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ABSTRACT 

We calculate one-loop corrections to the effective potential in models 

obtained from compactification of ten-dimensional superstring theories. 

We find that no masses are generated for gauge non-singlet scalars even 

in the presence of supersymmetry breaking terms induced by gauge and 

gaugino condensation, but that the gravitino mass is determined at one 

loop. The scales of grand unification, supersymmetry breaking and con­

densation are fixed by the gauge singlet scalars and are found to be close 

to the Planck scale. Requiring McuT < MPianck restricts the other pa­

rameters of the theory. We also discuss the one-loop effective potential 

at scales between the condensate and compactification scales with pos­

sible implications for the allowed particle content of the effective theory. 
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In most attempts1•2 to extract the low energy phenomenology from the effective 

Lagrangian3 of N = 1 supergravity, an effective renormalizable theory is specified 

at a scale near the Planck scale ~-l by taking the limit ~ -,..... 0 after appropriate 

shifts have been performed on those fields that acquire vacuum expectation values 

(vevs) of order or greater than- the Planck scale. The usual renormalization group 

methods are used to study the theory and its vacuum structure at lower energies. 

This procedure can be misleading if radiative corrections themselves play a role in 

specifying some large vevs. This is in particular the case for models of the no-scale 

type4 that apparently emerge from the reduction 6 of 10 dimensional superstring_ 

theories to four dimensions, where one scalar field remains undetermined at tree 

level. 

In this letter we present the one loop corrections to the effective potential in 

these models5, with and without the contributions6 to the effective tree potential 

that are induced by gauge and gaugino condensates in the hidden sector. There­

sults obtained without the condensate contribution are valid at scales above the 

condensate scale p.. The stability of the_ one-loop effective potential in this case 

provides a constraint on the number of gaugino degrees of freedom allowed at these 

scales. When this constraint is satisfied, the one loop potential has the interest­

ing property that the quadratically divergent terms can be reabsorbed into wave 

function and/or coupling constant renormalizations. 

The more interesting case is the one including condensate- induced terms, which 

is valid below the condensate scale. These terms break supersymmetry at tree 

level in the effective potential but the scale of supersymmetry breaking remains 

undertermined at that level; it has been argued7•8 that squark and Higgs masses will 

be generated, leading to (via renormalization group effects in the gauge non-singlet 

f?ector2
) spontaneous breaking of the electroweak symmetry and the simultaneous 

determination of the supersymmetry breaking scale. 

We find. instead that the vev of the scalar that .is undetermined at tree level is 

fixed by the one-loop corrections in the gauge-singlet sector of the theory (the dila­

ton, another scalar field coming from the 1Q- dimensional metric and two axi~ns5 ). 
This in- turn fixes the "grand unification" mass Ma~T and the gravitino mass at 

values near the Planck scale that are relatively. insensitive to choices of the "grand 

unification" gauge coupling aauT of the observable sector and the ,8-function of 

the strongly interacting hidden gauge sector, although requiring MauT < MPlanck 

restricts the allowed range of these parameters. On the other hand, the gauge 
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non-singlet scalars remain massless at the one-loop level. 

The one loop effective potential is given by 

V.!I(Z) = Vc ... (Z) + 
2

(
4

1
1r) 2 STr f dp

2
p

2
Jn[p

2 + M 2
], (1) 

where M2=M2(Z) is the squared masidnatrix evaluated for expectation values Z of 

the scalar fields. If we choose for the·gravitino t/J,. the gauge condition "Y"t/J,.=O, the 

supertrace of a function F(M2) of M2 (Z) is:9 

STrF(M2
) = 3TrF(M~) + TrF(M~)- 2Tr(Mj.) + 2F(4m~)- 4F(m~) (2) 

where Mf,s,F are the squared mass matrices for vectors, scalars and spin-1/2 fermions, 

respectively, and 

m~ = e9, (3) 

with g the Kahler potential, is the value of the gravitino mass at tree level. 

