
;:

~~ i.
~ r
I ~\

LBL-19940

Lawrence· Berkeley Laboratory
UNIVERSITY OF CALIFORNIA sr=RKE~A~~iN~eEo

. ~n LEYLABOR

Computing Division AUG 12 1986

LIBRARY AND
DOCUMENTS SECTION

To be presented at the 3rd International Workshop
on Statistical and Scientific Database Management,
Luxembourg, Grand-Duchy of Luxembourg,
July 22-24, 1986

PHYSICAL DATABASE SUPPORT FOR SCIENTIFIC
AND STATISTICAL DATABASE MANAGEr-tENT

F. Olken

l-iay 1986 TWO-WEEK LOAN COPY., ~-
y·".

This is a Library Circulating Copy
which may be borrowed fo,r two weeks.·

~--------------·~··~·~·~·-------A--~-~-~---------·~--~=--~--~W~ .

Prepared for the U.S. Department of.En6rgy under Contract DE-AC03:..76SF00098

c~~

"

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

,.

Physical Database Support for Scientific
and Statistical Database Management

•
Frank Olken

Computer Science Research Department
Lawrence Berkeley Laboratory

University of California ·
Berkeley, California 94720

May, 1986

· LBL-19940

Physical Database Support for
Scientific and Statistical
Database Management *

Frank Olken
Computer Science Research Dept.

Lawrence Berkeley Laboratory
Berkeley, CA 94720

May, 1986

Abstract

In this paper we survey the various physical database
techniques that can be used to implement scientific
and statistical database management systems. We
consider techniques for storing the data, and algo
rithms for query processing. We discuss file struc
tures, access methods, compression methods, buffer
ing strategies, and algorithms for aggregation, trans
position, and sampling. We conclude with some
thoughts on areas for further research.

1 Introduction

This paper is a survey of physical database im
plementation techniques which are specially suited
to the implementation of database management sys
tems (DBMS) for scientific and statistical databases
(SSDB).

The paper is concerned with efficient techniques
for storing and querying the data. Unless otherwise
specified we shall assume that the data is stored on
magnetic disks.

Our criterion for storage efficiency is simply the
amount of space required to store the data. Query ef
ficiency may either refer to CPU time requirements
or 1/0 time requirements. Usually 1/0 time require
ments are the dominant consideration. In practical
terms this usually amounts to minimizing the num
ber of disk seeks.

The paper is organized into the following sections:

•Issued aa tech report LBL-199<&0 This work was supported
by the Applied Mathematical Sciences Research Program of
the Office of Energy Research, U.S. Department of Energy,
under contract number DE-ACOS-76SF00098.

1

1. Introduction

2. SSDB Characterization

3. File Design

4. Data Compression

5. Buffering

6. Data Editing Support

7. Exploratory Data Analysis Support

8. Aggregation

9. Transposition

10. Sampling

11. Summary

12. Research Agenda

Our discussion of sampling is somewhat more ex
tensive :than other sections because of the lack of re
cent surveys of the area and because the topic is of
special interest to the author.

2 SSDB Characterization

2.1 Factors Affecting DBMS Imple
mentation

The implementation techniques chosen to imple
ment a DBMS depend on several factors: type of
data, type of queries, storage media, and comput
ing environment. In this paper we shall be largely
concerned with the impact of the special types of

data and queries which arise in scientific and statis
tical database applications. We shall make conven-

. tional assumptions concerning storage media (mag
netic disks with random access memory bufFers) and
computing environment (a single Von Neumann ma
chine).

2.2 Type of Data

Commercial data are typically text and numeric
data. The data are dynamic (i.e., updates are fre
quent). Hence commercial DBMSs are often preoc
cupied with issues of concurrency control.

In contrast statistical and scientific data are com
prised primarily of numeric and discrete categorical
data (i.e., data drawn from finite sets of (mostly un
ordered) categories such as race, sex, state of resi
dence, type of material tested, experimental treat
ment, etc.) Summary data (e.g., tables of popula
tion by sex, race, age strata) frequently exists, usu
ally in the form of multi-dimensional arrays. Sta
tistical and scientific data are usual_ly fairly static,
and often sparse. Thus statistical and scientific data
lend themselves to certain file organizations and data
compression techniques which would not be practical
for commercial data, which exhibit high update traf
fic. Concurrency control is not a critical issue. For
further information see [Sho82,SOW84].

2.3 Type of Queries

Queries may be classified into several types: exact
match, partial match, range, partial range, nearest
neighbor, aggregate, and ~ampling.

Exact match queries require that all of the key at
tributes of a record exactly match those specified in
the query. Partial match. queries specify only some
subset of the key attributes of a data record. Range
queries specify finite intervals for all of the key at
tributes of a data record .. Partial range queries spec
ify finite intervals for 80me of the key attributes of a
data record. Neared neighbor queries specify a point,
and a distance function. They seek the data records
which are neare8t to the specified point. Aggregate
queries require the computation of some aggregate
statistic (such as SUM, COUNT, MEAN, MEDIAN)
from some specified set of data. Sampling queries re
quire the generation of a random sample from some
specified set of data.

In business applications exact match. queries are
the most common, e.g., retrieve the bank balance
for a specific account number. Most bibliographic
data base queries are partial match queries, e.g.,
find all book with "statistical" and "computing" in

2

the title. In contrast scientific and statistical data
base systems must support query types not often
used in commercial or bibliographic DBMSs: multi
dimensional range, multi-dimensional nearest neigh
bor, aggregation, and sampling queries. The near
est neighbor queries arise from statistical operations
such as clustering, classification, kernel density es
timation, matched case generation for case control
studies, and scientific applications such as particle
track reconstruction. Range queries arise from appli
cations such as density estimation, histogramming,
and the construction of summary (contingency) ta
bles.

3 File Design

3.1 Record-wise

Conventional DBMSs store each record (tuple} in
a single (logically) contiguous block of storage.1 We
call this file organization record-wise. This is efficient
for transactions which examine (or modify) many
fields from a small number of records. Such transac
tions are commonplace in commercial database ap
plications. Similar reference patterns arise in SS
DBs when performing random sampling. Howeverr,
the record-wise organization is less efficient for some
types of queries found in SSDB applications, as dis
cussed below.

3.2 Transposed files

Several SDBMSs (e.g., RAPID) store data in a
transposed file format, also referred to as vertically
partitioned or attribute partitioned. Here each column
(containing the values of certain attribute (field) for
all records) is stored in a logically contiguous block of
storage.2 Often each column is stored as a separate
file.

This organization is good when transactions tend
to reference a small number of fields in a large propor
tion of the records. Such reference patterns are com
monplace when performing aggregations and more
c_omplex statistical analyses (cross tabulations, re
gression, etc.) on large multi-purpose survey data
such as census data. It is a poor organization for
sampling data records, as it may require one disk
access for each field of each record sampled.

1The file system is usually responsible for mapping logically
contiguous files onto (possibly noncontiguous) physical disk
blocks. Hence a record larger than a disk block may not be
stored on physically contiguous disk blocks.

~Again, physical disk blocks may not be contiguous.

v

For further infonnation on the use of transposed
file organizations see [Sve79J, [THC79J, [WFS75J, .
[Tan83J, [BT81]. Copeland, [CK85J, discusses the
advantages and perfonnance of a fully transposed
file organization (with tuple surrogates included in
each partition). Batory, [Bat79J, discusses efficient
methods of searching transposed files. Khoshafian,
[Kho84,KBD85J, discusses the implementation and
perfonnance of various statistical operations (e.g.,
X' X, QR decomposition, and Singular Value Fac
torization) on both conventional and transposed file
organizations.

Wong, [WL0*85], has taken transposed files to
their ultimate limits, proposing to transpose the files
at the bit column level. Various domain encoding
techniques, combined with data compression, offer
the possibility of major 1/0 improvements for count
ing queries and highly selective retrieval queries. The
method has very poor perfonnance for updates and
sampling and hence is appropriate only for archival
databases.

