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INTRODUCTION TO QCD THERMODYNAMICS
AND THE QUARK-GLUON PLASMA

Miklos Gyulassy

. Nuclear Science Division, Mailstop 70A-3307
. Lawrence Befkeley Laboratory, Berkeley CA 94720 -

Aibs_t’ract:

These’lectures: review recent theoretical work suggesting that hadronic -
‘matter may dissolve into a weakly inferacting qua.rk’-g‘lu'on' plasma phase
at energy densities only one order of magnitude above the ground state
energy density of nuclei. Basic te{:hriiqués of field theory used for calcu-

_ | lating thermodynamic properties of Quantum Chromodynamics (QCD)
are introduced. Functional methods are appliéd to develop QCD per-
turbation theory at finite -tefnperaturés' and chemical pibtenti‘als. The. .
relevance of asymptotic freedom at high T,ﬁ is motivated. We then
confront>the niairi'skeletoxi in the QCD ‘close't,'nam'ely, the nonﬁer_tur—

~ bative color magnetic sector. Techniques of lattice gauge theories to

W

get beyond the limitations of pertﬁi‘b’aﬁbn theory are then discussed. -

Recent numerical results are critically assessed.

[Keywordsf QCD, Ther_modynamics, Perturbation Theory, Lattice Theory,

Quark-GluOn Plasma]
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1. Introduction

The discovery of the neutron fifty years ago immediately led to speculations that
a new form of matter, neutron stars, could exist in nature. Subsequent observations
.of pulsars confirmed their existence although our understanding of their structure is
- still far from complete. More recently. the discovery of the quark structure of hadrons
has fueled speculations that an even more novel form of matter may ex'rst called the
qu@rklgluon_plasma (QGP). Experiments have already been approved at CERN and
BN

thdt_.‘-’.e_.)‘rperimental program is primarily a nuclear science cornmunity initiative, it
has become important for nuclear physicists to acquire expertise in areas that used
to belong exclusively to particle physics. In particular, we need to understand better
the standard modelof strong interactions, Quantum Chromodynamics QCD. In two
‘-"major .areas of nuclea.r experimentation, with electron and nuclear beams, the focus
of modern nuclear physics has turned to the study of the subhadronic world in a
many b_ody context. Since_ QCD may be the fundamental theory underlying nuclear
and ha.dronicphenOmena, it :1s obviously nvorthwhile for nuclear physicists to develop
a deeper appreclatlon of its many subtleties. In these lectures we concentrate on
some of the recent developments in the area of QCD thermodyna.mlcs

There exlsts many excellent text books and review articles on this subject,
.a.nd the senous student should proceed d1rect1y to the or1g1nal ‘sources listed in
the reference hst A good place to start is with the reviews in recent conference
proceedmgs_[l_]-[f?]. Refs.[8]-[11] provide more detailed 1ntroduct10ns. The goal of
these lectures is .to introduce nonexperts to the theoretical techniques.used in this

‘area and to point out some of the key unresolved problems. There are many subtle

aspects of QCD thermodynamics to watch out for, and it is easy to be overiy naive. -

After all we are dealing here with a theory that is supposed to imprison permanently

its constituents (quarks and gluons). Therefore, analogies with more familiar many

- body systems rna.y be rnisleading.

At first sight QCD thermodynamicsv looks rather simple because of a property

2
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called asymptotic freedom. This means that the effective coupling, a.s 1(¢*) between
quarks a.nd gluons vanishes at véry large momentum tranfers or, equivalently, at
short distances; This prdperty sug.gests.that at extreme temperatures and/or den-
sities, where the average distance between quarks and gluons is small, the system
shoul&'beha,ve as a simple Stefan-Boltzmann gé.s. However, QCD is devious because
even though the coupling vanishes, the singular infrared properties of the theory
prevents a rigorous application 6f perturbation theory. The problem is that large
distance or small momentum transfer phenomena must necessarily involve nonper-
turbative effects. However, as we shall see, nonperturbative calculations suggest
that such effects may not disturb too much the simple picture suggested by per-
turbation theory. Therefore, there is strong theoretical prejudice in favor of the
existence of the quark-gluon plasma phase of matter at high energy densities. '
These lectures are organized as follows: Section 2 provides an introduction to
the physics of dense nuclear matter and .the motivation for studying QCD. The
cut and paste method. is. used to guess what the equation of state of high energy
density matter might look like. Section 3 introduces basic field theoretic techniques -
to beginners. Functional methods to compute the partition function are “derived”.
Wé show how Feynman rules naturally emerge from such methods. A brief intro-
duction to Grassmann techniques leads us to appreciate fermion determinants. The -
special problem of quantizing gauge theories such as QCD is treated by introducing
the Fadeev-Popov trick. Finally the Feynman rules for computing thermodynamic
quantities in QCD are summaﬁzed and the lowest order results presented. Section
4 deals with the topic of asymptotic freedom and its relevance at high temperatures
and/or densities. Debye screening of color electric fields and the lack of screen-
ing"of color magnetic ﬁglds is discussed. In particular, we show that the absense. -
of perturbative color magnetic mass implies that QCD perturbation theory suffers
from a terminal disease associated with uncontrolled infrared singularities. This
leads us in section 5 to discuss nonperturbative metﬁods_of lattice gauge theory. To
preserve gauge invariance on finite lattices, we change of variables from gluon fields

to link matricies. We introduce the weird and unfamiliar lattice world of Wilson
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actions, plaquettes, and Polyakov loops. The Metropolis Monte Carlo algorithm ie
~ described which is used for numeric_’al computatibn of QCD thermodynamics. The
| relevance of lattice theory for' continuum physics is then addressed, and the elusive
asymptotic scaling window is introduced. Finally recent attempts to include quark
degrees of freedom are noted. We conclu_de these lectures on QCD thermodynemics
with a better understanding of some of the outstanding theoretical issues remaining
to be solved and with a reinforced belief that the transition from the hadronic to
| quark worlds probably will end up pretty much as we expect on phenomenological

- grounds.

2 Phenomenology of Hadronic and Quark Mat-
ter ‘ ‘

2.1 The Hadronic World

‘A current view[8] of the vacuum is that it is cluttered with condensates and field
lﬂu_ctuations that are responsible_for the confinement of quarks and gluons to color
neutral bags of radiue Ry ~ 0.8 Fm. We live in a nonperturbative vrorld where
- the effective interactions of those bags or. hadrons are strong and short range. All
‘we know about the properties of btilk matter formed out of ‘hadronic constituents
corn_es‘from ,ntrclear physics. However; nuclear m_atter saturates at a unique baryon
density, po ~ 0.145 Fm™®. We know only that the energy per nucleon, W (p,T), has a
mininium at p = pg at zero temperature (W(po,0) = —16 MeV), and that the energy
| '_'density of the grourrd state is € = €(po,0) = po(mn + W (po,0)) ~ 0.134 GeV/Fm®.
The curvature or incompressibility constant as determined from giant momonpole
resonances is estlmated to be[12] Ko =995 62W(p,0) /8p® ~ 210 £ 30 MeV at po.

- Recent heavy ion exper1ments[13][15] at the BEVALAC in LBL are beglnnmg to
extend our knowledge of W (p,T) to hlgher den51t1es and temperatures using nuclear
collisions i in the energy range Ej,, ~ 1 AGeV. Fig.2.1 shows the zero temperature
equation of state, W(p,0), deduced from studying the energy dependence of the
pion multiplicity produced in nuclear collisions[13][14][16].

4
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. Figure 2.1: Enel‘g’y per nucleon at T=0 at h_igh.densitie's:.' "E'mpirical[1'3][16] (shaded.
region) from nuclear collision data is compared to theoretical calculations[17][18] .

A modern nuclear matter va.na,tlonal calculatlon[17] is 1nd1ca.ted by the curve
. | labeled FP A non-hnear mean ﬁeld theory calculation(18] is 1nd1cated by curve B.
The shaded region is the emplrxcal equatlon of state deduced by Stock et al[13] .
including several corrections[16|. It appears that the nuclear me.tter equation of
state could bé much stiffer at densities ~ 2 — 4p, than expected‘froni convehtional
nuclear theory[17] Of course many expenmental and theoretical questlons about»
the prec1se connectlon between the pion ylelds and the equation of state remam to
be resolved[16]. A very promising new development[lgv] has been the application .Qf |
the Vlasdv-Uehling-Uhlerlbeck equation.to the analysis of pion .and collective flow

data.  As new high preeisionv data on heavy nuclear reactions become available,
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such analyses will make it possible to extract much more reliable consti'aints on the

nuclear equation of state up to moderate densities and temperatures.

On the theoretical side, a variety of exotic phases at higher densities and/or
temperatures have been proposed. These include density isomers|[20], pion conden-
sation[21], strange quark drops|22], and skyrmion lattices|[23]. Thusfar there is no
experirﬁental evidence for or against any such novel states of nuclear matter. The
possibilities remain so numerous because the few known properties of nuclear matter
near sa.tura,tioﬁ density are not sufficient to constrain the effective models used in

hadronic matter studies at high densities[18]. An artistic summary by Siemens|24]
| of the tempvera.ture and density domains where different phases of hadronic matter

could exist is shown in Fig.2.2.
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Figure 2.2: Theoretical phase diagram of nuclear matter (artist P. Siemens[24])

6



‘ The continuing search for signatures of new phases of nuclear matter will remain

a central part of the experimental program with nuclear collisions.
Whether exotic phases of ;hadr_'om'c matter exist er not, hadron phenomenology
alrea.d& points to something neculia.r on the horizon at sufficiently high densities
and/er temperatures. The density of hadronic states in’v free space is consistent

with a.nexponential growth according to the Hagedorn spectrum|25]
p(m) ~ m2e™To | o (2.1)

where a ~ 5/2 and Tp ~ m, ~ 140 MeV. If the finite sizes of hadrons could be -
neglected, then this spectrum would lead to the following energy density‘ of ha;drenic :
matter at temperature T':
/ dmp(m '"‘/T (Zf)sm (m +_gT 40 . (2.2)
Obtrionély, ¢ and also the partition function Z = tr e“--i’i/r_ have 'in this case an
essentiel singularity at a finite ..Vcritica.l temperature T = To However as long as
a < 7/2 that s1ngulanty would only occur at 1nﬁmte energy density and so would
'be of no practical concern The surprlse comes when the ﬁmte sizes of ha.drons are
taken 1nto account. | |
Requlrlng a covariant thermodyna.mlc formahsm, Hagedorn and Rafelski[25] pos-
tulated that the volume of a hadron should increase proportmnal to its mass. As:
that result also follows from the MIT Bag Model[26], they chose the proportionality
constant such that | | |

» m
V(m) =E )

(2.3)
. where B ~ 200 GeV/Fm® is the vacuum energy density. As emphasized by
Shuryak[8], this B should be considera.bly_ larger than the'j)henomenologica] Bag
constant used to fit hadronic masses. With Eq.(2.3) the energy per unit volume in
the excluded volume approximation becomes[25] |
e(T)

eB( ) m , ' (24) »
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where ey (T) is given by the point particle expression (2.2). The essential singularity

occurs now at finite energy density . A
" ep(Ty) = 4B ~ 1 GeV/Fm® . (2.5)

This suggests the end of the hadronic world and the breakdown of hadronlc matter
theory is in fact just around the corner at an energy density“only one order of
magnitude above the energy densit&, €0, in ground state nuclei.

| The above limitation on the hadronic world isa simple consequence of geometry.
At low densities and/ or temperatures’ hadrons have plenty of elbow room. But when

the hadromc densxty approches the dens1ty of matter W1th1n a typical hadron,
Py = (47rR§,/3)—1. '.'7”'-:3— 00 ,  (2.6)

then the hadrons must overlap a.nd it is no longer sensible to continue to describe

- the propertles of matter in terms of degrees of freedom approprlate for 1solated '

hadrons Close packlng of hadrons can be a,ccompllshed elther by lncreasrng the

ba.ryon densrty or creatmg new ones to ﬁll the space between old ones by ra1s1ng

the temperature “The critical energy densrty correspondlng to close pa.ckmg 1s
~ mypg ~ 3 — 760, 51m1lar to to Hagedorns estimate in (2 5). Only w1th the

advent of QCD can we begln to guess what are the propertles of matter at higher

densrtles

Before proceedlng to QCD. though we note that for phenomenologlcal consider-

ations a convement parameterization of the hadronic matter energy density, ¢, (1),
and pressure, ps (T) at zero baryon den51ty and finite ternpera.tures is ngen by[27]
28 - o
en(T) = en(T/To)+5" (2
p(T) = cgen(T) , (2-8)

4 where ¢y is the speed of sound in hadronic matter.
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- 2.2 The Quark World

In order to guess what lies beyond the hadronic world we turn to a model of the

subhadronic world. The most promising candidate for the theory of subhadronic

 phenomena is QCD. In this section we review the motivation and “derivation” of

QCD.

