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Abstract

N = 1 supergravity with an antisymmetric tensor gauge potential
is formulated in U(1) superspace. This mekes the structure of the
theory most transparent. Minimal, new minimal, and 16+16 supergravity
are derived from & reducible 20+20 multiplet, and the coupling to
supersymmetric gauge theories is constructed. 16+16 supergravity can
be coupled to gauge fields via the two form potential in complete

analogy to ten-dimensional supergravity.

*This work was supported by the Director, Office of Energy Research,
Office of High Energy and Nuclear Physics, Division of High Energy
Physics of the U.S. Department of Energy under Contract DE-ACO03-
76SF00098.

1, Introduction

Up to now, four different N = 1 supergravity multiplets have been
found: the minimal multiplet [1], the non-minimal multiplet [2], the
new minimal multiplet [3], and the 16+16 multiplet [h]. The new minimal

'multiplet has a local U(l) invariance. Both the new minimal and the

16+16 multiplet contain an antisymmetric tensor gauge potential, The_
non-minimal multiplet has been shown to be reducible to either the

new minimal or the 16+16 multiplet [E,hJ. Therefore we will not consider
it here. )

- The structure of supergravity theories becomes most transparent
when they are formulated as geometrical theories in curved superspace.
This has been done in a systematic way for all the different N =1
multiplets [6,h]. Except for the minimal multiplet, however, the
necessary calculational effort is still enormous. One purpose of this
paper is to show that it can be considerably diminished by extending

the structure group of superspace to SL(2,C)* U(1l). In particular, this
is the most natural setting for the description of the new minimal
multiplet, The second purpose is to emphasize the role of the two form
gauge potential as a basic geometric object in superspace. It is treated
here almost equally to the vielbein, connection, and U(1l) potential,

In sect. 2 a short introduction into the geometry of U(1l) superspace
is given. Naturel constraints in U(1l) superspace are derived from those
in Lorentz superspace., As for the torsion, they correspond to the c§n—
straints for minimal supergravity [7]. The Bianchi identities subject
to these constraints are solved in sect. 3. The independent component
fields form a reducible multiplet with 16 bosonic and 16 fermionic
degrees of freedom. It can be considered as the minimal multiplet plué
a vector multiplet.

Chiral superfields and chiral densities in U(1l) superspace are
defined in sect. 4. A special chiral density and an invariant action
are constructed. This action leads to the lagrangians.for the minimal
and the 16+16 multiplet. For the new minimsl multiplet it vanishes as
a consequence of the vanishing volume of this kind of superspace [5].

It turns out, however, that a different action can be constructed in

this special case.



In sect, 5 the superspace geometry of a two form gauge potential
is briefly reviewed. Constraints are imposed on its field strength and
the Bianchi identities are solved. The independent component fields
enlarge the multiplet of sect., 3-to a reducible 20420 multiplet. It
can be reduced either to the new minimal multiplet (12+12) or, by
breaking the U(1), to the 16+16 multiplet., The latter is parameterized

"by a real numbef n. For n = 0 it is further reduced to the minimal
multiplet (12+12), For n = % the 16+16 multiplet is the N = 1 limit
of a N = U supergravity theory with antisymmetric tensor potential [8].
This has been shown in ref. [4] (our n differs from theirs).

In sects, 6 and 7 supersymmetric gauge theories are coﬁpled to
the various supergravity multiplets using a chiral basis of superspace.

. For minimal and new minimal supergravity the results are well-known [7,9].
A different mechanism for 16+16 supergravity has been found by R. Grimm
[10]; The transformation law of the two form potential is modified such
that its field strength contains the Chern-Simons three form of the

gauge fields., The supergravity and Yang-Mills lagrangians are then

given by one and the same action in superspace. We transfer these results

to U(1) superspace and compute the compopent form of the combined
lagrangian, It is remarkable that this mechanism, which is also known
from ten-dimensional supergravity [11], yields a unified supergravity/

Yang-Mills lagrangian only for the 16+16 multiplet.

Finally, the coupling to matter superfields is constructed in the
usual way [7]. R-invariange is required for new minimal supergravity
and simplifies the coupling to 16+16 supergravity. Even without
R-invariance, however, no singularity has to be introduced. 16+16
supergravity coupled to matter could possibly be the low-energy limit
of the superstring [12]. '

} . We use the conventions of the book of Wess and Bagger [7]. At least

chap. XII of this book is presupposed in the following.