3.3 Vertically Clustered Files

An intermediate file design is to cluater several
columns together, instead of completely tran11posing
the file. Vertical Clulltera are formed from columns
(attributes) which tend to be referenced together.
Such files are a compromise between record-wise and
fully transposed file organi.sationa, and can be tuned
(by choice of the clustering of attributes) to the pro
posed application. The disadvantage to this orga
ni•ation, aa compared with fully transposed files,
is that uneeded attributes are sometimes retrieved
along with desired attributes, reducing 1/0 efficiency.
The design and performance analysis of such clw
tered files are discussed in [MS77), [HN79J, [MS84J ..

putational geometry [PS85] ansmg in computer
aided design and geographic information systems
[DBG*85J. There have been several extensive surveys
[Sam84,LP82J and taxonomies [KBCV85] of multi
dimensional access methods recently, as well as a
chapter in [PS85, Chapter 2]. An extensive discus
sion of the use of MDAM for spatial query processing
is to be found in [Ore85b]. Hence we will not attempt
a comprehensive survey here, but rather limit our
selves to presenting several illustrative techniques.

There are several possible criteria for evaluating
the effectiveness of MDAMs. One criterion is sym
metry with respect to queries: does the MDAM have
symmetric performance to queries along different di
mensions? A second criterion is how well the MDAM
perfonns with non-uniform, uncorrelated data. A
third criterion is how well the MDAM perfonns with
correlated data. Other considerations include: cost
of performing updates to the data structure, storage
utilization, how well the data structure can be tuned
to accomodate non-unifonn query distributions.

We will consider multi-dimensional B-trees, quad
trees, kd-trees, kd-tries, and some kinds of grid files.
The basic idea of the various MDAMs is to place data
which is close together in multi-dimensional logical
(data) space, close together in physical space (i.e.,
colocated on the same disk page). They do this by
partitioning the data space. The tree-based MDAMs
(MOB-trees, KD-trees, etc.) generate nuted par
titiona, i.e., the multi-dimensional space is recur
sively decomposed into successively smaller parti
tions, which are nested inside of the larger (outer)
partitions. Instead of nested partitions , grid file
type MDAMs generate orthogonal partitions of the
key space, e.g., partitioning a 20 key space in a man
ner similar to a tile ftoor (but the partition widths
are allowed to vary).

3.4 Multi-dimensional Access Meth- 3.5 Multi-dimensional B-trees
ods

Multi-dimensional access methods (MDAMs) are
intended to support multi-key retrieval especially
partial match, range, partial range, and nearest
neighbor queries. Access methods for supporting par
tial match retrievals are discussed in [Riv76]. We
shall be concerned here with access methods which
support range, partial range and nearest neighbor
queriea because continuous numeric data which can
be ordered are more common in SSDBs. Most data
structures which support partial range queries can
also be used for partial match queries.

The topic has generated burgeoning interest in
recent years, driven largely by problems in com-

3

The simplest approach to constructing a MDAM is
simply to concatenate the keys to fonn a composite
key. This is basically the approach taken with multi
dimensional B-treu (MDBTs). A top level B-tree is
constructed on the first key (dimension). Each leaf
of this tree points to a B-tree on the key (dimen
sion), and so forth. Obviously this approach does
not provide very symmetric access along _the differ
ent dimensions. Rather it favors retrievals along the
first (top) dimension. Searches on the first key im
mediately narrow to a single subtree at the top level
of the MDBT, whereas searches on just the second
key (dimension) must examine every one of subtrees
at the top level (first key).

Note that the MDBT partitions the data space into
nested partitions.

3.6 Quadtrees

Quadtrees (QTs) also partition the data space into
nested partitions. For the case of two dimensions,
the root partitions the data space into 4 quadrants
by specifying the (x,y) coordinates of a point at the
origin of the quadrants. Internal nodes at lower lev
els of the tree recursively partition the quadrants into
successively finer sub-quadrants. Quadtrees provide
fairly symmetric access along different dimensions,
i.e., uni-dimensional (partial range) queries have ap
proximately the same efficiency on various dimen
sions, but they are difficult to keep balanced when
updated [OvL82J. They adapt well to n.on.-un.i.form
data, but not to correlated data. The notion can
be extended to higher dimensions (3 dimensional
quad trees are sometimes known as oct trees}.

3~7 KD-trees

KD-treea (KDTs} also partition the data space
into nested partitions. They differ from quadtrees
in that each internal node paritions its subnpace into
only two halves. Nodes at successive levels of the
tree ducrimin.ate on different dimensions. The die
criminating dimensions are chosen cyclically, so that
the kd-tree haa fairly &ymmetric: perform..nce. Like
the quadtree, the kd-tree adapt. well to n.on.-un.i.form
data, but is difficult to keep balanced [OvL82J. Its
advantage over the quadtree is that it works well with
correlated data.

Robinson [Rob81J has proposed a B-tree-like ana
log of kd-trees. The high fanout is attractive for disk
resident indices.

Generalized kd-trees (GKDTs) were proposed by
Fushimi [FKN*85J. In GKDTs the discriminating
dimensions are not chosen cyclically, but are tailored
to the data and query distributions. Since updates
do not preserve the optimality of the tree, GKDTs
are presently only useful for static data.

3.8 }{])-tries

'1\-ies (radix search trees) can also be extended to
multi-dimensional data [Ore82] by cyclically choos
ing the discriminators from the different dimensions.
Again a nested sequence of partitions is generated.
However, here the partition boundaries are no longer
arbitrary (data dependent), but must be chosen ac
cording to the radix. Tries have fairly symmetric
access, reasonable average performance and can be

easily updated (no rebalancing is necessary). How
ever, they are not as adaptable to non-uniform data
as kd-trees (balancing is not possible}.

The KD-tries appear to be more attractive for per
forming joins, precisely because of their inflexibility
with respect to partition boundaries. Two separate
KD-tries on over the same types of domains will have
consistent partitions. Partitions of the two tries will
either be entirely disjoint or one partition (region)
will be entirely contained in the other. This greatly
facilitates performing partitioned joins, as employed
in [DK0*84], [DG85], [KTM83], [Bra84]. The use of
related ideas for spatial join-like query processing is
discussed in detail in [Ore85b].

4

3.9 Orthogonal Partitioning

A second class of MDAMs paritition the data space
orthogonally, that is the data space is partitioned by
hyperplanes which cut across the entire data space.
One can envision each axis as. being partitioned by a
scale, and the entire data space being partitioned by
the cartesian cross products of the scales, much like
graph paper.

The orthogonal partitioning MDAMs (OPMDAMs)
differ in how the axis partitions are chosen, the type
of directory employed and how they handle overflow.

The simplest OPMDAMs, called fixed cellular de
signs [BF79J, employ fixed partitions of each axis.
Obviously they are not very adaptable to nonuniform
data.

Grid files [NHS84J allow arbitrarily placed ·axis
scales. A directory is employed which may map sev
eral grid blocks onto a single disk page. As the file
grows the combined grid blocks are unpacked onto
several disk pages. Eventually a single grid block
occupying an entire page overflows, requiring that
one of the intervals on an axis scale be· split, a di
rectory split. Disk pages and even axis intervals can
be merged during deletions. Grid files appear well
suited to non-uniform data, updatable, but ineffe
cient in terms of space for correlated data.

Multi-pagin.g [Mer84J is similar to grid files ex
cept that it allows grid blocks to overflow onto over
flow pages, providing possibly better space utilization
and simpler directory maintenance at the expense of
worse access time.

Multi-level grid files [KW85] employ a KD-trie in
dex for the directory of a grid file. They provide
better space efficiency for the directory and facilitate
directory splitting.

J

.~
I

\r

\'
,/

3.10 Summary

In general multi-dimensional access methods with
completely variable partition boundaries, such as
KD-trees, seem to offer better storage and retrieval
efficiencies than methods, which choose partition
boundaries from a fixed set of possibilities, such as
KD-tries. However, the KD-tries appear to be more
attractive for performing joins, precisely because of
their inflexibility. MDB-trees are clearly inferior in
terms of symmetry of performance. KD-trees seem
to offer better performance than quadtrees or grid
files for correlated data.

