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ABSTRACT

Motivated by its use in a Two-Beam Accelerator, we have studied a II steady-

state ll FEL; i.e .• a periodic but very long structure in which the electron

beam energy is replenished once a period with a short induction acceleration

unit. We have studied longitudinal particle motion in such a device using a

1-0 simulation code. We show that after an initial start-up section, particle

detrappi ng from the pondermoti ve wave is mi nima 1 ina steady-state FEL of

several kilometers. A simple linear model of particle diffusion is shown to

describe the numerical results quite well.

* This work was supported by the Division of High Energy Physics, U.S.
Department of Energy, under Contract No. DE-AC03-76SF00098.



I. Introduction

With the imminent completion of. and expected successful operation of. the

Stanford Linear Collider (SLC), accelerator physicists are planning the next

generation of linear colliders. These would seem to require a higher

accelerating gradient and a reasonably efficient use of power. One

possibility is to operate the accelerator power source at a significantly

higher frequency than the SlC (2.8 GHz). perhaps in the 30 GHz range. At the

present time no suitable power source exists at this frequency (although

considerable effort is being devoted to developing high-power sources at

frequencies above 2.8 GHz). It has been proposed that a IIsteady-state ll FEL

1
could be used to power the accelerator. in a suggested configuration called a

Two-Beam Accelerator (TBA).

A schematic of a TBA is shown in Fig. 1. In this scheme a low energy.

high current electron beam is fed into a tapered wiggler module. The

generated microwave power is piped out of the FEL waveguide and is used to

power the high gradient a£celerating structure. At the end of each wiggler

module. an induction unit is used to replace the electron beam energy that was

lost in the wiggler. This ideal steady-state FEl. it will be shown. could be

as long as is needed (limited in a practical design by considerations of

IIfilling time ll of the high gradient structure and IIs1ippage ll between the high

energy bunch and the low-energy FEL beam).

longitudinal effects in the FEl beam.

II. Design of Steady State FEL

In this paper we examine

A TBA has been simulated using the 1-0 FEL equations of motion in a

rectangular waveguide. All subsequent equations are for a system where the
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beam radius is assumed small compared with the waveguide dimensions. The 1-0

2FEL equations for a TE mode are:

dYj = -w sin ~i- asaw ..,
dz c Yj

d~· 2 d
~ = (kw - &k s ) - w (1 + aw - 2aw as cos ~j) + ~
dz 2cy? dz

J

( 1a)

( 1b)

2
das = c.>p, eff aw
dz 2 we

- tla s (lc)

2
~ = wp,eff aw <cosw>
dz 2 wcas Y

where j is an index denoting a particular particle and <> indicates an

average over particles.

t · 3 f FELequa ,ons or an .

These equations are an extension of the KMR

In these equations, the dispersion relation for a

waveguide relates wand ks . The factor &k results because the phase
s

velocity of radiation in a waveguide is not equal to c. Specifically for a

TE mode:
lln

ks = [(W2 _ (2~!l.)2 _ (2~n)2]~
c2 a b

&k s = ~ - ksc

(2a)

(2b)

where a and b are respectively the x and y dimensions of the waveguide. It is

also important to note that the plasma frequency in equations (lc) and (ld) is

an effective plasma frequency given by

~,eff = a...eI
mcab

(3)

where I is the total beam current and m and e are respectively the electron

mass and charge. The factor tl in Eq. (lc) is a loss factor meant to model

the removal of microwave power from the FEL waveguide.
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In designing a taper for an FEL it is useful to define the concept of a

resonant particle. This is defined by setting d'P/dz = O. For an untapered

wiggler this corresponds to a fixed point of the system in phase space. If

the external parameters are varied adiabatically, one can think of this fixed

point as being slowly changed in energy. One can define a resonant y by:

2
Yr =

2c(kw - 6ks + ~)
dz

2
[1 + aw - 2aw as cos 'PrJ (4)

This is more complicated than it looks since there is an additional Y
r

dependence in the dep/dz term. In the applications of this resonant particle

concept we are interested in resonances for distributions of particles. If

one assumes that the distribution will be symmetric around the resonance

point, then one can approximate the a and ep equations as:
s

2
~ = wp,eff awks <cos 'P>
dz 2 w2c Yr

( Sa)

(Sb)

The factor <sinv > goes to sin'Pr since in real-world tapers, 'Pr is typical-
Y Yr

ly a very small number. Near IjFO, sin'P is an odd function and its average

over the distribution is very nearly sin'P. For similar reasoning we must
r

keep the cosv term as an average. The average of cosv over the distribution

will be some number less than 1 • The factor <cos'p> is called the bunching

parameter.

