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Summar

An extensive series of numerical calculations of oblique-shock-wave
reflections in air and argon have been performed using a version of the
second-order Eulerian Godunov scheme for inviscid compressible flow. This
scheme is among the best of the upwind schemes developed in recent years.

The results have been compared with the best available interferometric
data from the UTIAS 10 cm x 18 cm shock tube, for fifteen different cases.
The objective of this portion of the study was to assess the accuracy of the
computer code in computing two-dimensional shocked flow of an inviscid perfect
gas. A significant portion of our analysis is devoted to the question of the
extent of influence of viscous and vibrational nonequilibrium effects on the

experimental flow fields.

Further parametrized series of calculations were performed in an effort
to study the feasibility of numerically constructing inviscid transition lines
in the (Ms’ ew)-plane. Good agreement with analytic predictions was found for
low values of M. and, as might be expected, there are substantial
discrepancies for Mg = 8.75. The possibility of using such numerical results
in the formulation of accurate transition criteria is discussed.

Overall, the computer code has been found to represent a significant
predictive capability. The future extension of the code to permit the
detailed model1ling of nonequilibrium and viscous effects is, however, an

important objective.
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1. Introduction

A direct comparison is made for fifteen basic cases of oblique shock-wave
reflections hetween interferometric results obtained at the University of
Toronto Institute for Aerospace Studies (UTIAS) 10 cm x 18 cm Hypervelocity
Shock Tube and numerical results obtained by using a current computational
method for solving the Euler equations of compressible flow. Additional
parametrized sequences of calculations are presented to assess the utility of
the present numerical method in constructing the various reflection-transition
lines (RR - SMR, SMR - CMR, CMR - DMR; see Figs. 1 & 2) for inviscid flows in the
shock-wave Mach-number, wedge-angle(Ms, ew) -plane. An additional
parametrized sequence has been calculated in order to study the validity of
the boundary-layer displacement theory to account for the "von Neumann

paradox."”

Over the past five years, extensive experimental and analytical data were
obtained for these problems (Ben-Dor.& Glass 1978, 1979, 1980; Ando & Glass
1981; Lee & Glass 1982; Shirouzu % Glass 1982; Deschambault & Glass 1983;
Deschambault 1984; Hu 1984; Hu & Glass 1985; Hu & Shirouzu 1985; Wheeler and
Glass 1985; Wheeler 1985). We refer the reader to these references for an
extensive discussion of the theory of oblique shock-wave reflections, an
introduction to the history of the field, and further references.

With the advent of modern computers, it has become possible to attempt
the computation of such problems using finite difference schemes. The state-
of -the-art in this area was surveyed in Ben-Dor & Glass 1978 and Deschambault
& Glass 1983; these authors concluded that advances in numerical technique
would be required before numerical results could be viewed with the same
confidence as experimental data. The main object of this report is to
demonstrate that the numerical method used herein is sufficiently accurate to

be placed on 2 nearly equal footing with experimental methods in the analysis
of perfect, inviscid, compressible flows. However, further development work
is needed in the numerical modelling of nonequilibrium, viscous flow fields.

This study deals exclusively with results for air and argon; the
experimental data for these results may be found in Deschambault 1984 where
they are discussed in detail. Many other related calculations have been
performed with our computer code, and we briefly describe them here. Recent
experimental data for SFg has also been obtained and is reported in Hu 1985



and Hu & Glass 1985. An analogous numerical-experimental study to the present
report for SFg may be found in Glaz et al 1985, An interesting problem is
posed by assuming a polytropic gas, fixing MS and 8, and allowing

y = ratio of specific heats to be a varying parameter. This problem is well-
suited to a numerical study and the results using our numerical method are
presented in Colella & Glaz 1984 and Rerger et al 1985, Finally, a computer
code has been developed for the problem of a spherical explosion reflecting
off an ideal surface; the numerical method is virtually jdentical to that used
in obtaining the results for this report. Calculations using this code are
presented in Colella & Glaz 1984 and Colella et al 1985. The results of these
calculations show that the high Mg, DMR flow fields of planar oblique shock
wave reflection have a lot in common with the Mach stem region flow fields of
the spherical explosion problem just after the RR-DMR transition, although
there are significant structural differences downstream of the triple point,
presumably due either to unsteadiness or the different boundary conditions.

A portion of the calculations which are studied in this report have
appeared in Colella & Glaz 1982, 1984 and Glaz et al 1985. The latter paper
includes an expanded discussion of some of the overall issues involved in
comparing experimental results to approximate solutions of a perfect inviscid
flow. In this report, we concentrate on presenting the complete set of
calculations including a discussion of each comparison or parametric series.
The plan of the report is as follows. In Section 2, the terminology of
oblique shock-wave reflections is reviewed and some notation is defined.
Sections 3 and 4 are devoted to experimental techniques and the numerical
method, respectively. In Section 5, the results are presented and Section 6
is an extended summary.



2. Oblique Shock-Wave Reflections

The four types of pseudo-stationary oblique shock-wave-reflection
patterns are shown in Figure 1 and consist of (a) regular reflection (RR),
(b) single Mach reflection (SMR), (c) complex Mach reflection (CMR) and
(d) douhle Mach reflection (DMR). Figure 1 illustrates the definitions of
wedge angle ew’ triple-point trajectory angles, y sx, various shock waves I, R,
R', M, M', slip surfaces $,S' and the flow regions 1-5 produced by the
foregoing reflections, the angle § between the incident I and reflected R
shock waves is also shown as well as the angle w' between R and the wall or R
and the triple-point-trajectory angle x. The bow shock stand-off distances s
and the length L, between the wedge corner and the reflection point or Mach
stem are also indicated. Such quantities can be measured experimentally or
predicted numerically and provide important information on the state of the
gas whether frozen, non-equilibrium or equilibrium (Shirouzu & Glass 1982; Hu
1985; Hu & Glass 1985).

The equations of gas dynamics are, in Cartesian coordinates,
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where p is the density, u = (u,v) is the velocity field, E =¥Q 042+v2) + e is

the total specific energy, € is the specific internal energy, and p is the

pressure. The system is closed by specifying an equation-of—state (E0S),
p = P(D,e)- (2)

We shall often use the polytropic EOS,



p = (y-1)pe, (3)

where y > 1 is the ratio of specific heats.

If real gas and viscous effects can be ignored [i.e., equations (1), (2)
hold], the problem has no intrinsic length-scale, suggesting the use of the
self-similar or pseudo-stationary coordinate system (g,n) = [(x=xg)/(t-tq),
(y-yg)/(t-tg)] where (xg,yq) are the coordinates of the wedge corner and tg is
the time at which the incident shock wave reaches the corner. Following Jones
et al 1951, the system (1) may be transformed to pseudo-stationary coordinates

and becomes, in conservation form,

(pU)E + (DV)n = -2
~2 ~~ ~
(pu +p)g + (puv)n = -3pu
) (4)
(ouv), * (pv +p) = -3pv
~ o~ ~ ~2 ~2 ~
(puH)g + (ovH)n = -p(u+v ) - 2pH
where
U=Uu-E,V=V-n,
i o (5)
H = %(u2+ v2) +h

and h = e + p/p is the specific enthalpy. We refer to (a,;), H as the self-
similar velocity field and self-similar total enthalpy, respectively. In

addition we define
W = (@2 + v2)/c? (6)

where ¢ = sound speed and we refer to M as the self-similar Mach number. The
system (4) is, evidently, the steady Euler equations with the addition of
source terms. ke note that the ratio s/L is constant, for given initial
conditions, for self-similar solutions of the non-stationary equations, just



as s is constant for steady supersonic flow. In this and other ways a change
to pseudo-stationary coordinates is very useful in the analysis of these flow
fields and will be used in this study.

In particular, the type of reflection pattern is a function of the
incident shock-wave Mach-number M, the wedge angle I and the gas equation
of state. The transition boundaries in the (Ms,ew)-plane for oblique shock-
wave reflection are reproduced from Lee and Glass (1982) in Figure 2 for real
air and a polytropic equation of state with y = 1.40. The analogous figure
for argon (y = 5/3) may be found in this reference. The construction of the
transition lines is based on various (heuristic) transition criteria and the
numerical calculation of the jump conditions at reflection and triple
points. These criteria, which have been the subject of extensive
investigation in the literature, are summarized in Lee and Glass (1984) and
Shirouzu and Glass (1983). In Sec. 5, the numerical results will be used to
partly assess the validity of some of these criteria as well as the overall
accuracy of the transition diagram, Figure 2.

The fourfold partition of the (Ms,ew) plane illustrated in Figure 2 is
quite coarse relative to the rich phenomenology present in these flow
fields. Some other features that may be similarly partitioned (see Ben-Dor
and Glass 1979) are (a) whether or not the reflected shock is detached or
attached to the wedge corner; (b) in the attached case, whether the flow at
the corner is subsonic or supersonic; (c) for RR whether the flow is subsonic
or supersonic (in pseudo-stationary coordinates) at the reflection point and
(d) for SMR, CMR and DMR whether or not M "toes-out" or "toes-in".

A comprehensive study of these issues is beyond the scope of this report,
but they will be discussed as appropriate in the comparison of experimental

and numerical results in Sec. 5.



