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Abstract 

In two dimensions we obtain a supersymmetric extension of a gauge 

anomaly, and find that this is the origin of a supersymmetry anomaly in 

the Wess-Zumino gauge. We also obtain an effective action whose variations 

give rise to the gauge and supersymmetry anomalies. 
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1 Introduction We find a supersymmetric extension of a gauge anomaly which we will 

call a supersymmetric gauge anomaly. This anomaly is then used to ob-

~ 

A gauge anomaly ( a chiral anomaly ) has been important in two kinds of tain a gauge anomaly and a supersymmetry anomaly in the Wess-Zumino 

applications [1]. The first is to get phenomenological interactions when the gauge, which satisfy the mixed consistency conditions. In this derivation it 

anomalous symmetry is not a dynamical symmetry [2,3]. The second is as is transparent that the supersymmetry anomaly in the Wess-Zumino gauge 

a criterion for model building of unified theories by using the fact that the originates only from a restoring supersymmetric gauge transformation, not 

anomaly should be cancelled in order to have unitarity and renormalizabil- from a genuine supersymmetry transformation. This indicates that there is 

ity [4,5]. Recently a gravitational anomaly was found and the second type no genuine supersymmetry anomaly [9]. This situation can be guessed from 

of application has become important for finding models which unify all the the fact that the genuine supersymmetry transformation is a rigid trans-

interactions including the gravity [6,7]. In this context it is important to un- formation. This also shows that when the gauge anomaly is cancelled, the 

derstand a supersymmetry anomaly [8-12]. We will study a two-dimensional supersymmetry anomaly in the Wess-Zumino gauge is also cancelled auto-

supersymmetric Yang-Mills gauge theory in which the supersymmetry is a matically. 

rigid symmetry [13]. Furthermore, we obtain the supersymmetric extension of the Wess-Zumino 

term following Wess and Zumino's original method in superspace [3,14]. We 
We can think of two kinds of supersymmetry anomalies. The first is 

modify this extension such that it depends only on a vector multiplet. This 
an anomaly of a supersymmetry transformation in a superfield formulation 

extended Wess-Zumino term's gauge and supersymmetry variations give rise 
without fixing a specific gauge. We will call these a genuine supersymmetry 

to the gauge and supersymmetry anomalies respectively. 
transformation and a genuine supersymmetry anomaly respectively. The sec-

In section 2 we present two-dimensional superfields and their supersym-
ond is an anomaly of a supersymmetry transformation in the Wess-Zumino 

metry and gauge transformations. In section 3 we obtain a supersymmetric 
gauge which is composed of two steps of transformations, i.e. a genuine 

gauge anomaly and gauge and supersymmetry anomalies in the Wess-Zumino 
supersymmetty transformation and a restoring supersymmetric gauge trans-

gauge. In section 4 we obtain the supersymmetric extension of the Wess-
formation. We will call this anomaly a supersymmetry anomaly in the Wess-

Zumino term. 
Zumino gauge. 
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2 Two-dimensional superspace and superfields 

In two..-dimensional superspace we have two real space-time coordinates 

x 0 , x1 and two real spinorial coordinates O~o 02• The conventions which we 

will use are given by 

{ 'Y", 'Yv} = 2l7"v, _ 17 00 = 17 u = 1, 1701 = 17 10 = 0, 

'Yo = ( 0 1 ) ' "/1 = ( 0 1 ) ' "'s = 'Yo"/1 = ( 1 0 ) . (2.1) 

-1 0 1 0 0 -1 

The rest of our conventions and their properties are given in Appendix A. 

A scalar superfield is given by 

- i
s= A+ iOt/J + -zOOF, (2.2) 

where Ba = 06"fga is a linear combination of Oa 's and is not independent of the 

Oa's. The supersymmetry transformation of S is given by using a generator 

as 

Q - a ·"o" a - - oBa + l"fab bup 

6aS = [S, aQ] : 

{

oA = iat/J 

8t/J = o10A"f"a +Fa 

oF= ia"f. ot/J . 