The integral in (1) can be regularized by introducing a cut-off p,2 or by a (double) 

subtraction procedure that introduces a scale parameter P,2 ; in either case Jl is 

interpreted as the scale at which new physics damps the integral. The result is: 

1 [ -2 2 1 4 ( 2/ 1-2)] V.ff = V, ... + 
2

(
4

1r) 2 11P. STrM + 2sTrM In M 11 p. , (4) 

where 11 and 11; are constants of order unity that depend on the regularization 

procedure; the cut-off prescription gives 11 = 1, 11' = e114 • In the numerical analysis 

we take 11 = 11' = 1; our results are very insensitive to the precise values of these 

parameters. 

The general form of the field-dependent mass matrix has been derived previously.10 

The fermion and vector boson masses are extracted from the effective tree La­

grangian after a (scalar field dependent) renormalization that transforms their ki­

netic energy terms to canonical form. The scalar mass matrix is given by a similar 

field dependent renormalization applied to the covariant second derivative10 of the 

tree potential, where here covariance is meant with respect to general transforma­

tions among the scalar fields. This procedure yields an effective one-loop potential 

that is independent of the choice of field variables and that retains the invariance 
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properties of the tree potential. The latter feature is not assured if the theory is 

truncated to an effective renormalizable one before calculation of loop corrections. 

We will first study the quadratically divergent terms in (4), proportional to 

STrM2• As shown previously,10 the trace of the second covariant derivative of the 

potential reduces to the trace of the ordinary second derivative if the standard 

form3 is used for the potential with complex scalars of well-defined chirality as field 

variables. 

Let us first consider the effective potentials at a scale above the condensate scale, 

so that condensate effects are negligible. The effective Lagrangian is obtained using 

the prescription of Ref. 3 with the Kiihler potentials 

g = -ln(s + s*) + G +In IW(</>)1 2 

G = -3ln(t + t• - k 14>1 2
), 14>1 2 = L </>;</>' 

(5) 

where the complex scalar fields sand tare gauge singlets and the</>; are non-singlets; 

k.is a normalization constant. W(<f>) is the superpotential for the non-singlet fields, 

at least cubic in those fieids5 and including all possible terms compatible with the 

symmetries.7 The gauge and gaugino fields are remormalized by the field dependent 

function (in the notation of Cremmer et al.3
): 

fafJ(Z) = OafJ>..(s + s•) := OafJf (6) 

where >.. is a constant. Equations 5 and 6 com:pletely specify the tree Lagrangian; in 

particul~r the tree potential takes the form (dimensionful quantities are expressed 

throughout in_ Planck mass Mp units): 

A g 
V, ... = V + e + D (7) 

with 

eg = ec IWI 2 /(s + s•) 

V = _!_e2GfsWW'f(s + s*) W' = 
8

W = (W-)* 
3k ' ' 8</>; • (8) 

2 

D = !!_D"D" na = 3keGf3J.iT-ai-~.. 2/ , ~ • ~, 

5 
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where g = v'41To:cuT is the gauge coupling of the observable sector and the matrices 

T" represent the generators of the gauge group. The tree potential (7) is positive 

definite and vanishes for <f> = 0. The vevs of the fields s and t are undetermined at 

tree level. 

Using (5) and (6) in the general form3 for the effective Lagrangian, we obtain 

the contributions to the supertrace: 

4 
TrM: ="3D +2K 

19 14 A Nc 
TrM'j. = -D +4K + -V + W +eg(10+ -) 

6 3 4 (9) 
2 N 2N A " 

TrM5 = 4(2 + 3)D + 2K + 2(5 + a)V + 2W + 2(N + 6)e" 

mb =eg 

where N is the number of non-singlet complex chiral multiplets and Nc is the 

effective number of gaugino degrees of freedom;. above the condensate scale this 

includes the gauginos of the hidden E8 sector. In the limit"-_:___. 0 the only surviving 

contributions would be the dimension-two operators 

2 

K = 3k~ ecfs4>'K[</>;, (10) 

where the matrix K = I: Tara represents the Casimir operator of the observed 

gauge group, and 

1 eG/S - .. ·· 82W 
W = (3k)2 (s + s•) W;;W''' W'' = 8<f>,8<f>;. (11) 

The dimension-two operators cancel in the supertrace, Eq. (2): 

1 2 A Nc " 
STrM2 = -(4N + 17)D + -(1 + 2N)V + (2N- 4- -)e", 

3 3 . 2 
(12) 

as required by the mass-squared sum rule of rigid supersymmetry. 