3. Experimental Techniques

The experiments for the present study were performed in the UTIAS 10 cm x
18 cm Hypervelocity Shock Tube. A design, performance and calibration study
of the original facility can be found in Boyer 1964. More recent and detailed
descriptions of the shock tube appear in Bristow 1971 and Ben-Dor and Whitten
1979, Further details of the experiments associated with the present work can
be found in Deschambault 1984,

3.1 Experimental Facility

The basic shock tube facility consists of a 1.4m long driver and a 12.2m
channel. The initial pressure in the channel can be easily varied from near
vacuum to atmospheric conditions. At the end of the channel is a test section
containing high-quality interferometric windows through which the shock tube
flows may be observed. A 23-cm diameter field-of-view Mach-Zehnder
interferometer (Hall 1954) in conjunction with a giant-pulse ruby-laser fis
used to record simultaneous dual-wavelength (A=694.3nm and 347.2nm) infinite-
fringe interferograms of the two-dimensional flow-fields. This allows the
direct observation of the flow-field isopycnics (lines of constant density).
The 15ns pulse generated by the ruby laser effectively freezes all motion,

thereby producing sharp, clear images.

Two methods were used to produce the incident shock-wave Mach-numbers for
the present study. For shock-wave Mach-numbers less than 6 a cold-gas driver
was employed. The diaphragm consisted of several layers of mylar-polyester
films. With the proper choice of driver gas, COp or He, and diaphragm
thickness, the desired shock-wave Mach-number could hbe obtained in the test

gas upon rupture,

For shock-wave Mach-numbers greater than 6 combustion-driver techniques
were used. Specially scribed stainless steel diaphragms were burst by the
constant-volume combustion of a stoichiometric mixture of 0Op and Hj diluted
with 70% He. Combustion was initiated by the impulsive heating of a 0.38-mm
diameter tungsten wire through the discharge of a 45,F 13kV capacitor.

The reflection patterns were generated by the impingement of normal shock



waves with steel wedges. The wedges were bolted firmly to the bottom wall of
the facility to ensure rigidity. The sides of the wedges were flush with the
inside walls and interferometric windows of the shock-tube test-section

3.2 Data Reduction Techniques

The infinite-fringe interferograms enabled the recording of small
relative density changes of the various shock tube flows. The density
difference Ap between the two adjacent fringes of the same color is related to
the wavelength A of the 1ight source (694.3nm and/or 347.2nm) and the
Gladstone-Dale constant K (2.274 x 10'4m3/kg for air, » = 589.6nm and
1.574 x 10’4m3/kg for Ar, A = 694.3nm) and is expressed by the relation
Ap = A/KL, where L is the depth of the test section (10.16cm).

To obtain quantitative values for the isopycnics the following method was
employed. From the initial conditions of the experiment, i.e., shock-wave
Mach -number, wedge angle, initial pressure and temperature, the thermodynamic
states around the reflection point for RR and the triple point for MR were
calculated using two- and three-shock theory (Ando 1981). These were used as
reference states from which all other density values could be obtained using

the above relation.

The wall-density distribution plots were obtained directly from the
interferograms. The origin was defined to be the reflection point of a RR or
the foot of the Mach stem of a MR. The corner of the wedge was defined to be
a distance L from the origin. A1l absolute distances were then scaled by L
giving a value of 1 to the distance from the origin to the wedge corner.

Where possible the center of the isopycnic intersecting the wedge surface was
used to locate the value of the density at that point.

For some of the experimental results presented here, it was necessary to
use test gases with very low initial densities and pressures relative to
atmospheric conditions. As a result, several interferograms show the effects
of vibrational nonequilibrium which must be taken into account when analysing
the corresponding interferograms. The relaxation zones are clearly visible
and appear as additional fringe shifts in the post-shock flow-field parallel
to the frozen incident shock front. Behind the reflected shock wave, the
characteristic signature of a relaxing gas is the nearly tangential incidence

of the isopycnics and the reflected shock wave.



4, Numerical Method

The numerical results presented in this paper have been calculated with a
version of the Eulerian second-order Godunov scheme for nonstationary gas
dynamics of a type considered by Colella and Woodward 1984, The version of
the scheme used here is presented in Colella and Glaz 1982,1983, including the

modifications required for non-polytropic gases.

The method is a finite-difference scheme for systems of hyperholic
conservation laws in one space-like dimension: for multidimensional
applications such as the shock-on-wedge problem, we employ operator
splitting. Differencing is in conservation form and the numerical fluxes are
computed by solving zone interface Riemann problems whose time-centred left
and right states are computed from the characteristic form of the equations.
This technique leads to second-order accuracy in smooth flow and ensures that
the method is centred upstream. In practice, the method is very stable and
robust. In the immediate vicinity of a strong shock, some dissipation is
required; this has been accomplished by smoothly degrading the scheme to the
first-order Godunov scheme in such regions. The degree of degradation is a
function of the shock thickness and strength.

For argon, we have used a perfect (frozen) gas equation of state with
vy = 5/3. If the shock tube test gas was air, the equation of state was chosen
to be either a perfect (frozen) gas with y = 7/5 or the Hansen 1959 real air
equation of state as modified by Deschambault 1984 for the present
application. The efficient solution of the Riemann problem in the context of
our second-order Godunov method for an arbitrary equation of state is treated
in Colella and Glaz 1982,1983. Also, these papers demonstrate that the choice
of equation of state has a substantial influence on the quantitative numerical
results, as might be expected.

As noted in the preceding section, vibrational non-equilibrium, which is
only temperature dependent, can be significant for moderate to high Mach
numbers when the test gas is air (at high Mach numbers dissociation effects
are also density dependent): for the argon cases considered here we expect the
gas to remain frozen. The choice of an appropriate equation of state for the
air calculations depends mainly on the vibrational relaxation length 1,,
behind the shock waves I, R, M of Figure 1. If 1, >1 (where 1 is a
characteristic flow length arising in the problem; for the present



experiments, 1 ~ 0.1mm), then the gas is frozen and the perfect gas equation
of state is correct. If 1 > ]V, then the gas is in equilibrium and the Hansen
equation of state for real air is used. Finally, if ]v ~ 1, then neither the
frozen nor the equilibrium hypothesis is appropriate, and the flow is said to
be in non-equilibrium. We have numerically treated such cases as equilibrium
flow fields by using the Hansen equation of state, although the only correct
procedure would be to solve an extra partial differential equation
representing a rate equation for vibrational relaxation (and for dissociation
at high Mach numbers). This decision will be an important issue in our

discussion of these cases in Sec. 5.

The computational mesh and our problem initialization procedure is
illustrated in Figure 3. Note that these figures are drawn from right to left
to conform with the experimental interferograms. We have used a square
(i.e., AX = Ay = constant) mesh for all of the computations in Sec. 5.

Recause the flow is pseudo-stationary, the choice of Ax is immaterial.

The initial data are taken as Uy, Mg where U= (p,p,U,V,)T is the state
vector and Mg is the initial shock-wave Mach-number. From these data and the
given equation of state, the post-shock state Uj may be calculated. To
initialize the two-dimensional calculation, these data are placed on the grid
far upstream (ca. 60-75 zones) of the corner, as j1llustrated in Figure 3a;
interpolation of conserved quantities [f.e. UC = (p,pu,pv,pE)T] is used for
sones that straddle the incident shock. However, this is a very poor
representation of the numerical shock hecause any shock-capturing scheme will
diffuse a shock wave over two or more zones in the computational mesh. The
resulting structure is referred to as a discrete travelling wave (i.e., a mesh
function that depends only on x - Vt, where V is the vector velocity of the
wave and equals the shock speed in magnitude for a discrete shock wave).
Starting with any initial data (e.g., the one zone Ug - Uy jump described
above) satisfying the Rankine-Hugoniot conditions, the solution will tend as
the number of time-steps becomes large towards the appropriate discrete
travelling wave, plus other low-amplitude waves that we refer to as "starting
error", with the starting error separating from the travelling wave. For the
present application, it is very important to ensure that the starting error is
eliminated before the shock wave is allowed to reflect, and we proceed as
follows. First, the computer code is allowed to run until the shock wave



reaches the corner, and the situation in Figure 3b is reached. In this
figure, the region immediately behind the shock and about 2-3 zones thick is
the discrete travelling wave and the small (less than 5%) relative amplitude
disturbances further downstream is the one-time starting error. The computer
code then arbitrarily changes the flow field to that illustrated in Figure 3c,
i.e., the discrete travelling wave (arbitrarily set to exactly 4 zones in the
computer code) is retained but the starting error is replaced by the post-

shock state Uj.

At this point, the flow field becomes truly two-dimensional and the
computer code is now run without further interruption until the end of the

calculation is reached.

The boundary conditions for this problem, which are standard, are
discussed in detail in Colella and Glaz 1983. We remark here that our
treatment of the intersection of the incident shock with the upper or left-
hand boundary or both is not entirely consistent with the discrete travelling
wave and leads to the introduction of a low relative amplitude (ca. 1%) wave
behind the incident shock at its intersection with the boundary. This wave,
which we call a boundary error, may lead to a rather unaesthetic structure in
the contour plots and it can impinge on the disturbed flow field behind the

reflected shock. Examples will be noted in Sec. 5.

A1l calculations were performed on a CRAY I at Los Alamos National
Laboratory, Los Alamos, New Mexico. The computer code was designed to take
significant advantage of the machine's vector architecture. Each calculation
in Sec. 5 required 15-40 min. c.p. time with most in the range of 20-30 min.
Much of this time is wasted on the extra grid points introduced to eliminate
the starting error as well as grid points outside the reflected shock. Also a
fine mesh is only really needed in the Mach-stem region. Thus, an intelligent
adaptive mesh structure could reduce these times substantially.