2, Geometry of U(1l) superspace

To start with, we fix the structure group of superspace to be
SL{2,¢) * U(1). This is the most general choice for N = 1 superspace.
The group pafameters are Lie algebra valued, i. e. they have the same
matrix structure as the generators of the Lie group. For the Lorentz

group this means

LBA” (Lbal Lﬂql LF*) ]

Qa

R ()
- Lot L™= L%

O )

Lyjesc = 2 €4 L = 2pe Lia
and for the U(1l) we have A= - AY. Under these transformations a n-form
JZA changes infinitesimally by

§2% = Rf Lt w2 @)

where w(Jl) means the U(1l) weight of Jla. The same transformetion law

holds for the covariant exterior derivative
8 A
20" - dnP+ 024, rw(R) A (0

The connections ¢BA = dzM ¢MBA and A = dzM AM for the Lorentz group,

resp. U(1l), are Lie algebra valued one forms and transform as follows:
A A i /\.
SN = -l ", GA=-dAA . )
Applying 9@ to eq. (3) gives

222" = A°RP +w() RPF (s)
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The curvatures

Re® = g™ s 0,9 " F = dA (6)

-

are Lie algebra valued two forms,

A

R AL o Ne A
Rg" = 7 de"da” Ry, 7 E E Kpeg
) A8 (7)
= J M N R A
F=tdeda" F,, = 3 EE Fgy
and satisfy the Bianchi identities
A
ARy "= 0 AF =0 | (%)
This was the affine structure of U(1) su@erspace. In addition,
we impose a metric structure, i. e, we distinguish a set EA = dzM EMA
of one forms and call them orthonormal or vielbein, We assign the
following U(1l) weights:
oy - ay
wi(E¥)=-1, w(€g)==1, w(E”)=0 . (3)
The covariant derivative of the vielbein,
' A
TA=-2€",
(i0)
M4 N A 1 8 .¢C A
Th= Fde™de™T,, "= 1 ETE Ty,
is the forsion two form, which satisfies the Bianchi identity
A 8, A Ay oA ; '
DT = E°Ry" + w(e")E"F | , ()

o
P

We rewrite some equations, which will be needed later on, in a

more explicit form. The covariant derivative (3) acts on a vector VA

as follows:
DuVy = 3 Va - Pua Ve + wV) A, Vs . (12)
The (anti)commutator of two covariant derivatives (5) gives
[@, 5] Ve = = Tag "Dy Ve = Rage " Vo +w(¥) Fag Ve, (13)
[2n,Dg} = Dy Q5 - (-)7° 24 25

The structure equations (10) and (6) read explicitly

A A A
Tum = Dy En - ()", E",
A A A :
Rums oy Pmg - ()™ Op s |
(%)
A nm A v
"¢~'Bc¢nc + () ¢n3c¢~c )
Fum = OnAn - )" 9y Ay )
and the Bianchi identities (11) and (8) can be written as
| A Ay A A 3 Ay _
és (Rbca v"’W(E )Je Foc = DTcg ~Toc Tee ) = 0,
A

EDC

€& (D, Fgp + TCBDFDA) =0
CBA

" Here § denotes the graded cyclic sum. (The sign changes according

to AB = -(~)%P BA.)
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Lorentz indices A; B, o.. transform under the structure group,
Einstein indices M, N, ... under general coordinate transformations
with parameters JZM = K‘“. (This differs from [T] by sign.) The trans-
formation laws of the vielbein, the connections, and an arbitrary
vector VA read .

svh= ¢ W VrvEL Y s wv)vAa
CEn s TV B (BT ) et B M e wEN B A

R AR AL N PLETCN WLV NN (16)
SAm = TV 0w An + (") Ay =~ 3uA .

e s A _ M A . A _ eM '
The reparametrizations LB = f ¢MB + 1L B and A = f A.M + A
lead to the following covariant form of the transformation laws:

Vi R, vA e vEL L wv) VAR

1
TEW s F8Ten v 2, F  + €, L v we® E AN

A _ g€ A A '
§bus = § Reng —@nl's 07)

SApm = FrFan - 90" .

In the next step we are going to impose covariant constraints in
order to reduce the huge number of component fields contained in vielbein
and connection. In ref. [6] a set.of natural constraints has been found,

. which eliminate the Lorentz connection and the higher dimensional parts

of - the vielbein as independent variables. These constraints are

-8 -

T ® = 0 f‘-“-?e"-

yp " Vo f AT B

T = (1) (85 Ty #85Tp) (17)

T 3& = (n-1) Ji T‘ , Txba = Zn cf: TX

x )

ch"‘:o’ (”*—3"-)

and their complex conjugates. However, there is still the freedom to

redefine the vielbein:
. a - «
Elua = Epeg = 2ix Ep (8a)s Tu . (19)

This results in [6]

UL 4. & T' = (1-6x) Ty . (20)
1-€x ! «
The choice x = -n/2 gives n' = O; T = (3n+l) Ty, and the constraints
take the form.
a o a

Tyg =0y Ty LA

« of o
T-(F - (;p T}, + 6—3 T-p ) 62[)

Txﬁaz’Jf:Ty; Typ =0,

a

1
Q

Tee

These equations might as well be called natural constraints in Lorentz

superspace.



In U(1) superspace we have the additional freedom to change -the

. i _ vt .
U(1) connection. The redefinition Al = Ae - Ty leads to Ta'ﬂ = Ta,p‘;( 0 ’

and a suitable redefinition of Aa gives Fyg = O. Thus the natural con-

strainté in U(l) superspace are

a

. —iha _
TKF 'T ‘O

a . e

KF -.ZLGKF.)
x . =

T!E.'O' Tyse =0,

T =0

Here of denotes either « or & .

