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INTRODUCTION TO QCD THERMODYNAMICS 

AND THE QUARK-GLUON PLASMA 

Miklos Gyulassy 

. Nuclear Science Division, Mailstop 70A-3307 

Lawrence Berkeley Laboratory, Berkeley CA 94720 

Abstract: 

' 
These'lectures review recent theoretical work suggesting that hadronic 

matter may dissolve into a weakly interacting quark-gluon plasma pha.Se 

at energy densities only one order of magnitude above the ground state 

energy density of nuclei. Basic techniqu~s of field theory used for calcu

lating thermodynamic properties of Quantum Chromodyna.mics (QCD) 

are introduced. Functional methods are applied to develop QCD per

turbation theory at finite temperatures and chemical potentials. The· 

relevance of a.Symptotic freedom at high T, J.L is motivated. We then 

confront the main skeleton in the QCD closet, namely, the nonpertur

bative color magnetic sector. Techniques of lattice gauge theories to 

get beyond the limitations of perturbation theory are then discussed. 

Rec;erit numerical results are critically assessed.· 

[Keywords: QCD, Thermodynamics, Perturbation Theory,. Lattice Theory, 

Quark-Gluon Plasma] 
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1. Introduction 

The discovery of the neutron fifty years ago immediately led to speculations that 

a new form of matter, neutron stars, could exist in nature. Subsequent observations 

of pulsars confirmed their existence although our understanding of their structure is 

still far from complete. More recently the discovery of the quark structure of hadrons 

has fueled speculations that an even ~ore novel form of matter may ex~st called the 

quark gluonplasma (QGP). Experiments have already been approved at CERN and 
..,:·:_'···: '. 

BNL t~ look for this new form of matter in collisions of very high energy nuclei. Since .. ·. 
th~(experimental program is primarily a nuclear science community initiative, it 

has beco~e important for nuclear physicists to acquire expertise in areas that used 

to belong exclusively to particle physics. In particular, we need to understand better 

the, standard mo(t~lof strong interactions, Quantum Chromodynamics QCD. In two 
~" , ... 

'·major areas of Ii-ric"lear experimentation, with electron and nuclear beams, the focus 

of modern nuclear physics has turned to the study of the subhadronic world in a 

many ~ody con~ext. Since QCD may be the fundamental theory underlying nuclear 

and hadronic phenomena, it is obviously worthwhile for nuclear physicists to develop 

a deeper appreciation of its many subtleties. In these lectures ·we concentrate on 

some of the recent developments in the area of QCD thermodynamics. 

There exists many excellent text books and review articles on this subject, 

and the serious student . should . proceed directly to the original sources listed in 

the reference list. A good place to start is with the reviews in recent conference 

proceeding~[lJ-[7]. Refs.[8]-[11] provide more detailed introductions. The goal of 

these lectures is to introduce nonexperts to the theoretical techniques used in this 

area and to point out some of the key unresolved problems. There are many subtle 

aspects of QCD thermodynamics to watch out for, and it is easy to be overly naive. 

After all we are dealing here with a theory that is supposed to imprison permanently 

its constituents (quarks and gluons). Therefore, analogies with more· familiar many 

body systems may be ~isleading. 

At first sight QCD thermodynamics looks rather simple because of a property 
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called asymptotic freedom. This means that the effective coupling, aeu(q2
) between 

quarks a:nd gluons vanishes at very large momentum tranfers or, equivalently, at 

short distances. This property suggests that atextreme temperatures and/or den

sities, where the average distance between quarks and gluons is small, the system 

should behave as a simple Stefan-Boltzmann gas. However, QCD is devious because 

even though the coupling vanishes, the singular infrared properties of the theory 

prevents a rigorous application of perturbation theory. The problem is that large 

distance or small momentum transfer phenomena must necessarily involve nonper

turbative effects. However, as we shall see, nonperturbative calculations suggest 

that such effects may not disturb too much the simple picture suggested by per

turbation theory. Therefore, there . is strong theoretical prejudice in favor of the 

existence of the quark-gluon plasma phase of matter at high energy densities. 

These lectures are organized as follows: Section 2 provides an introduction to 

the physics of dense nuclear matter and .the motivation for studying QCD. The 

cut and paste method is used to guess what the equation of state of high energy 

density matter might look like. Section 3 introduces basic field theoretic techniques 

to beginners. Functional methods to compute the partition function are "derived". 

We show how Feynman rules naturally emerge from such methods. A brief intro

duction to Grassmann techniques leads us to appreciate fermion determinants. The· 

special problem of quantizing gauge theories such as QCD is treated by introducing 

the Fadeev-Popov trick. Finally the Feynman rules for computing thermodynamic 

quantities in QCD are summarized and the lowest order results presented. Section 

4 deals with the topic of asymptotic freedom and its relevance at high temperatures 

and/or densities. Debye screening of color electric fields and the lack of screen

ing· of color magnetic fields is discussed. In particular, we show that the absense. 

of perturbative color magnetic .mass implies that QCD perturbation theory suffers 

from a terminal disease associated with uncontrolled infrared singularities. This 

leads us in section 5 to discuss nonperturbative methods of lattice gauge theory. To 

preserve gauge invariance on finite lattices, we change ofvariables from gluon fields 

to link matricies. We introduce the weird and unfamiliar lattice world of Wilson 
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actions, plaquettes, and Polyakov loops. The Metropolis Monte Carlo algorithm is 

described which is used for numerical computation of QCD thermodynamics. The 

relevance of lattice theory for continuum physics is then addressed, and the elusive 

asymptotic scaling window is introduced. Finally recent attempts to include quark 

degrees of freedom are noted. We conclude these lectures on QCD thermodynamics 

with a better understanding of some of the outstanding theoretical issues remaining 

to be solved and with a ·reinforced belief that the transition from the hadronic to 

quark worlds probably will end up pretty much as we expect on phenomenological 

grounds. 

2.: Phenomenology ofHadronic and Quark Mat
ter 

.2.1 The Hadronic World 

A current view[8] of the vacuum is that it is cluttered with condensates and field 

fluctuations that are responsible for the confinement of quarks and gluons to color 

,, neutral bags of radius RH ,...,; 0~8 Fm. We live in a nonperturbative world where 

the effective interactions of those bags or hadrons are strong and short range. All 

we know aboJit the properties of ·bulk matter formed out of hadronic constituents . . 
comes from nuclear physics; However, nuclear matter saturates at a unique baryon· 

density, p0 ~ 0.145 Fm-8
• We know only that the energy per nucleon, W(p, T), has a 

minimum at p =Po at zero temperature (W(p0 ,0) = -16 MeV), and that the energy 

density of the ground state is Eo= E(p0,0) = Po(mN + W(p0 ,0)) ~ 0.134 GeV /Fm8. 

The curvature or incompressibility constant as determined from giant momonpole 

resonances is estimated to be[12] Koo = 9p~82W(p,O)f8p2 ~ 210 ± 30MeV at p0 • 

Recent heavy ion experiments[13][15J at the BEVALAC in LBL are beginning to 

extend our knowledge of W (p, T) to higher densities and temperatures using nuclear 

collisions in the energy range ·E,ab ,...,; 1 AGe V. Fig.2.1 shows the zero temperature 

equation of state, W(p,O), deduced from studying the energy dependence of the 

pion multiplicity produced in nuclear collisions[13][14][16]. 

4 

- ~ ,. 

. ... 



.. 

,~ 

... ~' 

.. 

200 

fB 160 ( 
~ 

f 
100 

::E 
s .. .s 60 1il

1 ~ 
I 

I 
0 

/ 

·60 -4--..,......--r---T"""""-r---.....-~ 
0 2 4 8 

XBL B57 -2996 

. Figure 2.1: Energy per nucleon at T=O at high densities; Empirical[13][16] (shaded 
region) from nuclear collision data is compared to theoretical calculations[17][18] . 

A modern nuclear matter variational calculation[17] is indicated by the curve 

labeled FP. A non-linear mean field theory calculation[18] is indicated by curve B. 

The shaded region is the empirical equation of state deduced by Stock et al[13] 

including several corrections[16]. It appears that the nuclear m_atter equation of 

state could be much stiffer at densities t"'W 2 - 4p0 than expected .from conventional 

nuclear theory[17J.. Of course many experimental and theoretical questions about 

the precise connection between the pion yields and the equation of state remain to 
. . 

be resolved[16]. A very promising new development[19] has been the application of 

the Vlasov-Uehling-Uhlenbeck equation. to the analysis of pion ,arid collective flow 

data. As new high precision data on heavy nuclear rea.Ctions become available; 
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such analyses wi~l make it possible to extract much more reliable constraints on the 

nuclear equation of state up to moderate densities and temperatures. 

On the theoretical side, a variety of exotic phases at higher densities and/or 

temperatures have been proposed. These include density isomers[20], pion condEm

sation[21], strange quark drops[22], and skyrmion lattices[23]. Thusfar there is no 

experimental evidence for or against any such novel states of nuclear matter. The 

possibilities remain so numerous because the few known properties of nuclear matter 

near saturation density are not sufficient to constrain the effective models used in 

hadronic matter studies at high densities[18]. An artistic summary by Siemens[24] 

of the temperature and density domains where different phases of hadronic matter 

could exist is shown in Fig.2.2. 
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Figure 2.2: Theoretical phase diagram of nuclear matter (artist P. Siemens[24]) 
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· The continuing search for signatures of new pha.Ses of nuclear matter will remain 

a central part of the experimental program with nuclear collisions. 

Whether exotic phases of hadronic matter exist or not, hadron phenomenology 

already points to something peculiar on the horizon at sufficiently high densities 

and/or temperatures. The density of hadronic s~ates in free space is consistent 

with an e?Cponential growth according to the Hagedorn spectrum[25] 

(2.1) 

where a ~ 5/2 and To ~ m"' ~ 140 MeV. If the finite sizes of hadrons. could he 

neglected, then this spectrum would lead to the following energy density of hadronic 

matter at temperature T: 

I (mT)
3
1

2 
3 e(T) = dmp(m)e-mfT 

2
11" (m + 2T + · · ·) (2.2) 

Obviously, e and also the partition function Z = tr clli'!' h~ve in this case an 

essential singularity at a finite critical temperature T . T0 • However as long as 

a < 7/2 that singularity would only occur at infinite, ~~ergy density and so would 
. . . 

be of no practical cop.cern. The surprise comes when. the finite sizes of hadrons are 

taken into account. 

Requiring a covariant thermodynamic formalism, Hagedorn and Rafelski[25] pos

tulated that the volume of a hadron should increase proportional to its mass. As 

that result also follows from the MIT Bag Model[26], they chose the proportionality 

constant such that 
m 

V(m) = 4B ' (2.3) 

.. where B . ""' 200 Ge V /Fm3 is the vacuum energy density. As emphasized by . 

Shuryak[8], this B should be considerably larger than the phenomenological Bag 

constant used to fit hadronic masses. With Eq.(2.3) the energy per unit volume in' 

the excluded volume approximation becomes[25] 

T . e(T) 
EB( ) = 1 + e(T)/4B ' (2.4) 
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where £n(T) is given by the point particle expression (2.2). The essential siniDJlarity 

occurs now at finite,energy density 

. . . . . ' . 
. . s· 

fB(To) = 4B,... 1 GeV /Fm (2_.5) 

This suggests the end of the hadronic world ~nd the breakdown of hadronic matter 

theory is in fact just around the corner at an energy density· only one order of 

magnitude above the energy density, fo, in ground state nuclei. .... ; 

The above limitation on the hadronic world is a simple consequence of geometry. 

At low densities arid/or te!hperatures hadrons have plenty of elbow room. But when 

the hadrortic' density approches the density of matter within a typical hadron, 

(2.6) 

then the hadrons must overlap and it is no longer sensible to continue to describe 

- the properties of matter in terms of degrees of freedom appropriate for isolated 

hadrons. Close packing of hadrons can be accomplished either. by increasing the 

baryon density or creating new ones to fill the space between old ones by raising 

the temperature. . The critical energy density corresponding to close packing is 

""' mNPH ,... 3 - 7£0 , similar to to Hagedorn's estimate in .(2.5). Only with the 

adventof QCD can we begin to guess what are the properties of matter at higher 

densities. 

Before proceeding to QCD though, we note that for phenomenological consider-
['\ 

ations a convenient parameterization of the hadronic matter energy density, fh(T), 

and pressure, Ph(T), at zero bacyon density and finite temperatures is given by[27] 

[28] 

(2.7) 

(2.8) 

where CH is the speed of sound in hadron:ic matter. 
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2.2 The Quark World 

In order to guess what lies beyond the hadronic world we turn to a model of the 

subhadronic world. The most promising candidate for the theory of subhadronic 

phenomena is QCD. In this section we review the motivation and "derivation" of 

QCD. 