4 

(2;3) 

(2.4) 

J:- " 
A spinor superfield or a vector multiplet Va, which is real and contains a 

gauge field A 10 as one component field, is given by [13] 

- I' s i-Va - ea + 'Ya60bA10 + 'Ya60bM + OaN + -zOO~a . (2.5) 

Its supersymmetry transformation is given by 

c5a Va = [Va, aQ] : 

I 
oe = "f"aA10 +"/saM+ aN 

oA10 = ~a"'v"f10ove- ia"/10 ~ 

oM= -~a'Ys'Y · ae- ia'Y6~ (2.6) 

l oN = ia'Y · ae - ia~ 
o~ = _"'v"'"ao10Av- "'s"f"ao10M- "f"ao10N . 

In order to have a gauge structure, we let a set of scalar superfields form 

a representation of a gauge group such that S = {S;} transforms under a 

finite gauge transformation as 

S' = e-As (2.7) 

or under an infinitesimal transformation as 

OAS =-AS' (2.8) 

where A = A;T; , A;'s are real scalar superfields which are supersymmetric 

gauge transformation parameters, i.e., A;= a;+ iOx; + iBOf; and T;'s are 

anti-hermitian gauge group generators which satisfy [T;, T;] = /;;~r.TJr. 

5 



We gauge covariantize 

D;.S = (- :o - i-y"fJB,.)(JS (2.9) 

to 

V (JS = (D(J - iV(J)S = -i(iD(J + V(J)S , (2.10) 

by requiring V(J = V(J;T; to transform under a gauge transformation as 

(iD(J + V(J)' = e-A(iD(J + V(J)eA in order to have (V (JS)' = e-A(V (JS) . That 

is, under a finite transformation 

V~ = (e-AiD(JeA) + e-Ay(JeA 

or under an infinitesimal trasformation 

6A V(J = iD(JA + (V(J, A] . 

In terms of the component fields, (2.12) becomes 

!

6e= x+ (e,aJ 

6A,. = a,.a +(A,., a]+ ~~"t,.x + x"t,.e) 

6M = (M, a]+ i(e'Y6X + X'Y6e) 

l
6N= !+ (N,aJ+H-ex+xe) 

6~ =-"!·ax+ [~,a]+ [e, /]- [A,.,'Y"x]- [M,"f5x]- (N,x]. 

(2.11) 

(2.12) 

(2.13) 

When we have the gauge symmetry (2.12) or (2.13), we can choose the 

Wess-Zumino gauge in which e = 0, N = 0 in the following way. Let us start 

withe= 0, N = 0, then we have the following transformations of e and N. 

6 
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Genuine supersymmetry transformation for e and N : 

{ 

6e = "f"~A,. + "f5atM 

6N = -i:a~. 

Supersymmetric gauge transformation for e and N : 

{

6e=x 

6N=f · 

(2.14) 

(2.15) 

As we see in (2.14), even though we start with e = 0, N = 0, these 

component fields become non-zero after a genuine supersymmetry transfor-

mation. But we can come back to e = O, N = 0 by performing a restoring 

gauge transformation which is given by the following gauge transformation 

parameter ARc as can be seen in (2.15). 

with ARc: 

where 

6RcV = iDARc + (V,ARc] 

l

a=O 

X= ~"f"atA,.- "f5atM 

f = ia~ 

~ = ~ +"! · ae. 

7 
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Therefore the supersymmetry and gauge transformations in the Wess-

Zumino gauge are given by 

{ 

Ds(wz)·= DGEN.susv + DRG 

DG(W z) = 6suP. GAUGE with 
(2.17) 

AG : a = a, X = 0, !_= 0 , 

where DGEN. susy, DRG and 6suP. GAUGE mean genuine supersymmetry, restor-

ing gauge and supersymmetric gauge transformations respectively. After-

wards, we will write Ds(wz) and DG(WZ) simply as c5s and c5G. Under these 

transformations, the component fields A,., M, >. in the Wess-Zumino gauge 

transform as 

{ 

6sA,. = -ia-y,.>. 

