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Geometric Perturbation Theory and Plasma Physics 

Stephen Malvern Omohundro 

ABSTRACT 

1 

Modern differential geometric techniques are used to unify the physical asymp­

totics underlying mechanics, wave theory and statistical mechanics. The approach 

gives new insights into the structure of physical theories and is suited to the needs 

of modern large-scale computer simulation and symbol manipulation systems. A 

coordinate-free formulation of non-singular perturbation theory is given, from which 

a new Hamiltonian perturbation structure is derived and related to the unperturbed 

structure in five different ways. The theory of perturbations in the presence of sym­

metry is developed, and the method of averaging is related to reduction by a circle 

group action. The pseud~forces and magnetic Poisson bracket terms due to reduc­

tion are given a natural asymptotic interpretation. Similar terms due to changing 

reference frames are related to the method of variation of parameters, which is also 

given a Hamiltonian formulation. These methods are used to answer a long-standing 

question posed by Kruskal about nearly periodic systems. The answer leads to a 

new secular perturbation theory that contains no ad hoc elements, which is then ap­

plied to gyromotion. Eikonal wave theory is given a Hamiltonian formulation that 

generalizes Whitham's Lagrangian approach. The evolution of wave action density 

on ray phase space is given a Hamiltonian structure using a Lie-Poisson bracket. 

The relationship between dissipative and Hamiltonian systems is discussed. A the­

ory motivated by free electron lasers gives new restrictions on the change of area of 

projected parallelepipeds under canonical transformations. A new type of attractor 

Abstract 2 

is defined which attracts both forward and backward in time and is shown to occur 

in infinite-dimensional Hamiltonian sytems with dissipative behavior. The theory of 

Smale horseshoes is applied to gyromotion in the neighborhood of a magnetic field 

reversal and the phenomenon of reinsertion in ~ea-preserving horseshoes is intr~ 

duced. The central limit theorem is proved by renormalization group techniques. A 

natural symplectic structure for thermodynamics is shown to arise asymptotically 

from the maximum entropy formalism in the same way the structure for classical 

mechanics arises from quantum mechanics via path integrals. The new structure 

for thermodynamics is used to generalize Maxwell's equal area rule. 
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Chaptert: 

Introduction 
"One of the principal objects of theoretical research in any department of knowl­

. edge is to find the point of view from which the subject appears in its greatest 

simplicity."-J.W. Gibbs 

1.1. Summary and Motivation 

This thesis presents the underlying theoretical basis for an ambitious program 

to develop a unified, coordinate-free theory of asymptotic perturbation methods in 

the three major areas of physics: mechanical systems, wave systems, and statistical 

systems. This program has far-reaching consequences, both practical and theoret­

ical, which we will outline here. It is quite clear that we are entering a new era in 

physics and engineering in which powerful computers will play a major role. The 

two major applications of the computer will be simulating physical systems and per­

forming symbolic computations. Both of these areas are fundamentally impacted 

by our research. 

It has long been known that many of the most important problems in physics 

and engineering design are analytically intractable. Recent theoretical developments 

have shown that this intractability can be inherent in the problem, and not due 

simply to insufficient mathematical technique. Rigorous results from dynamical 

system~ theory have shown that almost all systems of interest have chaotic behavior, 
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which absolutely precludes the development of analytic solutions (see for example 

[Guckenheimer and Holmes, 1983]}. Recent work in cellular automata theory has 

shown that there are problems whose behavior cannot be predicted by any algorithm 

which is shorter than direct simulation [Wolfram, 1984]. 

Computer simulation is therefore destined to play a fundamental role in the 

study of physical problems. Unfortunately, the very same exponential divergences 

of neighboring orbits which cause difficulties in analytic treatments also plague com­

puter simulations. For a given accuracy of prediction, the computing power required 

typically grows exponentially with the time-scale to be studied measured in units of 

the smallest important physical time-scale. Advances in parallel computation will 

increase the power of computers by factors of about a million in the next twenty 

years. While large, this number pales against the spectre of needed expone~tial 

growth and the new scales posed by fully three-dimensional simulations. It is there­

fore necessary to develop reliable analytic theories for preconditioning problems 

prior to simulation. An important example of this concept is utilized in studying 

the gyromotion of a charged particle in slowly-varying magnetic and electric fields. 

The particle motion consists of fast gyrations near the gyrofrequency, on top of slow 

drifts of the center of gyration. If one simulates the particle motion directly, the 

simulation errors accumulate on the time-scale of the gyroperiod, quickly leading 

to incorrect results on the drift time-scale. By first introducing asymptotics and . 

analytically removing the fast gyration, we obtain the so-called guiding center de­

scription. These equations have significant evolution on only the drift time-scale, 

and the simulation retains validity for much longer times with the same computing 
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resources. A similar motivation is behind the description of a particle m a wave 

using oscillation centers and the description of the evolution of an eikonal wave in 

terms of modulational equations. 

The need for accurate asymptotics performed to veiy high order will eventually 

be met by using symbolic manipulation programs such as MACSYMA and SMP. 

For this to be possible, it is absolutely essential that we have methods that are 

precisely defined with a precisely defined domain of applicability, are systematic, 

and require no ad boc choices in their implementation. It is also very important 

to design simulations to take advantage of any precise knowledge of the dynamics, 

such as energy or momentum conservation. Insight into the theoretical structure of 

a physical theory leads to much more efficient and testable computer code and may 

mean the difference between a successful theory and a useless one. 

For these practical reasons, as well as for fundamental theoretical ones, we have 

taken a new approach to physical asymptotics. The approach we take is based on 

some revolutionary new ideas that are changing the underlying mathematical struc­

ture of physics. The introduction of the vector calculus by Heaviside in 1882 led 

not only to the streamlining and simplification of calculations, but to new concep­

tual insights into the structure of physical law. The application of coordinate-free 

differential geometry, developed primarily by Elie Cartan in the 1930's, is having 

an even more profound effect on both the expression and the conceptual structure 

of physics. Coordinates are not physical, and the new formulations encourage the 

use of only physically relevant concepts, never ad hoc artifacts of some coordinate 

description. Hamiltonian mechanics has been particularly revolutionized by this 
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reexpression. It was discovered in the 1960's that. just as Riemannian geometry 

describes the structure of space-time, symplectic geometry describes the structure 

of Hamiltonian phase space. An introduction to this theory in the context of our 

work is presented in chapter 2. The full impact of the reformulation of Hamilto­

nian mechanics has been felt only recently. In the past few years virtually every 

area of physics has been Hamiltonianized. The new perspective has shed light on 

the underlying symmetry structure of these theories (including the elucidation of 

automatically conserved quantities, called Casimir functions}, has yielded improved 

nonlinear stability results based on Arnold's stability method, and has given insight 

into the reasons for the integrability of certain systems. 

Hamiltonian structures were originally introduced by Lagrange to simplify and 

to check perturbation calculations. They will play a similar role in modern computer 

simulations. Most of the recent developments in Hamiltonian mechanics have dealt 

with fundamental models of physical systems and have not studied the structure of 

perturbation equations. We have initiated a study of such equations and discovered 

several important results. 

Our first goal was to study ordinary non-singular perturbation theory. Chap­

ter 2 gives a coordinate-free description of this technique in terms of the mathemat­

ical theory of jets. This is important for systematizing perturbation methods and 

bringing them under the purview of modern mathematical methods. Many physi­

cal systems have state spaces that are naturally manifolds, and many are naturally 

infinite-dimensional. Before our work, it was not clear that one obtained the same 

perturbation expressions when one worked in different coordinate systems and there 
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was no systematic means for dealing with the geometrically more complex cases. 

Chapter 4 studies this perturbation theory in a Hamiltonian context. Again we 

find that the theoryis expressible in coordinate-free language. We have discovered 

that a remarkable and important Hamiltonian structure governs the perturbation 

equations themselves. The fact that the perturbation equations are Hamiltonian 

means that, for the first time, all of the powerful techniques of Hamiltonian me­

chanics (including Noether's theorem, energy conservation, Liouville's theorem, and 

stability techniques) may be applied directly to perturbed systems. We have discov­

ered that the new perturbation structure is related to the key elements of modern 

Hamiltonian mechanics in five different ways. (We have worked out the direct coor­

dinate description, the relationship with natural structures on the so-called iterated 

tangent bundle, the relationship with a natural structure on a path space, a new 

sense in which the perturbation state space can be viewed as a "derivative" which 

unifies our method with previous work, and finally an extensive theory of pertur­

bations in the presence of symmetry.} The theory describing the relationship of 

perturbations and symmetries extends to perturbation problems what is perhaps 

the most important idea of modern Hamiltonian mechanics: reduction. This is 

a procedure, formulated by Marsden and Weinstein and discussed in chapter 2, 

which is a far-reaching generalization of Noether's theory of simplification in the 

pre~"nce of symmetry. Every modern Hamiltonian structure, including those aris­

ing in plasma physics, magneto-hydrodynamics, fluid dynamics, general relativity, 

electromagnetism, quantum mechanics, superfiuidity, and superconductivity, may 

be obtained from underlying canonical structures by means of reduction. In most 
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of these cases, the resulting Poisson bracket is intimately related to the so-called 

Lie-Poisson bracket, which arises from reduction. We have broadened this theory 

to encompass perturbed systems, and have shown that the perturbation structures 

are intimately related to certain "jet-group" symmetries. Our Hamiltonian pertur­

bation structure arises from the Lie-Poisson bracket of this larger group. 

Perhaps the most important application of non-singular perturbation theory is 

as a component of a singular or secular perturbation calculation. Using geometric 

methods, we have been able to make fundamental advances in secular perturbation 

theory as well. We first demonstrate in section 2.9 that the method of averaging 

can be viewed as an application of reduction by an approximate circle action. This 

allows the method of averaging to be incorporated into any situation amenable to 

reduction. We explicitly calculate the Poisson structure for E x B drift using these 

new methods in section 2.10. Nowhere in the calculation does one need to introduce 

the unphysical or ad boc elements usually required. The resultant bracket is derived 

with much less calculation than by any previous method. 

To reach higher order than the method of averaging, we reexamine the seminal 

theory of Kruskal in the light of the new methods in chapter 5. He introduced 

the first systematic, order by order calculation of adiabatic invariants to all orders. 

His technique requires one to make changes of coordinates order by order. Each 

change, howev-~·, requir~s one to make certain arbitrary choices leading to an ad boc 

element in the perturbation algorithm. Kruskal was able to show that nonetheless 

the vector field generated by the adiabatic invariant (which we would now call an 

approximate circle symmetry) was uniquely defined to all orders. This vector field 
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is the real goal of the perturbation technique and Kruskal was moved to comment 

in his paper: "It does not appear obvious whether an explicit recursion formula to 

determine R [the symmetry vector field] in terms of f [the dynamical vector field] 

can be found. If so, the whole theory of this paper might be simplified and rendered 

less deep." Indeed, our approach explicitly gives just such a formula and relates 

it to the developments in Hamiltonian mechanics listed above. Our algorithm is 

completely well defined with no ad hoc elements and so is ideally suited for symbolic 

implementation on a computer. As an example, we compute the symmetry vector 

field for two dimensional gyromotion to second order in chapter 6. 

We have found that Kruskal's results {and others of the same type) are of­

ten misunderstood and misused. While Kruskal showed that the accuracy of the 

adiabatic invariant conservation may be made exponentially small in the small pa­

rameter, the time-scale over which this is valid is only the reciprocal of the small 

parameter. Kruskal's result is often quoted as: "adiabatic invariants are preserved 

to all orders in the small parameter" and wrongly interpreted to mean exponentially 

small error for exponentially long times. This misinterpretation can be· very dan­

gerous in the situations where the theorem is applied, and so we have constructed 

a number of counterexamples to illustrate the limits of the theory in section 5.4. 

We have also successfully considered the method of variation of parameters 

in this light and have explicitly demonstrated the connection with the notions of 

"pseudoforces" and "magnetic curvature terms" in the Poisson brackets of reduced 

systems in chapter 3. We have shown a new way of interpreting the Coriolis force 

(as a term in the Poisson bracket due to reduction) which is extendible to any other 
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system expressed in a changing reference frame. 

The next class of systems we study are those describing the asymptotic evolu-

tion of eikonal waves. We have developed a number of new theoretical constructs in 

this field including a precise asymptotic definition of local Fourier transform. These 

ideas are presented along with a summary of the geometric approach to eikonal wave 

theory in chapter 7. We have also succeeded in our main goal, which was to develop 

a systematic method for finding a Hamiltonian description of modulational equa­

tions given the underlying Hamiltonian wave system. Our technique is algorithmic 

and does not depend on linearity, nor on any other special features of the system. 

We present the theory for the Klein-Gordon equation in detail in chapter 8. Our 

approach encompasses the systems amenable to Whitham's averaged Lagrangian 

technique, but applies in addition to Hamiltonian systems that do not arise from 

a Lagrangian {for example, any of the systems with Casimirs or any system based 

on a Lie-Poisson bracket). It also unifies the study of eikonal waves with the other 

Hamiltonian systems we have discussed. 

We also study the common case of linear waves described by a canonical Hamil­

tonian structure with wave amplitude and phase as conjugate variables. We have 

shown that these systems are naturally described by a wave action density on the 

entire x, k phase space. The evolution of this action density is itself Hamiltonian, 

but with respect to a natural Lie-Poisson bracket, as is demonstrated in chapter 

9. The symmetry group underlyii.g this theory is the same as that for the Vlasov 

equation. 

Using new mathematical techniques, we have discovered several novel results 
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regarding some long-standing questions about the relationship between dissipatiw 

and non-dissipative systems. In chapter 10, we show by explicit construction that 

any dynamical system (with any amount of dissipation) can be imbedded in a 

Hamiltonian system of twice the dimension or a Poisson system of only one higher 

dimension. We also show by explicit construction that there are a Hamiltonian 

system and a Poisson system of only one dimension greater that project (by ignoring 

the value of a coordinate) to become. any arbitrary dynamical system. These results 

show at once that Hamiltonian systems are very general and that it can be very 

dangerous to indiscriminately . add new variables to a system. In particular, we 

show that by introducing time-dependent changes of coordinates, one can make any 

system look integrable, or coerce Liapunov exponents to take any desired values. We 

give several explicit examples of seemingly harmless yet truly dangerous operations. 