Part of the motivation for QCD arose out of the need to understand the existence 

of spin 3/2 baryons anq the existence of weakly interacting point like partons inside 

hadrons. The great success of the SU(NJlavor = 3) classification of mesons and 

baryons in terms of qq and qqq bound states presented a fundamental dilema with 

regard to the Pauli principle. The three quarks in the 0 ( j 8 j 8 j 8), Ll +2 ( j u j u j 

u), andLl- ( j d j d j d) spin 3/2 baryons have to be in a completely symmetric state 

under interchange of spin or spatial coordinates. The simplest way to reconcile with 

the Pauli principle was to postulate the existence of a new quantum number, color, 

and to assume that the color wavefunction of three quarks must be completely 

antisymmetric. This required the existence of thre~ colors (say blue, green, and 

red). Thus the quark wavefunctions must carry color( c) in addition to spinor(s) 

and fl.avor(f) indices,· '1/Ja,/,c(x). The spinor indice~ tranforni according to .the spin 

1/2 repesentation ~f the Lorentz group. The flavor indices transform according 

to the fundamental representation of the SU(N/Iavor) group. The guess was that 

the color indices transform according to the fundamental representation of a new 

SU(Ncolor) group. That solved the Pauli problem, but the problem of dynamics 

remained unanswered. 

It is at this point. that the ideas of Yang and Mills on local gauge invariance 

came in. Suppose that the quark world is invariant to a symmetry group G such as 

SU(Nc)· This means that the Lagrangian !(.,P,i/J) of the quark world is invariant 

under an infinitesmal transformation 

(2.9) 

where >..a/(2i) are the generators of the Lie group Gin the fundamental repr~sen

tation, aiid fa are small rotation angles. For SU(2) the >..a, a= 1, 2, 3, ar~ the 2 X 2 
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Pauli maticies, while for SU(3) Aa, a= 1, · · ·, 8, are the 3 X 3 Gell-Mann matricies. 

The group is completely specified by structure constants, lafJ..,, that define how the 

generators commute, [>.a, AtJ] . 2ifafJ7 >...,. 

The idea of Yang and Mills was that physics should not depend on possibly 

different conventions used for cl~sifying partiCles according to the group at different 

space-time points. They argued that only the local distinction between quantum 
.· 

numbers should be important. If scientists on Mars see our blue quarks as red, 

sureiy th~t cannot be relevant to the motion of that quark. This .principle implies 

that the theory of quarks should be invariant under a much more general (gauge) 

transformation , where fa in (2.9) are replaced an arbitrary functions of space

time, fa(x). Under such general gauge transformations the color of quarks can 

be redefined in an arbitrary manner at every space-time point. However, such 

gauge invariance is not ·_:automatic. In particular a ~on interacting quark gas is 

not invariant under such· a transformation. To see this note that if fa ( x) depends 

on space-time, then that under the transformation (2.9) the free Dirac Lagrangian 

transforms as 

(2.10) 

The solution proposed by Yang and Mills (1954) and adapted to QCD in early 

1970's, was to introduce a set of compensating fields A~(x) which couple to the 

quarks according to the famous minimal coupling scheme 

(2.11) 

In order to compensate for the unwanted extra term in (2.10), these new fields must 

transform under· local ·gauge transformations as 

(2~12) 

With the above choice for the transformation properties, the minimal quark La

grangian iPh,.J)~t/J is invariant under local rotations in the symmetry group space. 

Note that r_niniinal coupling and gauge invariance forces the compensating fields to 
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be Lorentz vectors (spin 1) and to transform as the generators Aa of the group (the 

so called adjoint representation). 

To put life into the compensating fields a "kinetic" energy density must also be 

specified. Guided by QED, a natural guess for the Lagrangian would be -lF:vF~w, 

in terms of the field tensor F:v = a,A~ - 8vA~. However, this does not work 
/ 

because this form would not be invariant under (2.12). The generalization of the 

field tensor that is invariant can be seen to be 

(2.13) 

Note that the same coupling g appears above as in (2.11). 

We have thus "derived the QCD Lagrangian 

(2.14) 

Because of (2.13), F 2 contains cubic and quartic interactions of the fields A~, which 

henceforth will be called gluon fields. The requi~ement of local gauge invariance 

therefore leads not only to the existence of gluori.s that can change the color of 

quarks but also to a definite interaction Lagrangian between quarks and gluons 
·, 

and between gluons and gluons characterized by one coupling g. Note the absence 

of any scale parame~er in .C. (It is also worth noting that (2.14) is not the most 

general renormalizable gauge theory if we allow higher derivatives and couplings 

with dimensions to enter. See Ref.[29] for an interesting unorthodox possibility.) 

The next step of quantizing (2.14) is much harder. The main problem is that for 

any field configuration A~(x) there are infinitely many configurations G A~ which 

. are physically equivalent to it because they differ only by a gauge transformation 

G. In the section 3, we will introduce functional integral techniques to handle this 

problem. For now just consider the naive g ~ 0 limit of (2.14). Obviously that limit 

must in reality be very subtle since we do not see free quarks and gluons floating 

around us. However, as we shall motivate in section 4 that riaive limit may hold at 

very high energy densities because of asymptotic' freedom.:·. 
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Proceeding blindly, if we can set g = 0 at high enough temperatures or densities, 

then the equation of state of the quark world would be quite trivial. It would 

correspond to a noninteracting gas of N 1 flavor quarks that come in Nc colors and 

N; - 1 spin 1 gluons. In that case the energy density, pressure, and baryon density 

of the gas are given by the Stefan-Boltzmann expressions 

(2.15) 

(2.16) 

(2.17) 

with T, Jl being the quark temperature and chemical potential. 

Since we obviously do not live in that world, it is plausible that the vacuum in 

which the ideal gas of quarks and gluons live differs from ours. Since we are here 

arid 'they' are not, our nonperturbative physical vacuum[8] must have an energy 

\ lower then their QCD perturbative. vacuum. Phenomenologically, we can try to 

take this effect into· account by adding a constant Bg"'"' to the energy momentum 

tensor of the quark world. This leads to a phenomenological bag model equation of 

state for the quark world: 

e(T,J.L) = esB(T,jt) + B , 

1 
p(T, J.L) = 3esB(T, J.L) - B , 

2.3 Cut and Paste. Model for the Equation of State 

(2.18) 

(2.19) 

Now let us try to staple the phenomenological hadronic and quark worlds to

gether at zero baryon density. Fig.2.3 illustrates how this could be done. 

As the temperature in~reases the energy density and pressure increase along 

the hadronic branch labeled Has parameterized by Eqs.(2.7,2.8). Below a critical 
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Figure 2.3: Phenomenological equation of state of high temperature hadronic matter 
with a first order transition to a quark-gluon plasma phase. , 

temperature Tc the pressure in the quark phase exceeds that in the hadronic phase. 

At Tc the pressures in the two phases coincide. However, e(Tc, 0) = Eq is greater 

than eh(Tc, 0) . eif. H we assume that the transition between the hadronic and 

quark worlds is a first order one, th~n the system would be in a mixed phase for 

energy densities between EH and Eq. In the mixed phase the temperature and· 

the pressure would remain the same. · The latent ·heat per unit volume· is ~E = 

Eq - EH ,.._, 4B is what we must supply to melt the nonperturbative vacuum and 

liberate the quarks. Indicated in Fig.2.3 are also metastable superheated hadronic 

and supercooled quark phases that may exist. Numerical estimates[49l[50][51] with 

a variety of plausible parameters give 

Eq ,.._, 1- 2GeV /Fm8 (2.20) 

From these phenomenological considerations the following picture emerges. Be

. low some energy density .EH ,.._, 3e0 hadronic degrees of freedom are relevant. As 

the energy density increases the hadrons begin to overlap and the nonperturbative 
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vacuum confining the quarks into little bags begins to melt. By the .time an energy 

density in excess of one order of magnitude above the ground state energy density 

of nuclei is reached, the nonperturbative vacuum has evaporated and quarks and 

gluons freely propagate in the system. This at least is the working. hypothesis which 

we hope to verify by more rigorous methods in the followi!lg sections. 

3. ·, Field Theory Primer 

3.1 Path Integrals and Perturbation Theory 

Since the primary focus here is on thermodynamics, we jump directly to the 

problem of computing the partition function Z = tre-fJH with {3-1 = T being the 

temperature. To warm up to the problem consider first a simple one dimensional 
' . 

quantum mechanical sys'tem described by the Hamiltonian 

1 
H = """'"P2 + V(x) 

2 

The partition function for this system is 

z 

where lx) is a complete basis set of states. The first trick is to note that 

e-fJH = lim (1- EH)N 
N . ' -+()() 

(3.1) 

(3.2) 

(3.3) 

where f.= {3/N. Following Feynman[34] we insert a complete set of states between 

each operator (1- EH) to get 

Z =·J~L · · · L:(xll1- EH!x2) · · · (xNI1- EHix1) 
· Zl .ZN 

(3.4) 

Next we note that to order f. accuracy 

(3.5) . 

Defining a closed path x( r) such that 

x(r) = x(at r = i{J/N and x({J) = x(O) , (3.6) 
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and defining the path derivative via x = dxjdr ~ (xi+l- Xi)/E, we can express the 

partition function as 

= ( Dx(r) exp(- (fJ dr[x2 /2 + V(x)]) . 
J z(O)=z(fJ) J 0 

(3.7) 

The partition function is therefore given in terms a sum .over all possible paths that 

close after a "time" {3. Each path is weighed by the exp<:mential of minus the "Eu

clidian action", SE(x) = I! dr ..CE(x(r)). Note that instead of the true Lagrangian, 

..c = l ±2- v (X), appearing in the exponent, a modified Lagrangian, ..c E = .·l ±2 + v (X) 

appears. To help understand the origin of this modification note the similarity be

tween the statistical operator, e-IJH, and the quantum J:l!.echanical time evolution 

operator, e-itH. Formally the statistical operator just propagates the system into 

the imaginary time direction by an amount l:l.t = .....:.i{J. If we substitute {3 .:.... it 

in (3.7), then -I! dr ..CE changes into i I~ dt..C and_ we recover Feynman's original 

path integral expression. for the propagator[34] in terms of the true Lagrangian. 

For statistical mechanics always the "Eucliqeaii rotated" Lagrangian appears in the 

exponent. 

The generalization of the above method- to systems with many degrees of free

dom is straightforward as long as the Hamiltonian. remains quadratic in the ~Pi· -

With x( r) --+ ( q1 ( r), · · · , qn ( r)) defining a closed path in an n dimensional space, 

the partition function is given by (3.7) with the Euclidean action given by SE = 

I! dr(L:~ qj /2 + V(q1 , • • ·, qn)). The final transition to quantum field theory is made 

by assigning a generalized coordinate· to each point in space. This is accomplished 

by first erecting an artificial lattice scaffolding in space such that the lattice sites 
\ 

can be specified by integers as Xi = ( i~, i 2, i 3)"a in ternis of a·lattice spacing scale, 
. . 

a. For each lattice site we assign a generalized coordinate , ¢(xi, r). We further· 

assume that V ( </>(x~, r), </>(x2 , r), · · ·) couples only nearest neighbor::f such that as 
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the lattice spadng goes to zero 

(3.8) 

This form of V is chosen so that the the field </>(x, t) obeys the simplest type· of 

wave equation in Minkowski space (a "'a"' <I> = 6U I 64>). The partition function for 

this scalar field theory is then given by 

1. [P I 1 1 Z ex V</>(x,r)exp(- Jo dr d8x[-
2
¢2 + -

2
1V</>I2 + U(<l>)]) 

t/l(z,O)=t/l(z,P) · 0 
(3.9) 

Of course, (3.9) is only a formal symbol. It is defined_ as a limit of a large but finite 

number of ordinary· integrals · 

lim 
a-+0 

Ns Ns Ns Nr {100 } IT II II IT d</>(ia,ja,ka,la) , 
i=l i=l k=ll=l -oo 

(3.10) 

with 4> satisfying periodic boundary conditions. The periodic boundary condition 

in the temperature direction, </>(x,O) = </>(x,/3), followed because Z involves a trace 

of the statistical operator. Periodic boundary conditions in the spatial directions 

are only a matter of convenience since the period goes to infinity at the end. For 

a fixed temperature, T = /3- 1 , and lattice spacing, a, the numbe~ .of steps in the r 

direction is constrained via 

{3 = N.,.a . (3.11) 

The formal. functional integral (3.9) is a very useful starting point to develop 

perturbation theory. This is done by adding a periodic source current[30][31], J(x), 

for the 4> field. The partition function is thus modified to 

(3.12} 

where (·. ·) = It dr f'd8x .. ·, and the Euclidean a"' = 8"' = (d/dr, V). The main 

trick used to develop perturbation theory is the identity 

. 6 
</>(x)e(Jt/1) = --e(N) 

