
I] . . ~ 

1.~·· ... 
t~ 

LBL-·19909 
Preprint~ (' · )..., 

Lawrence Berkeley La~9F~tP!Y 
UNIVERSITY OF CALIFORNIA 

Submitted to Physical Review D 

MICROCANONICAL FORMULATION OF 
LATTICE GAUGE THEORIES WITH FERMIONS 

A. Iwazaki 

July 1985 

C :::;c; J; .~·~N·.-s SECTIC~' 

' ... ' 

·· This is a ubrary. ci;cutating . 
. ich may b~ borro~ed for 

.. ' . ~ 
_,..,..,..,*•·•s.;o-~·•tft.r.~....a$~~ 

Preparf!d for the U.S. Department of Er.ergy ur,der Contract DE-AC03-76SF00098 



DISCLAIMER 

This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain correct information, neither the 
United States Government nor any agency thereof, nor the Regents of the University of 
California, nor any of their employees, makes any warranty, express or implied, or 
assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or the Regents of the University of 
California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof or the_ Regents of the 
University of California. 



. I 
·~ 

LBL-19909 

Microcanonical Formulation of Lattice Gauge Theories 

with Fermions 

A. Iwazaki 

Nuclear Science Division 
Lawrence Berkeley Laboratory 

University of California 
Berkeley, California 94720 

This work was supported in part by the Director, Office of Energy Research, 
Division of Nuclear Physics of the Office of High Energy and Nuclear Physics 
of the U.S. Department of Energy under Contract DE-AC03-76SF00098. 



Abstract 

LBL-19909 

Microcanonical Formulation of Lattice Gauge Theories 
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We present a microcanonical formulation of SU(Nc) lattice gauge theories 

with fermions. In this formulation correlation functions are given by a 

microcanonical ensemble average of bosonic fields. By use of the weak 

coupling expansion, we prove the equivalence between this formulation and the 

standard functional formulation. The standard Schwinger Dyson equations can 

be found to hold in this formulation. 
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In a previous paper, 1 we have shown that a microcanonical formulation of 

scalar field theories gives the same perturbation series as the standard 

functional formulation does and that the microcanonical formulation of quantum 

mechanics can reproduce not only the same perturbation series but also correct 

results. 

This formulation had already been used 2•3 as a practical calculational 

method in lattice gauge theories and had yielded results which agree w~ll with 

Monte-Carlo results. However, the validity of the formulation had been 

superficial and obscure until we proved, in the case of scalar field theories, 

the perturbative equivalence between the microcanonical and standard 

functional formulations. 

In this paper, we shall discuss a microcanonical formulation of lattice 

gauge theories with fermions. In pure lattice gauge theories without 

fermions, we adopt SU(Nc) as a gauge group and prove the equivalence between 

these two formulations by using the weak coupling expansion. In the case of 

theories4 with fermions, we introduce complex boson fields to describe the 

fermion's determinant. Although the formulation of theories with fermions 

involves a nonlocal operator, Hamilton's equations derived from the 

formulation do not include the nonlocal operator. Therefore, assuming 

ergodicity in the dynamical system described by the formulation, we can solve 

Hamilton's equations without worrying about the nonlocal character in the 

microcanonical ensemble. 

J We shall first briefly review our microcanonical formulation 1 of scalar 

field theories to clarify the essentials. Then we shall proceed to discussing 

pure lattice gauge theories and theories with fermions. 
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In a scalar field theory with Euclidean actionS(~). we first construct a 

