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Abstract 

In this paper we survey the various physical database 
techniques that can be used to implement scientific 
and statistical database management systems. We 
consider techniques for storing the data, and algo
rithms for query processing. We discuss file struc
tures, access methods, compression methods, buffer
ing strategies, and algorithms for aggregation, trans
position, and sampling. We conclude with some 
thoughts on areas for further research. 

1 Introduction 

This paper is a survey of physical database im
plementation techniques which are specially suited 
to the implementation of database management sys
tems (DBMS) for scientific and statistical databases 
(SSDB). 

The paper is concerned with efficient techniques 
for storing and querying the data. Unless otherwise 
specified we shall assume that the data is stored on 
magnetic disks. 

Our criterion for storage efficiency is simply the 
amount of space required to store the data. Query ef
ficiency may either refer to CPU time requirements 
or 1/0 time requirements. Usually 1/0 time require
ments are the dominant consideration. In practical 
terms this usually amounts to minimizing the num
ber of disk seeks. 

The paper is organized into the following sections: 

•Issued aa tech report LBL-199<&0 This work was supported 
by the Applied Mathematical Sciences Research Program of 
the Office of Energy Research, U.S. Department of Energy, 
under contract number DE-ACOS-76SF00098. 
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Our discussion of sampling is somewhat more ex
tensive :than other sections because of the lack of re
cent surveys of the area and because the topic is of 
special interest to the author. 

2 SSDB Characterization 

2.1 Factors Affecting DBMS Imple
mentation 

The implementation techniques chosen to imple
ment a DBMS depend on several factors: type of 
data, type of queries, storage media, and comput
ing environment. In this paper we shall be largely 
concerned with the impact of the special types of 



data and queries which arise in scientific and statis
tical database applications. We shall make conven-

. tional assumptions concerning storage media (mag
netic disks with random access memory bufFers) and 
computing environment (a single Von Neumann ma
chine). 

2.2 Type of Data 

Commercial data are typically text and numeric 
data. The data are dynamic (i.e., updates are fre
quent). Hence commercial DBMSs are often preoc
cupied with issues of concurrency control. 

In contrast statistical and scientific data are com
prised primarily of numeric and discrete categorical 
data (i.e., data drawn from finite sets of (mostly un
ordered) categories such as race, sex, state of resi
dence, type of material tested, experimental treat
ment, etc.) Summary data (e.g., tables of popula
tion by sex, race, age strata) frequently exists, usu
ally in the form of multi-dimensional arrays. Sta
tistical and scientific data are usual_ly fairly static, 
and often sparse. Thus statistical and scientific data 
lend themselves to certain file organizations and data 
compression techniques which would not be practical 
for commercial data, which exhibit high update traf
fic. Concurrency control is not a critical issue. For 
further information see [Sho82,SOW84]. 

2.3 Type of Queries 

Queries may be classified into several types: exact 
match, partial match, range, partial range, nearest 
neighbor, aggregate, and ~ampling. 

Exact match queries require that all of the key at
tributes of a record exactly match those specified in 
the query. Partial match. queries specify only some 
subset of the key attributes of a data record. Range 
queries specify finite intervals for all of the key at
tributes of a data record .. Partial range queries spec
ify finite intervals for 80me of the key attributes of a 
data record. Neared neighbor queries specify a point, 
and a distance function. They seek the data records 
which are neare8t to the specified point. Aggregate 
queries require the computation of some aggregate 
statistic (such as SUM, COUNT, MEAN, MEDIAN) 
from some specified set of data. Sampling queries re
quire the generation of a random sample from some 
specified set of data. 

In business applications exact match. queries are 
the most common, e.g., retrieve the bank balance 
for a specific account number. Most bibliographic 
data base queries are partial match queries, e.g., 
find all book with "statistical" and "computing" in 
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the title. In contrast scientific and statistical data 
base systems must support query types not often 
used in commercial or bibliographic DBMSs: multi
dimensional range, multi-dimensional nearest neigh
bor, aggregation, and sampling queries. The near
est neighbor queries arise from statistical operations 
such as clustering, classification, kernel density es
timation, matched case generation for case control 
studies, and scientific applications such as particle 
track reconstruction. Range queries arise from appli
cations such as density estimation, histogramming, 
and the construction of summary (contingency) ta
bles. 

3 File Design 

3.1 Record-wise 

Conventional DBMSs store each record (tuple} in 
a single (logically) contiguous block of storage.1 We 
call this file organization record-wise. This is efficient 
for transactions which examine (or modify) many 
fields from a small number of records. Such transac
tions are commonplace in commercial database ap
plications. Similar reference patterns arise in SS
DBs when performing random sampling. Howeverr, 
the record-wise organization is less efficient for some 
types of queries found in SSDB applications, as dis
cussed below. 

3.2 Transposed files 

Several SDBMSs (e.g., RAPID) store data in a 
transposed file format, also referred to as vertically 
partitioned or attribute partitioned. Here each column 
(containing the values of certain attribute (field) for 
all records) is stored in a logically contiguous block of 
storage.2 Often each column is stored as a separate 
file. 

This organization is good when transactions tend 
to reference a small number of fields in a large propor
tion of the records. Such reference patterns are com
monplace when performing aggregations and more 
c_omplex statistical analyses (cross tabulations, re
gression, etc.) on large multi-purpose survey data 
such as census data. It is a poor organization for 
sampling data records, as it may require one disk 
access for each field of each record sampled. 

1The file system is usually responsible for mapping logically 
contiguous files onto (possibly noncontiguous) physical disk 
blocks. Hence a record larger than a disk block may not be 
stored on physically contiguous disk blocks. 

~Again, physical disk blocks may not be contiguous. 

v 



For further infonnation on the use of transposed 
file organizations see [Sve79J, [THC79J, [WFS75J, . 
[Tan83J, [BT81]. Copeland, [CK85J, discusses the 
advantages and perfonnance of a fully transposed 
file organization (with tuple surrogates included in 
each partition). Batory, [Bat79J, discusses efficient 
methods of searching transposed files. Khoshafian, 
[Kho84,KBD85J, discusses the implementation and 
perfonnance of various statistical operations (e.g., 
X' X, QR decomposition, and Singular Value Fac
torization) on both conventional and transposed file 
organizations. 