'We show in an explicit example involving a resonance that, by indiscriminate use 

of the method of Lie transforms, one can inflict mortal injury to the underlying 

physics. 

In chapter 11 we use modern symplectic geometry to study some questions 

that arise in the design of free electron lasers and other accelerators. One often 

wants to force the particles in a beam into a more confined region in phase space. 

Most devices act ~n th~ particles in a (time-dependent) Hamiltonian way and so 

we consider the effect of canonical transformatio~·, on regions of phase space. Liou­

ville's theorem says that it is impossible to change the volume of the region in phase 

space. Often, though, we are interested in the projection of our region onto some 

subset of the degrees of freedom (e.g., the longitudinal position and momentum 
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variables). One might attempt to shrink the image of such a projection. Courant 

addressed this question for linear systems, but only under very special conditions: 

particles in ellipsoids or parallelepipeds with axes aligned with the coordinate axes 

both before and after the transformation. Weinstein has given a general theorem 

that applies only for sufficiently small transformations. We generalize Courant's 

theory in a fundamental way and obtain results for arbitrary linear canonical transc 

formations. This is accomplished by positing and proving a new theorem about the 

structure of parallelepipeds in high dimensional spaces. We give several examples 

and counterexamples and discuss the possibility of a generalization to statements 

about projected measures as opposed to volumes. 

In chapter 12 we introduce a new class of attractors into dynamical systems 

t.heory that sheds .light on classical irreversibility paradoxes. By construction, we 

exhibit systems possessing a fixed. point which is attracting both forward and back­

ward in time. In chapter 13 we. show that exactly this behavior occurs in many 

infinite dimensional Hamiltonian systems and is responsible for the appearance of 

dissipation in many cases. Examples include a variety of wave systems, Landau 

· damping, resonant c~upling, and the decay of correlations in chaotic maps. 

The fundamental mathematical structure behind chaos in dynamical systems 

is known as Smale's horseshoe. This is a very commonly found piece of nonlinear 

mappings which guarantees the existence of orbits that ~op between two regions 

according to any sequence of random 1's and O's. Any map with a horseshoe has 

dynamics which is as unpredictable as a sequence of coin tosses. In chapter 14 

we show that periodically perturbed gyromotion in the neighborhood of a magnetic 

r. 
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field reversal leads to horseshoes in the particle dynamics. This has the consequencr 

that there are pa~ticle orbits that loop from side to side of the field reversal accord­

ing to any random sequence. The detailed structure of horseshoes js extremely 

complex and is only beginning to be understood. Horseshoes are responsible for 

chaos in both dissipative and Hamiltonian systems but have been studied mostly in 

the dissipative case. We have discovered a fascinating apparent paradox regarding 

Hamiltonian horseshoes whose resolution indicates a much more intricate structure 

for the Hamiltonian than for the dissipative case. We call the new phenomenon 

"reinsertion" because it forces the tongues of the unstable manifold to reinsert into 

· other tongues an infinite number of times. It is possible that this new structure 

is responsible for some extremely complex phenomena that have been recently ob­

served by Holmes and Whitley in the transition from dissipative to Hamiltonian 

horseshoes. 

In chapter 15 we give a dynamical systems description of the idea of renormal­

ization and prove the central limit theorem using renormalization group techniques. 

Using renormalization group methods, Feigenbaum discovered a universal scaling 

constant for period-doubling cascades. He used a Cray supercomputer to calculate 

this constant to high accuracy. In section 15.4 we present a poor man's approach 

that gives the constant to within 25 percent on the back of an envelope. 

The last type of physical asymptotics that we have incorporated ir.to our the­

oretical structure is the transition from statistical mechanics to thermodynamics. 

This is perhaps the most profound aspect of our work and introduces structures 

that are of fundamental physical significance. As discussed in chapter 16, we have 
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discovered that the asymptotic averaging process that occurs in the transition from 

statistical mechanics to thermodynamics is exactly analogous to the asymptotic av­

eraging process that takes us from eikonal wave theory to rays (e.g., from quantum 

mechanics to classical mechanics). We show that a natural symplectic structure 

for thermodynamics arises from this asymptotics in exactly the same way that the 

symplectic structure of Hamiltonian mechanics (that has been so fruitful in recent 

applications) arises from wave asymptotics. Our theory now allows the same pow­

erful results which have caused Hamiltonian dynamics to flourish in recent years to 

be applied to statistical systems. 

The underlying statistical foundation for the new theory is the principle of 

maximum entropy. We develop several new interpretations for this principle in 

section 16.2, in which it plays exactly the same role as the principle of least action 

plays in mechanics. Just as the principle of least action arises asymptotically from 

the method of stationary phase applied to the Feynman integral over all paths, the 

principle of maximum entropy arises from the method of steepest descents applied 

to an integral over all probability distributions. This formulation is new and is 

expected to lead to the same benefits in statistical mechanics that are derived from 

the path integral formulation in quantum mechanics. 

The integral over paths can be done by integrating over paths with a given 

constraint and then integrating over the constraint. This leads to the action de· 

fined on phase space and the description of dynamics in terms of it. The integral 

over distributions may be done by integrating over distributions obeying a given 

constraint and then integrating over the constraint. This leads to the entropy de-

.... 
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fined on the thermodynamic state space and the description of the equation of state 

in term.- .of it. We obtain the wave phase (which is the action) at a given point 

by introducing Lagrange multipliers that are canonically conjugate to the spatial 

variables and choosing them so that the extremal action occurs at the point of in­

terest. The value of the multipliers is the wave-vector or momentum conjugate to 

the position and has a value equal to the derivative of the action. This is the origin 

of the symplectic structure of mechanics. We obtain the entropy for given values 

of the mechanical quantities by introducing Lagrange multipliers that are thermo­

dynamically conjugate to the mechanical variables and choosing them to make the 

maximum entropy occur at the state of interest. The value of the multipliers is the 

derivative of the entropy with respect to the mechanical variables. This is the origin 

of the symplectic structure of thermodynamics. The Lagrange multipliers cause our 

path integral to be a Fourier transform and our probability integral to be a Laplace 

transform. The asymptotic evaluation of these transforms by stationary phase and 

steepest descents, respectively, leads to the Legendre transforms that are so central 

in mechanics and thermodynamics. 

As a first application of the new structure of thermodynamics, we reexamine 

the classical Gibbsian theory of phase transitions in section 16.12. We endow the 

Maxwell equal area rule with a natural geometric interpretation within the new 

theory. It is then generalized to describe the phase transition surface in an arbitrary 

direction instead of only along the isothermal surfaces considered by Maxwell. If 

the flood of new practical results that arose from the symplectic interpretation of 

Hamiltonian mechanics is any indication, we can expect that this incorporation of 
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thermodynamics i~to the modern framework will soon yield many other significant 

results. 
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1.2. Philosophical Approach 

What is the job of theoretical physics? The usual answer is that it is to sug­

gest new physical laws which are then verified by experiment. This is indeed what 

occured in the great revolutions of Newtonian mechanics, special and general rel­

ativity and quantum mechanics. This is not what most theoretical physicists do, 

however. They start with the fundamental laws {be they quantum electrodynamics 

or some other model) and determine what behaviors these laws imply in special 

situations. Ideally, this enterprise is one of mathematical deduction, but practically 

one must often make intuitive leaps either because current mathematical techniques 

aren't powerful enough or simply because the underlying mathematical model of the 

physical situation is inadequate. The ultimate goals of such studies are the predic­

tion and understanding of physical behaviors. Sometimes these come in the form of 

numbers to compare with experiment, but more often one is interested in qualitative 

features like the stability of an equilibrium state or the type of evolution expected 

of a given system. At the highest level, one finds general principles which apply to 

many situations and give reasons for the qualitative behaviors observed. 

From this viewpoint, the enterprise of theoretical physics may be thought of as 

the creation of a succession of models. The highest models are extremely general in 

their domains of application but are very intractable and, because of their generality, 

give little insight into actual behavior. The lower models specialize the general 

ones to smaller classes. of situations and make more and more precise predictions 

until finally the lowest models describe a single experimental setup and predict the 

numerical values of individual measurements. 
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The goal of this thesis is to examine very general features of this grand hierarchy 

of models that is physics. The sorts of questions we are interested in are: When 

does a model simplify? What makes a model simplify? How robust are the features 

of the simplification? 

The fundamental theoretical structure which unifies the models of physics at 

all levels is the Hamiltonian structure, as may be seen in the beautiful compendium 

[Landau and Lifshitz, 1960-1981]. The fundamental equations of physics all appear 

to be Hamiltonian and many of the simplification procedures respect this Hamil­

tonian structure. The most basic circumstance which allows simplification is the 

presence of symmetry. Emmy Noether discovered that for systems with a Hamil­

tonian structure, the presence of a dimension of symmetry allows one to eliminate 

two dimensions of state space from consideration. Recently, the reduction of funda­

mental models to more specific ones has been accomplished within a Hamiltonian 

framework for many examples using the symmetries present in the underlying sit­

uation. 

Many times, however, we are not exactly in the symmetric situation, but we are 

close to it in some sense. The physics is described asymptotically using the diverse 

methods of perturbation theory which have come to be the mainstay of much of 

theoretical physics. One can make a case that all of the actual calculations carried 

out in quantum electrodynamics, plasma physics, solid state physics and many other 

fields are expressions of divers perturbation approaches to the underlying equations. 

The other great simplifying tool is statistics. As for perturbation theory, the 

fundamental theoretical justification for using statistical approximations is almost 
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always lacking, and yet these techniques have led to some of the most useful and 

accurate theories in any domain of study. 

Our purpose in this thesis is to examine in a new light some of these simplifi­

cation procedures at the heart of physics. Traditionally, physical calculations have 

been carried out in special, arbitrary coordinate systems which may simplify the 

calculations but obscure the distinction between what is intrinsic to the physical 

situation and what is arbitrary. The mathematical physics community has recently 

been moving to reexpress the fundamental ideas of physics in the coordinate-free 

language of differential geometry, developed by Elie Cartan. This has led to some 

resounding successes and has identified many new structures that have direct rele­

vance to physics. Much of the huge body oftraditional work in applied mathematics 

has not yet benefitted fr9m this new viewpoint, however. Books and journal arti­

cles on perturbation methods typically describe these methods in terms of a specific 

example and little or no attempt is made to delineate what physical features of the 

model have made the method work. The result is a morass of disconnected special 

cases. Workers in the field have developed intuitions as to what will work where, 

but this has not been codified into a theory. 

The underlying philosophy here is that there is no magic. If a situation sim­

plifies, if a problem is tractable, or if there is some effect which is universal enough 

to be given a name, then there must be a definite physical reason for it. We wish 

to understand these reasons. This thesis, of course, is only a beginning in this 

direction. We find the underlying geometrical content of some of the central per­

turbation methods used in physical situations. We relate this to the Hamiltonian 
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structures involved, redo classical derivations and produce new results. To make 

this work somewhat self-contained, we give intuitive versions of needed background 

mathematical results. We show how they fit into the picture presented here without 

too much duplication of material that can be found in standard reference works. 
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1.3. Guide for the Reader 

Unfortunately, unifications of frontier material from difficult subjects do not 

often make for ea,sy reading. We have tried to alleviate this problem here in several 

ways. Throughout the thesis, we use concepts from differential geometry, geometric 

mechanics, and dynamical systems theory. Whenever we use a new concept from 

these fields, we give an intuitive discussion of the basic ideas involved and references 

to more detailed discussions. Fortunately, this background material is becoming 

widely known and used in the physics community, primarily because of the existence 

of several excellent texts. 

Geometric mechanics is beautifully presented in [Abraham and Marsden, 1978], 

[Arnold, 1978], and [Thirring, 1978]. [Arnold, 1978] gives the most intuitive dis­

cussions, [Abraham and Marsden, 1978] is the most complete and mathematically 

precise, and [Thirring, 1978] covers several additional topics like the KAM theorem. 

Both [Abraham and Marsden, 1978] and [Thirring, 1978] begin with intro­

ductions to differential geometry. An expanded version of this introduction and 

infinite-dimensional versions of the ideas are given in [Abraham, Marsden, and 

Ratiu, 1983]. We give specific citations to this reference as the fundamental geo­

metric concepts appear. An intuitively appealing treatment of differential geometry 

may also be found in [Spivak, 1979]. 

The ideas of dynamical systems theory are discussed in [Abraham and Marsden, 

1978], [Arnold, 1983], and [Guckenheimer and Holmes, 1983]. [Guckenheimer 

and Holmes, 1983] gives a very nice treatment of many examples in addition to 

presenting the pure theory. 

0 
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Two useful compendiums of the various perturbation methods, with many 

physical examples are [Kevorkian and Cole, 1981] and [Nayfeh, 1973]. The asymp­

totics of wave theory is given a nice treatment in [Whitham, 1974]. ]Guillemin and 

Sternberg, 1977] is a rich source of mathematical insight into waves, but is fairly 

difficult to read without a mathematical background. 

A unified treatment of the classical statistical physics we need is presented in 

the statistical physics volume of [Landau and Lifshitz, 196G-1981]. [Jaynes, 1983] 

presents the maximum entropy viewpoint that is central to our approach. 

Because there is no index, we have made the table of contents very detailed. 

We have also provided an alphabetical list of key concepts and the sections in which 

they appear in chapter 17. 

The remainder of this introduction is intended to be readable without extensive 

mathematical background. It presents the basic conceptual structure of the thesis 

and motivates some of the mathematical concepts. 

The body of the thesis is broken up into three parts: I) mechanics; II) waves, 

and III) dissipation and statistics. While one of our goals is to connect these disci­

plines, for the most part the three parts may be read independently of one another. 

Chapter 2 is intended to introduce the geometric approach to mechanics while 

introducing our approach to non-singular perturbation theory. It gives intuitive 

descriptir .J.S of the basic concepts of differential geometry with pointers to more 

detailed reference works. We have tried to point out the key ideas of the geometric 

approach and to make our discussions easier to follow at a heuristic level than the 

reference works. 
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Chapter 3 rests on detailed geometric mechanics and will be most accessible to 

readers with this background. No other sections depend on this material. 