10



5. Computational Results

A direct comparison of experimental results and numerical calculations is
presented in Sec. 5.1 for fifteen cases of oblique shock-wave reflections.
For eight of the cases in air, the computation has been performed twice, once
with a perfect gas EOS with y = 1.4 and once with the Hansen EOS. Thus,
twenty-three computations are reported on in this part. In Sec. 5.2, the
results of several parametrized sequences of calculations are presented to
demonstrate the capability of our numerical method to compute the correct
transition in the (Ms,ew) -plane. An additional sequence is presented in this
part to demonstrate (upon comparison with experimental data) the effect of
boundary-layer displacement on the RR-DMR transition.

5.1. Comparison of Experiment with Calculation

The initial conditions for the fifteen cases are listed in Table I along
with the computational mesh (NX,NY) and the equation of state selected for
each case (and it is noted where two choices of EOS were made for a case).

A11 four wave configurations are represented in the range of (Ms,ew)
considered. The following data are presented for each case: experimental
isopycnics; computed isopycnics using the same density levels as were obtained
in Ehe experiment; wall distribution plots, g vs x/L, with q = p/po, p/po,

e, u and with the p/po plot including a comparison with experiment; whole flow
field contour plots, using thirty equally spaced contours, of the quantities
p,e,p,ﬁ,u,v,a,;,ﬁ; in a "blowup" frame in the vicinity of the Mach stem or
reflection point, contour plots, using thirty equally spaced contours

of p,e,p,ﬁ,ﬁ are shown along with the experimental isopycnics, self-similar
streamlines, and a self-similar velocity vector field plot. For those cases
involving a comparison of two calculations with differing EOS, the contour
plots of actual isopycnics are shown together with the interferogram, and an
additional wall distribution plot is added comparing p/pO vs. x/L for the two
calculations and the experiment on the same graph.

In order to assist the reader in interpreting the graphical output, we
make several general comments here, which are not repeated below for each
case. It is regretted that many interesting phenomena are not commented on in
the text, but we felt it useful to present the entire set of figures. First,
for those cases involving two calculations, the subscript "p" refers to the

11



perfect gas calculation and the subscript "H" refers to the Hansen
calculation; in the event that such a figure is referenced in the text without
a subscript, the context determines which (or both) figures are being
discussed. Concerning the contour plots, the‘coordinéte system is oriented

with the origin at the corner point, the x or £ direction along the wedge
surface after reflection, the y or n direction perpendicular to the wedge and

facing upwards in the figure; however, we have reversed orientation for the
wall plots and have set x/L = 1.0 at the corner and x/L = 0.0 at the
reflection point or the intersection of the Mach stem with the wedge

surface. We regret that we have not matched the length L in the plots of the
calculations with the corresponding interferograms. The contour plots of
those quantities which may take on positive or negative values use solid
(dashed) lines to represent positive (negative) contour levels. The zero
level is always the last solid contour. In particular, the sonic Tine in

the M plots can always be easily found. The most important feature of an
equally spaced contour plot for compressible flow is that discontinuities are
clearly visible because several contour levels overwrite each other on the
plot, at the location of the discontinuity. When plotting density contours
using the levels prescribed by the available experimental fringes, this effect
is still present but degraded to varying degrees for the different cases. In
particular, density levels between Pq and Pos etc. may not be present at all,

although in many cases we arbitrarily inserted extra contours for aesthetic

reasons.

Referring to Figure 7 (i.e., Case 4), the generic features of the various
plots are discussed (the notation "Figure N" is used when it would not he
useful to consider Figure 7 as an example). First, most pages have a heading
with certain information: "MS", "ALP" afé Ms’ o, in the notation of the text;
NR and NZ are the number of mesh points in the calculation and correspond to
Table I; "PO" is Py> the initial shock-tube pressure; KBEG is the first point
(viewing from right to left) in the x-direction after the reflection point;
and the word "PERFECT" or "HANSEN" appears to denote the EOS. Notice that
(NR-KBEG) by NZ is the appropriate aspect ratio, rather than NR by NZ.
Figures 7a and b are presented on the same page and all plots are uniformly
labelled according to the tahle appearing along with these figures. When
comparing an interferogram (Figure 7a in this example) with the associated
calculated isopycnics (Figure 7b here), the effect of an EOS mismatch in the

12



calculation of p2/p0 and p3/po can be striking and misleading. Recall, see
Section 3, that these density values are calculated for the interferogram

using a specific choice of equilibrium EOS. A numerical computation using a
different choice of EOS will automatically get different values and shift all
of the contours away from their correct locations. An excellent example of
this effect is Figure 12by where most of the isopycnics have been shifted into
the numerical shock layers associated with the reflected shock and the second
Mach stem. Concerning Figures 7d and e, we note the following: (1)

the M plots in hoth figures show that the disturbed flow is subsonic
everywhere except in Region 2 where the flow is entirely supersonic, (2)
contact or slip surfaces tend to show more clearly in the plots of e

and H than in o and this is especially true of the boundary of the vortex
rollup as may be noted by comparing these three plots in Figure 7e; of course,
this effect is caused by the different effects the Rankine-Hugoniot jump
conditions have on the number of contours appearing in the shock layers for
the different quantities and, it should also be noted, the EOS or the value of
vy in the case of the polytropic EOS has a large effect, (3) shock waves can be
distinguished from slip surfaces by comparing the pressure plots with plots of
P, €, &, etc., (4) distinguishing compressions from rarefactions can usually
be done with the pressure contours alone (e.g., if a compression steepens to
form a shock) or in conjunction with the wall pressure plot, Figure 7c;
determining the direction in which a wave faces is often of interest and is
not usually obvious although sometimes the u plot in Figure Nc can be used for
waves normal to the wall, (5) the H plots are not constant states because of
the source terms in eqn. 4; it follows from the Rankine-Hugoniot conditions
that H does not change across a shock wave and this can be seen clearly in
Figures 7d and e for the second Mach stem and the reflected shock wave,
although there is some slight nonmonotone variation inside the numerical shock
layer. It is also true that H does not jump across the incident shock wave
and the first Mach stem despite appearances to the contrary in Figures 7d and
e. Close inspection (not obvious to the reader in most instances in Figures
Nd and e) reveals that H is the same in each of Regions 0-3 at the first
triple point and the variation of H in the numerical shock layers is enough to
cause this layer to he filled in with several additional contour levels,

(6) the visual appearance in Figure 7c of streamlines ending in the interior

of the calculation is, of course, just a plotter error (the density of

13



streamlines is fixed for reasons of efficiency), (7) the velocity vector plot,
Figure 7e shows how this vector jumps across shock waves and aligns itself

with slip surfaces and the wall boundary conditions.

The discussion of many of the cases refers to hand measurements of
x and x'. The accuracy of these measurements is not usually very good;
however, differences between measurements (e.g., regarding the two
calculations of the same case using different choices of EOS) is much more

reliable.

Case 1: MS = 2.05, o, = 600, RR, Argon. Comparison of the
experimental and numerical isopycnics (Figures 4a, b) show them to be in good
agreement with an error of about one fringe at the start of the subsonic
region. The wall density distribution (Figure 4c) disagrees by about the same
amount. It may be observed that the density contour levels curve sharply
towards the reflection point just above the wedge surface, an effect that is
not present in the experimental results. The blowup plots of ﬁ, H exhibit
this effect as well, even in the supersonic region. This numerical error is
referred to as "wall heating" and is commonly observed in shock capturing
calculations as shown, for example, in Noh 1976. Wall heating affects only
the density, temperature, etc., and not the pressure (Figure 4d). It may be
seen to account for part of the observed error in this case, including the
slight error in the value of the reflected shock wave density p, on the

wall. In addition, the error in the stand-off distance of the bow shock s,
relative to the experimental distance from the reflection point P to the
corner L is about 6.2%.

Case 2: MS = 1,26, 6, = 450, RR, Ajr. Figures 5b and c show that
the quantitative agreement between experiment and calculation is very poor for
this case, and the results are largely independent of the choice of EOS.
Furthermore, the angle between the wedge and the reflected shock as well as
other gross flow field quantities are in substantial error, even though the
isopycnic patterns are in excellent qualitative agreement. A possible
explanation for this severe error may be found by considering the ratio
pp/py @S 2 function of M., fixing e, = 450, It turns out that
pz(MS=1.26) = 2.49p0 and pZ(MS=1.24) = 2.09po, whereas the calculation
has p2/p0 = 2.2. In other words, the slope d(py/o,)/dMg is so steep in the
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region of interest that small errors in either the numerical method or
experimental measurement can lead to large errors in Poe For futher
discussion of this type of consideration, see Hu and Shirouzu 1985. Noting
that the distrubed flow field is wholly subsonic, Figure 5d, and that this
case is close to the RR-SMR transition boundary, it is also possible to
speculate that the experiment is actually an SMR despite this not being
visible on the interferogram or in the calculations. The full resolution of
this disagreement should bhe possible with the adaptive mesh version of our
code, see Berger et al 1985, used in a region of parameter space around
(Ms,ew) = (1.26, 450), A posteriori, it is seen that studying the results for
both choices of EOS was not useful.

