(3) 

-+ 
We may then integrate over b' in Eq. (1) and obtain 

(4) 

If we further assume that the density is spherically (or conically) symmetric, 

-+ + 
then G(q) is independent of the direction of q. This allows us to integrate the 

+ 
exponent in Eq. (4) over the direction of q; we have 

' (5) 

+ 
which is independent of the direction of b. The function J (qb) is the zeroth order 

0 

Bessel function. We may convert Eq. (5) into a partial wave scattering amplitude by 

introducing the following correspondence: (kb +-+ 2+ ~). We therefore have PQ (cos 8 )_-. 
::::: J ( qb) for e small and large 2 ' 

0 

~(22+1) ~~2k2bdb (6) 
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and the partial wave amplitude S(b)~ s2 (k) as 

S£(k) = exp [ix(~)~(cos a)P£(cos a)GA(q)GB(q)] 

Finally we may write the complete scattering amplitude F(q) as 

F( g.) = 1 
2ik I: (2£ + 1> 

£ 

LBL-1988 

(7) 

(8) 

where e is the center of mass angle, 2 is the orbital angular momentum. The 

phase shift o£(k) is related to the projection of product form factor, or the 

phase shift function B£ (k), by 2o,e (k) ·= ixB,e (k). Here BR (k) is given by ' 

~(k) = (~:)_.( d(cos a)P£(cos a) G.i.(q) GB(q) , (9) 

which is identical to the following expansion 

GA(q) GB(q) =G~)t= (2£+1) B£(k) P£(cos a) (10) 

We may interpret GA(q)GB(q) as the probability that the colliding heavy ions 

could sustain a momentum transfer q without being broken-up. It is also inter-

esting to note that Eq. (8) is formally identical to the case of a single-

particle scattering from a composite system, where B_e(k) would be the partial 

wave amplitude associated with the form factor of the target alone. 

We have now completed our basic formulation. For t.he differential cross 

section, we find it useful to introduce the invariant parameter t = _q2 and the 

invariant differential cross section as 

dcr TI 

dt = k2 
(11) 
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For reference, the c.m. angular distribution is da/dn = k2(da/dt). The 

advantage of using the invariant cross section is that, in the asymptotic 

region where the parameter x is .a constant, it becomes independent of incident 

energy. This can be best seen from Eq. (2) where F(q)«k if S(b) is independent 

of energy. 

The total cross section is given by the optical theorem as 

atot(k) = ~~ Im[F(q=O)] • (12) 

For simplification, we first take the parameter x to be purely imaginary: 

x = ix , where x is real and can be determined from a total cross section 
0 0 

measurement. Explicitly we have 

(13) 

In the aS!'Jttp"t"Otic energy region, the total section may be taken to be simply 

the geometric value: 

where RA and RB are the radii of the colliding nuclei. This choice of the 

channel radius is probably consistant with the assumption that the nucleus 

would break up whenever there is any appreciable amount of overlap of the 

nuclear matter. This range of interaction is also consistant with low-energy 

optical model calculation for heavy-ion elastic scattering. 8 

We may generalize the above discussion to allow the parameter x to be 
0 ' 

complex. Let us replace x = (S+i)x in Eq. (1). Equation (8) for the scattering 
0 

amplitude is unchanged. However, the total cross section now does not uniquely 

,. 
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specify our parameter. We have 

= ~ 2: (22+1) { l - ex:p[-x
0

B£ (k)] cos (Sx
0

B2 )} 

£ 
(15) 

uhere ve need an estinate of x
0 

or a. We first note that both the differential 

and total cross sections are independent of the sign of S. Furthermore, 

the parameter B would generally affect the differential cross section only 

near diffraction minima, but does not give rise to substantial change in the 

4 diffraction pattern, as shown by Czyz and Maximon and also by Durand and 

Lipes. 6 In our calculation, we therefore set a value of S·and use Eqs. (14) 

and (15) to determine x • As we shall show, the diffraction pattern presists even 
0 

for B to be as large as 0.5. More interestingly, we could determine the sign of S 

from experiment by nuclear-Coulomb interference at small angles, which can 

then be compared with the real part of free nucleon-nucleon forward amplitude. 

This may give some insight to the degree of transparency in nucleus-nucleus 

scattering, as compared to nucleon-nucleon scattering. 

