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Abstract 

A model for predicting the current, concentration, and potential distribu

tions in a thin-gap channel tlow cell is presented. The model does not invoke the 

thin-diffusion-layer assumption or the assumption of straight current lines, and 

it allows for multiple reactions. The model, however, does not include the effect 

of migration; thus, it is only valid for systems with excess supporting electrolyte. 

This model can be used for the design and scale-up of channel tlow electrochemi

cal reactors. Results are presented for a single reaction to show the effects of 

interacting diffusion boundary layers and of the axial component of current. 
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Introduction 

A channel flow cell consists of two parallel plates, between which electrolytic 

solution flows. When the gap between the two plates is thin compared to the 

diffusion-boundary-layer thickness, the cell is called a thin-gap channel flow cell. 

The advantage of a thin-gap cell is its low ohmic drop. 

The analysis of thin-gap cells is complex because several effects must be 

taken into account. For example, when the gap is thin, the boundary layers 

"interact" because the species can diffuse across the gap to the opposite elec

trodes. Although low-Reynolds-number channel flow cells have been analyzed by 

many investigators, e.g. (1-8), each model contains several simplifying assump

tions. Here, we shall present a new model and discuss how the results are 

affected by the interaction of the diffusion boundary layers and by the axial com

ponent of current. 

The model presented here is similar to those of White et al. {1) and Parrish 

and Newman {3). White's model accounts for interacting boundary layers, multi

ple heterogeneous and homogeneous reactions, and migration. His model, how

ever, does not account for the two-dimensional structure of the potential distri

bution because it assumes that the current lines are straight {no net axial 

current). Parrish and Newman's model accounts for the two-dimensional poten

tial distribution, but it is written for a single reaction, and it assumes that the 

diffusion boundary layers are thin, and, therefore, do not interact. 

The model presented here does not assume thin diffusion boundary layers or 

straight current lines. The model, however, does not account for homogeneous 

reactions. It also assumes that there is excess supporting electrolyte; therefore, 

migration is neglected. Because the governing equations for this model are 

linear, the technique of superposition is used to reduce the problem from two

dimensional to one-dimensional. 

.. 
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Mter the assumptions and governing equations are presented, the results of 

the model will be discussed. 

Geometry and Assumptions 

Figure 1 shows the cell geometry. The fluid enters from the left in fully 

developed laminar flow. The electrochemical reactions occur on the electrode 

surfaces, and boundary layers (shown by the dotted lines) develop on each elec

trode. In the model, these boundary layers may touch the opposite electrodes. 

The assumptions for the model are as follows: there are no homogeneous 

chemical reactions; the cell does not contain a separator; there is excess sup

porting electrolyte (migration can be neglected); the flow is laminar; and axial 

diffusion is negligible. For the flow to be laminar, the Reynolds number (based on 

d8 =2h) must be less than 2100 (9). For negligible axial diffusion, the Peclet 

number must be greater than about 10. This assumption is generally valid 

because Pe=ReSc, where Sc is typically 1000 for electrochemical systems. 

Governing Equations 

Table I lists by name the governing equations and the corresponding 

unknowns. At the left of each column is the number of equations or unknowns 

and whether each entry is a function of axial position (x ). For example, since 

there are i species and two electrodes, there are 2i unknown surface concentra

tions as functions of axial position. Note that there may be an arbitrary number, 

j, of electrode reactions . 

The two flux expressions are the Fick's-law expression, which relates the flux 

to the gradient of concentration, and the Faraday's-law expression, which relates 

the flux to the partial current densities due to each of the j electrochemical 

reactions. 
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Figure 1. Cell geometry. 
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Table I Governing Equations 

.l. 

Equations Unknowns 

.. 
2i(x) Fick's Law 2i(x) Fluxes 

2i(x) Faraday's Law 2i(x) Surface Concentrations 

2j(x) Butler-Volmer 2:1 (x) Partial Currents 

2j(x) Surface Overpotential 2j(x) Surface Overpotentials 

2j(x) U;,o 2j(x) uj.o 

2(x) q,o (x) 2(x) q,o (x) 

1 Equ.al Currents 1 q,• 

2(x) Total Currents 2{x) Total Currents 

1 Cell Potential 1 Ve~nocte 

1 Zero of Potential 1 Yce~thocte 



6 

The Fick's-law expression is written as a superposition integral and will be 

discussed in the next section ("Solution Technique"). The Faraday's-law expres-

sion, for a reaction of the form 

is written 

~ si; Mf' .... n;e-, 
i 

[1] 

[2] 

where si; is the stoichiometric coefficient of species i in reaction j, n; is the 

number of electrons transferred in reaction j, and i; is the partial current den

sity due to reaction j. 