· 6J(x) (3.13) 

16 



. -

Therefore, any function of ¢(x) in the integrand of (3.12) can be expressed in terms 

of functional derivatives-with respect to J. In particular, we can write 

(3.14) 

With this formal trick, we can pull the potential out of the functional integral to 

obtain 

(3.15) 

Now we are in business because the remaining functional integral is of gaussian 

form, i.e., the only type of functional integral that we can readily perform. It is 

instructive to go over in detail how this particular one can be evaluated. Because 

¢(x, r) is only defined on a finite 0 ~ r ~· (3 inter\ral with boundary conditions 

<f>(x, (3) = <f>(x, 0), we can Fourier decompose 4> as 

(3.16) 

where the discrete frequencies must be· given by 

27rn 
Wn=-p' (3.17) 

in terms of integers n. Similarly, we can Fourier decompose J(x, r). The exponent 

in (3.15) can thus be calculated as 

p-• 'f / (t ~' !lx(k, w.)l' ~ ~I J(k, w.)l' .6c(k, ~·l I 
(3.18) 

where the last line follows from changing variables to 

(k . ) - 1 (. (k )-i/2"'(k ) ·, . (k. )+1/2 ( . )) X , Wn _- V
2 

d , Wn <y , Wn - d , Wn J k, Wn . (3.19) 

with 

(3.20) 
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The function !l. is the momentum space inverse of the Euclidean operator a 11a11 

on the space of functions satisfying periodic boundary conditions in the "time" 

direction. As such it can be called a free field propagator because given an exter

nal disturbance J(k,wn) the response is <f>(k,wn) = !l.(k,wn))J(k,wn)). Changing 

variables from <f>(x,r;) to x(k,wn), gives rise to a Jacobian 

(3.21) 

where V is the volume. UnfC>rtunately, the exponent diverges. We can try to isolate 

that temperature independent divergence by regrouping terms as 

(3.22) 

(Altenatively, we could go back to the l~ttice formulation, where ~ - ln N,., and 

rescale the integration measure to get rid of that constant before taking the contin

uum limit.) Therefore, 

(3.23) 

which is recognized to be the partition function of a non interacting massless boson 

gas including the zero point energy. That latter term however only shifts the scale 

of the. free energy, F0 = .;_f3-1 ln Z0 , by a temperature independent amount. 

The Gaussian integral in (2.2.14) can thus be performed by changing variables to 

x(k, Wn)· The integrals over the x(k, Wn) give for each mode a factor (7rf3)112 to the 

overall normalization. constant. In this way the partition function for anharmonic 

fields in the presence of an external source can be related to the. ideal partition 

function for harmonic fields via . 

(3.24) 
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We have thus "derived" the the generating function for the perturbative expansion 

of the partition function. The Feynman rules follow from expanding the first expo

nential in a power series in U, carrying out the· functional derivatives, and setting 

J = 0 at the end . 

As an example consider U(¢(x)) = g¢(x) 4/4!. If we chose to work in momentum 

space, then 

H we chose to work in coordinate space, then the second exponent is expressed as 

The first order correction to the free energy, F = -,B-1 ln Z, is for example 

(3.27) 

where f d4x =f! dr fd3x .. ,BV is the Euclidean-four volume. Higher order terms 

can be evaluated similarly with exponentially increasing labor. The important 

point however is that a simple pattern emerges. The higher order terms can always 

be expressed in as a sum of integrals over products of free propagators, ~- By 
I ' . 

associating with each propagator ~ line, each .term in the sum becomes associated 

with a Feynman graph. The structure of those graphs is completely determined by 

the form of U(¢) and are. summarized by a small set of Feynman rules that follow 

from (3.24). 

19 



· · 3.2 Fermion Determinants 

The main trick in defining the path integral representation of the partition func

tion was to split up e-fJH into many pieces via (3.3) and inserting a complete set 

of states between each piece. The main difficulty with treating fermi !)ystems is 

obviously the necessity of antisymmetrizing the wavefunctions. Let Ia) denote a 

complete set of one particle basis states. Defining anticommuting creation opera

tors bt, such that babt + btba = 001fJ, an antisymmetric n fermion state is written 

as 

The resolution of the identity operator on the space of all antisymmetrized states 

is thus 

.However, this is not the most convenient representation oflA. A more convenient 

basis would be one specified a set of labels, 'fJ = {TJ01 }, with the property 

(3.28) 

H we could construct such states, then they would be analogous to coherent states 

for bosons and would allow us to compute the matrix elements of any normal or

dered operator, f(b+,b), as (TJ21/ITJ1) = f(TJ2,TJI). Unfortunately, the 'f/a cannot be 

ordinary complex numbers because basic relations such as b011 ba2 ITJ) = -b01:~ba 1 ITJ) 

must be satisfied by the requirement of alitisymmetrization. In order retain (3.28) 

as well as antisymmetrization; the 'f/a must satisfy a peculiar (Grassmann) algebra 

(3.29) 

By convention the f'/a can also be assumed to anticommute with the b01 • With the 

above rules, the state ITJ) can be constructed as[35] 

ITJ) = exp(- L'f/ab!)IO) (3.30) 
Q 
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A little Grassmann algebra then shows that the overlap of two such coherent fermion 

states is given by 

(f11r7') - exp { ~ 11!11~} , (3.31) 

where the adjoint of a Grassmann number is defined by ('lib! . ('71'7~. 

To construct a resolution oflA in terms of a sum over 171)(711, we need to define 

an operation, f d17, that play~:~ the role of integration. We define linear operators, 

denoted by J d17i, on a set of Grassmann numbers, {17;}, such that 

(3.32) 

where z is a complex number. With this definition and the properties (~.28-3.31), 

the identity on the space of all antisymmetric states can be written as 

(3.33) 

as can be verified by applying lA to an arbitrary antisymmetric state .b!
1 

• • • b!n IO). 

All the machinery is now in place to carry out the program of expressing, the 

partition function in terms of path integrals. For that purpose we need to be able to 

compute a trace of an operator on the space of coherent fermion states: However, 

because the 11 anticommute 

This implies for example that 

(3.34) 

This sign flip is an essential difference between boson and fermion coherent states. 

As we will see, this leads to antiperiodic boundary conditions rather than periodic: 

ones in the r direction. 

We can now construct a Grassmann path integral representation of the partition 
' !, ' 

function along the same lines that we followed in the last section. For a Fermi system 
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at temperature, {3-t, and chemical potential, p,, specified by a Hamiltonian, H. 

Tr e-fJ(B-"N) = lim Tr lA(l- eK)lA · · ·lA(l- eK) 
n-+oo 

J~ J dp,(1Jo) • · • dp,(1Jn)(17oll- eKI111)(171Il- eKI112) · · · ('lnll- eKI -'lo) 

(3.35) 

where K = H- p,N, e = {3/n, and the integration measure is 

dp,(1J) = ITd1]~d1Jae-rrtrr .. • (3.36) 
a 

As an interesting example consider the partition function for a relativistic Fermi 

system in an external A 11 ( x) field. In that case 

where "/" are the conventional Dirac matricies[30], and f/1(x) = Ea(xlo:)ba is the 

field operator in coordinate space. 

Because K is a quadratic form in ?j1+, 1/1, the matrix elements of K are quadratic 

forms in the 'la· Therefore, to order e accuracy 

(3.38) 

With this relation (3.35) can be rewritten as 

ZJ "' f dqjj dqo · · · dq~ dq. exp (t, qi ( qHt - q;) - <qt ('roD - I' )q;) , · (3.39) 

·where 'ln~l · ...:.....11o because of (3.34). This form motivates us to define an antiperi~ 

odic "path" by 

17(r) = 'li at T ~ i{3/n such that 17({3) --: -17(0) , . (3AO) 
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where 17(r) is regarded as a column vector with components, '7a(r). This allows us 

to recast (3.39) into the form 
. . 

z1 ex f . D(77+(r), n(r)) exp { {
13 

dr71+(r)(dd + JL- "'YoD)77(r)} 
1,(13)=-,(o) lo r · 

(3.41) 

where 

. ' (3.42) 

By a change of variables the exponent can be rewritten as the negative of the 

Euclidean action as obtained by continuing the Minkowski space action (iSM(t . 

-i{J) . -SE(fJ)). This completes the "derivation" of the path integral repesentation 

for the fermion partition function. 

However, the Grassmann machinery allows us to go one important step further. 

The integral can be performed because the exponent is just a quadratic form in the 

variables. Following the Grassmann rules, the master formula we need is 

(3.43) 

which follows because only those terms in the expansion of the exponential con-. 

tribute which are proportional to 77;t"1 • • • 11;t"N'1u~ · · · '1u:V, where ui, u~ are permutations 

of N distinct indices. Therefore, the integral is ~1 Eu,u' sgn(u)sgn(u')Mu1 ,u~ · · · MuN,u:V = 

detM. Tha,t detM rather than 1/ detM appears is.a characteristic signature of 

Grassmann gymnastics. 

Therefore, the final expression for the partition function becomes 

. Zt oc det {'Yo (-! + p) - i'); V;- Y"'vA"- m} A oc det { 
6'7.}~~~ .P)} , (3.44) 

where the subscript A instructs us to evaluate the functional determinant over the 

space of antiperiodic functions on the interval 0 ~ r ~ {J, and SE is the fermion 

action in Euclidean space. (We used above the invariance of the the determinant 

to a change of the sign of in front of dfdr.) The calculation of the proportionality 
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c~nstant requires considerable care in the continuum limit. However, we note that 

the Grassmann numbers ate gone! They were only useful to keep track of antisym

metrization in the intermediate steps. The main result is that the partition function 

can always be expressed as a determinant of an operator that is simply related to 

the operator that is sandwiched between t/Jt and t/J in the Lagrangian. 

The determinant of an operator M, is just the product of its eigenvalues. H ja) 

are the orthonormal eigenfunctions of M with eigenvalues >.a, then 

detM = exp{Tr lnM} = exp{~=(ajlnMja)} = IJ >.a 

To, get' some idea how the determinant in (3.44) cari. be calculated, consider 

a fermi gas in an external potential Av(x) that is not so strong as to be able to 

produce pairs~ Let fa correspond to the single particle energies in that potential. 

The single particle wavefunctiohs, (xja), then satisfy the static Dirac equation 

(3.45) 

In order to calculate the functional determinant in ( 3.44),. we must solve for the 

eigenvalues of the operator -d/ dr + J£ :._ 'YoD~:- The eigenfunctions of this operator 

are just e-iw,.T (xj a). T}le antisymmetric boundary condition in the temperature 

direction however require that the frequencies Wn must be 'odd' 

Wn = (2n + 1)11",8-1 (3.46) 

rather than 'even' as for the Bose case (3.l7). The eigenvalues are thus 

(3.47) 

The fermion determinant is in this case 

(3.48) 
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which is recognized to be the familiar answer; In arriving at the last line we had to 

absorb into the proportionality factor ail infinite constant, n~=O w!, as Well as art 

infinity associated with the zero point energy. For a more rigorous justification for 

such steps see Refs.[30][31][33][34]. 

Dividing z1 by the partition function, ZJ, for a noninteracting gas leads to an 

expression from which perturbation theory can be defined: 

z, = ZJ det{l + M(A)} = ZJ exp{Tr ln(l + M(A))} = ZJe-8•u(A) , (3.49) 

where Seu(A) is an effective acti~n of the A field due to coupling to the fermion 

fields. The operator M(A) in coordinate representation is seen from (3.44) to be 

(x, rjM(A) jy, r') = gA,(x- y, r - r')'YvAv(y, r') , (3:50) 

in terms of the free fermion propagator at temperature, {3-1, and chemical potential, 

J.L, 

AJ(x- y, r- r') = bo( -djdr + J.L)- i')'/vi- mr·1 

. = {3-1 ~I (~:~3 e-iwn(r-r')eik(x-y)('Yo(iwn- J.L)- ')'. k- m)-1 

(3.51) 

Expanding the exponent in (3.49) in powers of g gives the perturbation series for 

the thermodynamic potenti~l, O(f3,J.L) = -{3-1lnZ" 

(3.52) 

3.3 Quantizing QCD 

What we saw in the previous sections was that the partition function for a 

field theory can be expressed as a functional integral over the exponential of minus 

the Euclidean action. The path in . "imaginary" thne runs over a finite interval, 

0 ~ r ~ {3, and boson fields must be periodiC and fermion fields mu"st be antiperiodic 

on that interval. For quarks and gluons, the principle of lodtl gauge invariance led · 
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us to the QCD Lagrangian given by Eq.(2.14) .. Following the proceedure in the 

previou.s sections, the QCD partition function would be written as 

(3.53) 

in terms of the Euclidean QCD action. Since quark coupling to gluons involves a 

quadratic form, i/JhvVv.,p, in terms of the covariant derivative (2.11), the integration 

over the quark fields can be performed giving 

(3.54) 

Note that ea.Ch massless quark flavor gives one power of the determinant. Also 

SjM(A) is just the Yang-Mills action without quarks. 