III. MODEL CALCULATION 

We would now like to apply the formulation to scattering of heavy 

ions. Since there are beams only of light nuclei availablem test this model, 

we would like to restrict ourselves only to these nuclei. Generally we may 

represent their density distribution by Gaussian or a simple modified Gaussian 

form. In this case the numerical calculation simplifies greatly by allowing analytic 

expressions for B2 (k) in Eq. (8). For other nuclei where a Woods-Saxon density 

distribution may be more appropriate, the impact parameter formalism may be simpler. 
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Let us use the following modified Gaussian form factor9 

(16) 

where i = A or B, ai = (A1-4)/6 with Ai as the number of nucleons in the nucleus 

i. The parameters a and a are determined from electron scattering. To 
m c 

simplify the notations, let us introduce 

a. 2 l. a. = 2( 2+3a.) 
a 

l. m,i 
l. 

2 b. = a . /4 
l. c,J. 

From Eq. (10), we obtain the following expression for B£(k): 

(
2iT) B (k) = exp[-u] {[1-v+w+ i(v:2w) + w£(£;l)] i£(u) 
k 2 .· Q u 

+ [v-2w+ (2i:l)w] i2+1 (u) + wi2+2(u)} ; 

where we have defined 

and 

2 
v = 2(~+~)k 

w = 4aA~k 4 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 

The functions i_e(u) are the modified spherical Bessel functions of the first 

kind. 10 The nuclear r.m.s. radius R
1
. is related to a

1
. and a . by m,J. 

a m,i (23) 
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It might be useful to point out that the partial form factor B2 (k) in 

Eq. (19), which has been extracted directly from Eq. (lO). could also be 

obtained by using 

(2" .2 ' 2) 2 
. /k

2
) o o o r:,(k)r: • (k)v~7T (24) 

where the round bracket indicates a Wigner 3-j symbol,
11

' and the functions 

f£(k) are the partial form factors associated with the individual nucleus, i.e., 

GA(q) = ~ (2£+1) r:(k) P2(cos 8) 

£ 

We note again that our formulas are applicable to particle-nucleus 

(25) 

scattering, if one of the form factors is properly chosen. In the Glauber theory, the 

projectile form factor will be related to nucleon-nucleon elastic scattering amplitude. 

Before we discuss our results, we would like to recall the diffraction 

12 pattern of a black-sphere scattering. That is, if we take 

S(b) = 0 

= l (26) 

the ratio of the differential cross sections is given simply by 

(27) 

where J
1

{qR} is the first order Bessel function. The factor 4 is due to the fact 

that lim J(x)/x = ~ . The effective radius is R = R1 + R2 • Equation (27) displays 
x-+0 

the well-known Fraunhofer diffraction. The cross section is sharply peak~d in the 

forward direction, with minima occuring at the zeros of J 1 (qR). We shall see that, 
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in the case of nucleus-nucleus and particle-nucleus collisions, this diffraction 

pattern is very rapidly attained, especially when the nucleus has a relatively 

sharp surface region. In the next section, we shall discuss the results of our 

calculation and compare them to particle-nucleus and the black-sphere scattering. 

In our calculations, we do not take into account the Coulomb scattering, which 

is important only at very small angles at such high energies for light nuclei. 



-ll- LBL-1988 

IV. NUMERICAL RESULTS 

In this section we shall discuss some general features of heavy-ion 

scattering. For our examples we would like to restrict ourselves to the light 

. 4 12 16 nucle1, such as He, C, and 0. Their density distributions have been well 

studied by electron scattering. 9 The parameters for the form factors, as repre-

sented by Eq. (16), are given in Table I. We are first interested in the behavior 

of the partial wave form factors f2(k) in Eq. (25) and the phase shift fUnction 

B£ (k) in Eq. (10) or (19); two such examples are given in Fig. 1, where we 

notice that the B2 (k) and f£(k) do fall rapidly after a transient region of 

angular momentum, which would be sensitive to the nuclear surface. However, as we 

shall see, the smooth fall off in Fig. 1 results in quite similar differential 

cross section to a sharp cut-off model. This is probably due to a very large 

number of partial waves contributing to the differential cross section calculations, 

so that the transient region is relatively narrow. 

