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ABSTRACT 

Two intense electromagnetic waves interact 

strongly where the local plasma frequency equals their 

difference frequency, resulting in an irreversible 

transfer of action from the higher frequency wave to the 

lower frequency wave. The amount of transfer depends 

only on the intensities and the density scale length. 

Successive transfers among a set of waves may produce 

efficient plasma heating. 

Interest in the nonlinear interaction between coherent electro-

magnetic waves arises from the possibility of exciting longitudinal 

plasma modes in an underdense (w << w) plasma, by. resonance with the p 
1 difference frequency of two lasers, thereby heating the plasma upon 

damping of the longitudinal modes. This process has been studied by 

Rosenbluth and Liu2 for an inhomogeneous plasma, but neglecting the 

reaction of the longitudinal mode on the transverse waves; and by 

Cohen, Kaufman, and Watson,3 including the reaction and allowing for a 

cascade, but for a homogeneous plasma. 

The present paper treats the transfer of energy between two 

transverse waves (of frequencies w0 ,w1 with w0 > w1 ) in a plasma 
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density gradient. The mechanism of the transfer is the resonant 

excitation of an electron longitudinal mode at the beat frequency 

n = w0 - w1 and beat wave number K - k0 + k1 (for the optimum case 

of opposed lasers, which we consider for definiteness). The excitation 

occurs over a zone of thickness h ~ (v/wp)L about th~ surface where 

wp = n; L is the density scale length and v the longitudinal 

damping rate. 

We stress two important conclusions:4 (l) The dominant effect 

of the process is the transfer of action 6J from the higher fre-

quency (w0 ) wave to the lower frequency (w
1

) wave, transverse 

action being conserved. According;ly, the energy loss w
0
6J of the 

w0-wave is partitioned, with w16J going to the w
1

-wave, and n6J 

being irreversibly deposited in the plasma. The maximum heating 

efficiency is thus njw0 . [That this ratio is low for an underdense 

plasma led us in Ref. 3 to suggest cascading; we return to this below.] 

(2) The total amount of action transfer depends on the input power and 

on the density scale, but is independent of the damping rate5 v (as 

long as WKB-conditions are satisfied: h >> k-1 ). There is thus no 

need to be concerned with the damping mechanism, be it collisional, 

Landau, or nonlinear. 

Our formulation of the interaction is in terms of the local 

longitudinal dielectric function, and thus is quite model-independent. 

For simplicity of presentation, we ignore ion dynamics, but it-s 

inclusion is straightforward. As a by-product of the calculation, we 

obtain the exponential spatial growth of Raman back-scattering insta-

6 bility; our result is identical to that of Liu and Rosenbluth, 

although our basic assumptions are somewhat antithetical to theirs. 
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After treating the problem of two opposed lasers, we consider 

using additional lasers to cascade the action to still lower frequencies, 

with each step providing an incremental efficiency ~njw. We find that 

this induced cascading, w;ith alternate laser directions (see Fig. 1), 

appears feasible, in that the intensities required are below the 

effective Raman instability threshold, as determined by Mostrom et a1. 7 

on the other hand, self-induced cascading,3 which requires two equally 

intense parallel lasers, is effective only for intensities well above 

this threshold. 8 

For simplicity, we treat the case of one-dimensional spatial 

variation (density gradient, propagation, and amplitude modulation all 

along z), polarization of the transverse waves along x, and steady-

state amplitudes (corresponding to intensities below the absolute 

instability threshold9). The dimensionless vector potential 
. 2 

a(z,t) = eA (z,t)/mc 
X 

satisfies the nonlinear wave equation3 

cvF- c-2[(o2jot2 ) + w 2(z)])a = -avF*, where the term in the dimen-p 

sionless scalar potential *(z,t) = e¢(z,t)/mc
2 

is the nonlinear part 

of the transverse current density. The vector potential is expressed 

in terms of the amplitudes of the two opposed transverse waves: 
z 

a(z,t) = a0 (z) exp[-iw0t + i~ k0(z')dz'] + a1 (z) exp[-iw1t 

Jz 2 2 2 2 
- i k1 (z')dz'] + c.c., where k£ (z)c = w£ - wp (z), £ = 0,1. 