Wong, [WL0*85], has taken transposed files to 
their ultimate limits, proposing to transpose the files 
at the bit column level. Various domain encoding 
techniques, combined with data compression, offer 
the possibility of major 1/0 improvements for count
ing queries and highly selective retrieval queries. The 
method has very poor perfonnance for updates and 
sampling and hence is appropriate only for archival 
databases. 

3.3 Vertically Clustered Files 

An intermediate file design is to cluater several 
columns together, instead of completely tran11posing 
the file. Vertical Clulltera are formed from columns 
(attributes) which tend to be referenced together. 
Such files are a compromise between record-wise and 
fully transposed file organi.sationa, and can be tuned 
(by choice of the clustering of attributes) to the pro
posed application. The disadvantage to this orga
ni•ation, aa compared with fully transposed files, 
is that uneeded attributes are sometimes retrieved 
along with desired attributes, reducing 1/0 efficiency. 
The design and performance analysis of such clw
tered files are discussed in [MS77), [HN79J, [MS84J .. 

putational geometry [PS85] ansmg in computer 
aided design and geographic information systems 
[DBG*85J. There have been several extensive surveys 
[Sam84,LP82J and taxonomies [KBCV85] of multi
dimensional access methods recently, as well as a 
chapter in [PS85, Chapter 2]. An extensive discus
sion of the use of MDAM for spatial query processing 
is to be found in [Ore85b]. Hence we will not attempt 
a comprehensive survey here, but rather limit our
selves to presenting several illustrative techniques. 

There are several possible criteria for evaluating 
the effectiveness of MDAMs. One criterion is sym
metry with respect to queries: does the MDAM have 
symmetric performance to queries along different di
mensions? A second criterion is how well the MDAM 
perfonns with non-uniform, uncorrelated data. A 
third criterion is how well the MDAM perfonns with 
correlated data. Other considerations include: cost 
of performing updates to the data structure, storage 
utilization, how well the data structure can be tuned 
to accomodate non-unifonn query distributions. 

We will consider multi-dimensional B-trees, quad
trees, kd-trees, kd-tries, and some kinds of grid files. 
The basic idea of the various MDAMs is to place data 
which is close together in multi-dimensional logical 
(data) space, close together in physical space (i.e., 
colocated on the same disk page). They do this by 
partitioning the data space. The tree-based MDAMs 
(MOB-trees, KD-trees, etc.) generate nuted par
titiona, i.e., the multi-dimensional space is recur
sively decomposed into successively smaller parti
tions, which are nested inside of the larger (outer) 
partitions. Instead of nested partitions , grid file 
type MDAMs generate orthogonal partitions of the 
key space, e.g., partitioning a 20 key space in a man
ner similar to a tile ftoor (but the partition widths 
are allowed to vary). 

3.4 Multi-dimensional Access Meth- 3.5 Multi-dimensional B-trees 
ods 

Multi-dimensional access methods (MDAMs) are 
intended to support multi-key retrieval especially 
partial match, range, partial range, and nearest 
neighbor queries. Access methods for supporting par
tial match retrievals are discussed in [Riv76]. We 
shall be concerned here with access methods which 
support range, partial range and nearest neighbor 
queriea because continuous numeric data which can 
be ordered are more common in SSDBs. Most data 
structures which support partial range queries can 
also be used for partial match queries. 

The topic has generated burgeoning interest in 
recent years, driven largely by problems in com-
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The simplest approach to constructing a MDAM is 
simply to concatenate the keys to fonn a composite 
key. This is basically the approach taken with multi
dimensional B-treu (MDBTs). A top level B-tree is 
constructed on the first key (dimension). Each leaf 
of this tree points to a B-tree on the key (dimen
sion), and so forth. Obviously this approach does 
not provide very symmetric access along _the differ
ent dimensions. Rather it favors retrievals along the 
first (top) dimension. Searches on the first key im
mediately narrow to a single subtree at the top level 
of the MDBT, whereas searches on just the second 
key (dimension) must examine every one of subtrees 
at the top level (first key). 



Note that the MDBT partitions the data space into 
nested partitions. 

3.6 Quadtrees 

Quadtrees (QTs) also partition the data space into 
nested partitions. For the case of two dimensions, 
the root partitions the data space into 4 quadrants 
by specifying the (x,y) coordinates of a point at the 
origin of the quadrants. Internal nodes at lower lev
els of the tree recursively partition the quadrants into 
successively finer sub-quadrants. Quadtrees provide 
fairly symmetric access along different dimensions, 
i.e., uni-dimensional (partial range) queries have ap
proximately the same efficiency on various dimen
sions, but they are difficult to keep balanced when 
updated [OvL82J. They adapt well to n.on.-un.i.form 
data, but not to correlated data. The notion can 
be extended to higher dimensions (3 dimensional 
quad trees are sometimes known as oct trees}. 

3~7 KD-trees 

KD-treea (KDTs} also partition the data space 
into nested partitions. They differ from quadtrees 
in that each internal node paritions its subnpace into 
only two halves. Nodes at successive levels of the 
tree ducrimin.ate on different dimensions. The die
criminating dimensions are chosen cyclically, so that 
the kd-tree haa fairly &ymmetric: perform..nce. Like 
the quadtree, the kd-tree adapt. well to n.on.-un.i.form 
data, but is difficult to keep balanced [OvL82J. Its 
advantage over the quadtree is that it works well with 
correlated data. 

Robinson [Rob81J has proposed a B-tree-like ana
log of kd-trees. The high fanout is attractive for disk 
resident indices. 

Generalized kd-trees (GKDTs) were proposed by 
Fushimi [FKN*85J. In GKDTs the discriminating 
dimensions are not chosen cyclically, but are tailored 
to the data and query distributions. Since updates 
do not preserve the optimality of the tree, GKDTs 
are presently only useful for static data. 