3. Solution of the Bianchi identities

We are going to solve the Bianchi identities (15) subject to the
constraints (22) in order to determine the independent superfields
contained in vielbein and connection. It has been shown [13], that it
suffices to solve the first identity. The Bianchi identities for the

curvatures are then automatically satisfied.

To anticipate the result, we will need the following superfields:

superfield | R | RY | Gusr | Wy, Wor | Wigy ) Wee
U(1) weight | @ [-< 0 l [ -1

Gy 1s hermitian and W‘{H is completely symmetric in its indices.

We and Wy “are defined as

~i-

W

(’ao( R - 5*6«* ) )

(., RY- 26, ) .

nN-

\:75‘=

(22)

(23)

(24)

s
*

- 10 -

Therefore only three superfields are independent, They are, however,

subject to the following conditions:
I) 5‘;‘ R = -0,( K+ s

2) DyWe = DWWy =0

¥ ®
5) 2 W«px - «% (%'z« Gfx ":'g‘aotwp)
27 Wagy * % (%@)’;‘6#-%5‘*\7‘&) (2S)

A1l the components of the torsion and the curvatures may be ex-
pressed in terms of the superfields (23) and their covariant derivatives.

The results are summarized below.

Torsion

= - 9. . +
Typic = =20 &g E4e R

Tipia = ~0 (€4 Gpa + 7 €puc Cpf)

* 5 oa“\a/F means oJy Wﬁ + 03 W .
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3)
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3) Tyypha = g by + Eyp tigu
Eype = 2 Wypa .+x§' e (324K +3)
tiix = 2 5 Oy Ouf

W) Typpix T Exp typa t Ee by
tyix © -2 Wypa + 5 (43, R* +4i7;)
tyge © zi;*.'i Dy G gy

Curvature

1) Rgppu = & (€gp Epur + €5 Egp) R?

Ripha = %1855 Sha t 4 Tgf ) R

Kd’xp'é( * Riype = 0
Repae = 7 % Eop Ot
‘Rd'hé‘( = —/5:"‘ s;‘«/i G sa

- 12 -

“) Repppe = CSap tpci * 5 & Sop (bruy * Epe trp )
Reygpa = C€ax tﬁ*bf‘.* 5 ;’:7 €45 (tyay * Ea typ £)

S) Rogppe = "2 sy tpoy + 5 T Egp (bigu + 855 tus )
Reyppa = ~20 e“.tp-,.,& + %,ez.( g (topa +E5p tus §)

(26) _ |
6) Rysyypinse = iy Ehsc Xaype + Eo Epw Py fie

t Egp Efu &¥ 8 +€JK8F°‘7—({§’F;","

 ab
=& D\ + 7 (€58 Cyu ¥ Esu Egp) Rap "
¢ .1

X- Sy f« dxp~

_— o = - ) ab
X it _n%e Dy Wypa + ¢ (€45 Cyae + 850 £54) Ras

ab

Rop ™ = - 2 (22R+ B5R*)-2 2W, +4TRRY + 6 6%,

[} = . - .
b Z Fg (25 Dj Gy =325 Gya

—Z GJ‘? Gx;‘ )

Poyhc = Fpaty =

= 1)
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Field strength
2) FF.(,'( = 2< CP,, W,-,

Flhux = 20 Ege We

' R —
foo = -3 Z D W, £, = 5 2, W, (2%)
2 o ol 2 o
g = 8 £ gz OF
With several redefinitions, this solution can also be obtained from

the more general solution in ref. [6].

The U(1l) field strength is entirely given in terms of the chiral
superfield Wy . Therefore Wy contains all the gauge invariant component.
fields of the U(1l) connection. To derive an explicit relation, we write
F = dA in the form ' '

Fea = Dg An - ()2, A + Tgp < Ac : (29)
and obf;ain V

QA =Z D,A, =0

p L ’

'A-z« = ; (DA, + D, AL) (10)
Wy = = § (%A -2 A )+ AR-FA 6,

W = '% (B A = Ve A¥) = AL R™ + g A;‘G.(.-( )

- 14 -

) It is now straightforward to find the independent component fields
of the vielbein and the connections., The transformation laws (17) show
that most of the ©:86:=0 components may be gauged away using the
© and & components of the parameters fA, L'BA, and A' . We are left
with :

A ema %‘f’mq 'z"?w\e'(
. o
E” Ie~6‘-o~ o J’“ O. !
0 % (31)

A

¢MBA}~(QMB lolo) J AH"V({'Q.'“'O'O) :

o .
The greviton ema and the gravitino 'fm are the physical fields of
N = 1 supergravity. The Lorentz connection & is not an independent
field, As a comnseguence of the constraint cha = 0, it may be expressed

in terms of e and Y :

= 1 a a a
Uumt 5 7 2 (e_‘ga au €m ~“€ua amel + €uia 22 €n )

(32)
& (fnSe Pou” Y G Fa + Y G P ) = (med) .
The remaining component fields are defined as follows:
Rl =~gM , RY|=-¢M , Ga|=-3ba, (22)
\n/«, ='CA« ).r/o'(l= "Io'( ’ "axw“’ =-2D .
Altogether, we obtain the multiplet
(ema, \rw"‘ s 8 My D, A« , D) - (34) .

