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Abstract

In two dimensions we obtain a supersymmetric extension of a gauge
anomaly, and find that this is the origin of a supersymmetry anomaly in
1 .

the Wess-Zumino gauge. We also obtain an effective action whose variations

give rise to the gauge and supersymmetry anomalies.



1 Introduction

' A gauge anomaly ( a chiral anomaly ) has been important in two ki\hds of
* applications [1]. The first is to get phenomenological interactions when the
anomalous symmetry is not a dynamical symmetry [2,3]. The second is as
a criterjon for model l;uilding of unified theories by using the fact that the
anomaly should be cancelled in order to have unitarity and renormalizabil-
ity [4,5]. Recently a gravitational anomaly was found and the second type
of application has become important for finding models which unify all the
interactions including the gravity [6,7]. In. this context it is important to un-
derstand a supersymmetry anomaly [8-12]. We will study a two-dimensional
supersymmetric Yang-Mills gauge theory in which the supersymmetry is a

rigid symmetry [13].

We can think of two Ikinds of supersymmetry anomalies. The first is
an anomaly of a supersymmetry transformation in a superfield formulation
without fixing a specific gauge. We will call these a genuine supersymmetry
transformation and a genuine supersymmetry anomaly respectively. The sec-
ond is an anomaly of a supersymmetry transformation in the Wess-Zumino
gauge which is composed bf two steps of transformations, i.e. a genuine
supersymmetr’y:transformation a.nd a restoring supersymmetric gauge trans-
formation. We will call this anomaly a supersymmetry anomaly in the Wess-

Zumino gauge.

We find a supersymmetric extension of a gauge anomaly which we will
call a supersymmetric gauge anomaly. This anomaly is then used to ob-
tain a gauge anomaly and a supersymmetry anomaly in the Wess-Zumino
gauge, which satisfy the mixed consistency conditions. In this derivation it
is transparent that the s‘upgrsymmetry anomaly in. the Wess-Zumino gauge
originates only from a restoring supersymmetric gauge transformation, nét
from a genuine supersymmetry transformation. ;I:his indicates that there is
no genuine supersymmetry anomaly [9]. This situation can be guessed from
the fact that the genuix.xe supersymmetry transformation is a rigid trans-
formation. This also shc;ws tha.f when the gauge anomaly is cancelled, the
supersymmetry anomaly in the Wess-Zu@ino gauge is also cancelled auto-
matically.

Furthermore, we obtaih the supersymmetric extension of the Wess-Zumino
term following Wess and Zumino’s original method in superspace [3,14]. We
modify this extension such that it depends only on a vector multiplet. This
extended Wess-Zumino term’s gauge and supersymmetry va.riatjons give rise
to the gauge and.supersymmetry anomalies respectively.

In section 2 we present twd-dimensional superfields and their supersym-
metry and gauge transformations. In section 3 we obtain a supersymmetric
gauge anomaly and gauge and supersymmetry anomalies in the Wess-Zumino
gauge. In section 4 we obtain the supersymmetric extension ot" the Wess-

Zumino term.



2 Two-dimensional superspace and superfields

In two-dimensional superspace we have two real space-time coordinates

0

z°%, z! and two real spinorial coordinates 8;, ;. The conventions which we

will use are given by

(A =m", P =nl=1, g% =9n"=0,

. 0 1 R T R

7= y V= y Y =N = . (2.1)
-1 0 10 0 -1

The rest of our conventions and their properties are given in Appendix A.