3.8 }{])-tries 

'1\-ies (radix search trees) can also be extended to 
multi-dimensional data [Ore82] by cyclically choos
ing the discriminators from the different dimensions. 
Again a nested sequence of partitions is generated. 
However, here the partition boundaries are no longer 
arbitrary (data dependent), but must be chosen ac
cording to the radix. Tries have fairly symmetric 
access, reasonable average performance and can be 

easily updated (no rebalancing is necessary). How
ever, they are not as adaptable to non-uniform data 
as kd-trees (balancing is not possible}. 

The KD-tries appear to be more attractive for per
forming joins, precisely because of their inflexibility 
with respect to partition boundaries. Two separate 
KD-tries on over the same types of domains will have 
consistent partitions. Partitions of the two tries will 
either be entirely disjoint or one partition (region) 
will be entirely contained in the other. This greatly 
facilitates performing partitioned joins, as employed 
in [DK0*84], [DG85], [KTM83], [Bra84]. The use of 
related ideas for spatial join-like query processing is 
discussed in detail in [Ore85b]. 

4 

3.9 Orthogonal Partitioning 

A second class of MDAMs paritition the data space 
orthogonally, that is the data space is partitioned by 
hyperplanes which cut across the entire data space. 
One can envision each axis as. being partitioned by a 
scale, and the entire data space being partitioned by 
the cartesian cross products of the scales, much like 
graph paper. 

The orthogonal partitioning MDAMs (OPMDAMs) 
differ in how the axis partitions are chosen, the type 
of directory employed and how they handle overflow. 

The simplest OPMDAMs, called fixed cellular de
signs [BF79J, employ fixed partitions of each axis. 
Obviously they are not very adaptable to nonuniform 
data. 

Grid files [NHS84J allow arbitrarily placed ·axis 
scales. A directory is employed which may map sev
eral grid blocks onto a single disk page. As the file 
grows the combined grid blocks are unpacked onto 
several disk pages. Eventually a single grid block 
occupying an entire page overflows, requiring that 
one of the intervals on an axis scale be· split, a di
rectory split. Disk pages and even axis intervals can 
be merged during deletions. Grid files appear well 
suited to non-uniform data, updatable, but ineffe
cient in terms of space for correlated data. 

Multi-pagin.g [Mer84J is similar to grid files ex
cept that it allows grid blocks to overflow onto over
flow pages, providing possibly better space utilization 
and simpler directory maintenance at the expense of 
worse access time. 

Multi-level grid files [KW85] employ a KD-trie in
dex for the directory of a grid file. They provide 
better space efficiency for the directory and facilitate 
directory splitting. 

J 
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3.10 Summary 

In general multi-dimensional access methods with 
completely variable partition boundaries, such as 
KD-trees, seem to offer better storage and retrieval 
efficiencies than methods, which choose partition 
boundaries from a fixed set of possibilities, such as 
KD-tries. However, the KD-tries appear to be more 
attractive for performing joins, precisely because of 
their inflexibility. MDB-trees are clearly inferior in 
terms of symmetry of performance. KD-trees seem 
to offer better performance than quadtrees or grid 
files for correlated data. 

It is worth noting that if the MDAM is to be 
used as a partial sum hierarchy to support aggregate 
queries over ranges (as described in Section 8.1) then 
large radix tries become very inefficient for updating. 
Trees are to be preferred. . 

Finally, Orenstein's proposal, [Ore85b], .to employ 
trie-encodings of multi-dimensional keys with con
ventional B-trees for spatial query processing appears 
quite promising. 

4 Data Compression 

In this section we discuss the purposes of employ
ing data compression in SSDBs, and some popular 
data compression methods used in SSDBs. For a 
more extensive treatment of the subject the reader 
shcald consult [Bas85J. 

4.1 Purpose 

Data compression serves several purposes. The ob
vious justification is that data compression reduces 
the amount of storage required to hold the data. In· 
addition to the direct savings in storage costs there 
are several indirect benefits. 

By reducing the storage requirements we often re
duce the time required to move the data from disk 
to RAM. This occurs when transferring multi-block 
segments of data. Single block reads are unaffected. 
SSDBMSs (Scientific and Statistical Database Man
agement Systems) are more likely to transfer multi
block segments (than commercial DBMSs) and hence 
benefit more. 

A second effect comes from improving the effective 
fanout of B-tree indices. Halving the storage required 
per key will effectively double the fanout of the B
tree, thereby often reducing the height of the tree and 
thus the number of disk accesses needed to search the 
index. 

There may even be gains in cpu time for query 
processing, which tends to be highly correlated with 
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the number of disk pages read. 3 Such cpu savings 
are especially likely if the data can be processed in 
compressed form [WL86]. Decompres11ion tends to 
increase cpu time requirements. · Index coding (dis
cussed below) reduces cpu requirements by substiti
tuting fixed length codes (which are easy to manip
ulate) for variable length fields. 

4.2 ad hoc Data Compression Meth
ods 

We will discuss primarily ad hoc methods, because 
they have thus far proven more practical for SS
DBMSs. Information theoretic methods will be dis
cussed briefly below. 

Summary data tables are commonplace in SS
DBMSs. Such tables often record measured statistics 
(e.g. population counts) over a cross product of cat
egorical variables (e.g. race, sex and age). Instead 
of explicitly storing the values of the categorical at
tributes one can implicitly store them in the location 
of the data via array linearization. Such methods 
are commonly used in programming languages such 
as FORTRAN to store arrays [HS77]. 

The most commonly used linearizations are multi
dimensional versions of the raster scan pattern used 
in television tubes [HS77J. Such array linearization 
techniques have been employed to store summary ta-
bles in [OOM85J. ' 

However alternative linearizations are possible em
ploying space filling curves. Such linearizations do a 
better job of preserving spatial locality, i.e., points 
which are close together in logical coordinates are 
usually close in physical (linear) coordinates. Unfor
tunately the best space filling linearization functions 
are more difficult to compute. However, one such or
dering, the z-ordering, is fairly easily computed by 
interleaving the bits from several keys. See [OM84], 
[OS83], [Ore85a], [Ore85b]. 

4.2.1 Index Coding 

Index coding [Bat83] consists of representing long 
(possibly variable length) attributes, such as state 
of residence, by means of short fixed length numeric 
codes. The length of the numeric codes is dictated 
solely by the number of distinct attribute values 
which need to be encoded. By assigning the numeric 
codes in alphabetical order, range queries and prefix 
partial match queries are possible. Such coding is 
referred to as order preserving codes. 