The partial current density i; is given by the Butler-Volmer expression, 

which describes the kinetics of each electrode reaction (10): 

. . I [O.ajF ) (-O.cjF Jl 1.; = '1.0 J exp ~TJsj - exp RT TJsJ , [3] 

where i 0 j is the exchange current density for reaction j and depends on the sur

face concentrations cia. This dependence is expressed as 

[ 

C· )"''ij 
ioj = iOj,rBf n ~ I 

i \,ref 
[4] 

where i 0; .ref is the exchange current density evaluated at reference concentra-

tions ci,rsf. The surface overpotential, TJsj is defined as 

TJsj = V- ~flo - U;.o • [5] 
where 

U;.o lu• _ E_ ~:S In [cw J] 1 n; F i 
11 

Po 

-lu• RT [C; n l] [6] --- ~si .rs In -::- . TB 
~aF 

The subscript re denotes the reference electrode reaction, Lj9 is the standard 
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electrode potential of reaction j, and tP 0 is the potential in the solution just out

side the diffuse double layer. When there is excess supporting electrolyte, q,o is 

governed by Laplace's equation (11). The solution to Laplace's equation for an 

arbitrary current distribution is (12) 

<Pgu.UL(x} = <P"-
2

:/C.., {~ [icath(x') ln [sinh 2(rrx;• )] 

[7] 

The integration constant <P" has the physical significance of setting the relative 

amounts of total overpotential on the anode and cathode. 

Another equation results from the condition that the currents on the two 

electrodes must be equal, where the currents are the integrals of the current 

densities which are the sums of the partial current densities due to the electrode 

reactions. 

The final specifications are the cell current or potential and a zero of poten

tial. In this problem formulation, the cell potential is specified, and the cell 

current is calculated. 

The right column in table I shows the unknowns corresponding to the equa

tions listed above. 

It is convenient to write the equations listed in table I in dimensionless 

form, because fewer parameters are needed to define each problem. For a sys

tem with i species and j reactions, {2 + 2ij + 4i + 4j} dimensionless parameters 

are needed. These are parameters characterizing the electrode reactions, the 

geometry, the transport properties, and the operating conditions. Table II lists 

these dimensionless parameters. The parameters ~. N, and Pe dfJ L are defined 

as follows: 

> 



Parameter 

[-nmF) 
Ul sRmRT 

Po 
CJl<r. 

h/L 

Table II Dimensionless Parameters 

Significance 

concentration dependence of ex
change current 

anodic transfer coefficient 

cathodic transfer coefficient 

exchange current 

standard electrode potential 

solvent densityt 

reference-electrode concentrations 

reference concentrations {for ioj ,ref) 

stoichiometric coefficients 

aspect ratio 

diffusion coefficients 

Number of 
Parameters 

ij 

j 

j 

j 

j 

1 

i 

i 

ij-1 

1 

i-1 

8 

1 T'"' • . • d. . _, . . • . d . . . . . ., . rre <:<· •• aJSja::"arr.e.e::" 1s :10 .. 1rr.ens1o;uess oecause 1. lS use oruy 1:1 conJ1L"1Ctlon Wlw'l Vj. ~1nce ... '1~ 
value of uj depends on the units used to describe t!le p:-imary re!e::"ence state, such as :nolality, uj 
has not oruy ·.l.Ili ts of voi ts, but also hidden ;.mits of molaiity. 



N dimensionless limiting current ~ 

[-nmF) applied potential 
Ycstt s Rm RT 

ci"" feed concentrations 
CRa: 

dimensionless gap thickness 

(relative to boundary layer} 

~ This interpretation holds only for L'tin diffusion bou.TJ.dary layers. 