Here ji. represents the compactification or grand unification scale, and for ji. -

Mp, the residual contribution (12) cannot be dropped. It has however the same 

structure as the tree potential (7), and as long as 
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_.!!._ + 4 - 2N < 2(4·nV -~ ~ 315 Mjj{l 2TJ 
2 77~ 

(13) 

the potential remains positive definite, so that the vacuum structure is unchanged. 

In this case, the quadratically divergent contribution to the one-loop corrected 

potential can apparently be absorbed in coupling constant renormalization and/or 

field rescaling; the validity of this interpretation depends, of course, on the structure 

of the other quadratically divergent contributions to the full one-loop corrected 

effective Lagrangian. 

Since e9 -jcf>j6
, while[), V -14>1\ a negative coefficient for e9 would in general 

distabilize the potential. Stability could be restored by the logarithmic term in (4), 

but this would presumably generate some non singlet vevs < cf> >- Mp. If such a 

result is to be avoided, (13) restricts the particle content, particularly the gauginos 

in both the hidden and observed sectors, that may be permitted to survive at the 

highest scales where a description in terms of a 4-dimensional field theory becomes 

a good approximation. Consider for example the Es X E~ superstring model of 

Candelas et al. 11 If E~ remains unbroken, Nc receives a contribution equal to dim 

E~ =248 from the hidden sector which consists of vector superfields in the adjoint 

representation of E~. The gauge group is a rank five or rank six subgroup of E6 

and contains at least SU(3) x SU(2) x U(1) x U(1). 12 Therefore Nc >261. On the 

other hand the matter fields belong to N1 families of 27 representations of E6 , plus 

some self-conjugate part of (27 + 27)'s.7
•12 Considering the minimal case-minimal 

gauge group, N, = 3· and no contribution from the antifamilies-we have Nc = 261, 

N = 81, in which case !lf + 4- 2N = -27.5 < 0 and (13) is satisfied trivially. This 

is general: since Nc < dim E8 x E6 = 326 and N > 81, we have !lf + 4 - 2N < 
5 and (13) does not yield any useful restriction. The limit would become relevant 

only if gauge groups larger than 0(32) or E8 x E8 were found._ 

We .now turn to the effective one loop corrected potential below the scale ~ of 

the gaugino condensate of the hidden sector, under the assumption that (13) is 

satisfied for jl- Mp. The superpotential is now modified according to6 

W -+We = W(cf>) + h(c + e-S•/2bo) . (14) 

9-+ 9c = -ln(s + s•) + G +In IWcj 2 (15) 

where b0 determines the /1-function of the strong gauge group of the hidden sector: 

7 
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dgo(~o) = -bog!. 
~0~ 

The tree potential is modified from (7) to: 

yc = V + U + [) tree 

with 

l
o9cl 2 

eG _ 2 _!£ 2 
U = eB•(s+ s·) - = --IW(cf>) +he+ h(1 + a)e •e •I 

os s + s• 
where we have defined 

a= 3Res t1 = 3lms 
bo ' bo 

(16) 

(17) 

(18) 

(19) 

and c is a constant. Each term in the potential (17) is still positive definite. V and 

[) vanish for cf> -+ 0 and U vanishes for 

/1 = t1o: Re(ceillo/2) = -jcj' 

a = ao : jcj = (1 + a 0 )e-a•f2 
(20) 

The scalar field Re t and therefore the value me; = eG· of the gravitino mass remain 

undetermined at tree level. 

As before, the squared mass matrix is obtained from the general Lagrangian of 

Cremmer et al. 3 using (6) and (14), (15). We find the contributions: 

4 
TrM~ = -[) + 2K 

3 

19 14 • Nc 
TrM].. = 6 v + 4K + 3 v + W + U(10 + T) 

3jhj2 
- 4(U- eB•) + --egase-a 

2bo 

N 2N • 
TrM; = 4(2 + 3)[) + 2K + 2(5 + 3 )v + 2W + 2(N + 6)U 

3jhj 2 

- 2(U- eB')+ --ecase-a 
bo 

m~ = eg, 

8 
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where K and W are the same as above (Eqs. 10, 11). Again, the dimension-two 

operator cancel in the supertrace. 