Part of the motivation for QCD arose out of the need to understand the existence
of spin 3/2 baryons aud_ the existence of weakly interacting point 1ike pa.rtons inside
hadrons. The great success of t‘hevSU(Nﬂa.,o, = 3) classification of mesons and
baryons in terms of ¢g and q;]q bound states presented a fundumental dilema with
regard to the Pauli principle. The three quarks inthe 2(Ts1s1s),A *(Tutu?
u),andA™(TdTd 1 d) spm 3 / 2 baryons have to be in a completely symmetric state
under mterchange of spin or spatlal coordinates. The simplest way to reconcxle with
the Pauh principle was to postula.te the existence of a new quantum number, color,
and to assume that the color wavefunctlon of three quarks . must be completely :
antisymmetric. This required the existence of thljee" colors (say blue, green, and
red). Thus the quark wavefunctions must ca‘rry;(c’jol'lbr(c) in addition to spinot'(s)
and flavor(f) indices, v, y.(z). The spinor iudieeE' tifenfOrni- a.ccoi‘_dihg to '—thebspin'
1/2 repesentation of the Lorentz group. Tﬁelﬂavor indices tr'an‘sfe'rm a_ceording
to the .fundamental representation of the SU(Nyizvor) group. The guess was that
the color indices transform according to the fundameutal representation of a new
SU(Ncotor) group. That solved the Pauli problem, but the proBlem of dynamics
remained unanswered. o ’

It is at this point that the ideas of Yang and Mills on local gauge invariance

came in. Suppose that the quark world is invariant to a symmetry group G such as

'SU(N.). This means that the Lagrangian £(3, ) of the quark world is invariant

under an infinitesmal transformation

- (1+ %fa a)ats | | : (2.9)

where A,/ (2z) are the generators of the Lie group G in the fundamental represen- |

tation, and e, are small rotation angles. For SU(2) the Ay, 0 =1,2,3, are the 2 x 2 -

9



' Pauli maticies, while for SU(3) Ae, @ = 1,.- *+,8, are the 3 x 3 Gell-Mann matricies.

The group is completely speclﬁed by structure constants, fa,g.,, that deﬁne how the |

generators commute, [Ay, Ag] = 24 faﬁ»’

The idea of ,Yang and Mills was that physics should not depend on possibly
dilferent conventions used for classifying particl_es according to the group at different
space-time pomts They argued that only the local distinction between quantum
numbers should be 1mportant If scientists on Mars see our blue quarks as red,
surely that cannot be relevant to the motion of that quark. This principle implies
that the theory of quarks should be 1nvar1ant under a much more general (gauge)
transformation , where € in (2. 9) are replaced an arbltrary functlons of space-
time, €,(z). Under such general gauge transformatlons the color of quarks can
be redeﬁned in an arbltrary manner at every space-time pomt However, such
gauge 1nvar1ance is not automatlc In particular a non 1nteract1ng quark gas is
not 1nvar1ant under such a transformatlon To see th1s note that if €,(z) depends
on space-trme, then that under the transformation (2.9) the free Dirac Lagrangian

transforms as ,
= L . - z. . )
’_'/’g’ha_"?/)a - "/)a(’Y_na“ + Ekaﬁp(apea))ab'(bb L (2.10)

The solution proposed by Yang and Mills (1954) and adapted to QCD in early
1970’s, was to introduce a set of compensating fields Aﬁ(z) which couple to the

. quarks according to the famous minimal coupling scheme
8 — D# = (9" + %g)\aAﬁ(z)) . (2.11)

In order to compensate for the unwanted extra term in (2.10), these new fields must

transform under local ‘gauge transformations as

Ag — AZ - faqugf., - Ea“fa ce (2.12)

With the above choice for the transformation properties; the minimal quark La- -

grangian {bij,,D“‘tb is invariant under local rotations in the symmetry group space.

Note that minimal coupling and gauge invariance forces the compensating fields to

10
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- be Lorentz vectors (spin 1) and to transform as the generators A, of the group (the
so called adjoint representation).

| To put life into the compensating fields a “kinetic” energy density must also be
specified. Guided by QED, a natural guess for the Lagrangian would be —%F:,,F:" ,
in terms of the field tensor Fy, = 48,..4‘: — 8,A;. However, this does not work
because this form would not be invariant under (2.12). The generalization of the

field tensor that is invariant can be seen to be

Fj, = 0uA} — 8,45 + 9fapy ALAT - (2.13)

Note that the same coupling g appears above as in (2.11).

We have thus “derived the QCD Lagrangian

L = Pir*Dytp — %F:,,F:" . | (2.14)

Because of (2.13), F? contains cubic and quartic interactions of the fields A%, which
henceforth will be called gluon fields. The requirement of local gauge invariance '
therefore leads not only to the existence of gluons that can change the color of
quarks but also to a deﬁﬁite interaction Lva,'lgvré,“nigian betwegn quarks and gluons
“and between gluons z;,nd gluons chara.cferizéd‘ by one co'up'ling g Note the absence>
“of any scale parameter in £. (It is also worth noting that (2.14) is not the most
general renormalizable gauge theory if we allow higher defivativés and couplings
with diménsions to enter. See Ref. [29] for an interesting unorthodox possibility.)
The next step of quantizing (2.14) is much harder. The main problem is that for
‘any field configuration A%(z) there are infinitely many configurations ¢ A# which
.are physically equivalent to it becapse théy differ only by a gauge transformation
Q. In‘the section 3, We' will 'introducé functional integral t;ech’niques_ to handle this
3 problerﬁ. For now just consider the na.ivé g — 0 limit of (2.14). Obviously that limit
must in reality be very subtle since we do not see free quarks and gluons floating
around us. However,' as wé shall motiiate in section 4 that naive limit may hold at

very high energy densities because of asymptotic freedom.: -

- 11



Proceedingv’.bliridly, if we can set g = 0 at high enough temperaturés or densities,
then the equation of state of the qﬁark world would be quite trivial. It would
correspond to a noninteracting gas of N; flavor quarks that come in N, colors and
N? —1spinl gluons. In that case the energy density, pressure, and baryon density

of the gas are given by the Stefan-Boltzmann expressions

C PO s N._N;, . 1 .
esp(T, ) = E(Nz—1+7N,_.N,/4)T4+—2—_’(T2u’+2—7r—,u4) : (2.15)

1 , .
'pSB‘(Ta ”') = §ESB (T, ”’) ’ o ' . ' (2.16)
psp(T,u) = Wi(us + n*T?y) . | o (217)

with T, u being the d"tia.rk temperature and chemical potential. .

Since we obviouély do not live in that world, it is plausible that the vacuum in
which the ideal gas of quarks é.nd gh.lons, live differs from ours. Since we are here
and ‘they’ are not, our nonperturbative physical vacuum(8] must have an energy
lower then their QCD perturbétive.vécuum. Phenomenologically, we can try to
take this.eﬁ'ect into  account by adding a constant Bg,, to the energy momentum
tensor of the quark woﬂd, This leads to a phenomenological bag model equation of

state for the quark world:

(T, n) = esp(T, ) + B, i (2.18)

P(T, ”‘) =.%€SB(T’ Il‘) -B, | ‘ ' (2'19) |

- 2.3 Cut and Paste Model for the Equation of State

Now let us try to sta;Sle the phenomenological hadronic and quark worlds to-

gether at zero baryon dénsity. Fig.2.3 illustrates how this could be done.

As the temperature increases the energy density and pressure increase along .

the hadronic branch labeled H as parameterized by Egs.(2.7,2.8). Below a critical -

12
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Figure 2.3: Phenomenological equation of state of high temperature hadronic matter
with a first order transition to a quark-gluon plasma phase.

temperature T, the pressure in the quark phase exceeds thai in the hadronic j;—.)haée.
At T, the pressures in the two phases coincide. However, €(Te,0) = €q is _gréater
than gh(Tc,O) = eg. If we assume that the transition between the hadronic and
quark worlds is a first order one, theﬁ the system'w§ﬁl& be in a mixed phase for
energy densities between ey and éq.v' In the mixed phase the temperature and
the pressure would remain the same. -.The latent vhe‘atbper unit ‘volu_rﬁe is Ae =
éq —¢eg ~ 4B is wh.a.t we must suppiy to melt the ‘nonpe‘fturba.tive vacuum dnd

l'ivbera.t'e the quarks. Indicated in Fig.2.3 are also metastable superheated hadronic

~ and supercooled quark phases that may exist. Numerical estimates[49][50][51] with -

a variety of plausible parameters give
- €g~1—2GeV/Fm® | (2.20)

From these phenome_nolbgica.l considerations the following picture emerges. Be-

low some energy density ey ~ 3¢ hadronic degrees of freedom are relevant. As

-the‘energy density incr_eaées the hadrons begin to overlap and the nonperturbé.tive |

13



vacuum confining the quarks into little bags begins to melt. By the time an energy
density in excess of one order of magnitude above the ground state energy density
of nuclei is reached, the nonperturbative vacuum has evaporated and quarks and
gluons freely propagate in the system. This at least is the Working'.hypethesis which

we hope to verify by more rigorous methods in the following sections.
3. Field Theory Primer

- 3. 1 Path Integrals and Perturbatlon Theory

Since the primary focus here is on thermodynamlcs, we jump directly to the
problem of computlng the partition functlon Z = tre” PH with B! = T being the
temperature To warm up to the problem consider first a simple one dimensional

quantum mechanical system described by the Hamiltonian
. CH=VE . @)

The partition function for this s&stem ‘is | o
Z=Ylele ), . (32)

R n .

where I:z:) .i's a complete basis set of states-.v The ﬁrSt trick is to _uete that |
| ePH = D}lm (1-eH)N ) - (33)

where € = (/N. Following Feynman[34]~ we insert a cemplete set Of, states between

each operator (1 —€H) to get

N——ooo

Z = lim Z | Z(x1|l - eH|x2) (zn|1 —eH|zy) . | (3.4)
Next we note that to order € accuracy | | - o -
(ol = o)~ (@l lma) V(14 0(9)
o « exp _‘w eV(x,) | _7(3.5_) ;
Deﬁnmg a closed path :z:('r) such that } ; V\ -
: x(r) =gyat T = zﬂ/N and ‘a:(ﬂ) = z(O) y - (3.6)
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and defining the path derivative via & = dz/dr ~ (241 — z;)/€, we can express the

partition function as

2

N—oo i1

Z hmz Zexp( E 2}/2+V ),z;‘)

= [ Dalr)exp(~ [fateprvE) . (3.7)
z(0)=z(p) 0 - y o

 The partition function is therefore given in terms a sum over all possible paths that
close after a “time” 8. Each path is weighed by the equnentia;l of minus the 4Eu—
clidian action”, Sg(z) = J& dr Lg(z(r)). Note that instead of the tfue Laéfan’gian, |
L = 14—V (z), appearing in the exponent, a modified Lagrangian, Lg = 1 +V(z)
appears. To help understand the origin of this modification :note the similarity be-
tween the statistical operator, e ¥, and the quantum ,rr;ephanical time evolution
operafor, e *H, Formally the statistical operat.or just propagates the system into
the tmaginary time direction by an amount At = —z,B If we substitute § = v
in (3.7), then -ff drLE changes into ¢ f[fdtL and we recover Feynman’s original
path integral expression for the propagator[34] in terms of the true Lagra.nglan _
For statistical mechamcs always the “Euchdean rotated” Lagranglan appears in thev

exponent

The generalization of the above method. to systems with many degrees of freé—
dom is stralghtforward as long as the Harmltoman remains quadratlc in the p, :
With z(r) — (ql( )s+ 1 an(T)). defining a closed path in an n dxmensxonal space
the partition function is given by (8.7) with the Euclidean a.ctlon given by Sg =
L dr(TT@/2+V (g1, »gn))- The final transition to quantum field theory is made
by assigning a generalized coordinate to each point-in space. This is accomplished

by first erecting an artificial lattice scaffolding in space such that the lattice sites

can be specified by integers as x; = (il\,iz,’is)a in terms of a lattice spacing scale, . -

a. For each lattice site we assign a generalized coordinate , b(x;,7). We furthérf .

assume that V(¢(§t1,r),¢(x2,.r-),-'- ) c‘ouples'bh-ly nearest néi_ghborS‘ such that as

15



the lattice,_spaeihg goes to zero
a— 1 ‘
VER Ve +UB) - (3.8)

- This form of ‘V is chosen so that the the field ¢(x,t) obeys the simplest type of
wa.vee'(llua.tion in Minkowski space (0,049 = 6U/6¢). The partition function for
this scalar field theory is then given by
Zoc | z,7)ex /d‘r/dsx % + —V¢2+U¢ 3.9
2y o PP 0L 3# 3V U@ . (39
Of course, (3 9) is only a formal symbol It is deﬁned as a hmlt of a large but finite

number of ordmary mtegrals

N. N. N: N,

/ p¢; OOOI { / d¢(m; ja, ka, la)} | (3.10)

a—)o . —lJ—lk—ll 1

with ¢ satisfying periodic boundary conditions. The periodic boundary condition
in the temperature direction, ¢(z,0) = ¢(z, B), followed beca.use Z involves a trace
of the statistical operator. Periodic boundary conditions in the spatial d'i,r'ectiovns
are only a matter of convenience since the period goes to infinity at the end. For
a fixed »tempel»'atl-lre, T..# ,B‘i,end'lattiee spacing, a, the numbei' ‘of steps in the 7
direction is constrained via

B=N,a . _ - | " (3.11)

The formal functional integral (3.9) is a very useful startmg pomt to develop
perturbatlon theory. This is done by adding a periodic source current([30] [31], J (:z:) :
for the qS field. The partition functlon is thus modified to

2(7) « [ D¢exp{—,<§au¢a~¢ + U(¢) -8}, (3.12)

where (--) = ffdr [d®z---, and the Euclidean 8, = 8% = (d/dr, V). The main
trick used to develop perturba.tion theory is the identity ‘

(J¢) (Jé) .
(-’B)e. w(x)e S (313
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Therefore, any function of ¢(z) in the integrand of (3.12) can be expressed in terms

of fun(:’i;ional derivatives - with respect to J. In particular, we can write
e (U(f) I8 = exp{f(U(s—‘I-))}e(Jd’) . (3.14)

With this formal trick, we can pull the potential out of the functional integral to .