6sM = -i7i"Y6 >. ·. 

65 >. = "f""tvaF11v +2"t""f6a(o,.M + [A,.,M]), 

(2.18) 

where F,.v = o,.Av - ovA,.+ A,.Av - AvA,. , 

{ 

DGA,. = o,.a + [A,., a] 

6GM= [M,a] 

OG>. = [>.,a]. 

(2.19) 

Note that in two dimensions the Wess-Zumino gauge has a pseudo-scalar field 

M as well as A,. and >., in contrast to the four-dimensional case in which 

there is noM [13]. 

8 

r;,_.- • 

For reference we write down the following supersymmetry and gauge 

transformations of a scalar multiplet in the Wess-Zumino gauge. 

where 

{ 

68¢> = iat/J · 

6st/J = "f"aD,.¢> + "f6 aM¢> + aF 

6sF = i7i"t"D,.t/J + i7i"t6M,P- ta>.¢> 

D,. =o,.+A,., 

{
~¢>=-~ 

~t/J=-~ 

~F=~F. 

9 
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3 Anomalies 

First let us find a supersymmetric extension of a gauge anomaly which 

we will call a supersymmetric gauge anomaly. A vector multiplet given by 

(2.5) gives rise to 

D-y5V = D .. -y~ Vb = 2M - iB-y5 >. + iBfJe~'v a,.Av . (3.1) 

Then with A= a+ iBx + ~BfJj, we have 

Tr(AD-y5V)I,-8 = iOfJTr(ae,.viJ"Av + ix-y5>. + fM). (3.2) 

Since the first term on the right hand side of (3.2) is just an ordinary 

non-supersymmetric gauge anomaly, it seems plausible that (3.2) is a super-

symmetric gauge anomaly. In order to confirm this we should show that 

~(A)= Tr J d2xdBdfJ (AD-y5V) (3.3) 

satisfies the consistency condition 

6A2~(A1)- cSA,~(Az) = ~([Az,Al]), (3.4) 

where c5A V .. is given in (2.12). 

Let us show this. 

c5A,(A1D-y5V) = A1D-y5(iDAz + [V,Az]) 
(3.5) 

= A1(DU)Az- A1U(DAz)- A1(DAz)U- A1Az(DU) , 

where U = -y5V , and D-y5 D = 0 was used. 

10 
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From (3.5) we have 

Tr{oA,(AlD·lV) - c5A, (AzD-y5V)} = Tr{[Az, A1]D-y5V + D([Az, A1]1'5V)} . 

(3.6) 

Since the second term on the right hand side of (3.6) is a total derivative, 

it vanishes under the integration f rflx dB dO. Thus by taking f d2x dB dfJ on 

both sides of (3.6) we obtain (3.4). Of course, (3.4) is also satisfied with an 

arbitrary normalization factor in (3.3). We can show the above in a more 

elegant, but equivalent way which is given in Appendix B. 

The supersymmetry and gauge transformations in the Wess-Zumino gauge, 

i.e., (2.18) and (2.19) satisfy the algebra: 

{ 

[c5s(.B), c5s(a:)] = 6c(-2i(a-y".B)A,.- 2i(a-y5,B)M) + 2(a-y~',B)ia,. 

[c5c(b), c5c(a)] = c5c([b, a]) 

[c5c(a), c5s(a:)] = 0. 

(3.7) 

Then a supersymmetry anomaly ~s(a:) and a gauge anomaly ~c(a) in 

the Wess-Zumino gauge satisfy the consistency conditions: 

{ 

c5s(.B)~s(a:)- 6s(a)~s(.B) = ~a(-2i(a'Y".B)A,.- 2i(a-y5,B)M) 

c5c(b)~c(a)- 6a(a)~c(b) = ~c([b, a]) 

6a(a)~s(a)- c5s(a)~c(a) = 0. 

(3.8) 

The term 2(a-y~',B)ia,. in (3.7) did not contribute to (3.8), since the vac-

uum functional is invariant under translation if we impose the condition that 

a surface integral vanishes. 