A scalar superfield is given by
S=A+ifp+ %’EoF . (2.2)

where 8, = 6,70, is a linear combination of 8,’s and is not independent of the

0,’s. The supersymmetry transformation of S is given by using a generator

Qu = - 55 + 00, (2.3
) as
8,5 = [5,aQ)] :
5A = Gy
§¢ = 9,Av*a+ Fa (2.4)
6F = ity 00 .
4

A spinor superfield or a vector multiplet V,, which is real and contains a

gauge field A, as one component field, is given by [13]
Vo= &+ 15004, + 150M + 0,N + %Eog,, . (2.5)

Its supersymmetry transformation is given by

bV = [Va, Q) :

(6¢ =y*ad, +°aM + aN

6‘4“ = %a'yv'havf - ;;E'Yuf

og)

M= —%Eq‘q -9¢ — %H'ysg (2.6)

6N = iay-9¢ - {a¢

| 6¢ = —4"v*ad A, — Y*v*ad M — v*ad, N .
In order to have a gauge structure, we let a set of scalar superﬁélds form
a representation of a gauge group such that § = {S;} transforms under a

finite gauge tra.nsformat‘ion as
S'=eA§ (2.7)
or under an infinitesimal trmsformation as
&S =—AS, . (2.8)

where A = AT; , Aj’s are real scalar superfields which are supersymmetric‘
gauge transformation parameters, i.e., A; = a; + 10x; + %50 fi and T}’s are
anti-hermitian gauge group generators which satisfy (T3, T3} = fiseTw -

5



We gauge covariantize
D,S = (——‘—9= —17%08,)aS (2.9)
a0 : .
to
VoS = (Dg —1Vo)S = —i(iD, + V,)S , © (2.10)

by requiring V, = V;;T; to transform under a gauge transformation as
(iDs+V,)' = e™4(sD, + Va)e* in order to have (V,S)' = e 4(V,S). That

is, under a finite transformation
V) = (e*iD,e!) + e AV, et (2.11)
or under an infinitesimal trasformation
5,V =D, A + [V4,A] . (2.12)

In terms of the component fields, (2.12) becomes

6= x+ [&d ‘

6A, = 8,0 + [Ay, a] + §(Evux + X1ué)

) 6M = [M, a] + §(Ev°x +X7°€) | (2.13)

6N= f+ [N,a]+3i(—€x+x¢)

L 8¢ = —7-9x + [¢,a] + [& f] - [Ap,¥*X] = [M,¥°x] — [N, X] -

When we have the gauge symmetry (2.12) or (2.13), we can choose the
Wess-Zumino gauge in which £ = 0, N = 0 in the following wa.y; Let us start
with £ =0, N =0, thgn we have the following tra.nsfofmations of | £and N.

6

e,
4

-,

Genuine supersymmetry transformation for £ and N :

5¢ = vytad, + oM
(2.14)

6N = —iamg.
Supersymmetric gauge transformation for £ and N :

{65 =x '
(2.15)
6N=f. :

As we see in (2.14), even though we start with £ = 0, N = 0, these
component fields become non-zero after a genuine supersymmetry transfor-
mation. But we can come back to £ = 0, N = 0 by performing a restoring
gauge transformation which is given by the following gauge transformation

parameter Agg as can be seen in (2.15).

8rcV = iDARe + [V, Agg]

with Age:
a=0
X =-vad,~"aM (2.16)
f=ia
where
A=¢+~-0¢.



Therefore the snpersymrﬁetry and gauge transformations in the Wess-

Zumino gauge are given by

8swz) = 8cEN. susy + 6ra
(2.17)

Sciwz) = 6sur.cavee  Wwith Ag: a=4a, x=0, f=0,
where 6¢en. susy, Ore and bsup. cavce mean genuine supersymmetry, restor-
ing gauge and supersymmetric gauge transformations respectively. After-
wards, we will write 6suwz) and égwz) simply as 6s and 6g. Under these

transformations, the component fields A,, M, A in the Wess-Zumino gauge

transform as

6sA, = —STvA
5sM = —ianP) " (2.18)
s = v aFyy + 27*1°a(0uM + (A4, M)
where F,, = 9,A, — 3, A, + A A — A A,
S A, = 8,0+ [A,,a]
oM = (M, d] | (2.19)

beh = [Aa].

Note that in two dimensions the Wess-Zumino gauge has a pseudo-scalar field
M as well as A, and A, in contrast to the four-dimensional case in which

there is no M [13].