obtain |
Z(J) « exp{— (U )}/DqSe'( §0u9079~ ‘”’) . (315)

Now we are in business because the remaining functional integral is of gaussian
form, i.e., the only type of functional integral that we can readily perform. It is
mstructwe to go over in detail how this particular one can be evaluated. Beca.use
¢(x,r) is only defined on a finite 0 < 7 < B interval with boundary conditions

é(z, B) = #(z,0), we can Fourier decompose ¢ as

L= Y R

where the discrete frequencies must be-given by

'wn = '2:% P _ o (317) :

in terms of integers n. Siniila.r’ly, we ca,an(.mrier_« decompose J.‘(x'v, T). The eprnent

in (3.15) can thus be calculated as

d3k ‘ o
(G0upd b~ J) = 12: [ & )3[;4, (ke wa) (w? +k2)¢(—k,=w,.) — Ik, wa) (K, ~un)]
. dsk [P T
= 87 [ Gpslixteenl = 56 wn) PG )
| | o (3.18)
where the last line follo§vs from changing jvarié,bles to

x(k;w,,) = :/%»(A(k,wa)‘i/%(k,wn) L_A(k;wn)+1/2J(k,wn)) E '.(3.19)

with | o v
| Alk,wp) = (W2+E) . . (3.20)
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The function A is the momentum space invérse of the Euclidean opera.tor. a,0*
on the space of functions satisfying periodic boundary conditions in the “time”
direction. As sﬁch .it‘ca.n be called a free field propagator because given anv exte;;-
- nal distufbance J(k,w,) the response is ¢(k,w,) = A(k,w,))J (k,_w,.)). Changing |
varia.bles from ¢(x,7;) to x(k,w,), gives rise to a Jacobian

%= [5a] « T TIC A0 ) = exp{——z [ o nlemny®+ (5871}

(3.21)
where V is the volume. Unfortunately, the exponent diverges. We can try to isolate

that temperature independent divergence by regrouping terms as

%,,_5::00 In[(2n)*+(8k)?] = N+ln(ﬁk) :4;1111 1+ (%) ] = N+ln(1——e“ﬁk)+%ﬂk .

(3.22)
(Altenatively, we could go back to the lgttice formulation, where X ~ In N,, and
rescale the integration measure to geﬁ rid of that constaht before taking the contin-
" uum limit.) Therefore,

zoocex;;{ / I,ds)k[ln(l—e'p")-{- ﬂk]} _(3.25)

which is recognized to be the pa.rtition function of a non interacting massless boson
gaé including the zero point ehergy. That latter term however only shifts the scale
of the free enérgy, Fy = '—ﬂ‘? In Z,, by a temperature independent amount.

‘The Gaussian integral in (2.2.14) can thus be performed by ch’ang.ing variables to
" x(k, w,). The integrals over the x(k,w,) give for each mode a factor (73)!/ to the
overall normalization. constant. In this -wa.y the partitioh function for anharmonic
fields in the presence of an external source can be related to the. ideal partition

function for harmonic ﬁelds via
2(J) = Zoexp{—(U (5 )>}exp{ T / Town) A} . (324
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W.e have thus “derived” the the generating function for fhe pgrturbafive expansion
of the paftition function.’ The Feynvma,n.rules_ follow from expanding the first expo-
nential in a power series in U, carrying 'outvthe‘ functional derivatives, é,nd setting
J = 0 at the end.

Asan example consider U(¢(z)) = g#(z)*/4!. If we chose to work in momentum

space, then

oy = 511

m=1

{ IZ/ (27) 35J(k 6,%)}

x [ﬂ&,,ﬁ,.,m;m(27r)363(k1 +k;y + ks + k)| .(3.25)

If we chose to work in coordinate spa,ce, then the second exponent is expressed as

ey [ d"SIJ(k pa®) = [ dzo [ aw / &'z / dyI(2)A(z — 1) (y) -

(3.26)

The first order correction to the free energy, F = —f7'In Z, is for example

PO = g [ 42 (satey) vty =] vt nron
= 3—‘qVA(:t: =0)? | N | (327)
e L - - o2

where [dtz = [fdr [d°z = BV is the Euclidean-four volume. Higlher.oi'd.(ér terms
can be evaluated similarly with exponentia.llj increa.éing labor. The important
point however is that a simple pattern emerges. The higher order_ ferms can always
be expressed in as a sum of intég‘ra.ls over products of _f:rge prbpa.ga,tors, A. By -
assoi:iatir_lg with each pi'opagator a line, each term in the sﬁm becomes associated :‘ h
with a Feynman graph. The structure of those graphs is completely .de'térniined by
the fofm of U (qS) and are. summé,rized by a small set of Feyninanl rules that follow

from (3.24).
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3.2 Fermion Determinants

The main trick in defining the path integral repreSehtation of the partition func-

~AH into many pieces via (3.3) and inserting a complete set

tion was to split up e

of _sté,tes'.between each piece. The main difficulty with treating fermi systems is

obvious_ly the necessity of antisymmetrizing the wa.vefunctiohs. Let |a) denote a
' comi)lete set of one particle basis sta.tes.‘ Defining anticommuting creation opera-

tors b}, such that babl + btb, = 84p, an antisymmetric n fermion state is written
- as

. |a1---:an>A = b;‘l ..-b:ﬂlo) .

The resolution of the identity operator on the space of all antisymmetrized states

is thus

L= 1 5 e anafonan) -

4 ° ayeOp
.However, this is not the most convenient representation of 14. A more convenient

basis would be one specified a set of labels, n = {n,}, with the property

baln) = 1aln) - B (3.28)

~ If we could construct such states, then they would be analogous to coherent states
for_ bosons and would allow us to compute the matrix elements of any normal or-
dered operator, f(b*,b), as (n2|f|m) = f (ﬁ;,nl). Unfortunately, the 5, cannot be
ordinary complex numbers because basic relations such as by, ba,|n) = —by,ba,|n)
must be satisfied by the requirement of an’t.isymmetrization'. In order retain (3.28)

as well as antisymmetrization, the n, must satisfy a peculiar (Grassma.hn) algebra
’l: =0, N Na; = —NazMay - . (3.29)

By cdnvent}i‘on the 7, can also be assumed to anticommute with the b,. With the

above rules, the state |n) can be constructed as[35]
L) =exp(-mab3)0) . (3.30)

20



A little Grassmann algebra then shows that the overiap of two such coherent fermion

states is given by
(n|n") = exp {Z e na} , (3.31)

where the adjoint of a Grassmann number is defined by (n|bt = (n|nt.
To construct a resolution of 14 in terms of a sum over |n)(n|, we need to define
an operation, [ dn, that plays the role of integration. We deﬁnc linear operators,

denoted by f dn;, on a set of Grassmann numbers, {r/,}, such that
/ dm z2=0, / dn;i zn; = z&,-,j. ) : (3.32})'

where 2 is a complex number. With this definition and the properties (3.28-3.31),

the identity on the space of all antisymmetric states can be written as

li— {/dnidn e "I""}In)(nl o (3-33) |

as can be venﬁed by a.pplymg 1A to an arbltrary a,ntisymmetrlc state b+ . bjn |0)

All the machinery is now in place to carry out the progra.m of expressing "the
partition function in terms of path integrals. For that purpose we need to be a.ble to
compute a trace of an operator on the space of coherent fermlon states. However,

because the n anticommute
alog--- dﬁ|ﬂ)(’7]ﬂl : Brla= ("7|ﬂi . 'vﬂn>A li(al ceean|— 1) .
This implies for exarnple thatv
Tr|n){n|O = (n|O| - f_l) : - : (#-34i'v

This sign flip is an essential difference between boson and'fermion coherent states.
As we will see, this leads to antiperiodic boundary conditions rather than periodic
ones in the 7 direction.

We can now construct a Grassmann path 1ntegral representation of the partltlon‘

functlon along the same hnes that we followed i in the la.st sectlon For a Fermi system
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at temperature, f71, and chémipal potential, 4, specified by a Hamiltonian, H.

Z; = Tr e‘ﬁ(H"‘N)z Hm Tr 14(1 - eK)14---14(1 — €K)

= lim / du(no) - - - du(na) (Mo|1 — €K|n1){m|1 — eK Iﬂz) (a1 — K | = 70)
-~ (3.35)

where K = H — uN, € = §/n, and the integration measure is
du(n) = H dnjdnae"’i"“ . ,(3.36)>

As an interesting example consxder the partition functlon for a relativistic Fermi

system in an external A, (z) field. In that case

K =t (vD - uyb = / dszt/f"(:z:)fyo(z'y,V tmt gy A’ = p)h(z) ,  (33)

where ~, are ‘the conventlona.l Dlrac matr1c1es[30], and ¥(z) = Za(x|a)ba is the
field operator in coordinate space.
Because K is a quadratic form in 9%, ), the matrix elements of K ‘are quadratic

forms in the N«. Therefore, to order € accuracy

(i1 = eK|niy1) =~ exp(niniss — enityo(D — p)ns)

o =exp(2 N [Gap —€ / d*z{e|z)v0 (47 V; + m + g7, A” — o) (z.lﬂ)] n.-+1,p)

aB
(3.38)

With this relation (3.35) can be rewritten as

Zr ~ / dm’,* dno-- dn,. dnn exp (E 0 (Mig1 — m) — en; (70D DL ) »  (3.39)

=0
'where 141 = ~1o because of (3.34). This form motivates us to define an antiperi-
odic “path” by ‘ ' ‘ L
n(7) = 77.‘ é.t.f = tf/n. such that n(8) = —n(0) , . (3:40)
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where n(7) is regarded as a column vector with components, 7,(7). This allows us

- to recast (3.39) into the form

, o _ , +, ; -
Zfoc/n(p)?n(o)D(ﬂ (T),.n(r))_exp {/0 drn (T)(E-*_“_’YQD)"(T)} , (3.41)

where

Pn* () = lim [ Mdnidna . - (3.42)

i=1a_

By a change of variables the exbonent can be rewritten as the negative of the
Euclidean action as obtained by continuing the Minkowski space action (iSp(t =
—18) = —Sg(B))- This completes the “derivation” of the path integral repesentation
for the fermion partition function. | |
However, the Grassmann machinery allows us to go one important step furthei'. '
The integral can be performed because the exponent is just a quadratiﬁ form in the

variables. Following the Grassmann rules, the master formula we need is

. N '
/ II dn}dn;exp {— > ﬂ;Mj,k"’k} =detM , (3.43)
i=1 3.k : .

which follo-ws because only those terms in the expansion'of the exponential con-
tribute which are proportional to nJ, - -- 7, 7! - - - 15! , where 03, 0] are permufations
of N distinct indices. Therefore, the integral is 7; 3, ,» sgn(0)sgn(o’) My, o M,
det M. That det M rather than 1/det M appears is a characteristic signature of
Grassmann gymnastics. | | |

Therefore, the final expression for the partition function becomes

Zy o det {'70 (—:—T + u) — vV — g"y,,A" - m}A o4 det{%@} | , (344)

, where the subscript A instructs us to.évaluate«the functional determinant over the
space of antiperiodic functions on the interval 0 < 7 < B, and Sg is the fermion
action in Euclidean space. (We used above the invariance of the the determinant

to a change of the sign of in front of d/dr.) The calculation of the.proportioné,lity
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constant requires considerable ce.re in the continuum limit. However, we note that
the ‘Grass'ma,nn numbers are gone! They were only useful to keep.tra,ck of antisym-
metrization in the intermediate steps. The main result is that the partition function
can always be expressed as a determinant of an operator that is simply related to
the operator that is sandwiched between ¥ and ¢ in the Lagrangian.

The determinant of an operator M, is just the product of its eigenvalues. If |a)

are'th‘e orthonormal eigenfunctions of M with eigenvalues ),, then
det M = exp{Tr mh M} = exp{D)_(a|In M|e)} = [[ A

To:g-'ef;vsiorﬁe idea how the determinant in (3.44) ‘can be calculated, consider
a fermi gas in an external potential A4,(x) that is not so strong as to be able to
produce pairs. Let €, correspond to the single pa.rtlcle energles in that potential.

The single pa.rtlcle wavefunctlons (xla), then satlsfy the static Dirac equatlon
YoDz (x|} = 4o {#%iVi + m + g7, AY(x) } (x|} = €x(x]|c) . (3.45)

In order to calculate the functional determinant in (3.44), we must solve for the
eigenvalues of the operator —d/dr + u — YoD,. The eigenfunctions of this operator
~are just e~"(x|a). The antisymmetric boundary condition in the temperature

direc_tion however require that the frequencies w, must be ‘odd’
=(2n+ 1)t » - (3.46)
rather than ‘even’ as for the Bose case (3.17). The eigenvalues are thus
Ana =tWn + 1 — € . - (3.47)
The fermion oetermioant is in this case -

2 « 1 H)\na—exp{zilnw +( ))} |

fA=—00 a a n=0

o

oc Vescp‘{z:(ll;“—g(ea'-p))‘}';'.“"' | o . (3.48)
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Which is recogﬁized to be the familiar answer. In arriving at the last line'\&l'e had to
absorb into the proportionality factor an inﬁnite constant, [[2,w?, as well as an
infinity associ_‘ated with the zero point energy. For a more rigorous justification for
~ such steps see Refs.[30][31](33][34].