with 16 bosonic and 16 fermionic degrees of freedom. It is reducible,
since it contains the minimal multiplet (ema, (rm"‘ » M, ba)' as well as

the vector multiplet (am, Ax > D).
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The component fields (34) are all independent. It remains to be
shown that they form a closed set of fields, i. e. transform into each
other under supergravity transformations. The parameters of these trans-
formations have the 6= 6 = 0 components

fﬂ

In addition, they have non-vanishing © and 5 components in order to

~ (0,54, Fa), Lsfro, A'|=0. (35)

preserve the gauge {(31). Inserting (35) into (17) yields the following
transformation laws:

Sen” = i (JS"Fu + TE pu)

J?W\ﬁ? = 'ZDW\T& +_;-(IGM)Q"F1. + :

Wie
R
o~
3
|
Wie
—
A
o
3
9]
»
~—
x:
o~
»

Oy
S
b4
n

L (fe‘mx-r‘f'émzl) )

GCTT - THtgf)

o,
=y
"

. (3¢)
§buw = — 4 (Tueka # Ta ki) ~ Jutaz?| + Futup?|
"3 1 tpus| # 3T tan|

- -

& L JeD +i T

o
>
[{]

Fff’(l ,7

< e

‘.16 -

The 626=0 components of ch‘-’-( and F.Da are related to the Rarita-

Schwinger and U(1) field strengths through

- an

td(# F.I.=‘-%(T/MMG )o'( +&(YMGM)&H.-&?M&L

wA
)

tp«éz, = -2 (GMM);« P "{T, p% (2 e p M

+ Pus P pp = S s b ) (=7)
Fiol = =€ )ia Fun ~3 Z ( P T+ Pagu AT
gac = - e Ve "7 2 (YRR Aat Y ppa ’

of

tr/ww\_ = DMYM!‘DWYME ) Fon Z Omdn = PnQu,

4, Chiral superfields and chiral densities

Chiral superfields in U(1) superspace are subject to the condition
D $ =0 . (3%)
Their component fields are defined as
= = -4
Axd| | Xa=R$|, F=-{22¢]. - (39)

Under supergravity transformations the component fields transform
as follows:

A= ITx ,
S = QI F + 20 (6°T )u Ba A ) (".'0).
SF = 5 Ix P = £ (75°X) ba + ¢ (F5%) Ba X

+2 W(¢)TIA

Fal
-
i
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. A
The supercovariant derivatives Da in x-space are defined by

Bah = €™ (DA -1 X)),

(41)
Baxet = eam (Dmxe; —Ym« F- (Gb?m)a( BbA ) .
The transformation laws (40) can be written in the short form
§6 =" Dy +w(®)IAS (+2)
where
$= A+ Ox + OOF (¢3)
and .
V,mzzc @c“‘f,»@@(fa“c“‘:,?,,) , .
" (%)

gr e JM 500 (IR T 6™ ) -2 v
A= 2 00F1 .
g 2

L . . . 2 __
Herg ®" are new anticommuting variables and DM ~ (Dm, / 3@“ )e

~ Chiral superfields may be constructed out of general superfields

by means of a chiral proJectidn operator. In U(1l) superspace this is
A=22-%¢R . ‘ (45)

For any Lorentz scalar V we have

Dy BV =0 . (46)

- 18 -

Chiral densities in U(1l) superspace are defined by the trans-

formation law

§4 = (-)" Dy (V’”A)+w(d)/\£\ , -
(47)

A=o\+@j+O®F .

The product of A and a chiral superfield ¢ is again a chiral density
with U{1) weight w(4$) = w(4) + w(P). A special chiral density €

can be constructed from the lowest component
a
a=e=det e . (48)
m

Comparing the transformation laws (47) and (36), we find

P = ce‘(s”?m),‘ ,

, (49)
foome (A rPud™Fu)
Eq. (47) yieids for the highest component of &
SF= -¢D, (e TE™F.) +2cew(E)TL . (s50)

Comparing this with the explicit variation of f gives w(E) = =2,

The integral of a chiral density a over x and ® is an invariant
action, provided that the U(1l) weight of A vanishes. This condition

is satisfied for

S = jo(‘*x d'® ER +h.c. (s1)
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Using 5. Two form gauge potential
ab e eyl P & 3 . .
Kab , - (?‘M GH) t"F F’ 4 {G‘M\t/w‘) to’lﬁ' Pl : We introduce a two form gauge potential B = % dzM dzN BNM with
: : the transformation law
- S § klww (— = _ -
= R 2 € (Yk Se ‘rwm ?’k Sy Ymu )