With the phase shift functions B2(k), we may obtain the scattering 

amplitude F(q) in Eq. (8), provided that the parameter xis determined from Eq. (13) 

or (15). The values of the parameter x, the total cross section cr(tot)(k) and total 

elastic cross section cre
1

(k) are given in Table II, where we also show the ratio 

cre
1

/crtot" We note that not only the magnitudes of the total elastic cross section 

depends on the value of x, but also the diffraction pattern. In Fig. 2, we show 

the dependence of the total and elastic cross sections, and the position of the first 

minimum in the differential cross section as fUnctions of the parameter x. The 

ratio cre
1

/crtot approaches 0.5 for very large x
0

, which indicates strong absorption 

probability (see Eq. (1)). For different value of x, the differential cross 

section is very different as shown by Czyz and Maximon4 in their study of the 
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composite particle scattering. (Here we refer to their study of the effects of 

the subunit size which they renormalize. Their parameter ABa is related 

toxin our model.) In Fig. 2 1 it is also interesting to see that the position 

of the fir6t ininimum, let us call it t i , is not determined by the size of the mn 

colliding objects alone, It is clear that at t' a 1 and t . are all inter-o e ~n 

dependent through the parameter x. However, if atot or ael is determined by 

the size of the colliding objects, the position tmin mS\Y' then depend on the 

size alone. 

We may now calculate the differential cross sectons, which are 

shown in Fig. 3. The solid lines indicate the purely diffractive scattering 

(S=O); the dashed lines show the results with a large value of a. Other inter-

mediate values of a, e.g. a = 0.2, would give slightly more pronounced minima 

than those shown by the dashed line. Our purpose is to show that, even for such 

large S, the diffraction pattern still remain, except at very large momentum 

transfer. The maxima. are not, however, affected by the value of S. We note 

again that the diffraction patterns shown in Fig. 5 are independent of the 

incident energy (see the discussion following Eq. {11)). 

In Table III, we show some quantities of interest related to the 

differential cross section (~~) similar to Fig. 3. This is useful for w' c .m. 

comparison to other experimental results generally shown in terms of the non-

invariant form (da/dQ) • It is interesting to note that the values of the 
c .m. 

product qR at the minima for all the reactions remain· constant and rather close to 

the black-sphere values (see the discussion following Eq. (27)). This feature is 

particularly interesting if we recall that the B~(k) in Fig. 1 do not seem to have a 

very sharp cutoff in£. Nevertheless, a cutoff is shown in Fig. 1 may be deemed 

"sharp" as far as producing the minima is concerned. 

•' 
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We now compare the region of mementum transfer near the first diffraction 

minimum of heavy-ion scattering to those of particle-nucleus and proton-proton 

scattering in Fig. 4. These three types of scattering cover a very large range 

of mementum transfer. The large size of heavy ions emphasizes the importance 

of the very small momentum transfer region. 

We have now shown the general behavior of the differential cross section 

in heavy-ion scattering. The most interesting feature of OUr study is the 

regularity of the diffraction minima, expressed in terms of the values of qR, 

as shown in Table III. To illustrate this property further, we plot the relative 

cross section (dcr/dt)/(dcr/dt)t=O versus qR in Fig. 5. It is quite interesting 

that the cross sections seem to scale, especially within the first minimum. We 

. . 16 16 . 12 12 
not~ce that the cross sect~on of 0- 0 is nearly equal to that of C- C 

scattering at all momentum transfer. This seems to be a limiting case for heavy-

ion scattering. In Fig. 5, we also compare our results to black-sphere scattering. 

Although the minima are predicted by the black-sphere model, the magnitude is 

generally too large at large momentum transfer. There is more large-angle. 

scattering in the black-sphere model, due to the sharp surface. For a nucleus 

with more diffused surface, such as 4He-4He case, the large-angle scattering is 

relatively smaller. It is also interesting, at this point, to point out some 

similarities between the particle-nucleus and the nucleus-nucleus scattering. We 

note from the high energy data of p-4He, p-12c and p-16o experiments13 that dif-

fraction minima also occur quite close to the values given by the sharp cut-off 

model. The relative differential cross section, as plotted in Fig. 5, at the 

second maximum seems to have an asymptotic value of 0.2xlo-2 • The large-angle 

scattering in particle-nucleus scattering becomes much smaller than that in nucleus-

nucleus scattering; this is consistent with our observation that proton has a much 

more diffused surface. These particle-nucleus scattering have been discussed by 

several authors in the framework of the Glauber theory.4.14 
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Finally we would like to demonstrate one more property of the model. 