: D1v1d1ng Z; by the pa.rtltlon function, Z 7, for a nomnteractmg gas leads to an

expressxon from which perturbatlon theory can be defined:
Z; = Z7det{1+ M(A)} = 2} exp{Tr In(1 + M(A))} = Z9e 5114 | (3.49)

where S.s7(A) is an effective action of the A field due to coupling to the fermion

fields. The operator M(A) in coordinate representation is seen from (3.44) to be
(x,7|M(A)ly,7") = gAs(x —y,7 — 1), A%(y,7) ,  (3.50)

in terms of the free fermion propagator at temper_attire, B!, and chemical potential,
T

Ap(x —y,7—1') = (Yo(—d/dr + p) — i%: Vs —m) 7!

d*k —fwn(r—7") _ik(x~ Y | -
R

'_(3.51),

Expanding the exponent in (3. 49) in powers of g gives the perturbatlon series for
the thermodynamic potentlal 0B,u) =—-B"1nZ;,

(,3,/1,) =M —p IZ Tr Affy,,A) ) (352)

=1

8.3 Quantizing QCD
~ What we saw in the previous sections was that the partition function for a
field theory can be expressed as a functional integral over the exponential of minus
the Euclidean action. The path in j“ima.gilna,ry” time runs over a finite inferi'al,
0 < 7 < B, and boson fields must be periodic and fermion fields »mu‘st.be é,ntiperiodic" '

on that interval. For quarks and gluons, the pi'in_ciple of local gauge invariance led -

25



us to the QCD Lagrangian given by Eq.(2.14). _Following the proceedure in the

_previous sections, the QCD partition function would be written as
z = [ D{A3(#, )P B s (5, )P a2 1) exp(~Ss (B, 4)) ,  (3:53)

in terms of the Euclidean QCD action. Since quark coupliﬁg to gluons involves a
quadratic form t/)z'y.,D" 1, in terms of the covarlant denvatwe (2 11), the 1ntegrat10n

_over the quark ﬁelds can be performed giving
Z o« [ Dl4s(z,7) {det(—imD*(4)}" exp(~SEM(4) . (3.54)

‘Note that each massless quark flavor gives one power of the determinant. Also
M(A) is just the Yang-Miils aetion without quarks.
vUanrytunat'ely this blind generalization of path integral to gauge theories breaks
down. ‘This is because for ‘any configuration, Aj} (z, 7), there are infinitely many
" other conﬁgura.tlons, G A, which differ from A by only a guage tra.nsformatlon A
general gauge transformation can be expressed in matrix notation via

’\—Ac = G)‘ AGT 4 = Ga G™! (3.55)

in terms of an arbitrary matrix of the form-G (: ) = exp (zA €.(z)/2). For infinitesmal
gauge transformations ¢ A is given by Eq.(‘:2;12). -Every conﬁgﬁra.tion which can
be obtained by such a transformation gives the same contribution to the integral
because S(¥A) = S(A). Obviously the problem with the integral in (3.54) is that
* we are integrating over infinitely too many redundant dergrees of freedom. To
remedy this situation we must arrange that only geuge inequivalent configurations
~ are integrated over. This is accomplished by the famous Fadeev—Popov trick. The
idea is to insert into the integral a functional delta function that fixes the gauge so
that we integrate over only the distinct conﬁguratlons in a particular gauge.

To see how this works conSIder. the following two dimensional example:
z:/ﬁ@*w, (3.56)

where the “action”, S, is is assumed to be invariant under rotations. In other words,

if R(0).is the rotation matrix by angle d, then we assume that S(x) = S(R()x).
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. Obviously we only need to change tov‘p','olar coordinates to isolatethe vredund'ant

* degrees of freedom, Jdb =l27r. However, we Will,'uroceed in a way that is easy to
generalize to gauge theories. _ ,

Let us define a “gauge"" fixing condition, ¥ (x) = 0, to ei';lininate the redundant

degrees of freedom. For fun, we will call the “ gauge” the one Speciﬁed by .
Fx)=a-x=0.

Now comes the Fadeev-Popov trick. Let us try to find a rotation invariant function,
A;(x), such that , ' .
- : 2x i . )
1= As(x) /0 7 d0s(F (R(9)x)) - (3.57)
Clearly Ay is just the Jacobian for the comphcated change of variables from-8 —
7 (R(6)x). That Az(x) = A;(R(G) ) for any 0" follows from the group property

R(6)R(#') = R(6 + 0'), and from the invariance of the integral to arbitratry shifts

of the variable . The Jacobian is given by

_;_fl )— .(3.5'5)._

where d; are the solutions of 7 (R ( )% ) =0

“To evaluate (3. 58) just chose x to satlsfy the gauge condltlon ‘For the example

of our “fi gauge”, take x = -(rng, —rnl) In that case 6; =0 and 7 solve the gauge -

condition, and we need consider only mﬁnltesmal rotations in (3.58).
(R(0)x): = (8 —€0)z; 5

" where .612 = —€9; = 1. Thus, to’o"r'der_ﬂ, F(R(0)z) = 07‘1?6,-,,-&1:,-, =0 r. 'Beca.us'..e there

are two terms in the sum of (3.58), the Jacobian is given by

Arx)=rjz . : o (ese)
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Having found a convenient'representation of unity, we insert it into the integral .

(3.56) to obtain

z = [donsx) [ a8 8(F(ROM)) 5

- [/ i da]/ dz'xA;(X)5(?(xj)' 5 | (3.60)

where in the second hne we used the invariance of d’:c, A ;(x), and S(x). The final

answer in the fi gauge” is thus
Z = [Zﬂlfdzzza(ﬁ -x)e"s(') . ‘ : (3.61)

‘The factor 2 in front is the “gauge volume”. What has been accomplished in (3.61)
~was the elimination of redundant degrees of freedom by inserting a delta function.
The price paid for that was the necess1ty of computmg a Jacobian, r/2.
The generalization of th1s trivial example to gauge theories is now easy. To
_eliminate the gauge degrees of freedom we need a gauge fixing condition, ¥(A4) = 0,
such as the one for the Lorentz gauge, F(A) =0,4" = 0.': In analogy to the above
eﬁcample we construct an invariant integration , [ DG, ouer the group of all gauge
transformation. For SU(3), that integral involves the integration over a different set
of eight Eulerian angles at each space—tlme point. Next the gauge Jacobian Az(A)

is calculated such that
1=85(4) [0G6(FCA) . (3.62)

Because the group measure is assumed to by invariant, Ay(A) = Ay(A) is gauge
invariant. To compute A;(A) 1t is then sufficient to consider configurations sat-
isfying the gauge condition. For such A, only infinitesmal gauge transformations
need be considered in (3.62), and thus ¢ A is given by (2 12) in terms of mﬁmtesmal
Euler angles eq(z). Therefore, the Jacobian is '

(55)

=0

A;(A) = |det(( fa,g,,A“+g_15 50%)8, )|‘—,W_0 . (3.63)

where the ﬁnal expressmn holds only in the Lorentz gauge
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Inserting (3.62) into (3.54), changing the order of the DG and D A intergrations,
shifting variables A — ¢ A, and using the gauge invariance properties of the action

etc., we obtain finally
7 x [/ DG’]/DA §(F(A))A5(A) {dét(_—iq,,D"(A))}N’ exp(—S",gM(.A)) . (3.64)v

With Eq.(3.64) we have succeeded in fixing the gauge and removing the infinite
gauge volume [[ DG]. The price paid was a new functional determinant (3.63). In
some gauges such as the axial gauge, fi, A* = 0, the resulting determinant is inde-
pendenie of A, and so it can be absorbed into the normalization consté,nt. However,
in other gauges such as the Lorentz gauge, the determinant does depend on A.
In those cases, it is usesful to express the determinant as a Grassmann functional

integral. For example,

| det((fopr Al +9716,9%)3,)] o [ D1 ] exp (— [ ar [ @xiwa,om + gfa,,q-waa,,mg}), ,
| . (3.65)

The anticommuting scalar fields wa(z) and @q(z) are called Fadeev-Pc;pofr' gh0sts.

The Feynmann rules for including ghosts into diagrams follow immediately from

(3.65). For example, the ghost propagator in momentum space is —bag/ (W2 + p?),

with w,, given by the odd frequencies (3*.46). The ghost-glue intéra,ction:vertex has

a value —tgfap,q, for a incoming ghost carrying fhoﬁx_entum q.

3.4 Perturbative QCD

With  the above technique, the Feynmann rules for perturbative QCD thermo- -
‘dynamics in any gauge can be determined[9][36]. In the “a” gauge t_h’ese)rules are

summarized in Fig.3.1, from Ref.[36]. _ : ' !
To calculate quantities of interest

1. Draw connected diagrams consisting of solid lines (quarks), wavy lines (glu-
ons), and dashed lines (ghosts) connected by one of the four vertices. Each

vertex corresponds to a value indicated on the right. Note that lines carry
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QCD|36].

*’ =
i p j ) So m
: -6ab
———— . -
a k b ‘WO k? .
AAAAAARAAAAAA . _ Sab ‘ kuky
T'p,a k v,b Do = K2 [9#,; (1-0) 2 1
FQF = '97# Tiaj
- igfabcky

= ivgfabc [9gy (F-aly + 9o tk - ry + 9yq {q- kig ]

_ 2 " -
-8 [f_ad_e febc (98 95 -

9oy 958 ) + fabe fedc (905 9py -

- 9y 958) * face Tedb (9us 9y -

908 95 )]

Feynman diagrams associated with propagators and verticies in
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momentum, color, and Lorentz indices. The diagrams for the thermodynamlc
potentla.l are those without external lines. Diagrams with external lines cor-

respond to Green’s functions.

2. Gluon lines carry even frequencies, ko = tw, = t27n8~! and repesent gluon |
propagators. The gauge dependence of the gluon propagator is seen explicitely

by its dependence on o
3. Quark and ghost lines carry odd frequehcies, ko = iw, = i(2n + )78~ 1.

4. For each closed loop associate a circulating four momentum -v(iwn,k) and a

loop integration
d*k

- E/ (27)®

At each vertex energy momentum conservatlon' introduces a delta fuction of
the sum of frequency indices n; and a delta function for the sum ‘of momenta

k; as in Eq.(3. 25) A factor of 1 appears for each closed quark or ghost loop. '

5. A combinatorial factor must be ca.lcul_ated for diagrams without external lines.

With these rules an integral over products of vertex functions and propagators
is associated with any diagfa.m. For niexa.mple, the second order contributions to the

thermodynamic potential are then given by the sum of the four diagrams in-Fig.3.2

©o0 8

Figure 3.2: Lowest order diagrams for the thermodyna.mic potential

These diagrams were evaluated by Kapusta[36] to give the following contribution
to the free energy density at zero chemlcal potential: |

' g°T*1

16 9

c

(N2_1)(N+ V)  (3.66)
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An infinite class of hxgher order dxagra.ms in F1g 3.3 could also be summed up gwmg

a contrlbutlon of order ¢° g1v1ng

F3 = - 1321: (]V2 - 1)(%(Nc + Nf/2))3/2 . | : N (3.67) )

“(a)

XBL 857-2994

Flgure 33: (a) Infinite class of ring diagrams contrlbutlng to the thermodynamlc
potentlal to order g%. (b) Lowest order gluon self energy diagrams contrlbutlng to

(a).

-Egs.(3.66,3.67) are the. lowest order corrections to the negative of the ideal
Stefan-Boltzrnann expressioh.f_or the pressure of a .quark-gluon plasma at zero'chem- -
ical potentia,l’. The above rules actua.lly lead to integrals that diverge in these orders.

The finite corrections above can be extracted from the infinities only after a “renor-

malization” program, as illustrated in the next section, is carried out.

4.© The Running Coupling
4.1 At zero temperature

Our next problem is to determme what value of g should be used i in such pertur- .
batlve calculatlons A complete answer is only prov1ded by renormahzatlon group

theory[30] [33] However, we can get some insight 1nto the problem by considering

' the specific. example of quark-quark elastlc scatterlng
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Let us define an effective coupling, a.; ,(q) ‘at momentum tr‘ansfer,v q, by requir-v
| mg that the g¢ — gqq scattering amphtude be given by —4miM (q)l‘l,,aI‘z , where

aeff(q)
M(q) = 2408 o

-and I““" = 'ﬁ-fy",\“u' are vertex factors. To lowest. order ars(q) = g%/am + O(g*).

, 4

The next lowest order contnbutlons to that amplitude are given by the sum of the

following dlagrams

Figure 4.1: Lowest order corrections to ¢¢ — ¢q amplltude where the gluon self "

- energy is given by the dlagrams in Fig. 3.3b

Unfortunately, every diagram containing a closed loop d1verges, and we must.-
embark on the program of renormalization. The basic assumptlon behlnd renor-
malization is that physics at a glven distance scale q~! should not be sensitive to
the physics at some arbitrarilf small distance scale, M ! <« _q;l." Thus for exainple :
low energy atomic’phySics does not depend on the microscopic phystCS that 'g'onerns;;
whether the electron is a composite particle or not on some scale < m;L Similarly, ‘T
scattering‘. of quarks and ‘glu‘ons at’\momentum transfer ‘g should not depend on the
substructure of quarks as long as tha_tws_nbstructUre is only resolvable on a scale
< q71. Of course there is no way to know ahead of time whether there is such a
clear separation between the scales relevant for quark and sanuark physics. Only
| 'experiment can tell. Theoretically, we can however propose a renormalizable theory
of qua.rk'interactions such as QCD and explore its consequences. The essential point
is the a.ssumptlon that there ex1sts some range of momentum transfers or dlstances-

where the more mlcroscoplc physics is not relevant.
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On the other hand, we see that. actual calculations with this theory involve
integrating over arbit:_rarily largei momenﬁuin_scales, _evén beydnd »the mass of the
universe! The assumption that the physics at such scales is irrelevant fbr the mo-
mentum transfers of interest means that we should be able to cut off such momentum
integrals at any scale M,, > ¢q. For example we could insert form factor at each
vertex which suppress momentum transfers exceding some large scale M,,. Alterna-
tively we could discretize space-time to cutoff momenta above some inverse lattice
scale. This second approach is what underlies the lattice gauge theory formulation
of QCD. For continuum perturbation theory some version of the first approach is
usually adoptea. The actual way f.hat inﬁnite integrals are rendered finite is called
the renormalization scheme. One popular scheme is due to Pauli and Villars[32]
‘which involiféévvadding a set of ficticious particles to the theory with masses that
are sent to infinity at the end of the calculation and which.couple so as to cancel
infinities arising in léop integrals.