Chapter 4 rests on the material of chapter 2 and will be most accessible to 

readers with some mathematical background. The philosophy and basic results 

were presented in chapter 2 and chapter 4 may be viewed as a reference for the 

details and methods of the approach. The results are used in sections 5.3 and 9.3. 

Chapter 5 extends some standard secular perturbation methods. We give an 

introduction and critique of this theory but the reader may wish to look at standard 

references and the paper [Kruskal, 1962] while reading this chapter. Section 5.3 rests 

on geometric notions from chapter 4 and may be omitted by the uninterested. 

Chapter 6 is an application of the methods of chapter 5 to gyromotion. We 

have given fairly complete details of our calculations so that they may be used on 

other problems. Later chapters do not depend on this one. 

Chapter 7 is an introduction to the geometry of eikonal wave theory. Extensive 

use of the symplectic geometry introduced in chapter 2 is made in this chapter. 

Chapter 8 develops a Hamiltonian perturbation technique for eikonal waves 

which is founded in the geometric ideas of chapter 7 but takes the form of an 

explicit algorithmic calculation. The examples we present may serve as a model for 

similar problems. 

Chapter 9 agair presents an explicit calculation whose theory rests on the 

ideas of Lie-Poisson brackets presented in chapter 2. The first section may be read 

independently of this material (though the motivation might seem obscure) but the 

second section rests heavily on it. 
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Chapter 10 uses only the elementary ideas of chapter 2 and should be fairly 

easy to read. 

Chapter 11 rests on some symplectic geometry, but the results are easily un­

derstood and may be useful in general situations. The proof of the main result uses 

only linear algebra and induction. 

Chapter 12 may be read on its own and serves as the background for chapter 

13 .. 

Chapter 14 introduces the dynamical systems concepts necessary and may be 

read independently of the rest of the thesis. It may be useful for the reader un­

familiar with the ideas of chaotic dynamics to consult some of the more detailed 

works. 

Chapter 15 rests on some ideas of probability theory, dynamical systems theory, 

and renormalization group theory. It may be read independently of the rest of the 

thesis but consultation of the reference works listed in that section may provide 

useful background material for the reader. 

Chapter 16 makes many references to chapter 7. It also rests on the ideas of 

maximum entropy which are quickly sketched here but may be studied in detail from 

[Jaynes, 1983]. It is also necessary to introduce many ideas from contact geometry, 

which clarify many aspects of thermodynamics. It might be useful to look at the 

more detailed references on this material. 
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1.4. Intuitive Discussion of the Conceptual Framework 

Plasma physics is a fascinating discipline in part because it is at the crossroads 

of what I consider to be the three fundamental types of models in physics: mechan-

ics, wave theory, and statistical mechanics. Each of these areas gets its richest and 

most powerful models and elementary concepts from asymptotic approximations 

to the real physical system. It is this asymptotics which allows us to introduce 

the concepts central to simplified descriptions of physical phenomena. This thesis 

explores some amazing relations among these three seemingly disparate disciplines 

and develops a unified way of understanding the structures that make them work. 

We are trying to understand how systems simplify. The key feature of such 

systems is that they project onto a sub-piece which moves according to its own 

dynamics which is approximately independent of the exact state of the forgotten 

pieces. The interesting physics arises from the fact that the two halves are in no 

sense decoupled, and the effect of the forgotten piece is felt in the kept piece as a 

new physical effect. Each of our three main types of system can undergo such a 

simplification, and together these systems span the breadth of physics. There are 

simple dynamical systems with fast oscillatory degrees of freedom, wave systems 

in the eikonal limit of short wavelength, and chaotic systems of a large number 

of degrees of freedom in the limit in which statistics is valid. In each, we make a 

separation of scales by first introducing a formal parameter (often only implicitly) 

which increases the separation as it vanis~es, and then by doing asymptotics in that 

parameter. 
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Figure 1.1: Some links between the three disciplines of mechanics, waves, and 

statistical mechanics. 
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1.4.1. The Analogy Between Entropy and Action 

We will forge links between these three disciplines. Let us first state the various 

relationships and then give intuitive examples of them. Oddly enough, in each case 

the classical notation associates the Jetter "S" with the fundamental unifying quan-

tity. The relation between quantum and classical mechanicscis based on the classical 

action S along a path in phase space, which also represents the quantum phase cor-

responding to that path. The information entropy S of a probability distribution 

similarly gives the connection between statistical mechanics and thermodynamics 

in the maximum entropy approach. In the asymptotic eikonallimit, we may define 

the actionS as a function on the space of only real dynamical paths. In the case of 

a system all of whose orbits are periodic, we may define the action S as a function 

on phase space. This function is an adiabatic invariant for slow variations of param-

eters, and this constancy forces the exchange of energy between the system moving 

the parameters and the fast periodic oscillations. This exchange causes the slow 

system to behave as if it had new pseudoforces acting on it, which are expressed 

in terms of S and are Hamiltonian. When we think of wave systems as themselves 

being dynamical systems, we can define a local wave action density. Again, this 

is adiabatically a locally conserved quantity, which causes energy to move around 

so as to stay constant. In the thermodynamic limit, we can view the entropy as a 

function S on the space of only the real equilibrium distributions. Asymptotically, 

in the case of ergodicity, we .can assign it to be the function S on the system phase 

space given by the logarithm of the volume of particle orbits. When we think of 

a statistical system as itself being a dynamical system, this entropy becomes an 
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adiabatic invariant and leads to pseudoforces. These are the thermodynamic forces, 

and they lead to a thermodynamic symplectic state space on which we can define 
• 

S, and in terms of which we get the thermodynamic equations of state. 

Because this sequence of connections is the central unification around which this 

thesis revolves, we will now give some easily understood examples of the concepts 

involved. 

1.4.2. Adiabatic Invariants and Pseudo-forces 

Lorentz was first to ask the question that led to the notion of adiabatic in-

variance. He wondered how the energy of a simple harmonic oscillator varied as 

its spring constant slowly changed. It was discovered that, although the energy 

and frequency both change, their ratio remains asymptotically constant for slow 

variations. This ratio, H /w, is an adiabatic invariant for the oscillator. A precise 

definition of the concept of adiabatic invariance and some of its limitations are 

given in sections 2.9 and 5.4. H/w is equal to the action of the oscillator over one 

cycle. The action of a closed orbit is the area encircled by that orbit in the ( q, p) 

phase plane. It is a quite general result that this area is an adiabatic invariant 

for slow variations of the parameters of both linear and nonlinear oscillators. We 

show how to understand this result geometrically in section 2.9 and how to use this 

understanding to get more refined results in section 5.4. That we consider area as 

measured in the coordinates q and p is absolutely essential here. If we had instead 

coordinatized phase space using velocity rather than momentum, the area would 

have had no special significance. 
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In higher dimensions, the action of a closed loop can be defined as the integral 

of pidq, around the loop where we adopt the usual Einstein convention that repeated 

indices are summed over. This combination pidq; therefore has a deep physical sig­

nificance. Geometrically, the choice of individual coordinates q; and their conjugate 

pi is irrelevant and only the combination pidq; is significant. A geometric entity 

that one can integrate along one-dimensional paths is called a one-form. pidq; is 

intrinsically built into the structure of physical phase space and is therefore called 

the canonical one-form and is usually denoted by 9. Another way to obtain the 

action of a closed loop in phase space is to find the area of a disc whose edge is the 

loop. "'Area" must be defined in a special way to get an answer that is independent 

of the means used to obtain it. Applying the (generalized) Stokes' theorem to the 

line integral of pidq;, we see that the action can be defined as the surface integral of 

dq;dpi over the disc. It is important here to keep track of orientation. A geometric 

structure that one can integrate over two-dimensional surfaces is called a two-form. 

The standard notation uses a wedge to keep track of orientation. The two-form 

dq; 1\ 'dpi is usually denoted by w and is called the symplectic form on phase space. 

It is uniquely defined from (}and so also is intrinsic to the geometry of phase space. 

Since the evolution of a Hamiltonian system preserves the action of closed loops 

(this is Poincare's first integral invariant), the notion of area with respect to the 

symplectic structure w is also preserved. From the modern perspective of geometry 

introduced in Felix Klein's Erl<> Ager program, a "geometry" is defined by a math­

ematical structure and the group of symmetry transformations that preserve that 

structure. For example, Riemannian geometry studies the concepts that are invari-
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ant under the isometrics of a metric tensor. The geometry of the phase space of 

Hamiltonian mechanical systems is symplectic geometry, since it is the symplectic 

structure which is invariant under the canonical transformations describing time 

evolution. 

The real conceptual and computational advantage in the phenomenon of adia­

batic in variance is that we can forget about the phase of the fast degree of freedom. 

Imagine a complex, slowly moving piece apparatus (for example, one of the designs 

of Rube Goldberg). There is a small weight attached to a string that hangs out of a 

hole in the side of the machine. As the apparatus moves, the string is slowly pulled 

in and out of the hole. The part of the string that is hanging out forms a pendulum 

with the weight. The weight rapidly swings back and forth {say thousands of times 

before the string length varies appreciably). In trying to understand the operation 

of this device, one first thinks that the exact state of the machine, including the 

phase of the pendulum, will be essential in determining the time evolution. The 

idea of adiabatic invariance tells us that we only need to know the action of the 

pendulum {say by observing the initial amplitude of swing) and not the phase in 

order to determine the average effect on the apparatus. As the machine pulls the 

rope in, the energy of the pendulum will change so as to keep its action constant. 

It will therefore give and take energy from the rest of the machine. The pendulum 

energy looks like a function purely of strinfr :ength. From inside the machine, we 
• 

may regard the string as attached to a nonlinear spring whose potential energy 

represents the entire pendulum energy. The oscillations have been replaced by a 

"pseudopotential". 
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1.4.3. Symmetries and Exact Invariants 

One sees similar "pseudopotentials" when one forgets about coordinates in 

system~ with symmetry. In studying a particle moving in a central potential, we 

may ignore the angular position of the particle, since all angles lead to the. same 

particle behavior (i.e. there is a rotational symmetry). Noether tells us that this 

symmetry leads to a conserved quantity, namely the angular momentum of the 

particle. The radial motion must behave in such a way as to keep the angular 

momentum constant. The energy in the angular direction is not constant and so 

the radial dynamics must supply and receive the extra angular energy. This comes 

out looking like a new radial pseudopotential that gives rise to the centrifugal force. 

The adiabatic invariant case is exactly analogous: we forget about the fast part's 

phase: the fast part's energy must change so as to keep the adiabatic invariant 

constant; this energy must come from the slow part of the system; and the net 

result is a new "pseudopotential" and corresponding pseudoforce acting on the slow 

system. We make this connection precise in section 2.9.2 and show that these 

"forgetting operations" are part of a procedure known as reduction. 

In going to rotating frames of reference, there is a change to the Poisson struc­

ture, corresponding to the Coriolis force, in addition to the change in the Hamil­

tonian. In chapter 3 we give the underlying structure behind this and show how 

the method of variation of parameters extends this kiro J of change to an asymp­

totic setting. The simplification process which is applied to asymptotic systems 

with adiabatic invariants is therefore closely connected to the one applied to sys­

tems with exact symmetries amenable to the process of reduction. Constants of 
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the motion which result from symmetry are codified geometrically in the notion of 

the momentum map of a group action. The powerful setting in which this concept 

makes general sense is discussed in sections 2.5 through 2. 7. Adiabatic invariants 

are the generators of asymptotic symmetries. This viewpoint is developed into a 

powerful perturbation method in chapter 5. 

1.4.4. Thermodynamic Forces 

The next connection is with thermodynamic systems. If one slowly varies 

the parameters of a thermodynamic system in equilibrium, there is again an adi­

abatically invariant quantity known as the entropy. The entropy change along a 

path in thermodynamic phase space can be defined as the integral of the one-form 

(1/T)dU + (p/T)dV (where Tis temperature, pis pressure, U is energy, and V is 

volume). The choice of coordinates (1/T) and (p/T), thermodynamically conjugate 

to U and V, is absolutely essential to obtaining an adiabatically invariant integral. 

As in mechanics, this canonical one-form (1/T)dU + (p/T)dV plays a fundamental 

role in the structure of thermodynamics. The net change in entropy in a cyclic 

process can be obtained by integrating the corresponding symplectic two-form 

w = dU A d( ~) + dV A d( f) (1.1) 

over any two-dimensional disc bounded by the loop representing th" cycle in phase 

space. This thermodynamic symplectic structure is discussed in section 16. 7.1.2. 

Picture a slowly moving apparatus attached to a piston that compresses a gas 

confined in a cylinder. When we first study the system, we might think that we 
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have to keep track of the detailed dynamics of every molecule of the ga.~ in order 

to understand the operation of our device. The adiabatic invariance of the entropy 

tells us, however, that we really need only the entropy of the gas (obtained by 

initially measuring the internal energy of the gas, say). As the piston moves, the 

energy of the gas will change so as to keep the entropy constant. This energy 

comes from our apparatus, and the effect of the gas is just like a nonlinear spring. 

We can forget the gas by introducing a new "pseudopotential" into the dynamics 

of the machine. This pseudopotential gives rise to thermodynamic forces. This 

then connects thermodynamic forces with adiabatic pseudoforces. A more detailed 

discussion of this connection is given in sections 2.9 and 5.4.4. 

1.4.5. Wave Action 

The next connection is with wave systems. First consider the example of linear 

sound waves in a closed room. The wave evolution may be expressed as a superpo­

sition of room eigenmodes, each of which are purely oscillatory at a corresponding 

eigenfrequency. What happens if we excite an eigenmode and then slowly vary 

the shape of the room? In an underlying infinite-dimensional Hamiltonian phase 

space for the waves, the eigenmode's evolution describes a closed loop (since it is 

periodic). Just as in the purely mechanical case, we may define the-action of the 

oscillatory wave to be the integral of the symplectic form over a disc bounde:: by 

this loop. For linear waves, the aition is again the energy of the wave divided by 

the frequency. As we slowly vary the room, the action of the eigenmode remains 

constant. Because the eigenfrequency typically varies as we change the room, thi~ 
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forces the wave energy to change. This extra wave energy comes from the work 

done against the wave in altering the room. 