4 If we increase or decrease the radius of He, the total cross section (therefore 

the absorption parameter x) and the total elastic scatterings cross section will 

all be changed, but the plot in the coordinates qR of Fig. 5 will not be very 

much changed. We show such an effect in Fig •. 6,·where we have increased or 

decreased the radius by about 10%. The diffraction pattern remains the same. 

This property would also appear in the optical limit calculation of the Glauber 

theory as applied to particle-nucleus scattering at high.energies. It is worth-

while to note that the form factors are quite different in the momentum transfer 

region involved in the calculation, as shown in the inset of Fig. 6. -'It is 

important to see that this specific feature will not occur if we just make the 

nuclear matter denser or looser as is done in Ref. 4, in which case the parameter 

x (or ABcr) is not changed; we, however, have changed x to give the new total 

cross section as specified by Eq. (14). 



: 

-15- LBL-1988 

V. CONCLUDING REMARKS 

We have investigated the general behavior of heavy-ion scattering at 

relativistic energies. In this asymptotic region, we have shown that there 

is a scaling property in the differential cross section. It is appropriate to 

reiterate the purpose of this study: We are interested in the elementary

particle aspect of nucleus-nucleus collisions. We postulate that the elastic 

scattering is determined by the matter distributions of the colliding nuclei,. 

and that scattering phenomenon can be treated on the same footing as proton

proton or pion-proton scattering. The degrees of freedom of the "subunits" in 

the nucleus can be completely neglected. The nucleus-nucleus scattering is 

directly related to electron scattering through the use of the form factors. In 

this model, the total cross section and the complete differential cross section 

are directly interrelated through the absorption parameter; this is more general 

than the optical theorem where the total cross section is. related only to the 

imaginary part of the forward scattering amplitude. 

To test this model, we suggest the following experiments: 1) scattering 

of nuclei with very diffUsed surface, e.g. deutron or helium, to study the large 

momentum transfer, and 2) scattering af nuclei heavier than 12c to study the 

asymptotic behavior of the diffraction pattern. Nuclei heavier than 16o would 

generally have a similar, or sharper, diffuseness on the surface and, therefore, 

should give similar diffraction pattern. It would also be interesting to use 

beams of various ·energies to determine the energy where the interaction becomes 

asymptotic. There is evidence from fragmentation experiments that the asymptotic 

region is reached at as low as 1 GeV/nucleon. 15 
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In our formalism, we have not made use of the assumption of pre

existing subunits, such as nucleons. This model should be valid since we 

are dealing with elastic scattering where no internal degrees of freedom are 

disturbed. A microscopic treatment, such as the Gl~uber theory, is certainly 

more useful if nucleonic correlation effects are important and can be properly 

taken into account. !n this case, the nuclear structure information may be 

extracted from such experiments. It would be particuiarly interesting if the 

effects of nucleonic correlations become enhanced in heavy-ion scattering due 

to some coherent collision processes, which are not present in particle-nucleus 

scattering. This possibility should be investigated when such data are available 

in the near future. 

We would also like to mention that a similar approach has been applied 

to low-energy heavy-ion elastic scattering.16 
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Table I. Parameters for Nuclear Form Factors 

Nucleus a ( fm) a. (f'm) (l ,j<r2> (fm) 
m c ' ·, 

4He 
a 

1.31 1.31 0.0 1.61 

12c 1.66 1.59 4 
2.45 

3 
160 1.76 1.70 2 2.64 

aNote that this value is used to calculate the r.m.s. radius only; the 
. 4 

parameter a=O in Eq. (16), in the case of He. 



a Table II. Absorption Parameters and the Corresponding Total and Total Elastic Cross Sections 

4 4 He - He 

4He - 12c 

4He - 016 

12c _ 12c 

12c _ 160 

160 - 160 

a For f3 = 0.2. 