While'- any renormaliz#tion scheme insures that all Feynman dia_.grams of the .
theory are finite, terms such as In(M2 /q?) appear in the final answer which appar-
_ently depend on an arbitrary scale, M,,. The miracle of renormalizable theories is
that it is possible to get rid of those terms by renormalizing the finite number of ;
bare cbupling constants and -inasses which appear in the Lagrangian.

To see qualitatively how such a renormalization brogram works in the Pauli- -
Villars scheme,vconside.r the higher ordgr contributions to M at an arbitrary space-

2

like inomentum scale, ¢2 = —m?. That scale will be called the renormalization

point. Adding a ficticious heavy quark of mass Mo, the lowest order correction is

found to be[32]
aess(m) = ao{1+ T-Cln(-MZ,/m*) + O(e))} - (42)

wheré Cis _
a 11 2 :
C=-—N.— =Ny . .
Note the that the correctiqn would diverge as In M, if we let M,, — 0 at this point.

The trick is to note that we do not really know the value of the bare coupling, ap,
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either. A measu;émevnt of q¢ — qq could only determine the comblna.tlon of ap and
In My, in (4.2). Therefore, we must adjust the value of o so that together with the
In M,, correction, a fixed finite value of a,;; remains. This is called renormalization
of the bare coupling.

The renormalization program thus starts by expessing amplitudes in terms of a
renormalized rather than the bare coupling. To see how this works, consider the

coupling at a different scale ¢:

ass(e) ~ ao{l+-Clin(~MZ/m") - In(~g*/m"))}

. a.ps(m : ’
~ aers(m) (1 — 22 G (g m?) + Ofaesy (m)
4
an/a.zr(m) + CIn(—gq2/m?) °
The logarithmic infinity has thus disappeared into the the definition of the renor-

(4.4)

‘malized coupling, a.rs(m). In the last line, we have also “improved” perturbation B
theory by assuming that the second order correction just represents the first term in -
a geometric series in the expansion of the denominator in (4.4). Such steps require
the full machinery of the renormalization gr-o»up‘eqﬁ'ations for justification. Unlikein
QED where the infinite geometric series folloWs simply from summing all repeated -
" “bubble” diagrams for the photon prOpagatof, the summation in QCD involvés .
summing parts of higher order vertex diagrams in addition to vacuum polarization = -
bubbles. _ |
Eq.(4.4) is still not satisfactory though because if. looks like that the veﬁ’e:ctive
coui)ling depends now on the arbit.rary. renormalization point, m. Since the physical
qq9 — qq amplitude cannot depend on arbitrary scales, we must impose an additional
conditioﬁ, dacss(g)/dm = 0. This condition implies that we can write |
47 /o ss(m) — Cln m2'_=‘—-C"ln A%,
where A is an unknown constant independent ‘of ‘m. With this deﬁnitiof;

47

cezs(q) = mz—) ., (4.5) - |
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As long as.the number of quark flavors is not too large, N; < 11N./2,C > 0 and -
a.ss — 0 for ¢ — 0. This is the famous asymptotic freedom property of QCD. The
remarkable effect of renormalization process was to introduce a dimensional scale A
into va. theory that was initially scale invariant! That scale cannot be calculated but
must be determined from experiments. Current data only- determine A very poorly
to be in the range A ~ 100 — 400 MeV.

There are many ways to try to understand the sign of C' None of them are
completely satlsfymg For example, in a partlcular gauge we can ana.lyze the sign
of each diagram that contnbutes. Unfortunately, in different gauges the sign and
ma,g_nitude of diagrams can vary. The theory iny guarentees that the sum of all
diagra:ms to a given order has a unique value. The following physical picture can
‘nevertheless give a rough idea of the origin of that sign. The sign arises from the
competition between ordinary vacuum polariza.tieh effects that tend to enhance the
coupling at ehort distances as in QED and antiscreening effects that tend to disperse
the col_or.charge, We can view the antiscreening phenomenon as a kind of finite form .
fact_gr effect. If we tried to concentrate a blue charge onto a heavy quark e.t the - -
origin, then beca,gse the quark can emit a ‘BR gluon by becoming red, the_hlue
charge .ea.n_be_distributed over a finite range, ~ A~1. Therefore, if we look for the -
blue chax__‘geiin some small volume, < A~3, then only a small fraction of the net blue- .
charge will be fouhd there. Qualitatively, it is r_e.asonable to expect then that as the .
number of colors, 'Nc, increases, ._su'ch antiscreenihg effects should become stronger.
since there are more ways that a quark can disperse its color by emiting gluons.

In contrast to the antiscreening phenomenon that is unique to non-Abelian the-
ories (Nc > 2), vacuum polarization always tends to concentrate the charge at the . .
origin. One 'Wa.y to try to understand this effect is to recall that -negative ,ene_rgy B
solutions to both the Dirac and Klein Gordon equations behave opposite to the pos-
itive energy solutions. Thus, for example a nega,tive energy electrbn is repelled by a

positive charged nucleus. If ¥Z(z) is the electron wavefunction at energy F around

a nucleus of charge Z, then for E < 0, |pZ(z)|? < |¢°E(:z:)|2 in the neighborhood,

~ m!, of the origin. The vacuum polarization charge density, which measures the
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cha.née"in distribution of the negative energy sea,

ove =—lel ¥ {1wEl - w3I}

- E<O

is thus positive near the nucleus(37). EXactly at the origin the bare charge is reduced

by an infinite amount, o In My, /m,., but after renormalization the residual VP
density remains positi_ve. Clearly this effect must increase as the number of fermion
flavors, Ny, increa.ses_. |

In summary, we have the follow,ing qualitative picture for the competition‘be-

tween screening and antiscreening: The effective QCD charge is enhanced « N f;

due to conventional vacuum polarization phenomenon, and it is reduced o N, due.

to the ability of quarks and gluons to disperse their charge. The proportionality

constants for QCD are given in Eq.(4.3). Asymptotic freedom hold only when the
antiscreening eﬁ'eéts dominates. |

While (4.5) exhibits the ésymptotic _prope_rty' of QCD, it also shows that the
effective coupling could grow to be arbitrarily large at large distances. Ip fact, (4.5)
‘ .has a singularity at finite momentum transfers ¢t = —A’.

perturbation theory. Nonperturbative analysis[38] suggests that a.s; should have a

simple poleat t = 0 instead. Such a singularity would be corisistén_t with the hoped -
for confinement property of QCD since in coordinate space it would imply a linearly
rising potential at large diétances[29]; An approximate phenomenological formula =

for t = ¢® < 0 incorporating both asymptotic freedom and “infrared slavery ” is . -

thus A ,
uss(t) =
Fess 1) = Clog(l —t/A?) °

'4.4.2 At high temp:eratures'
Why -iS’asy.mptotic freedom relevant at high temperatures or densities?. The

. answer has to do with color electric and magnetic shielding in the QGP. To see this,

we consider again the scattering of quarks or gluons inj"’the Born approximation[39]. -
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The amplitude (4.1) together with the effective coupling (4.6) obviously lead to
~a divergent total cross section because of the smgular small momentum transfers
behavior. What saves the day is the modlﬁcatlon of the gluon propagator due to the
polarlzablhty of the many body medium. In analogy to ordmary electromagnetlc
plasmas, the exchanged gluon can interact with quarks and gluomns already in the
plasma in addltlon to the quantum fluctuations discussed above. Flgure["] illustrate

such many body modlﬁcatlons of the effective gq scattermg amphtude

XBL 857-2991

Figure 4.2: Examples of many body modlﬁcatlons of the effective scattering ampli-
tude

In the random phase approximation[41]-[44] a special subclass of diagrams of
this sort can be summed to infinite order (see next section). It is then found that .
~ the p = v = 0 part of the static (wo = 0) propagator is modified such that in the

small ¢ limit as

DY(t) ~ — | : ~ ‘.
() # e | (4.7)
where the color electric mass is given by
mg ~ g* [(Ne + Ny /2)T?[3 + (1/27%) > u}| o (4.8)

in terms of the termperature T and flavor-chemical potent1als My ThlS modification
of the gluon propagator 1mpl1es that static color electric’ ﬁelds are screened on a

length scale mg' as is evident from linear response theory[48] (A3 (a:) / dsyDoo(z
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¥)%.:(v)). Thescale mg! is also called the Debye length. The physical origin of such -
screening is clear. Since the particles in the plasma carry color electric charge, a
cloud of partiéles of opposite charge tend to accumulate around any external charge
put into the p'l”asma.;

, ‘With Debye screening, la,r.ge distance or low momentum transfer scatterings be-
tween quarks is thus suppressed. The dominant momentum transfers, t ~ —m%,
aésocidted with color electric scattering in fact increases then with either teﬁpera—
ture or baryon density. The'refore, only the effective coupling at short distancés can
matter. Obviously at distances much smaller than the average distance ~ 1/T,1/u
between quarks in the plasma many body effects cannot be relevant 'and the ef-
fective coupling reduces to its free space form. This is why asymptotic'freédom is
relevant at high energy densities.

There is however a major catch. That concerns the yet unsolved magnetic.
shielding problem. There are no elementary quanta in QCD that carry color mag-
netic charge. Therefore, there cannot be any perturbative me_éha.n_ism that screens
static color magnetic fields. This poses a problem because quarks and gluons in-
teract not orﬂy through color electric interactions o« Dgo(g), but also also though‘
color magnetic or current-current interactions o D;;(g). In .ordinary QED plas-
mas there is no magnétic, shielding either, but the sign of the photon self energy,
I1;;(0,q) = O(aqT), as ¢ — 0 is such that the magnetic part of the propagator,
D;; = (D© — H);’jl, has no (tachyon) pole at ¢* < 0. Therefore in QED magnetic
scattering leads to finite cross section even without magnetic screening. In QCD
thou’gh[45][46], the sign of II;;(0,q) is opposite and D;; acquires a tachyoh pole at
g ~ ¢g*T. This means that perturbation theory must break down at low mqrﬁentum
- transfers ¢ < ¢g2T. In QCD the finite electric mass is not sufficient to solve the srﬁall
monientuin transfer, i.e., infrared singularity problem.

The current hope is thatv a finite magnetic mass is geﬁerated in QCD in some
nonperturbative fashion[45](46]. T._ha,t éould arise for example if a magnetic glueball
condensate were generated sofnehow. Very preliminé,ry Monte Carlo studies[47] for

- SU(2) _Ya.rig-Milfs theory on sfnall lattices seem to indicate that static color magnetic
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fields may indeed be screened at high te’nipér_atufes. It is therefore possible that

there does exist a color magnetic mass scale m;;, where

with Car ~ 1 necesanly belng a nonperturbatlve constant[46] Note that unhke mg
whlch has a nonvamshmg contnbutlon to order gT mpg must. be at least O(g T)
(see further dlscussmn in next sebsectlon) | o

With color electrlc and magnetlc screemng, the sca.ttenng cross sectlon in the
plasma. could be roughly expessed as[39]

V ,daab ~ c 47raeﬂ'(t)
dt ~ Cad tz k4

(4.10)

: where the effective screened coupling at finite temperatures and chemical potentials

is

g (t) =~ Ofoz(t) {t tmE n _th} ’  (411)
and op(t) is the effective coupling at zero temperature (4.6). In Eq.-(4.10) Cap =
19/4,1,4/9 are color factors. relév_ant to db = gg,qg, and ¢gq scatterings respec-
tively. Screening causes the effective coupling to vanish at low momontum-transfers.'
Asymptotic freedom causes it to vanish-at large momentv;um“vtransfers. The ma.x--.
imuﬁ_; occurs for | t |~ min(m}, m},), and the therefore the maximum value a.;f
decreases loga.rithmically with increasing temperature. The color electric vscreenin.g
-length also decreases at high baryon densities, but it is not known how magnetic
screening ‘oe'haves atvﬁnite chemical potentials. QCD may hold a surprise in this
connection. |

As the temperature decreases, higher order correctiono to the screening lengths
niust also Be considered. In Ref.[48] it was shown that a self consistent treatment

of electric screening led to a nonperturbative reduction of mg to order o®/? as
- mp o mp(1- (vg®/4m)?) (412
where v ~ 1. Therefore, higher order corrections work against screening.
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Figure 4.3: Dependence of effective coupling on momentum transfer for various
temperatures. '

In Fig.4.3 the effective screened coupling is shown including a rough estimate of

possible nonlinear effects from Eq.(4.12). -

In this numerical example[BQ], we have approximated g?/4 in (4.12) by ao(t ~

—s), where s = ((p1 + p2)?) & 17T? is the average center of mass energy squared for

~ binary co“ll_isibns in a r_e_la,tivistic quark-gluon gas. Furthermore, we used op(t) in’

- place of g?/47 in (4.8,4.9). The dashed curve corresponds to neglecting the nonlin-

ear correction above and the difference between the solid and dashed curves gives
éome indication for the order of magnitude uncertainty in the effective coupling in
the interestihg temperature range T ~ A. The value C =1 /4 was used|[39] for the
no;lp.erturbative,cpnsta.nt in Eq.(4.9). The qualitative behavior of the screened cou-
blihg as a function of transverse momentum are well illustrated in this figure. Note
in particular that the screened coupling maximizes near the average momentum,v

q ~ 3T, of quarks and_-gluons in the QGP
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: Figure 4.4: Effective quark-quark differential cross section.