11 

"t~~ • 



t_. ---·t. ci..J • 

The interesting thing is that we can obtain l::.s(a), l::.a(a) which satisfy anomaly. This also shows that when the gauge anomaly is cancelled, the 

(3.8) by using the supersymmetric gauge anomaly (3.3) in the following way. supersymmetry anomaly in the Wess-Zumino gauge is also cancelled auto-

Let us rewrite (3.3) with an arbitrary normalization factor as matically. 

L::.(A) = -icTr f d2xd21J(AD-lV) 

=cTr J d2x(a.s~'"8,.A.,+~x-l>.+/M) 
(3.9) 

where J 2 1/ -dO ::-4 dOdO such that J d20 00 = 1 . 

At first we obtain l::.a(a) from (3.9) by taking a= a, X= 0, f = 0 since 6a 

in (2.17) or (2.19) was given by this assignment of A, i.e., Aa. Next, in order 

to obtain l::.s(a) we observe that 6s in (2.17) 6r (2.18) is composed of two 

steps, i.e., 0GEN. SUSY and 0RG. But We expect that the 0GEN. SUSY step will 

not produce any anomaly since this transformation is a rigid transformation. 

Then we expect that L::.(A) with A= ARc in (2.16) will giye rise to l::.8 (a) 

[9]. That is, we expect the following to be the solution of (3.8). 

L::.a(a)=l::.(Aa: a=a,x=0,/=0) 
(3.10) 

= c Tr J d2xae""8,.A.,, 

i 
l::.s(a) = L::.(ARa: a= 0, x = -'Y"aA,.- 'Y5aM, f = 2a>.) 

(3.11) 

= ic Tr J d2x(iA~a'Y"'Y5 >. + Ma>.). 

We have confirmed that these l::.a(a) and l::.s(a) satisfy (3.8) by explicit 

application of (2,18) and (2.19). Therefore we have found that the supersym-

metry anomaly in the Wess-Zumino gauge originates from the supersymmet-

ric gauge anomaly. This indicates that there is no genuine supersymmetry 

12 13 



4 SUSY extension of the Wess-Zumino term Now we are interested in having a solution W[A] as a functional of only 

We will find a supersymmetric extension of the Wess-Zumino term which 
A,. without the independent 1r. This can be achieved by replacing the inde-

depends only on component fields of a vector multiplet. This vacuum func-
pendent 1r by a function 1r(A) which transforms as (4.3) when A,. transforms 

tional gives rise to gauge and supersymmetry anomalies by gauge and su-
as a gauge field, if we can find such a function [15]. 

persymmetry variations respectively. In order to understand the derivation 
In the Abelian case we find such a 1r(A) easily as 

better, let us review briefly the familiar non-supersymmetric gauge theory 
1 

7r(A) = OIJ,.A" ' where D = a,.a" (4.5) 

case [1,3]. 
since 

1 . 
cS.A" = 8"4, cS.7r(A) = 0 a,.(8"4) = 4. 

An effective action can be obtained by solving an anomaly equation 
Then 

cS.w = I d2z. 4i Gi , (4.1) W[AI = I d'z. I dt ( ~ a,.A")G(A(t)) 

1 1 ~ 

= 1 tl'z. fo dt(0a,.A") 2~avAA(t)e:"A 
i I ,. 1 . A 

= 2"' IJ'z. Jo dt ( 0 8,.A")8.,(AA - t8A7r(A))e:" 

(4.6} 
where Gi's are anomalies. Wess and Zumino solved this equation and ob-

tained the solution 

W[A, 7r] = I d'z. f dt W'iGi(A(t))(z.) ' (4.2} = 2~ I d'z. ( ~ a,.A")IJ.,AA~A , 
for the quantll:ID effect of a left-handed chiral fermion. We use the convention 

where the 'll'i 's are a set of fields which transforms as 
e:10 = -e:D1 = 1, e:+- = -e:-+ = -1 . Our conventions are summarized in 

e .. = e"e• (4.3} Appendix A. 

and In the light-cone coordinates, let us use the anomaly in the form - ( i / 7r )8+A-