It is worth noting that if the MDAM is to be
used as a partial sum hierarchy to support aggregate
queries over ranges (as described in Section 8.1) then
large radix tries become very inefficient for updating.
Trees are to be preferred. .

Finally, Orenstein's proposal, [Ore85b], .to employ
trie-encodings of multi-dimensional keys with con
ventional B-trees for spatial query processing appears
quite promising.

4 Data Compression

In this section we discuss the purposes of employ
ing data compression in SSDBs, and some popular
data compression methods used in SSDBs. For a
more extensive treatment of the subject the reader
shcald consult [Bas85J.

4.1 Purpose

Data compression serves several purposes. The ob
vious justification is that data compression reduces
the amount of storage required to hold the data. In·
addition to the direct savings in storage costs there
are several indirect benefits.

By reducing the storage requirements we often re
duce the time required to move the data from disk
to RAM. This occurs when transferring multi-block
segments of data. Single block reads are unaffected.
SSDBMSs (Scientific and Statistical Database Man
agement Systems) are more likely to transfer multi
block segments (than commercial DBMSs) and hence
benefit more.

A second effect comes from improving the effective
fanout of B-tree indices. Halving the storage required
per key will effectively double the fanout of the B
tree, thereby often reducing the height of the tree and
thus the number of disk accesses needed to search the
index.

There may even be gains in cpu time for query
processing, which tends to be highly correlated with

5

the number of disk pages read. 3 Such cpu savings
are especially likely if the data can be processed in
compressed form [WL86]. Decompres11ion tends to
increase cpu time requirements. · Index coding (dis
cussed below) reduces cpu requirements by substiti
tuting fixed length codes (which are easy to manip
ulate) for variable length fields.

4.2 ad hoc Data Compression Meth
ods

We will discuss primarily ad hoc methods, because
they have thus far proven more practical for SS
DBMSs. Information theoretic methods will be dis
cussed briefly below.

Summary data tables are commonplace in SS
DBMSs. Such tables often record measured statistics
(e.g. population counts) over a cross product of cat
egorical variables (e.g. race, sex and age). Instead
of explicitly storing the values of the categorical at
tributes one can implicitly store them in the location
of the data via array linearization. Such methods
are commonly used in programming languages such
as FORTRAN to store arrays [HS77].

The most commonly used linearizations are multi
dimensional versions of the raster scan pattern used
in television tubes [HS77J. Such array linearization
techniques have been employed to store summary ta-
bles in [OOM85J. '

However alternative linearizations are possible em
ploying space filling curves. Such linearizations do a
better job of preserving spatial locality, i.e., points
which are close together in logical coordinates are
usually close in physical (linear) coordinates. Unfor
tunately the best space filling linearization functions
are more difficult to compute. However, one such or
dering, the z-ordering, is fairly easily computed by
interleaving the bits from several keys. See [OM84],
[OS83], [Ore85a], [Ore85b].

4.2.1 Index Coding

Index coding [Bat83] consists of representing long
(possibly variable length) attributes, such as state
of residence, by means of short fixed length numeric
codes. The length of the numeric codes is dictated
solely by the number of distinct attribute values
which need to be encoded. By assigning the numeric
codes in alphabetical order, range queries and prefix
partial match queries are possible. Such coding is
referred to as order preserving codes.

3 Beca'uae of cpu requinnents to initiate ifo and copy data
between buffers.

Batory [Bat83] has suggested that the codes be
initially chosen with a few extra low order zero bits.
H additional attributes values are added later (new
states), they can be inserted into the code table in
between the original codes, while preserving the al
phabetical ordering. Eventually, of course, one runs
out of codes, but the day of reckoning can be post
poned.

4.2.2 Bit Vector Encoding

Bit vector encoding is a method of compressing
zero (null) elements. It consists of storing a bit vector
in which the one's indicate nonzero (non-null) data
elements, and the zero's indicate zero (null) elements.

Example:

Original Data - n ltema: 1, 0, 0, O, 5, 8, 0, O, 2,
0,0

Bit Vector: 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0

Compressed Data - m items: 1, 5, 3, 2

Bit vector encoding has linear access time, O(n).
It requires storage linear in original data size, i.e.,
0 (n) bits in the bit vector.

4.2.3 Run Length Encoding

Another method of compressing nulls (seros) is
run-length encoding (RLE). It consists of replacing
consecutive runs of zero data elements, with counts of
the run lengths. Lengths of the sequences of nonzero
elements are also required. RLE requires total stor
age proportional to number of nonzero items plus the
number of runs. Run lengths may either be stored
together with compressed data or separately.

Access time is either linear in the number of runs
(if the run lengths are stored separately) or linear
in the number of runs and size of compressed data
(if the run lengths are stored with the compressed
data).

The method can also be used to compress consec
utive runs of any repeated data values, in which case
the repeated data value must also be stored.

Shown below is an example in which the run
lengths have been stored separately from the com
pressed data.

Example:

Original Data - n items: 1, 0, 0, 0, 5, 3, 0, 0, 2,
0,0

6

Run Lengths (Nonzero, Zero) - r runs: (1,3),
(2,2), (1,2)

Compressed Data - m items: 1, 5, 3, 2

4.2.4 Header Compression

· Header Compression consists of a combination of
run length encoding with a B-tree index which is used
to obtain efficient random access to the data, avoid
ing the need to sequentially decompress the data.
The run lengths are stored separately from the com
pressed data, and a partial sum hierarchy (similar to
a B+ -tree) is built atop the run lengths to provide
an index. The B+ -tree index provides efficient ran
dom access. Access time is logarithmic in the number
of runs r, O(log r). The index requires space O(r).
Total storage is proportional to number of nonzero
items plus the number of runs. See [ES80,EOS81] for
further details.

4.3 Informat.ion Theoretic Methods

Information theoretic methods of data compres
sion (e.g. Huffman codi.Jig) have not enjoyed wide
popularity in SSDBMSs. One reason is that they
are more expensive to decompress than the simple
ad h.oc methods discussed above. The other reason
is the adaptive versions of the information theoretic
compression techniques usually require sequential de
compression, which is not a problem for serial com
munications lines or sequential files, but it is imprac
tical for random access databases.

See [Wel84] (and the references therein) for a dis
cussion of an adaptive information theoretic com
pression method.

5 Buffering

Buffer pool management policies for DBMSs have
evolved over the last decade from very simple, fairly
autonomous global LRU policies, to policies which
are intimately tailored to the query evaluation plan
developed by the query optimizer and the access
methods employed. This evolution has culminated
in recent work [KBD85] suggesting that entire statis
tical computations should be closely integrated with
the buffer pool management policies of the DBMS.

In thiS section we trace the evolution of DBMS
buffer management policies from their crude begin
nings to the present proposals, which are closely tai
lored to SSDB applications.

Traditionally, buffer management policies were de
rived from classic virtual memory policies. Such poll-

J

\/

\;

cies are based on simple stochastic models of memory
reference patterns, since most programs have no ex
plicit knowledge of their reference behavior. Hence
one of the simplest and most popular buffer manage
ment strategies is global Least Recently Used (LRU),
i.e., evict the page which has been least recently ref
erenced. For DBMSs this policy is often poor.

In DBMSs, the query optimizer often has detailed
information on the expected storage reference pat
tern, derived from the query execution plan and the
database schema. Furthermore, the query optimizer
may be able to change the preferred query execu
tion strategy to accommodate restricted buffer allo
cations [DK0*84J. In particular Sacco and Skolnick
[SS82J observed that DBMS often generate cyclic ref
erence patterns to pages in the inner loop of a nested
loop join. If the buffer pool is not large eno.ugh to
contain the inner loop, then LRU policy will cause
thrashing, every page reference generating a fault. In
such a case, MRU (Most Recently Used) policy would
perform better. Sacco and Skolnick argued that the
buffer manager should be informed of. such loops and
should assure that sufficient buffers were allocated to
contain the inner loop. This was referred to as the
Hot Set policy.