In Fig.4_.4-the corresponding screened differential cross sections are s}rown. Be-
cause the amplitude is heavily weighed toward low't, the uncertainties associated’
w1th the nonlinear modlﬁcatlons of the screening lengths are cons1derably amplified
for T ~ A. At high temperatures that uncertainty decreases, but unfortunately in
the temperature ra.nge relevant to nuclear colllslons the effective quark gluon Cross
' sections are rather uncertain.- Note that we have neglected cbrreetions[4Q] of order

t/ s to the differential cross vsections due to spin effects. It is clear from Flg 4.4 t.};la.t
the total cross sectlon decreases as T~ 2. However, since the denS1ty of quarks and
gluons increases as T3, the mean free paths decrease o T~1. Therefore, asymptotic
freedom is consistent with thermal equilibration on an ever decrea.smg spatial scale.
quOrtunately, fdrhfl.‘:~ A, which may be most easily accessible experimentally, there

is great uncertainty as to value of the mean free 'path's. This translates into con-

siderable uncertainty as to whether local equilibration can be attained in nuclear

collisions via conventional kinetic effects.

‘How does all this relate to the perturbative calculations of the thermodynamic.
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potential? We were trying to ﬁgure out what value. to use for g? /4m. The above
arguments hopefully make it plausible that by suitable rearrangement and partial
summation of :pertufbafion theory, we should be able to use an effective value of a
that depende en temperaturevand_ density. Since a.z¢(t) maximizes at ¢ ~ —T2, at

high temperatures we should be able to use an effective coupling :

ar oyt = 4T ~ ‘cﬂ(;%/,x_z) . 1)
Exactly what constant b should be used above is not clear.” At sufficiently large T'/A
it does not matter. Where the value of b does matter, ar is too large to'believe
'in perturbative results anyway. For phenomenological applications a value b ~ 10
could be used siﬁce o,y maximizes near the average thermal momentum ~ 3T.
Since ar — 0 for T/A > 1, it is then plausible that the perturbative corrections
(3.66,3.67) to the free energy density (negafiire of the pressure at 4 = 0) may become. '
arbitrarily small. QCD matter at high energy densities would then correspond to

an ideal quark-gluon plasma, as characterized by Eqs.(2.17).

..4.3 Breakdown of Perturbation Theory

Unfortunately,. QCD is not that simple In the pre{;ious vsection we had to
appeal to some nonperturbative mechamsm to generate a ma.gnetlc mass, M. In
this section we look ‘more carefully at this problem This will allow us >to fully
appreciate the limitations of perturbatwe analysis of QCD thermodynamlcs .

Consider the higher order diagram for the therquynamlc potential in Fl_g.'4.5.‘

1 3 n-1

Shattered Egg

Flgure 4.5: n'* order graph, 0, contrlbutlng to the thermodynamlcal potentlal. ’
Thls one 1nvolves one fermion loop with many glue: exchanges :
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We will study the infrared behavior of such diagrafhs[45] ‘According to thé

’ Feynman rules discussed in sectlon 3, each wavy line corresponds to a gluon prop-

.'a.ga.tor, D“,,, and solid lines correspond to quark propagators, S If the numberv :

of vertices in the above diagram is n, then there are n quark propagators and n/ 2
gluon propagators. There are then also 1 + n/2 loop integrals, each giving rise to a
sum of the form T}, f &pi /(27)3. The infrared behavior of that diagram can be
| studied by considering that ré.gion"of the 3(1 + n/2) dimensional momentum loop

integral where all p; are approximately equal to p and p — 0. Sirice both D and S,

decrease with increasing frequency wy 1t is furthermore sufficient to study only the

lowest frequency contrlbutlon, n=0.

Because gluon ﬁelds are periodic, the lowest discrete frequency allowed for gluons

is wo = 0 as evident from Eq.(3.17). However, recall that fermion fields must be

antiperiodic in the tefnperature direction. This means that the lowest frequency,‘

(3.46), which contributes to fermion propagators is‘ﬁxiite,, wo.= nT. Therefore, for

p—0

D(wo,p) = 1/p* , N (S TV I

while

Sloop) 2 1/6T) ey

“where we have suppressed color and Lorentz factors. In other words, the gluon

propagators diverge at small momenta, whereas qué,rk propagators remain finite[45].

We can now check the infrared behavior of our higher order diagram for the

thermodynamic potential as

QN g( (_15)

1+ loops n quarka

gluons
 ami-z [T 2+ 8
~ ¢"T""3 | dpp™T3
~gTh . - (4.16)
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Note that the answer does not depend on the infrared cutoff scale ,\b,' and therefore

this type of dlagram is infrared finite and stable.
In QCD_ there is however another class of dlagrams shown in Fig.4.6 tha.t look
like Fig.4.5 except that all quark lines are replaced by gluon lines.

1 3 n-1
t Sticky Glue
2 4 n

Figure 4.6: n‘* order graph, %%, causing the death of perturbation theory |

This type of contribution to the thermodynamic petential is unique to-non-
Abelian theories because gluons are required to’interaet. with each other. Since
the three gluon interaction involves a derivative couphng, each vertex brlngs ina
factor of the loop momentum. Proceeding as above, the infrared behav1or of such

diagrams is then given by
3n

w - rofe) (@) ¢

\—-\,—/ n vertices
gluone

-~ ’Q"THN? /T dpp2—-n/2 ’

g"T* - for n<5

~ < g"T*In(T/N) for n=6 . (4.17)
g T4(T /N3 ~ for n>6

We see explicitly that for orders n > 6, the thérmodynamic potential diverges as
" the infrared cutoff A — 0. It is also true that these diagrams dii'erge in the high
frequency lunlt but there ex1sts a renormalization theory cure for those d1vergences

The dlvergences above are due to the smgular long wavelength properties of QCD
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In the previous subsection we noted to a possible solution to such infrared diver-
gence via partial summation of higher order diagrams. The problem above was due
to divergence of the static fgluon'propagatorv at low momenta as seen in Eq.(4.14).

‘Let us try to sum a ¢lass of diagrams that modify the gluon propagator via the

Dyson equation

D(q) = D(q) + D(Q)H(q)D(q) =(DYq) - 1(g))* , (4.18)

Which corresponds to summing all “bubble” diagrams of the form

Figure 4.7: Dressed gluon propagator

" where @‘: IT(g) denotes the gluon self energy as shown in Fig.3.3b.
As'shown in Refs.[36]-[44], the lowest order self energy has the property that
oo (0, k —.0) = m% ~ ¢g?T? as given by (4.8). Unfortunately, to lowest order the
spatial part of the self energy, IL;;, vanishes in the static infrared limit. This is why
we had to assume that m2, must be at least ~ O(g*).
" Lets try to ca.lculate,m,zu?péfturbativelyv by considering the fourth order self

energy diagi'am in Fig.4.8.

Mij= i

Figure 4.8: Divergent fourth order gluon self energy.

The infrared analysis of that contribution gives

m; ~ H,(,)(O k — 0) ~.g* ( /da ) ( ) (p)* ~ ¢*T? ln(T/A) — lnoo. . (4;19)
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We-'éee therefore i;hat perturbation theory for the self energy breaks down 4t order g*

" already. Similar cons1derat10ns show that higher order self energy dlagrams dwerge

even faster (T'/ A)"/ 2-2 a5 a function of the infrared cutoff A. v
Is it possible that by first summing over all orders and then taking the A — 0

liinit, that a finite answer for ms could result? Suppose that mys = Cag?T. Then

" 1/p? is replaced by 1/(p* + m},) in (4.19). In that case we can send X to zero and

the nt* order self energy becomes for n > 4
I = ang"T(T /mag)"/*~? = ang*T?(1/Ca)"*? (4.20)

where a, is a computable constant. This is indeed a peculiar result. Because we
tried to cutoff the low wavelengths at order g7, all higher order contributions to
the self energy reduced to the same order (g*). Summing all orders we get a self

consistency equation

_mﬁ;ECﬁg‘Tz ZH" 0+)=g4T2f(CM)_ ., ‘ | (4.21)‘

where f(z) = a4In(1/Cpmg?) + X326 an/Chs Cr*~? is a function that we can only deter-.

mine after calculating the coefficients a, to all orders in perturbation theory. Herein
lies the rub! Every order of pérturbation theory for this prbblem contributes eqﬁally.
Had nature been kind, and mps o gT as for the electric mass, then the n'* order
self energy would only be reduced to order g"/2+?
peratures only the first few terms in the perturbation expansion would have been
sufficient. Because in fact mps oc ¢?T, all orders in perturba.tion theory are _needed
to determine the proportionality constant. _ '
Not only does mjps o< g*T ruin any attempt to calculate the proi)ortionality' con-
stant perturbatively, but it also ruins any a.tte;hpt to calculate the thermodynamic
quantities perturbatively. If we replace A by mys in Eq.(4.17), then we see that for
orders n > 6 the infrared sensitivity of the thermodynamic pofential reduces all

higher orders to the same order, g°. Thus a priori it is not possible‘_to_v calculate

within perturbation theofy the corrections to the thermodj(namic potential beyond
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sixth ofder. On the positive slde, this breakdown of perturha.tion theory occurs at
perhaps high enough order that-the' nenperturbative'eorrections never amount to -
much. If this turns out to be the case, then our picture of an ideal quark—gluon '
plasma would still hold at h1gh energy densxtles Obviously, we must turn to non-
. perturbatlve technlques to find out. The rapid development of lattlce gauge theory |

: holds out the prom.lse that this questxon may be answered in the near future

The Lattice World

In section 3, we started the program of quantizing QCD by first considering
~ a finite set of ’@:’b’upled oscillators defined on a space-time lattice and then taking
the"continuu'm'limit (3.10). However, we got into some technical difficulties in
section 3.3, associated with the infinite gauge volume in the continuum limit. With
the Faddeev-Popov trick, that difficulty was surpassed (3.54) and we embarked on
- perturbation theory. Unfortunately, we found» that perturbation theory for QCD is
terminally ill beyond some finite older of g due to infrared singularities. Te make
further progress, we must therefore consider nonperturbative techniques. Currently,
‘the most promising handle on nonperturbative problems is based on the “brutus
forcus”. techniques of lattice gauge theory. | '-

The cult of the lattice is, however, enshrouded by special incantations such as
“plaquet_tes’?, “Polyakov loops”, “Euclidean Wilson Action”,“scaling window”, etc.,.
which often create fear in the hearts of nonpractitioners of the faith. This section

offers a layman"s tour of this occult.
5.1 " Link Variables and the Wilson Action

The first ‘step is to go back to the the original definition of path integrals on
a finite space-time lattice. Let a denote the lattlce spac1ng between the lattice
sites The sites are labelled by four 1ntegers (nz,n,,,n,,n,) Consider the finite
lattlce w1th 1 < n; < N ‘and 1<n, < N;,. Recall that the temperature is related

to a and N by eq. (3. 11) At each 51te of the lattlce we assume that there are
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4 x(N?- 1) oscillators denoted by the Vgluo‘nv field, Af‘(d:;,rj). The requirement of
| periddic bdundafy‘conditiohs imply that A° ¢ (zi, 1) = 4; (:z,,NV a).

' The path 1ntegra.l for the pa.rtltlon function mvolves then 4 x (N2 — 1) X (N -

1)% x (N ~ 1) ordinary infinite integrals over the values of A° o (zi, 7;) at the lattice

‘ pdints. Unfortunately though, this definition of the path mtegral for QCD fails to

preserve its the most sacred property, gauge invariance. The discretized version

"~ of F:,, is simply not invariant to gauge transformation to all orders in the lattice

spacing a.

To preserve gatxgé invafiancé to all 'or_ders in ¢, Wilson and Polyakov proposed
a more ‘st‘)phistica.ted version of the lattice theory, where instead of integrating over
the gluon fields at each lattice site, they chose to integrate over SU(N,) rotation
matricies associated with the 4 x (N, — 1)® x (N, — 1) links connecting the’lattice‘;
sit.es. These new “link” variables are related to the gluon fields by a path oi'dered

integral

n—oo

Uiy = lim (1—:~A—A°( + - )) (1—z—’\—A°(x.+nu ))

% Pexp( ./;z.+a#dz_Ac(x)) __ ‘. . | (5.1) |

where ). /2i are the generators of SU(N,). Thus, U, , is an SU(N,) matrix associated

with the hnk on the lattice between z; and z; + p,a, in the du‘ectlon it. The inverse
of Ui, u is then given by U,+a“ —ue |

These objects,a.re contructed so that under a gauge transformation, G(z) ‘=>

,eXp(i/\cec(z) /2), by which A;, transforms via (3.55) the link matricies transform as

Ui = G (@) U:uG (i + 0B) . | (5-2)

The important point is that the transformation property (5.2) of U;, is exact to all

~orders in a, whereas we can define a discretized gauge transformation of A 'frdm

(3. 55) that is only accurate to a finite order in a. With these new vanables it is

therefore possible to construct a lattice theory that has exact gauge invariance.
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The effective actlon, S(U), in terms of the link variables must be chosen so that

it reduces to the QCD actlon in the contmuum hmlt a—0. Since U, u are matr1c1es

while S(U) is a number S must 1nvolve traces of products of U ’s The s1mplest_

actlon that does the JOb looks rather w1erd and unfarmlxar

U,,‘U.ﬂ, Ul U" )] . (5:3)

t+vu s,V

- Sw

g 0”’1

~ Eq:(5.3) instructs us to sum over the trace of a product of four rotation matricies
associated with the four sides of elementary squares (plaquettes) of dimensions a x:a,
:that"'can be formed. ‘anywhere"on' the lattice. That Sw(U) is gauge invariant to all
orders in a follows from (5.2) ‘and the cychc property of traces. By expandlng
the Uipapy = 1 + a(/\ [29)A, (:z:. + ad) + O(a? ), and approximating 9, A (z,) ~
(A (z,‘ + db) “(z,)) /a, etc., Sw(U) can also be shown to reduce to the continuum

QCD action in the a—0 11m1t Obviously, the ch01ce of S(U) is not unique since we

cOuld add terms involving a trace of products of more than four U’s that mantains -

local gauge invariance and approximates the continuum action even better for finite
"a. What Wilson found was that Eq.(5.3) happens to be the simplest action that
does the job.