In a tapered wiggler, the magnetic field a is varied adiabatically withw

distance. The quantities Yr ' a and ~ then evolve in a well defined
s

manner. Over the course of the wiggler, an electron "sitting" on the

resonance point would decrease in energy without changing its V coordinate at
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all. During tapering one can also vary the factor a. This affects the

evolution of the electric field a and therefore the resonant energy y. In
s r

the designs in this report the factor a was varied so as to keep the quantity

a a constant. A real TBA operating in a steady state would run at a nearly
s

constant as.

III. TBA Simulation

A CRAY-XMP supercomputer was used to integrate the 1-0 equations of

motion. The tapered wigglers for the TBA were designed for a resonant

particle. In the simulation a large number of particles were followed for the

length of the FEL. The particles were bunched in an untapered wiggler before

being injected into the TBA. The bunches were injected so that the particle

distribution was centered as much as possible around the resonance point. The

induction units at the end of each wiggler module were modeled as imparting an

instantaneous jump in energy with no shift in phase. Table I shows the

initial values used for the FEL design. Figure 2 shows the taper design used.

In a simulation where many particles are tracked according to the

equations (la)-(ld), the design process described works reasonably well.

Equations (lc) and (ld) have averages that track the behavior of the particle

distribution as a whole. What is seen in such a simulation is that at the

beginning of the steady-state FEL, particles near the separatrix become

detrapped rather quickly. However, particles near the resonance point remain

trapped for long distances. If bunches are injected into the TBA such that

the majority of the electrons are near the resonance point, then particle

detrapping becomes negligible after a short distance. In Fig. 3 we show phase

space plots of the electron distribution at different points in a wiggler

module. The system at the distance shown is in a "steady-state."
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Even with the 1-0 apprpximation, the phase space trajectories of an

electron in a steady-state FEL become quite complicated. An example is shown

in Fig. 4. However, the dynamics of such a particle can be shown rather

clearly if one makes a Poincare plot of the particle trajectories. A Poincare

plot is made by taking a surface of section in phase space and plotting a

point at each place a trajectory pierces the surface of section. This is

reasonable since the steady-state FEL is a periodic system where every wiggler

module and induction unit corresponds to a period. In Fig. 5 we show a

Poincare plot from a many-particle simulation. The plot is suggestive that

the particle orbits move near surfaces that are tori in phase space. One

might expect to be able to model the system in such a manner that the particle

orbits 1i e on closed tori in phase space and some sma 11 perturbati on causes

diffusion between these tori.

IV. Motion in a Periodic Field

From Floquet theory, if the system of interest has a closed orbit, we can

determi ne the stabil ity of nearby orbits with respect to the closed orbit.

This is equivalent to determining the stability of the Poincare map about its

fixed point. 4 In the Poincare map that we wish to examine, there is a fixed

point which is given by the resonance particle at the surface of section. To

examine the. stability of the mapping, we need to linearize the equations of

motion around the resonance point. Linearizing (la) and (lb) in y and tjI

gives

!ti.§.x) = _ (')c]saw COStjlr) (o\jJ) + sma 11 . (6a)
dz cYr terms

d(oqr) = 2(kw + d<p/dz - oks) (oy) + sma 11 (6b)
dz Yr terms

This system has eigenvalues that are purely imaginary. Thus one expects the
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Poincare mapping to be neutrally stable about the fixed point. This would

correspond to center "orbits" with a frequency of

(7)

where we have written kw = kw - oks + d~/dz.