Chou [Cho85j has gone further in integrating the
query optimizer and buffer manager. He argued that
buffer management policies should be separately tai
lored to the anticipated reference behavior of each
file during the query evaluation, e.g. sequential scan,
looping, index tree traversal, etc. He has shown that
if the query ·Optimiser informs the buffer manager of
its anticipated reference behavior for each file, the
buffer manager can do a better job. This policy is ·
called Query Locality Set policy.

Khoshafian [Kho84,KBD85J has pursued similar
close integration of query optimization and buffer
management for SSDB applications. He has inveS.:.
tigated several statistical matrix operations (X' X,
QR decomposition, and Singular Value Factoriza
tion) and shown that significant performance gains
can be had by close integration of the numerical al
gorithms, file organization and buffer management.

Copeland, [CKSV86J, has proposed an attribute
based buffering approach which entails the buffer
ing of the transposed columns of relations, instead
of pages containing full. tuples. The attribute based
buffering approach offers some of the advantages of
transposed file organizations for SSDB applications
(as described in Section 3.2), without necessarily re- ·
quiring that the entire database first be reorganized
(transposed). However, processing updates would be
cumbersome. Hence the technique is best suited to
archival SSDB datasets. The technique may entail

7

buffer management of variable sized objects, a prob
lem which has been addressed in the literature on
automatic file migration (e.g., [Olk83J and references
therein).

6 Data Editing Support

SSDBs are frequently composed of a large, static
base file (i.e., the original data set) against which a
variety of relatively small editing changes are made.
The edits are made to correct input errors, impute
values to missing data, or delete outliers (anomalous
data).

6.1 Differential Files

Differential files techniques [SL 76J appear to offer
a very attractive means of supporting this pattern of
update activity. Instead of applying the updates di
rectly to the base file, one keeps a separate file of the
changes called a differential file. The differential up
date file is organized as a hash table. Whenever we
process a query against the updated file, we check
each record retrieved against the differential file to
determine if there is a more recent version, or if the
record has been deleted. We must also keep a sepa
rate file of additions, which must also be searched for
each query. Indexing and searchin:g the addition file
can complicate the design of the data management
system. However, often the differential files are small
and can be kept in memory, so that checking them
does not generate I/0 activity.

Copeland, [CK85J, has noted that differentiai files
can be more storage efficient when transposed file
organizations are used.

6.2 Bloom Filters

To avoid a disk seek to the hashed differential file
for each record retrieved in a query we can construct
a Bloom filter [Blo70J on the record !D's in main
memory. A Bloom filter is constructed by logically
or'ing together several orie bit wide hash tables. Each
hash table is constructed with a different hash func
tion (overflows are ignored). Supppose that each
hash table is 6% full. If we logically or together 8
such hash tables, the result will be approximately
half full. For each record ID in a query we probe
the Bloom filter 8 times, each time using a different
hash function. The probability that all 8 probes will
find the hash table entry set, given that the record
ID is not in the differentia! file, is 2-s or about 0.5%.
Hence we will only have to check the differential file

for those records which are in it, plus about 0.5% of
records which have not been changed.

7 Exploratory Data Analysis
Support

Exploratory data analysis (EDA) often entails the
examination of many different subsets of the data. In
this section we discuss methods of storing and pro
cessing these subsets. Often these subsets are very
similar, i.e., they may be produced by successively
removing outliers, or adding variables (columns). In
relational database systems such subsets are referred
to as views.

EDA generates two problems for the DBMS:

1. Excessive space requirements to store subsets.

2. Sequences of similar queries, which are ineffi
cient if processed independently.

Several techniques have been developed to address
these problems. Storage requirements for subsets of
the data can be reduced by using: query modifica
tion, record ID lists, or differential record ID lists.
Views (subsets) can be implemented by storing the
query which generated the subset and rerunning it
whenever the subset is needed. A more elaborate ver
sion of this technique call query modification. [Sto75J.
consists inserting the text of the original query in
place of the view (subset) name whenever it is sub
aequently used and evaluating the composite query.

Record ID lists (a.k.a. tuple ID lists) are simply
lists of record identifiers of records contained in the
subset. Since the record IDs are usually much shorter
than the actual records, this saves space at the ex
pense of having to re-retrieve the records whenever
the subset is needed. However, it is more efficient
than simple views, since no query processing is re
quired and the tuple ID lists can be directly used in
subsequent query processing.

Since many of these subsets are similar (differing
perhaps by the removal of a few outliers) they can be
represented as differential record ID lists. Here only
the differences from a base relation are stored. The
differential record ID lists must be combined with
the base record ID lists to recreate the subset when
needed as described above in Section 6.

The problem of efficiently processing a ~equence
of similar queries has been addressed by Finkel
stein [Fin82J. He proposed techniques of indexing
and recognizing common subexpressions across mul
tiple queries. By saving and suitably indexing the
intermediate results of query evaluations, the need

to reevaluate the common subexpressions can b~
avoided.

Automatic cache management policies similar to
those used for automatic file migration [Olk83,Smi81J
might be employed to automatically decide when to
convert subsets .from one representation (instantia-
tion, tuple ID list, query) to another (more compact)
representation as the expected usage rate declined.
Of course, instead of changing the reprsentation of
the subset one could simply automatically migrate
the subset to cheaper, slower storage (Olk83,Smi81J.

8

8 Aggregation

By aggregation we mean the computation of aggre
gate statistics such as (SUM, COUNT, MEAN, MIN,
MAX, etc.) over groups of data items {e.g. employ
ees grouped by department). Such computations are
commonplace in SSDBs.

The classic algorithm consists of sorting the data
items according to their group, and then calculating
the desired statistic for each group.

One can often do much better, if the statistic can
be computed in fixed space for each group (e.g. SUM,
but not MEDIAN). Usually the number of groups is
fairly small. We can thus build a table of partially
computed statistics, one for each group, in memory.
The table is usually organized as a hash table on t b.e
group identifier so that it can be accessed in constant
time. We then make one pass across the data, hash
ing the group identifier for each tuple, and updating
the appropriate entry in the table of statistics. After
reading the data, we usually must sort the statistics
table, before writing it out.

If the statistics table is too large to fit in main
memory, we c.an partition the data by hashing on·
the group identifier, and then process parititions one
at a time. See (DK0*84,DG85J (KTM83J, (Bra84J.

For detailed discussions of query optimization of
queries which include aggregation see [Eps79,Klu82J.
Nested correlated SQL-like queries with aggrega
tion are treated in [Kim82J. Such nested queries
involve parametric aggregates in the inner query,
where the parameter is a tuple variable from the
outer query. The naive approach to processing such
queries, variously called nested iteration. or tuple sub
stition. may entail repeated (redundant) evaluations
of the inner aggregates. Therefore Kim, (Kim82J,
suggests evaluating the inner aggregate once, for all
groups. This optimization is often performed in the
syntatic analysis phase without any semantic infor
mation. While this optimization is usually desir
able, there are cases in which the naive algorithm

"· \

.J

'\

·..,;,'

!" I

II

is faster (e.g., when the outer predicate is very selec
tive). Kiessling [K.ie85] discusses semantic problems
arising from Kim's [Kim82] optimizations and pro
poses tactics, called dynamic filters, for improving
the efficiency of this type of query processing.

Or gasoline consumption may be tabulated first by
state, and then year and type; wheareas some user
prefers instead a tabulation first by type, and then
by state and year.

'lransposition of an array of data can be thought
of as changing the array linearization function, and

8.1 St t• t• fi R then sorting the data according to the new location
Fast ~ummary a IS ICS or ange tags. For sparse data this is in fact the preferred
Queries algorithm:

Often we will want to obtain summary statis
tics (aggregates such as SUM, COUNT, AVG, MIN,
MAX) over a range of data values, e.g., find the total
income of all employees between 40 and 50 years old.

Such queries can be answered by combining a tree
index to the data with a partial sum tree. In the ex
ample above we might construct a binary tree index
to the employee data on the age attribute. In addi
tion each internal node of the tree would contain the · I

sum of the incomes of all the emplyees contained in
the subtree rooted at that node.