A,.(t) = e'" A,.e-"' + e'"a,.e-'", {4.4) which is equivalent to (i/21r)8.,AAe:"A in {4.6}, since they differ by a varia-

where 
tion of a local functional (i/21r} f d'z. A,.A". (8,.) in the coordinate space 

4 = 4i7i, w = '11'i7i, A,. = A,_7i . 
corresponds to ( -ip,.) in the momentum space, since we will take external 

momenta as out-going. Then W[A] can be written as 
Any gauge invariant functional can be added in (4.2), so (4.2) is a particular 

solution and is called the Wess-Zumino term. 
i I d'p P+ W[A] =- (2 )2 -A-(p)A-(-p), 

21r "' P-
(4.7) 

14 15 
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after adding an appropriate local functional to ( 4.6) which is allowed since and (3.11), by 

W[A] is ambiguous by a local functional. 
.6.a(a) = i J d2zae"'vo,..Av, (4.11) 

In the non-Abelian case we can get 1r(A) which transforms as (4.3) by 

inverting .6.s(a) =-J d2z (~A,..a...,"'-·N, + Ma>.) , (4.12) 

A,.= e-"a,.e". (4.8) which can be obtained from a supersymm.etric Abelian gauge anomaly 

This inversion can be done as a power series of A,. and the lowest order term .6.Aboi.(A) = J d2zd28 (AD"(5V) 

= if d2z (ae"v a,..Av + ~X'Y5 >.+I M) . 2 

(4.13) 

has the same form as (4.5). Note that even though we are inverting the pure 

gauge form (4.8), 1r(A) obtained by this procedure transforms as (4.3) for a through the same procedure as that used in section 3 for the non-Abelian 

general A,.. . That is, (4.8) is just a guide for obtaining 1r(A) for a general case. In (4.13) we take such a normalization factor for convenience. 

A,.. [15]. Using this 1r(A) we can obtain W[A] as a power series of A,.. which In the present two-dimensional supersymm.etric case, (4.2) is replaced by · 

starts with the lowest order term similar to (4.6) or (4.7) as 
W[V,II] = f d2zd28 f dtR(D'Y5V;(t)) (4.14) 

W[A] = c'Tr f (~~2 :~ A-(P)A-(-p) + O(A
3
). (4.9) 

where the R's transform under a supersymmetric gauge transformation as 

We can use the above procedure to get a supersymm.etric extension of en'= en eA. (4.15) 

the Wess-Zumino term which gives rise to .6.a(a), .6.s(a) in (3.10), (3.11) 

by cSa(a), c58 (o:) in (2.18), (2.19) respectively [14]. First we will treat the 
and 

Abelian case in detail. 
V .. (t) = emv .. e-tn + etn(iD .. )e-tn . (4.16) 

The consistency conditions for the Abelian case are the same as (3.8) The above formulas (4.14), (4.15) and (4.16) are also valid for the non-

except that the second condition is replaced by Abelian case where II= R7i, A= At7i are Lie algebra valued scalar super-

fields and V .. = V .. 17i. The formulas for the Abelian case are simply given by 
cSa(b).6.a(a)- cSa(a).6.a(b) = 0. (4.10) 

omitting the sum over the subscript i in (4.14) and.using the Abelian nature 

The solution of the consistency conditions is given, in analogy with (3.10) of II, A and V ... 
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In the Abelian case the gauge transformation given in (2.12) becomes 

Then we find easily that 

c5V,. = iD,.A. 

1-
11(V) = -i~DV 

DD 

(4.17) 

(4.18) 

transforms as (4.15) which is the same as 11' = 11 +A in the Abelian case. 

The expression (4.18) means 

11(V) = -i~D D D &V& 
G G 

= -i 1 -
(D,.D,.)(D.D.) (D11D11) (D6 V6) 

i 1 -= 4D(DdDd)(D&V&) 

since 

(DD) 2 = (D,.D,.)(D.D.) = -4a,.a"' = -4 0 . 