. For reference we write down the following supersymmetry and gauge

transformations of a scalar multiplet in the Wess-Zumino gauge.
bs¢ = sayp
659 = v*aDyd + ~YaM¢ + aF (2.20)

6sF = i@y Dyy + i@y My — §ar¢

where
D,=38,+A,, "
bgd = —ad
b = —ay ' (2.21)
6cF = —aF .



3 Anomalies

First let us find a supersymmetric extension of a gauge anomaly which
we will call a supersymmetric gauge anomaly. A vector multiplet given by

(2.5) gives rise to
DA*V = D5 Vs = 2M — i04°X + i00e*Y 9, A, . (3.1)
Then with A = a + ifx + %50 f, we have
Tr(ADA®V)|;, = 100 Tr(a €, 0" A* + %7’15/\ + fM). (3.2)

Since the first term on the right hand side of (3.2) is just an ordinary
non-supersymmetric gauge anomaly, it seems plausible that (3.2) is a super-

symmetric gauge anomaly. In order to confirm this we should show that
A(A) = Tr / d*zdfdd (ADAV) . (3.3)
satisfies the consistency condition
Sa,A(Ay) — 85, A(Ag) = A([Az,A4]) (34)

where 6,V, is given in (2.12).

Let us show this.
61, (M DY*V) = A DA (iDA; + [V, As))
o (3.5)
= A1(DU)A; — AiU(DA;3) — A1(DA3)U = A144(DU)

where U =4V, and Dy°D =0 was used.
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From (3.5) we have

Tr{65,(0:D7°V) = 64,(AsD1°V)} = Tr{[As, AJDYV + D([Az, AJ¥*V)} .
(3.6)

Since the second term on‘- the right hand side of (3.6) is a total derivative,

it vanishes under the integration f d’z d#df. Thus by taking [ d*zdfdf on

both sides of (3.6) we obtain (3.4). Of course, (3.4) is also satisfied with an

arbitrary normalization factor in (3.3). We can show the above in a more

eléga.nt, but equivalent way which is given in Appendix B.

The supersymmetry and gauge transformations in the Wess-Zumino gauge,

i.e., (2.18) and (2.19) satisfy the algebra:

[65(8), 8s(@)] = ba(—2i(ar*B) Ay — 2i(@°B) M) + 2(a*B)i0,
[8¢(8), éc(a)] = ba((b, a]) o 3.7

[bc(a), bs(a)] =0.
Then a supersymmetry anomaly Ag(a) and a gauge anomaly Ag(a) in

the Wess-Zumino gauge satisfy the consistency conditions:

65(6) D5 (a) — b5(@) D5 (B) = Do (~2i(Ev*B) A, — 2i(@BYM)
b6 (8) Dc(a) — be(a) g (b) = De([b, a]) (38)
6a(a) s () — b5(0) Aala) = 0. | o
The term 2(@y*()id, in (3.7) did not contribute to (3.8), since the vac-
uum functional is invariant under tra.nslati;)n if we impose the condition that
a surface integral vanishes. |
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The interesting thing is that we can obtain Ag(a), Ag(a) which satisfy
(3.8) by using the supersymmetric gauge anomaly (3.3) in the following way.

Let us rewrite (3.3) with an arbitrary normalization factor as

A(A) = —ieTr / d*z d*0 (AD+V)
3 . (3.9)
= cTr/d’z (ac*8,A, + %7'15/\ + fM)

where / d*0 = —% / dﬁdﬂ su;:h that / d’080 =1.

.At first we obtain Agv(a) from (3.9) by taking ¢ = a, x = 0, f = Osince 6¢
in (2.17) or (2.19) was given by this assignment of A, i.e., Ag. Next, in order
to obtain Ag(a) we observe that 65 in (2.1.7) or (2.18) is composed of two
steps, i.e., fcen. susy and pg . But we expect that the bgen. susy step will
not produce any anomaly since this transformation is a rigid transformation.
Then we expect that A(A) with A = Agg in (2.16) will give rise to Ag(a)

[9]. That is, we expect the following to be the solution of (3.8).