We can thus determine the sum of incomes of em
ployees who are at least 40 and under 50 years old
by traversing the binary tree twice, once to find the
youngest employee at least 40 years old, and once to
find the oldest employee under 50. As we traverse
the tree, we combine the partial sums appropriately,
adding partial sums of included subtrees and sub
tracting partial sums of excluded subtrees, to give
the desired sum over the specified range.

For a one dimensional index we can calculate the
aum for any range query in logarithmic time. We
can &lao update the tree in (average) logarithmic
time. The basic idea has been known for some
time and used to maintain rank information in trees.
See [Knu73,BK75,WE80]. The idea can be ex
tended to B-trees, and to multi-dimensional trees.
See [FV82,Fre81] for a discussion of the computa
tional complexity of answering aggregate queries over
multi-dimensional ranges and citations to data struc
ture papers.

9 Transposition

9.1 Uses

Transposition is a commonly used operation in SS
DBMSs. One application is the conversion of files
between regular (record structured) and transposed
versions. The second application concerns the re- ·
structuring of summary data tables [OOM85]. Often
the user will want to transpose such table. For ex
ample mortality data may be tabulated by race, by

. sex, by age, by county. A user might prefer the data
tabulated by county, then by race, by sex, by age.

9

1. Tag each data item with its new location.

2. Sort the data according to the location tags.

3. Strip the location tags, and build compressed
form.

For dense data sets (all data elements present, al
though some may be zero) we dispense with the tags
and the comparisons involved in the sorting. Instead,
we merely perform the data movements which would
occur if we sorted the tagged data items, in effect per
forming an implicit sort. The decisions as to where
to move the data items are embedded in the· struc
ture of the transposition program, rather than being

· explicitly detennined by comparisons.
The naive transposition algorithm, which ex

changes diagonally opposite elements, can thus be
seen to correspond to an 0 (n) address calculation
sort, (where n is the total number of data elements
in the array). If the dataset exceeds the size of main
memory this algorithm may generate excessive (i.e.,
n) numbers of page faults.

Comparison based sorts (and thus the derivative
transposition algorithms) typically require 0 (n log n)
computer time. However, they only require
O((njp) log(n/p)) page faults, where p is the page
size. Although the asymptotic complexity is worse
than for the naive algorithm, in practice it is better
because (1/p) log(n/p) is always much less than one
for realistic values of n and p.

One can do even better by combining the two types
of algorithms. Observe that a disk is a page address
able random access memory. We partition the array
to be transposed into blocks of p pages which move
together in the transposition. The transposition is
accomplished by transposing each block of p pages
via a sort based algorithm in time 0 (p log p), i.e.,
time O((n/p)Iog p) for the entire array. Moving the
blocks around on disk can then be done in one pass
using the naive algorithm, with O(njp) page faults.

The original paper on tranposition of dense ta
bles was [Flo72]. Floyd's results were generalized
in [TUS83a,TUS83b, Wie83]. For sparse data, see
[WL86], which discusses the tranposition of com
pressed relations.

10 Sampling

Random sampling is a very common operation in
SSDBs. It is widely agreed that it should be included
in the DBMS for efficiency reasons. Present prac
tice usually dictates that samples of relational queries
are obtained by first computing the complete result
of the relational query, exporting the result out of
DBMS to the statistical analysis package, and then
extracting a comparatively small sample. Inclusion
of sampling operators in the DBMS permits a reduc
tion in the amount of data retrieved. Also the DBMS
may be able to employ existing indices. The result
of such optimizations, is that samples of relational
queries should be obtainable in time proportional to
the &le &ize, rather than the size of the full result
of the relational query.

Random ~amples may be required either of existing
files, or of the results of relational queries. Sampling
from relational queries is beyond the scope of this
paper. It is the subject a paper [OR86b] which con
siders how sampling can be efficiently integrated into
the query evaluation in a relational database system.

In this paper we provide brief tutorials on the fun
damental methods of generating various types of ran
dom samples. These methods can be used directly
to sample from existing flat files on disk, or from the
full results of relational queries as they are generated.
These methods also form the basis of the techniques
in [OR86a] used to sample from structured (~trees,
pid ftlea, etc.) and to embed aampling operation•
within the relational query evaluation.

10.1 Types of Sampling

There are a variety of types of sampling which may
be performed. The various types of sampling can be
classified according to the manner in which the sam
ple size is determined, whether the sample is drawn
with or without replacement, whether access pattern
is random or sequential, whether or not the size of
the population from which the sample is drawn is
known, and whether or not each record has a uni
form inclusion probability.

One characteristic concerns the sample size deter
mination. We shall be primarily concerned with fixed
&ize samples, where the sample size has been specified
by the user. Alternatively, the user may specify that
a certain fraction of the records sho'uld be sampled:
This is called binomial &ling, because the sam
ple size distribution is binomial. It is also discussed
below in Section 10.2.

Other possiblities for sample size determination in
clude: multi-&tage &ling, and &equential &ling.

In each of theses cases the ultimate sample size is de
termined dynamically from the statistical properties
of the data set. See [Coc77].

Another way of characterizing the sample is
whether it is drawn with or without replacement.
Samples drawn with replacement are usually easier
to obtain (as we shall see). However, samples drawn
without replacement generally provide more informa
tion for a given sample size.

The sample may be drawn from a population of
known or unknown size. Sampling from unknown
population sizes arises when sampling sequentially
from tape files or from files as they are generated.

The inclusion probabilities for individual records
may be uniform (an unweigh.ted or simple random
&le (SRS)} or they may be weighted according
some attribute of the record.

Access to the data may be random (if it is stored
on disk or RAM), or sequential (if the data is on tape
or is being generated as the output of a query).

10.2 Binomial sampling

10

Binomial sampling is often provided (e.g. in the
SIR DBMS} because it can be implemented very eas
ily. One merely sequentially scans the file, generat
ing a random number uniformly distributed between
zero and one for each record. H the random number
is less than the sampling fraction, the corresponding
record is included in the sample. The algorithm runs
in time linear with the file size, i.e., O(n), where n is
the number of records in the base file.

Alternatively, if the population size, n, is known
one can generate the sample size from a binomial
distribution, and then apply the algorithms for gen
erating fixed size sample discussed below.

A third possibility is to generate the random in
tervals between successive samples, using a geomet
ric distribution. The records in the intervals are
skipped, and the records at the end of each inter
val are included in the sample. This does not require
knowledge of the population size. This idea has been
developed by Vitter [Vit84,Vit85] for sequential sam
pling of fixed size samples as discussed below in Sec
tions 10.7 and 10.8.

10.3 SRSWR from disk

The simplest type of fixed size sampling consists
of simple random samples (i.e., unweighted} with re
placement (SRSWR) drawn from a file of known size
stored on disk as fixed size records (i.e., fixed block
ing).

J

..,.

/"':
I

I .,.,

The sample of size s can be obtained by generat
ing uniformly distributed random numbers between
1 and N, the number of records in the relation, and
reading (random access) the corresponding records.
This requires O{s) cpu and disk time. The algo
rithm can be improved by sorting the random record
numbers before retrieving the records. This will re
duce the seek time, assuming that the disk file is allo
cated approximately monotonically and that the user
retains control of the disk arm.

[Rub81], partial sum trees, and the alias method.
The three methods vary in sampling efficiency and ·
update efficiency, with acceptance/rejection provid
ing the worst sampling efficiency and the easiest up
dating, while the alias method provides the most ef
ficient sampling and most difficult updates. Partial
sum trees provide intermediate performance on both
updates and sampling.

10.6.1 Acceptance/Rejection Sampling

10.4 SRSWR from disk, variable block- Suppose that we wish to draw a weighted random
sample of size 1 from a file of N records, denoted r;,
with inclusion probability for record r; proportional
to the weight w;. The maximum of the w; is denoted

ing

Variable numbers of records per page (variable
blocking) may arise due to variable record size, hash
file organizations, or deletions. H an index exists we
can use it as above. H no index exists we can use
acceptance/refection. [Rub81J sampling as described
in Section 10.6.1 on the pages with

b(t th
.) no. of records on this page

pro accep 18 page = ------,.---=--......;:......;=-
max. no. records per page

H the page is accepted we select a record on the
page at random. This assures uniform selection prob
abilities for all records.