58 = du . (56}

—_— = an mw vy (52) . X
—(Yms Yn)” —(YMG ‘rn)m H M
Here W = dz va is a one form gauge parameter, The field strength

o
Z=:e"e," R |

, 6= d8
we obtain the following combonent form of 7 : L A_B _c (57)
. . _ 4 M N = L
s (¥ €[ L R-2 L glln (o = — G=3Frde"de de Gy = STEEE Gepy
j'jd X ?[2 D—Q’C_ chzfmu-‘f/kglrmu)
- I e f — a (53) satisfies the Bianchi identity
L NP EER 7 A+ 3 (MA-b".) ] . v
This invariant is not yet a consistent action for supergravity. It dG =0 . (5”
l_eads, however, to consistent lagrangians if the multiplet (3%) is The above equations read explicitly
reduced. As e first application, we consider the reduction to the
(= L wm L
= 2 + (2 B - (- 0 8
Minimel multiplet By = F 9 Bum +(wE V8w =) (n T ) 6w
This multiplet is obtained by eliminsting the U(1): A'=F =0 -  touwm - ()™ AUy, (59)
S Wye=0 = A, =D =0, We are left with the component fields : ‘
“ : G = 2, B (¢o)
(e,% W 5 M, B,). (54) LNM L;fl"l Lt Owvm
The invariant (53) yields the supergravity lagrangian ' » EAESECED (.@b GCGA + "Zg' Tbc FGFKA ) = 0 . _ (6t)
- 2 - _|_ .
!fmin - ‘3]0‘ ©OER + bhc. = - z € R (s5) The transformation law (59) can be writtem in the covariant form
riee " (g8 Y - G, Fun) —3€ (MM-b"ba) : A ) i ' '
M YiCt Youn = YiaBe Yo ) = 3 ~h 8By = T Gpayn + W - )" Oy, (¢2)

: ' N
: where W, = W, + .
Another reduction of the multiplet (34) is given by the constraint M M f Ey

R = 0, This leads to the new minimal multiplet. Since this multiplet
contains an antisymmetric tensor potential, we will consider it in the

next section.

4]

4\

‘i
e
.
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Now we impose the following constraints on the field strength G:

Cypx = O,

Gypa = G*Fq =0, o (63)
v

prfq = -2\‘; (Ga)x#’ (A .

U is a hermitian superfield with vanishing U(1l) weight. The remaining
components of G are then determined by the Bianchi identities (61).
We find

' v
Gyp,ée(a‘( 'Qsp'a'tpz.( Exp 2.¢e ,
. = - ) v {“4')
Gy pf w 251,,,% €vi du€
Gn'« BE x = R (Eyw Y] Gpa'( "~ €yp Era Ga(p') J
-~ — U
c;ud( = 2 C(J (;aﬂk - %’ [GZL(,éDi,] e . (¢5)
Here the dual field strength vector E; is defined as G° = (1/31) €abcd Gbcd'
Moreover, we obtain the condition ’
53 - t)e = (66)
(22-8R) e = (22-8R*)e =0 | ¢
Defining
Te=@ VU, T,:=3,V, ' - (67)
we find as an immediate conséquence
= 5. T. = g
é;’ Dg Tee ;E D; Ty o . (¢8)

~y
[ 4

- 22 -

Eqs. (65) and (66) may be rewritten in the form

Cuse = € (06 + 2 B,T -2 2, Te - T T ),
(69)

R= 2 (3+T), T°, R*= L (2+7)%T, .

|~

Thus we are left with U, Gge , and w“ﬂk as independent superfields.

In the next step we determine the independent component fields
of the two form potentisl. The transformation law (60) allows to choose

the gauge
BHN ~ : (70)

for the €3= = O components. The remaining component fields are
defined by v

L I G I SO )
They enlarge the multiplet (34) to the reducible 20+20 multiplet

a « .
(e s W 5 8o Typs Cs P s M5 By, Aw s D). (72)

This set of fields is smaller than the 24+2h multiplet proposed in

ref, [6]. Nevertheless it contains all the irreducible multiplets of
N = 1 supergravity.

The transformation laws of the component fields (70) and (71)

under supergravity transformations (a;h, = 0) are
.c . _
§t,.. = 2e (}'Gmcr+]'6m\<r)

-(.-ec[)'gm P + I8 o - (men)] ,
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B.c e ™(ancC- %Y-zlq:m?) . (73)

The ©= é = 0 component of Ea is related to the field strength of
the antisymmetric tensor through

ga' = 'emasm_ Lcc(‘rsab‘f’b"?—eab'f_’b )
L abc o -—
+Ee e (¢, G Fa ) (74)

k - i kRwan R
? = 2 € 92 tw“,\ .