2 1 1 • 
STrM = -(4N + 17)D + -(4N + 2)V 

. 3 3 

Nc g + (2N- 4 - -)U + 2(U - e ') 
2 

(22) 

where now Nc includes only the gauginos of the low energy observed gauge sector. 

The case without condensate effects is recovered in the limit h -+ 0, for which 

U -+ e9, 9c -+ g, and Eqs. (21, 22) reduce to Eqs. (9, 12) above. 

The cancellation of dimension-two operators even in the presence of induced su­

persymmetry breaking effects has as a consequence that the quadratically divergent 

one-loop corrections do not induce mass terms for the gauge non-singlet scalars. 

Indeed, the W term coming from fermion loops (in Tr M~) which was thought to 

give rise to a mass for the scalars8 is exactly cancelled by a similar contribution 

from the scalar sector (in Tr M~). We will see below that the gauge non singlet 

scalars remain massless when the full one-loop corrections are considered. 

The one loop corrections yield, however, a potential that is no longer positive 

definite. This can easily be seen by writing the potential (4) with STr M 2 as given 

by (22) in the form 

v.ff = a1D + a2V + a3U + -( 1 
)2 [-77JL22eg, + !sTrM4 lnM2 /(1'-277')], 

2 47r 2 
(23) 

with 

771'-2 1 1 Nc 
lli = 1 + -( )2oa;,oa1 = -(17 + 4N),oa2 = -(4N + 2),oa3 = 2N- 2--. 

2 47r . 3 3 2 

The first three terms in (23) are positive definite and vanish for .c/J = 0 and S = s., 
as determined by the tree potential [Eq. (20)]. This leaves Ret undetermined; its 

value is determined by the last term in (23), which is not positive definite. (Strictly 

speaking, the contributions to (23) that do not vanish for h -+ 0 should be cut off 

at the Planck mass scale; however these terms play no role in the analysis below. 

Alternatively, the fields and coupling constants in (23) might be interpreted as the 

renormalized ones with corrections from internal momenta at scales JL 2 ~ IPI 2 ~ M~ 

already included.) 

9 
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In general, we should minimize the corrected potential (23) with respect to all the 

fields. However, if the loop expansion is meaningful, sand c/J should be shifted from 

their ground state values by corrections of order of the loop expansion parameter 

h: s =So+ hE:, cP =no. Since 1) and Vc are O(c/J4
) and vis proportional to 

\!~\
2 

= if(s,c/J)- f(s.,O)i
2 = O(h

2
) 

the one loop vev of Re t is determined by the last term in Eq.(23) with E: and o 
neglected. 

Once we set c/J and s at their tree level ground state values, it is easy to evaluate 

Eq. (24) as a function of Ret. The fermion mass-squared matrix is diagonal with 

non-zero elements: 

(M].): = AeG£h-a 

(M].): = AeG 4ae-"' 

A=: 3lhl 2 /(2b.) 

(24) 

Note that no gaugino masses are generated at tree level. The scalar mass matrix is 

of the general form: 

with10(z = s, t, c/J;) : 

M2 = ( P/ P;;) s .. 
p'1 i P; 

i = ;_ = ( r.-lf2)k a
2
v; ... ( r.-1/2); 1 P, P, ::1 , a-ka ::1 t 

Z Zt 

p'i = (P•; r = (g-1/2)~ [ ;:~;:: _ g~w-1 )':a;;:·] (g-1/2)~ 
9; = _!:..2_ gkt = as 9 J 
' az;az•' "' az"'azkazt . 

(25) 

(26) 

In other words, for the "diagonal" part P! of the squared scalar mass matrix, the 

covariant second derivative is the same as the ordinary second derivative, while for 

the "off-diagonal" parts p;; and p'' there is an additional term. However, since we 

are here evaluating MJ at the tree ground state values of s and c/J, for which Vi, •• is 

10 



an absolute minimum, aV1..,jaz, = 0, and the additional term vanishes. The only 

non-vanishing elements of M~ are: 

m! = AeG o:(1 + o:2)e-a 

m,, = m" = -AeG2o:2e-a 
(27) 

The resulting matrix, Eq. (26), is easily diagonalized with non-zero eigenvalues 

m~ = (m! ± m,.) = AeG o:(1 ± o:)2e-a. 