Unfortunately this blind generalization of path integral to gauge theories breaks 

down. This is because for any configuration, A:(x, r), there are infinitely many 

other configurations, G A, which differ from A by only a guage transformation. A 

general gauge transformation can be expressed in matrix notation via 

A~Ac = GA~Ac G-1 + !ca G-1 

2l "' 2l "' . g "' 
(3.55) 

in terms of an arbitrary matrix of the form G(x) = exp(iAcfc(x)/2). For infinitesmal 

gauge transformations G A is given by Eq.(2.12). ·Every configuration which can 

be obtained by such a transformation gives the same contribution to the integral 

because S(G A) = S(A). Obviously the problem with the integral in (3.54) is that 

we are integrating over infinitely too many redundant dergrees of freedom. To 

remedy this situation we must arrange that only gauge inequivalent configurations 

are integrated over. This is accomplished by the famous Fadeev-Popov trick. The 

idea is to insert into the integral a functional delta f~nction that fixes the gauge so 

that we integrate over only the distinct configurations in a particular gauge. 

To see how this works consider the following two dimensional example: 

z = J d2xe:...s(x) ' (3.56) 

where the "action", S ,is is assumed to be invariant under rotations. In other words, 

if R(9) is the rotatio~ matrix by angle 9, then we assume that S(x) = S(R(9)x). 
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Obviously we only need to change to polar coordinates to isolat~ the redundant 

degrees of freedom, f dO = 211". However, we will proceed in a way that is easy to 

generalize to gauge theories. 

Let u~ define a "gauge" fixing condition, 1(x) = 0, to eliminate the redundant 

degrees of freedom. For fun, we will call the "n gauge" the one specified by 

1(x) = n ·X= 0 . 

Now comes the Fadeev-Popov trick.· Let us try to find a rotation invariant function, 

Ll,.(x), such that 

r'll' 
1 = Ll,.(x) lo d06(1(R(O)x)) . . (3.57) 

Clearly t:l,. is just the Jacobian for the complicated change of variables from 0 -+ 
.. 

1(R(O)x). That Ll,.(x) = A,.('R(O!)x) for any 0' follows from the group property 

R(O)R(O') = R(O + 0'), and from the invariance of the integral to arbitratry shifts 

of the variable 0. The Jacobian is given by 

Ll,.(x) = ·(~I 81(~~0)x) ~-1- .. ) -1 • 

' ll=ll;(x) 

(3.58) . 

where Oi are the solutions of 1(R(Oi)x) = 0. 

To evaluate (3.58) just chose x to satisfythe gauge condition. For the example 

of our "n gauge"' take X= {rn2, -rnt). In.that case oi = 0 and .11" solve the gauge 

condition, and we need consider only infinitesmal rotations in (3.58): 

where €12 = -€21 = 1. Thus, to order 0, 1(R(O)x) .:..__ OniE'ijXj = 0 r. Because there 

are two terms in the sum of (3.58), the Jacobian is given by 

. (3.59) 
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Having found a convenient representation of unity, we insert it into the integral 

(3.56) to obtain 

(3.60) 

where in the second line we used the invariance of d!-x, ~T(x), and S(x). The final 

answer in the "n gauge" is thus 

(3.61) 

The factor 27r in front is the "gauge volume". What has been accomplished in (3.61) 

was the elimination of redti:~d.ant degrees of freedom by inserting a delta function. 

The price paid for that was. the necessity of computing a Jacobian, rf2. 

The generalization of this trivial example to gauge theories is now easy. To 

eliminate the gauge degrees of freedom we need a gauge fixing condition, .1(A) = 0, 

such as the one for the Lorentz gauge, .1(A) = 811A11 = 0. In analogy to the above 

example we construct an invariant integration , f [)G, over the group of all gauge 

transformation. For SU(3), that integral involves the integration over a different set 

of eight Eulerian angles at each space-time point. Next the gauge Jacobian ~T(A) 

is calculated such that 

1 ·= ~T(A) f [)G 6(.1(G A)) . (3.62) 

Because th~ group measure is assumed to by invariant, ~T(A) = ~T(G A) is gauge 

invariant. To compute ~T(A) it is t.hen sufficient to consider configurations sat

isfying the gauge condition. For such A, only infinitesmal gauge transformations 

need be considered in (3.62), and thus G A is given by (2.12) in terms of infinitesmal 

Euler angles Ea(x). Therefore, the Jacobian is 

( ) ·(a.reA(x))). 1 . (( ".· . -1 . ". )I . ~T A = det ' aea(x') '' e=O = det lap,.,A,., + g Dapa )81' a.,A"=O (3.63) 

where the final expression holds only in the Lorentz gauge: 
. ' . 
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Inserting (3.62) into (3.54), changing the order of the DG and DA intergrations, 

shifting variables A -+ G A, and using the gauge invariance properties of the action 

etc., we obtain finally 

z oc [! va] IDA 6(.1(A))~:r(A) {det(-i--tvDV(A))}N' exp(-sfM(A)) (3.64) 

~, - With Eq.(3.64) we have succeeded in fixing the gauge and removing the infinite 

gauge volume [f DG]. The price paid was a new functional determinant (3.63). In 

some gauges such as the axial gauge, n~A~ = 0, the resulting determinant is inde

pendent of A, and so it can be absorbed into the normalization constant. However, 

in other gauges such as the Lorentz gauge, the determinant does depend on A. 

In those cases, it is usesful to express the determinant as a Grassmann functional 

integral. For example, 

. . 

I det({fap-yA~+g- 16apa~)a~)l oc jo[w,w] exp (-fop dr/ d3x{wa~a~w + gfap-ywaa~w-yA~}) 
(3.65) 

The anticommuting scalar fields wa(x) and wa(x) are called Fadeev-Popov ghosts. 

The Feynmann rules for including ghosts into diagrams follow immediately from 

(3.65). For example, the ghost propagator in momentum space is -6apf(w! + p2
), 

with Wn given by the odd frequencies {3A6). The ghost-glue interaction vertex has 

a value -igfap-yQv for a incoming ghost carrying momentum q. 

3.4 Perturbative QCD 

With· the above technique, the Feynmann rules for perturbative QCD thermo

dynamics in any gauge can be determined[9][36]. In the "a" gauge these rules are 

summarized in Fig.3.1, from Ref.[36]. 

To calculate quantities of interest 

1. Draw connected diagrams consisting of solid lines (quarks), wavy lines (glu

ons), and dashed lines (ghosts) connected by one of the four vertices. Each 

vertex corresponds to a value indicated on the right. Note that lines carry 
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Figure 3.1: Feynman diagrams associated with propagators and verticies m 
QCD[36]. 
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momentum, color, and Lorentz indices. The diagrams for the thermodynamic 

potential are those without external lines. Diagrams with external lines cor

respond to Green's functions. 

2. Gluon lines carry even frequencies, k0 = iwn = i27rn{3- 1 and repesent gluon 

propagators. The gauge dependence of the gluon propagator is seen explicitely 

by its dependence on a. 

3. Quark and ghost lines carry odd frequencies, ko = iwn = i(2n + 1)7r{3-1 • 

4. For each closed loop associate a circulathig four momentum (iwn,k) and a 

loop integration 

I d3k 
p-1 ~. (27r)S 

At each vertex energy momentum conservation introduces a delta fuction of 

the sum of frequency indices ni and a delta function for the sum of momenta 
'< 

ki as in Eq.(3.25). A factor of-1 appears for each closed quark or ghost loop. 

5. A combinatorial factor must be calculated for diagrams without external lines. 

With these rules an integral over products of vertex functions and propagators 

is associated with any diagram. Fo.r example, the second order contributions to the 

thermodynamic potential are then given by the sum of thErfour diagrams in·Fig.3.2 

e e .. -- ... . . t): ; __ ... 

. 

Figure 3.2: L9west order diagrams for the thermodynamic potential 

These diagrams were evaluated by Kapusta[36] to give the following contribution 

to the free energy density at zero chemical potential: 

g2T 4 1 · 5 
F2 = 169(N; -1)(Nc + 4N1) , (3.66) 
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An infinit~ class of higher order diagrams in Fig.3.3 could also be summed up giving 

a contribution of order g8 giving · 

(3.67) 

. (a) + + + ••• 

(b) 

XBL 857-2994 

Figut~,-3:3: (a) Infinite cla:ss of ring diagrams contributing to the thermodynamic 
potential to order g8 • (b) Lowest order gluon self energy diagrams contributing to 
(a). 

Eqs.(3.66,3~67) are .the. lowest order corrections to the negative of the ideal 

Stefan-B~ltzmann expression.for the pressure of a quark-gluon plasma at zero·chem

ical potentiaL The above rules actually lead to integrals that diverge in these orders. 

The finite corrections above can be extracted from the infinities only after a "renor

malization" program, as illustrated in the next section, is carr~ed out. 

4., The Running .Coupling 

4.1 At zero temperature 

Our next problem is to determine what value of g should be used in such pertur

bative calculations. .A complete answer is only provided by renormalization group 

theory[30J-[33]. However, we can get some insight into the problem by considering 
' . ,. 

· the specific example of quark-quark elastiC scatte~i~g. 
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Let us define an effective coupling, aefl(q), at momentum transfer, q, by requir

ing that the qq-+ qq scattering amplitude be given by -47riM(q)r1~£ar~a, where 

M( q) = aef/2( q) ' ( 4.1) 
q 

and rfa = un~£~au~ are vertex factors. To lowest-order aefl(q) = g2 /411" + O(g4
). 

The next lowest order contributions to that amplitude are given by the sum of the 

following diagrams: 

+ + + 

Figure 4.1: Lowest order corrections to qq -+ qq amplitude where the gluon self 
energy is given by the diagrams in Fig. 3.3b 

Unfortunately, every diagram containing a closed loop diverges, and we must 

embark on the program of renormalization. The basic assumption 'behind rEmor

malization is that physics at a given distance scale q-1 should not be sensitive to · 

the physics at some arbitrarily small distance scale, M;;/ ~ q"'"" 1• Thus for example· 

low energy atomic physics does not depend on the microscopic physiCs that governs' 

whether the electron is a composite particle or not on some scale ~ m;- 1
. Similarly, 

scattering of quarks and gluons at momentum transfer q should not depend on the 
.'\. 

substructure of quarks as long as thgt.t substructure is only resolvable on a scale 

~ q-1 • Of course there is no way to know ahead of time whether there is such a 

clear separation between the scales relevant for quark and subquark physics. O.nly 

experiment can tell. Theoretically, we can however propose a renormalizable theory 

of quark interactions such as QCD and explore its consequences, The essential point 

is the assumption that there existssome range of momentum transfers or distances 

where the more microscopic physics is not relevant. · 
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On the other hand, we see that actual calculations with this theory involve 

integrating over arbitrarily large. momentum scales, even beyond the mass of the 

universe! The assumption that the physics at such scales is irrelevant for the mo

mentum transfers of interest means that we should be able to cut off such momentum 

integrals at any scale M 00 ~ q. For example we could insert form factor at each 

vertex which suppress momentum transfers exceding some large scale M~. Alterna

tively we could discretize space-time to cutoff momenta above some inverse lattice 

scale. This second approach is what underlies the lattice gauge theory formulation 

of QCD. For continuum perturbation theory some version of the first approach is 

usually adopted. The actual way that infinite integrals are rendered finite is called 

the renor.malization scheme. One popular scheme is due to Pauli and Villars[32] 

which involves adding a set of ficticious particles to the ~heory with masses that 

are sent to infinity at the end of the calculation and which couple so as to cancel 

infinities arising in loop integrals. 

While any renormalization scheme insures that all Feynman diagrams of the 

theory are finite, terms such as ln(M!,/q2
) appear in the final answer which appar-

. ently depend on an arbitrary scale, M 00 • The miracle of renormalizable theories is 

that . it _is possible to get ri~ of those terms by renormalizing the finite number of J 

bare coupling constants and masses which appear in the Lagrangian. 

To see qualitatively how such a renormalization program works in the Pauli

Villars scheme, consider the higher order contributions toM at an arbitrary space

like momentum scale, q2 = -m2
• That scale will be called the renormalization 

point. Adding a ficticious heavy quark of mass M 00 , the lowest order correction is 

found to be[32] 

(4.2) 

where Cis 
11 2 

C=-N--N1 3 c 3. (4.3) 

Note the that the correcti~n would diverge as ln Moo if we let M00 ---.. 0 at this point. 