Case 3: MS = 1,50, 8, = 450 SMR, Air. Comparison of the
interferogram and the calculated isopycnics, Figures 6a and b, shows excellent
qualitative agreement and approximately a one fringe error quantitatively.
This agreement continues for x/L ~ 1.0 since the experimental corner flow
field is inviscid. We measure x = 1.00 and 0.50 for the calculation and
experiment, respectively. Since the Mach stem is only 3-4 computational zones
high, possible explanations for this disagreement include numerical error due
to lack of resolution and the existence of viscous boundary-layer effects in
the experiment. The disagreement in the wall density profiles, Figure bc,
for x/L < 0.5 may be due to several causes: the possibility of viscous
effects along the wedge, the possibility of the numerical wall-heating error
interacting with the slip surface, and the difficulty in precisely locating
the intersection of a fringe with the wedge in the interferogram. Some of the
contour plots in the blowup frame, Figure 5e, illustrate the difficulties.

The different choices of EOS proved not to be important for this case.

Case 4: MS = 3.03, 6, = 470, DMR, Air. The calculated and
experimental wave patterns, Figures 7a and b, are in excellent qualitative
agreement, including 3 relatively sharp slip surface emanating from the second
triple point. The interferogram shows a different orientation for fringe ¢
and an extra fringe d under the reflected shock between the two triple points,
which may be an indication that the gas is relaxing in this region. The
differences due to the choice of EOS are small, but noticeable. In
particular, the values of x and x ' are close to the experimental result for
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the Hansen EOS but are too large by about 1° for the y = 1.4 results. It
should be noted, however, that ew = 470 is very close to the RR-DMR transition
1ine and the boundary layer defect may have had some effect on x>x ' in the
experiment. Also, the vortex rollup is closer to the leading Mach stem for
the Hansen calculation than for the perfect gas calculation, Figure 7e; the
interferogram does not show the rollup moving ahead at all, presumably due to
viscous effects. As is typical for DMR results, the flow field is of mixed
type with region 2 being supersonic and the remainder being subsonic, Figure
7d. Also typical is the relative strength of the contact surface and vortex
rollup in the H plots, Figure 7e; the waviness of this surface in the
numerical results is a hint of the physical Kelvin-Helmholtz instability
apparent in the interferogram. Concerning the wall density plots, Figure 7e,
the Hansen EOS calculation is a few percent high on the peak value even after
correcting the discrepancy in p3/p0. The interferogram, of course, cannot
exhibit the sharp inviscid peak and valley in the rollup region of the
calculation. The relative displacement of these structures between the two
calculations follows directly from the differences in the calculated values
of x'. The viscous corner region, as expected, is not reproduced well in the

calculations.

Case 5: MS = 2.65, O, = 300, CMR, Air. Comparing the interferogram
with the density contours in Figures 8a and d, it may be seen that excellent
overall agreement was obtained for the wave system except in the corner
region. The comparisons using the experimental jsopycnics, Figures 8a and b,
differ by a larger degree. The differences in the vortex rollup pattern are
clearly the result of experimental viscous effects. Figures 8d and e show a
small supersonic region at the triple point, which is typical of CMR
results.Another interesting feature of this flow field is the presence of
three points along the wedge surface where u=0 (see the u contour plot,
Figure 8d, and the u wall plot, Figure 8c); the first two occur at the leading
and trailing edges of the vortex rollup pattern and the third appears much
further downstream. This pattern is pervasive (except, see Case 7) for those
Mach reflections with a vortex rollup. We measure x = 8.60 for the perfect
gas calculation and x = 8.30 for the Hansen EOS calculation and the

experiment. The calculated values of p/p0 in the region 0.0 < x/L < 0.2
are in good agreement with the interferogram, Figures 8a and c, once the
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calculation of pg/eg s corrected for y and the choice of EOS, and the
different rollup patterns are taken into account. The larger disagreements in
comparing the experimental isopycnics, Figure 8a, and the wall density
distributions, Figure 8c, downstream of the vortex might be explained by the
viscous effects providing different boundary conditions for the subsonic
inviscid flow field between the rollup and the corner region (where these
effects are substantial).

Case 6: MS = 5,07, ew = 300, CMR, Argon. The isopycnic patterns are
in excellent agreement, despite the availability of relatively few fringes,
Figures 9a and d, except for the corner region and the details of the vortex
rollup pattern. The quantitative agreement, Figures 9a, b and c and
measurements of y, are also very good except in the corner.

Case 7: MS = 10.37, ew = 100, CMR, Air. The experimental results,
Figure 10a, show strong relaxation offects in the disturbed flow field behind
the reflected shock (this is indicated by the near tangential incidence of the
fringes to the shock), and the incident shock jump appears almost in
equilibrium. Also, the wedge surface does not appear to be perfectly straight
in the photograph, which indicates that the sidewall boundary-layer-
diffraction effects may be significant. There is reasonably good qualitative
agreement (disregarding the real-gas effects) in the isopycnic patterns,
Figure 10d, although the kink is more pronounced in the experiment than in the
calculation. In evaluating the wall density plots, Figure 10c, it should be
noted that the data points were evaluated assuming frozen-triple-point
conditions while the calculation implicitly used the equilibrium Hansen EOS
for the same task. Also, we estimate x ~ 13,00 for the experiment and
measure x = 15.00 for the calculation; the corner attachment angle is 20.5°
for the experiment and 25.5° for the calculation. The latter difference is
very large and is clearly the result of the difference between an equilibrium
shock jump and a strongly relaxing shock jump at the corner. The former
difference is probably also a real gas effect, and would have a strong
influence on the kink structure. The vortex rollup patterns are in remarkably
close qualitative agreement, although we note the rollup is closer to the
leading Mach stem, which has a somewhat greater toe-out, in the experiment
than in the calculation. An unusual feature of this flow field is that u has
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just one zero on the wedge surface, located at the leading edge of vortex
rollup. Comparing with the discussion in Case 5, this suggests that as

the (Ms,ew) - plane is traversed from the Tow Mg, high e region to the high
Ms» Tow 0, region and restricting to cases f?r which a vortex rollup pattern
is present, the number of zero crossings of u along the wedge surface smoothly
bifurcates between one and three. The results for Cases 14 and 15
substantiate this conjecture; the former lies near the transition point and
has three zero crossings while the latter lies just beyond the transition (and
the lone zero crossing ahead of the vortex rollup is pushed foward into the
shock layer). Also, the contact surface is more unstable in the calculation
than in the experiment. These two effects are opposite to those usually
holding in our results. Thus, it seems that quite good quantitative agreement
could be obtained for x/L small in the wall density plots if the rollup
patterns could be spatially lined up, the Hansen EOS used in evaluating the
data, and the corner jump conditions changed to provide the correct downstream
boundary condition for the subsonic portion of the flow field, Figure 10d.

The dip in Figure 10c at x/L ~ 0.25 is due to the boundary error.

Case 8: MS = 1.66; 0, = 400, SMR, Air. The isopycnic patterns,
Figures 1la, b and d, as well as the wall density plots, Figure llc, are in
excellent qualitative and quantitative agreement. The only noticeable
difference between the two calculations is that the value of p3/p0 is 1in
better agreement when using the Hansen EOS and this aligns the overall wall
density plots closer to the experiment. There is a larger error for x/L large
which is probably explained hy viscous effects in the corner region for the
experiment. The EOS effect on the values of p3/p0 is worth commenting on in
detail, since the small value of Mg precludes significant real-gas effects.
Assuming a perfect gas and a Mach stem normal to the wedge surface at the
triple point, one may compute p3/py = [(Y+1)M§J/[(Y-1)Mg + 2] where M, =
Mg csc y and ¥ = n/2 - (8, * x) which implies that o4/p is sensitive to the
value of xy at low shock-wave Mach numbers and/or high values of (ew+x) and
that d(p3/p0)/dx < 0. For this case, y ~ 3,50 in both calculations but is
slightly less in the Hansen calculation which is enough to account for the
wall density results presented in Figure 1lc. Noting that the calculations
compute p3/po and account for the EOS, y, and any deviation from normality of
the Mach stem automatically, while the experimenter must make the assumptions
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above and measure x by hand, one sees that the differences in the various
results are outweighed by the agreements. Also, boundary layer-displacement
may be a factor because of the relatively low value of x.

Case 9: Ms = 2.87, 0, ° 400, DMR, Air. Comparing the density
contour plots, Figure 12d, with the interferogram, we see that there is
excellent overall qualitative agreement for both calculations. This agreement
js maintained only for the perfect gas calculation when comparing the
experimental isopycnics, Figure 12h; of course, the experimental data
reduction used a frozen triple point analysis. The vortex rollup pattern, the
corner flow field, and the second triple point flow field differ considerably,
however. Taking up the latter point first, we note that this case is near the
CMR-DMR transition boundary, irrespective of the choice of EOS. Also, we
measure xy = 5.30 for the perfect gas calculation, x = 5.00 for the Hansen EOS
calculation and x = 4.50 for the experiment. Thus, it is not unreasonable for
the calculations to contain a much stronger second Mach stem and sharper
second triple point than the experiment, which is close to CMR. The effects
of boundary-layer displacement might also play a role. The experimental
contact surface is very diffusive and this effect may prevent the vortex from
moving forward towards the Mach stem, in conjunction with the presumed
boundary-layer effects. The peak stagnation density (see the u vs. x/L plots
in Figure 12c) behind the vortex is‘substantia11y higher in the calculations;
we can conjecture that this is due to the sharper DMR structure and the
nondiffusive contact surface of the calculation. In view of these effects and
the differing boundary conditions at the upstream stagnation point and the
corner, the wall density results, Figure 12c, are actually in good agreement.
The Hansen FOS results must be corrected for the data reduction technique and
there is otherwise 1ittle difference in the two calculations. In particular,
the bunching of the fringes, in Figure 12by, at the second Mach stem is due to
the mismatch in Regions 2 and 3 between the experiment and the Hansen

calculations.