3 Beca'uae of cpu requinnents to initiate ifo and copy data 
between buffers. 



Batory [Bat83] has suggested that the codes be 
initially chosen with a few extra low order zero bits. 
H additional attributes values are added later (new 
states), they can be inserted into the code table in 
between the original codes, while preserving the al
phabetical ordering. Eventually, of course, one runs 
out of codes, but the day of reckoning can be post
poned. 

4.2.2 Bit Vector Encoding 

Bit vector encoding is a method of compressing 
zero (null) elements. It consists of storing a bit vector 
in which the one's indicate nonzero (non-null) data 
elements, and the zero's indicate zero (null) elements. 

Example: 

Original Data - n ltema: 1, 0, 0, O, 5, 8, 0, O, 2, 
0,0 

Bit Vector: 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0 

Compressed Data - m items: 1, 5, 3, 2 

Bit vector encoding has linear access time, O(n). 
It requires storage linear in original data size, i.e., 
0 ( n) bits in the bit vector. 

4.2.3 Run Length Encoding 

Another method of compressing nulls (seros) is 
run-length encoding (RLE). It consists of replacing 
consecutive runs of zero data elements, with counts of 
the run lengths. Lengths of the sequences of nonzero 
elements are also required. RLE requires total stor
age proportional to number of nonzero items plus the 
number of runs. Run lengths may either be stored 
together with compressed data or separately. 

Access time is either linear in the number of runs 
(if the run lengths are stored separately) or linear 
in the number of runs and size of compressed data 
(if the run lengths are stored with the compressed 
data). 

The method can also be used to compress consec
utive runs of any repeated data values, in which case 
the repeated data value must also be stored. 

Shown below is an example in which the run 
lengths have been stored separately from the com
pressed data. 

Example: 

Original Data - n items: 1, 0, 0, 0, 5, 3, 0, 0, 2, 
0,0 
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Run Lengths (Nonzero, Zero) - r runs: (1,3), 
(2,2), (1,2) 

Compressed Data - m items: 1, 5, 3, 2 

4.2.4 Header Compression 

· Header Compression consists of a combination of 
run length encoding with a B-tree index which is used 
to obtain efficient random access to the data, avoid
ing the need to sequentially decompress the data. 
The run lengths are stored separately from the com
pressed data, and a partial sum hierarchy (similar to 
a B+ -tree) is built atop the run lengths to provide 
an index. The B+ -tree index provides efficient ran
dom access. Access time is logarithmic in the number 
of runs r, O(log r). The index requires space O(r). 
Total storage is proportional to number of nonzero 
items plus the number of runs. See [ES80,EOS81] for 
further details. 

4.3 Informat.ion Theoretic Methods 

Information theoretic methods of data compres
sion (e.g. Huffman codi.Jig) have not enjoyed wide 
popularity in SSDBMSs. One reason is that they 
are more expensive to decompress than the simple 
ad h.oc methods discussed above. The other reason 
is the adaptive versions of the information theoretic 
compression techniques usually require sequential de
compression, which is not a problem for serial com
munications lines or sequential files, but it is imprac
tical for random access databases. 

See [Wel84] (and the references therein) for a dis
cussion of an adaptive information theoretic com
pression method. 

5 Buffering 

Buffer pool management policies for DBMSs have 
evolved over the last decade from very simple, fairly 
autonomous global LRU policies, to policies which 
are intimately tailored to the query evaluation plan 
developed by the query optimizer and the access 
methods employed. This evolution has culminated 
in recent work [KBD85] suggesting that entire statis
tical computations should be closely integrated with 
the buffer pool management policies of the DBMS. 

In thiS section we trace the evolution of DBMS 
buffer management policies from their crude begin
nings to the present proposals, which are closely tai
lored to SSDB applications. 

Traditionally, buffer management policies were de
rived from classic virtual memory policies. Such poll-
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cies are based on simple stochastic models of memory 
reference patterns, since most programs have no ex
plicit knowledge of their reference behavior. Hence 
one of the simplest and most popular buffer manage
ment strategies is global Least Recently Used (LRU), 
i.e., evict the page which has been least recently ref
erenced. For DBMSs this policy is often poor. 

In DBMSs, the query optimizer often has detailed 
information on the expected storage reference pat
tern, derived from the query execution plan and the 
database schema. Furthermore, the query optimizer 
may be able to change the preferred query execu
tion strategy to accommodate restricted buffer allo
cations [DK0*84J. In particular Sacco and Skolnick 
[SS82J observed that DBMS often generate cyclic ref
erence patterns to pages in the inner loop of a nested 
loop join. If the buffer pool is not large eno.ugh to 
contain the inner loop, then LRU policy will cause 
thrashing, every page reference generating a fault. In 
such a case, MRU (Most Recently Used) policy would 
perform better. Sacco and Skolnick argued that the 
buffer manager should be informed of. such loops and 
should assure that sufficient buffers were allocated to 
contain the inner loop. This was referred to as the 
Hot Set policy. 

Chou [Cho85j has gone further in integrating the 
query optimizer and buffer manager. He argued that 
buffer management policies should be separately tai
lored to the anticipated reference behavior of each 
file during the query evaluation, e.g. sequential scan, 
looping, index tree traversal, etc. He has shown that 
if the query ·Optimiser informs the buffer manager of 
its anticipated reference behavior for each file, the 
buffer manager can do a better job. This policy is · 
called Query Locality Set policy. 

Khoshafian [Kho84,KBD85J has pursued similar 
close integration of query optimization and buffer 
management for SSDB applications. He has inveS.:. 
tigated several statistical matrix operations (X' X, 
QR decomposition, and Singular Value Factoriza
tion) and shown that significant performance gains 
can be had by close integration of the numerical al
gorithms, file organization and buffer management. 