Finally, the squared gravitino mass is 

m~ = eG' = AeG o:e-a. 

assembling these results, the one-loop potential (4) takes the form: 

with: 

v.J! = ( 411')2jhj'2e-av 1 A2 l 
v = u2S + u3[T1lnu + T2] 

u = e2G/3 = 1/ (t + t•), A 2 = M2 A -lo:-leae-G 

S = -2TJe-af3STrA 2 T1 = ~o:2e-aSTrA4 
' 4 . 

T2 = T1 [21n o: + ln(lhl2 /4) - 2o:/3 -In TJ'] 

2 -

+ ~o:2e-aSTr(A4 lnA2 ) 
4 

and we have used the relation for the condensate scales: 

11-2 = ~O:-lf.-a/3/ (2Ret- ki<f>2\) 
bo 

(28) 

(29) 

(30) 

(31) 

(32) 

at 14>1 2 = 0. From the above evaluation of the non-zero elements of M 2 we obtain: 

STrA 2 = -2 (33) 

STrA4 = 2(6o:2 -1) ~ 12o:2 for o:2 >> 1 (34) 

11 
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STr A 4 ln A 2 = -2o:4 ln o:2 + (1 + o:) 4 ln(1 + o:) 2 + (1 - o:) 4 ln(1 - o:) 2 

~ 2o:2(7 + 12lno:) for o:2 >> 1 
(35) 

The stability of the potential (30) requires T1 > 0 and consequently STr A 4 > 0, 

or from (34): 

o:2 > i(6_ ' (36) 

This in turn places a restriction on the gauge coupling constant of the observable 

sectors 

1 3 
0:GUT = 47r Res = 47rboo:. (37) 

The restriction (36) corresponds to o:auT ::; 1 if the string gauge group is Es and is 

weaker for smaller groups; we assume (36) is satisfied and obtain a relation for the 

vev of Ret: 

av l - = 0 = 2S + u [3T1ln u + 3T2 + T1 . au 

Equation (38) is solved by: 

(
3T2 + T1) -2S (3T2 + T1) 

x = u exp 
3

T
1 

, x In x = 
3

T
1 

exp 
3

T
1 

· 

(38) 

(39) 

Using the large o:2 approximation (which will be justified a posteriori) for the su­

pertraces, Eqs. (34) and (35), the right hand side of Eq. (39) becomes a pure 

number: 

xlnx= !!_~e312 =TJ/r/l.OO] 
11'9 

x = 1. 76 for TJ = TJ 1 = 1 

This in turn determines the GUT mass scale: 

12 
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MauT = ( .J Re
1
sRet) •a• (6y'U) 1/2 

ab0 

= ~(77'x) 1 14 e- 318 ~(4rraauT)3f2exp ( 1 
) 

3 .Jihi 87rb0 aauT 

(where we used Eq. (37) to eliminate a), the gravitino mass: 

m- = e9,f2 = ~(r/x)3f4e-9f8~(4rraauT)5f2 
G 9 .Jihi 

and the condensate scale: 

---•- 2 ( r )1/4 -3/8 bo ( )3/2 J.l. = MauTea.boaaur = - 77 x e fli:i 4rraauT . 
3 v lhl 

The value of MauT, Eq.(40) is smallest for aauT = (12rrb.t1; this means 

2 e9f8 (77'x)1/4 
MauT ?: 9. f3b. I hi 

(41) 

(42) 

. (43) 

(44) 

If we impose MauT ::; Mp we find b0 ?: 0.21 for h ~ 77' ~ 1. For example SU(3) 

with b0 ~0.06 would be too small a group unless h >3.6. Adopting the E8 value 

b0 = 0.57, we find that MauT ::; Mp for values of aauT in the range 1/44 ::; aauT ::; 

1/8(18.5 ::; a ::;3.5), with a minimum value MauT ?: 0.6Mp for a ~ 1/21.5. This 

gives (77' ~ h ~ 1): 

1.5 x 10-s::; mt;/MP::; 0.1 

0.05::; J.L/Mp ::; 0.55. 