We consider now the possible reductions of the multiplet (72) and
distinguish two cases: with and without u(1) symmetry. Leaving the U(1)

unbroken leads to the

New minimal multiplet

To obtain this multiplet, we impose the constraint

v=0 . | (75)

ab

: o
This gives Tq =R = 0, G, = ;éﬁa’ W = = t,,pp, and D We =% Rb

+ (3/4) & 6&' The dim-2 Bianchi identity for the field strength G

becomes D% Ea. = 0, which can also be found from the condition (25.3).
The above superfield equations show that the component fields C, ((.( N
M, b, Ay, and D are eliminated from the multiplet (72). We are left

~ 24 -

with the 12+12 multiplet

(en™s Yon 5 B Ty (76)

As a consequence of the constraint R = 0, the action (51) vanishes,
In this special case, however, there exists another chiral superfield

which can be used to construct an invariant action:

Jy$=0 , w(s)=2 . (77)

’ o /

The lagrangian fO’If nev minimal supergravity turns out to be

Z,

nwew

-3 fA*OES + L. . (1)

To compute its component form, one has to fix a covariant gauge for
the higher © components of Ag o The result, which does not depend on

this gauge, is

= -4 1 kl wn
I R i Gz Fon
_ (79)
N ' - 32 a ~
- 4iaq, %Gm«r“)-f-'q,e a[—zbeﬂ l
The redefinition Aé = Aa, + (31/8) E‘r’a leads to the following simpie form
of the lagrangian:

I | klwmn , V -
Loew = Z}e X + te € (‘f’k G2 Ywn ™ i G2 ‘Y:m

(80)
+ & a'k 92 tww\ ) .
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16+16 multiplet

The second possibility to reduce the multiplet (72) is by breaking
the U(1l) symmetry. The most general way to do this is to impose the
constraint Ay = (n+im) T , where n and m are real parameters. However,
m can be absorbed by the redefinition E'M“ = eimU EM-“ . This is a U(1)
transformation with parameter A = imU, which leaves the constraints
(22) and (63) invariant, but changes the above condition into

Al = Ay - DyA =n Ty . Therefore it is sufficient to require
A“=V\Ta(1 /'\."='V\T' N (x.')

Inserting this into (30) gives after some manipulations

Auic = %"‘ (Do Toe = @ T )
. -V > -
= in (e G-(&"Z-Gd&*'T«T&) !

(bu-3) Wy = -&n t,‘PF +3ind, T

+%n1—:*(c-ug“&-36~k+ua V + T Te) ,
($w-3) ;D“W“ 2 =2n Raib + 6n (T“t,’ 7 t,, af )

S 3 (T¥Do TX + T%D TY) = 30 (2°V) 3,V
Qa —ZU ~Q

-/ —_—— A
—6n DD, U +3ne GG, 6bue T T Gu

f 90 T"T%6,, - -:-n TTTT . (€2)
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These equations show two things. First, the value n = 3/b4 has to be
excluded, because it leads to equations of motion for the graviton
and the gravitino. Secondly, the component fields & s :{,‘ , and D are
eliminated from the reducible multiplet (72) and we are left with the
16+16 multiplet

of
3 "’m s tmn’ C, ‘ru( s M, ba)c (83)

The lagrangian for 16+16 supergravity éan be obtained from the
action (51). It is found to be

. .

Ly = (¢n-3) [d'OER + h.c. . (e4)

Inserting the ©2 6=0 components of (82) into (53) and integrating -
by parts yields the following component form of the lagrangian:

L2, =~ R+ L (FuBy Plan - i St Fran)
“in (FE™ Dl g + ¢S DL ) —n (27C) A C
o % ﬁ“fw + 5 (4n-3) (nF - 6%6a)
~n (fu 67" ¢ + PuEC"F ) D C
sine © (fus™& ¢ -pu&"6"7) 'fm'
+2uln-1) €7 ($67F) G ~ 3 (1) (4u=3) ¢ FF
—cu(u-»i[(%s"‘cf)w (P ¢)§F JI |
[ y) ¢ + (F7F) 77 ]
(fuS"Fu =P ya) (¢°F) . (59
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Here we have used the definitions

A

bux = bux + 30 Fx T

Gk s gkt (9ztm.+'°€c‘fz Sm i) (5¢)

Y'wm D'm YV\-D'M ‘rm ’

where.Di is the Lorentz covariant derivative in x-space, We have checked
explicitly that the above expression corresponds with the lagrangian
given in ref, [h]. The redefinitions are specified in appendix A. The
fact that our lagrangian results from the geometry in a simpler and
almost diagonal form, clearly indicates that the approach from U{1l)

superspace is the more natural one.

We conclude this section with some remarks concerning the range
of vthe real parameter n. For n = O the lagrangian (85) reduces to the
minimal lagrangian (55). For this value of n the 16+16 multiplet splits
into the minimal multiplet and a 4+l multiplet containing the anti-
symmetric tenmsor. -~ The kinetic terms of the lagrangian (85) have the
correct sign for n > 0. Negative values of n are therefore excluded. - ‘
For n = % the 16+16 multiplet is the N = 1 limit of a N = L supergravity
theory with antisymmetric tensor potential [8]° - The value n = 3/4

is excluded,

[reducible multiplet (20+20) |

U=20 | U(1) breaking:
Ag = n Ty
ER new minimal [16+16 muitiplet |

multiplet (12+12) n=0

minimal multiplet
(12+12)

Fig. 1. Relations between the various supergravity multiplets

(ef. the corresponding diagram in [10]).
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6. Yang-Mills coupling

In the remaining two sections we construct the coupling of super-
symmetric "gauge theories to the various supergravity multiplets. Gauge
theories are characterized by a compact semisimple Lie group ﬁ The
infinitesimal transformation law.gf a n-form Sl in some representation

of 5 reads
(S-K fl = .Q K ; : (8'7)

~ ~4
where A =- A" are the Lie algebra valued parameters of 3 . (The
tilde distinguishes the non-abelian from the abelian quantities.)