Then from (4.14) we get W[V] as a functional of V,. only 

W[Vj =-if d2xd28 f dt(D~DV)(D-y6V(t)) 

since 

=-if d2xd28 rt dt( 
1 

DV){D-y6(V- tiD11)} lo DD 

= -if d2xd28( 
1 

DV)(D-y6V) 
DD 

D-y6D=O. 

(4.19) 

(4.20) 

Let us express (4.20) in terms of component fields in the Wess-Zumino 

gauge. 

' i 
V = -y"'8A,. + -y68M. + 1,88>. 

18 
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DV = -iS>.+ i88a,.A"' 

1 DV _ .a,.A"' .-8( i 'Y ·a>.) 
~ -•--+• ----DD 0 2 0 

(4.21) 

and 

D-y6V =2M+ iS(--y6>.) + ~S8(2t:"'"a,.A.,). (4.22) 

Using (4.21) and (4.22) we get 

W[vl -. "'"/d2 (a~A~a A _ ~' a,.>.) - lE: X 0 p. 11 
4 

A'Yv 
0 

• (4.23) 

We have checked explicitly that the variations of (4.23) give the anomalies 

(4.11) and (4.12). 

When we use the light-cone coordinates in (4.23), the terms from&+~ and 

e-+ are equivalent to each other, since their variations give rise to anomalies 

which differ by variations of a local functional. Therefore we can replace 

(4.23) by twice the e+- term in (4.23). Then we have W[V] as 

. I d'p P+ 1 1 -( ) l W[V] =' - 2 [-A-(-p)A-(p)- -->. -p 'Y->.(p) 
(21r) P- 4p_ 

(4.24) 

by adding an appropriate local functional. Variations of (4.24) give rise to 

anomalies of the form 

{ 

b.o(a) = -2i/ d'xaa+A

b.s(a) = f d'x (A+Ci-y_).- Ma>.) 
(4.25) 

which are equivalent to (4.11) and (4.12) since they differ by variations of a 

local functional. 

In the non-Abelian case, in order to get a W[V] depending only on V,. 

from (4.14), we need a function 11(V) which transforms as (4.15) when V,. 

19 
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transforms as (2.12). This can be obtained by inverting 5 Conclusion 

V., = e-niD.,en (4.26) In two dimensions we have shown that the origin of the supersymmetry 

in analogy with (4.8) in the non-supersymmetric non-Abelian case. TI(V) 
anomaly in the Wess-Zumino gauge is the supersymmetric gauge anomaly. 

can be expanded in a power series of V and the lowest order term has the 
This indicates that there is no genuine supersymmetry anomaly. This also 

same form as (4.18) in the Abelian case. Using this TI(V) we can get W[V] 
shows that when the gauge anomaly is cancelled, the supersymmetry anomaly 

in the Wess-Zumino gauge is also cancelled automatically. We expect that 
as a power series of V which starts with the lowest order term similar to 

(4.23) or (4.24) as 
the situation is the same in other supersymmetric gauge theories which have 

superfield formulations. However, in a theory which has no superfield for-

I d2p P+ . · 1 1 - s 
W[V] = c"Tr -( )

2
[-A-(-p)A-(p)- --.\(-p)"f_.\(p)] + O(V). 

2~ ~ 4~ mulation, a different analysis may be necessary. We h~ve also obtained the 

(4.27) supersymmetric extension of the Wess-Zumino term in the form which de-

pends only on the external vector multiplet. 
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Appendix A 

Let us summarize our conventions and their properties. We use p,, v, 

>., · · · for space-time indices, and a, b, c, · · · for spinorial indices. 

{"!1',"/V} = 21711v 1 
_1700 = 1711 = 1, 1701 = 1710 = o, 

( 0 1) (0 1) (1 0) o_ I_ 5_ o I_ 
"/- ' "/- , "/ -"1"1- . -1 0 1 0 0 -1 

c10 =-col= 1,: coo= £'11 = o. 