Upon substituting into the wave equation, we obtain the coupled set 

(1) 
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where the first two terms are the convective derivatives (o/qt 

vanishes here, 2 
c£ = k£c /w£ is the group velocity), the third term 

_1_ 
produces the WKB-variation a£ ~ k£ 2 , and the coupling involves the 

local Fourier amplitude *B = *(n,K; z) of the scalar potential at 

the beat frequency and wave number. On the left side of (1), we have 

neglected second derivatives of a£; on the right, we have kept only 

the potentially resonant terms. 

To determine *B' we note10,3 that the Lorentz force is equiva

lent to a ponderomotivepotential * (z,t) = :!:.2 a
2
(z,t), so that its pon 

. * 
Fourier amplitude is v (n,K; z) = a0(z)a1 (z). The local longitudpon 

inal response of the electron plasma to this potential is then given by 

VB= v (n,K; z)[e-1 (n,K; z) - 1], in terms of the local dielectric pon 

function. With these expressions substituted into (1), we obtain 

(2) 

It is now convenient to introduce the action flux density for each 

transverse wave. Since the wave energy density is , 

W£ = w/la£i
2

(mc/e)
2

/2rr., the (absolute) action flux density is 

I 1
2 2 2 

c£W£/w£ = (k£/2rr.) a£ (me /e) . In our natural units we thus define 

J£(z) = (k£/2rr.)la£1
2

, and convert Eqs. (2) to 

(3) 

where for Noting that -1 Im E < 0, we 

see that the w0-wave loses action flux as it propagates to the right 

(increasing z), while the w1 -wave increases action flux as it 

propagates to the left. The invariance of the signed action flux 

J = J 0 - J1 represents action conservation. The irreversible 
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dissipation of energy by nonlinear coupling follows from (3): 

- -1 
d(w0J 0 - w1J1 )/dz = 8nl1, J 0J1 Im E , the left side being the divergence 

of the (signed) energy flux density. 

To solve Eq. (3), convert it to 
- ~ -1 . 

- 8nJ Im E (n,K; z) and integrate across the resonant zone 

z ~ zR (where E.., o), obtaining .c-..en(J0jJ1 ) = BnJ Jdz Im E-
1

(n,K; z), 

with .6f = f(z < zR) - f(z > zR). To. evaluate the integral, consider 

the limit Im E --. 0+ 

narrow resonance zone 

(representing weak damping v << wp' i.e., 

h << L). Then Im E-l-+ -n 8[E(n,K; z)], 

and .fdz Im E-l-+ -n/oE(n,K; z)/oz/-1 = -nL (defining the scale 

1 h . 1 11) engt L prec1se y . We finally obtain for the action transfer 

L-.J the formula: 

?l 2 ( in in exp(on L J0 - J1 ~ .6J)] , (4) 

are the input action 

flux densities. This transcendental relation yields .6J as a 

. in in funct1on of J
0 

, J1 , and L, and is independent of the dissipative 

mechanism and magnitude. All that is required of the dissipation is 

12 
that it be not too large ( v << w ) p 

-1 
[v/wp >> (k0L) ]. 

and not too sma1113 

Equation (4) can be converted to the formula 

(1 - R - p)-l .&n[(l - R)(p + R)/p] (S) 

- ?l 2 in for the dimensionless input action J0 = on L J0 needed to 

produce a relative action transfer R = 6J/J0in for given input 

ratio 

relation 

- in 
is p

0 

This relation is plotted in Fig. 2. 

between J
0 

and input power density (in units of 

- -1 r.: - . 14 -1 
= (2/3)J L (w01 w), where w = 1.8 x 10 sec 0 em 

The 

is the 
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frequency of a co2 laser. 

To illustrate the use of Fig. 2, .we see that with J
0

.., 6, 

( in so that P0 "" 4 < 
11 2 

10 W/cm ), and p = 0.1 (so that 

10 2 
10 W/cm ), a fraction R .., 0.8 of the action of the 

wave is transferred to the w1-wave. The heating efficiency is 

A number of special cases are of interest: 

w -
0 

(i) For p << 1, R << 1, Eq. (4) yields J~ut = J1in exp J
0

, 

corresponding to the exponential growth of a small-amplitude wave in 

the Raman back-scattering instability. The exponent is 

Y0 = (3/2)P
0
in(lo

12 
W/cm2 )Lcm for w0 = w, in exact agreement with 

Liu and Rosenbluth. 6 While those authors neglect dissipation but 

include convection of the longitudinal mode, our approach ignores 

convection relative to dissipation. A more general study of the 

instability by DuBois and Williams, 9 including both dissipation and 

convection parameters for the longitudinal mode, again yields this 

result, now independent of both parameters. 