The gauge covariant exterior derivative is given by
In =20 +02R . t9)

The Yang-Mills potential K-is a Lie algebra valued one form and trans-

forms as follows:

SR = -BR = -dX-[A,A] . (83)

The product of two covariant derivatives yields the Yang-Mills field
strength F:

"
<)
)
IS]
.
=)
m

DD L
(90)
F=dA + AA .
F is a Lie algebra valued two form and satisfies the Bianchi ident_ity
~n A ,
DF =0 ., (a1)

We restrict F by the usual Yang-Mills constraints fe._( ; 0. The solution
of the Bianchi identity (91) subject to these constraints corresponds
with the abelian solution (28) if one replaces F= ¥, W-» ﬁ, and @> 3.
The superfields Wy and Wg are subject to the éondit:i_.ons (25.2) and
(25.3).
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Now we are going to couple the Yang-Mills fields to 16+16 super-
gravity via the two form gauge potential, This mechanism is known from
ten-~-dimensional supergravity [ll] and has first been applied to N = 1
~ superspace by R. Grimm [io]. The transformation law (56) of the two
form potential is extended to

§8: ow +k tr (AdA) (32)

where k is a real parameter of (mass) dimension -2. The invariant field

strength
6= o +k tr (AF-47°) (33)

contains a superspace generalization of the Chern-Simons three form

and satisfies the Bianchi identity
dG = k t (FF)
: ( ! (9%)
A Bc DL 1 € k x -
EREPE €’ [30yGgn + 5 Toe Gegn 3t (Fpc Fen)] = 0.
The solution of these identities subject to the constraints (63)

‘gives the same results as before except for additional terms in egs.
(65) and (66). We find

ga(a't = Zeu,Gm.‘ - %[‘aauzalev"?k #(f‘;« \":’/&) .
(35-8R) e’ = 2k # (G~W,) , | (35)

~

(22-§R*) e’ = 2k tr (G, W)

The lagrangian for 16+16 supergravity coupled to gauge fields is
given by eq. (84), i. e. in terms of ‘superfields it is equal to the

pure supergravity lagrangian. To compute its component form, one has
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to take into account that egs. (69) and (82) pick up additional terms

as a consequence of (95). The component fields of the Yang-Mills multiplet
can be defined in complete analogy to (31) and (33) and the tilde may

be omitted after eliminating the U(1). The final result is

Z = (4n-3) [A'OER +he = L+ <y (3%)
where &616 is given by eé, (85) with the ﬁodified definitions
A — -C -
bux = buy + 30 fuFu +bnk et (A L),

. (97)
?k . zlgklmu[azt“m -k tr(a, %, + $iaga.,a,)

. < —
+tie 5 Y“J )

and
-C wn

Ly = wke-e [ FTF,,

+20 (IB" B A + As™ B T) -~ 2bb

F20@n1) e (46"T) €, - 2(pe™A+5E™T) %,
(3%)
+8k2‘M“ (\rkgl;('-—?k-éo(*) ?mn
+ g lot of quartic spinor terms .] -

with the definitions

Foon = 9Mq“-anam-¢[am.ad )
(99)

b= b-f(¢A-3X) .
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For n # 0 the choice k = - :L/Bng2 gives the correct normalization of

the kinetic terms of ECYM (see [114] for conventions)..

The Yang-Mills lagrangian (98) vanishes for n = 0. Therefore this
coupling is not possible for minimal supergravity and we have to add
by hand the term [7]

Lyn = f [AOE W () vhuc, | (100)

For the new minimal multiplet the situation is more complicated.
Inserting the constraint U = 0 into (95) gives R = - (k/L) tr (W™ W,, ).
As a consequence, the superfield S (77) is no longer chiral. In order
to construet an action for supergravity we have to introduce a (complex)
prepotential V with the property 5& V= K,-, _ and the pregauge trans-
formations V -» V + x , 5,-(7( = 0. The "gauged" supergravity lagrangian

is found to be
’{new=-'z'-f°(z®€(4—\/+€ﬁ)+h.c. ) v‘ (io1)

and the Yang-Mills- lagrangian is given by the integral over E R, which
is equivalent to the expression (100) for the minimal multiplet.

T. Matter coupling

Matter (scalar) superfields are chiral superfields, i. e. they
are subject to the condition Dg ¢ = 0. In flat superspace the most
general renormalizable lagrangian involving only matter fields is

given by

£, = fd?6 (- DD " + U($)) +hc. ) (102)

- 32 -

where the superpotential U is a polynomial of degree three E”{] This
expression can easily be generalized to curved superspace by replacing
3°0 = 4°@F anaTH o & :

Zy = [AOE (- ¢2¢"+ V@) the . - (03)

It would now be straightforward to identify € with the chiral density
(48,49) and A with the chiral projection operator (45) in U(1) super-
space. However, there are some complications due to the U(1l) weight
of € . We discuss this in the following for each of the three super-

gravity multiplets.