Case 10: Ms = 3,72, ew = 400, DMR, Air. The analysis for this case
follows closely that for Case 9, although the interferogram, Figure 13a, is
clearly DMR as are the calculations. It is likely that there is a relaxation

fringe underneath the reflected shock between the two triple points. We
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measure x = 5.50 for the perfect gas calculation, x = 5.20 for the Hansen EOS
calculation, and x = 5.00 for the experiment; the differences in the
measurements of x' are similar. Referring to the M contour plots, Figures

13d and e, one sees that the sonic line is coincident with the second Mach
stem; this always occurs in our clear DMR results and it is a useful criterion
in distinguishing the CMR-DMR transition. Other typical flow field features
are (1) the transition of the second Mach stem to a continuous compression
near its intersection with the main contact surface, Figures 13d and e, and
(2) the existence of two stagnation points QO and 0o, one hehind the vortex
and the other just below the S-M' intersection and above the wedge, see

the (G,Q) vector field plots, Figure 13e; note that the self-similar
streamlines are singular at these two points. Also, the pressure attains
local maxima at these two points, Figure 13e, and the u contour plots, Figure
13d, show u=0 at Q1 and 0. Concerning the wall density plots, Figure 13c,
the agreement is closer than it appears because the data points in the

range 0.18 < x/L < 0.425 need to be shifted to the ri
different relative locations of the second triple point; such a shift lines up

ght to account for the

the plots but the peaks are stil1l off as in Case 9.

Case 11: MS = 4,62, 0, = 400, DMR, Air. The analysis is similar to
Cases 9-10. There is probably a relaxation fringe underneath the reflected
shock which is stronger in the interferogram, Figure 1l4a, then for some of the
other cases. We measure x = 6.00 for the perfect gas calculation
and x = 5.00 for the Hansen EOS calculation and the experiment; there are
similar differences for x'. The quantitative agreement between the experiment
and the perfect gas calculation is very good away from the corner in both the
isopycnic plot, Figure 14bp, and the wall density plot, Figures l4c and Cpe A
shift of data points as in Case 10 leads to nearly exact agreement
for 0.16 < x/L < 0.35 and the peak density error at the stagnation point is
very small, relative to Cases 9-10. This is perhaps due to a reduced relative
influence of viscous effects in the region, although the interferogram shows
significant instabilities in the contact surface and a vortex rollup pattern
similar to these two cases. It is interesting to note that in Cases 9-11 the
Hansen EOS provides better agreement with the experiment in terms of gross
flow field features (e.g., y,x ') but worse agreement on quantitative details

such as wall density curves (we are discussing the situation, of course, after
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the data have been corrected for the choice of EOS). The present case
exemplifies this fact in that the Hansen EOS calculation shows exact agreement

on x but is badly off on peak density along the wall.

Case 12: MS = 2.03, ew = 270, SMR, Air. The agreement between
calculation and experiment fis extremely strong in all respects, Figures 15a, b
and c, and is the best of all the fifteen cases. Quantitatively, the
isopycnics are off by about one fringe and the wall density plot shows similar
agreement except in a small region near the corner. The contact surface
spreads out in the experiment and does not rollup as much as in the

calculation.

Case 13: MS = 8.70, 8, ° 270, DMR, Air. The interferogram,‘Figure
16a, exhibits substantial real gas effects and even the Hansen EOS does not
model the isopycnic shapes and locations very well. The relaxation
length, lv’ is about 0.1 x L for the incident shock and the fringes are at
nearly tangential incidence to the reflected shock. Also, the relaxing gases
in the Mach stem region have ohscured the contact surface and part of the
roll1-up pattern. The density contour plot, Figure 16d, and the interferogram
show very good agreement. The rollup patterns substantially agree, although
the contact surface normal to the wall S, at x/L ~ 0.02 and the backwards
facing shock wave Wy normal to the wall at x/L ~ 0.065 in the calculation,
Figure lbe, are either not resolved or are 1ost due to viscous effects in the
interferogram. Both calculation and experiment exhibit a strong toe-out of
the first Mach stem; the kink on this shock surface may be near transition to
a new triple point in view of the possible existence of an extra slip surface
Se emanating from this point, see the u contour plot, Figure 16d, and
the M plots, Figures 16d and e. The vector field plot, Figure 16e, shows the
existence of a pseudo-stationary stagnation point 0p near the intersection of
the two slipstreams, in addition to the one at the center of the vortex 013
indeed, there is a two-dimensional region around Qp where the flow appears to
be stagnated. Our measurements show that x = 9.60 and xy' = 9.00 for the
calculation, and that x = 7.50 and x' = 7.80 for the experiment. The measured
corner attachment angles are 33.5° and 23.0° for the calculation and
experiment, respectively. This nonequilibrium offect (which apparently is
poorly modelled with the equilibrium Hansen EOS) explains the large
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disagreement near x/L = 1.0 in the wall density plots, Figure l6c. After
correcting the data for the Hansen EOS, there are large errors in the wall
density plot in the range x/L < 0.5. Possible explanations include the large
error in downstream boundary condition at x/L = 1.0, the large difference

in x and x', viscous effects and differences in rollup pattern, and general
relaxation effects, of course, the nonequilibrium flow field likely
contributes to the other three effects. Overall, real-gas effects have an
extensive impact on the flow field dynamics for this case and the equilibrium
calculation was unable to reproduce many of the details.

Case 14: Ms = 7.19, 0~ 200, C/DMR, Air. The interferogram, Figure
17a, shows clearly that the experimental flow field is neither frozen nor in
equilibrium, including the disturbed flow beneath the reflected shock. A more
detailed discussion of equation of state and nonequilibrium effects in the
numerical analysis of this case is available in Colella and Glaz 1985. The
triple point angle x 1is nearly in exact agreement, and the rollup patterns and
Mach stem toe-out agree qua]itative]y,-Figure 17d. The attached shock wave at
the corner is bifurcated in the interferogram and supersonic in the
calculation, a possible relaxation effect, although viscous effects may be
jmportant too. The experiment and calculation both show this case lying near
the CMR-DMR transition boundary. Lee and Glass 1982 conjecture that this
transition occurs when the sonic line just reaches the kink; the M contours,
Figures 17d and e, bear this out quite well. After allowing for the EQS
correction of the wall data, a possible small shift for the vortex location,
and the different corner structures, the wall density plots show surprisingly
strong agreement; the dip at x/L ~ 0.35 is an excellent example of the
computational houndary error.

Case 15: MS = 8.86, o, " 200, DMR, Air. The calculated density
contours, Figure 18d, and the interferogram, Fiqure 18a, show good overall
agreement, including many flow field details. The vortex rollup patterns are
very close, although viscous effects in the experiment preclude detailed
agreement. The vortex is pushed foward very close to the Mach stem in both
calculation and experiment; the calculation shows a wave interaction W in this
region which does not appear in any of the other cases. This is seen most
clearly in the blowup plots, Figure 18e. The details of this portion of the
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flow field are lost in the interferogram and are underresolved in the
calculation. However, this flow field pattern is reproduced in the
interferogram of Experiment 974 from Deschambault 1984 for which Mg =

10.18, ew = 200 and is in air. This interferogram is reproduced here in
Figure 18f. Vibrational relaxation effects are pervasive in the experiment,
Figure 18a, including the Mach stem region. The failure of the fringes to
merge into the second Mach stem as the contours do in the calculation, Figure
18d, is probably a real-gas effect. The corner attachment angle is 27° for
the calculation and about 21° - 23° for the experiment. The calculation has 3
supersonic corner and relaxation effects dominate the experimental results in
the corner region. We measure x = 12.20 for the calculation and y = 100 for
the experiment, and x' = 12,50 for the calculation and 11.2° for the
experiment. Overall, nonequilibrium effects preclude a realistic quantitative
comparison for this case.

5.2 Transition Sequences

Four sets of parametrized sequences of calculations are presented in this
section. The purpose of the first three sets of calculations is to assess the
potential of detailed computational results in constructing oblique shock-
wave-transition boundaries (see Figure 2) and in validating theories
explaining these transitions. Each set contains two sequences of
calculations, one for a perfect gas with y = 1.4 and one using the Hansen
E0S. The following data is presented for each case: whole flow field contour
plots, using thirty equally spaced contours, of the quantities e, M; in an
appropriate "hlowup" frame in the vicinity of the triple point or reflection
point, contour plots, using thirty equally spaced contours, of the quantities
p,e,p,ﬁ,ﬁ,a, along with the streamlines and vector field associated with the
pseudo-stationary velocity (u,v). The purpose of the fourth set is to
demonstrate the boundary-layer defect theory by presenting a parametrized
sequence of inviscid calculations for argon (treated as a perfect gas with
y = 5/3) near the RR-DMR transition boundary and comparing with an
experimental result. For this set, only whole flow field density contours are
presented.