Agla) = A(Ag: a=a,x=0, f=0) (5.10)
=c¢ Tr/dzzas""a,;ﬂy s

As{a) =A(Arg: a =0,x= —tad, —aM, f = %Ez\) o

=tc Tr/d’z(%A,;E'y“'ysk + Ma)) .

We have confirmed that these Ag(a) and Ag(e) satisfy (3.8) by explicit

application of (2,18) and (2.19). Therefore we have found that the supersym- .

- metry anomaly in the Wess-Zumino gauge originates from the supersymmet-
ric gauge anomaly. This indicates that there is no genuine supersymmetry

12

(3.11)

anomaly. This also shows that when the gauge anomaly is cancelled, the

supersymmetry anomaly in the Wess-Zumino gauge is also cancelled auto-

matically.

13



4 SUSY extension of the Wess-Zumino term

We will find a supersymmetric extension of the Wess-Zumino term which
depends only on component fields of a vector multiplet. This vacuum func-
tional gives rise to gauge and supersymmetry a.nomalies by gauge and su-
persymmetry variations respectively. In order to understand the derivation
better, let us review briefly the familiar non—supmy@etric gauge theqry
case [1,3].

An effective action can be obtained by solving an anomaly equation
W = / &$zaGi, (4.1)

where G;’s are anomalies. Wess and Zumino solved this equation and ob-

tained the solution
1
W(A,x] = f &z [ dt mGi(A()(2) (4.2)
o
where the 7;’s are a set of fields which transforms as
e = (4.3)
and
At) =A™ + e"a;e"’ - _ (4.9)
where
a=aT;, »=mT; A, = AuT;.
Any gauge invariant functional can be added in (4.2), so (4.2) is a particular

solution and is called the Wess-Zumino term.

14

Now we are interested in having a solution W|A] as a functional of only
A, without the independent w. This caﬂ be achieved by replacing the inde-
pendent. 7 by a function 7(A) which transforms as (4.3) when A, transforms
as a gauge field, if we can find sﬁch a function [15).

In the Abelian case we find such a 7(A) easily as

1

] LWA* , where 00 =9,0" (4.5)

7(A) =
_since  §,A* =3%a, &,7(A) = -é]— W(0%a) =a.
Then | .‘
wia = [ | dt(—él—a,.A“)G(A(t))
= / d'z /o "t (%8,..4");%8,‘..4;0)6”“ “s)
= ;'- [ 'az(—é-a,A")'a,'(A, — taym(A))e
. ° o7
- E‘; [ & (éa,.A")a,A,ev* ,
for the quantum effect of a left-handed chiral fermion. We use the convention
€l® = —¢% =1, ¢~ = —¢~+ = ~1. Our conventions are summarized in
Appendix A.

In the light-cone coordinates, let us use the anozﬁaly in the form —(§/7)9, A_
which is equivalent to (i/27)3, A\e** in (4.6), since they differ by a varia-
tion of a loc;al functional (i/2x) [ &z A,A* . (3,) in the coordinate space
corresponds to (—ip,) in the momentum space, since we will take external

momenta as out-going. Then W{A] can be written as

Wil = & [ 2224 (A (-5), (a7)
15
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after adding an appropriate local functional to (4.6) which is allowed since
W|[A] is ambiguous by a local functional.
In the non-Abelian case we can get 7(A) which transforms as (4.3) by

inverting

A, =e"d,e . (4.8)

This inversion can be done as a power series of A, and the lowest order term
has the same form as (4.5). Note that even though we are inverting the pure
gauge form (4.8), 7(A) obtained by this procedure transforms as (4.3) for a
general A, . That is, (4.8) is just a guide for obtaining 7(A) for a general
A,,. [15] Using this 7(A4) we can obtain W[A] as a power series of A, which

starts with the lowest order term similar to (4.6) or (4.7) as

Pra_(pA_(-p) +0(4%). (4.9)

wid)=dTr [ d:r‘)’, Bt

(2
We can use the above procedure to get a supersymmetric extension of
the Wess-Zumino ter'm which gives rise to Ag(a), As(a) in. (3.10), (3.11)
by é¢(a), 6s(e) in (2.18), (2.19) respectively [14]. First we will treat the