2 Monte Carlo Method

With SW (U) s0 ’deﬁned‘,‘ the partition function for pure Yang-Mill theory can,

© be calculated on a corn;;uterhby integrating e}rp( Sw(U)) over all ‘possible SU(N )
rotation matr1c1es assoc1ated w1th the llnks of the lattlce In practlce, we want
to evaluate expectation values of operators A(U ), that correspond to interesting
quantities in the contmuum hmlt Such expectation valuesv arev given in lattice

theory by |
(4)=7 / 1 (v, JA@)e @, - (s.4)

links -

with [dU ] belng the SU(N ) group measure (for SU(N ) that measure 1nvolves an

1ntegra.tlon over N 2 1 Eulenan angles assoc1ated w1th every link). The stategy in
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lattice thedr:j"('".li'é ‘to brute force such integrals on a cornputer using the Monte-Carlo
Metropolis teehnique.

In _the,t method a random set of SU(N,) rotation matricies are assigned to each
'lirrk on the lattice. Each matrix can be defined in terms of N2 — 1 angles, 0{,“, 7=

1, NZ — 1. An entire lattice configuration is then specified in terms of
N=4x(N2-1)x (N, —1)®x (N, - 1) (5.5)

angies, 0 = {0,’ u)> that specify the N /(N? — 1) rotation matricies. For a 10° x 6
lattice for example, the integral >(5.4_) involves ~ 10° ordinary finite range: (0,27)
intergals! _ | ‘

|  Monte Carlo methods are particularly powerful to handle very high dimensional
integrals. The idea is to take a random walk in the N dimensional space of angles.
Suppose AO is a small step taken in a random direction irl the compact N dirnen- ‘
sional angle space spanned by the 0, If AS = S(U(© + A®)) — S(U(©)) < 0,
then the step should be accepted since the rarrdom walk is toward regions of higher
probability (less-action)_. If the AS > 0, then another random number 0 < ¢ <v lis
thrown and the step is accepted or rejected according to whether e~25 > ¢ or < g
Continuing this random walk Ny steps until your computer budget is spent, a se-
quence of pomts O, is generated such that i in the Ny — oo limit the U(®,) become
dlstrlbuted accordmg to the probability dlstrlbutlon e~5) /Z. With this ensemble |

Qf conﬁ_guratrons, averages of interesting qua,ntxtles can thus be approxxmated.by
1 : L e

(A) ~ = 3 AU(0.)) - . 59)

$ o ,

The accuracy of this approximation increases oc 1/4/Njs independent of the dimen-
sion of the integral. Herein lies the power of this ‘brutus forcus’ method. The

disadvantage is obviosly the need for large computers and large computer budgets.

‘From the physics point of- view 'a month of CRAY running time furthermore pro-

vides no insight into why the answer came out the way it did. Lattice workers must

proceed as experlmenta.hsts mea,surlng a va.rlety of variables on. the lattice to try to

‘ formulate an overa.ll plcture of wha.t the 1mportant dergrees of freedom and phys1cs :



may be. At this early stage, however, the main goal is to determine a few crucial
answers to such questions. as whether there is a deconfinement temperature and
what is the nature of the effective quark-atiquark potential in QCD. The why’s can
come later. '
5.3 Observables
To determine whether there is a deconfinement transition in QCD, the quantity
that is most fequently measured is the expectation value of the thermal Wilson line:
or PolyekOV loop, (L). This quantity measures the change in the free energy of the
system if a static (infinitely heavy) quark is put into the system at some point z,.
An external quark éai be put into the system by applying[SZ] the quark creation -
operator, ¥!(zo) to an arbitrary gluon configuration, |a). The free energy of that
isolated quark averaged over its N, possible colors is
e PP = — ZZ(OL | $a(zo)e PH 9l (20) | @) - (5.7)
c a=1 a

The‘ Hamiltonian is modified by the presence of a.:sta,tic quark by the addition cf
— o [ Bait(2) 22 0(2) A2 | |
Ho =g [ d*ay!(z) 24(2) 45(3) - (58

In order to express e ~PFq in terms of a path 1ntegra.1 we proceed as before usmg '

(3.3) and inserting complete sets of states. We encounter matrix elements as
e B .

(afl%b_(z(z))(l — 3 (Ho + Heat))$! (2(i + 1)) |ess1) »

s e~ HSrm(A(z:)) [e_a,%q,sg(,,.»,.} (1+0(a?)
(5.9) '
where B /N =dais the la,ttlce spa.clng The express1on in the square brackets almost
looks hke the link ma,trrx U,,o . By replacmg the MlIlkOWSkl four vector ﬁeld by its

Euchdea.n conterpart Ao — on and rescahng the fields by g, the express1on in the

brackets does become the link matrlx We end up then with. the followmg formula.»
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for the free energy of a static quark[52]:

ePFa=(L(z0))
=Z71 [Tl dAe~Srm(A)gr {P exp [— 18 drgA“Ag(zo,r)]} (5.10) -
=Z5" [T dUe W Otr {PTIN U p(r = na)} |

where L(z;), as given by the trace over color indices of the product of U’s i 1n the
timelike direction, is called the thermal WllSOIl line or Polyakov loop In terins of
L(z,), the free energy of a collection of statlc quarks and antiquarks can similarly

be shown to be given by
AP = (L) o Lan D) - D) . (510

~ To test for conﬁnerhent, we need only check that the free energy of an isolated

quark diverges, i.e., (L) — 0. The deconfinement transition in QCD at a critical
temperature; T., would show up as a sudden jvumb of (L) from O to some finite value. '
Another way to test for confinement would_be to look for a llnearly ihcreasing qﬁaer |

antiquark potential through —T In(L(0)L*(z)) ~ | '
A qua.ntlty of great interest is the energy dens1ty,

_ -13IlnZ 1,98

=V o8 ~— NiN.ada!’ (5.12)

which involves the expectation value of the variation of the action with'fesp_ect to
.varia',tion in the lattice scale in the temperature direction. In practice this quan-
tity involves the difference between the expectation value of plaq:u'ettes ori-e‘_nted in
the space dimensions and those with two of the sides oriented in the temperature
| direction[53]. Because this quantity involves the difference of two large lmmbers,
rellable numbers require especially large computer runs. In addition, the divergent |
- vacuum energy densityv' has to subtracted. Finally, a correction on the order of a
factor of two has to be estimated to compensate for finite size eﬁ'ects on currently ac-
cessible lattlces Current numerical results therefore entall large systematlc €rrors.

Nevertheless those results look rather encouragmg
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5.4 - QCD without Quarks

For QCD without dynamical quarks, a general consenses is slowly beginning to
emerge. In order to better appreciate the significance of those results, we must first
discuss how the temperature is fixed. Suppose that we want to calculate (L(0)) on
a N2 x N, lattice at a temperature T = 100 MeV. The temperature is related to
the lattice spacing by (3.11). But the computer only knows about N and the value -
of the bare coupling g1 in the actlon QCD has no 1ntr1ns1c scale .‘

Recall from section 4 that a scale only a.rlses because of the necessity of renor-
malization. The renormalized coupling g(a) must then depend on the scale at whlch
the coupling is to be evaluated. That dependence is lgiven bythe renormalization

group equation ,
dg/dlna=f3(g) g+ B+, o (513)

where the coefﬁc1ents ﬂ, are computed from the t-loop contrlbutlons to the renor-
'malized eﬁ'ectlve couphng In section 4, we 1nd1cated how the one loop correctlons
to the gluon propagator and vertex functions modlfy the ef_fectlve coupling. R_enor-
malization group theory shows how to include systematically higher order quantum
fluctuations. For SU(3), the coefficients were found to be B = (33— 2N 1)/ (247%)
and B; = (102 — 38Ny)/3) / (2567r) ‘The solution of (5.13) in the weak coupling

limit g(a) — O is clearly
N g*(a) = F(aAyr) ~ (ﬁl ln(l/aAL)é + /B Inln(1 /“lL)’ e .)-1 ., (519)

where AL is an integration constant. Because g is dimensionless, a momentum scale
A had to enter SO that g becomes a function of the dxmenswnless quantity aAL

The value of AL is.not the same as the value of A that results from renormahzmg |
the theory via the Pauli-Villars scheme in section 4 Estlmates for AL ~ A/83.5
typlcally give a value ~few MeV Eq (5.14) exhxblts the character1st1c logarlthmlc

decrease of g as the dlstance scale is reduced

We can use (5.14) to estimate the ratio of T to AL as a functlon of g.  Since
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v;Ta =1/N,, and
“aAy = F7(g) ~ (B19") */**1 exp(—1/(2619%)) . (5.15)
Therefore, T /Ap is approximately given by
T/AL = (N ) ( ))- | o ~ (5.16)

Eqs.(5.15,5.16) show how the couplmg constant changes the lattice spacing, a, and -
the temperature, T, in- umts of a scale, Az.

Instead of expréssmg physical quantities in tern:islof the unkown scale Ar, we
could compute ratios of physical quantities. This can be done because all physi-
cal qua,ntifiés, M(a,g), must approach a vﬁlue independent of the artificial lattice.
spacing and g as @ — 0. In the continuum limit we must have then[33]

‘dM 8 899

E = 5; aaag) (a,g)l—r 0. (5.17)

If M has dimensions of mass, then we are able to write M(a,g) = f(g)/a. The
solution of (5.17) is then | »

f(g) = f(go) exp( /, : dgB'(g)) = km [F-'.l,(g)]'1 , (5.18)

where F~1(g) is the same function as in (5.15,5.16), and KM is a nonpertlirbé,tive
constant. Therefore, M scales with g exactly as a’! does‘if we are close to the
continuum limit. "'lI“he range of ‘éoﬁpling constants, g, for \ﬁ?hich such scaiihg holds
is called the “scaling window”. Calculations with g in that range gaurantee that
ratios of masses M /M' = £pm /K do not depend on a,Ar, org.

In practice, we only know the approximate form.of F~1(g) in the asymptotic
limit ¢ — 0 That is sufficient though since (5. 17) only holds in that hmlt In that ,
asymptotlc lxmlt the two loop approximation leadmg to (5.15) should be ax:cura.te .
enough. We therefore see that ratios of ‘physical quantities reflect true continuum’
physics only if we calculate those quantities with a g in the asymptotic scaling

window. For a finite fixed lattice; N® x N, we can only hope that ésymptOtic
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. temperature T ~ 172 MeV and on a lattice of spatial size N;a ~ 3.2 fm. If we

scaling occurs for a range of g such that N.a is not too small and T'/A ivst inan

interesting range of temperatures

For illustration, consider a lattice calculation for pure SU(3) Yang-Mills (N; = 0) .

‘on a 8 x 3 1at£ice[53]. In this case N,. = 3, fp = 0.07, and B, =~ .0.004. A
calculation with 6/g? = 5.5531 corresponds to a lattice spa.cihg, a =~ 0.004A7%, and
a temperature, T =~ 86A;. Assuming that A ~ 2 MeV., we would be working at

were lucky enough to find that this g happened to fall into the asymptotic scaling
window, then indeed we would be in an 1nterest1ng reglon from the pomt of view of
the expected deconﬁnement transxtlon

The numerlcal results of the Bielefeld group|53] for this 83 x 3 lattice are shown

in F1g51
<L> €/T"
|
- 0.3p
S ] S - S A
P -
i }/T/j ’ é § § ————— §_——_B
: < 4 :
0.2} i//f 'l H
N , -l 3
o / ' 2
T / [ . . . .
K o y , L v
"—""!—'-'i -4 4 r é o . v
“80 82 B84 86 85 %0 B oL 100 0 360 /A,

XBL 857-2988

Figure 5.1: Lattice gauge calculations[53] of the Wilson 'line and energy density on
an 8% x 3 lattice for SU(3) without quarks as a function of temperature assuming

_ asymptotlc scaling.