(ii) For p >> 1, Eq. (4) yields J~ut = J0in exp(-J
1

). Here 

the w1-wave produce an exponential attenuation of the 

the opposite of case (i). 

(iii) For 

(i v) For 

p ~ 0(1), 

p < 1, R 

J0 << 1, Eq. (S) yields R = J1 . 

- -1 1 - p, (S) yields J
0 

= p - 1. In 

this special case J out _ J in 
1 - 0 

d Jout _ J in. 
an 0 - 1 ' i.e.' there is an 

exchange of actions. For example, choose p = 0.1: J0 = 9 and 

J1 = 0.9 are the inputs, while 0.9 and 9 are the respective outputs. 

The last example (iv) is typical of useful orders of magnitude 

for a study of a cascade arrangement (Fig. 1). Suppose we have 



available four lasers with w0 ,.. 1.8 >< 1014 (co2), w
1 

,.. 1.6 x 1014, 

w2 ,.. 1.5" 10
14

, w
3 

... 1.2 • 10
14

, so that the successive beat 

frequencies are !l ,.. 2 • 1013, 1 •- 1013, 3 • 1013. With the 

parameters of example (iv) for the first two lasers, and L ~ 10 em, 

we need p0in ~ 6 • 1011 W/cm, P/n ~ 6 • 1010 W/cm2 . These waves 

interact in the zone at w ... 2 
p 

P 
0 
~ 6 • 1010, P l ~ 6 • lOll. 

13 ·1 x 10 sec , whereupon now 

The exchange is repeated between the-

13 -1 in 6 10 wp ... 1 • 10 sec ; choosing P2 ~ • 10 , 

the w
2

-wave extracts most of the power from the w1-wave, producing 

p2 ~ 6 • 1011, P 
1 

~ 6 • 1010• Thus the w1-wave has acted as a 

catalyst for transferring action from w0 to w2. The process can 

be repeated with w
3 

in an obvious way. The heating efficiencies of 

the successive steps are roughly 9%, 5%, 16%, with a total 

efficiency of about 30%. 

The study of Mostrom et al.7 has shown that nonlinear attenua-

tion due to Raman side- and back-scattering is effective over a 

distance < L when J
0 

> 35. The parameters chosen here are below 

this threshold, which is extremely sharp. The reason is that the 

transfer mechanism for the instability is identical to that for 

coherent interaction, but the former starts from small-amplitude noise. 
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FIGURE CAPTIONS 

Fig. 1. Schematic space-time plot ·Of a three-step cascade, using four 

lasers, at frequencies w0 > w1 > w2 > w
3

, propagating in 

alternate directions. Intensity is represented by line 

thickness. Each line represents a continuous family of 

parallel lines, corresponding to steady-state intensities. 

At each resonance of a difference frequency with the local 

plasma frequency II w 
p 

w~II w2 - w
3

), most of the action of the higher frequency 

wave is transferred to the lower frequency wave of the inter-

acting pair. A small fraction (~ wp/w) of the wave energy 

is deposited l9cally in the plasma at each transfer. 

Fig. 2. Relative action transfer R =6JjJ0in as a fUnction of J
0

, 

the dimensionless action input in the w0-wave, for represents

in/ in tive values of input ratio p = J 1 J 0 · 



Time-+ 

-· -· 

-n-



a:: 

c 
0 ·-

Q) 

> ·-

-12-

-:-

-
Dimensionless action J0 · 

XBL735-2855 



"" 
,! 

,---------LEGAL NOTICE-----------.... 

This report was prepared as an account of work sponsored by the 
United States Government. Neither ihe United States nor the United 
States Atomic Energy Commission, nor any of their employees, nor 
any of their contractors, subcontractors, or their employees, makes 
any warranty, express or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness or usefulness of any 
information, apparatus, product or process disclosed, or represents 
that its use would not infringe privately owned rights. 



-. 

TECHNICAL INFORMATION DIVISION 

LAWRENCE BERKELEY LABORATORY 

UNIVERSITY OF CALIFORNIA 

BERKELEY, CALIFORNIA 94720 