One might think that our eigenmode could excite other eigenmodes as we vary 

the room. As long as the eigenfrequencies are distinct, this coupling is exponen· 

tially small in the slowness of room variation. For typical one-parameter room 

variations it turns out that the eigenfrequencies remain distinct. This phenomenon 

is sometimes called "level repulsion" and is due to the fact that the space of two 

by two Hermitian matrices {representing the possible couplings of two modes for 

all room parameters) is 4-dimensional, while the subspace of matrices with equal 

eigenvalues is only 2-dimensional (parameterized by the eigenvalue and the imagi­

nary off-diagonal antisymmetric element). It therfore takes two parameters to force 

a degeneracy. 

Imagine a slowly varying apparatus which, as it moves, changes the shape of 

the room containing the eigenmode. At first we might think that we need to know 

the phase of the mode to determine the evolution. Adiabatic invariance allows 

us to get by with just the wave action. The apparatus moves as if it had a new 

pseudopotential. When the wave is a light wave, the corresponding force is the 

radiation pressure. 

The same idea may be applied to quantum wave-functions in a slowly varying 

potential. The classical limit of the wave result applied to a particle in an oscilla­

tor potential gives the adiabatic invariance results for mechanical systems that we 

discussed first. A square-well potential with slowly varying width corresponds to a 

particle bouncing back and forth between a statio!:lary and a moving wall. The adi-
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abatic invariant is the area of the rectangle described by the particle in (q. p) space 

(see section 2.9.3.1). Physically, the particle energy changes because the particle is 

bouncing·off a moving wall and on each bounce comes away with a different mag­

nitude of velocity than it had going in. The statistical analog is a one-dimensional 

gas and the adiabatic invariance is represented by the conservation of pV"~. The 

wave system may be understood as a gas of quanta (for electromagnetic waves, a 

gas of photons), and a quantum changes energy in bouncing off a moving wall due 

to the Doppler shift. The de Broglie relation E = nw for a free massless quantum 

shows that the action Ejw is the number of quanta times n. 

The "normal modes" for a free wave are infinite plane waves. These have 

infinite action, but there is a sense in which they have a well-defined action density 

(i.e. action per unit of volume). Such a notion becomes asymptotically precise 

when we study eikonal waves, which are plane waves with slowly varying amplitude 

and wave-vector. Asymptotically, it begins to make sense to think of the energy 

and action of an eikonal wave as being made up of additive contributions from the 

different regions of space. In chapter 8 we will show how the asymptotic wave energy 

density and wave action density arise asymptotically. We obtain the evolution of 

the wave action density in time. In the presence of slowly varying potentials, the 

wave energy density varies but the wave action density evolves as a locally conserved 

quantity. The pseudo-force on the medium due to the giving and taking of wave 

energy is the ponderomotive force. These various relations give another connection 

between our subjects. 

We have seen that the action in Hamiltonian dynamics and the entropy m 
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thermodynamic systems play very analogous roles. It is interesting that these are 

the two concepts that often give students the most trouble when learning mechanics 

and thermodynamics. Both are adiabatic invariants under slow variations of the 

parameters of a system. Because of this, they both give rise to the pseudoforces that 

are a characteristic consequence of eliminating degrees of freedom. They are both 

intimately related to a geometrical symplectic structure on the corresponding phase 

spaces. The action motivates us to introduce canonically conjugate momentum 

variables to the configuration space variables of a mechanical system. The entropy 

motivates us to introduce thermodynamically conjugate variables to the mechanical 

observables (like energy, volume, particle number, etc.) of a thermodynamic system. 

1.4.6. Action, Entropy and Asymptotics 

We know, however, that both classical mechanics and thermodynamics are 

asymptotic theories that are limiting approximations to quantum mechanics and 

statistical mechanics respectively. Can we understand the geometrical structure of 

these limiting theories as arising from the asymptotic process? Do the key quan­

tities: action and entropy, have any natural meaning in the detailed underlying 

theories? The answers to both questions are resoundingly affirmative and much of 

this thesis is devoted to ferreting them out. The essential idea is that quantum 

mechanics associates to every path a wave amplitude whose phase is the action of 

that path. This very general action agrees with the classical mechanical action on 

the paths that represent real classical motions. These paths are defined asymptot­

ically via the method of stationary phase and satisfy the principle of least.action. 
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Statistical mechanics (as we formulate it here) associates a weight to each probabil­

ity distribution. This is an exponential whose exponent is the information entropy 

of the probability distribution and is defined as - J p logp dx. This very· general 

entropy agrees with the thermodynamic entropy on the distributions that represent 

real equilibrium thermodynamic states. These distributions are defined asymptot­

ically via the method of steepest descents and satisfy the principle of maximum 

entropy. 

1.4.7. Steepest Descents, Stationary Phase, and Averaging 

The two main mathematical theorems which allow the asymptotic simplifica­

tion are the method of stationary phase for the oscillatory and wave systems, and 

the method of steepest descents for the statistical systems. These methods connect 

line integrals in the complex plane of functions with an asymptotic parameter, to 

expressions that asymptotically depend only on the function in the neighborhood 

of certain special points. Dependence on the full details is reduced to dependence 

on only certain special features. Where does the extra eliminated information go? 

Its contribution is to things that have no long-term effect on the degrees of free­

dom we are interested in. In each of the domains studied here, we perform some 

kind of averaging that eliminates the features which have no long-term contribu­

tion. Physically, we are often interested in the interactions of our system with other 

systems (like ourselves) that respond only to these averages and so they are really 

the quantities of interest. The only way a fast degree of freedom can contribute is 

for it to have a long-term effect. This can come about only if its many contributions 
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add coherently. This in turn, can happen if the fast degrees of freedom repeatedly 

come back close to the same state and so give a net contribution to the slow scale 

behavior. In that case, our system has an approximate symmetry that maps one 

fast excursion to the next one. 

1.4. 7 .1. Resonance 

The regions of phase space where fast contributions add coherently are called 

resonances in oscillatory systems and correlations in statistical ones. Long-term 

effects are represented by phenomena whose frequency lies in a region near zero (and 

with appropriate scaling, the width of this region approaches zero in the asymptotic 

limit, leading to the omnipresent delta-functions in frequency). Nonlinearities can 

make use of rationally related frequencies to create near-zero frequency effects (the 

dynamics is then defined on tori whose orbits do not cover their surfaces densely); 

these effects are known as resonant interactions. One can even get them linearly 

if it is possible to simply add the frequencies to get zero (since then there is an 

oscillatory coordinate with zero frequency). These resonant effects are responsible 

for most of our knowledge of phenomena on time scales smaller than the one on 

which we normally operate (eg. spectroscopy in atoms, nuclei, particles, etc.). 
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1.4.8. The Key Examples in Mechanics, Waves, and Statistics 

To give bearings, let us list some of the key examples whose features exem-

plify the ideas we wish to explore. There is overlap in the techniques of the three 

domains (and it is this overlap that we are particularly interested in), but roughly 

most models can be categorized as being one of the three types. In mechanics 

we have systems with exact symmetries, such as a planar particle in a rotation-

ally symmetric potential, to which we can apply Noether's theorem. We also have 

systems with approximate symmetries to which the method of averaging, Lie trans-

forms, Kruskal's method, and other perturbation techniques we shall discuss can 

be applied. Examples include: gyromotion, oscillation center motion, oscillatorily 

stabilized systems, and the interesting variety of systems with adiabatic invariants. 

In wave theory, we have all the situations with short wavelength waves, includ-

ing plasma waves, propagation of light rays, elastic waves, quantum mechanics, and 

the various nonlinear plasma and fluid waves. The methods of analysis include the 

classical WKB theory, its geometric extension by Maslov to handle caustics, and its 

extension to nonlinear waves due to Whitham. 

There are two types of statistical models. One type is concerned with equi-

librium systems. This includes models of thermodynamics using either the maxi-

mum entropy formalism or Khinchin's approach via the central limit theorem. This 

type alsC' mcludes Brownian motion and fluctuation theory which we relate to the 

renormalization group. The other type of model studies non-equilibrium situations. 

These include the vast majority of plasma systems. The particular models of in-

terest here are: the BBGKY hierarchy, Bogoliubov's derivation of the Boltzmann 
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equation, the fluctuation-dissipation theorem, the Onsager relations, and the tech-

niques used in Landau damping and quasilinear theory. Hamiltonian structures 

are lurking behind virtually every aspect of the physics of these systems and will 

therefore be a prime consideration in our exploration. 

1.4.9. Mechanical Systems 

I 

The original example of~ Hamiltonian system is given by the dynamics of point 

particles in a potential. In pl~ma physics, one is interested in charged particles and 

their Hamiltonian dynamics in electric and magnetic fields. The three nontrivial 
i 

but tractable situations one ~ften needs to study are: the gyration of a particle 
i 

in a magnetic field, the motion of a particle in an electromagnetic wave, and the 

scattering of particles off one another (usually all three are present at the same 

time but certain aspects dominate the particle's behavior). When there are exact 

symmetries, we may simplify the system by using reduction as we have discussed. 

Usually, however, systems have only approximate symmetries. 

1.4.10. Mechanical Systems: Separation of Time Scales 

The asymptotics in particle mechanics usually arises from a separation of time 

scales. One set of degrees of freedom may have dynamics that is considerably faster 

than the others. In ti:J.is case, the effect of the fast degrees of freedom on the slow 

ones tends to be close to the average effect and the effect of the slow degrees of 

freedom on the fast ones tends to be almost as if we were holding them fixed. If 

we introduce asymptotics, we· may obtain in asymptotic expansion a model of our 
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system which has completely separated the time-scales of the slow and fa.~t degrees 

of freedom. We may often understand this separation as being due to reduction by 

an approximate symmetry (which gets better and better asymptotically). As we 

have discussed, we then get a model of the slow system whose dynamics is altered 

by the presence of new pseudopotentials in the Hamiltonian and magnetic terms in 

the Poisson brackets. These remains of the forgotten fast degrees of freedom give 

rise to the new physics introduced by asymptotics. 

1.4.10,1. Gyromotion and Asymptotics 

In the case of a particle in a magnetic field, we let the asymptotics move the 

particle faster and faster around its gyration loops in comparison to the rate of 

motion of the center of these loops. The asymptotic theory of guiding centers, 

which forgets the fast gyromotion and describes only the slow drift of the loops, 

has the new concepts of: E x B drift, curvature drift, polarization drift, magnetic 

moment as an adiabatic invariant, bouncing from a magnetic mirror, etc. None of 

these concepts makes precise sense for the physical system as it appears in nature. 

Nonetheless, they have been extremely important in the design and understanding 

of plasma devices and represent truly new physical notions in the given setting. To 

make the model of these useful concepts precise, we must introduce asymptotics. 

Note that this is far more signifi~ant than the usual idea of perturbation theory as 

giving better and better approximations to some underlying exact model. While it 

does that, I believe its real importance is in the conceptual advances it allows one 

to make in understanding and utilizing physics. 
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One often sees (particularly in older literature) the stated goal of perturbation 

theory as convergent series and the concomitant lament that most physically use­

ful series are only asymptotic. From the conceptual viewpoint we emphasize here, 

convergence is irrelevant. We never use more than a finite number of terms of our 

series (usually the first order terms suffice to give the new physics), the underly­

ing model equations we are approximating are based on concepts that themselves 

are only asymptotic, and convergence is a complex analytic concept requiring ap­

parently physically irrelevant complex structures in our models. Usually we only 

require our transformations to be smooth and a smooth, non-analytic transforma­

tion can destroy the covergence of most series (a classical construction due to Borel 

uses C 00 -bump functions to construct a smooth function whose derivatives at a 

given point are equal to the elements of any arbitrary sequence of real numbers; 

using such a function to change coordinates will convert an analytic function whose 

first derivative is non-zero into one whose derivatives are any desired sequence; we 

need only choose one which grows fast enough to prevent convergence of the Taylor 

expansion at any radius). What I feel is important for theoretical understanding 

is not the actual numbers but rather the physical tendencies. Of course in appli­

cations one wants numbers, but asymptotic series often yield a given accuracy of 

approximation to the exact solution with many fewer terms than any corresponding 

convergent series. 
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1.4.10.2. Oscillation Centers and Ponderomotive Forces 

ID the case of a charged particle moving under the influence of a high-frequency 

wave whose amplitude slowly varies in space, we introduce the asymptotic concept 

of the oscillation center. As the wave oscillates, the particle feels a force first in 

one direction and then in the other, causing it to oscillate as well. If the wave 

were spatially uniform, then the excursions to each side would exactly cancel each 

other, yielding no net average effect. In a non-uniform wave, the particle feels a 

bigger force in the region of larger amplitude and so is pushed more away from 

such regions than into them. The average push behaves like a force on the particle 

pushing it away from higher wave amplitude regions. The reduced description gives 

the dynamics of the center of oscillation and includes a remnant of the fast motion 

through this so-called ponderomotive force. Both the guiding center equations and 

the ponderomotive equations are Hamiltonian. 

The second chapter shows how to use reduction by a circle symmetry in con-

junction with the method of averaging, to obtain the E x B drift dynamics as 

a Hamiltonian system. The higher order theory, based on the ideas of Kruskal, 

is dicussed in chapter 5, and the relation to the pioneering work on the Hamil-

tonian structure of gyromotion due to Robert Littlejohn is discussed in chapter 

6. Many other systems fit into the setting of these asymptotic methods, and the 

physical concepts that come out of the asymptotics can be quite striking. Systems 

with constraints can exhibit phenomena analogous to ponderomotive effects, due to 

oscillations in the constrained direction. One may understand the oscillatory sta-

bilization of systems like the shaking inverted pendulum,the shaking inverted cup 
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of fluid, or the r.f. stabilized 
1
unstable MHD modes, as the effect of the asymptotic 

pseudoforces. 

1.4.10.3. Geometric Perturbation Theory 

To make these notions precise, we have developed a systematic geometric frame-

work for asymptotology bas~ on notions from the mathematical theory of jets. 