The trick is to note that we do not really know the value of the bare coupling, a 0 , 
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either. A measurement of qq __... qq could only determine the combination of ao and 

lnM00 in (4.2). Therefore, we must adjust the value of ao so that together with the 

In Moo correction, a fixed finite value of ae// remains. This is called renormalization 

of the bare coupling. 

The renormalization program thus starts by expessing amplitudes in terms of a 

•. " renormalized rather than the bare coupling. To see how this works, consider the 

coupling at a different scale q: 

(4.4) 

The logarithmic infinity has thus disappeared into the the definition of the renor-

. malized coupling, ae11(m). In the last line, we have also "improved" perturbation 

theory by assuming that the second order correction just represents the first term in 

a geometric series in the expansion of the denominator in ( 4.4). Such steps require 

the full machinery of the renormalization group equations for justification. Unlikeiri 

QED where the infinite geometric series follows simply from summing all repeated · 

· "bubble" diagrams for the photon propagator, the summation in QCD involves 

summing parts of higher order vertex diagrams in ·addition to vacuum polarization · 

bubbles. 

Eq.(4.4) is still not satisfactory though because it looks like that the effective 

coupling depends now on the arbitrary renormalization point, m. Since the physical 

qq __... qq amplitude cannot depend on arbitrary scales, we must impose an additional 

condition, daelf(q)fdm = 0. This condition implies that we can write 

47r/aen(m)- Clnm2 = -ClnA2 
, 

where A is an unknown constant independent of m. With this definition 

47r 
aelf(q) = Cln(-q2f.A2) .. 
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As long as the number of quark flavors is not too large, N, < llNc/2, C :> 0 and 

Ct.eJI-+ 0 for q-+ 0. This is the famous asymptotic freedom property of QCD. The 

remarkable effect of renormalization process was to introduce a dimensional scale A 

into a theory that was initially scale invariant! That scale cannot be calculateq but· 

:tnust be _determined from experiments. Current data only determine A very poorly 

to be in the range A """ 100 - 400 MeV. 

There are many ways to try to understand the sign of C. None of them are 

completely satisfying. For example, in a particular gauge we can analyze the sign 

of each diagram that contributes. Unfortunately, in different gauges the sign and 

magnitude of diagrams can vary. The theory only guarantees that- the sum of all 

diagrams to a given order has a unique value. The following physical picture can 

nevertheless give a rough idea of the origin of that sign. The sign arises from the 

competition between ·ordinary vacuum polarization effects that tend to enhance the 

coupling at short distances as in QED and antiscreening effects that tend to disperse 
, .. ' ' 

the color charge~ We can view the antiscreening phenomenon as a kind of finite form. 

factor effect. H we tried to concentrate a blue charge onto a heavy quark at the· ·· 
··, . .. .... ' . 

origin, then beca9:se the quark can emit a BR gluon by becoming red, the blue 

charge can be distributed over a finite range, """ A.-:- 1• Therefore; if we 10ok for the •.. 

blue charge in some small volume, ~ A-s, then only a small fraction of the net blue· 

charge will be found there. Qualitatively, it is reasonable to expect then that as the 

number of colors, Nc, increases, such antiscr~ening effects should become .stronger 

since there are more ways that a quark can disperse its color by emiting gluons. 

In contrast to the antiscreening phenomenon that is unique to non-Abelian the

ories (Nc > 2}, vacuum polarization always tends to concentrate the _charge at the 

origin. One way to try to understand this effect is to recall that -negative energy 

solutions to both the Dirac and .Klein Gordon equations behave opposite to the pos.,. . 
. ' ' . 

itive energy solutions. Thus, for example a negative en~rgy electron is repelled by a 

positive charged nucleus. If 1/J~ ( x) is the electron wavefunction at energy E around 

a nucleus of charge Z, then for E < 0, 11/J~(x)l 2 < I1P~(x)l 2 in the neighborhood, 

""" m;- 1
, of the origin. The vacuum polarization charge density, which measures the 
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ch~ke·in distribution of the negative energy sea, 

is thus positive near the nucleus[37]. Exactly at the origin the bare charge is reduced. 

by an infinite amount, oc 1nM00 /me, but after renormalization the residual VP 

density remains positive. Clearly this effect must increase as the number of fermion 

flavors, N1, increases. 

In summary, we have the following qualitative picture for the competition be

tween screening and antiscreening: The effective QCD charge is enhanced ex N1 

due to conventional vacuum polarization phenomenon, and it is reduced ex Nc due 

to the ability of quarks and gluons to disperse their charge. The proportionality 

const~ts for QCD are given in Eq.{4.3). Asymptotic freedom hold only when the 

antiscreening effects dominates. 

While {4.5) exhibits the asymptotic property of QCD, it also shows that the 

effective coupling could grow to be arbitrarily large at large distances. In fact, ( 4.5) 

has a singularity at finite momentum transfers t = -A 2 • This is an artifact of 

perturbation theory. Nonperturbative analysis[38].suggests that O:elf should have a 

simple pole at t = 0 instead. Such a singularity would be consistent with the hoped · 

for confinement property of QCD since in coordinate space it would imply a linearly 

rising potential at large distances[29]. An approximate phenomenological formula: 

for t = q2 < 0 incorporating both asymptotic freedom and "infrared slavery " is 

thus 
471" 

O:elf(t) = C log(l- tj A2) 

4.4.~2 At high temperatures 

{4.6) 

Why is asymptotic freedom relevant at high temperatures or densities? The 

answer has to do with color electric and magnetiC shielding in the QGP. To see this, 

we consider again the s,cattering of quarks or gluons in the Born app~oximation[39]. 
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The amplitude (4.1) together with the effective coupling (4.6) obviously lead to 

. a divergent total cross section because of the singular small momentum transfers 

behavior. What saves the day is the modification of the gluon propagator due to the 

polarizability of the many body medium. In analogy to ordinary' electromagnetic 

plasmas, the exchanged gluon can iriterad with quarks and gluons already in the 

plasma in addition to the quantum fluctuations discussed 'above. Figure[?] illustrate 

such many body modifications of the effective qq scattering amplitude: 

q· + g' g· 

XBL 857-2991 
Figure 4.2: Examples of many body modifications of the effective scattering ampli~ 
tude 

In the random phase approximation[41]-[44] a special subclass of diagrams of 

this sort can be summed to infinite order (see next section). It is then found that 

the p, = v = 0 part of the static (wo = 0) propagator is modified such that in the 

small t limit as 

voo(t) ~ 1 
· · t '- m~ 

(4.7) 

where the color electric mass is given by 

(4.8) 

in terms of the termperature T and flavor chemica:! potentials Jl.J· This modification 

of the gluon propagator implies that static color electric· fields are screened on a 
. . : 

length scale mjj/ as is evident from linear response theory[48] (Ag(x) = f d3yD0~(x-
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y) P:zt (y)). The ·.Stale m i 1 is also called the De bye length. The physical origin of such 

screening is clear. Since the particles in the plasma carry color electric charge, a 

cloud of particles of opposite charge tend to accumulate around any external charge 

put into the plasma. 

With Debye screening, large distance or low momentum transfer scatterings be

tween quarks is thus suppressed. The dominant momentum transfers, t "" -m~, 

associated with color electric scattering in fact increases then with either tempera

ture or baryon density. Therefore, only the effective coupling at short distances can 

matter. Obviously at distances much smaller than the average distance"" 1/T, 1/ J.L 

between quarks in the plasma many body effects cannot be relevant and the ef

fective coupling reduces to its free space form. This is why asymptotic freedom is 

relevant at high energy densities. 

There is however a major catch. That concerns the yet unsolved magnetic 

shielding problem. There are no elementary quanta in QCD that carry color mag

netic charge. Therefore, there cannot be any perturbative mechanism that screens 

static color magnetic fields. This poses a problem because quarks and gluons in

teract not only through color electric interactions ex: D00 ( q), but also also though 

color magnetic or current-current interactions ex: Di;(q). In ordinary QED plas

mas there is no magnetic shielding either, but the sign of the photon self energy, 

Ili;(O,q) = O(aqT), as q-+ 0 is such that the magnetic part of the propagator, 

Dii = (D(o) - II)ij1
, has no (tachyon) pole at q2 < 0. Therefore in QED magnetic 

scattering leads to finite cross section even without magnetic screening. In QCD 

though[45)[46], the sign of Ili;(O, q) is opposite and Di; .acquires a tachyon pole at 

q"" g2T. This means that perturbation theory must break down at low momentum 

transfers q < g2T. In QCD the finite electric mass is not sufficient to solve the small 

momentum transfer, i.e., infrared singularity problem. 

The current hope is that a finite magnetic mass is generated in QCD in some 

nonperturbative fashion[45)[46]. That could arise for example if a magnetic glueball 

condensate were generated somehow. Very preliminary Monte Carlo studies[47] for 

SU(2) Yang-Mills theory on small lattices seem to indicate that static color magnetic 
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fields may indeed be screened at high temperatures. It is therefore possible that 

there does exist a color magnetic ma.Ss scale mAf, where 

(4.9) 

with eM,;... 1 necesarily being a nonperturbative constant[46]. Note that unlike mE 

which has a nonvanishing contribution to order gT~ mE must.be at least O(g2T), 

(see further discussi~n in next sebsection). 

With color electric and mag~etic screening, the scattering cross section in the 

plasma could. be roughly expess~d as[3~] 

J,qab ~ C 47ra!ff(t) 
dt ab t2 . ' (4.10) 

where the effective screened coupling at finite temperatures and chemical potentials 

is 
.· . a0 (t) { t t } 

O:eff(t) ~ -2- t 2 + t 2 ' . -mE -mM 
(4.11) 

and a0 (t) is the effective coupling at zero temperature (4.6). In Eq~(4.10) Cab = 

9/4.,1,4/9 are color factors relevant to ab = gg,qg, and qq scatterings respec

tively. Screening causes the effective coupling to vanish at low momentum: transfers. 

Asymptotic freedom causes it to vanish at .large momentum transfers. The max

imuin occurs for I t I...., min(m~, mit), and the therefore the maximum value ae/1 

decreases logarithmically with increasing temperature. The color electric screening 

. length also decreases at high baryon densities, but it is not known how magnetic 

screening behaves at finite chemical potentials. QCD may hold a surprise in this 

connection. 

As the temperature decreases, higher order corrections to the· screening lengths 

must also be consider.ed. In Ref.[48] it was shown that a self consistent treatment 

of electric screening led to a nonperturbative reduction of mE to order a 312 as 

(4.12) 

where 1 ......, 1. Therefore, higher order corrections work against screening. 
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Figure 4.3: Dependence of effective coupling on momentum transfer for various 
temperatures. 

In Fig.4.3 the effective screened coupling is shown including a rough estimate of 

possible nonlinear effects from Eq.(4.12). 

In this numerical example[39], we have approximated g2 /47r in (4.12) by o:0(t

-s), where s = ((p1 + p2) 2) ~ l7T2 is the average center of mass energy squared for 

binary cdllisions in a relativistic quark-gluon gas. Furthermore, we used o:0 (t). in· 

place o~ g2 /47r in (4.8,4.9). The dashed curve corresponds to neglecting the nonlin

ear correction above and the difference between the solid and dashed curve~ gives 

some indication for the order of magnitude uncertainty in the effective coupling in 

the interesting temperatu:re range T- A. The. value C = 1/4 was used[39] for the 

nonperturbative constant in Eq.(4.9). The qualitative behavior of the screened cou-· 

piing as a function of transverse momentum ar.e well illustrated in this figure. Note 

in particular that the screened coupling maximizes near the average momentum, 

q ~ 3T, ofquarks andgluons in the QGP. 
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F.igure 4.4: Effective quark-quark differential cross section. 

In Fig.4.4 the corresponding screened differential cross sections are shown. Be

cause the amplitude is heavily weighed toward low· t, the uncertainties associated 

with the nonlinear modifications of the screening lengths are considerably amplified 

for T- A. At high temperatures that uncertainty decreases, but unfortunately in 

the temperature range relevant to nuclear coJlisions the effective quark gluon cross 

sections ~e rather uncertain. Note that we have neglected corre~tions[40] of order 

t / s to the differential cross sections due to spin effects. It is clear from Fig.4.4 that 

the total cross section decreases as T-2 • However, since the density of quarks and 

gluons increases as T3 , the mean free paths decrease ex T- 1 . Therefore, asymptotic 

freedom is consistent with thermal equilibration on an ever decreasing spatial scale. 