Set 1: Here, an attempt is made to locate the SMR-CMR and CMR-DMR

Paddtt——

boundaries for 0, = 450, Air; 1.30 < MS < 2.60, perfect gas with vy = 1.40;
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1.50 < MS < 2.30, Hansen EOS; in increments of AM5 = 0.1. The results are
presented 1in Figures 19 and 20. Considering the M plots in the vicinity of Mg
= 1.70, we see that the sonic line has moved into region 2 for the cases

with MS > 1.70 and that the extent of the supersonic region increases with
increasing shock-wave Mach number. Assuming that the SMR-CMR transition
occurs when region 2 becomes supersonic at the triple point (see Lee and Glass
1982), it follows that the Mg = 1.70 case is a CMR and the cases

where 1.30 < MS < 1.70 are SMR's because region 2 is entirely subsonic for
these cases. It may be noted that for Mg = 1.30, the Mach stem M and the
slipstream S are only barely visible and the case appears like an RR. The
differences due to EOS effect are not marked at these Mg values, but the
Hansen Mg = 1.60 results provide a slightly earlier CMR than the perfect gas
calculation. The results agree reasonably well with the analytic transition
diagram, Figure 2. Also, it would not be unreasonable for the reader to view
Figures 19 and 20 and take these transitions at slightly higher Mg values,
which would have the effect of making the comparison with Figure 2 somewhat

less close.

In view of the small values of x in this region, it would be useful to
restudy these cases with a refined mesh in the triple-point region (using an
adaptive mesh algorithm, Berger et al 1985), thereby substantially eliminating
the effects of numerical error near the wall boundary and allowing sufficient
resolution to separate the results for the two choices of EOS. Also, the
severe slope dew/dMs of the transition curves at M.~ 1.70 argues for
increased resolution.

We now consider the p,ﬁ plots in the range 2.20 < Ms < 2.40, One theory
for the CMR-DMR transition (see Lee and Glass 1982) is that the flow at the
first triple point should be supersonic with respect to the motion of the
kink. Because the flow immediately beneath the reflected shock and between
the two triple points is constant, this criterion is equivalent to requiring
that the sonic line (in pseudo-stationary coordinates) intersect the kink.
Also, the sonic line should have the same fangent at the kink as the second
Mach stem, because the flow is supersonic ahead and subsonic behind this
discontinuity. Finally, the density contours may be expected to begin
coalescing as the shock wave is about to form. Using these criteria, the
calculations show that the M, = 2.30, perfect gas case is a weak DMR and that
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the Mg = 2.40, perfect gas case is a clear-cut DMR; for the Hansen
calculations, the Mg = 2.20 can be considered a PMR and the Mg = 2.10 case is
a CMR. These results are also in reasonable agreement with the analytic
results for the perfect-gas transition at 6, = 450, see Figure 2. Note that
Figure 2 indicates that no DMR can exist in this range of Mg for 8, = 450,
However, it has been found experimentally that the CMR-DMR transition line
meets the SMR-CMR transition line where it joins the RR-MR line. The exact
shape of this curve is not known, although it would be expected to lie much
closer to the present numerical values. Insofar as this observation is due to
inviscid, equilibrium effects, the numerical results are further
corroborated. It would be of great interest to pursue the numerical studies
in the neighborhood of the coincidence of the SMR-CMR and CMR-DMR Tines.

It is also worth noting that in this set, the isopycnic shapes and
distributions resemble those for RR until MS ~ 1.60, where a loop exists at
the wedge corner and the next fringe away from this loop is bowed towards
jt. This effect becomes increasingly prominent as Mg increases through the
CMR range, 1oops begin to form near the slipstream as DMR approaches, and
prominently so as Mg increases through the DMR range. For smaller values of
0, such isopycnic distributions can occur for smaller values of Mg (see
Figure 15, Mg = 2.03, 8, = 270). The foregoing gives some insight into the
changing overall wave patterns as the (Ms,ew) - plane is traversed.

Set 2: The CMR-DMR transition is studied for Mg = 4.0, Air;
290 < 8 < 340 perfect gas with y = 1.40; 250 < 8, < 300, Hansen EOS; in
increments of G 10, The results are presented in Figures 21 and 22. The

analytic CMR-DMR transition, Figure 2, for Mg = 4.0 takes place

at 8 ~ 320 for a perfect gas and B, " 260 for the Hansen EQ0S. The EOS effect
is predicted correctly, that is, ew ~ 320 for a perfect gas and 20° for the
Hansen EOS so that this transition line is shifted up by about 3°, It is
worth noting that the calculated Mach stems are not perpendicular to the wedge
at the triple point; this is an assumption in the analytic calculations
leading to Figure 2 (see Lee and Glass 1984). Also, it would not be
unreasonahle to require the calculated kinks to clearly sharpen up to a new

triple point before assuming a DMR transition.
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Set 3: The SMR-CMR and CMR-DMR transitions are studied for Mg =
8.75, Air; 60 < 8, < 100 and 220 < 6, < 260, perfect gas with y = 1,40;
50 < ew < 90 and 150 < ew < 190, Hansen EOS; in increments of a8, =10, The
results are presented in Figures 23 and 24. The analytic SMR-CMR transition
(Figure 2) for M = 8,75 takes place at 0y ~ 80 for a perfect gas and
at ew ~ 60 for the Hansen EOS. According to our criteria involving
the M sonic Tine, none of the reported calculations with ew < 100 are CMR with
the possible exception of the ew = 90 Hansen EOS result. Thus, the calculated
transitions differ from the analytic results by at least 3°. Once again, none
of the calculated Mach stems are perpendicular to the wedge at the triple
point. The analytic CMR-DMR transition, Figure 2, for Mg = 8.75 takes place
at ew ~ 230 for a pefect gas and at 0y ~ 160 for the Hansen EOS. The
calculations show transition at ew no greater than 22° for a perfect gas and
at ew ~ 15-160 for the Hansen EOS. This represents close agreement. Here as
well, the Mach stems are not perpendicular to the wedge at the triple point.
It should be noted that the experimental results are not in close agreement
with either of the two transition lines (see Figure 2) at such high values of
M.
can be obtained for the SMR-CMR-DMR transition lines (see Deschambault and
Glass 1983, and Hu and Glass 1985).

Consequently, new criteria may have to be found so that better agreement

Set 4: Ms = 7.10, Argon (perfect gas with y = 5/3); 490 < 6, < 550,
in increments of Aew = 10; ew = 52,750, 53,750 53,10 < ew < 53.50 1in
increments of Aew = 0,10,  The purpose of this set of calculations is to
estimate the inviscid RR-DMR transition houndary and, by comparison with
experimental results, to demonstrate and quantify the well-known disagreement
between theory and experiment for this issue (see, for example, Shirouzu and
Glass 1982). An experimental interferogram for o, = 490 and all of the
computational results are presented in Figure 25. Noting the results in the
range 53.00 < B, < 53.50 and comparing with the experiment, a value of
8 " 4.0 - 4,50 may be inferred as the "boundary-layer defect" (see Hornung
and Taylor 1982; Shirouzu and Glass 1982; Wheeler and Glass 1985) for the
Mg = 7.10 RR-DMR transition. We are referring, in particular, to the
substantial disagreement concerning the extent of the Mach stem region
relative to the entire flow field. We have attempted to calculate the precise
RR-DMR transition point by plotting the height of the Mach stem relative to L
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against o, for the computations and extrapolating the curve to zero height,
Figure 26. The result is ew ~ 53,850 which disagrees moderately with the
theoretical results of ew ~ 54,40 in Lee and Glass, 1982. We remark that this
error may be caused by an unnoticed bhias in our measuring technique (done by
simply using a ruler on the computer-generated contour plots of the blow-up
Mach stem region (not shown)), lack of numerical resolution when the Mach stem
is only 1-2 zones high, or a numerical error in the post-shock flow field at
the wall. In any case, the error is small relative to the viscous-inviscid
difference and it is also possible that the theoretical inviscid prediction

of o, ~ 54,40 does not apply when the entire disturbed flow field is taken
into account. Higher resolution calculations using an adaptive mesh scheme,
Rerger et al 1985, will be carried out in an effort to settle this issue.

This set of calculations also illustrates the dramatic collapse of the complex
DMR-pattern into the simple RR-pattern as 6, changes by a fraction of a degree
(see Figures 251 and m).
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6. Conclusions

A computer code has been developed for the inviscid, perfect gas shock-
on-wedge problem and the results have been compared with the best available
experimental data. The code is based on contemporary methodology in the
numerical analysis of hyperbolic conservation laws, and has only recently been
available.

Good to excellent qualitative agreement has been obtained in all cases of
direct comparison, and this applies to structures beneath the reflected shock
such as the vortex roll-up as well as coarser criteria such as the reflection
pattern. Quantitatively, the results are very good for flow fields without
observable nonequilibrium or viscous effects, except for Case 2. The error in
this case is probably a result of the relatively large variation of the
solution with respect to small increments in the problem parameters in the
vicinity of the parameter values defining this case. When nonequilibrium or
viscous effects are present, the quantitative error can be 10-15% and we may
recall Case 11 which has a much larger, and unexplained error.

Although not entirely proven, it appears that the computer code
represents a substantial predictive capability for the shock-on-wedge problem
restricted to inviscid, perfect gases. Even for viscous, real gas flow
fields, the computational results provide a significant amount of information,
including highly resolved flow-field structures.

Significant non-equilibrium and viscous effects have been demonstrated in
the shock wave diffraction experiments. Much of this could be inferred
without the numerical study, but the Tatter can provide a quantitative
estimate of the various effects. In particular, vibrational relaxation is
observed in the high shock wave Mach number cases, and this can have large-
scale effects on criteria such as the corner attachment angle and type
(subsonic or supersonic) and viscous effects are important in determining the
vortex roll-up pattern and the wedge corner flow field. Although these
effects occur in thin layers or small regions, they may have an effect on the
quantitative results in the inviscid portion of the flow field.