"/1'"/5 = CI'V"fv I "fl'"fV = 171'V _ CI'V"/5 I "fl'"fV"/5 = 1711v"f5 _ CI'V 

"fl'"fV"fp = 17 /'V"fP + 17vp"fl' _ 17PI'"fV 
1 

c~'v c'>. = _ ( 171',17 v>. _ 17 !'>-17vp) • 

:1: 1 ( 0 1) 1 z = V2 ±z + z , Z:1: = V2 ( ±zo + z1) , 

z_ = z+ , z+ = z-

17+- = 17-+ = 17+- = 17-+ = 1 , other 17's = 0 . 

a11b11 = a+b+ + a-b_ = a+b- + a-b+ , 

a11a11 = 2a+a-. 
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c+- = -c-+ = -c+- = c-+ = -1, other c's = 0. 

1 (0 Vi) 1 ( 0 
"/+ = V2bo+"'I) = 0 0 '"/- = V2(-"!o+"'I) = V2 :J ' 

"/+"/+ = "/-"/- = 0' "/+"/- + "/-"/+ = 2. 

8,. = ob"'g,. = -c,.bob ("1~6 = Ca.b , cu = 1) , o,. = -eng,. = c,.bob • 

- (81) - ( 82 ) - - (81) - (-82) 8,.- - '8,.- -82 -81 82 81 
a-

ao,. ob = "'~, 
a a 0 

ao,. = - ao. "'•"' • 

- 1-
0,.0b = 2886a.b 

a 
<>-
8 

o. = _"'o 
u,. a.b• 

_!___a o 
ao,. - ao6 "'

6
"' • 

(88 = 8,.8,.) ' 

a - a - ...;. 
ao,. (oo) = 20,. , afJ,. (oo) = -2o,. • 

I 

'-· ' 

a . ~~ _ o a .- ~~ 
D,. = - ao,. - '"fa.b8&a11 , D,. = Dn6,. = ao,. + s8n6,.a11 , 

a . ~~ - o a '.- o 
Q,. = - ao,. + '"'a.boba~~ , Q,. = Qb"'.,. = ao .. - ,o."'6,.a11 • 
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Fierz rearrangement: 

r--l 
ri/;" ....... ~ 

1 
(at/J)fl,. = -2{(afl)t/J,. + (7i"Y6f3)(-y'.,P),. + (a"Y,.fl)b"t/J),.} . 

7i"YAfl = 7J fA a ( a, (3 are real spinors ) : 

Using b")T = "Y0"Y""Y0 , ('y5)T = ''l"Y5"Y0 = "Y6 ( where superscript T 

means Transpose ) , 

l= 1' :Y"= -"Y"' "Ys= _"Ys' bs"Y")= -bs"Y") ' 

b""Y")= b""Y") ' b 5"Y""Y")= -b5"Y""Y") . 

We take external momenta as out-going, therefore (8,.) in the coordinate 

space corresponds to ( -ip,.) in the momentum space. 
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Appendix B 

Let us show in another way that (3.3) satisfies (3.4). Here we treat A a8 

a ghost and we take the following BRS transformation. 

{

SA= -A2 

SV,. = -iD,.A- AV,.--' V,.A. 
(B.1) 

Then (3.4) can be expressed simply as [1] 

St:.(A) = 0. (B.2) 

Let us show that (3.3), i.e., · 

t:.(A) = Tr I d2z dO dfJ (AD"Y5V) (B.3) 

satisfies (B.2). In the following expression, every term is to have Tr in front, 

i.e., we omit Tr in front of every term for notational simplicity. 

S(AD"Y5V) = (SA)D"Y5V + (-1) 2AD"Y5(SV) 

= (-A2)D"Y5V + AD"Y5(-iDA- AV- VA) 

= -A2 DU- AD(AU) - AD(U A) (where U = "Y6V , and D"Y6 D = 0 was used) 

= -A2 DU- A(.DA)U + AA(DU)- A(DU)A + AU(DA) 

= (DA)AU- A(DA)U + AA(DU) 

= D(A2U). 