Abelian casé in detail.
. The consistency conditions for the Abelian case are the same as (3.8)

except that the second condition is replaced by

6G(b)AG (a) - 5@(0.)&0 (b) = 0. (4.10)

The solution of the consistency conditions is given, in analogy with (3.10)

16

5 .
and (3.11), by
Be(a) =i [ éz;aewa,,A_, , | (;.11)
Asla) = — / d’z (%A,,E'y“'f;\ + Ma)), (4.12)

which can be obtained from a supersymmetric Abelian gauge anomaly

Dppar.(A) = / d’zd’ (ADAV)
. : (4.13)
=i [ d%2 (e 9, A, + ZX1*A+ FM)
through the same procedure as that used in section 3 for the non-Abelian

case. In (4.13) we take such a normalization factor for convenience.

In the present two-dimensional supersymmetric case, (4.2) is replaced by -
WV, = / fzdo fo ‘@D . 'i (4.14)
where the II;’s transform under a supersymmetric gaﬁge fransfomat‘idn as
e =Mt ' (4.15)
and
Va(t) = eMV,e M + e’“(iba)e“n - (4.16)

The above formulas (4.14), (4.15) and (4.16) are also valid for the non-
Abeiian case where IT = I;T;, A = A;T; are Lie a.lgt;.bra. valued scalar super- \
fields and V, = V,;T;. The formulas for the Abelian case are simply given by
onﬁtting the sum over the subscript ¢ in (4.14) and using the Abelian nature
of I, A and V.. |

17



In the Abelian case the gauge transformation given in (2.12) becomes
6Vo=iD,A . ' (4.17)
Then we find easily that

nw) = zBBDV : (4.18)

transforms as (4.15) which is the same as II' = IT + A in the Abelian case.

The expression (4.18) means

H(V) —t—D-aDanvb

Wb—)@w«)(ﬁw (4.19)

iﬁ (DaD4)(DsV5)

since
(DD)? = (D,D.)(D.D.) = —48,8* = —40 .

Then from (4.14) we get W[V] as a functional of V; only
W) =—i [ dads [ ' dt(_ﬁ———IDﬁV)(ﬁ—ysV(t))

=i [ dzdto [ ' dt(%ﬁV){“ﬁ»f(v — tiDM)} (4.20)

= / Pad0(z DV)(D»,‘V)
since DD =0.

Let us express (4.20) in terms of component fields in the Wess-Zumino
gauge.
V =04, +1°0M + -;iox

18

55 - 0(———5— (4.21)
and
DAV = 2M +i8(—~°2) + %50(25“”6,’,,4,) : (4.22)
Using (4.21) and (4.22) we get
W)= ic [ dia a"‘ Budy ,aﬁ’\) (4.23)

We have checked explicitly that the variations of (4.23) give the anomalies -
(4.11) and (4.12).

When we use the light-cone coordinates in (4.23), the terms from e*~ and
€~ are equivalent to each other, since their variations give rise to anomalies
which differ by variations of a local functional. Therefore we can replace

(4.23) by twice the e*~ term in (4.23). Then we have W[V as

wiv)=i [ 22 il A-(-PA-() - 3o APAm)] (424)

by adding an appropriate local functional. Variations of (4.24) give rise to

anomalies of the form

Dgla) = -2ifd*zad A
{ , (4.25)
As(a) = [d*z(Aray-A — Ma))

which are equivalent to (4.11) and (4.12) since they differ by va.riations of a
local functional. | |

In the non-Abelian case, in order to get a W[V] depending only on V,
from (4.14), we need a function II(V') which transft;rms as (4.15) when V,

19



transforms as (2.12). This can be obtained by inverting
V, = e iD,e" (4.26)

in analogy with (4.8) in the non-supersymmetric non-Abelian <.:ase. nw)
can be expanded in a power series of V and the lowest order term has the
same form as (4.18) in the Abelian case. Using this II(V) we can get W[V]
as a power series of V which starts with the lowest order term similar to

(4.23) or (4.24) as

d’p py
(27)? " p-

Wlv] =" T A-(-P)A-(0) - 2 X(-Pl1-AP)] +O(?).