In plgtting the “q‘ua,nt.ities as a _fuhct_;ion of T/AL instea_d of g,-it has_beeh as-
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sﬁmed that asymptotic scaling holds for the corresponding values of g. While new
results[55] show that asymptotic scaling does not hold for such small lattices with
g %1, the above results are nevertheless qualitatively inferesting. -

THe numerical results for the expectation value of the Wilson line show a strick-
ing hysteresis curve. As the temperature is increased the free‘energy of an isolated
static quark remains inﬁnite,‘ (L) =~ 0, until a critica.l temperature T, =~ 86Af is
reached. Then véry suddenly the freevenergy becomes finite indicating a transition
into a phase where color is no longer confined. However, if we reverse the pro-
ceedure and cool the system, then instead of following the same pa_,th, the quark
remains unconfined until a lower temperature, T! =~ 82A;., is reached. Befweén
82 £ T/AL < 87, there are two metastable states of the system: ohe that confines
and the other that does not. This indicates that the deconfinement transition at
‘least without dynamical quarks is a strong first order transition. Further'e\"idence
for this is seen in the energy density plot. At the critical temperature, there is
a sharp discontinuity of ¢(T). That discontinuity is presumably the latent heat
per unit volume required to melt the nonperturbative vacuum that confines color.
Above the critical temperature, ¢/T*, becomes constant with a value close to the
Stefan-Boltzmann value A (2.17) appropriate for N, = 3, N ¢+ = 0. The value B
includes an estimate for tvhe finite size color neutrality COrrection. Calculations By'

other groups|54| on similar size lattices give similar results.
5.5 The Continuum Limit

'Now nonsider in more detail how T.(a,g)/AL, scales with g. Fig.5.2 shows the

scaling property of the critical temprature as reported in R_taf;[55].

The solid éurve'shoWs_ how aTc(N,,é) =1 /N, must dépe_nd on g if the two loop
asympfotic scaling holds. Note that while the resufts for small lattices, 2 < Nf <4
seem to obey scéling, larger latticevresults, with 6 < N, < 10 do not. Therefore
the miracle of precocious scéli"n‘g at rather lafge couplings, g > 1, appears to be a

. fluke. Remember that in the cbntihuum'limiit, we expect ¢ — 0. This calculation
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Figure 5.2: Scaling of the critical temperature[55].

therefore calls into question the relevance of numerical studies on small lattices

to continuum physics. There seems to be no doubt about the existence of a first

order transition in lattice QCD without dynamical quarks, but without scaling we

have no way of translating the _lattice spacing or T into physical units. The latest

’results[55] suggest that asymptotlc two loop scahng may hold for 6/ g2 Z, 7. In that

case, a ~ 0.0008A71 and T 2 13004, /N;. This means that the same temperature
and spatial volume as was assumed to be studied on the smalvler"83_ X 3 lattic’e’”n_ow
requires an enourmous 32° x 15 lattice!. Clearly even a small delay of the onset. of
asymototicl scaling hurts very ‘much. |

Until very large lattlce become more fea51ble, there is a. less rlgorous way to.

proceed Even though there is no guarantee that ratlos of physrcal quantltles should

be 1ndependent of g outs1de the asymptotlc scahng wmdow we may luck out anyway

Con31der the ratlo of the crltxcal temperature to the square root of the strmg tensmn

F1g 5 3 summarlzes the avallable ‘data on such a comparlson[G]
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Figure 5.3: Comparison of \/o and T in the nonscaling region. -

The string tension is obtained by studying the correlation function (L(0)Lt(r))

‘e~Por, The square root of the zero temperature string tension, which empirically-

is 4/o = 400 Mev, is compared to the critical temperature at which €¢(T') makes a

. jump, for 'diﬁ'erent.;; values of the coupling. The large open diamond at 6/¢% ~ 6.1.

corresponds to the recently published[55] value of T, on a 11% x 10 lattice. These
results suggestft‘hat the ratio T,/y/0 may infact be roughly independent of g even

| 'i_n this nonsca.ling region with

1 ' o

It is interesting to note that numerical studies[56] of SU(N, > 3) also give a similar

g e_sfima.t‘e. It should be kept in mind is that none of these calculations include effects

of dynamical quarks. -
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5.6 QCD with quarks

We come finally to the most challenging frontier of the lattice world: the inclu-

sion of dynamical quarks. In the past few years, there has been very rapid progress
in this area. However, the dust has not even begun to settle. The inclusion of dy-
namical quarks requires us to calculate the treacherous fermion determinant (3.64).
The problem is that determinants of enormous dimensioned matricies are very dif-
ﬁcult to bi'ute force on a computer.

The Euclidean continuum quark action (see (3.41)) for finite T and u is,

Sy (9, z/; / d’r/ds:m,b (EDY — iun§ —m)y (5.20)

where these Euclidean: 'yo = 190, '71 = ~,. To dicretize this action while preseving
gauge invariance to all orders in the lattice spacing requires the use of link variables
again. An effecti_ve action that feduces to (3.28) and is gauge invariant is given
by(57] | | |
St= 3 n(l— &M)pmthm (5.21)

sites n,m

where M is the matrix connecting adjacent sites

3
(1 = VY Unmbnms + (1 + 4E) UL 6 mo]

+ep_a(1 - .i'70E)Unm6n,m—? + e_“a(l + i7()E)UrIm5n,m+? ’ " (5-22)

where 1,, is the spinor Grassmann field at site n, U,,m‘= U, m-a is the link matrix

between sites n, m, and the parameter « is related to the quark mass approximately

as k£ =~ 1/8(1 — ma/4).. The way in which the chemical potential " enters is not -

unlque, and is chosen so as to cancel a quadratlc divergence in the energy dens1ty
at T = 0 for ﬁmte p, See add1t10na1 discussion in Ref.[11].

Because the lattice actlon is still quadra.tlc in the qua.rk ﬁelds the 1ntegra.l over

~ them cha.nges (5 4) into

(4) == / H[dU,“]A(U){det(l—fcM( ))}"fe?s?v(U) , ', (5.23)

links
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The effect of dynamical quarks is thus the introduction of a determinant of a matrix

"with dimensions 4 X (N, — 1)3 x (N, — 1), which even for very small lattices is too

big to handle numerically.
The first attempts to include .some effects from dynamical quarks involved the

so called hopping parameter expansion|53):

det(1 — kM) ~‘exp( f: mM)‘/l) . (5.24)

In Ref.[57] the approximation of keeping only the lowest contributing order (N = 3)
in the expansion and setting the phase of‘ the complex determinant equal to zero led
to the numerical results shown in Fig.5.4 for ‘the critical temperature as a function
of chemical potential. This is the first attempt to estimate the phase diagram of

quark matter at finite baryon densities nonperturbatively.

The scale A( ) is the lattice parameter relevant for two quark flavors. Asymptotlc

scaling has been assumed on this 8 x 3 lattice. Of course, it is at present impos-
sible to estimate the uncertainty in these numbers due to the many uncontrolled

approximations. Nevertheless, from the phenomenological point of view these re-

- sults relnforce our prejudice that there should be a. 'deconfinement tra.n51t10n at hlgh

baryon denSItles in addition to hlgh tempera.tures Obv1ously, these calculatlons will

‘have to be greatly improved before we can be sure though.

Another techmque that has been apphed to calculate the ferrmon determmant

is called the pseudofermlon method[58] That is a Monte-Carlo method ba.sed on

(et = s} o [ 26,6 exp(—4'(1 = M) 529

Thus one has to perform a Monte-Carlo calculatlon ‘within a Monte-Ca.rlo calcu-
Jlation in terms of an artlﬁclal complex scalar field, ¢. The primary dlsadvantage

~ of this method is the slow convergence of the Monte—Carlo method requlres very

long runs in order that accurate results -are obtamed Furthermore, this techmque

is limited to zero chemical potentlals so that the fermion determ.lnant, is real.
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Figure 5.4: Very prelimiiiary phase diagram from QCD lattice calculations[57]
- marking the transition form hadronic matter to a quark-gluon plasm_a,

Fmally, we mention a novel methods that looks promlslng at the present That is

the so called mlcroca.nomca.l method[59] The basic idea is to calculate expectatlon'

values of quantities usmg a mlcrocanomcal rather than canomcal ensemble ‘For
illustration con51der the thermodynamlcs of a system w1th an ax:tlon S (Q, Q) The

canonical expectatlon value of an operator A is of the form

_<A>C=Zic / DQA(Q)e-“Q-"'”- )

“The factor &% plays the role of the Boltzmann factor. We could also consider a

microcanonical ensemble average via

U= [ooor a@s-m@ ), G
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where H is the Hamiltonian and E is some fixed energy. Statistical mechanics
assures us that in the infinite volume limit, these two averages should be the same
if E = N;T/2 + (S), with N; corresponding to the total number of degrees of
freedom.

In (5.27) every configuration (Q, P) with energy E is given equal a priors prob-

ability in the ensemble. The final step is to invoke the ergodic hypothesis, namely

that the microcanonica;l ensemble is equivalent to a long time average
1 rt
Jim (A)o = (A} = lim 7 [ A AQ()) , (5.28)
—00 —00 0 .

where the ‘time’ evolution of Q(t),P(t) obeys the Hamilton equations dQ/dt =
OH/dP and dP/ dt = —8H / 9Q. The time here is only some ficticious parameter
that allows us to sample all a.ccessible conﬁgura.tiohs yhy'followingv these ola,ssieal
equations of motion We have to assume that the dynamics of our system is chaotic

so that we are not locked up in some penodlc type orblt

Armed w1th these heavy duty theorems in statlstlcal mechamcs the strategy "

in apphca,tlons to QCD is to‘ mvent an artificial class1ca.1 system that evolves in -

a fifth ‘time’ dimension in a way that will generate expectatiOn'vs.lues identical

to the canonical method ébviousiy, there is room for a great deal of t'eéhnic'al

gymnastics here in the choice of the Hamiltonian for that artificial system. In

Ref. [59] one ch01ce was adopted but the technical gymnastlcs are too strenuous

to record here. The cla.ssmal equa.tlons obtained were vsolved numerically to obtain

a path in configuration space that is hoped to samples a large enough area of the

available phase space. Time averages (5.28) are then computed. Fig.5.5 summarizes

their results.

The calculation was done on a 8% x 4 lattice for four quark flavors. Asymptotic
scaling was assumed. We see that the Wilson line ‘still exhibits a sharp discon-
tinuity at 6/g? ~ 5.1 corresponding to T/ Ag)‘ ~ 280 that is also reflected in the
energy dens‘ity;" F‘tlrthermore, the quantity (i4), that is the order parameter for

chiral symmetry decreases rapidly to zero at the same point. These results suggest
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Figure 5.5: Energy density, Wilson line, and (%) as a function of temperature at

. zero chemical potentlal for SU(3) mcludmg dyna.rmca.l quarks via the mlcrocanomcal

method[59]

then that the first order character of the pha's“e transition may not be drastically al- -

.tered by the inclusion of dynamical quarks. Also it appears that the deconfinement

transition is closely associated with chiral symmetry restoration. We must Ahowevex_'
await calcaulations on much bigger lattices to confirm these ﬁhding. |
We conclude that current numerical results are conSistent with our préjudices
concerning the existeﬁce of a qualitative change of the thermodynamic properties of
QCD matter at temperatures and chemical potentials ~ few hundered MeV. With
the ‘very rapid fechnical progress today, we can lobk forward to increasingly reliable

‘data’ in the near future.

6.. Final remarks

These. l_ectures coul_d only provide a brief introduction into the many novel the-
oretical problems and techniques in QCD t_hermodyn_am_ics. Nevertheless, I hope to
have covered enough ma.tgria.l to enable nonexperts. to follow this rapidly evolving
area in the literature. We have gone into some detail in showing.the limitations

of perturbative methods. We ._ha.ve seen that the color magnetic sector of QCD
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could spail our simple picture of the quark-gluon plasma. We have seen how lattice
theory can in principle provide ihsight into the interesting nonperturbative effects.
vNevertheless, we also saw that the connection between the lattice world and the -
continuum real world is tengou's at present because of limited computing power.
While there are as yet no firm final answers, the tentative results thusfar look very
promising. Clearly the most exciting (iuasi “prediction” is the occurrence of a de-
confinement transtion at energy densities roughly one order of magnitude above the
ground state energy of nuclear matter. The details of that transition are not yet
settled, but it appears that thermodynamic quantities may change rather suddenly
as the large number of quark-gluon degrees of freedom become libefated.'

From the phenomenological point of w}iew, these tentative results are very ex-
citing because current estimates[4][5][6] suggest that such energy densities could be
easily achieved with collisions of heavy nuclei at relatively “low” (,Z, 10 AGeV) and
also at much higher (2 1 ATeV) energies. At the lower ‘e’nérgies, heavy nuclei are
expected to stop each other{60], and therefore high ’eﬁérgy densities are expected -
to be accompanied by high baryon densities. At -th_e"l.ligh en_eligies, low baryon den-
sity but high energy density matter is expected to be produ_bed in the midrapidity
regions. Therefore, it may be possible to investigate experimentally the decbnﬁne—

ment transition in Fig.5.4 over a wide temperature and density domain with nuclear

collisions. Thus the Study of QCD thermodynamics need not be limited to gedanken

or digital experimentation.

Of course, there remains the formidable challenge of relating experimental ob-
servables §uch as inclusive cross sections to thermodynamic quantities such as the
equation of state. In the BEVALAC area we saw in section 2 that after a decade
of experimental and theoretical work on dynamical reaction theories, tentative es-
timates for the nuclear equation of state are finally emerging. In the search for
the quark-gluon plasma much bmore sophisticated dynamicél theories await devel-
opment. Those theories must be able to describe nonequilibrium effects and the
hadronization process in addition to hydrodyné,mic phenomena that may result if

local equilibrium is achiéved. The lattice world on the computer is at best rele-
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vant to the nuclear collision world. in the lab only for that phase of the{cp_llision
after local equilibrium is achieved and before the system disintegrates. In order to
assess whether local eqﬁilibrium can be attained at all, transport properties[39] of
the QGP have to be known also. These quantities can only be obtained rigorously
only by studying real time:correlation functions in.the QGP- a task outvof rea,ch.. at
present. Clearly, there will be no shortage of fascinating problems in this _froni;ier

area of physics for quite some time. - - . v e ; s
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