Copeland, [CKSV86J, has proposed an attribute 
based buffering approach which entails the buffer
ing of the transposed columns of relations, instead 
of pages containing full. tuples. The attribute based 
buffering approach offers some of the advantages of 
transposed file organizations for SSDB applications 
(as described in Section 3.2), without necessarily re- · 
quiring that the entire database first be reorganized 
(transposed). However, processing updates would be 
cumbersome. Hence the technique is best suited to 
archival SSDB datasets. The technique may entail 
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buffer management of variable sized objects, a prob
lem which has been addressed in the literature on 
automatic file migration (e.g., [Olk83J and references 
therein). 

6 Data Editing Support 

SSDBs are frequently composed of a large, static 
base file (i.e., the original data set) against which a 
variety of relatively small editing changes are made. 
The edits are made to correct input errors, impute 
values to missing data, or delete outliers (anomalous 
data). 

6.1 Differential Files 

Differential files techniques [SL 76J appear to offer 
a very attractive means of supporting this pattern of 
update activity. Instead of applying the updates di
rectly to the base file, one keeps a separate file of the 
changes called a differential file. The differential up
date file is organized as a hash table. Whenever we 
process a query against the updated file, we check 
each record retrieved against the differential file to 
determine if there is a more recent version, or if the 
record has been deleted. We must also keep a sepa
rate file of additions, which must also be searched for 
each query. Indexing and searchin:g the addition file 
can complicate the design of the data management 
system. However, often the differential files are small 
and can be kept in memory, so that checking them 
does not generate I/0 activity. 

Copeland, [CK85J, has noted that differentiai files 
can be more storage efficient when transposed file 
organizations are used. 

6.2 Bloom Filters 

To avoid a disk seek to the hashed differential file 
for each record retrieved in a query we can construct 
a Bloom filter [Blo70J on the record !D's in main 
memory. A Bloom filter is constructed by logically 
or'ing together several orie bit wide hash tables. Each 
hash table is constructed with a different hash func
tion (overflows are ignored). Supppose that each 
hash table is 6% full. If we logically or together 8 
such hash tables, the result will be approximately 
half full. For each record ID in a query we probe 
the Bloom filter 8 times, each time using a different 
hash function. The probability that all 8 probes will 
find the hash table entry set, given that the record 
ID is not in the differentia! file, is 2-s or about 0.5%. 
Hence we will only have to check the differential file 



for those records which are in it, plus about 0.5% of 
records which have not been changed. 

7 Exploratory Data Analysis 
Support 

Exploratory data analysis (EDA) often entails the 
examination of many different subsets of the data. In 
this section we discuss methods of storing and pro
cessing these subsets. Often these subsets are very 
similar, i.e., they may be produced by successively 
removing outliers, or adding variables (columns). In 
relational database systems such subsets are referred 
to as views. 

EDA generates two problems for the DBMS: 

1. Excessive space requirements to store subsets. 

2. Sequences of similar queries, which are ineffi
cient if processed independently. 

Several techniques have been developed to address 
these problems. Storage requirements for subsets of 
the data can be reduced by using: query modifica
tion, record ID lists, or differential record ID lists. 
Views (subsets) can be implemented by storing the 
query which generated the subset and rerunning it 
whenever the subset is needed. A more elaborate ver
sion of this technique call query modification. [Sto75J. 
consists inserting the text of the original query in 
place of the view (subset) name whenever it is sub
aequently used and evaluating the composite query. 

Record ID lists (a.k.a. tuple ID lists) are simply 
lists of record identifiers of records contained in the 
subset. Since the record IDs are usually much shorter 
than the actual records, this saves space at the ex
pense of having to re-retrieve the records whenever 
the subset is needed. However, it is more efficient 
than simple views, since no query processing is re
quired and the tuple ID lists can be directly used in 
subsequent query processing. 

Since many of these subsets are similar (differing 
perhaps by the removal of a few outliers) they can be 
represented as differential record ID lists. Here only 
the differences from a base relation are stored. The 
differential record ID lists must be combined with 
the base record ID lists to recreate the subset when 
needed as described above in Section 6. 

The problem of efficiently processing a ~equence 
of similar queries has been addressed by Finkel
stein [Fin82J. He proposed techniques of indexing 
and recognizing common subexpressions across mul
tiple queries. By saving and suitably indexing the 
intermediate results of query evaluations, the need 

to reevaluate the common subexpressions can b~ 
avoided. 

Automatic cache management policies similar to 
those used for automatic file migration [Olk83,Smi81J 
might be employed to automatically decide when to 
convert subsets .from one representation (instantia-
tion, tuple ID list, query) to another (more compact) 
representation as the expected usage rate declined. 
Of course, instead of changing the reprsentation of 
the subset one could simply automatically migrate 
the subset to cheaper, slower storage (Olk83,Smi81J. 
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8 Aggregation 

By aggregation we mean the computation of aggre
gate statistics such as (SUM, COUNT, MEAN, MIN, 
MAX, etc.) over groups of data items {e.g. employ
ees grouped by department). Such computations are 
commonplace in SSDBs. 

The classic algorithm consists of sorting the data 
items according to their group, and then calculating 
the desired statistic for each group. 

One can often do much better, if the statistic can 
be computed in fixed space for each group (e.g. SUM, 
but not MEDIAN). Usually the number of groups is 
fairly small. We can thus build a table of partially 
computed statistics, one for each group, in memory. 
The table is usually organized as a hash table on t b.e 
group identifier so that it can be accessed in constant 
time. We then make one pass across the data, hash
ing the group identifier for each tuple, and updating 
the appropriate entry in the table of statistics. After 
reading the data, we usually must sort the statistics 
table, before writing it out. 

If the statistics table is too large to fit in main 
memory, we c.an partition the data by hashing on· 
the group identifier, and then process parititions one 
at a time. See (DK0*84,DG85J (KTM83J, (Bra84J. 

For detailed discussions of query optimization of 
queries which include aggregation see [Eps79,Klu82J. 
Nested correlated SQL-like queries with aggrega
tion are treated in [Kim82J. Such nested queries 
involve parametric aggregates in the inner query, 
where the parameter is a tuple variable from the 
outer query. The naive approach to processing such 
queries, variously called nested iteration. or tuple sub
stition. may entail repeated (redundant) evaluations 
of the inner aggregates. Therefore Kim, (Kim82J, 
suggests evaluating the inner aggregate once, for all 
groups. This optimization is often performed in the 
syntatic analysis phase without any semantic infor
mation. While this optimization is usually desir
able, there are cases in which the naive algorithm 
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is faster (e.g., when the outer predicate is very selec
tive). Kiessling [K.ie85] discusses semantic problems 
arising from Kim's [Kim82] optimizations and pro
poses tactics, called dynamic filters, for improving 
the efficiency of this type of query processing. 