(4.27)

20

5 Conclusion

Inrtwo dimensions we have shown that the origin of the supersymmetry
anomaly in the Wess-Zumino gauge is the supersymmetric gauge anomaly.
This indicates that there is no genuine supérsymmetry anomaly. This also
shows that when the gauge anomaly is cancelled, the supersymmetry anémaly
in the Wess-Zumino gauge is also cancelled automatically. We expect fhat
the situation is the same in other supersymmetric gauge theories which have
superfield formula.tiqps. HoWeve;‘, in a theory which has nb supefﬁeld for- -
mulation, a different analysis may be necessary. We have also obtained the
supersymmetric extension of the Wess—Zumino termvin the form which de-

pends only on the external vector multiplet.
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Appendix A

Let us summarize our conventions and their properties. We use u, v, et =—et=-¢,_=e_,=-1, othere’s =0.
- 0 V2 0 0
A, - -- for space-time indices, and a, b, ¢, - - - for spinorial indices. — __(,7 +9 ) = _1_( -+ ,71) - ,
v2 0 o V2 vz o)
Tt =4Tr =0, v+t =2,
™Y =21", ¥ =nl'=1, " =9n"=0,
0 01 . 01 5 0 1 1 0
v = y V= y V=AY = . _ B _
-1 0 10 0 -1 ' 0o =019 = —casly (" =¢€as, €12=1), 8= -0}, = a8 -.
e¥0=—-"=1, P=¢"=0 . . , 6 0, (& —0,
2 b' . aﬂ = = - ;) 00 = _ = .
f{ ’. ’ 03 —0; 01 01
. ‘ a - 2
‘_ %;05 Vab » E’» Yab »
Pl =y, APy =g =y, At =0t e _ Py o, o8 8., I
30, ~ 98, B8, 06, "
BVl — P VOB _ L PBAY : - _ _ —
VAN =T A0 =0Ty, a,ab=%005¢, (96 = 6,9,) ,
M = _(nm»nv)- - ,’w\,’w’) . . ' 4 - 3 - —
?55:(”) =20, , 5-(#60) = ~20,
:l:.'t +zY, z: = +z0+x o . — a - ‘
\/_( ) T \/—( ? 1) ’ D, = _ai “-"Yzbabau y Da= Db'Yga = 3_0. + 106'71‘::.3» ’
a
z_=zt,z, =2, = 8’
P - . Q= 30600y Qo = Qurby = Z5= — Bs7iua -

"=t =n4_=9_4y=1, othern’s =0.
a*b, = atby +a b =ab_+a by,

a'a, = 2a,a_ .
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4
4

Fierz rearrangement:

(@98, = ~ S {(@B) e + @) (1" ¥)a + (E08) (¥9).}

@yaf =B Yaa (e, are real spinors) :

Using ("1")T = P9y, (’Y“)T = 4%%4° = 4  ( where superscript T

means Transpose ),
S1=1, A=, P==1%, (F¥)=-("),
()= ("), (F*)=—-(Pr*) .

We take external momenta as out-going, therefore (8,) in the coordinate

space corresponds.to (—ip,) in the momentum space.

24

Appendix B
Let us show in another waj that (3.3) satisfies (3.4). Here we treat A as

a ghost and we take the following BRS transformation. -

SA=—A?
| | (B.1)
SVa=—tD,A — AV, =V, A . :
Then (3.4) can be expressed simply as [1] l
SA(A) =0. ' (B.2)
Let us show that (3.3), i.e.,
A(A) = Tr / d*z d8 d8 (ADAV) " (B3)

satisfies (B.2). In the following expression, every term is to have T'r in front,

i.e., we omit T'r in front of every term for notational simplicity.