The capability of the computer code to discriminate between very small
increments in problem parameters (MS, 8, and the equation of state, although
the latter has not heen treated here) has been demonstrated.
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By using parametrized sequences of calculations, it would be possible to

construct transition boundaries in the (M ew)—plane. 0f course, the

S’
transitions obtained would be dependent on the transition criteria used in

their construction; our use of the sonic criterion in self-similar coordinates
shows how the infinite amount of data potentially available from a calculation

can be invaluable in evaluating one of the proposed criteria.

The discussion of transition set 1 in Section 5 illustrates how
parametrized numerical calculations can be used to elucidate details of the
flow field transition not otherwise available. It is quite possible that such
results will prove useful in the discovery of more precise analytic transition
criteria, in the future. For the high Mg transitions, the inviscid numerical
results provide a guide for the analysis of inviscid transition criteria in a
parameter regime where analytic-experimental agreement has been relatively
poor and where nonequilibrium phenomena are hard to avoid in the
experiments. Of course, the formulation of transition criteria for viscous,
nonequilibrium flow fields is not assisted by the present computer code.

Also we have been able to validate the conjecture that the RR-DMR,
transition is offset in experiments by a boundary-layer defect.

In Section 5, several calculations were noted where our analysis could be
greatly improved with a more efficient adaptive mesh in the vicinity of the
Mach stem. Obtaining the necessary resolution with the present computer code
would be overly expensive if carried out on a production basis for a large
number of calculations. Using the methods of Berger and Colella 1985, Berger
et al 1985, we expect to overcome this problem and revisit some of the cases
discussed in this report. Additionally, we are working on techniques to
reduce further or eliminate the starting error and boundary error from our
results.

In future work, we intend to modify our computer code and include an
approximation for vibrational relaxation. We expect that this work will
settle some of the questions raised in this paper. The results presented here
demonstrate, however, that a valid approximate solution method for the Navier-
Stokes equations will be required if complete agreement hetween experiment and
calculation is demanded. Despite these shortcomings, the comparison of the
present numerical simulations with interferometric data from RR, SMR, CMR and
DMR experiments are probably the best available to date.
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Figure 1

Figure 2

Figure 3

Figure 4

Figure
Figure
Figure
Figure

Figure
Figure 5
Figure
Figure
Figure
Figure
Figure

Figure

Figure

Figure

Fiqure Captions

Schematic diagrams of types of oblique shock-wave reflections: (a)
RR; (b) SMR; (c) CMR; (d) DMR; also definitions of L and s.

Regions of RR, SMR, CMR, and DMR and their transition boundaries in
the (Ms’ ew)-plane for perfect (frozen) air solid lines and
imperfect (equilibrium) air broken lines, oy " 2.00 kPa,

T, = 300 K, y = 1.40.

Numerical scheme for flow initialization; (a) starting procedure;

(b) shock reaching corner; (c) elimination of small disturbances.

Case 1, M. = 2.05, Oy = 600, Argon, y = 5/3, RR.

43 - Interferogram

4h - Calculated isopycnics using the experimental fringes

4c - Wall plots for p/pgys p/po with experimental data included, e, u
4d - Whole-flowfield contour-plots

4e - Blowup-frame plots

- Case 2, M, = 1.26, 0, = 450, Ajr, y = 1.4 and Hansen EOS, RR.

53 - Interferogram

5bp - Calculated isopycnics (y=1.4) using the experimental fringes

5by - Calculated jsopycnics (Hansen) using the experimental fringes

5¢ - Wall plot for p/po, y = 1.4 and Hansen calculations, with
experimental data

5¢p - Nal] plot for p/po, p/p0 with experimental data included, e,
u; y = 1.4,

Scy - Wa11 plot for p/pys p/po with experimental data included, e,
u; Hansen.

5dp - Whole-flowfield contour-plots; y = 1.4,

5ep - Blowup-frame plots; v = 1.4
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Figure
Figure

Figure 6

Figure
Figure
Figure
Figure

Figure

Figure

Figure
Fiqure
Figure
Figure

Figure 7

Figure
Figure
Figure

Figure
Figure
Figure
Figure
Figure

Figure

Figure

5dy - Whole-flowfield contour-plots; Hansen
Sey - Blowup-frame plots; Hansen

- Case 3, My = 1.50, 0y = 450, Air, y = 1.4 and Hansen EOS, SMR.

6a - Interferogram

6bp - Calculated isopycnics (y = 1.4) using the experimental fringes
6by - Calculated isopycnics (Hansen) using the experimental fringes
6c - Wall plot for p/po, y = 1.4 and Hansen calculations, with

experimental data

bcp - wall plot for p/pgs o/pg, with experimental data included, e,
u; vy = 1.4

bey - wa11 plot for p/pgs p/po with experimental data included, e,
u; Hansen

6dp - Whole-flowfield contour-plots; y = 1.4

6ep - Blowup-frame plots; y = 1.4

6dy - Whole-flowfield contour-plots; Hansen

6ey - Blowup-frame plots; Hansen

- Case 4, Mg = 3.03, 9 = 470, Air, y = 1.4 and Hansen EOS, DMR.

7a - Interferogram

7bp - Calculated isopycnics (y = 1.4) using the experimental fringes
7by - Calculated isopycnics (Hansen) using the experimental fringes
7c - Wall plot for p/pgys v = 1.4 and Hansen calculations, with

experimental data

Tcp - wa]1 plot for p/pgys p/p0 with experimental data included, e,
u; vy = 1.4

Tey - Nal] plots for p/po, p/pO with experimental data included, e,
u; Hansen.

7dp - Whole-flowfield contour-plots; y = 1.4

7ep - Blowup-frame plots; y = 1.4

Tdy - Whole-flowfield contour-plots; Hansen

7ey - Blowup-frame plots; Hansen
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Figure 8 - Case 5, Ms = 2,65, 0, = 300, Air, y = 1.4 and Hansen EOS, CMR.

Figure 8a - Interferogram

Figure 8bp - Calculated isopycnics (y = 1.4) using the experimental fringes

Figure 8hy - Calculated isopycnics (Hansen) using the experimental fringes

Figure 8c - Wall plot for p/pys v = 1.4 and Hansen calculations, with
experimental data

Figure 8cp - Wa11 plot for p/po, p/pO with experimental data included, e,
u; vy = 1.4,

Figure 8cy - Wa11 plot for p/po, p/p0 with experimental data included, e,
u; Hansen

Figure 8dp - Whole-flowfield contour-plots; y = 1.4

Figure 8ep - Blowup-frame plots; y = 1.4

Figure 8dy - Whole-flowfield contour-plots; Hansen

Figure 8ey - Blowup-frame plots; Hansen

Figure 9 - Case 6, M. = 5.07, 0, = 300, Argon, y = 5/3, CMR.

Figure 9a - Interferogram

Figure 9b - Calculated isopycnics using the experimental fringes

Figure 9c - Wall plots for p/po, p/pO with experimental data included, e, u
Figure 9d - Whole-flowfield contour-plots

Figure 9e - Blowup-frame plots

Figure 10 - Case 7, Mg = 10.37, Oy = 100, Air, Hansen EOS, CMR.

Figure 10a - Interferogram

Figure 10b - Calculated isopycnics using the experimental fringes

Figure 10c - Wall plots for p/pgs p/p0 with experimental data included, e, u
Figure 10d - Whole-flowfield contour-plots

Figure 10e - Blowup-frame plots

37



Figure 11 - Case 8, Mg = 1.66, 8, = 400, Air, vy = 1.4 and Hansen EOS, SMR.

Figure
Figure
Figure
Figure

Figure
Figure
Figure
Figure

Figure
Fiqure

11a - Interferogram

11bp - Calculated isopycnics (y = 1.4) using the experimental fringes

11by - Calculated isopycnics (Hansen) using the experimental fringes

l1c - Wall plot for p/p,s y = 1.4 and Hansen calculations, with
experimental data

llcp - wall plots for p/pgy, p/p0 with experimental data included, e,
u; y = 1.4

lley - Wa11 plots for p/po, p/p0 with experimental data included, e,
u; Hansen.

l1dp - Whole-flowfield contour-plots; y = 1.4

11ep - Blowup-frame plots; y = 1.4

11dy - Whole-flowfield contour-plots; Hansen

lley - Rlowup-frame plots; Hansen

Figure 12 - Case 9, Mg = 2.87, g = 400, Air, y = 1.4 and Hansen EOS, DMR.

Figure
Figure
Figure

Figure
Figure
Figure
Figure
Figure

Figure
Figure

12a - Interferogram

12bp - Calculated isopycnics (y = 1.4) using the experimental fringes

12by - Calculated isopycnics (Hansen) using the experimental fringes

12¢c - Wall plots for p/p,s p/po, vy = 1.4 and Hansen calculations, with
experimental data

12¢p - Nal] plots for p/po, p/pO with experimental data included, e,
u; y = 1.4,

12¢y - Wa11 plots for p/pg, p/pO with experimental data included, e,
u; Hansen.