That is, 

St:.(A) =I d2zdOdfJD{Tr(A2 U)} = 0, 

since the integrand is a total derivative. 
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Appendix C Three-dimensional superspace 

We summarize the three-dimensional supersymmetry for reference be-

cause of its similarity to the two-dimensional case. The three-dimensional 

superspace is described by three real space-time coordinates x0 , x1, x2 and 

two real spinorial coordinates Ot, 02• Therefore the structure of the spinorial 

coordinates is the same as the two-dimensional one. Q., and. D., have the 

same forms as (2.3) and (2.9), 

Q., = -a;., + h:.oba,. , D., = -a;., - h:6o&a,. , JJ. = o, 1, 2. 

Our conventions and their properties are as follows. 

{ 'Y"' 'Yv} = 2fl"v' _,oo = ,u = ,22 = 1, 

'Yo = ( 0 1 ) , 'Y1 = ( 0 1 ) , 'Y2 == ( 1 0 ) . 

-1 0 1 0 0 -1 

e012 = e120 = -e1o2 = 1, etc. 

[ 'Y" ' 'Yv ] = 2e"vl'Yl 

'Y"'Yv = T/,.v + e"vl'Yl ' Tr('Y"'Yv'Yl) = 2e,.vl ' 

e.l.a/1 e = -c5a c5p + c5a c5P 
.I.,.V 1-'V VI"' 
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A vector multiplet is given by 

,.. ' i-v .. = e .. + "(.,60&A,.. + O.,N + 200~., . 

Genuine supersymmetry transformation: c5aVa = [V.,,aQ] 

c5e = 'Y"aA,. +aN 

"A _ ; - val t: + ; -a t: ; - ,. u ,.. - 2e,..vla'Y ,. 2a ,..,. - 2a'Y,.., 

c5N = ~a"f · ae - ~a~ 

c5~ = e,..vl"flaa" Av- aa,.A"- "f"aa,.N . 

Supersymmetric gauge transformation : c5A V., = iD.,A + [V.,, A] 

c5e = x + [e,aJ 

c5A,.. = a,..a + [A,., a] + i({'Y,..X + X'Y,..e) 

9N= I+ [N,aJ+H-ex+xe) 

c5~ = -'Y ·ax+ [~,a]+ [e,IJ- [A,..,'Y"x]- [N,x]. 

In the above V., = V.,;T; , A = A;T; (T;'s are anti-hermitian), A; 

.- ;a;+ sOx;+ 2001; . 

In the Wess-Zumino gauge, e = 0 , N = 0 , ~ = ~ , 

c5s(WZ) = c5GEN.SUSY +c5RG 

with ARo : a = 0 , x = -"("aA,. , I = ~a~ , 

c5G(W Z) = c5suP. GAUGE 

with Ao : a = a , X = 0 , I = 0 . 
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{ 

cSs(a)A,. = -ia...,,.~ 

cSs(a)~ = '"f"'"f"aF,.., , 

where F,..v = a,..A, - a,A,.. + A,..Av - AvA,. , 

{ 

DG(a)A,.. = a,..a + [A,., a] 

DG(a)~ = [~.a] , 

where 6s, DG mean Ds(WZ)• DG(WZ) respectively. They satisfy the following 

algebra. 

{ 

[cSs(.B), cSs(a)] = 6G(-2ia'"f".BA,..) +2(a'"f".B)ia,.. 

[cSG(b) , 6G(a)J = DG([b, a]) 

[cSG(a) , cSs(a)J = 0. 

An interesting feature of the three-dimensional gauge theory is that there 

is a gauge invariant topological mass term [16]. In the three-dimensional 

supersymmetric gauge theory, we have the following supersymmetric topo-

logical mass term [17]. 

W = Tr jtPxp.,....,~~6 + 2ie~'"l(A,.Fvl- ~A,..A,Al)}. 

Under DG(a) and cSs(a), 

{ 

6G(a)W = 4iTr f d3xe~'"la,..(aa,Al) · 

6s(a)W = -2Tr f d3xe~'"l8,..(A,(a'"fl~)) . 

Therefore when we assume that a surface integral is zero, W is invariant 

under 6G(a) and 68 (a). 
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