S(AD~®V) = (SA)DA®V + (—1)*ADA+°(SV)

= (~A*)D4*V + AD*(—iDA — AV — VA)

= —A’DU — AD(AU) — AD(UA) (where U = 4*V, and D~*D = 0 was used)

= _A*DU - A(DA)U + AA(DU) — A(DU)A + AU(DA)
= (DA)AU — A(ﬁA)U + AA(DUD)
= D(AD) .

That is,

SA(A) = f &Pz di O D{T+(A?V)} =0,

since the integrand is a total derivative.
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Appendix C Three-dimensional superspace

We summarize the three-dimensionaj supersymmetry for reference be-
cause of its similarity to the two-dimensional case. The three-dimensional
superspace is described by three real space-time coordinates z°, z!, z? and
two real spinorial coordinates #;, 8;. Therefore the structure of the spinorial
coordinates is the same as the two-dimensional one. @, and. D, have the

same forms as (2.3) and (2.9),

. a .
+ t’y“:bﬂba,, N Da = ——— 3'7:5058“ y B = 0, 1, 2.

3
Q=5 80,

Our conventions and their properties are as follows.

Ay =m*, P =nt=nP=),
, 0 1 . 01 . 1 0
= T = » T ES
-1 0 10 0 -1
013 = 120 — _ 102 _ 1, ete.

[9*, 7] = 26",
A =M+, Tr(yyY) = 262,

ey, = —62 68 + 5268 .
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A vector multiplet is given by
. ) | o
Va = fa + 'Y:babAp + ouN + '2‘00§a .
Genuine supersymmetry transformation : §,V, = [V,,&Q)]

(66 = v*aA, + aN
6Ap = ;ie,mﬁq"a"f + %E&,.ﬁ - %E'y,‘g

6N = imy- 8¢ - iag

- L6¢ = cuar* ad” A — ad A* —ﬁ“aa,,N .
Supersymmetric gauge transformation : 8,V = tD,A + [V, A] | .
(6= x+ [£,d]

6A, = 0,8+ [Ay 6] + {(Evux + f’n.f)

§N=f+ [N,a]+§(-E+%¢)

[ 8¢ = ~v-9x +[¢,a] + [& f] — [Au,v*x] — [N, X] .
In the above V, = V,T; ; A = AT; (Ti’s are anti-hermitian), A; =

a; + i0x; + $00; .

In the Wess-Zumino gauge, £ =0, N=0, A =¢,

Ss(wz) = 6gEN. susy + bra
withApg: a =0, x = —7*ad,, f = %‘a‘A,
Sawz) = 6sup.cavGE

withAg: a=a,x=0, f=0.
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¢
N
b

{ bs(a)4, = —iwyA

bs(a)A = y#yvaF,, ,
where Fy, = 8,4, — 8, A, + A A, — A A, ,

{6a(a)A,, = dua + [Ay, a

bg (a)_z\ = [Aq];

where 65, 8¢ mean Sswz), bewz) respectively. They satisfy the following

algebra.
[65(8) , és(e)] = ba(—26av"BA,) + 2(av"B)id,

[6c(8) » éc(a)] = ba([b, al)

e, ss(@)=0.
An interesting feature of the three-dimensional gauge theory is that there
is a gauge invariant topological mass term [16]. In the three-dimensional
supersymmetric gauge theory, we have the following supersymmetric topo-

logical mass term [17].
» 0 : BV 2
W =Tr / P2 {alde + 2N (AuFs — SA AL A} -

Under 6¢(a) and 6s(a),
| S(a)W = 4iTr [ d3ze**3,(ad, A)) -
{ bs()W = —2Tr [ d®ze*23,(A, (G1aA)) .
Therefore when we assume that a.surfa.ce integral is zero, W is invariant

under ég(a) and é5(a). -
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