One can think of the Poincare map as tracing out orbits around the

resonance point. As we will show later, if a perturbation is superimposed on

the electric field, it results in a set of linearized equations that look like

a forced oscillator. If the forcing is not at the resonance frequency then

the orbits will be shifted but their integrity will remain. If the forcing is

at the resonance frequency (7), then the resonance poi nt becomes unstab 1e.

This is illustrated in Fig. 6. In short, a purely periodic FEL can be

designed so as to have no loss of particles.

v. Noise Theory

If one examines a plot of the electric field from an actual simulation

(Fig. 7), it looks like there is noise superimposed on the intended value of

the electric field. This "noise" in fact comes from the deterministic motion

of the electrons around the resonance point. However, no detailed knowledge

of particle orbits is necessary to describe the diffusion of particles across

phase space.

Since the value of the resonance energy"y depends on the electric field
r

as' then fluctuations in a should cause fluctuations in "y. We can thens r

mode 1 the system as a harmoni c osc ill ator whose equil i bri um poi nt is bei ng

shaken in some prescribed manner. To determine what the form of the forcing

term should be, we can start with the Lagrangian
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L = 1 [dx]2 - 1 w~ [x - xo(Z)]2
2 dz 2

(8 )

where we use the notation x = 01'. The fluctuations are represented by X (z)
o

which describes the variation of l' from the design value of 1'r' The factor

w
1

also has a dependence on as' but in our system this causes a negligible

effect on particle diffusion, so for simplicity it will be assumed to be

constant.

It is 'convenient to introduce a dimensionless independent variable. We

set T = wlz. With this substitution Eq. (8) leads to an equation of motion

This has a general solution

T

X(T) = A cos T + B sin T + I dT ' XO(T 1
) sin (T-T ' )

o

(9)

(10)

Since we are interested in diffusion we many ignore the homogeneous terms

which are needed to match initial conditions but don't give any X
o

related

growth.

2
To calculate diffusion we wish to calculate <x > and retain the terms

T

that go linearly with T. In general

T T-T 1

<X2>T = I dT ' I ds sin(T-T ' ) sin(T-T'-s) K(s) (11 )
0 -T 1

and if XO(T) can be represented as noiseS, then K(s) = <XO(T) XO(T + S»T

where K(s) is called the correlation function for x (T).
o

Now we must relate the correlation function for a with the correlation
s

function for x. As the simplest approximation we expand y in powers of a
o r s

around the design value of aso
The term linear in a - a is then set equals so

to x. This gives, using equation (4):o

Xo = K (as - as o ) = K cSa s
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~- [~
a a cos "'r]s w

dz c y2 Yr (12)where I( = r
2k

l
-~ as evaluated at aw dz so

Thus 2 .
<x (~) x (~ + x» = I( <6a l~) 6a (~ + s»~

o 0 ~ s s

The correlation function for the electric field is shown in Fig. 8 for the

parameters of Table I. Its Fourier transform is shown in Fig. 9.

If the frequency dependence is narrow, i.e., if the bandwidth is small

with respect to the size of the average frequency, one can show that the

diffusion goes like

<x 2> =.1(2 f (Qo) ~
2

= "1(2 f (00) woz
2

('3)

where f(Q) is the Fourier component of the noise in a at the oscillatoro s
frequency.

At thi s poi nt it is important to note that both I( and wR. wi 11 change

slowly over the course of a period. As a simple approximation, we will

average the diffusion coefficient over a period. In Fig. 10 is shown the

diffusion coefficient calculated from this theory. Table II shows some

diffusion coefficients calculated from the computer simulation. Because of

the great difficulty in measuring diffusion on the computer, these values do

not exactly duplicate Fig. 10. It can be seen, however, that the order of

magnitude is correct. In practice this should be quite sufficient since the

Fourier spectrum of the electric field will vary some in different runs. Note

that non1inearities start to become important at about oy = 7, which is about

a third of the distance to the sepatrix. The linear analysis should be valid

if most of the particles have orbits inside this. If one reviews Fig. 3 this
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seems to be the case. In short, the diffusion of particles in a TBA is given

by Equation (13), and by suitable design one can make this tolerably small.