Hamiltonian of which the microcanonical ensemble density is composed as 
N P.2 

follows: H = ~ ~ + S(~). Notice that this Hamiltonian is a function 
i=l 

of N field variables (~i) and their canonical conjugate momentum variables 

(Pi) put in by hand. As is often the case in statistical mechanics, the 

field average is performed over an energy surface E = H in the phase space of 

{pi.~i}. On the average, the energy E must be chosen to be equal toN, which 

consists of N/2 coming from contributions of field variables ~i and of the 

· other N/2 comi~g from those of momentum variables Pi, namely, energy per 

degree of freedom must be chosen to be equal to 1/2. This choice of the 

energy (E = N) guarantees the perturbative equivalence between the 

microcanonical formulati~n and the standard functional formulation, but does 

not, in general, guarantee the rigorous equivalence beyond the perturbation 

theory. Indeed, E should be taken as E = N/2 + <S> and E(g = 0) = N where 

< ... >implies the microcanonical ensemble average and g is a coupling 

constant (see ref. 7 and appendix in this paper). Since our perturbation 

theory is defined only in the small coupling constant, we should take E = N in 

our argument. Finally, after expanding results into series with regard to g, 

we take a limit of N ~ ~. order by order, keeping an·ultraviolet cut off 

finite. As has been shown in ref. 1, these procedures lead us to a standard 

perturbation series with an ultraviolet cut off. 

Let us now describe our microcanonical formulation of SU(Nc) lattice 

gauge theories in 4 dimensional Euclidean space (a generalization of the 

formulation into arbitrary groups and dimensions is straightforward). We 

consider a finite lattice of N6 lattice sites with periodic boundary 

conditions. The lattice action is given by 

.. 

\.1 
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s = - 4:2 L: 
X,lJ;I!V 

( 1) 

with 

where U is a link variable on a link characterized by a lattice site x and 
X,lJ 

a direction 1-1· In (1), g is a gauge coupling constant. Then the partition 

function in the microcanonical formulation of lattice gauge theories is 

defined by 

z = f II dP dU &( E - H) 
X,lJ X,lJ 

X,lJ 

with H = 12 '"""" P + S( u) L..J X,lJ 
X,lJ 

and E = N 

where dU is the invariant measure and P plays the role of canonical 
X,lJ X,lJ 

(2) 

conjugate momentum corresponding to a link variable U ; P takes a real 
X,lJ X,lJ 

value over an infinite range. In the formulation (2), we take E =Nasa 

total energy where N is given by 

N = 3(N2 - l)N4 + l (N 2 - l)N4 = l (N 2 - l)N4 
c 0 2 c 0 2 c 0 (3) 

Here, we note that, as previously stated, each of the coordinate variables and 

of the momentum variables contributes an energy of 1/2 to the total energy E. 

In lattice gauge theories, we have local gauge invariance so that the number 

of independent degrees of freedom is much smaller than the number estimated 

from the number of link variables. Therefore, the energy of 3(N2 
c 
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(3) comes from contributions of independent link variables U and of their X,p 

conjugate momenta Px,p· On the other hand, the energy oft (N~- l)N6 

comes from contributions of momentum variables only, whose conjugate link 

variables are redundant. The proof of the perturbative equivalence between 

the microcanonical formulation and the standard one is accomplished by taking 

a limit of N
0 
~~with relation (3) order by order in a perturbation series. 

As we carry out the proof by using weak coupling expansion, we must 

choose5 a gauge. We adopt the covariant gauge in which the partition function 

is given by 

-s -s fl dP dU &(E - H)e gf gh X,p X,p X,p 

-s 
where Sgf is the gauge fixing term and e gh is a corresponding Faddeev-

Popov determinant. When the link variables Ux,p are parametrized as 

igA 
U = e X,p with 
X,p 

the gauge fixing term sgf becomes 

sgf - L ""(~ .:\ A )2 - 2~ ~ ~ lJ X-p,p 
X lJ 

with 

(4) 

( 5) 

( 6) 

where ~ is a gauge parameter. The Faddeev-Popov term Sgh is higher order in 

powers of g than g0. Therefore, in the lowest order of g2, Z can be written as 

IJ 
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z = f IJ dP .· dA cS(E - H0)exp {- -2
1 '"""(~A A _ )

2

} 
X,lJ X,lJ a £.-J £.-J lJ X lJ,lJ 

X,lJ X lJ . 