9 

1 

1 

i-1 

1 

2 + 2ij + 4i + 4j 
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J. --'1'tm [ FL ) . 
j = S Rm RT ICoc 'La; .ref ' [8] 

_ n~ F-Dncnoc [6<v>L2 J;s N-------snm RTICoc hDn ' 
[9] 

[10] 

Alternatively, [N(Pe del L)-113 hi L] could be specified instead of N. This param-

eter would represent the ratio of feed concentration to supporting electrolyte 

concentration because it would contain c9oci~C.x, where, for excess supporting 

electrolyte, """ is proportional to the supporting-electrolyte concentration. 

Solution Technique 

The key to the numerical method for solving the coupled equations dis-

cussed above is the linearity of the convective diffusion equation. Only the boun

dary conditions are nonlinear. Therefore, Duhamel's superposition theorem (e.g. 

13, 14) may be used to reduce the two-dimensional problem to one-dimensional 

boundary integral equations. 

By applying Duhamel's theorem to the convective diffusion equation in a 

channel, the fiux of species i at an electrode is written in terms of surface con-

centrations only. No concentrations within the electrolyte are needed. This 

expression is, on the cathode (15), 

[ 11] 

where 

~ = y' I B [12] 



D;. 
(=x 

~B2<v> 
2 

11 

[13] 

On the anode, the electrode subscripts and signs are reversed. These integrals 

are discretized by the method of Acrivos and Chambre {16), which is based on a 

method suggested by Wagner (17). Note that the tlux of species i on an electrode 

is affected by the behavior of both electrodes because the diffusion boundary 

layers can interact. Also note that the tlux depends only on upstream concentra-

tions because axial diffusion is negligible. The dimensionless tluxes C/{-(,-1) 

and C~({-(, 1), discussed in reference 15, are solutions to the convective diffusion 

equation with a unit step change in concentration on one electrode. For the wall 

with the step change in concentration and { < 0.11, 

Ct{{.-1)=- ~ (1.35659745<-11 3 - 0.2- 0.060733452(113), 

and 

for { ~ 0.11, where 

.\1 = 1.6815953222 
,\2 = 3. 6722904 
,\3 = 5.6698573459 

A 1 = 0.8580866740 
A2 = -0.65921993 
A3 = 0.5694628499. 

For the wall without the step change, 

1 0.6069 
Cf({,1)= - 2 ( exp (0.9594- { - 0.4512e -0.2761<)) 

for { < 0.18 and 

for { ~ 0.18. 

[14] 

[15] 

[16] 

[17] 

[18] 

Figures 2 and 3 show the iterative scheme to solve the dimensionless form 

of the equations in table I. The basis of the scheme is to iterate on the potential 

distributions cfl~n (x) and cflgatll (x ). Figure 2 is a detailed picture of the order in 
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which the governing equations are solved, and figure 3 shows how the potential 

distributions are damped from iteration to iteration. 

Before examining figure 2 in detail, one must first understand the physical 

significance of ill • and <i>. Note that, in equation 7, if one subtracts ill • from both 

sides and divides through by <i>, the left side is (c'fl 0 - ifl•)/<i>, which represents 

the shape of the potential distribution, and the right side shows how this shape 

depends on the shape of the current distributions, i/<i>. The integration con

stant, cp •, in equation 7 sets the relative amounts of overpotential on the anode 

and cathode. For example, if ill • is too close to Van. the overpotential ( V- ifl0
) on 

the anode will be too low, and the integral of ian will be less in magnitude than 

the integral of icath.· Thus, ill• is adjusted to satisfy the condition that the 

currents are equal on the two electrodes. The average current, <i>, sets the 

magnitude of the overpotentials. For example, if <i> is too high, the overpoten-

tials calculated with the q,o from equation 7 will be small, and, hence, the 

currents calculated from these overpotentials will be too small to agree with the 

input <i>. In summary, (ifl 0 
- ifl•)/<i> describes the shape of the potential dis-

tribution, ill • determines the placement of iflgn and iflgath. relative to the electrode 

potentials, and <i> sets the magnitude of ( V- ifl 0 ). 

We can now discuss the entire scheme of figure 2 in detail. Proceeding from 

top to bottom on figure 2, first, a guess is made for the potential distributions 

and for <P • and <i>. 