VI. Induction Unit Fluctuations

In this section we look at an effect that is qualitatively different from

that considered in the previous sections of this paper and yet can be

explained by the same model. We ask what would happen if the induction units

imparted a different energy than the wi ggl er tapers were des i gned for. We

look at two cases. In the first case the induction units impart the wrong

amount of energy to match onto the next tapered section but the mismatch is

the same each time; i.e. we still have a periodic system. In the second case,

there is no mismatch on the average, but the energy imparted to the particles

fluctuates randomly with some maximum amplitude. In both cases we force Yr
to take the values calculated in the taper design.

To describe the effects of induction unit mismatch. we start by writing an

expression for X(T). Ignoring homogeneous terms gives

N
x(~) = I ax(wo1n) COS(T - wo1n) a(T - wo1n)

n

( 14)

where 1 is the distance between induction units, ax(w 1n) is the mismatch at
o

the nth induction unit, N is the total number of induction units. and the step

function a indicates when each term "turns on." Equation (14) can be thought

of as a sort of Green's function solution for a discrete system.

For the case where there is an identical mismatch in each section we can

set ax(w 1n) = dX , a constant. To see if there is any diffusion we look ato 0

N N
x2 = (dXo)2 I I COS(T - wo1n) cos(T-wo1m) a(T - wo1n) a(T - wo1m) (15)

n m
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2
If wo9. J 21T, then x is purely periodic and in fact should average to zero

if N is large enough; i.e. there is no diffusion. Figure 11 shows a case run

for a steady-state FEL where an induction unit that imparts ~y = 4 is needed

to match on, but the induction units actually used impart ay = 5. One might

expect that such a large mismatch would certainly break up the invariant

surfaces. As can be seen, the surfaces remain intact. This is actually a

consequence of Floquet theory where as long as a perturbation is periodic and

nonresonant, the qualitative properties of a system don't change. Even

including non-linear terms, one should have invariant tori, up to some

amplitude, as is well known in non-linear dynamics.

is at a resonance and becomes unstable.

If w 9. = 21T, the system
o

If the induction unit mismatch is a random perturbation, then (14) becomes

NN
<X 2>T = ~ L <~x2> &m,n cos(. - wo9.n) COS(T - wo9.n) a(. - wo9.n) a(T - wo9.n),

n m
( 16)

where the delta function is introduced due to the complete randomness of

~x(wo9.n). For a completely random function <~x2> = ~X~ax/3. Thus we get

2 N
<x2> = ~xmax L COS 2(T - wo9.n) a(T - wo9.n)• 3 n

If we now average over T we get

(17 )

( 18)

This equation describes the diffusion in phase space due to fluctuations

in the induction units. In Fig. 12 we show a plot of diffusion coefficient

verses oscillation amplitude. One can see in this plot that the

nonlinearities start to become important around oy = x = 7. This is a value

- 11 -



that is about 1/3 of the bucket height. Once more we expect the linear theory

to be valid for the great majority of the particles.

VII. Transverse EFfects

We note that the equation governing small amplitude betatron motion is

the Mathieu equation. The wave number of the oscillation is given by k
13

=

k. a /.f2y. Ths system is unstable if the length of each module is equal tow w

n~/k13' where n is an integer. In practice these regions of instability should

be narrow and easi ly avoided; 6further work. on transverse motion needs to be

done, but the design of a TBA with stable transverse motion (in both planes)

appears easily accomplished.

VIII. Conclusion

Within the 1-0 FEL theory there seems to be no impediment to running a

steady-state FEL for distances on the order of kilometers. The diffusion of

particles in phase space has been evaluated numerically and can be adequately

calculated by a simple linear model.

The important conclusion of this work is that by properly designing a TBA,

one can minimize particle diffusion in phase space. In other words a TBA can

be designed so that there is negligible loss of particles for practical

lengths.
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Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure Captions

Schematic of a Two-Beam Accelerator.