·Unfortunately, forT."' A, which may be most easily accessible experimentally, there 

is great uncertainty as to value of the mean .. free paths. This translates into con

siderable uncertainty as to whether local equilibration can be attained 'in nuclear 

collisions via conventional kinetic effects. 

How does all this relate to the perturbative calculations of the thermodynamic . 
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potential? We were trying to figure out what value.to use for g2 l47r. The above 

arguments hopefully make .it plausible that by suitable rearrangement and partial 

summation of perturbation theory, we should be able to use an effective value of a 

that depends on temperature and density. Since aen(t) maximizes at t - -T2
, at 

high temperatures we should be able to use an effective coupling 

(4.13) 

Exactly what constant b should be used above is not clear. At sufficiently large T I A 

it does not matter. Where the value of b does matter, aT is too large to believe 

in perturbative results anyway. For phenomenological applications a value b - 10 

could be used since aeff maximizes near the average thermal momentum - 3T. 

Since ·aT --+ 0 forT I A~ 1, i~ is then plausible that the perturbative corrections 

(3.66,3.67) to the free energy density (negative of the pressure at p, = 0) may become 

arbitrarily small. QCD matter at high energy den~ities would then correspond to 

an ideal quark-gluon plasma, as characterized by Eqs.(2.17). 

·•·· .4.3 Breakdown of Perturbation Theory 

Unfortunately, QCD is not that simple. In the previous section we had to 

appeal to some noliperturbative mechanism to generate a magnetic mass, mM. In 

this section we look more carefully at this problem. This will allow us to fully 

appreciate the limitations of perturbative analysis of QCD thermodynamics. 

Consider the higher order diagram for the thermodynamic potential in FigA.S. . . 

3 n-1 

Shattered Egg 

1 n 

Figure 4.5: nth order graph, 0~, contributing to the thermodynamical potential. 
This one involves one fermion loop with many glue exchanges. 
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We will study the infrared behavior .of such diagra~[45]. According to the 

Feyrurian rules discussed in sectia'n 3, e~ch wavy line corresponds to a gluon prop

agator, D~v, and solid lines correspond to quark propagators, Sq. If the number· 

of vertices in the above diagram is n, thEm there are n quark propagators and .n/2 

gluon propagators. There are then also 1 + n/2 loop integrals, each giving rise to a 

sum of ~he form TEm f d3pi/(27r) 3
• The infrared behavior of that diagram can be 

studied by considering that region of the 3(1 + n/2) dimensional momentum loop 

integral where all Pi are approximately equal to p and p --+ 0. Since both D and Sq 

decrease with increasing frequency Wn it is furthermore sufficient to studyonly the 

lowest frequency contribution, n = 0. 

Because gluon fields at~ periodic, the lowest discrete frequency allowed for gluons 

is w0 = 0 as evident from Eq.(3.17): However, recall that fermion fields must be 

antiperiodic in the temperature direction. This means that the lowest frequency, 

(3.46), which contributes to fermion propagators is 'finite, w0 = 1rT. Therefore, for 

p--+0 

(4.14) 

while 

(4.15) 

where we have suppressed color and Lorentz factors. In other words, the gluon 

propagators diverge at small momenta, whereas quark propagators remain finite[45]. 
/ 

We can now check the infrared. behavior of our higher order diagram for the 

thermodynamic potential as 

(4.16) 
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Note that the answer does not depend on the infrared cutoff scale A, and therefore 

this type of diagram is infrared finite and stable. 

In QCD there is however another class of diagrams shown in Fig.4.6 that look 

like Fig.4.5 except that all quark lines are replaced by gluon lines. 

I 3 n-1 

Sticky Glue 

n 

Figure 4.6: n'h order graph, n~ue, causing the death of perturbation theory 

This type of contribution to the thermodynamic potential is unique to· non

Abelian theories because gluons are required to interact with each other. Since 

the three gluon interaction involves a derivative cq~pli;ng, each vertex brings in a · . . •·. . . 

factor of the loop momentum. Proceeding as above; . the infrared behavior of such 

diagrams is then given by 

n~·· - g" ( T I d"p r~ (:, )': -C 
.._,_-,n verttceB 
· s; gluonB 

- { gnT4 
gnT4 ln(T I A) 
gnT4(T 1 A)n/2-8 

for 
for 
for 

n~5 

n=6 
n>6 

(4.17) 

We see explicitly that for orders n ~ 6, the thermodynamic potential diverges as 

the infrared cutoff A --+ 0. It is also true that these diagrams diverge in the high 

frequency limit, but there exists a renormalization theory cure for those divergences. 

The divergences above are due to the singular long wavelength properties of QCD. 
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In the previous subsection we noted to a possible solution to such infrared diver

gence via partial summation of higher order diagrams. The problem above was due 

to divergence of the static gluonpropagator at low momenta as seen· in Eq.(4.14). 

Let us try to sum a Class of diagrams that modify the gluon propagator via the 

Dyson equation 

D(q) = D(q) + D(q)II(q)D(q) :.__ (D-1(q)- JI(q))-1 (4.18) 

which corresponds to summing all "bubble" diagrams of the form 

-
D-~+~.~~ + ••• 

Figure 4. 7: Dressed gluon propagator 

.· where. = II(q) denotes the gluon self energy as shown in Fig.3.3b. 

As shown in Refs.[36]-[44], the lowest order self energy has the property that 

IIoo(O,k -+.0) = m~ """g2T 2 as given by (4.8). Unfortunately, to lowest order the 

spatial part of the self energy, IIi;, vanishes in the static infrared limit. This is why 

we had to assume that mit must b~ at least""" O(g4). 

Lets try to calculate. mit· perturbatively by considering the fourth order self 

energy diagram in Fig.4.8. 

i j 

Figure 4.8: Divergent fourth order gluon self energy .. 

The infrared analysis of that contribution gives 

. . 
. "5 

m~ ·~ rr~t>(o, k-+ 0) .,... g4 (TI d3p) (:2) (p)4 "'g4T2ln(T/.X)--+ In 00 . (4.19) 
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We< see therefore that perturbation theory for the self energy breaks dhwn iat 6rder g4 

· already. Similar considerations show that higher order self energy diagrams diverge 

even faster (T / A)n/2- 2 as a function of the infrared cutoff A. 

Is it possible that by first suinming over all orders and then taking the A ---+ 0 

limit, that a finite ~swer for mM could result? Suppose that mM = CMg2T. Then 

1/p2 is replaced by 1/(p2 + mL) in (4.19). In that case we can send A to zero and 

the nth order self energy becomes for n > 4 

(4.20) 

where an is a computable constant. This is indeed a peculiar result. Because we 

tried to cutoff the low wavelengths at order g 2T, all higher order contributions to 

the self energy reduced to the same order (g4
). Summing all orders we get a self 

consistency equation 

00 

mit= Ci.,g4T 2 =I: l4i(o, o+) = g4T 2 f(CM) (4.21) 
n=4 

where f(x) = a4 ln(1/CMg2
) + E~~6 an/C'J.P-2 is a function that we can only deter

mine after calculating the coefficients an to all orders in perturbation theory. Herein 

lies the rub! Every order of perturbation theory for this problem contributes equally. 

Had nature been kind, and mM ex gT as for the electric mass, then the nth order 

self energy would only be reduced to order gn/2+2 , and thus at sufficiently high tem

peratures only the first few terms in the perturbation expansion would have been 

sufficient. Because in fact mM ex g2T; all orders in perturbation theory are needed 

to determine the proportionality constant. 

Not only does mM ex g2T ruin any attempt to calculate the proportionality con

stant perturbatively, but it also ruins any attempt to calculate the thermodynamic 

quantities perturbatively. If we replace A by mM in Eq.(4.17), then we see that for 

orders n > 6 the infrared sensitivity of the thermodynamic potential reduces all 

higher orders to the same order, g6
• Thus a priori it is not possible to calculate 

within perturbation theory the corrections to the thermodrnamic potential beyond 

47 

. ~ ,, 



. . . 

sixth order. On the positive side, this breakdown of perturbation theory occurs at 

perhaps hlgh enough order that the nonperturbative corrections never amount to · 

much .. H this turns out to be the case, then our picture of an ideal quark-gluon 

plasma would· still hold at high energy densities. Obviously, we must turn to non

perturbative techniques to find out. The rapid development of lattice gauge theory 

holds out the promise that this question may be answered in the near future. 

5. :_ The Lattice World 

In section 3, we started the program· of quantizing QCD by first considering . . 

a finite set of dmpled oscillators defined on a space-time lattice and then taking 

the contiriuuni-limit (3.10). However,. we got into some technical diffi.c_ulties in 

section 3.3, associated with the infinite gauge volume in the continuum limit. With 

the Fa.ddeev-Popov trick, that difficulty was surpassed (3.54) and we embarked on 

perturbation theory. Unfortunately, we found. that perturbation theory for QCD is 

terminally ill beyond some finite order of g due to infrared singularities. To make 

further progress, we must therefore consider nonperturbative techniques. Currently, 

the most promising handle on nonperturbative problems is based on the "brutus 

forcus" techniques of lattice gauge theory. 

The cult of the lattice is, however, enshrouded by special incantations such as 

"plaquettes~, "Polyakov loops", "Euclidean Wilson Action", "scaling window", etc., 

which often create fear in the· hearts of non practitioners of the faith. This section 

offers a layman's tour of this occult. 

,5.1 ·Link Variables and the Wilson Action 

The first step is to go back to the the original definition of path integrals on 

a finite space-time lattice. Let a denote the lattice spacing between the lattice 

sites. The sites are labelled by four integers (nz,n11 ,n11 ,n,.). Consider the finite 

lattice ·with 1 :::; ni :5 Nz and 1 :::; n,. < N,.. Recall that the temperature is related 

to a and N,. by eq.(3.11). At each site of the lattice we assume that there are 
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4 x (N; - 1) oscillators denoted by the glu~n field, A~(xi, r;). The requirement of 

periodic boundaryconditionsimply that A~(xi,rt) = A~(xi,N,.a). 

'H The path integral for the partition function inv~lves then 4 x (N;- 1) x (Nz-

1)3 x (N,. - i) ordinary infinite integrals over the values of A:(xi, r;) at the lattice 

points. Unfortunately though, this definition of the path integral for QCD fails to 

preserve its the most sacred property, gauge invariance. The discretized version 

of F;v is simply not invariant to gauge transformation to all orders in the lattice 

spacing a. 

To preserve gauge invariance to all orders in a, Wilson and Polyakov proposed 

a more sophisticated version of the lattice theory, where instead of integrating over 

the gluon fields at each lattice site, they chose to integrate over SU(Nc) rotation 

matricies associated with the 4 x (Nz- 1)3 x (N,.- 1) links connecting the lattice . 
,' ' 

sites. These new "link" variables are related to the gluon fields by a path ordered 

integral 

I. ( .a AcAc ( A a)) ( .a AcAc ( A a)) 1m 1-z-- Xi+ J.L- · · · 1- z-- Xi+ nJ.L-
n-+oo n 2 ~ n ' n 2 ~ n 

( 
rz;+a~ ). ) = P exp -i lz; . dx 

2
c A~(x) (5.1) 

where Ac/2i are the generators of SU(Nc)· Thus, Ui,~ is an SU(Nc) matrix associated 

with the link on the lattice between xi and xi + jJ,a in the direction jJ,. The inverse 

of Ui,~ is then given by Ui+a~,-~· 

These objects are contructed so that under a gauge transformation, G(x) = 

. exp(iAcfc(x)/2), by which A~ transforms via (3.55) the link matricies transform as 

(5.2) 

The important point is that the transformation property (5.2) of Ui,~ is exact to all 

orders in a, whereas we can define a discretized gauge transformation of A~ from 

(3.55) that is only accurate to a finite order in a. With these new variables it is 

therefore possible to con8truct a lattice theory that has exact gauge invariance. 
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The effective action, S(U), in terms of the link variables must be chosen so that 
. . . : . 

it reduces to the QCD action in the continuum limit, a --+ 0. Since U;.~ are matricies 
' . ·, . . . . 

while S(U) is a number, S must involve traces of products of U's. The simplest 

action that does the job looks rather wierd and unfamiliar: 

(5;3) 

Eq:{s.3) instructs us to sum over the trace of a· product of four rotation matricies 

associated with the four sides of elementary squares (plaquettes) of dimensions ax a 

that can be formed anywhere on the lattice. That Sw (U) is gauge invariant to all 

orders in a follows ~from (5.2) and the cyclic property of traces. By expanding 

the Ui+aP,~ ~ 1 + a(Ac/2i)A~(x; +aD) + O(a2
), and approximating B11A 11(i;) ~ 

(A~(xi'+ai>) -A~(x;))ja, etc., Sw(U) can also be shown to reduce to the continuum 

QCDaction in the a--+ 0 limit. Obviously, the choice of S(U) is not unique since we 

could add terms involving a trace of products of more than four U's that mantains 

local gauge invariance and ~pproximates the continuum action even betterfor finite 

·a. What Wilson found was that Eq.(5.3) happens to be the simplest action that 

does the job. 