The distributions iflgn (x) and <Pgath. (x) are then substituted into the definition 

of surface overpotential (equation 5), which· is, in turn, substituted into the 

Butler-Volmer kinetic expression (equation 3). The partial current densities ii 

are then used in the Faraday's-law fiux expression (equation 2). The resulting 

Faraday's-Law expression, therefore, contains the guessed potential distribution 

and unknown surface concentrations (arising from the concentration depen-
'/ 

dence-of the exchange current density). The Fick's-law expression also contains 
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unknown surface concentrations. By equating the Fick's-law and Faraday's-law 

expressions for the flux of each species on each electrode, one can obtain a set of 

equations to be solved for the unknown surface concentrations. These equations 

are solved by a multi-dimensional Newton-Raphson method at each axial mesh 

point, starting with the leading edge. The spacing of these mesh points is fine 

near the leading edge but coarser downstream, where the profiles are generally 

smooth. To speed the convergence of the Newton-Raphson method, the initial 

guesses for the surface concentrations are made by linearly extrapolating from 

the previous two axial positions. Let it be emphasized that the unknowns solved 

for simultaneously are the concentrations only at the present mesh point. Also, 

the electrodes do not interact at the present mesh point; rather the interaction 

propagates downstream from the already-solved mesh points. 

After solving for the surface concentrations, !Jl • and <i> are adjusted. !Jl • is 

adjusted to satisfy the condition that the currents are equal on the two elec

trodes. <i> is adjusted so that the magnitude of the current on each electrode 

calculated from Fick's law and Faraday's law agrees with the magnitude of the 

current that was used in the solution to Laplace's equation {equation 7). 

Then the new current distributions are substituted into Laplace's equation 

to calculate a new potential distribution. With the new potential distribution, one 

can check for convergence by comparing with the original guess~ Unfortunately, 

the iteration on the potential distribution is unstable, and damping is necessary. 

Figure 3 shows the details of the damping scheme. A damping factor is used 

to average the projected potential distribution with that from the previous itera-

tion: 

q,o = da.mp• !flgta + ( 1-da.mp) • tP~aw. [19] 

To spe~d the convergence of this outer iteration loop, without producing instabil

ities, an optimum damping factor is chosen at each iteration. The optimum 

damping factor minimizes the mean square difference between the new potential 
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distribution obtained with the damping factor and the distribution that would 

result on the subsequent iteration if that damping were then removed. 

Thus, in figure 3, the projected potential distribution is calculated and 

saved. This projected potential distribution is calculated by the scheme shown in 

figure 2 which is depicted by the dotted box in both figures 2 and 3. 

Next, after checking for convergence, the optimum damping factor is 

sought. The lower part of figure 3 shows that a damping factor is applied to the 

saved distribution, and that damped distribution, denoted {4> 0 
- q,•)/<i> try, is 

input to the subsequent iteration to calculate {q,o _q,•)/<i>new. When the sum

of-squares difference between ( q,o - q, •); <i> try and ( q,o - q, •); <i> new is a 

minimum, the optimum has been found. 

When the optimum damping factor has been found, it is applied to the saved 

potential distribution, and the old potential distribution is·updated. 

Although a computer run can take more than 40 outer iterations and several 

hundred seconds on a CDC-7600 computer, the run time can be reduced to < 100 

seconds by using previous runs to provide the initial guesses for the potential 

distributions. This technique is particularly effective when performing a series 

of runs to study the effects of a given parameter. 

Single-Reaction Results 

Since the effects of interacting boundary layers are most pronounced when 

mass transfer is controlling, only limiting-current results will be discussed. It is 

interesting that, for thick diffusion boundary layers, there is still a limiting 

current, even though products from the anode can diffuse to the cathode and 

react. 

For simplicity, we shall consider a single electrode reaction and a single 

species, for example; a metal dissolution reaction on the anode and the metal 

plating reaction on the cathode. We shall also simplify the interpretation of the 
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results by considering a case with weak interaction of the electrodes through 

Laplace's equation (hi L=1). If the electrodes interact through Laplace's equa

tion, the anode current distribution begins to resemble the cathode current dis

tribution, as shown by Parrish and Newman (3). Thus, the source of interaction 

discussed here will be the diffusion of reacting species across the cell gap. After 

discussing the effect of interacting boundary layers, we shall discuss the effects 

of the axial component of current. 