There is a degree of ambiguity in our analysis in that we included the scalar field 

dependence of the condensate scale, Eq. (32), in the minimization of the effective 

potential (4). If instead we treatJ.L2 as a constant, and for consistency set 

6 
J.l.2 =< b;,a-1e-af3u1/2 >vac • (45) 

after minimization, the equation (38) that determines < u. > is modified to 

0 = S + u[2T1ln u. + 2T2 + T1]. (46) 

13 
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This modification has an imperceptible effect on the above numerical analysis. We 

. also remark .that as the cut-off parameter ji. appearing in Eq. (4) is physically 

meaningful, evaluating (7) by dimensional regularization would not be a correct 

procedure. However, had we done so, we would have obtained instead of Eq. (40): 

xlnx = O,x = 1, 

which again has only a slight effect on the numerical analysis. 

Finally, we look for radiatively induced masses for the non-singlet scalars. These 

are determined by the terms quadratic in ¢ in the expression (4) for the effective 

potential and we can obtain them by expanding (4) near ¢ = 0. Expanding the 

squared mass matrix M 2 about its value MJ at the ground state: 

M 2 (Z) = Mg +A 

it follows from the identity: 

TrF(M2
) = TrF(MJ) + Tr[AF'(MJ)] + O(A2

), 

for any matrix-valued function F of M 2, that only those elements M,~ of M 2 that are 

non vanishing at the ground state, (M5)•; # 0, need be retained in the evaluation of 

the logarithmic term in the effective potential, Eq. (4). Then one can check that, 

to order 1¢1\ the ¢>- dependence of the effective potential (4) is only through the 

combinations [using either of the prescriptions (32) or (45)]: 

c--+ c + W(¢)/h = c + o(¢3) 

1 1 -- --+ . _ 112 I 2 
t+t' t+t'-kl¢12 -U. +u.k ¢1 +0(¢4) 

(47) 

so that: 

V.JJ(Z) = V.JJ(Zo) + k 1¢1 2 
y2 :y V.JJ(Zo) + 0(¢3

) (48) 

Since by construction fv-V.JJ(Zo) = 0, no terms quadratic in the non-singlet fields 

¢ are generated by the one loop corrections. 

A possible caveat is the observation that a non vanishing, negative cosmological 

constant appears at the one loop level (independently of the prescription used). 

14 



Depending on the scalar field dependence of whatever term(s) we have missed that 

serves to cancel the cosmological constant, our results could be modified. It has 

recently been argued13 that such a cancellation is assured by a residual unbroken 

invariance under a non-compact transformation on the scalar fields. However, the 

symmetries of the tree Lagrangian should also insure that the 14>1 dependence of the 

resulting effective potential arises only through the substitutions (47), so that no 

scalar masses should result. We further see no reason why the orders of magnitude 

obtained above for the scales MGuT, ma and 1J- should be significantly altered. On 

the other hand, in order that superstring models lead to a successful phenomenology 

at low energies, it is important to have a source for scalar masses7
•8•14• They will 

therefore be viable only if radiative corrections at higher orders or higher modes of 

the string provide such a source. In any case, in order to discuss the phenomenology 

of these models, one should set the common mass scale m of the gauge non-singlet 

scalars at grand unification as a free parameter .14 Its order of magnitude is presum­

ably smaller than the one that one- loop radiative corrections would have given, 

that is (using Eq. (4, 11, 12)) 

or, with (41) 

( 
eG/3 ) 1/2 

m<<!l- -­s+s 

MGuT 
m<<!l- Mp · 

(49) 

(50) 

In conclusion, we have shown that no scalar masses are generated by one loop 

radiative corrections in the presence of a gaugino condensate that serves to break 

supersymmetry in the ground state. On the other hand, the vacuum degeneracy 

of the tree potential is removed, and the scales MGuT, 1J- and ma that govern the 

scales of grand unification, condensation and supersymmetry breaking respectively, 

are found to be close to Planck scale. The condition MGuT ~ Mp implies that the 

hidden E8 cannot be broken to arbitrarily small group and restricts the value of 

CXGUT· A more detailed discussion of our results will be given elsewhere. 15 
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