Because we are interested in systems whose phase spaces are manifolds and we par-

ticularly want to study the asymptotic behavior of geometrically intricate Lie group 

symmetries, we develop the various perturbation theories in the coordinate-free Ian-

guage of modern differential geometry. While often useful (particularly in explicit 

calculations), coordinates are unphysical and often obscure the underlying content 

of physical theories. The movement in the mathematical physics community to re­

express the fundamental physical notions without arbitrary coordinate systems has 

been very successful in mechanics and has succeeded in dramatically simplifying 

some of the classical results (eg. Liouville's theorem, Noether's theorem, Darboux's 

theorem, action-angle variables, etc.), clarifying the essential structure of the theory 

(especially the extreme importance of symplectic geometry), and obtaining many 

new ideas and results (eg. the extension to infinite dimensions, Noether's theorem 

for arbitrary Lie groups, the KAM theorem, chaotic dynamics, etc.). 

Our formulation of perturbation theory is in the spirit of this movement, and 

so we summarize some of its key ideas in chapter 2. In that chapter we also give the 

non-Hamiltonian aspects of this geometric approach to non-secular perturbation 

theory and sketch the Hamiltonian results. The Hamiltonian results are given in 
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detail in chapter 4. There we show that the non-secular perturbation dynamics 

is itself Hamiltonian when the underlying dynamics is. The Poisson bracket has 

a somewhat unexpected form, in that it pairs the lowest order variables with the 

highest order, the next to lowest with the next to highest and so on. We show 

that it is the natural structure in five different ways, each of which sheds a different 

light on the relationship between the perturbed and unperturbed systems. The 

relationship between symmetry and perturbations is also given in that chapter, and 

the operation of performing reduction is shown to commute with the operation of 

performing a perturbative analysis. Chapter 5 uses the previous non-secular results 

to do secular perturbation theory. We develop a new technique based on these ideas 

which is simpler to apply in practice. Its application to guiding center motion is 

given in chapter 6. 

The limitations of this and all general secular perturbation theories do not 

appear to be well known in the physics community. We therefore give examples 

and explanations of why the tim~ of validity of this and other theories is only of 

order 1/f, even though the accuracy over this time can be to all orders in L We also 

discuss the case of many fast frequencies and the concomitant resonances. Finally, 

we end chapter 5 with the case in which the fast motion is ergodic on the energy 

surface and begin to make the connections with statistical mechanics. 
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1.4.ll. Averaging in Statistical Systems 

There is an interesting way in which the need to average over an intermedi­

ate scale becomes apparent in both the statistical and wave systems. Consider the 

common and very useful result that says that independent measurements of a defi­

nite quantity representative of a complex system will be distributed as a Gaussian. 

The very general argument for this assumes only that small errors from the many 

parts of the system will contribute additively to the error in the measured quantity. 

Regardless of the how the individual errors are distributed (under some very weak 

constraints), the central limit theorem tells us that their sum will be distributed as 

a Gaussian. Let us try to understand how one applies this statement operationally 

and so see that a specific type of averaging is required to make sense of the no-

tion of Gaussianity. Let us consider an actual experiment where we have made, 

say, 1000 measurements of some quantity (so as not to obscure the argument, let 

us assume that the results of our measurement are precise real numbers). Taken 

directly, our measured probability distribution is a sum of 6-functions, one for each 

measured value (no Gaussianity here!). In practice, we "bin" the measurements, 

i.e. we make a histogram of the number of measurements that fall into each of a 

set of intervals that partition the space of measurement values .. If we make the bins 

too small, we get the problem of the b-distributions, i.e. widely spaced bins with 

one measurement each. If we make the bins too large, then all measurements fall 

into a single bin. We see something that approximates a Gaussian only if we bin 

on an intermediate scale. This is defined using an asymptotic parameter given by 

the number of measurements. 
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.1.s the number of measurements gets larger, we can make our bins get smaller, 

and it is in this asymptotic sense that we say our distribution becomes Gaussian. If 

we make N measurements, it is easy to see that the mean spacing between measured 

values goes as 1/ N. If we bin on a scale that goes to zero more slowly than this, 

like 1/ ffi, then asymptotically there will be an infinite number of measurements 

in each bin. The law of large numbers tells us that asymptotically the number of 

measurements falling into each bin will agree (with probability one) with the number 

expected from the Gaussian distribution. Furthermore, since the width of the bins is 

going to zero, we get arbitrarily fine accuracy. Also note that, while with any given 

.number of measurements the observed distribution may be changed by altering 

the binning, as long as the binning is on an intermediate scale, the asymptotics 

is bin independent. Furthermore, the range of bin choices that yield values close 

to the asymptotic result gets wider as N gets larger. Another way to think of 

the asymptotics is· in terms of the convergence of the delta-function distributions 

representing the measurements, to the smooth asymptotic distribution. From this 

perspective, the binning procedure defines a topology on the space of distributions. 

It is only in this asymptotic sense that the whole notion of a probability den­

sity makes physical sense at all. There are many other situations in which a similar 

asymptotic averaging is behind the models. In plasma physics we define a distribu­

tion function on phase space by averaging the Klimontovich a-distribution to obtain 

the smooth Vlasov distribution (i.e. we bin the particles). We make precise sense 

of the manipulations we are allowed to perform on this distribution only by consid­

ering an asymptotics which chops the particles into finer and finer pieces. Similar 
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averaging is behind fluid descriptions and macroscopic electrodynamics. In each 

of these subjects we often come across b-distributed quantities ( eg. point masses 

and charges). These are to be interpreted in terms of the asymptotics. The real 

situation is not at the asymptotic limit, but the object of interest is small on the 

large scale (and we scale it so it gets ever smaller asymptotically) and has finite 

mass (or charge, etc.) on the small. We then develop consistent rules that are 

asymptotically valid and these lead to the familiar calculus of 8-functions and other 

singular distributions. Similarly, real fluid velocity functions (which are the result 

of an average over a macroscopically small region with a large number of particles) 

cannot validly have wavelengths shorter than or on the molecular scale. We model 

the velocity evolution by nonlinear partial differential equations, however, that can 

(and do) excite arbitrarily short wavelength Fourier components. If these ever be­

come important, the separation of scales fundamental to our model has broken down 

and the model becomes invalid. 

1.4.11.1. Matched Asymptotics 

A fundamental technique of singular perturbation theory is to insert models 

which include the physics of the small scale in regions of breakdown. For example, 

in very high shear regions of a fluid, one need to include more kinetic effects than 

are represented in the simple Navier-Stokes model. The two important cases arise 

when these singular regions (with asymptotically small scale physics) are: 1) local­

ized and get smaller with the asymptotics and 2) spread over open regions but have 

a local homogeneity. In the first case, one inserts a so-called boundary layer, which 
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is infinite on the small scale, but infinitesimal on the large scale (i.e. its size scales 

asymptotically between the inner and the outer scale). One then performs the inner 

and outer analyses separately, with the boundary condition arising from the match­

ing of the asympotics of the inner region at infinity with the outer region at zero. 

Tlie case where the small scale effects are not localized, but are homogeneous, leads 

to the eikonal techniques we shall discuss next, in which we have slowly modulated 

fast behavior which is regular on the small scale at each large scale point ( eg. local 

plane waves). 

1.4.12. Averaging and Local Fourier Transforms 

The idea of averaging over an intermediate scale that arose in trying to under­

stand the notion of probability density also arises in trying to define the frequency 

or wavelength of a slowly varying wave. When we talk about a wave having a cer­

tain wavelength ·or a sound having a certain frequency, we are always talking about 

a local Fourier transform. No sound lasts forever and we usually are not interested 

in the properties of a wave in the next galaxy. What do we mean by a local Fourier 

transform? Operationally we usually work with the Fourier transform of a signal 

multiplied by a window function: 

F(t, w) = i: f(t- r)W(r)e-iwr dr. ( 1.2) 

We might have a spectrum analyser that works on a finite segment of the signal 

(and smoothly damps the on and off edges of the window to minimize spurious edge 

effect,). As in the case of binning, the shape and size of the window function W(r) 
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affects the resulting local Fourier transform. If we make the window too wide, we 

get contributions from parts of the signal we aren't intersted in (eg. the spectrum 

of the news broadcast after the concert). If we make the window too small, we 

don't sample enough wavelengths (perhaps not even one) to get a good fix on the 

frequency (turning the radio on and off quickly results in a click with all frequencies). 

If we are trying to say that a frequency (or frequencies) is present at a given time 

(as in describing a piece of music in music notation), then that frequency should be 

distinctive. To make precise the manipulations allowed, we embed the given wave in 

an asymptotic family, which makes the frequency of interest more and more distinct 

as a parameter approaches its limit. We make the number of wavelengths occuring 

in a region of significant wavelength change become infinite by making the scale 

length longer for fixed wavelength, the wavelength shorter for fixed scale length, or 

both. We introduce a short scale given by the wavelength and a long scale given by 

the scale length defined so that asymptotically their ratio vanishes. The operations 

and concepts we are allowed to use in describing our wave are those which make 

asymptotic sense. As the parameter approaches its limiting value, the domain of 

validity of such asymptotic concepts gets larger and larger. For any real situation, 

one must make sure that one doesn't have physics which violates the separation of 

scales and thus the validity of this kind of model. 

The local Fourier transform above can be made precise asymptotically. We let 

the window function W scale with the asympotics between the fast and slow scales. 

On the slow scale it looks more and more like a 8-function and in the asymptotic 

calculus we may treat it as such. On the fast scale it looks more and more like 
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a constant and so the local Fourier transform asymptotically looks locally like the 

Fourier transform whose useful relations then carry over to the asymptotic calculus. 

1.4.12.1. Scales in Differentiation 

Many other areas of study have this same large vs. small scale dichotomy. 

Robert Littlejohn suggested the example of optimal algorithms for numerical dif­

ferentiation (see [Stoer and Burlirsh, 1980]). Assume we have some function repre­

sented in a computer as an algorithm that can calculate values to some accuracy. 

What is the optimal way to calculate its derivative at a point numerically? We 

can evaluate the function at two nearby points, take the difference and divide by 

the distance between the points. How do we choose this distance? If it is too 

wide then we won't get the derivative at the point of interest, but rather something 

averaged over a region in which the function may have signifcant change. If it is 

too small, then the division by a small number blows up the errors until they are 

arbitrarily large. Given some criterion of goodness in these two respects, there is an 

optimal distance. We identify the asymptotic limit with increasing the numerical 

accuracy of the calculation. If we take the distance between the points of evaluation 

to shrink on an intermediate scale (i.e. they become infinitely close as far as the 

variation of the function is concerned, but are far enough apart that the division 

algorittm becomes infinitely accurate asymptotically) then in the limit we get the 

actual derivative. This idea may even be used to define the derivative (and is es­

sentially the same as the mathematical definition, given that reals are defined as 

limits of rationals and the arithmetic operations are defined in terms of the precise 
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operations on rationals). The very same issues are relevant in any physical situation 

in which we take a derivative, and this kind of approximation is almost always what 

we really mean (eg. the strain is the derivative of the displacement in elasticity, 

but displacement as a smooth function is an asymptotic idea as the molecules of 

material become more and more numerous). 

1.4.13. Symplectic Asymptotics'in Thermodynamics and Mechanics 

The last part of the thesis discusses the relationship between eikonal wave 

asymptotics and the particle number asymptotics of statistical mechanics. Both 

theories reduce to asymptotic theories with natural symplectic structures: classical 

mechanics in the case of waves, and thermodynamics in the case of statistical me­

chanics. The description of a state is given by a submanifold of these asymptotic 

state spaces in both cases. It turns out that this submanifold of states always has 

a very special relationship with the symplectic structure (the symplectic form ac­

tually vanishes when restricted to the submanifold). Such submanifolds are called 

Lagrangian submanifolds and give rise to a rich theory (see section 7.1.4). The 

role of the Fourier transform in wave theories is played by the Laplace transform 

in statistical mechanics. The simplification provided by the method of stationary 

phase in wave mechanics is provided by the method of steepest descents in statistical 

mechanics. The role of the action is played by the entropy. Canonically conjugate 

variables correspond to thermodynamically conjugate variables. The analog of the 

Heisenberg uncertainty principle in the asymptotic limit is the fact that the disper­

sion tensors of thermodynamically conjugate variables are inverses of each other. 
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Non-degenerate critical points give the rays in wave mechanics and the Gaussians 

in statistical mechanics. 

Heisenberg, and Fourier before him prevent us from localizing states in x, k 

space. But, by letting k go to infinity, we can make the relative dispersions in both 

x and k go to zero (by relative dispersion in k we mean t::.k/ k where t::.k is the 

absolute dispersion). So by rescaling (i.e. going to slow variables) we get states 

whose local Fourier transform is asymptotically a 6-function in phase space. 

Given a definite mean energy U (or any other extensive quantity from the un-

derlying mechanical system) the maximum entropy formalism gives an exponential 

distribution parameterized by the conjugate variable (inverse temperature t3 in the 

case of energy). A definite temperature corresponds to a (canonical) distribution 

of energies. A definite energy corresponds to a distribution of temperatures. We 

may use Bayesian statistics to see that the temperature and energy distributions 

are related by essentially a Laplace transform. The analog of Heisenberg's principle 

says that we cannot localize a distribution in U, {3 space. If we let U go to infinity, 

however, we can make both relative dispersions go to zero. By rescaling, we get an 

asymptotic delta-function on thermodynamic phase space. 

Eikonal waves have k's at each x that fit together into a Lagrangian submani-

fold. This manifold is locally the graph of the differential of wave phase, which for 

mechanical systems is the act~on. If we view k as the base coordinate, this manifold 

is the graph of the differential of a function of k that is the Legendre transform 

of the phase. This Legendre transform results from applying stationary phase to 

the Fourier transform of our eikonal wave. Asymptotically we obtain the Legen-
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dre relation between functions of x and of k because only the stationary points 

contribute. 

The state of an equilibrium statistical mechanical system is restricted to lie in 

a Lagrangian submanifold in thermodynamic state space. For simplicity, let us just 

consider (E,{3) space (where we have introduced the inverse temperature t3 = 1/T). 