Or gasoline consumption may be tabulated first by 
state, and then year and type; wheareas some user 
prefers instead a tabulation first by type, and then 
by state and year. 

'lransposition of an array of data can be thought 
of as changing the array linearization function, and 

8.1 St t• t• fi R then sorting the data according to the new location 
Fast ~ummary a IS ICS or ange tags. For sparse data this is in fact the preferred 
Queries algorithm: 

Often we will want to obtain summary statis
tics (aggregates such as SUM, COUNT, AVG, MIN, 
MAX) over a range of data values, e.g., find the total 
income of all employees between 40 and 50 years old. 

Such queries can be answered by combining a tree 
index to the data with a partial sum tree. In the ex
ample above we might construct a binary tree index 
to the employee data on the age attribute. In addi
tion each internal node of the tree would contain the · I 

sum of the incomes of all the emplyees contained in 
the subtree rooted at that node. 

We can thus determine the sum of incomes of em
ployees who are at least 40 and under 50 years old 
by traversing the binary tree twice, once to find the 
youngest employee at least 40 years old, and once to 
find the oldest employee under 50. As we traverse 
the tree, we combine the partial sums appropriately, 
adding partial sums of included subtrees and sub
tracting partial sums of excluded subtrees, to give 
the desired sum over the specified range. 

For a one dimensional index we can calculate the 
aum for any range query in logarithmic time. We 
can &lao update the tree in (average) logarithmic 
time. The basic idea has been known for some 
time and used to maintain rank information in trees. 
See [Knu73,BK75,WE80]. The idea can be ex
tended to B-trees, and to multi-dimensional trees. 
See [FV82,Fre81] for a discussion of the computa
tional complexity of answering aggregate queries over 
multi-dimensional ranges and citations to data struc
ture papers. 

9 Transposition 

9.1 Uses 

Transposition is a commonly used operation in SS
DBMSs. One application is the conversion of files 
between regular (record structured) and transposed 
versions. The second application concerns the re- · 
structuring of summary data tables [OOM85]. Often 
the user will want to transpose such table. For ex
ample mortality data may be tabulated by race, by 

. sex, by age, by county. A user might prefer the data 
tabulated by county, then by race, by sex, by age. 

9 

1. Tag each data item with its new location. 

2. Sort the data according to the location tags. 

3. Strip the location tags, and build compressed 
form. 

For dense data sets (all data elements present, al
though some may be zero) we dispense with the tags 
and the comparisons involved in the sorting. Instead, 
we merely perform the data movements which would 
occur if we sorted the tagged data items, in effect per
forming an implicit sort. The decisions as to where 
to move the data items are embedded in the· struc
ture of the transposition program, rather than being 

· explicitly detennined by comparisons. 
The naive transposition algorithm, which ex

changes diagonally opposite elements, can thus be 
seen to correspond to an 0 ( n) address calculation 
sort, (where n is the total number of data elements 
in the array). If the dataset exceeds the size of main 
memory this algorithm may generate excessive (i.e., 
n) numbers of page faults. 

Comparison based sorts (and thus the derivative 
transposition algorithms) typically require 0 ( n log n) 
computer time. However, they only require 
O((njp) log(n/p)) page faults, where p is the page 
size. Although the asymptotic complexity is worse 
than for the naive algorithm, in practice it is better 
because (1/p) log(n/p) is always much less than one 
for realistic values of n and p. 

One can do even better by combining the two types 
of algorithms. Observe that a disk is a page address
able random access memory. We partition the array 
to be transposed into blocks of p pages which move 
together in the transposition. The transposition is 
accomplished by transposing each block of p pages 
via a sort based algorithm in time 0 (p log p), i.e., 
time O((n/p)Iog p) for the entire array. Moving the 
blocks around on disk can then be done in one pass 
using the naive algorithm, with O(njp) page faults. 

The original paper on tranposition of dense ta
bles was [Flo72]. Floyd's results were generalized 
in [TUS83a,TUS83b, Wie83]. For sparse data, see 
[WL86], which discusses the tranposition of com
pressed relations. 



10 Sampling 

Random sampling is a very common operation in 
SSDBs. It is widely agreed that it should be included 
in the DBMS for efficiency reasons. Present prac
tice usually dictates that samples of relational queries 
are obtained by first computing the complete result 
of the relational query, exporting the result out of 
DBMS to the statistical analysis package, and then 
extracting a comparatively small sample. Inclusion 
of sampling operators in the DBMS permits a reduc
tion in the amount of data retrieved. Also the DBMS 
may be able to employ existing indices. The result 
of such optimizations, is that samples of relational 
queries should be obtainable in time proportional to 
the &ample &ize, rather than the size of the full result 
of the relational query. 

Random ~amples may be required either of existing 
files, or of the results of relational queries. Sampling 
from relational queries is beyond the scope of this 
paper. It is the subject a paper [OR86b] which con
siders how sampling can be efficiently integrated into 
the query evaluation in a relational database system. 

In this paper we provide brief tutorials on the fun
damental methods of generating various types of ran
dom samples. These methods can be used directly 
to sample from existing flat files on disk, or from the 
full results of relational queries as they are generated. 
These methods also form the basis of the techniques 
in [OR86a] used to sample from structured (~trees, 
pid ftlea, etc.) and to embed aampling operation• 
within the relational query evaluation. 

10.1 Types of Sampling 

There are a variety of types of sampling which may 
be performed. The various types of sampling can be 
classified according to the manner in which the sam
ple size is determined, whether the sample is drawn 
with or without replacement, whether access pattern 
is random or sequential, whether or not the size of 
the population from which the sample is drawn is 
known, and whether or not each record has a uni
form inclusion probability. 