Figure 4 shows a dimensionless plot of the anode current distribution for 

three diffusion-boundary-layer thicknesses. The dimensionless gap thickness 

relative to the boundary-layer thickness is Pe d8 1 L. For large Pe d8 1 L (;:::100), 

for example high flow rates, the boundary layer is thin compared to the 

interelectrode gap. The current distributions shown in figure 4 resemble secon

dary current distributions because there are no mass-transfer limitations on the 

anodic dissolution reaction and because the cathode does not have much effect 

through Laplace's equation (hi L=l). Therefore the anodic current distribution 

is not strongly affected by the boundary-layer thickness. 

The cathode, on the other hand, is mass transfer limited, and therefore icath 

is strongly dependent on Pe d,J L. Figure 5 shows an example of the deviation of 

the cathode current distribution from the thin-boundary-layer result. (If 

Pe d8 1 L were 100 or higher, there would be no deviation, and the thin-boundary

layer approximation could be used.) In figure 5, the solid curve is the current 

density resulting from a step change in cathode surface concentration (from the 

feed concentration to zero) and a constant anode surface concentration 

(can =c feed). This curve decays as x- 113 near the leading edge, where the boun

dary layer is thin, and levels off to a constant, where the concentration profile 

across the cell gap is linear (fully-developed mass transfer). The actual cathode 

current distribution, shown by the dotted line, decays as .x-113 near the leading 

edge, where the boundary layers are thin, but increases again when the anode 
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boundary layer touches the cathode. That is, the solution near the cathode is no 

longer depleted because metal ions produced a~ the anode have diffused across 

the gap to the cathode. Away from the edges of the cell, the cathodic current 

density is low, roughly mirroring the behavior of the anode. Near the trailing 

edge, the anodic current density increases; therefore the cathodic current 

increases because some of the ions produced on the anode diffuse to the cathode. 

We have seen how the interaction of the diffusion boundary layers affects the 

anodic and cathodic current distributions at the limiting current. Again, it is 

interesting that there is still a limiting current when the boundary layers 

interact. To understand why there is a limiting current and to understand the 

anode surface concentration profiles, one must examine the axial component of 

current. 

Using the anodic and cathodic current distribution, one can calculate by a 

material balance the average current density flowing in the axial (fluid-flow) 

direction across a vertical cross-section at position .:r: 

L 

fazt,u (X) = ~ J [ian ( .:r' ) + icath ( .:r' ) ] d.:r' · 
0 

[20] 

Thus, negative axial currents indicate that there has been more cathodic reac-

lion up to the axial position .:r. (Cathodic currents are negative.)· Since the 

cathodic reaction depletes the solution of metal ions, the cup-mixing concentra-

tion at the position x is less than the feed concentration for negative axial 

currents. Figure 6 shows the axial current for Pe d6 I L = 1. Note that the axial 

current is zero at .:r =0 and .:r =L because there is no net flow of current beyond 

the electrode edges. The positive spike in laztaL near the leading edge results 

because the anodic current density rises more rapidly at the leading edge than 

the mass-transfer-limited cathodic current density (approximately 

.:r -11 2 vs . .:r - 113). Throughout most of the cell, the extra current produced at the 

downstream edge of the anode flows upstream before reaching the cathode. Note 

that this does not mean that metal ions diffuse upstream, because in the bulk of 

• 
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the solution, current flows by the migration of supporting-electrolyte ions. 

The current and potential lines corresponding to figure 6 are shown in figure 

7. The potential lines were calculated using the complete solution to Laplace's 

equation: 

til{x ,y) =til • -
2
:"cc {{ [ic11Ut (x') ln [sinh 2{rr x;_x') + sin2(rr Y2~h )] 

+ i 11n (x') ln [sinh 2( rr x 
2
7' ) + sin2 ( rr ~ ) ]d.x} [21] 

The current lines were plotted by starting at one electrode and stepping along a 

two-dimensional grid, numerically calculating the gradient of til at each x or y 

mesh point. In principle, it should be possible to obtain the same current lines 

starting on either electrode. However, since the results were slightly different, 

an average was taken. 

The figures show that throughout most of the cell, the axial current is nega

tive. Therefore, one would expect the electrolyte to be depleted throughout most 

of the cell. One can examine the depletion of the electrolyte by following the 

anodic surface concentration as a function of axial position. Since the surface 

concentration of metal ion is zero at the cathode (limiting current), when the 

anode surface concentration is twice the feed concentration, the cup-mixing 

concentration is roughly equal to the feed concentration. Figure 8 shows the 

anode surface concentration as a function of axial position. Note that the spike 

in C 11n/c168a above 2 corresponds to the positive spike in axial current. Further 

downstream, however, the solution is depleted because the axial current is nega

tive; therefore C11nlc166a is less than 2. 