The taper design is plotted for the first few sections of a

TBA. The beam is bunched in a previous section and is injected

on the left with y = 42. The discontinuous jumps occur at the

induction units. Fig. 2a shows y and Fig. 2b shows a .r w

These are snapshots (Fi g. 3a, 3b, 3c, 3d) of the phase space

distribution of the electrons at various stages in a wiggler

module. A distance was chosen far enough along the TBA to show

that. the system had reached a "steady-state." Between (c) and

(d) the electrons are accelerated by an induction unit and

injected into the next wiggler module.

This shows the actual phase space trajectory of an electron in a

TBA. The traj ectory begi ns at the top of the pi cture. The

dashed vertical lines indicate when the electron passes through

an induction unit. The numbers indicate the order of the jumps.

This is a Poincare plot for three different electrons. The

surface of section is taken immediately after the induction

units. This is from a complete TBA simulation.

This shows Poincare plots for ten different electrons at various
distances from the closed trajectory. In (a) the electric field

as is constant. In (b) and (c) a sin wave perturbation is
superimposed on a. In (b) the frequency of the perturbation ;s

s
far from resonance and the amplitude of the perturbation is 10%

of a. In (c) the frequency of the perturbation is at resonances
and the amplitude is 1% of a. Note that in (b) the surfaces

s
are not broken up even though they are shifted. In (c) the

surfaces are only disrupted near the center. This is because
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Figure 7.

Figure 8.

Figure 9.

Fi gure 10.

Fi gure 11.

Figure 12.

non-1 i neariti es cause the surfaces further from the center to

have lower frequencies.

This is a sample of the electric field from a complete TBA run.

This is the correlation function for a calculated in
s

dimensionless units. (See Equation (12}).

This is the Fourier transform of the correlation function shown

in Fig. 8. In these dimensionless units the oscillator

frequency corresponds to Q = 1.0. The small peak at the right

is a perturbation due to the induction units. Note that aside

from this peak all the spectrum is below the linear oscillator

frequency. This spectrum should be directly proportional to the

power spectrum of the electric field.

This is a plot of the diffusion coefficient 0 vs the oscillation

amplitude of the particle. This plot was arrived at by noting

that the oscillation frequency changes with amplitude.

Calculation based on equations (12) and (13).

In this plot, the induction units give a d~ = 5 when one

actua lly needs d~ = 4 to match correctly between sections. As

can be seen, this large mismatch is insufficient to destroy the

closed surfaces in phase space.

This shows the diffusion coefficient for fluctuations in

induction units. Here <&~2> = On where n is the number of
induction units gone through. The error bars on the points
represent the standard deviation of the statistical sample. The

solid line is a least squares fit to the diffusion coefficients

calculated from the simulation. The dashed line is the value of
2o predicted by the formula 0 = dy /6 from Eq. (18).max
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Table I. Design parameters for the steady-state section of the TBA.

Wiggler module length

T • start of a period
r

y • end of a period
r

Induction unit 6y

Magnetic field aw'
start of peri od

= 200 cm

= 42 which is 21.46 MeV

= 38 which is 19.42 MeV

= 4 which is 2.04 MeV

= 5.265 which is 2.954 kG peak field

Magnetic field aw'
end of peri od

IjIr
Wiggler period

Radiation wavelength

Electric field as

= 4.775

= 0.0967

= 27 cm

= 1.0 cm

= 0.2548

which is 2.679 kG peak field

which is 1.193 x 108 volts/m
peak field

Loss parameter c& = 0.1127

Current = 2400 amps

Bunching parameter <COSIjI> = 0.75

Waveguide size = 5 x 2 cm

Mode used = TEOl
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Table II. Values of the diffusion coefficient 0 as measured in the computer

simulation. The value was measured for several different values of

the oscillation amplitude. The error estimate is given by C10/v'"n

where C10 is the standard deviation of the sample measurements and n

is the number of samples.

1.369

3.268

5.053

6.795

9.703

4.9

4.9

5.8

7.1

13.9

- 18 -
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1.0

0.8

0.7

0.8

4.7



High energy beam

Induction accelerator modules

High gradient accelerating structure

Low energy beam
generator

Linac source
for high energy beam

XBL148·,071l'

Figure 1
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