This manifold is locally the graph of the differential of the entropy S as a function 

of U. In other words, only those points in ( U, {3) space which satisfy 

as 
t3 =au ( 1.3) 

correspond to thermodynamic states. To write this as the graph of the differen-

tial of a function of {3, we again introduce the Legendre transform. This Legendre 

transform results from applying steepest de~cents to the Laplace transform of our 

distribution function. Again only stationary points contribute asymptotically. The 

usual Legendre transforms of thermodynamics are of the energy instead of the en-

tropy. These give the Helmholz and Gibbs free energies and the enthalpy. They arise 

from taking the entropy instead of the energy as the observable extensive variable 

in phase space. The two pictures are related to a large one containing the exten-

sive and conjugate intensive variables and the entropy. This has a natural contact 

structure given by the first law of thermodynamics (conservation of energy). The 

equation of state is a Legendre submanifold with respect to this contact structure 

and turns into a Lagrangian submanifold when we project onto either of the natural 

symplectic thermodynamic state spaces. 

We may understand the relation between the underlying infinite dimensional 

wave and probability density spaces and the resulting symplectic phase and ther-
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mo<ivnamic spaces better using a theorem about Lagrangian manifolds. The details 

of this theory are given in section 16. 7.3. We are given a fibration of one manifold 

over another (i.e. a projection so that the inverse images of points all look the 

same) and a function Son the first manifold. The graph of the differential dS is a 

Lagrangian submanifold of the cotangent bundle of the first manifold. The push­

forward of this submanifold to the cotangent bundle of the second manifold consists 

of solutions to a cont>trained variational principle, that is, it is the push-forward 

of extrema of S restricted to each of tbe fibers. From a more general result, one 

may show that this resulting pushforward is Lagrangian iff all of S's critical points 

are non-degenerate (i.e. 825 is invertible). The more general formulation is: if we 

are given a map from one space to another one, then a Lagrangian submanifold of 

the cotangent bundle of the first space pushes forward to a Lagrangian subman­

ifold in the cotangent ·bundle of the second space if and only if it intersects the 

pull back of the second cotangent bundle transversally. In the case of a fibration 

and a Lagrangian submanifold given by the graph of the differential of a function, 

the extrema of the function restricted to each fiber represent the intersection with 

the pull-back and so push forward to a Lagrangian submanifold (non-degeneracy 

corresponds here to transversal intersection). For the case of waves, we consider the 

space of paths originating on some source region. The image space is !R3 and the 

projection sends a path to its final endpoint. The fiber over a point in !R3 consists 

of all paths that end at that point. For the function S on path space, we take 

the action along each path. In the Feynman path integral formalism, this function 

is the phase associated with each path. The differential dS defines a Lagrangian 
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submanifold in the cotangent bundle of path space. Doing the Feynman integral 

gives us a wave on !R3 whose phase is determined at each point by stationary phase 

to be that of the paths of extremal action, where we consider variations restricted 

to the fiber (i.e. to paths that end at the point of interest}. This is exactly the 

pushforward of the Lagrangian submanifold dS and gives the Lagrangian subman­

ifold in the space of (x, k}'s (i.e., the cotangent bundle of !R3 } which represents an 

eikonal wave. For statistical mechanics, our first space is the space of probability 

distributions on phase space. The entropy of a distribution (defined by the integral 

of -p log p) is a function on this space. The map to a space of observables given by 

the mean value is a fibration. The maximum entropy formalism says we extremize 

the entropy on the fiber (i.e., all distributions with the given mean values) and 

the theorem says that this determines a Lagrangian submanifold in the cotangent · 

bundle of the observables (i.e. thermodynamic state space). 

In wave dynamics, we start with a theory of arbitrary waves, and specialize it 

to the important special case of eikonal waves. To make the ideas of this special­

ization precise, we introduce an eikonal parameter that specifies the separation of 

scales between the local wavelength and its slow variation. We may either think 

of the wavelength going to zero for given scale length, or (as I prefer, since the 

actual wavelength often has physics in it) the scale length going to infinity for given 

wavelength. The waves we want to study the dynamics of are vi·~wed as asymptotic 

families and we utilize the asymptotology to introduce new physical concepts which 

apply only approximately to the real waves, but show the tendency of the behavior 

as the separation of scales becomes greater. The key simplifying idea in the calculus 
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of asymptotic waves is the method of stationary phase. Integrals (such as those in 

the description of wave propagation) which really depend on the entire state of the 

wave, asymptotically depend on the state only in the local neighborhood of a point. 

The key asymptotic information about the wave at a point is the wave-vector k and 

we obtain "rays" in (k, x) space, to which the dependency of a portion of a wave is 

restricted asymptotically. This is a notion which is precisely defined by the spatial 

Fourier transform in the case of plane waves, but that has only asymptotic meaning 

for our eikonal waves. The asymptotic local Fourier transform makes precise the 

notion of a wave whose wave-vector spectrum depends on x. 

1.5. A Hundred Further Questions, Conjectures, and Suggestions 

1.5. A Hundred Further Questions, Conjectures, and Suggestions 

And time for all the works and days of hands 

That lift and drop a question on your plate; 

Time for you and time for me, 

And time yet for a hundred indecisions, 

And for a hundred visions and revisions, 

Before the taking of a toast and tea. 

-from The Love Song of J. Alfred Prufrock by T. S. Eliot 

56 

This section presents a number of questions and suggestions for further work 

related to the topics covered in this thesis. Some of them appear to be fairly 

straightforward and some appear to be quite difficult. They are presented in the 

order the subjects appear in the thesis and we make reference to the relevant sections 

for each question. 1. Answer the question posed in section 2.1: Does the KdV 

Poisson bracket naturally arise from the one for the Boussinesq equations? 

2. Is there a natural way of working directly with the germs of paths, and can 

one use this to get information on exponentially small effects in the perturbation 

parameter € (such as tunneling)? (section 2.3.2) 

3. Does Newton's approach to centrifugal force, outlined in section 2.6.3, 

extend to any other situations? 

4. Find physical systems that utilize the KKS symplectic structures on the 

spaces of measured loops, and measured Lagrangian submanifolds introduced in 

section 2.7.10 (see for example the eikonal wave systems discussed in chapter 9). 

5. Use the symplectic structure on some of the coadjoint orbits of the group of 



1.5 . . -\ Hundred Further Questions, Conjectures, and Suggestions 57 

symplectomorphisms not discussed in section 2.7.10 (eg. some of the "water-bag·· 

model5 in plasma physics naturally live in these orbits). 

6. Apply the J-jet structures of chapter 2 to a variety of problems. 

7. Can one extend the Arnold stability method from fixed points to peri­

odic orbits (or even orbits which limit on compact objects such as tori) by adding 

Casimirs to make the Hamiltonian quadratically maximal or minimal on the orbit 

in question? 

8. Richard Montgomery has shown that there is a natural Poisson structure 

on the_ space of 2-jets of a Poisson manifold (see section 4.8.6.5}.The construction 

given in section 2.8.1 "explains" the fact that the linearization of a symplectic 

Hamiltonian system about a fixed point is Hamiltonian. Can we apply the same 

construction to linearize a Poisson Hamiltonian system about a fixed point? (To 

linearize at a point in a symplectic leaf, one need only add Casimirs to eliminate 

any linear piece in the Hamiltonian, take the Poisson structure at the fixed point 

and the quadratic piece of the Hamiltonian. To see that there are problems near 

bones, just consider the Lie Poisson bracket on the dual of the Lie algebra of the 

rotation group. This Poisson structure vanishes at the origin, yet the linearized 

dynamics can be non-trivial. The approach suggested here via the jet brackets may 

give a solution even at the bones.} 

9. Apply the linearized structures of section 2.8.1 and the previous question 

to any of the numerous physical systems in which one linearizes about a fixed point 

( eg. the linearized Vlasov equation about thermal equilibrium, linear wave theory 

in fluid mechanics or elasticity, linear surface waves, etc.). 
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10. Apply the linearized Hamiltonian structure about a given orbit (as opposed 

to a fixed point) described in section 2.8.1 to physical situations (eg. study the linear 

evolution of small perturbations about a nonlinear wave solution, Jerry Marsden is 

applying this to general relativity). 

11. Use the same techniques as in the previous question and section 2.8.1 

to understand the Hamiltonian nature of the lift of Hamiltonian dynamics to the 

symplectic frame bundle which has arisen in Robert Littlejohn's and Yukkei Hui's 

. work on extending coherent states by including metaplectic corrections (see also 

section 7.1.3.2}. 

12. As in section 2.8.1, extend the previous four questions to Jth order struc­

tures (as opposed to just linearizing) and apply to examples where higher order 

effects are important. 

13. Use the approach to oscillatory stabilization discussed in section 2.9.3.2 to 

study various r.f. plasma stabilization schemes in a Hamiltonian manner. 

14. Use the connection between averaging and reduction to treat more prob­

lems like that discussed in section 2.10 in a geometric way. 

15. Use the method of averaging given in section 2.10 to find the "pseudo­

potential" felt by a deforming elastic body due to the presence of elastic waves 

(i.e. the elastic analog of ponderomotive forces- as we deform the body the wave 

spectrum changes, causing energy to be transfered between the body and the waves). 

16. Use the method of averaging given in section 2.10 to study the Stokes' 

drift of a fluid particle under the influence of surface waves (fluid particles move 

in approximate circles in the presence of small amplitude surface gravity waves in 
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a fluid: the circles are big near the surface and get smaller with depth: a particle 

then moves on a larger circle near the top than near the bottom of its orbit; just as 

in gyromotion the resultant particle path has a drift parallel to the surfate of the 

fluid). 

17. Use the connection between averaging and reduction given in section 2.10 

to prove the K - x theorem relating the linear susceptibility of a plasma to waves 

and the ponderomotive pseudo-potential in the plasma dynamics due to the waves 

after reduction. 

18. The explicit calculation technique of section 2.10 utilized a section of the 

circle bundle defined by the approximate symmetry. Develop explicit techniques for 

treating nontrivial bundles (these are covered by the abstract theory). An example 

might involve a perturbed rigid body where the circle action is rotation about a 

given body-fixed axis the nontrivial projection to the orbit space is the Hopf map. 

l9. Can one treat the conversion from a Lagrangian to an Eulerian description 

of a fluid with the concomitant introduction of convective terms as an example of 

the change of reference frame operations introduced in chapter 3? 

20. (A generalization of the previous question): Can one extend the results of 

chapter 3 into a general theory connecting the process of reduction and the process 

of changing reference frames (this is carried out explicitly in section 3.1.6 for the 

Coriolis force}? 

21. Apply the methods of section 3.1.6 to develop natural Poisson structures 

for a variety of rotating systems. Debbie Lewis is currently studying the infinite 

dimensional fluid dynamics of rotating liquid drops (such as stars or nuclei) from 
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this perspective. Another example of interest might be a cold non-neutral elec­

tron plasma in a cylindrically symmetric "tin can" with axial magnetic field-the 

electrons E x B drift around the axis making a naturally rotating reference frame. 

22. Use the Hamiltonian structure introduced into the method of variation of 

parameters in section 3.2 to redo in a geometric way physical derivations based on 

it (eg. the usual derivation of Fermi's golden rule in quantum mechanics}. 

23. Does the natural symplectic structure introduced in section 3.2.1 on the 

group of (compactly supported} canonical transformations of a symplectic phase 

space have any other physical applications? 

24. The perspective on Jth order non-singular perturbation theory that is 

taken in chapter 4 is to view the perturbation dynamics as an ordinary vector field 

on a perturbation extended phase space (i.e. the jet space). Another perfectly valid 

perspective is to introduce J-jets of vector fields on ordinary phase space, whose 

flow is a "J-jet of a diffeomorphism" and so on for the rest of the objects in a 

theory. Pursue this alternate route and redo the various calculations of chapter 4 

this way. Are there advantages or disadvantages to one or the other of these two 

perspectives? 

25. Does the binary notation for iterated tangent bundles which was so con­

venient in section 4.5 have any other natural applications? 

26. The technique of going from the path space bracket to the jet bracket 

introduced in section 4.6.1 by quotienting out the degenerate piece is very powerful. 

Are there other applications of this? In this example when one tried to push forward 

the original bracket along the projection, one obtained products of delta functions 
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and other very singular things. Similar singular brackets have been found by Bruce 

Boghosian in attempting to find a Hamiltonian linearization for the Poisson-Vlasov 

equation. Can one use a similar solution in that situation? 

27. The sheet quotient spaces introduced in section 4.7 extend to Jth order a 

construction given to first order in [Kijowski and Tulczyjew, 1979]. In that reference 

they extend this construction in another direction: by making the sheet parameter 

be larger than one-dimensional. (In their work they were interested in time as the 

parameter and the extension is to space-time and field theories). Can one apply the 

extension to J-th order derivatives given here in the field context? 

28. As in the previous question, can one introduce more than one parameter 

but now treating them all as perturbation parameters. Thus one should redo all 

calculations in chapter 4 replacing paths by higher dimensional submanifolds, and 

path jets by jets of maps of these higher dimensional submanifolds into phase space. 

Use this extension to treat perturbation theories with more than one small param­

eter. In particular this should give a context in which to explore various relative 

scalings of multiple parameters. (All the constructions including jet groups and 

Lie-algebras appear to extend in this way.) 

29. Can one extend the perturbation structures developed in chapter 4 to 

Poisson manifolds, as opposed to symplectic manifolds? (This is important for 

applir.ation to many of the physical systems of interest.) 

30. In particular do the jet spaces of Poisson manifolds inherit a Poisson 

structure from the Poisson structure on the iterated tangent bundles discussed in 

section 4.8.6.5? 

.1.5. A Hundred Further Questions, Conjectures, and Suggestions 62 

31. As asked in section 4.8.6.5, does the Lie Poisson bracket on the dual of the 

Lie algebra of J - jets of paths in a Lie algebra g agree with some prescription for 

extending g• 's Lie Poisson bracket to the space of its J -jets? (This is important 

since many physical systems have Hamiltonian structures derived from Lie-Poisson 

brackets.) 

32. Can one explicitly write down the "magnetic terms" in the symplectic 

structures on the jet coadjoint orbits defined in section 4.8. 7? 

33. What is the relationship between the Lie algebra of jets of paths in a Lie 

algebra (which arises in perturbation theory) and the Lie algebra of jets offunctions 

on the dual of the Lie algebra which is described in section 4.8.7 (and is useful in 

many contexts such as geometric quantization)? 

34. Use the extension of Kruskal's perturbation technique given in section 5.2 

to analyse a variety of physical systems. 