The effect of boundary-layer thickness is also shown in ti.gure 8. As the 

diffusion boundary layer becomes thicker (lower ftow rate), the electrolyte 

becomes more depleted. In fact, the anode surface concentration can fall below 

the feed concentration, as shown in ti.gure 8. 
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We can now discuss the presence of a limiting current for interacting boun-

dary layers. At first, one might think that, by increasing the cell potential, the 

anode would produce more ions that would diffuse over to the cathode and react, 

and that, therefore, there would not be a limiting current. However, this is not 

the case because if Can were much greater than 2c188fi everywhere, the axial 

current would be positive everywhere. Therefore, the production of metal ions 

on the anode is limited by the requirement that there be no net current flow 

beyond x =L. Another way of thinking about this is that the ions produced on the 

anode must travel some distance downstream before reaching the cathode. The 

ratio of the electrode length L to this distance is a rough indication of the 

amplification effect of ions reaching the cathode from the anode instead of just 

from the feed stream. This amplification factor can be large, but it is still finite, 

and there is still a limiting value for the current. 

Conclusions 

The effects of interacting diffusion boundary layers and of the axial com-

ponent of current have been discussed for a channel flow cell. When 

Pe d 11 / L < 100, the boundary layers interact and may not be considered thin. 

That is, if the gap is thin, the flow rate is low, the electrodes are long, or the 

diffusion coefficient is high, the electrodes may not be treated separately in the 

mathematical analysis. 

An interesting result of the model is that there is a limiting current for thin 

gaps. Even though products from the anode can react on the cathode, the pro-

duction of species on the anode is limited by the requirement of equal currents 

on the two electrodes. 

The effect of axial currents is to deplete the electrolyte of metal ions 

throughout most of the cell. Thus, the two-dimensional structure of the paten-

tial distribution is important, and it should not be assumed that the current 
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lines travel straight across from one electrode to the other. 

Although only single-reaction results were presented for an aspect ratio 

hi L=l, the model discussed here may be used to assess the effect of multiple 

reactions and of interaction between the electrodes through the potential distri- ';.J 

bution. 
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da.mp 

F 

Nomenclature 

channel halfwidth, em 

surface concentration of species i, mol/cm3 

dimensionless flux on the electrode with a unit step 

change in concentration 

dimensionless flux on the electrode without the unit step 

change in concentration 

equivalent diameter (=2h for a channel), em 

diffusion coefficient of species i, cm2/s 

damping factor (see equation 19) 

Faraday's constant. 96.487 C/eq 
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h interelectrode gap thickness, em 

<i> average current density, A/cm2 

.; ~ current density due to reaction j, A/cm2 

io .j exchange current density for reaction j, evaluated at the 

local surface concentrations, A/cm2 

L electrode length, em 

N;. flux of species i, mol/cm2-s 

R universal gas constant, 8.3143 J/mol-K 

T absolute temperature, K 

<v> average fluid velocity, cm/s 

v electrode potential, volts 

X axial coordinate, em 

y normal coordinate, measured from the anode, em 

y' normal coordinate, measured from center of channel, em 

Zt charge number of species i 

.; 

Greek 
...... 

Oaj anodic transfer coefficient for reaction j 

Ocj cathodic transfer coefficient for reaction j 



T/sj 

Po 

Subscripts 

an 

cath 

i 

j 

77t 

0 

R 

re 

exponent for concentration dependence of exchange 

current for reaction j on species i 

surface overpotential for reaction j, volts 

conductivity of feed solution, ohm-1cm- 1 

potential in solution just outside diffuse double layer, 

volts 

integration constant in equation 7 or 21, volts 

pure solvent density, kg/cm3 

dimensionless axial coordinate defined in equation 13 

dimensionless normal coordinate defined in equation 12 

anode 

cathode 

species in solution 

electrode reaction 

main reaction 

electrode surface 

principal reactant 

reference electrode reaction 

28 

~-

.,. 



ref 

00 

Superscripts 

0 

r, ... ,; 

reference concentrations at which exchange current 

density i 0; ,raf was measured 

feed solution 

electrode surface 
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