One characteristic concerns the sample size deter
mination. We shall be primarily concerned with fixed 
&ize samples, where the sample size has been specified 
by the user. Alternatively, the user may specify that 
a certain fraction of the records sho'uld be sampled: 
This is called binomial &ampling, because the sam
ple size distribution is binomial. It is also discussed 
below in Section 10.2. 

Other possiblities for sample size determination in
clude: multi-&tage &ampling, and &equential &ampling. 

In each of theses cases the ultimate sample size is de
termined dynamically from the statistical properties 
of the data set. See [Coc77]. 

Another way of characterizing the sample is 
whether it is drawn with or without replacement. 
Samples drawn with replacement are usually easier 
to obtain (as we shall see). However, samples drawn 
without replacement generally provide more informa
tion for a given sample size. 

The sample may be drawn from a population of 
known or unknown size. Sampling from unknown 
population sizes arises when sampling sequentially 
from tape files or from files as they are generated. 

The inclusion probabilities for individual records 
may be uniform (an unweigh.ted or simple random 
&ample (SRS)} or they may be weighted according 
some attribute of the record. 

Access to the data may be random (if it is stored 
on disk or RAM), or sequential (if the data is on tape 
or is being generated as the output of a query). 

10.2 Binomial sampling 

10 

Binomial sampling is often provided (e.g. in the 
SIR DBMS} because it can be implemented very eas
ily. One merely sequentially scans the file, generat
ing a random number uniformly distributed between 
zero and one for each record. H the random number 
is less than the sampling fraction, the corresponding 
record is included in the sample. The algorithm runs 
in time linear with the file size, i.e., O(n), where n is 
the number of records in the base file. 

Alternatively, if the population size, n, is known 
one can generate the sample size from a binomial 
distribution, and then apply the algorithms for gen
erating fixed size sample discussed below. 

A third possibility is to generate the random in
tervals between successive samples, using a geomet
ric distribution. The records in the intervals are 
skipped, and the records at the end of each inter
val are included in the sample. This does not require 
knowledge of the population size. This idea has been 
developed by Vitter [Vit84,Vit85] for sequential sam
pling of fixed size samples as discussed below in Sec
tions 10.7 and 10.8. 

10.3 SRSWR from disk 

The simplest type of fixed size sampling consists 
of simple random samples (i.e., unweighted} with re
placement (SRSWR) drawn from a file of known size 
stored on disk as fixed size records (i.e., fixed block
ing). 
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The sample of size s can be obtained by generat
ing uniformly distributed random numbers between 
1 and N, the number of records in the relation, and 
reading (random access) the corresponding records. 
This requires O{s) cpu and disk time. The algo
rithm can be improved by sorting the random record 
numbers before retrieving the records. This will re
duce the seek time, assuming that the disk file is allo
cated approximately monotonically and that the user 
retains control of the disk arm. 

[Rub81], partial sum trees, and the alias method. 
The three methods vary in sampling efficiency and · 
update efficiency, with acceptance/rejection provid
ing the worst sampling efficiency and the easiest up
dating, while the alias method provides the most ef
ficient sampling and most difficult updates. Partial 
sum trees provide intermediate performance on both 
updates and sampling. 

10.6.1 Acceptance/Rejection Sampling 

10.4 SRSWR from disk, variable block- Suppose that we wish to draw a weighted random 
sample of size 1 from a file of N records, denoted r;, 
with inclusion probability for record r; proportional 
to the weight w;. The maximum of the w; is denoted 

ing 

Variable numbers of records per page (variable 
blocking) may arise due to variable record size, hash 
file organizations, or deletions. H an index exists we 
can use it as above. H no index exists we can use 
acceptance/refection. [Rub81J sampling as described 
in Section 10.6.1 on the pages with 

b( t th
. ) no. of records on this page 

pro accep 18 page = ------,.---=--......;:......;=-
max. no. records per page 

H the page is accepted we select a record on the 
page at random. This assures uniform selection prob
abilities for all records. 

10.5 SRSWOR from disk 

Simple random •ampling withollt replacement 
(SRSWOR) can be done by •ampling with replace
ment and checking a huh table compriaed of the 
records already sampled for duplicates. H duplicates 
are found, additional samples are taken. This ap
proach works well if the sample size is a small fraction 
of the total population. 

A better approach [EN82] consists of building a 
hash table of sampled record numbers, together with 
substitute record numbers. Each time a record is 
sampled, its number is inserted in the hash table 
along with the number of the last unsampled record 
in the relation. Subsequent record numbers are 
drawn uniformly from a truncated range 1 to N - k 
(after the kth record has been sampled). The ad
vantage of this approach is that fewer random record 
numbers need to be generated. 

10.6 Weighted Randoi:D Sample 

We can do this by generating a uniformly dis
tributed random integer, j, between 1 and N, and 
then accepting the sampled record r; with probabil
ity p;: 

p;=~ 
Wmaz 

(1) 

The acceptance test is performed by generating an
other uniform random variate, u;, between 0 and 1 
and accepting r; if u; < Pi· H r; is rejected, we 
repeat the process until some j is accepted. 

The reason for dividing w; by Wma"' is to assure 
that we have a proper probability (i.e., Pi ~ 1). H we 
do not know Wm= we can use instead a bound n such 
that Vj, 0 > w;,. The number of iterations required 
to accept a record r; is geometrically distributed with 
a mean of (E[p;J)- 1 • Hence using n in lieu of Wma.. 

results in a less efficient algorithm. 
Acceptance/rejection sampling is well suited to 

sampling with ad hoc weights or when the weights 
are being frequently updated. Other methods, such 
as the partial sum tree method discussed below, re
quire preprocessing the entire table of weights. 

10.6.2 Partial Sum Trees 

Wong and Easton [WE80] proposed to use binary 
partial sum trees to expedite weighted sampling. 

As above, consider the file of N records, in which 
each record r; has inclusion probability w; in a sam
ple of size 1. Binary partial sum trees are simply bi- · 
nary trees with N leaves, each containing one record -
r; and its weight w;. Each internal node contains the 
sum of the weights of all the data nodes (i.e., leaves) 

Weighted random samples, in which the inclusion in its subtree. Each record, r;, can be thought to 
probability is proportional to some parameter of the span an interval [2:{- 1 w;,I:{ w;), of length Wj· 

item sa~pled {e:g. size), are often. sought. A sample of size 1 is obtained by generating a uni-
We dlScuss bnefty the three major methods of ob- form random number u, which ranges between 0 to 

taining weighted random samples: acceptance/rejection. W, where W = z:f w;. The partial sum tree is 
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then traversed from root to leaf to identify the record 
which spans the location u. 