In the case of the minimal multiplet the parameter A (x,®) (k)
vanishes after eliminating the U(1l). Theréfore the U(l) weights play
no rdle at all and the lagrangian (103) may be coupled to minimal

supergravity without any restriction.

In the case of the new minimel multiplet the U(1l) weight of €,
w( € } = -2, has to be cancelled by the kinetic term and the superpotential
of the matter fields. This condition is satisfied for the kinetic term
in (103). For the superpotential it means that it must be possible to
assign a U(1) weight (R-weight) to each matter field ¢ such that U(P)
has the uniform R-weight w(¥') = 2, Thus only R-invariant lagrangians

may be coupled to new minimal supergravity.

For the 16+16 multiplet we distinguish two cases: with and without
R-invariaence., If the coupling is R-invariant, we can use € and 2\- from
U(1) superspace. If it is not R-invariant, a chiral density and a chiral
projector in Lorentz superspace have to be constructed. This is done
in appendix B. The matter lagrangian is then given by (103) with the
chirel density &' (115) and the chiral projection operator & " (117). -

We remark that '6' may also be used to construct an action for 16+16

supergravity. The proper chiral superfield is A'1 = -8 e-2nU R and
the supérgravity_ lagrangian is given by '
; 2 T 114
L = (4n-3) [d'@E'e R + he. . (10%)
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It is not hard to verify that this expression is identical with the

lagrangian (84), resp. (96) in U(1) superspace.

Finally we consider the case that both Yang-Mills and matter fields
are coupled to supergravity. The matter superfields are then defined

by the modified condition
@Q 4’ =0 . - (105)

Moreover, the kinetic part of the lagrangian (103) has to be gauged.
This turns out to be extremely simple. Since ¢4’+ is invariant under
the gauge transformations (87), it suffices to replace the derivatives
D by gauge covariant derivatives 5 . The chiral projection operator E
obtained this way satisfies 5,-, Z V = 0 for any Lorentz scalar V,
This is due to the constraint ‘ﬁpq = 0, which is required for the con-
sistency of (105). - It should be noted here that the transformation
law 57\- b = ‘#K N A=- X+ , 1s not inconsistent with the chirality
of ¢ . Like Jf ¢ = fA5A¢ s 1t has to be understood in terms of

a ® -expansion.
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Appendix A

The lagrangian (85) for 16+16 supergravity can be obtained from

the lagrangian given in ref. [h] by the following redefinitions:

nefetl e et

Bppg = Dy ~ 226 g (TGHT)

‘f’w\’( - 1;”« ) ‘f’“ = -Q—H'T.,, ) | (,OQ
C:-4u'¥ |t = N ,

VIRERE-  by=-38, .

Here the quantities of [hJ are written on the r,h.s. of the equations

and the parameter n of [h] is denoted by n'.
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Appendix B

Chiral . density in Lorentz superspace

We are going to construct a chiral density for 16+16 supergravity
in Lorentz superspace. For the sake of generality we include the case
of Yang-Mills coupling via the two form potential. The transition from

U(1) to Lorentz superspace is described by

QN =2V +w(R)NA (R n-form) ,
(107)

DaVg = pVg +w(V) AaVs

- where éa'denotes the Lorentz covariant derivative. The superfields A

A
are given by (81) and
Ause = 50 (By Ty - Ta - 2 T T)
(10%)
. -V >~ - . -V ~
= in (€ Guy = 206us + TuTa) +2ink € tr (W, W) .
In addition, we will need the equation
- ~  ~ o
QDT = ERY + (=D T T, + 2k e t (W, W) (103)
. A ' R . .
The torsion T'" = & EA in Lorentz superspace is obtained from
A .
T A wieP) ERA . (10)

Explicitly, we find

-‘-—
®.’
R
L]

V\é‘i-rx T'er=V\JF :,:(

lJ

ﬂ—
n

L4 o
e T e (Tt 8y T )

T cn (s T gL TF)

- 36 -

_l
o
o

"

Tys ™+ 8y Ab
T s Thw - gL A, ()

A1l other components remain unchanged,

Chiral superfields in Lorentz superspace are defined by the condition
=1
Dy ¢ = 0. The transformation law (42) under supergravity transformations

becomes

PR v,'"b',,45 (12)

with the parameters

-

R R ©(fe"¢)

Nkn

V'V‘='7/‘ +mO’“(]'T’—_)-"f;)4-?((9)’)<f"‘A (13)
reo[ ¢ J’"(@"‘TI-— 'f)-' (y&* (3ﬂq|-n3qc)
-f£w (F&™4 (Y ¢ - -2?/..“{)]

Chiral densities in Lorentz superspace are defined by the trans-
formation law
" b'm (V'MA) ’ (1%)

4= a+A@f.+@@'F .

A special chiral density Z' can be constructed analogously to the
density € in U(1l) superspace. However, the lowest component has to
be different from (48). After a lengthy calculatlon, we find the

Tollowing components of E

& b
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