12dp - Whole-flowfield contour-plots; y = 1.4

12ep - Blowup-frame plots; y = 1.4

12dy - Whole-flowfield contour-plots; Hansen

12ey - Blowup-frame plots; Hansen
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Figure 13 - Case 10, M. = 3.72, 0y = 400, Air, y = 1.4 and Hansen EOS, DMR,

Figure 13a - Interferogram
Figure 13bp - Calculated isopycnics (y = 1.4) using the experimental fringes
Figure 13by - Calculated isopycnics (Hansen) using the experimental fringes
Figure 13c - Wall plot for p/po, y = 1.4 and Hansen calculations,with
experimental data
Figure 13cp - Wall plots for p/py, /e, with experimental data included, e,
u; vy = 1.4

Figure 13cy - Wall plots for P/Pys p/pO with experimental data included, e,

u; Hansen

Figure 13dp - Whole-flowfield contour-plots; y = 1.4

Figure 13ep - Blowup-frame plots; y = 1.4

Figure 13dy Whole-flowfield contour-plots; Hansen

Figure 13ey - Blowup-frame plots; Hansen

Figure 14 - Case 11, Mg = 4.62, 8, = 400, Ajir, y = 1.4 and Hansen EOS, DMR.

Figure l4a - Interferogram
Figure 14bp - Calculated isopycnics (y = 1.4) using the experimental fringe
Figure 14bH - Calculated isopycnics (Hansen) using the experimental fringes
Figure l4c - Wall plot for p/po, vy = 1.4 and Hansen calculations, with
experiment data
Figure ldcp - Wall plots for p/pys p/pO with experimental data included, e,
u; y = 1.4

Figure l4cy - Wall plots for p/po, p/p0 with experimental data included, e,
u; Hansen

Whole-flowfield contour-plots; y = 1.4

Figure 1l4dp

Figure ldep - Blowup-frame plots; y = 1.4

Figure l4dy Whole-flowfield contour-plots; Hansen

Figure l4ey - Rlowup-frame plots; Hansen
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Figure 15 - Case 12, M, = 2,03, 8, = 270, Air, y = 1.4, SMR,

Figure 15a - Interferogram

Figure 15b - Calculated isopycnics using the experimental fringes

Figure 15c - Wall plots for p/pg, p/p0 with experimental data included, e, u
Figure 15d - Whole-flowfield contour-plots

Figure 15e¢ - Blowup-frame plots

Figure 16 - Case 13, Mg = 8.70, o = 270, Air, Hansen EOS, DMR.

Figure 16a - Interferogram

Figure 16b - Calculated isopycnics using the experimental fringes

Figure 16¢c - Wall plots for p/pg, p/po with experimental data included, e, u
Figure 16d - Whole-flowfield contour-plots

Figure 16e - Blowup-frame plots

Figure 17 - Case 14, M, = 7.19, 8, = 200, Air, Hansen EOS, C/DMR.

Figure 17a - Interferogram

Figure 17b - Calculated isopycnics using the experimental fringes

Figure 17c - Wall plots for p/p,, p/po with experimental data included, e, u
Figure 17d - Whole-flowfield contour-plots
Figure 17e - Blowup-frame plots

Figure 18 - Case 15, My = 8.86, 0, = 200, Air, Hansen EOS, DMR.

Figure 18a - Interferogram
Figure 18b - Calculated isopycnics using the experimental fringes
Figure 18c - Wall plots for p/pg, p/p0 with experimental data included, e, u
Figure 18d - Whole-flowfield contour-plots
Figure 18e - Blowup-frame plots
Figure 18f - Reproduction of the interferogram of Exp. 974, Ref. [1773;
Mg = 10.18, 6, = 200, Air
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Figure 19 - Transition set 1, ew =450, v = 1.4

Figure 19.1a - Mg = 1.30, whole-flowfield contour-plots
Figure 19.1b - M. = 1,30, blowup-frame plots

Figure 19.2a - M. = 1.40, whole-flowfield contour-plots
Figure 19.2b - M_ = 1.40, blowup-frame plots

Figure 19.3a - M. = 1.50, whole-flowfield contour-plots
Figure 19.3b - M
Figure 19.4a - M

Figure 19.4b - M. = 1.60, blowup-frame plots

= 1.50, hlowup-frame plots
= 1.60, whole-flowfield contour-plots

s
Figure 19.5%a - Mg = 1.70, whole-flowfield contour-plots
Figure 19.5b - M. = 1.70, blowup-frame plots
Figure 19.6a - = 1.80, whole-flowfield contour-plots
Figure 19.7a - = 1.90, whole-flowfield contour-plots
Figure 19.7b - ¥

Figure 19.8a - M. = 2.00, whole-flowfield contour-plots

M
M
Figure 19.6b - M. = 1.80, blowup-frame plots
M
M. = 1.90, blowup-frame plots

Figure 19.8b - M. = 2.00, blowup-frame plots
Figure 19.9a - M. = 2.10, whole-flowfield contour-plots
Figure 19.9b - M. = 2.10, blowup-frame plots

2.20, whole-flowfield contour-plots

S

S
Figure 19.10a - M
Figure 19.10b - M. = 2.20, blowup-frame plots
Figure 19.1la - M. = 2.30, whole-flowfield contour-plots
Figure 19.11b - M
Figure 19.12a - M
Figure 19.12b - M. = 2.40, hlowup-frame plots

Figure 19.13a - M. = 2.50, whole-flowfield contour-plots

= 2,30, blowup-frame plots
= 2,40, whole-flowfield contour-plots

Figure 19.13b - Mg = 2.50, blowup-frame plots
Figure 19.14a - M. = 2.60, whole-flowfield contour-plots
S

Figure 19.14b - M_ = 2,60, blowup-frame plots
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Figure 20 - Transition set 1, 6, = 450 | Hansen
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Figure 21 - Transition set 2, Mg = 4.0, y = 1.4

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

21.1a

21.1b

21.2a
21.2b
21.3a
21.3b
21.4a
21.4b
21.5a
21.5b
21.6a
21.6b

D D D D D D D D D D D D@
£ £ £ £ £ € £ £ £ £ £ =

290,
290 ,
300,
300,
310,
310,
320,
320,
330,
330,
340,
340,

whole-flowfield contour-plots
blowup-frame plots
whole-flowfield contour-plots
blowup-frame plots
whole-flowfield contour-plots
blowup-frame plots
whole-flowfield contour-plots
blowup-frame plots
whole-flowfield contour-plots
blowup-frame plots
whole-flowfield contour-plots
blowup-frame plots

42



Figure 22 - Transition set
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Figure 23 - Transition set 3, Mg = 8.75, y = 1.4
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Figure 24 - Transition set 3, Mg = 8.75, Hansen
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Figure 25 - Transition set 4, Mg = 7.10, y = 5/3, density contour-plots

Figure 25a - Interferogram, ew = 490
Figure 25b - ew = 490
Figure 25c - o, = 500
Figure 25d - ew = 510
Figure 25e - 8, = 520
Figure 25f - ew = 52,750
Figure 25g - ew = 53,00
Figure 25h - o, = 53.100
Figure 257 - ew = 53,200
Figure 25j - ew = 53,300
Figure 25k - ew = 53,400
Figure 251 - ew = 53,500
Figure 25m - 0, = 53,750
Figure 25n - ew = 540
Figure 250 - 6, = 550

Fiqure 26 - Plot of DMR Mach stem height versus ew’ extrapolated to zero height
for RR(h/L = 0 for o, ~ 53.850), h/L =0 for 0, = 540 is a numerical result
(see Fiqure 25n) A, experimental point; e numerical results.
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TABLE 1.

CASE | FIGURE | GAS TYPE | 6w | Ms Po (k Pa) | po (gm/cc) EOS | NX | NY

1 4 Argon  RR 60° 205 20.00 323X104 y=5/3 355 90
A 0 3 Y= 1.4

2 5 Air RR  45° 1.26 10112 1.146X103 [ = 350 160
=1.4

3 6 Air SMR 45° 150 5066 5.73X 104 :ansen 375 160
=1.4

4 7 Air DMR 47° 3.03 333 377X105 7 500 120
Hansen
=1.4

5 8 Air CMR 30° 265 1333 152x10% 4 390 125
Hansen

6 9 Argon CMR 30° 5.07 400 6.45X10° y=5/3 420 140

7 10 Air CMR  10° 10.37 6.67 7.53X 100 Hansen 400 140

8 11 Air SMR  40° 1.66 3333  38x104 Y14 375 135
Hansen

9 12 Air DMR 40° 287 16.67 19x104 =1 40 110
Hansen

10 13 Air DMR 40° 3.72 600 687x105 Y=1% 420 100
Hansen

1 14 Air DMR 40° 462 280 3.19X107° });=1.4 420 90
ansen

12 15 Air SMR 27° 2.03 3333 387X10% y=14 350 130

13 16 Air DMR 27° 8.70 410 4.76 X 10° Hansen 440 85

14 17 Air C/DMR 20° 7.19 8.00 9.29 X10° Hansen 420 120

15 18 Air DMR 20° 886 4.10 4.65 X10% Hansen 500 110
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Figure 1 - Schematic diagrams of types of oblique shock-wave reflections:
RR; (b) SMR; (c) CMR; (d) DMR; also definitions of L and s.
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Figure 2 - Regions of RR, SMR, CMR, and DMR and their transition boundaries in
the (M_, 8 )-plane for perfect (frozen) air solid lines and
1'mper~ﬁ§.ct ‘f'equﬂibrium) air broken lines, p = 2.00 kPa,

To = 300 K, y = 1.40.
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Figure 3 - Numerical scheme for flow initialization; (a) starting procedure;
(b) shock reaching corner; (c) elimination of small disturbances.
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Figure 4d - Whole-flowfield contour-plots
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Figure 4e - Blowup-frame plots
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Figure 5by - Calculated isopycnics (Hansen) using the experimental fringes
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