The height of the tree is O(log N) I where N is the 
number of records. Hence the time to obtain a sam
ple of size s is O(s log N). The tree can also be up
dated in time O(log N) should the record weights be 
modified, or if sampling without replacement is de
sired. 

Partial sum trees can be constructed in the form 
of B-trees, in order to minimize disk accesses by in
creasing the tree fanout (and hence the radix of the 
log). Alternatively, a partial sum tree may be em
bedded into a B-tree index on some domain. 

Partial sum tree sampling may well outperform 
acceptance/rejection sampling. Essentially, it is an
other index, specially suited to sampling. However, 
it is practical only when the weights are known be
forehand. Like any other index, it increases the cost 
of updates. 

HoweveJr, we believe that updates will greatly 
outnumber sampling queries in most applications. 
Hence acceptance/rejection methods will be pre
ferred in most applications. 

10.6.3 Allaa Method 

Another method of weighted sampling is the alitU 
method proposed by Walker [Wal77J. This method is 
similar to acceptance/rejection methods, except that 
if a rand>::m record number it rejected, then a.n aliu 
ia aupplied in ita place. Thus the time to obtain a 
sample ofsise 8 is 0(8). A table of adjusted sampling 
weights, and aliases is required. The table is of size 
O(n), the population size. The algorithm given by 
Walker to construct the table requires time O(n2), 

however better data structures and search algorithms 
can reduce this to O(nlogn). 

Walker does not indicate any method of updat
ing the alias and adjusted weight tables. Hence this 
method would only be useful for static databases. 

. 10.7 Sequential sampling, known pop
ulation size 

Sequential sampling of a population of known size 
arises when sampling from a tape file of known size. 
Disk files of known sizes may also be sampled se
quentially, either to reduce the disk seeks generated 
by random accessing, or because the file is sorted 
and the user also wants the sample to be sorted in 
the same fashion, e.g., for a rep~rt. 

H the file is on a random access device such as disk 
then the fastest algorithm is due to Vitter [Vit84J. 

His algorithm generates the random intervals be
tween successive records which are to be included in 
the sample. Hence his algorithm requires that only 
O(s) random numbers be generated, where s is the 
target sample size. H we can skip records in zero time 
(e.g., fixed size records on disk) then the total run
ning time will be 0( s), otherwise we may be forced 
to read ~very record in time O(n). 

10.8 Sequential sampling, unknown 
population size 

Sequential sampling of a population of unknown 
size arises when sampling a tape file of unknown size, 
sampling the output of a que.ry as it is generated (to 
avoid writing the entire output to disk), or online 
sampling of transaction streams. 

The algorithms for sequential sampling of a popu
lation of unknown size are known as reservoir algo· 
rith.m.s, because they create a ruervoir of size s (the 
desired sample size) of candidate sample records. In 
all of these algorithms the ·reservoir is initially filled 
with the first s records read. The algorithms then 
proceed sequentially through the file, updating the 
reservoir, so that it always contains a simple random 
sample. · · 

Again, the best algorithm for random access files 
is by Vitter [Vit85J who has extended his work on 
known population size samples to the case of un
known population sizes. As before, Vitter generates 
the random intervals of records to be skipped. Hence 
he examines only those records which get put into 
the reservoir. The running time for his algorithm 
is 0 ( s ( 1 + log( n/ s)), assuming that skipping can be 
done in zero time. 

11 Summary 

In this paper we have attempted to survey what 
is presently known about physical data management 
for scientific and statistical databases. We have dis
cussed: 

• The characteristics of SSDBs which differentiate 
them from conventional commercial databases: 
the low update activity, the tendency for queries 
to reference few attributes and many tuples, and 
the frequent use of range, aggregate, and sam
pling queries. 

• The use of tranposed file organizations, their 
advantages for typical statistical queries, and 
their disadvantages for conventional and sam
pling queries. 
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• Ad hoc data compression methods such as in
dex encoding, run-length encoding, and header 
compression, which are well suited to SSDB ap-
plications. · 

• Several of the papers on buffering strategies, 
which showed that closer integration of buffer
ing with the DBMS and perhaps statistical op
erators offers significant performance gains. 

• The use of differential files, Bloom filters, com
mon subexpression indexing, and subset repre
sentation caching to deal with the update and 
subset management problems generated in data 
editing and exploratory data analysis. 

• algorithms for dynamically computing aggregate 
queries, and indexing strategies such as partial 
sum trees for improving the efficiency of linear 
aggregate query processing over ranges. 

• Several methods of performing transposition on 
both sparse and dense data. 

• The fundamental random sampling techniques, 
which form the basis of more elaborate methods 
of sampling from relational queries. 

12 Research Agenda 

Much work remains to be done in physical database 
aupport for acientific and atatistical data m&nage
ment. 

It is clear that the perform&nce of various file de
signs is very sensitive to the type of queries. For 
example, transposed files are well suited for queries 
involving aggregation and statistical operations, but 
not for sampling. Linear space multi-dimensional 
access methods appear to do well for full range 
queries, but poorly for uni-dimensional queries. Fur
ther work, and perhaps some experience with real 
SSDBMSs is needed to provide better guidance to 
designers of SSDBs. 

In particular, more work is needed on charac
terizing the performance of multi-dimensional ac
cess methods with non-uniform correlated data &nd 
queries. There have been a few simulations and vir
tually no analytical work in this area. 

The work on integrating statistical algorithms and 
buffering could be extended to other important sci
entific and statistical algorithms. Better I/0 mod
els of access method performance, which incorporate 
caching, file allocation on disks, and detailed disk 
motions would be useful for query optimizers. 

Better proposals for access methods suited to write 
once optical disks are needed. Query processing algo
rithms which work directly on compressed data have 
only begun to be explored. Finally, there does not 
seem to have been much work on modelling, storing, 
or retrieving statistical models. 
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