35. Implement the explicit algorithm given in section 5.2 on a symbolic manip­

ulation program such as MACSYMA or SMP and carry out any of the calculations 

of the last question to arbitrarily high order. 

36. Combine the new Kruskal method with its well defined operations with a 

change of coordinates (as used in Lie transforms) to obtain a precise method that 

is easy to carry out by hand. (section 5.2) 

37. ~an on~ find a coordinate-free interpretation of tw<rtiming or the method 

of multiple scales? Are there situations to which this method applies which do not 

fall under Kruskal's method? (section 5.4.1.2) 

38. Reexamine the attention given to the 1/£ validity of Kruskal's method in 
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varioll.5 situations where it is used (for example in the variation of the adiabatic 

invariant in magnetic mirrors). If the adiabatic invariant appears to be invariant 

for ti:mes longer than 1/( find out why and develop a new perturbation· method 

based on the reason. {section 5.4.2) 

39. Find physical situations with more than one fast frequency in which 

Arnold's notion of "almost adiabatic invariant" {discussed in section 5.4.3) is re­

ally physically appropriate and apply the method of averaging keeping track of the 

measure of the "trapped particles". 

40. Study [Ott, 1979] and [Kubo et a!., 1965] and develop a precise form of 

the argument sketched in section 5.4.4. Ott claims to be able to get an expression 

for the variation of the adiabatic invariant. Can his argument be made invariantly 

and what are the limitations on its validity? 

41. Section 5.4.5 shows that the reduction for finite perturbations may not be 

unique. What are the physical consequences of this fact and what does it say about 

the result of choosing different asymptotic scalings away from the unperturbed 

system? 

42. Chapter 6 discusses the importance of making the unperturbed system 

consist of only periodic orbits when one wants to do singular perturbation theory. 

Many derivations in the literature do not have such an unperturbed system {some 

do not even have unperturbed dynamics). Can these systems be converted (say by 

a change of coordinates) to systems where secular perturbation theory is valid? If 

not, is the perturbation valid for time 1/!? If it is valid, is there a fundamentally 

new perturbation method hidden in the derivation? 
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43. Extend the analysis of gyromotion in chapter 6 to three-dimensional. 

time-varying magnetic geometries. 

44. Can one understand the Hamiltonian structure of gyrokinetic equations as 

reduction by a "gauged" circle action? (The way the formal structure of gyrokinetics 

arises from the single particle picture in chapter 6 is very reminiscent of the way 

the eikonal theory of chapter 8 is related to strictly periodic waves.) 

45. Section 7.1 sketches heuristically the connection between Kruskal's secular 

perturbation theory and WKB theory. Can this connection be made precise using 

the coordinate-free formulation of chapter 5? 

46. Develop an analog of the local Fourier transform of section 7.1.1.3 that is 

appropriate for nonlinear wave systems (i.e. given the wave family, reproduce the 

expression in terms of periodic solutions with slowly varying parameters). 

47. Apply the variational approach to the Heisenberg uncertainty principle 

given in section 7.1.3.1 to other inequalities {and so get new insights into them and 

perhaps new results). 

48. Does the approach to coherent states in terms of momentum maps given 

m section 7.1.3.2 extend to larger groups (eg. the Heisenberg group semidirect 

product the metaplectic group) to give approximations to the wave dynamics which 

are better than classical mechanics (eg. include the dispersion of the Gaussians in 

addition to motion of their centers in phase space)? 

49. The approach to coherent states given in section 7.1.3.2 does not need the 

base state to be a Gaussian. Can anything be gained by using "coherent states" 

which are the orbits of states other than Gaussians under the Heisenberg group? 
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.50. Can one use the approach of section 7.1.3.2 to get a theory analogous to 

coherent states for nonlinear equations? 

51. Does Maslov's theory extend to nonlinear waves? (section 7.1.4) 

52. Can one treat tunneling in a geometric fashion? Does it make sense to treat 

wave phase space as a complex manifold and so treat evanescent waves? (chapter 

7) 

53. Can dissipation be incorporated into the geometric WKB picture? (chap­

ter 7) 

54. What is the time of validity of the WKB approximation? Is it 1/£ as 

conjectured in section 7.3? 

55. Are there asymptotic theories with asymptotic validity for longer times 

than WKB, perhaps in special situations? (section 7.3) 

56. How does WKB theory's finite time of validity relate to infinite time 

concepts such as the eigenvalue spectrum and quantum chaos? (section 7.3) 

57. Are there physical situations in which the example of dispersion given in 

section 7.3 that is not accounted for by WKB plays an important physical role? 

58. Is there an analog of geometric diffraction theory for nonlinear eikonal 

waves? (section 7.3) 

59. Apply the Hamiltonian techniques of chapter 8 to a physical system ex­

pressed in terms r f a non-canonical Poisson bracket (such as the Maxwell-Vlasov 

system) to obtain results not available with Whitham's averaged Lagrangian tech­

nique. Can the inelegant V's of section 8.2.2 be expunged? (As Weinstein asks: 

"Ain't there no eleganter way to do it?") 
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60. What is the analog of caustics for nonlinear waves? Are they clas~ified by 

something analogous to catastrophe theory? What are the corresponding ··special 

functions" analagous to the Airy function or Pearcey's function? (Chapter 8) 

61. Make the argument given in section 8.2.2.1 relating degenerate symplectic 

structures to Poisson manifolds with Casimirs into a general theory (a very similar 

situation occurs in the example of guiding center motion given in chapter 5: In a 

Poisson formulation we have a degenerate bracket perturbed by a canonical bracket. 

In a symplectic formulation we have a degenerate symplectic structure perturbed 

by a canonical one. In the Poisson case we get zero order dynamics but no unique 

choice of Hamiltonian or symmetry generator. In the symplectic case we get a 

unique Hamiltonian but no zero order dynamics. The first order piece somehow 

defines a natural association between the degenerate zero order structures since the 

bracket and symplectic structure are nondegenerate and are inverses of one another 

when £doesn't vanish.) 

62. Use the Lie Poisson structure obtained in chapter 9 to study a system 

where wave action density on phase space is important (for examples see [Dewar, 

1972bJ. 

63. Find examples of dissipative systems that sit inside Hamiltonian systems 

as invariant submanifolds as suggested in section 10.1 (John David Crawford and 

Bruce Boghosian have suggestel that the dissipation in Landau damping is of this 

type). 

64. Is it ever useful to convert dissipative systems to Hamiltonian systems 

with more variables as shown in chapter 10? (This does allow one to use variational 
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formulations for instance.) 

65. Find an example of the misapplication of Lie transforms in the literature 

in the same vein as section 10.3.2, demonstrate the unphysical consequences and 

correct the analysis. 

66. Recently, Alan Weinstein has shown that the Poisson system given m 

section 10.4 is a special case of a very general construction. Given a Lie group 

acting on a Poisson manifold, consider the action on the product of that manifold 

with the cotangent bundle of the group (where the action on the cotangent bundle 

is the lift of left translation). One obtains a new bracket on the orbit space of 

this action by reduction. When the group is the real line acting by the flow of a 

vector field, this reduces to·the example in 10.4. Use the more general brackets to 

understand other physical situations. 

67. Can one use the (very clever) techniques used in Gromov's proof to get 

any insights into the physics of the projected area situations of chapter 11? 

68. Can the intuitive argument given in section 11.2 for Gromov's theorem 

based on the uncertainty principle be made precise? 

69. Can one make the connection between Bogoliubov's derivation of the 

Boltzmann equation via BBGKY and projected measures that is suggested in section 

11.4 precise? 

70. Can one design a better particb accelerator based on the abstract con­

struction for shrinking projected measure given in section 11.4.2? 

71. Can one place any constraints on the projected measures of regions under 

canonical transformations? For example, the construction in 11.4.2 for shrinking 
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measure in one direction of projection stretches it considerably in the other direction 

of projection. It is almost true that the sum of the information entropies of the 

projected measures is minimized for a subset which is a product. Is there some true 

statement of this type which would place classical constraints on one's uncertainty 

in measuring pairs of projected quantities? 

72. Can you find finite dimensional situations where the time-reversible almost 

attractor introduced in chapter 12 is directly responsible for irreverible asymptotic 

behavior in a time-reversal symmetric situation? 

73. Implement the approach to the three-wave interaction of eikonal waves 

discussed in section 13.3.6. · Does this invalidate the usual approach in terms of 

infinite plane waves? 

7 4. Can one explicitly analyze the Landau damping equations using the notion 

of an almost attractor in an infinite dimensional Hamiltonian system? (section 

13.3.3) 

75. Section 13.3.5 introduced a very general mechanism for obtaining dis­

sipative behavior from resonant Hamiltonian systems. Can one find an abstract 

setting in which the precise characteristics of systems exhibiting this phenomenon 

are stated? Can one analyse Landau damping with these techniques? 

76. Many infinite dimensional linear physical systems have a continuous spec­

trum making analysis difficult (especially bifurcation i.heoi:y). The "eigenfunctions~ 

are often singular (for example the van Kampen modes in the Poisson-Vlasov sys­

tem). Whether the spectrum is continuous or not is physically detectable only 

after an infinite time. Physically one often is not interested in "normal" modes but 
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rather eikonal behav.ior. The driven harmonic oscillator of section 13.3.5 has an 

infinite response to the resonant mode, making analysis intricate and non-physical. 

The eikonal analysis of section 13.3.5 does not suffer this defect. Can one apply a 

similar analysis. to other problems of this type? 

77. Can one analyze the dissipation due to bulk viscosity in a manner analo­

gous to that used in section 13.4? (Bulk viscosity results from the time lag for the 

rotational degrees of freedom a gas to reach equilibrium with the linear degrees of 

freedom under compression. Imagine a gas in a cylinder with a piston which you 

quickly move in and out. As you push down the gas has a higher pressure than it 

would in equilibrium since less energy is in the rotational degrees of freedom than 

should be. When you pull the piston out, the pressure is less than in equilibrium 

because more of the energy is in rotational degrees of freedom than should be. The 

net result is that the work done on the downstroke is greater than the work returned 

on the upstroke; the gas absorbs energy and therefore appears dissipative. A very 

similar kind of thing is behind the dissipation due to the string.) 

78. Can one use the method of Melnikov to find horseshoes in situations of 

plasma physics other than the situation s~udied in section 14.4 (eg. other mag­

netic geometries, particle driven by electromagnetic wave, wave dynamics, soliton 

dynamics)? 

79. Can one use the known statistical properties of horr;eshoes studied in 

ergodic theory to explicitly do a statistical study of gyrokinettcs near magnetic field 

reversals? (section 14.4) 

80. Does the phenomenon of reinsertion in area preserving homoclinic maps 
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explain the complex behavior discovered in [Holmes and Whitley, 1984) as one goes 

from dissipative to area preserving homoclinic tangencies? (section 14.5} 

81. Can you find universal structure in homoclinic tangles and homoclinic 

bifurcations using renormalization group techniques? (chapters 14 and 15) There 

are many renormalization type mappings at work in homoclinic dynamics. The 

"cross-sectionn of a piece of stable or unstable manifold is a Cantor set {with cor­

responding scaling properties) and homoclinic tangencies occur when the stable 

and unstable manifolds' Cantor sets intersect. Each homoclinic tangency causes an 

infinite number of period doublings for which we know there is universal behavior.) 

82. Study the fractals that arise in nature using renormalization. For example, 

a classic Cantor set (remove the middle third of an interval recursively) corresponds 

to a periodic orbit as we continuously blow up the scale. A fat Cantor set (eg. re­

move middle third, then middle ninth, then middle 27th, etc.; this type of fractal 

occurs as the set of parameter values at which hump map orbits are chaotic after 

criticality) asymptotically approaches the stable fixed point represented by a solid 

line. An undernourished Cantor set {eg. remove middle third, middle square root 

of 3rd, middle cube root of 3rd,etc.) approaches the stable fixed point representing 

a single point in empty space. The set obtained by removing the rationals from the 

unit interval and separating the two sides around each rational pfq by a distance 

1/q3 (the KAM tori lie in phase space like the points in this set in an a!"'.:>itrary 

perturbation of a Hamiltonian system away from criticality} scales at each point 

according to terms in the continued fraction expansion of the point (Liouville num­

bers which are easy to approximate by rationals approach a fixed point representing 
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an isolated point in empty space, numbers which are hard to approximate by ra­

tionals (such as Diophantine numbers) asymptote to the line segment fixed point, 

other numbers hop around in a complex manner and lead to chaotic renormalization 

orbits). (chapter 15) 

83. Can one get estimates on the rate of approach to Gaussianity in central 

limit situations from the eigenvalues of the stable fixed point in the renormalization 

approach of section 15.3? 

84. Can one use the renormalization group approach given in section 15.3 to 

derive the Boltzmann factor e-!3E using renormalization? 

85. Similarly, can one derive the standard probability distributions other than 

Gaussians (such as Lorentzians, Zipfians, Bradford's distribution, Lotka's distribu­

tion, Pareto distributions, 1/ I noise, log normal distributions and the other "long 

tail~ distributions so important in modern statistical physics) using renormalization 

but with a renormalization operator constrained by other criteria than having a pre­

scribed normalization, mean, and dispersion? Do the renormalization eigenvalues 

give scaling rates for these examples? (section 15.3) 

86. Some of the distributions of the previous question will correspond to unsta­

ble fixed points. Can we understand physical systems with statistics which behave 

according to one of these distributions for a long range of scales but asymptotically 

behaves differently, in terms of the renormalization orbit starting near the stable 

manifold of the corresponding fixed point, approaching th~ fixed point for a long 

time, and finally feeling the effect of the unstable manifold and getting attracted 

to a more stable distribution at some scale (i.e. after some number of applications 
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of the renormalization operator)? Can we use the relative values of the renormal­

ization eigenvalues to predict the range of scales which are described by the fixed 

point? (An example of this type of behavior occurs in any of the extremely large 

number of systems well described by 1/ I noise; this distribution is not normalizable 

and so must really turn into another distribution at some scale.) (section 15.3) 

87. Find "poor man" approaches to other renormalization calculations, such 

as area-preserving period doubling, breakdown of circle maps, breakdown of KAM 

tori. (section 15.4) 

88. Use the new formulation of maximum entropy given in section 16.2.3 

in terms of an integral over all probability distributions to get new insights into 

statistical mechanics, just as the path integral formulation gave new insights into 

quantum mechanics [Schulman, 1981]. 