X 
0 

5,6 X 103 

- 4 .J.,O X 10 

1.1 X 104 

l. 7 X 10 4 

1.8 X 10 4 

1. 9 X 10 4 

crtot (mb) 

the geometric value) 

630 

1030 

1130 

1500 

1620 

1750 

cr (rr' \ el .. o; 

241 

407 

445 

605 

655 

706 

0
e1 

crtot 

0.382 

0.394 

0.394 

0.403 

o.4o4 

0.403 

I 
1\) 
0 
I 

~ 
1:-i~ 

I 
I-' 
\0 
Q) 
Q) 



Table III. Some Quantities of Interest in the Differential Cross Sections.a 

Differential Differential 
Reactions Cross Section Position of Cross Section Position of 

at e = 0 lst Minimum at 2nd Maximum 2nd Minimum 
da (barn) 
dn sr qR e (degree) em 

da (barn) 
dn sr 

qR e (degree) 
em 

4 4 
He - He 3.08 X 102 

3.9 4.6 1.7 7.4 8.7 

4He - l2c 2.15 X 103 3.9 2.13 15.1 7.2 3.9 

4He - 160 3.18 X 103 3.9 1.84 21.7 7.2 3.4 

12c _ 12c 1.55 X 104 
3.9 0.95 121.8 7.1 1.7 

12c _ 160 2.38 X 104 3.9 0.78 158.8 7.1 1.4 

160 - 160 3.71 X 104 ----
3.9 0.65 296.1 7.1 1.2 

Black-Sphere Scattering 3.8 7.1 

~or 8 = 0.2. 

. ... 

Differential 
Cross Section 
at 3rd Haximum 

da (barn) 
dn sr 

0.07 

0.8 

1.]. 

7.8 

12.1 

18.6 

Incident 
Momentum 
in c.M. 
System 

(~) 
c 

3.9 

6.35 

6.99 

11.56 

13.28 

15.4 

I 

~ 
I 

fu 
t"' 
I 
~ 
\0 
CX> 
CX> 
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f.IGURE CAPTIONS 

Fig. 1. Par~Ja.l vave expansion of nuclear form factors f 2 (k) and the phase 

shift functions B£ ( k) as defined by Eqs. ( 10) and { 25) • The dashed line is , 

f£(u) and the solid line is B2 (k). The form factor f 2 (u) is essentially the 

phase shift function in particle-nucleus scattering. These functions are 

constant at small £ and vanish after transition near the value 2 = kR. 

Fig. 2. The total cross section and the total elastic cross section as a function 

of the absorption parameter x • FOr this illustration we take S = 0. For 
. 0 

very large x
0

, the ratio cre1/crtot approaches 0.5 as given by a black-sphere 

scattering. 

parameter x • 
0 

The position of' the first minimum t i also depends on the mn 

Fig. 3. . 4 4 4 12 12 12 Differential cross sect~ons for He- He, He- C and C- C elastic 

scattering. The solid line is obtained using a purely imaginary x, i.e., 

x = ix
0

; the dashed line corresponds to x = (13+i)x
0

, With a large real part 

a = 0.5. The real part does not affect the diffraction pattern very much, 

except at the minima or large momentum transfer. The diffraction patterns 

shown here are independent of the incident energy. 

Fig. 4. Comparison of heavy-ion scattering with other types of scattering. 

The regions of interest are the diffraction patterns within the second 

maximum. Heavy-ion scattering covers a very diffe~ent momentum transfer 

4 region. The proton-proton scattering is from Ref. 6 and 7; the p- He and 

P-16o calculations in the optical limit are from Ref. 4. The p-p scattering 

data drops by a factor of 10-7 at the second maximum; the smaller momentum · ., 

transfer region is not reproduced here. Note that the cross sections are in 

arbitrary unit. 
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Fig. 5. Differential cross sections in "scaling coordinates". We plot relative 

cross section,(da/dt) to the forward cross section (dcr/dt)t=O, versus 

qR, where q is the momentum transfer and_R is the effective radius R = R
1 

+ R2 • The differential cross secti~ns seem to scale. The 12c-12c, 12c-16o, 
16 16 . ' 4 and 0- 0 are essentially indist:Lnguish~ble on this plot. The He 

scattering diviates from the symptotic for.m, probably due to its diffused 

surface. The long dashed line is the prediction of a sharp cut-off model 

(black .... sphere scattering). 

Fig. 6. Test of sensitivity of the "scaling plot" to changes of nuclear radius 

for 4He-4He scattering. The form factors are shown in the upper right inset. 

It is clear that although the angular distribution are different, the 

"scaling plots" remain nearly identical. 
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r-----------------LEGALNOTICE--------------------

This report was prepared as an account of work sponsored by the 
United States Government. Neither the United States nor the United 
States Atomic Energy Commission, nor any of their employees, nor 
any of their contractors, subcontractors, or their employees, makes 
any warranty, express or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness or usefulness of any 
information, apparatus, product or process disclosed, or represents 
that its use would not infringe privately owned rights . 
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