" with H = l '""" "P2 
+ l '""" (A A · - A A ) 2 

0 2 £.-J X,lJ 4 L..J lJ X,v v X,lJ 
X,lJ;s!V 

Now, we wish to prove that the generating functional, 

Z(J) = j II dP dU cS(E - H)exp { -(Sgf. + sgh) + i L j . ~ } X,lJ X,lJ X,lJ X,lJ 
X,lJ 

X,lJ 

gives rise to, order by order in weak coupling expansion, a generating 

functional in the standard functional formulation, 

IJ dU exp { -(S X,lJ 
X,lJ 

+ sgf + sgh) + i 2: jx,lJ 

X,lJ 

. A } X,lJ 

(7) 

(8) 

(9) 

First, we show that in the lowest order of g2, the generating functional 

(8) coincides with the usual one in (9). By imposing periodic boundary 

conditions, we expand the fields A , P and j in Fourier series: 
X,lJ X,lJ X,lJ 

and 

j 
X,lJ 

and x = 1 a 
lJ lJ 

( 1 0) 
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where a is a lattice spacing, and ~ ·and m are integer 

(- :o ~ m ~ : 0). Then the generat~ng fun:tional becomes 

+ i ~ (jl • AL + ~ j T 
2 ~ m m ~ m,'IJ 

m 1J 

• AT )·} m, 1J • 

with H =! L IPLI 2 +iL IPT 12 + l L IAT 1\L 0 4 m m,1-1 4 m,'IJ . 
m m,'IJ m, 1-1 A. 

k 1 -
iqm 1J 

and - 211' 
- e • qm,'IJ = NO m'IJ m,'IJ 

lk 1
2

) + m,'IJ 

( 11 ) 

lkm.~/) 

where we have decomposed the fields A , P and j into a longitudinal m,'IJ m,1-1 m,'IJ 

component and transverse components, for example, 

A m,'IJ 

k 
m, \.1 -tl -tT = ----.:=-'-C--- A + A 

m m,'IJ with k* AT = 0 
m,'IJ m,'IJ ' ( 12) 

lJ. 

We note that in H0 there are no potential terms for the longitudinal 

mode. This fact results from the local gauge invariance of the system and 

leads us to E = N as the total energy. In other words, if we had potential 

terms for the longitudinal modes like L I k 121AL 12, m,lJ m we would need to 

take E = 4(N~ - l)N6 in order to prove the equivalence. 

Changing the integration measure of n dP dA into II dP OA • x,'IJ x,'IJ m,'IJ m,'IJ x,'IJ m,'IJ 
we perform the integrating by using a technique in the previous paper.l 

Then, taking the limit of N0 ~~with the relation (3), we obtain 

.. 

lJ 

v 
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= C exp {- -4
1 ~ j* 1!. ( k ) j } L.J m,lJ lJ,v m m,v 

m,lJ,v 

1!. ( km) 
}J,V = [6•··(~ lkm,>/) - (1 - <>)km,.k;,.}~ with 

where C is a constant independent of j . Therefore, in the lowest m,lJ 

order of g2, we obtain the same generating functional as the one in the 

standard formulation. 

( 13) 

2 Next, we proceed to proving the equivalence in higher order terms of g . 

For this purpose, we must expand the function of 6(E - H) in (8) with respect 

to g2 and carry out the above calculation by using a weight function of 
n 

__ d __ &(E- H ) instead of &(E- H0). However, it is easy to see1 that 
dEn 
the results obtained by taking the limit of N0 ~ ~ for fixed n are the 

same as the one in (13) (see (14)) and are independent of n. Hence, we have 

reached a conclusion that the generating functional (8) in the microcanonical 

formation coincides precisely, in all orders of weak coupling expansion, with 

the one in the standard formulation. 

A comment is in order. As can be shown easily in perturbation theory, 

the following formula holds1 : 

f ll ~6(E - H)W{c) 
dEn . 1 im .x......_....:...::. _____ _ 

NO-- J d p 6 ( E - H) 

for arbitrary integer n > 0 

( 14) 

where dll is the integration measure in (2) and W(c) is an arbitrary Wilson 

loop (the proof is given in the appendix). Using the formula (14), we can 
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derive the Schwinger-Dyson equations6 in U(Nc) lattice gauge theories. 