10.5 SRSWOR from disk

Simple random •ampling withollt replacement
(SRSWOR) can be done by •ampling with replace
ment and checking a huh table compriaed of the
records already sampled for duplicates. H duplicates
are found, additional samples are taken. This ap
proach works well if the sample size is a small fraction
of the total population.

A better approach [EN82] consists of building a
hash table of sampled record numbers, together with
substitute record numbers. Each time a record is
sampled, its number is inserted in the hash table
along with the number of the last unsampled record
in the relation. Subsequent record numbers are
drawn uniformly from a truncated range 1 to N - k
(after the kth record has been sampled). The ad
vantage of this approach is that fewer random record
numbers need to be generated.

10.6 Weighted Randoi:D Sample

We can do this by generating a uniformly dis
tributed random integer, j, between 1 and N, and
then accepting the sampled record r; with probabil
ity p;:

p;=~
Wmaz

(1)

The acceptance test is performed by generating an
other uniform random variate, u;, between 0 and 1
and accepting r; if u; < Pi· H r; is rejected, we
repeat the process until some j is accepted.

The reason for dividing w; by Wma"' is to assure
that we have a proper probability (i.e., Pi ~ 1). H we
do not know Wm= we can use instead a bound n such
that Vj, 0 > w;,. The number of iterations required
to accept a record r; is geometrically distributed with
a mean of (E[p;J)- 1 • Hence using n in lieu of Wma..

results in a less efficient algorithm.
Acceptance/rejection sampling is well suited to

sampling with ad hoc weights or when the weights
are being frequently updated. Other methods, such
as the partial sum tree method discussed below, re
quire preprocessing the entire table of weights.

10.6.2 Partial Sum Trees

Wong and Easton [WE80] proposed to use binary
partial sum trees to expedite weighted sampling.

As above, consider the file of N records, in which
each record r; has inclusion probability w; in a sam
ple of size 1. Binary partial sum trees are simply bi- ·
nary trees with N leaves, each containing one record -
r; and its weight w;. Each internal node contains the
sum of the weights of all the data nodes (i.e., leaves)

Weighted random samples, in which the inclusion in its subtree. Each record, r;, can be thought to
probability is proportional to some parameter of the span an interval [2:{- 1 w;,I:{ w;), of length Wj·

item sa~pled {e:g. size), are often. sought. A sample of size 1 is obtained by generating a uni-
We dlScuss bnefty the three major methods of ob- form random number u, which ranges between 0 to

taining weighted random samples: acceptance/rejection. W, where W = z:f w;. The partial sum tree is

11

then traversed from root to leaf to identify the record
which spans the location u.

The height of the tree is O(log N) I where N is the
number of records. Hence the time to obtain a sam
ple of size s is O(s log N). The tree can also be up
dated in time O(log N) should the record weights be
modified, or if sampling without replacement is de
sired.

Partial sum trees can be constructed in the form
of B-trees, in order to minimize disk accesses by in
creasing the tree fanout (and hence the radix of the
log). Alternatively, a partial sum tree may be em
bedded into a B-tree index on some domain.

Partial sum tree sampling may well outperform
acceptance/rejection sampling. Essentially, it is an
other index, specially suited to sampling. However,
it is practical only when the weights are known be
forehand. Like any other index, it increases the cost
of updates.

HoweveJr, we believe that updates will greatly
outnumber sampling queries in most applications.
Hence acceptance/rejection methods will be pre
ferred in most applications.

10.6.3 Allaa Method

Another method of weighted sampling is the alitU
method proposed by Walker [Wal77J. This method is
similar to acceptance/rejection methods, except that
if a rand>::m record number it rejected, then a.n aliu
ia aupplied in ita place. Thus the time to obtain a
sample ofsise 8 is 0(8). A table of adjusted sampling
weights, and aliases is required. The table is of size
O(n), the population size. The algorithm given by
Walker to construct the table requires time O(n2),

however better data structures and search algorithms
can reduce this to O(nlogn).

Walker does not indicate any method of updat
ing the alias and adjusted weight tables. Hence this
method would only be useful for static databases.

. 10.7 Sequential sampling, known pop
ulation size

Sequential sampling of a population of known size
arises when sampling from a tape file of known size.
Disk files of known sizes may also be sampled se
quentially, either to reduce the disk seeks generated
by random accessing, or because the file is sorted
and the user also wants the sample to be sorted in
the same fashion, e.g., for a rep~rt.

H the file is on a random access device such as disk
then the fastest algorithm is due to Vitter [Vit84J.

His algorithm generates the random intervals be
tween successive records which are to be included in
the sample. Hence his algorithm requires that only
O(s) random numbers be generated, where s is the
target sample size. H we can skip records in zero time
(e.g., fixed size records on disk) then the total run
ning time will be 0(s), otherwise we may be forced
to read ~very record in time O(n).

10.8 Sequential sampling, unknown
population size

Sequential sampling of a population of unknown
size arises when sampling a tape file of unknown size,
sampling the output of a que.ry as it is generated (to
avoid writing the entire output to disk), or online
sampling of transaction streams.

The algorithms for sequential sampling of a popu
lation of unknown size are known as reservoir algo·
rith.m.s, because they create a ruervoir of size s (the
desired sample size) of candidate sample records. In
all of these algorithms the ·reservoir is initially filled
with the first s records read. The algorithms then
proceed sequentially through the file, updating the
reservoir, so that it always contains a simple random
sample. · ·

Again, the best algorithm for random access files
is by Vitter [Vit85J who has extended his work on
known population size samples to the case of un
known population sizes. As before, Vitter generates
the random intervals of records to be skipped. Hence
he examines only those records which get put into
the reservoir. The running time for his algorithm
is 0 (s (1 + log(n/ s)), assuming that skipping can be
done in zero time.

11 Summary

In this paper we have attempted to survey what
is presently known about physical data management
for scientific and statistical databases. We have dis
cussed:

• The characteristics of SSDBs which differentiate
them from conventional commercial databases:
the low update activity, the tendency for queries
to reference few attributes and many tuples, and
the frequent use of range, aggregate, and sam
pling queries.

• The use of tranposed file organizations, their
advantages for typical statistical queries, and
their disadvantages for conventional and sam
pling queries.

12

J

.
'

'./

..
I

·~

• Ad hoc data compression methods such as in
dex encoding, run-length encoding, and header
compression, which are well suited to SSDB ap-
plications. ·

• Several of the papers on buffering strategies,
which showed that closer integration of buffer
ing with the DBMS and perhaps statistical op
erators offers significant performance gains.

• The use of differential files, Bloom filters, com
mon subexpression indexing, and subset repre
sentation caching to deal with the update and
subset management problems generated in data
editing and exploratory data analysis.

• algorithms for dynamically computing aggregate
queries, and indexing strategies such as partial
sum trees for improving the efficiency of linear
aggregate query processing over ranges.

• Several methods of performing transposition on
both sparse and dense data.

• The fundamental random sampling techniques,
which form the basis of more elaborate methods
of sampling from relational queries.

12 Research Agenda

Much work remains to be done in physical database
aupport for acientific and atatistical data m&nage
ment.

It is clear that the perform&nce of various file de
signs is very sensitive to the type of queries. For
example, transposed files are well suited for queries
involving aggregation and statistical operations, but
not for sampling. Linear space multi-dimensional
access methods appear to do well for full range
queries, but poorly for uni-dimensional queries. Fur
ther work, and perhaps some experience with real
SSDBMSs is needed to provide better guidance to
designers of SSDBs.

In particular, more work is needed on charac
terizing the performance of multi-dimensional ac
cess methods with non-uniform correlated data &nd
queries. There have been a few simulations and vir
tually no analytical work in this area.

The work on integrating statistical algorithms and
buffering could be extended to other important sci
entific and statistical algorithms. Better I/0 mod
els of access method performance, which incorporate
caching, file allocation on disks, and detailed disk
motions would be useful for query optimizers.