·. 5.2 Monte Carlo Method 

With Sw (U) . so defined, the partition function for pure Yang-Mill theory can. 

be cal~ulated ~h a comp,uterhy integrating exp( -Sw (U)) over all possible SU(Nc) 

'\ rotation matricies associated with the links of the lattice. In practice, we want 

to evaluate expect~tion values ~f operators, A(U), that correspond to interesting 

qu~ntiti~s in the continuu~ limit. Such expectation values are given in lattice 

theory by 

(A) = ~/II [dU;,~JA(U)e-Sw(U) , 
. · . links · · · . . • · . 

(5.4) 

with [dU] being the SU(Nc) group measure (for SU(Nc) that measure involves an 

integration over N';- 1 Eule;ian a~gles associat~d with ~very link). The stategy in 
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lattice theory is tb brute force such integrals on a computer using the Monte-Carlo :., 

Metropolis technique. 

In that method a random set of SU(Nc) rotation matricies are assigned to each 

link on the lattice. Each matrix can be defined in terms of N;- 1 angles, 0{,
11

, j = 

1, N;- 1. An entire lattice configuration is then specified in terms of 

(5.5) 

angles, e = {Of,#£}, that specify the )/ /(Nc2
- 1) rotation matricies. For a 103 X 6 

lattice for example, the integral (5.4) involves ,..... 105 ordinary finite range (0, 21r) 

intergals! 

Monte Carlo methods are particularly powerful to handle very high dimensional 

integrals. The idea is to take a random walk in the )/ dimensional space of angles. 

Suppose ~ 9 is a small step taken in a random direction in the compact )/ dim,en

sional angle space spanned by the Oi. If ~S = S(U(E> + ~9)) - S(U(E>)) < 0, 

then the step should be accepted since the random walk is toward regions of higher 

probability (less action). If the ~S > 0, then another random number 0 < ~ < 1 is 

thrown and the step is accepted or rejected according to whether e-tl.s > ~or< ~· 

Continuing this random walk Ns steps until your computer budget is spent, a se

quence.ofpoints 9 01 is generated such that in the Ns-+ oo limit the U(Sa) become 

distributed according to the probability distribution e-s(U) /Z. With this ensemble 

of configurations, averages of interesting quantities can thus be approximated. by 

l 
(A) ~ N L A(U(9 01 )) • 

$ 01 

(5.6) . 

The accuracy of this approximation increases ex 1/ JNs independent of the dimen

sion of the integral. Herein lies the power of this 'brutus fore us' metho.d. The 

disadvantage is obviosly the need for large computers and large computer budgets. 

From the physics point of view a month of CRAY running. time furthermore pro

vides no insight into why the answer came out the way it did. Lattice workers must 

proceed as experimentalists measuring a variety of variables on.the lattice to try to 

formulate an overall picture of what the important .dergrees of freedom and physics · 
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may be. At this early stage, however, the main goal is to determine a few crucial 

answers to such questions as whether there is a deconfiri.ement temperature and 

what is the nature of the effective quark-atiquark potential in QCD. The why's can 

come later. 

5.3 Observables 

To determi11e whether there is a deconfinement transition in QCD, the quantity 

that is most fequently measured is the expectation value of the thermal Wilson line 

or Polyakov loop, (L). This quantity measures the change in the free energy of the 

system if a static (infinitely heavy) quark is put into the system at some point x0 • 

.An external quark c~ be put into the system by applying[52] the quark creation 

operator, 1/J!(x0) to an·arbitrary gluon configuration, Ia). The fre~ energy of that 

isolated quark averaged over its Nc possible colors is 

(5.7) 

The Hamiltonian is modified by the presence of a static quark by the addition of 

(5.8) 

In. order to express e-/JFq in terms of a path integral we proceed as before using 

(3.3) and inserting complete sets ofstates. We encounter matrix elements as 

(5.9) 

where !3/ Nr = a is the lattice spacing. The expression in the square brackets almost 

looks like the link matrix Uzo,f'· By replacing the Minkowski four vector field by its 

Euclidean coilterpart A0 ·--+ iA0 and rescaling the fields by g, the expression· in the 

brackets does become the link matrix. We end up then with. the following formula 
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.. ~' ' 

for the free energy of a static quark[52]: 
I 

e-PFq=(L(xo)} 

=Z-1 I II dAe-8YM'(A)tr {P exp [-I! drgAa Ag(xo,r)]} 

' z-1 I II due-SwW>tr {P IIN.,-l u .. (r =ria)} W · n=1 zo,T ' 

(5.10) 

where L(x0 ), as given by the trace over color indices of the product of U's in the 

timelike direction, is called the thermal Wilson line or Polyakov loop. In tedns of 

L(xi), the free energy of a collection of static quarks and antiquarks can similarly 

be shown to be given by 

(5.11) 

To test for confinement, we need only check that the free energy of an isolated 

quark diverges, i.e., (L) --+ 0. The deconfinement transition in QCD at a critical 

temperature, Tc, would show up as a sudden jump of (L) from 0 to some finite value. 

Another way to test for confinement would be to look for a linearly increasing quark

antiquark potential through -T ln(L(O)L+(x)) ~ax. 

A quantity of great interest is the energy density, 

-18lnZ 1. as 
E = v---aa = N 3N. a3 (aa) fJ z .,. .,. 

(5.12). 

which involves the expectation value of the variation of the action with respect to 

variation in the lattice scale in the temperature direction. In practice this quan

tity involves the difference between the expectation value of plaquettes oriented in 

the space dimensions and those with two of the sides oriented in the temperature 

direction[53]. Because this quantity involves the difference of two large numbers, 

reliable numbers require especially large computer runs. In addition, the divergent 

vacuum energy density has to subtracted. Finally, a correction on the order of a 

factor of two has to be estimated to compensate for finite size effects on currently ac

cessible lattices. Current numerical results therefore entail large systematic errors. 

Nevertheless, those results look rather encouraging. 
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5.4 QCD without Quarks 

For QCD without dynamical quarks, a general consenses is slowly beginning to 

emerge. In order to better appreciate the significance of those results, we must first 

discuss how the temperature is fix~d. Suppose that we :want to calculate (L(O)) on 

aN: x N.,. lattice at a temperature T = 100 MeV. The temperature is related to 

the lattice spacing by (3.11). But the computer only knows abou~ N.,. and t~e value 

of the bare coupling 9 in the action. QCD has no intrinsic scale. 
' . . ' . . : 

Recall frolll ~ection 4 that a scale only arises because of the necessity of renor-
. . . " . 

malization. The renormalized coupling 9(a) must then depend on the seal~ at which . 

the coupling is to be evaluated. That dependence is given by the renormalization 

group equation 

- . 3 6 
d9jdlna = .0(9) ~ .B19 + .B29 + · · · (5.13) 

where the co.efficients ,B; are computed from the i-loop contributions to the renor

malized effective coupling. In section 4, we indicated how the one loop corrections 

to the gluon propagator and vertex functions modify the effective coupling. Renor

malization group theory shows how to include systematically hi~her order quantum 

fluctuations. For SU(3), the coefficients were found to be ,B1 = {33- 2N1)j(2411"2) 

and .02 = (102- 38N1)/3)/(25611")4 •. The solution of (5.13) in the weak coupling 

limit 9( a) -+ 0 is clearly 

. . . . 

92 (a) = F(a.AL) ~ (.B1 ln(1/aAL)2 + .B2/.Bdnln(1/aAL) 2 + · · ·)-1 
, (5.14) 

where .AL is an integration constant. Because 9 is dimensionless, a momentum scale 
. . 

.AL had to enter so that 9 becomes a function of the dimensionless quantity aAL. 

The value of .AL is not the same. as the value of .A that results from renormalizing . 

the theory via the Pauli-Villars scheme in section 4. Estimates for .AL ~ A/83;5 

typically give a value -few MeV. Eq.(5.14) exhibits the characteristic logarithmic 

decrease of g as the distance scale i~ reduced. 

We can use (5.14) to estimate the ratio of T to AL as a function of g. Since 
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.Ta = 1/N., a.ild 

(5.15) 

Therefore, T / A.L is approximately given by 

(5.16) 

Eqs.(5.15,5.16) show how the coupling constant changes the lattice spacing, a, and. 

the temperature, T, in units of a scale, A£. 

Instead of expressing physical quantities in terms of the unkown scale AL, we 

could compute ratios of physical quantities. This can be done because all physi

cal quantities, M(a,g), must approach a value independent of the artificial lattice 

spacing and gas a--+ 0. In the continuum limit we must have .. then(33] 

(5.17) 

H M has dimensions of mass,. then we are able to write M(a,g) = f(g)fa. The 

solution of (5.17) is then 

(5.18) 

where F-1(g) is the same function as in (5.15,5.16), and "'M is a nonperturbative 

constant. Therefore, M scales with g exactly as a-1 does if we are close to the 

continuum limit. The range of coupling constants, g, for which such scaling ho'lds 

is called the "scaling window". Calculations with g in that range gaurantee that 

ratios of masses M / M' = "'M / K-M' do not depend on a, AL, or g. 

In practice, we only know the approximate form of F-1 (g) in the asymptotic 

limit g--+ 0. That is sufficient though since (5.17) only holds in that limit. In that 

asymptotic limit, the two loop approximation leading to (5.15) should be accurate 

enough. We therefore see that ratios of physical quantities reflect true continuum· 

physics only if we calculate those quantities with a g in the asymptotic scaling 

window: . For a finite fixed lattiCe, N 3 X N, we. can on:ly hope that asymptotic 
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scaling occurs for a range bf g such that Nza is not too small and T I A is in ~n 

interesting range of temperatures 

For iliustration, consider a lattic~ calculation for pure SU(3)Yang-Mills (N, = 0) 

on a 88 x 3 lattice[53). ~ this case N,. = 3, {31 ~ 0.07, and {32 ~ 0.004. :A 

calculation with 6lg2 = 5.5531 corresponds to a lattice spacing, a~ 0.004A,L 1
, and 

a temperature, T ~ 86AL~ Assuming that AL I"<J 2 MeV, we would be working at 

temperature T ""'"' 172 MeV and on a lattice of spatial size Nza ""'"' 3.2 fm. H we · 

were lucky enough to find that this g happened to fall into the asymptotic scaling 

window, then indeed we would be in an interesting region from the point of view of 

the expected deconfineinent transition. 

The numerical results of the Bielefeld gtoup[53J for this 88 x 3 lattice are shown 

in Fig.5.1. 

·----..~---:-~-----:---...,.----A 

~ ~ ~ -----~---- B 

o~-----1'-'l~or----::b:--~----:-~6:-- T I 11 L 
86 1 200 300 

• I I I I I I 

'eo 82 84 86 88 90 

T h1L 

XBL 857-2988 

Figure 5.1: Lattice gauge calculations[53) of the Wilson. line andenergy density on 
an 88 x 3 lattice for SU(3) without quarks as a function of temperature assuming 
asymptotic scaling~ 

In plotting the quantities as ·a function of T I AL instead of g '·it has been as-
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sumed that asymptotic scaling holds for .the corresponding values of g. While new 

results[55] show that asymptotic scaling does not hold for such small lattices with 

g _::: 1, the above results are nevertheless qualitatively interesting. 

The numerical results for the expectation value of the Wilson line show a strick

ing hysteresis curve. As the temperature is increased the free energy of an isolated 

static quark remains infinite, (L) ~ 0, until a critical temperature Tc ~ 86AL is 

reached. Then very suddenly the free energy becomes finite indicating a transition 

into a phase where color is no longer confined. However, if we reverse the pro

ceedure and cool the system, then instead of following the same path, the quark 

remains unconfined until. a lower temperature, r: ~ 82AL, is reached. Between 

82 ~ T / AL ~ 87, there are two metastable states of the system: one that confines 

and the other that does not. This indicates that the deconfinement transition at 

least without dynamical quarks is a strong first order transition. Further evidence 

for this is seen in the energy density plot. At the critical temperature, there is 

a sharp discontinuity of l(T). That discontinuity is presumably the latent heat 

per unit volume required to melt the nonperturbative vacuum that confines color. 

Above the critical temperature, l/T4
, becomes constant with a value close to the 

Stefan-Boltzmann value A (2.17) appropriate for Nc = 3, N 1 = 0. The value B 

includes an estimate for the finite size color neutrality correction. Calculations by 

other groups[54] on similar size lattices give similar results. 