Indeed, ingredients in the derivation of the equations are 1) use of the 

invariant measure and 2) use of an ensemble density f(S) such that 

d (- dS)f(S) = f(S). In the standard formulation, f(S) is provided as f = e-s 

and the condition 2) is satisfied trivially. On the other hand, in the 

microcanonical formulation the condition 2) is not satisfied, but the formula 

(14), instead of 2), ensures the Schwinger-Dyson equations. 

We now proceed to discussing the microcanonical formulation of lattice 

gauge theories with fermions. The formulation has been discussed4 previously 

and some computer calculations have been performed in the formulation. 

However, the equivalence of it to the standard formulation has not yet been 

proved. Therefore, we wish to show briefly the equivalence in a similar way 

to that used previously for bosonic systems. 

Suppose that a lattice theory with fermions of two flavours is defined by 

the Euclidean action 

2 

S = ~ '-' "'· K "'· L.JL.J 1 ,m m,n 1 ,n 
I 

+ S (11) ( 15) 

i=1 m,n 

where S'(11) is an action of the other bosonic fields 11 (scalar fields, gauge 

fie 1 d s , etc. ) . K represents the kinetic term which may include the other m,n 

fields 11 (m and n indicate both a lattice site and a spinor index). We 

assume that the determinant det K is real. Then, it follows that 

(det K) 2 = + det K det K ( 16) 

where ks is an eigenvalue of the operator K and Nf is the number of degrees of 

v 
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freedom of a fermion field. The microcanonical formulation of the theory is 

defined as follows: 

- H) (17) 

n n,m 

where H' and p' are the Hamiltonian and the integration measure of fields n, 

respectively. The total energy E is taken as E = E' + 2Nf with E' = N'. 

Here, we have assumed that the number of degrees of freedom of fields n is 

N'. The complex fields Pn and ~n in (17) have been introduced to describe 

the degrees of freedom of fermions. When we calculate green functions of 

fermions, we make use of the generating functional, 

with 

Z{J) = J 
dp - IT 

n=1 

( 18) 

where J and J are sources of the fermions. In order to show perturbatively 

that the generating functional is the same as the one in the usual 

formulation, we expand the fields Pn and ~n with the orthonormal 

eigenfunctions (qs) of K as 

Nf 

P='""aq L.J s s 
s=1 

with 

and integrate over the complex coefficients as and bs. Writing the 

Hamiltonian in (17) as 

( 19) 
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Nf ~ lb 12) H =! ~ Ia 12 + s 
2 ~ s lk 12 

s=l s 

+ HI 

and inserting the identity 

G) G) 

&(E - H) = J d< &(E - < - H') J IJ des <S(es - Es ) x 
S 

,a ,a ,a 
,a 

0 0 

X 6(e - ~e ) L.J s,a 
S ,a 

with and a= 1,2 

where as= a!+ ia~ and bs = b! + ib~ (both of a; and b; are real), we can 

perform the integration (see ref. 1). As a result, Z(J) becomes, up to an 

irrelevant constant, as follows: 

Z(J) =! 
0 

2N -1 J f I de e d~ <S(E - e 
{ 

2 } I + - -1 
H )det(K K)exp ""''""' J. (K ) J. · ~~ 1,n n,m 1,m 

i=1 n,m 

(20) 

It is easy to demonstrate from (20) in a similar way as in the previous paper1 

that Z(J) gives a perturbation series, which is the same as the one obtained 

in the standard formulation and which is constructed by expanding H' and K-1 

with respect to a coupling constant. In such a demonstration, we take a limit 

of E ~CD, order by order in the series expansion. It is worthwhile to remark 

l! 
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that the limit of E ~~corresponds not to a limit of lattice spacing ~ 0, 

but to a limit of infinite volume. 

In this paper, we have shown that the microcanonical formulation of 

SU(Nc) lattice gauge theories and theories with fermions is perturbatively 

equivalent to the standard functional formulation. Furthermore, we have shown 

that Schwinger Dyson equations of U(Nc) lattice gauge theories can also be 

derived in the microcanonical formulation. Our results validate the use, in 

microcanonical simulations, of the standard scaling law between the small bare 

coupling con~tant and the lattice spacing. 