Better proposals for access methods suited to write
once optical disks are needed. Query processing algo
rithms which work directly on compressed data have
only begun to be explored. Finally, there does not
seem to have been much work on modelling, storing,
or retrieving statistical models.

Acknowledgements

The author would like to thank his colleagues
Janet LaB.eur, Harry Wong, and Doron Rotem, and
especially Arie Shoshani for their encouragement and
comments. Thanks are also due to the referees of ear-

. lier versions of this paper for their comments.

13

References

[Bas85]· M.A. Bassiouni. Data compression in sci
entific and statistical databases. IEEE
Transactions on Software Engineering,
SE-11(10):1047-1057, October 1985.

[Bat79J

[Bat83J

[BF79J

[BK75J

[Blo70]

[Bra84]

[BT81]

D.S. Batory. On searching tranposed
files. ACM Transactions on Database
Systems, 4(4):531-544, December 1979.

D.S. Batory. Index coding: a com
pression technique for large statistical
databases. In Proceedings of the Sec
ond International Workshop on Sta~is

tical Database Management, pages 306-
314, September 1983.

J.L. Bentley and J.H. Friedman. Data
structures for range searching. ACM
Computing Surveys, 11(4):397-409, De
cember 1979.

B.T. Bennett and V.J. Kruskal. Lru
stack processing. IBM Journal of Re
search. and Development, 19(4):353-357,
July 1975.

B.H. Bloom. Space/time tradeoff's in
hash coding with allowable errors.· Com
munications of the ACM, 13(7):422-426,
July 1970.

Kjeil Bratbergsengen. Hashing meth-
ods and relational algebra operations.
In Proceedings of the 10th International
Conference on Ve~y Large Databases (VLDB),
pages 323-333, Singapore, August 1984.

R.A. Burnett and J.J. Thomas. Data
management support for statistical data

[Cho85J

[CK85J

[CKSV86J

[Coc77J

[DBG*85J

[DG85J

[DK0*84J

[EN82J

[EOS81J

editing and subset selection. In Proceed
ing& of the Fir&t LBL Workshop on Sta
tu tical Database Management, pages 88-
102, December 1981.

Hong-Tai Chou. Buffer Management of
Database System&. PhD thesis, Univ. of
Wisconsin, Madison, May 1985.

George F. Copeland ·and Setrag Khoshafian.

[Eps79J

A decomposition storage model. In ACM [ES80J
SIGMOD International Conference on
the Management of Data, pages 268-279,
1985.

G. Copeland, S. Khoshafian, M. Smith,
and P. Valduriez. Buffering schemes for
permanent data. In IEEE International
Conference on Data Engineering, IEEE
Computer Society, Los Angeles, Calif.,
February 1986.

William G. Cochran. Sampling Tech
nique&. Wiley, 1977.

Umeshawar Dayal, Alejandro Buchman,
David Goldhirsch, Sandra Heiler, Frank A.
Manola, Jack A. Orenstein, and Arnon S.
Rosenthal. PROBE- A &&earch Project
in Knowledge-Oriented Database Sy8tem&:
Preliminary Analy&i&. Technical Re
port CCA-85-031 Computer Coropora
tion of America (CCA), Cambridge, Mass.,
July 1985.

David J. DeWitt and Robert Gerber.
Multiprocessor hash-based join algorithms.
In Proceeding& of the International Con
ference on Very Large Databa&u (VLDB},
pages 151-164, VLDB Endowment, Stock
holm, Sweden, 1985.

D.J. DeWitt, R.H. Katz, F. Olken, L.D.
Shapiro, M. Stonebraker, and D. Wood.
Implementation technique for large main
memory database management systems.
In 198-4 ACM-SGIMOD International Con
ference on the Management of Data,
pages 1-8, ACM, Boston, 1984.

Jarmo Emvall and Olli Nevalainen. An
algorithm for unbiased random sampling.
The Computer Journal, 25(1), 1982.

S. Eggers, F. Olken, and A. Shoshani.
A compression technique for large sta
tistical databases. In Proceeding& of

14

[Fin82J

[FKN*85J

[Flo72J

[Fre81J

[FV82j

[HN79J

[HS77J

the International Conference on Very
Large Data Bases (VLDB), pages 424-
434, 1981.

R. Epstein. Techniques for Process
ing of Aggregates in Relational Database
Systems. Technical Report UCB/ERL
M79/8, University of California, Berke
ley, February 1979.

S. Eggers an,d A. Shoshani. Efficient ac
cess of compressed data. In Proceedings
of the International Conference on Very
Large Databases, pages 205-211, 1980.

S. Finkelstein. Common expression anal
ysis in database applicatio~s. In ACM
SIGMOD International Conference on
the Management of Data, pages 235-245,
1982.

Shinya Fushimi, Masaru Kitsuregawa,
Masaya Nakayama, Hidehiko Tanaka,
and Tohru Moto-oka. Algorithm and
performance evaluation of adaptive mul
tidimensional clustering technique. In
ACM SIGMOD International Conference
on the Management of Data, pages 308-
318, ACM, Austin, Texas, May 1985.

R.W. Floyd. Permuting information in
idealized two-level storage. In R. Miller
and J. Thatcher, editors, Complexity of
Computer Computations, pages 105-109,
Plenum Press, 1972.

Michael L. Fredman. A lower bound
on the complexity of orthogonal range
queries. Journal of the ACM, 28{4):696-
705, October 1981.

F.L. Fredman and D.J. Volpen. The com
plexity of partial match retrieval in a dy
namic setting. Journal of Algorithms,
:68-78, 1982.

M. Hammer and B. Niamir. A heuris
tic approach to attribute partitioning. In
ACM SIGMOD International Conference
on the Management of Data, p.ages 93-
101, 1979.

H. Horowitz and S. Sahni. Fundamen
tals of Data Structures. Computer Sci
ence Press, Inc., Potomac, Md., 1977.

.... '.

J

I

'"

[KBCV85]

[KBD85]

[Kho84]

[Kie85]

[Kim82]

[Klu82J

[Knu73]

[KTM83]

[KW85]

[LP82]

Setrag Khoshafian, Jay Banerjee, George [Mer84]
Copeland, and Patrick Valduriez. A
Performance-directed Taxonomy for Single-
key and Multi-key File Structures. Tech- [MS77]
nical Report, Microelectronics and Com-
puter Technology Corp. (MCC), Austin,
Texas, June 1985.

Setrag Khoshafian, Douglas . M. Bates,
and David J. Dewitt. Efficient support
of statistical operations. IEEE Trans
actions on Software Engineering, SE-
11(10):1058-1070, October 1985.

Setrag Khoshafian. A Building Blocks
Approach. to Statistical Databases. PhD
thesis, Univ. of Wisconsin, Madison, May
1984.

Werner Kiessling. On semantic reefs
and efficient processing of correlation
queries with aggregates. In Proceedings

.. of th.e International Conference on Very
Large Databases (VLDB), pages 241-249,
VLDB Endowment, Stocklholm, Sweden,
1985.

Won Kim. On optimizing an sql-like
nested query. ACM Transactions on
Database Sy&tems, 7(3):443-469, Septem
ber 1982.

Anthony Klug. Access path selection in
the , abe• statistical query facility. In
ACM SIGMOD International Conference
on th.e Management of Data, pages 161-
173, ACM; Orlando, Florida, June 1982.

Donald Ervin Knuth. The Art of Com
puter Programming: Vol. 9, Sorting and
Searching. Addison-Wesley, 1973.

M. Kitsuregawa, H. Tanaka, and T.
Moto-Oka. Application of hash to database
machine and its architecture. New Gen
eration Computing, (1):62-74, 1983.

[MS84]

[NHS84]

[Olk83]

[OM84]

[OOM85]

[OR86a]

Ravi Krishnamurthy and Kyu-Young Whang.
Multilevel Grid Files. Technical Report,
IBM Thomas J. Watson Research Center,
Yorktown Heights, N.Y., June 1985.

D.T. Lee and Franco P. Preparata. Com- [OR86b]
putational geometry - a survey. IEEE
Tran&action& on Computer&, C-33(12):1072-
1101, December 1982.

15

T.H. Merrett. Relational Information
Sy&tem&. Reston, 1984.