5.5 The Continuum Limit 

Now nonsider in more detail how Tc(a,g)/AL, scales with g. Fig.5.2 shows the 

scaling property of the critical temprature as reported in Ref.[55]. 

The solid curve shows how aTc(N",g) = 1/N" must depend on g if the two loop 

asymptotic scaling holds. Note that while the results for small lattices, 2 ~ N" ~ 4 

seem to obey scaling, larger lattice results, with 6 ~ N" ~ 10 do not. Therefore 

the miracle of precocious scaling at rather large couplings, g > 1, appears to be a 

fluke. Remember that in the continuum limit, we expect g -+ 0. This calculation 
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Figure 5.2: Scaling of the critical temperature[55]. 

therefore .calls into question the relevance of numerical . studies on small lattices 

to continuum physics. Ther~ seems to be no doubt about the existence of a first 

order .transition in l~ttice QCD ,without dynamical quarks, but without scaling we 

have no way of translating the lattice spacing or Tc. into physical units. The latest 

results[55] suggest that asymptotic two loop scaling may hold for 6/g2 .?: 7. In that 

cas~, a.~ 0.0008Ai1 and T.?: l300AL/N". This means that the same temperature 

and spatial volume as was assumed to be studied on the smaller83 x 3 lattice now 

requires an enourmous 323 x 15 lattice!. Clearly eve11, a_ small delay of the ons~t of 

asymptotic scaling hurts very much. 

Until very large .lattice become more. feasible, there is a. less rigorous way to 
. . . . . 

proceed. Even though there is no guarantee that ratios of physical quantities should 

be independent of g outside the asymptotic scaling window, we may luck out anyway. 
-

Consider the ratio of the ~ritical temperature to the square root of the string tension. 

·. · ... Fig:5.3 summarizes the available 'data' on such a comparison[6]. 
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Figure 5.3: Comparison of vfu and Tc in the nonscaling region. 

The string tension is obtained by studying the correlation function (L(O)Lt (r)) ex: 

. e-fJur. The square root of the zero temperature string tension, which empirically . 

is vfu ~ 400 Mev, is compared to the critical temperature at which e(T) makes a 

jump, for different .. values of the coupling. The large open diamond at 6/g2 ~ 6.1. 

corresponds to the recently published[55] value of Tc on a 113 x 10 lattice. These 

results suggest that the ratio Tc/ vfu may infact be roughly independent of g even 

in this nonscaling region with. 
1 

T. ""'~u c 2 (5.19) 

It is interesting to note that numerical studies[56] of SU(Nc ~ 3) also give a similar 
. . 

estimate. It should be kept in mind is that none of these calculations include effects 

of dynamical quarks. 
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.· ~5.6 QCD with quarks 

We come finally to the most challenging frontier of the lattice world: the inclu

sion of dynamical quarks. In the past few years, there has been very rapid progress 

in this area. However, the dust has not even begun to settle. The inclusion of dy

namical quarks requires us to calculate the treacherous fermion determinant (3.64). 

The problem is that determinants of enormous dimensioned matricies are very dif

ficult to brute force on a computer. 

The Euclidean continuum quark action (see (3.41)) for finite T and p, is, 

s,(i/J, m):. fop dr 1 d3xi/l(i'"Y~ f)v- iwy~- m)t/J , (5.20) 

where these Euclidean '"'ft = ho, '"'ff = '"Yi· To dicretize this action while preseving 

gauge invariance to all orders in the lattice spacing requires the use of link variables 

again. An effective action that reduces to (3.28) and is gauge invariant is given 

by[57J 

81 = L i/Jn(1- KM)nmtPm , 
sites n,m 

where M is the matrix connecting adjacent sites . 

3 

Mnm = L[(1- i'"'f~)Unm6n,m-v + (1 + i'"'f~)U!m6n,m+v] 
v=l 

l".a(1 · E)U. ~ -"'a(1 · E)ut ~ +e -''"Yo nmVn,m-f' + e + J'"'fo nmvn,m+f' 

(5.21) 

(5.22) 

where t/Jn is the spinor Grassmann ·field at site n, Unm = Un m-ii is the link matrix 
' 

between sites n, m, and the parameter K is relate·d to the quark mass approximately 

as K ~ 1/8(1 ~ ma/4). The way in which the chemical potential p, ent~rs is not 

unique, and is chosen so as to cancel a quadratic divergence in the energy density 

at T = 0 for finite p,. See additional discussion in Ref.[ll]. 

Because the lattice action is still quadratic in the quark fields, the integral over 

them changes (5.4) into 
. . . 

1/ (A)= Z IT [dUi,I"]A(U){det(1- KM(U))}Nie-Sw(U) , 
links 

(5.23) 
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The effect of dynamiCal quarks is thus the introduction of a determinant of a matrix 

with dimensions 4 x (Nz- 1)3 x (N,.- 1), which even for very small lattices is too 

big to handle numerically . 

. The first attempts to include some effects from dynamical quarks involved the 

so called hopping parameter expansion[53]: 

(5.24) 

In Ref.[57] the approximation of keeping only the lowest contributing order (N = 3) 

in the expansion and setting the phase of the complex determinant equal to zero led 

to the numerical results shown in Fig.5.4 for the critical temperature as a function 

of chemical potential. This is the first attempt to estimate the phase diagram of 

quark matter at finite baryon densities nonperturbatively. 

The scale A~) is the lattice parameter relevant for two quark flavors. Asymptotic 

scaling has been assumed on this 83 x 3 lattice. Of course, it is at present impos

sible to estimate the uncertainty in these numbers due to the many uncontrolled 

approximations. Nevertheless, from the phenomenological point of view these re

sults reinforce our prejudice that there should be a deconfinement transition at high 

baryon densitie5·in addition to high temperatures. Obviously, these calculations will 

have to be greatly improved before we can be sure though. 

Another technique that ·has been applied to calculate the fermion determinant 

is called the pseudofermion method[58]. That is a Monte-Carlo method based on 

(5.25) 

Thus one has to perform a Monte-Carlo calculation. within a Monte-Carlo calcu

lation in terms of' an artificial complex scalar field, c/>. The primary disadvantage 

of this metho.d is the slow convergence of the Monte-Carlo method requires very 

long runs in order that accurate results are o~tained. Furthermore, this technique 

is limited to zero chemical potentials so that the fermion determinant. is real. 
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Figure 5.4: Very prelimiriary phase diagram from QCD lattice calculations[57] 
marking the transition form hadronic matter to a quark.,.gluon plasma . 

. Finally, we mention anov~l methods that looks promising at the present. That is·· 

the so called microcanonical method[59]. The basic idea is to calculate expectation 

values of quantities using a microcanonical rather than canonical ensemble. For 

illustration consider the thermodynamic~ of a syste~ with ~n acti~n S ( Q; Q). The 

canonical expectation value of an operator A is of the form 

(A)c = ; J [)Q A(Q)e-s(Q,Q) 
. c . . 

(5.26) 

The factor fi:- 8 plays the role of the Boltzmann factor. We could also consider a 

microcanonical ensemble ·average via 

(A)M z~ J DQDP A(Q)li(E- H(Q, P))., (5.27) 
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where H is the Hamiltonian and E is some fixed energy. Statistical mechaniCs 

assures us that in the infinite volume limit, these two averages should be the same 

if E = JI1T /2 + (S), with J11 corresponding to the total number of degrees of 

freedom. 

In (5.27) every configuration ( Q, P) with energy E is given equal a priori prob

ability in the ensemble. The final step is to invoke the ergodic hypothesis, namely 

that the microcanonical ensemble is equivalent to a long time average 

lim (A)c = (A)M = lim! r dt'A(Q(t')) , 
V --+oo t--+oo t Jo (5.28) 

where the 'time' evolution of Q(t),P(t) obeys the Hamilton equations dQfdt = 

aHjaP and dPfdt = -aHjaQ. The time here is only some fictitious parameter 

that allows us to sample all accessible configurations by following these classical 

equations of motion. We have to assume that the dynamics of our system is chaotic 
. . 

so that we are not locked up in some periodic type orbit. 

Armed with these heavy duty theorems in 'statistical mechanics, the strategy 

in applications to QCD is to ·invent an artifiCial classical system that evolves in 

a fifth .. 'time' dimension in a way that will ·generate· expectation values identical 

to the canonical method. Obvionsly, there is r~om for a· great deal of technical 

gymnastics here in" the choice of the Hamiltonian for that artificial system. Iric 

Ref.[59] one choice was adopted, .but the technical-gymnastics. are ·too streimous 

to record here~ The classi~al equations obtained were solved numerically. to obtciin 

a path in configuration space that is hoped to samples a large enough area <)f the 

available phase space. Time averages (5.28) are then computed. Fig.5.5 summarizes 

their results. 

The calculation was done mi a 83 x 4 lattice for four quark flavors. Asymptotic 

scaling was assumed. We see that the Wilson line ·still exhibits a sharp discon

tinuity at 6/g2 ~· 5.1 corresponding to T I A~) ~ 280 that is also reflected in the 

energy density.' Furthermore, the quantity ( i/Jf/J) ~ that is the order parameter for 

chiral symmetry decreases rapidly to zero at the same ·point. These· results suggest 
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Figure 5.5: Energy density, Wilson line, and (fbt/J} as a function of temperature at. 
zero chemical potential for SU(3) including dynamical quarks via the microcanonical 
method[59]. . 

then that the first order character of the ph~e transition may not be drastically al

, tered by the inclusion of dynamical quarks. Also it appears that the deconfinement 

transition is closely associated with chiral symmetry restoration. We must. however 

await calcaulations on much bigger la~tices to confirm these finding. 

We conclude that current numerical results are consistent with our prejudices 

concerning the existence of a qualitative change of the thermodynamic properties of 

QCD matter at temperatures and chemical potentials ,..,. few hundered MeV. With 

the very rapid technical progress today, we can look forward to increasingly reliable 

'data' in the near future. 

6. ~-' Final remarks 

These. lectures could only provide a brief introduction into the many novel the-. . 

oretical problems ~d tecl1~iques in QCD thermodynamics. Nevertheless, I hope to 

have covered enough material ~o enable nonexperts to follow this rapidly evolving 

area in the .literature. _We ,have g()ne -into some detail in showh1g. the limitations 

of perturbative methods. We have seen that the color magnetic sector of QCD 
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could spoil our simple picture of the quark-gluon plasma. We have seen how lattice 

theory can in principle provide insight into the interesting nonperturbative effects. 

Nevertheless, we also saw that the connection between the lattice world and the 

continuum real world is tenuous at present because of limited computing power. 

While there are as yet no firm final answers, the tentative results thusfar look very 

promising. Clearly the most exciting quasi "prediction" is the occurrence of a de-

confinement transtion at energy densities roughly one order of magnitude above the 

ground state energy of nuclear matter. The details of that transition are not yet 

settled, but it appears that thermodynamic quantities may change rather suddenly 

as the large number of quark-gluon degrees of freedom become liberated. 

From the phenomenological point of view, these tentative results are very ex

citing because current estimates[4][5][6] suggest that such energy densities could be 

easily achieved with collisions of heavy nuclei at relatively ~low" (~ 10 AGe V) arid 

also at much higher (~ 1 ATeV) energies. At the lo~er energies, heavy nuclei are 

expected to stop each other[60], and therefore high eri~rgy densities are expected 

to be accompanied by high baryon densities. At the high energies, low baryon den

sity but high energy density matter is expecte~ to be produced in the midrapidity 

regions. Therefore, it may be possible to investigate experimentally the deconfine.

ment transition in Fig.SA over a wide temperature and density domain with nuclear 

collisions. Thus the study of QCD thermodynamics need not be limited to gedanken 

or digital experimentation. 

Of course, there remains the formidable challenge of relating experimental ob

servables such as inclusive cross sections to thermodynamic quantities such as the 

equation of state. In the BEVALAC area we saw in section 2 that after a decade 

of experimental and theoretical work on dynamical reaction theories, tentative es

timates for the nuclear equation of state are finally emerging. In the search for 

the quark-gluon plasma much more sophisticated dynamical theories await devel

opment. Those theories must be able to describe nonequilibrium effects· and the 

hadronization process in addition to hydrodynamic phenomena that may result if 

local equilibrium is a.Chieved. The ·lattice world on the computer is at best rele.-
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vant to the nuclear collision world· in the lab only for that phase of the collision 

after local equilibrium is achieved and before the system disintegrates. In order to 

assess whether local equilibrium can be attained at all, transport properties[39] of 

the QGP have to be known also. These quantities can only be obtained rigorously 

only by studying real time,correlation functions in the QGP- a task out of reach at 

present. Clearly, there will be no shortage of fascinating problems in this frontier 

area of physics for quite some time. 
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