It should be stressed that the relation E = N should be taken only when 

we perform the perturbative calculations. In these calculations, we exchange 

the limit N ~~for the summation of infinite series. 7 Beyond the 

perturbation theory, we must use the more general relation (see appendix) as 

has been adopted in numerical calculations. 2 

Finally, as an application of the microcanonical formulation, we consider 

the following possibility: if an energy surface E = constant is ergodic, we 

can evaluate the correlation functions by the "time" average of f~elds. 
N -1 

When we parametrize the invariant measure as dU = A(~)d~l ... d~ c 

in SU(N ) lattice gauge theories and change momentum variables P into 
c 1 IN' -1 

p' = [A(~)] c x P, the Hamiltonian and the integration measure in (2) 

becomes as follows: 

+ S(U(~)) 
- 1 

and ( 21 ) 
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Therefore, assuming the ergodicity of the system, we can evaluate correlation 

functions as 

T 

lim t J Q(~(-r))d-r = <Q> 
T-+co 

0 

Here, the 11 time -r 11 development of the fields ~ (-r) is determined by 
X,lJ 

solving Hamilton's equations derived from (21) where p' and ~x are 
X,ll ,ll 

(22) 

regarded as canonical conjugate variables. We remark that this procedure to 

obtain expectation values depends on a specific parametrization of the group. 

How~ver, this circumstance can be attributed to an ambiguity in choosing 

canonical conjugate variables in a given microcanonical formulation: if we 

change variables p' and ~ into P11 
and ~· keeping the Jacobian unity, we may 

-;tn -+t regard new variables ~ and ~ as canonical conjugate and have a new 

Hamiltonian. 
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APPENDIX 

We shall show under some reasonable assumptions that the microcanonical 

formulation coincides precisely with the standard functional formulation and 

that the relation in eq.(l4) holds for an arbitrary n. 

Let us consider the microcanonical ensemble average of an arbitrary 

Wilson loop W(c), 

t ~ dp ~(E - H)W(c) Z = ~ dp ~( E - H) (A.l)-

where d~ and Hare the measure and the Hamiltonian used in eq.(2), 
(I) 

respectively. Using the formula ~. Jl dX eix(E-H) = ~(E -H) and 
-(I) 

performing the integrations of the momentum variables, we can rewrite eq.(A.l)as 

_, r dA 
z' J x.~ 

(I) 

~ 
- ~ lOgA+iAE+F(A) 

= l_ dA W (c) e 
z' A 

with 

F(>..) - log r II J x.~ 
and 

(A. 2) 



14 

Here, we have not specified explicitly an irrelevant normalization 

factor. Our assumptions are that both of the following limits exist, 

1 im W'A (c) 
N~ 

and lim ~'A F/N for Im 'A ~ 0 
N~ 

Then, by using the steepest descent method as N ~=and by choosing the 

energy such as E = N/2 + <S>f (< ... >f denotes the standard functional 

average), we can easily derive the formula 

1 
. 1 
1m -
N~ z ~ dp ~(E - H)W(c) = 1 im 

N~ 

where the limit N ~ = is taken, keeping the lattice spacing finite. The 

(A.3) 

(A.4) 

stationary point ('A= -i) in the steepest descent method has been obtained by 

solving the equations 

- 1/2 'A+ iE/N + i aF/N = 0 a "A 
and E = N/2 + <S>f (A. 5) 

Therefore, we have found that the microcanonical ensemble average is 

identical with the standard canonical ensemble average. 

Next, let us prove the relation 

if we adopt an ensemble density like 

(A.2) is replaced with 

in eq.(l4). In the above demonstration 
dn 

&(E- H) in eq.(14), the formula 
dEn 

= 

z' ~ dA(iA)n w,(c) e 
~ log'A+i)..E+f()..) 

(A.f>) 
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Since the stationary point is such that~= -i, it turns out that the final 

result does not depend on n. This leads to the relation in eq.(l4). 

In the above discussion, we have found that the energy E should be taken 

as E = N/2 + <S>f. Here, <S>f may be obtained as 

lim <S>f/N = lim i J d~ &(E - H)S/N 
N~ N~ 

(A.7) 

This is a consistency condition, which has been used in practical calculations. 

\ 
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