Salvatore T. March and Dennis Sever
ance. The determination of efficient
record segmentations and blocking fac
tors for shared data files. ACM Transac
tions on Database Systems, 2(3) :279-296,
September 1977.

Salvatore T. March and Gary D. Scud
der. On the selection of of efficient record
segmentations and backup strategies for
shared databases. ACM Transactions on
Database Systems, 9(3):409-429, Septem
ber 1984.

J. Nievergelt, H. Hinterberger, and K.C.
Sevcik. The grid file: an adaptable, sym
metric multkey structure. ACM Trans
action& on Database Systems, 9(1):38-71,
March 1984 .

Frank Olken. Hopt: a myopic version of
the stochopt automatic file migration pol
icy. In 1989 ACM SIGMETRICS Con
ference on the Measurement and Model
ing of Computer Systems, pages 39-43,
ACM, Minneapolis, Minn., August 1983.

Jack A. Orenstein and T.H. Merrett. A .
class of data structures for associative
searching. In Third S/GACT-S/GMOD
Symposium on Principles of Database
Systems {PODS), 1984.

Gultekin Ozsoyoyoglu, Meral Ozsoyoyo
glu, and Francisco Mata. A language and
physical organization technique for sum
mary tables. In ACM S/GMOD Interna
tional Conference on the Management of
Data, pages 3-16, 1985.

F. Olken and D. Rotem. Simple ran
dom sampling from relational databases.
In Proceedings of the International Con
ference on Very Large Databa&es, VLDB
Endowment, August 1986. condensed
version of LBL-20707.

F. Olken and D. Rotem. Simple Ran
dom Sampling from Relational Databases.
Technical Report LBL-20707, Lawrence
Berkeley Laboratory, February 1986.

[Ore82j

[Ore85aj

[Ore85bj

[OS83J

[OvL82J

[PS85J

[Riv76]

[Rob81J

[Rub81J

[Sam84]

[Sho82J

[SL76]

Jack A. Orenstein. Multidimensional
tries used for associative searching. In
formation Processing Letters, 14(4):150-
157, June 1982.

Jack A. Orenstein. Spatial Query Pro
cessing in an Object-Oriented Database
System. Technical Report, Computer
Coroporation of America (CCA), Cam
bridge, Mass., 1985.

Jack A. Orenstein. Spatial Query Pro
cessing in PROBE. Technical Report,
Computer Coroporation of America (CCA),
Cambridge, Mass., December 1985.

M. Ouksel and P. Scheuermann. Stor-
age mappings for multidimensional linear
dynamic hashing. In Second SIGACT
SIGMOD Symposium on Principles of
Database Sy6tem8 (PODS), 1983.

[Smi81j

[SOW84J

[SS82j

maintenance of large databases. ACM
Transactions on Database Systems, 1(3):256-
267, September 1976.

Alan Jay Smith. Long term file migra
tion: development and evaluation of al
gorithms. Communications of the ACM,
24(8):521-532, August 1981.

A. Shoshani, A. Olken, and H.K.T.
Wong. Characteristics of scientific databases.
In Proceedings of the 10th International
Conference on Very Large Databases {VLDB},
pages 147-160, 1984.

Giovanni Sacco and ·Mario Skolnick. A
mechanism for managing the buffer pool
in a relational database system using the
hot set model. In Proceedings of the 8th
International Conference on Very Large
Databases {VLDB), pages 257-262, Mex
ico City, September 1982.

Mark H. Overmars and Jan van Leeuwen.
Dynamic multi-dimensional data struc- [Sto75J
tures based on quad- and k-d trees. Acta
Informatica, 17(3}:267-285, 1982.

M. Stonebraker. Implementation of in
tegrity constraints and views by query
modification. In ACM SIGMOD Inter
national Conference on the Management
of Data, pages 65-·78, 1975. Franco P. Peparata and Michael Ian

Shamos. Computational Geometry, An
Introduction. Springer-Verlag, New York, [Sve79]
1985.

P. Svensson. On search performance for
conjunctive queries in compressed, fully
transposed order .. d files. In Proceedings
of the International Conference on Very
Large Databases (VLDB), pages 155-163,
1979.

Ronald L. Riveat. Partial match retrieval
al1orithma. SIAM Journal of Computing,
5(1):19-50, March 1976.

J.T. Robinson. The k-d-b tree: a search
structure for large multidimensional dy
namic indexes. In ACM SIGMOD Inter
national Conference on the Management
of Data, pages 10-18, 1981.

Reuven Y. Rubinstein. Simulation and
the Monte Carlo Method. John Wiley and
Sons, 1981.

H. Samet. The quadtree and related hier
archical data structures. ACM Comput
ing Surveys, 6(2):187-260, June 1984.

A. Shoshani. Statistical databases: char
acteristics, problems, and some solu
tions. In Proceedings of the 8th In
ternational Conference on Very Large
Databases (VLDB), pages 208-222, 1982.

D.G. Severance and G.M. Lohman. Dif
ferential files: their application to the

16

[Tan83J Y. Tanaka. A data-stream database ma
chine with large capacity. In O.K. Hsiao,
editor, Advanced Database Machine Ar
chitectures, Prentice Hall, 1983.

[THC79J M. J. Turner, R. Hammond, and F.
Cotton. A dbms for large statistical
databases. In Proceedings of the 5th
International Conference on Very Large
Databases (VLDB), pages 319-327, 1979.

[TUS83a] T. Tsuda, A. Urano, and T. Sato. Trans
position of large tabular data structures
with applications to physical database
organization, part i. Acta Informatica,
19:13-33, 1983.

[TUS83bJ T. Tsuda, A. Urano, and T. Sato. Trans
position of large tabular data structures
with applications to physical database or
ganization, part ii. Acta Informatica,
19:167-182, 1983.

•

/I

[Vit84J

[Vit85]

Jeffrey Scott Vitter. Faster methods of
random sampling. Communications of
the ACM, 27(7):703-718, July 1984.

Jeffrey Scott Vitter. Random sampling
with a reservoir. ACM Transactions
on Mathematical Software, 11(1):37-57,
March 1985.

[Wal77] Alastair J. Walker. An efficient method
for generating discrete random variables
with general distributions. ACM Trans
actions on Mathematical Software, 3(3):253-
256, September 1977.

[WE80] C.K~ Wong and M.C. Easton. An effi
cient· method for weighted sampling with
out replacement. SIAM Journal on Com
puting, 9(1):111-113, February 1980.

[Wel84] Terry A. Welch. A technique for high
performance data compression. Com
puter, 17(6):8-19, June 1984.

[WFS75] Gio Weiderhold, J.F. Fries, and Weyl
S. Structured organization of clini
cal databases. In Proceedings of the
National Computer Conference, AFIPS
Preas, May 1975.

[Wie83] Gio Wiederhold. Database Design. Mc
Graw Hill, second edition, 1983.

[WL86] H.K.T. Wong and J.Z. Li. Transpo
sition algorithms for very large com
pressed databases. In Proceedings of the
International Conference on Very Large
Databases, VLDB Endowment, August
1986. (condensed version of LBL-211570).

[WL0*85] _Harry K.T. Wong, Haiu-Fen Liu, Frank
Olken, Doron Rotem, and Linda Wong.
Bit transposed files. In Proceedings of
the International Conference on Very
Large Databases (VLDB }, pages 448-457,
Stockholm,Sweden, August 1985.

17

::.1

This report was done with support from the
Department of Energy. Any conclusions or opinions
expressed in this report represent solely those of the
author(s) and not necessarily those of The Regents of
the University of California, the Lawrence Berkeley
Laboratory or the Department of Energy.

Reference to a C\)mpany or product name does
not imply approval or recommendation of the
product by the University ofCalifornia or the U.S.
Department of Energy to the exclusion of others that
may be suitable.

.. ~-)~.!"

LAWRENCE BERKELEY LABORATORY
TECHNICAL INFORMATION DEPARTMENT

UNIVERSITY OF CALIFORNIA
BERKELEY, CALIFORNIA 94720

~~L':".;$~-·