89. Nothing in the maximum entropy formulation (section 16.2) either requires 

or disallows time-dependence of the studied quantities. [Jaynes, 1983] derives some 

aspects of non-equilibrium thermodynamics from the maximum entropy criterion. 

Can one use this derivation and the symplectic structures introduced in chapter 16 

to obtain a symplectic analysis of non-equilibrium thermodynamics? 

90. The Onsager relations have been discussed in terms of Lagrangian subman­

ifolds in [Abraham and Marsden, 1978]. Can this discussion be given a fundamental 

basis using the ideas of the last question? 

91. Allan Kaufman has discovered many non-equilibrium systems whose evo­

lution is governed by a Lie Poisson bracket plus a so-called dissipative bracket which 

is symmetric. The generator of the dynamics becomes the Hamiltonian plus the en-
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tropy (and in some cases the action plus the entropy, which may be connected with 

the deep relations between these quantities discussed in chapter 16). Can one derive 

the dissipative bracket formulation using maximum entropy? (There appears to be 

a perturbation expansion in the strength of dissipation involved since the Onsager 

relations appear naturally.) 

92. Can one introduce "super-reduction" which starts with a large-dimensional 

underlying system, performs reduction by an exact symmetry in some variables, re­

duction by an approximate symmetry in some others, and reduction by a "statistical 

symmetry" (via maximum entropy) in some others, and end up with the standard 

physical models in plasma physics, gas dynamics and fluid mechanics? 

93. Based on the results of the last few questions can one obtain a geometric 

formulation of the fluctuation-dissipation theorem? Is this a statistical analog of 

the K - x theorem? 

94. Can one connect the approach of the last few questions with the test 

particle theorem and find a treatment of this technique as a systematic perturbation 

technique? 

95. There is a very "symplectic" looking reciprocity that arises from the 

test-particle theory: there is a detailed balance between Cerenkov radiation and 

Landau damping, between synchrotron emission and cyclotron damping, and be­

tween Bremsstrahlung and collisional damping. Can one understand this reciprocity 

within a general theory? 

96. Is there a precise mechanical statement and proof of Szilard's resolution 

of the Maxwell· demon paradox? His argument showed that in many situations 
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one's measuring device uses up more entropy in deciding where a particle is than 

can be reclaimed on the basis of that knowledge. (For example, Maxwell's demon 

might observe the scattering of a non-equilibrium photon to detect fast particles 

approaching his door- the entropy lost in scattering the photon is more than the 

entropy gained in forcing the fast particle to be on one side of the partition.) This 

argument is very similar to the maximum entropy version of the second law of 

thermodynamics given in section 16.4. Can the connection be made precise? What 

is the relation to projected area concepts discussed in chapter 11? What is the 

connection with quantum measurement limitations? 

97. Is Young's inequality for the Legendre transform (section 16.5) related to 

the Heisenberg uncertainty principle (section 7.1.3.1) in the eikonallimit? 

98. How much of the geometric theory of first order phase transitions given in 

section 16.8.2 extends to the more difficult situations where renormalization theory 

is required (eg. critical points)? 

99. Apply the extension of Maxwell's equal area rule for first order phase 

transitions given in section 16.8.3 to nontrivial problems. 

100. Is there a deep reason for the remarkable parity between the asymptotic 

structure of eikonal wave theory and statistical mechanics as presented in section 

16.9? 
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PART 1: 

MECHANICS 
" ... be couched his discussion in the most sophisticated language known to 

physics, not all weighed down by lumps of data like Joule's heavy-handed labo­

ratory reports, nor confined to the primitive numerical equivalents of Mayer, but 

in the graceful, taut, and lissome differential equations of classical dynamics ... "­

Gillespie referring to Helmholz [Hirsch, 1984] 

Chapter2: 
Survey of Geometric 
Perturbation Theory 

76 

'"I completed my course in engineering and I would like to try to explain the 

effect of this engineering training on me. Previously, I was interested only in exact 

equations. It seemed to me that if one worked with approximations there was an 

intolerable ugliness in ones's work and I very much wanted to preserve mathematical 

beauty. Well, the engineering training which I received did teach me to tolerate 

approximations and I was able to see that even theories based upon approximations 

could have a considerable amount of beauty in tbem"-P.A.M. Dirac (p. 112 of 

[Dirac, 1977]) 

2.1. Historical Background 

In this chapter we survey ideas from the rest of the thesis, particularly chapter 

4, intuitively and heuristically. In chapter 4 we assume a background in geometric 

mech? ~ics and give detailed proofs. Here we will give the flavor of the structures 

and develop the needed background material. We will state results and indicate why 

they are true without detailed proof. We begin with some introductory remarks, dis­

cuss a geometric picture for non-singular perturbation theory, introduce the needed 
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Hamiltonian mechanics, including the crucial process of reduction in the presence 

of symmetry, describe the Hamiltonian structure of non-singular perturbation the-

ory, and close with some discussion of these ideas in connection with the method of 

averaging. This chapter is an expanded version of the paper: [Omohundro, 1984b]. 

It is of interest to list the seminal ideas that form the background of the present 

work. In 1808, Lagrange introduced the description of the dynamics of celestial 

bodies in terms of what we today call Hamilton's equations ( [Lagrange, 1808] and 

[Weinstein, 1981]). His motivation was the reduction of the enormous labor involved 

in a straightforward perturbation analysis, which required tedious computations to 

be performed on each component of the dynamical vector fi~ld, to manipulations of 

a single function: the Hamiltonian. The description in terms of Lagrange brackets 

Jed to several other benefits. Lagrange showed that the value of the Hamiltonian 

and the structure of the brackets were both invariant under the dynamics, leading 

to a useful check of the complex calculations (which at that time were of course done 

by hand). In addition, he was able to show that the invariance of the Hamiltonian 

could be used to prove the stability of certain equilibria. As the century progressed, 

Hamiltonian mechanics was refined and the connections with variational principles 

and optics were made. By the turn of the century Poincare (as in [Poincare, 1892]) 

had developed very powerful Hamiltonian perturbation methods utilizing generat-

ing functions, int o:oduced the notion of asymptotic expansion, and begun the geo-

metric and topological approach to dynamics. In 1918, Emmy Noether made the 

connection between symmetries and conserved quantities [1\oether, 1918]. The de-

velopment of quantum mechanics rested heavily on the Hamiltonian framework (as 
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in [Dirac, 1958]) by analogy with optics and served to put Hamiltonian structures 

firmly at the center of the modern formulation of fundamental physics [Landau and 

Lifshitz, 196()-1981]. During the 1960's the coordinate-free description of Hamil-

tonian mechanics in terms of symplectic geometry was developed, as described in 

[Hermann, 1968], [Souriau, 1970a], [Abraham and Marsden, 1978] and [Arnold, 

1978]. About this time the method of Lie transforms greatly simplified Hamil-

tonian perturbation theory [Cary, 1981]. The 1970's saw enormous developments 

in the geometric approach to mechanics and largely as a result of these, an ever 

wider range of physical systems have been described in Hamiltonian terms. Some 

examples are: quantum mechanics: [Chernoff and Marsden, 1974], fluid mechanics: 

[Morrison and Greene, 1980], [Marsden and Weinstein, 1983], and [Marsden, Ratiu, 

and Weinstein, 1984], Maxwell's equations: [Pauli, 1933] and [Marsden and Wein-

stein, 1982], the Maxwell-Vlasov and Poisson-Vlasov equations of plasma physics: 

[Morrison, 1980], [Marsden and Weinstein, 1982], and [Kaufman, 1982], relativis-

tic plasma waves: [Kaufman and Holm, 1984], gyrokinetic models: [Kaufman and 

Boghosian, 1984], elasticity theory: [Marsden and Hughes, 1983] and [Holm and 

Kupershmidt, 1984a], general relativity:O [Marsden and Hughes, 1983], magnetohy-

drodynamics: [Morrison and Greene, 1980] and [Holm and Kupershmidt, 1984a). 

multi-fluid plasmas: [Spencer and Kaufman, 1982] and [Holm and Kupershmidt, 

1984a], chromohydrodynamics: [Gibbons, Holm and Kupershmidt, 1982], superflu-

ids and superconductors: ~Holm and Kupershmidt, 1984b], the Korteweg de Vries 

equation: [Faddeev and Zakharov, 1971], etc. These developments have shed light 

on the underlying symmetry structure of these theories, have yielded improved 
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stability results based on Arnold's stability method [Holm, Marsden. Ratiu. and 

Weinstein, 1984], and have given insight into the reasons for the integrability of 

certain systems [Guillemin and Sternberg, 1984]. 

For the most part, however, these structures describe fundamental underlying 

models in the various fields. In actual applications we almost always make nu­

merous approximations which may or may not respect the underlying Hamiltonian 

structure. It is folklore within the particle physics community and elsewhere that 

perturbation methods which respect the underlying symmetries and conservation 

laws yield much better approximations to the actual system than those which do 

not. It is of interest, then, to try to do perturbation theory within the Hamiltonian 

framework and to obtain structures relevant to the approximate system. One may 

thus hope to understand the relation between the structures of systems which are 

limiting cases of known systems (eg. does the KdV Poisson bracket arise naturally 

from that of the Boussinesq equations?) [Olver, 1984]. The history of Hamiltonian 

mechanics is inextricably tied to perturbation methods. For the most part, though, 

the Hamiltonian structure was used to simplify the perturbation method and the 

geometric structure of the perturbation method itself was not explored. We have 

·found in several examples· that taking this structure into account leads to simplifica­

tions (as in the problem of guiding center motion discussed later in this chapter) and 

to deeper insight into the approximate system (as for the modulational equations 

for waYes in the eikonallimit studied b [Omohundro, 1984c] and chapter 8). 

We have therefore been engaged in a program of investigating the Hamiltonian 

structure of the various perturbation theories used in practice. In thi~ chapter 
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we describe the geometry of a Hamiltonian structure for non-singular perturbation 

theory applied to Hamiltonian systems on symplectic manifolds and the connection 

with singular perturbation techniques based on the method of averaging. Chapter 

5 discusses a singular perturbation technique based on a method introduced by 

Kruskal. 
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2.2. Geometric Perturbation Theory 

In this section we will place perturbation theory into the context of the geo­

metric dynamics that has proven so fruitful in recent years. We will give intuitive 

discussions of the geometric concepts of dynamics and explicitly put non-singular 

general first-order perturbation theory into this framework. The next section will 

do the same for higher order perturbation theory and chapters 4, 5, and 6 will focus 

on Hamiltonian and singular perturbations. 

2.2.1. Manifolds 

The modern setting for describing an evolving system is that of a a dynamical 

system. The state of the system is represented by a point in a manifold M. A 

manifold is a space which locally looks like Euclidean space and in which there is 

a notion of derivative (for more details see [Abraham, Marsden, and Ratiu, 1983] 

p. 122). Globally a manifold may be connected together in a non-trivial way, as 

occurs in the examples of the sphere and the torus. 

Many of the standard systems studied in physics have state spaces that are 

naturally manifolds and have apparent singularities when one tries to model them 

as Euclidean spaces. A simple example of this is given by the rigid body. The 

standard description of the configuration of a rigid body utilizes the Euler angles. 

This description is fraught with singular behavior (eg. more than one set of Euler 

angles can describe the same configuration at extremes of the angles). The singu­

larities arc an artifact of the description and do not correspond to anything in the 
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physical system. We will sec that similar things happen in the infinite-dimensional 

configuration spaces of fluids and plasmas. 

2.2.2. Dynamical Systems 

"Among all mathematical disciplines the theory of differential equations is the 

most important... It furnishes the explanation of all those elementary manifestations 

of nature which involve time."-Sophus Lie {1895) [Hirsch, 1984] 

If you know where you are in a state space, a dynamical law tells you where 

you're going. 

Figure 2.1: A dynamical system. 
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A dynamical law is represented by a vector field on the manifold of states. A 

dynamical system is a manifold with a vector field defined on it, as in figure (2.1) 

(see [Abraham, Marsden, and Ratiu, 1983] p. 184). In coordinates, the dynamical 

vector field is described by a .set of first order O.D.E.'s, one for each coordinate. 

Typical dynamical systems with state spaces of three dimensions or greater have 

chaotic dynamical behavior with extremely complicated trajectories. In many cases 

one can actually prove that there is no exact description of the solution curves in 

closed form (see [Guckenheimer and Holmes, 1983]). If the evolution simplifies, then 

there is some physically relevant special feature, such as a symmetry, which causes 

the simplification. 

2.2.3. Perturbation Theory 

In important physical applications, we often find ourselves close to· a system 

which simplifies, and we are interested in the effect of our deviation from it. We 

express this deviation in terms of the small parameter L 

In many physical situations we are faced with an apparently different problem 

in which we have but a single dynamical system and we are interested in solutions 

whose initial conditions are close to a known equilibrium point. The parameter 

£ expresses t!.<! distance of the initial condition from the equilibrium point. One 

common situation of this type, which appears repeatedly in plasma physics, has 

thermal equilibrium as the equilibrium point and studies the time evolution of 

deviations of initial size £ from it. 
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We may easily convert this type of problem with asymptotic initial conditions 

in an unsolvable dynamical system, to an asymptotic system whose limiting case 

is solvable. This transformation is commonly made by expanding the dynamical 

vector field about the equilibrium and re-expressing the dynamics in terms of scaled 

quantities. This leads to a linear system at the lowest order, which is often solvable. 

Because thermal equilibrium is stable, this lowest order linear evolution is given 

by (possibly damped) oscillating normal modes (i.e. there can be no unstable modes 

in thermal equilibrium). These often take the form of travelling waves. The second 

order terms in £ represent two-wave coupling, the third order terms represent three­

wave coupling and so on. 

To keep a simple model in mind as we proceed, let us focus on the excitation 

of a single mode which nonlinearly couples only to itself. This reduces to a system 

of the form 

u = /(u). (2.1) 

If u = 0 is to be the equilibrium solution of interest, then we have /{0) = 0. Let us 

assume that f is an odd function in u, since this is a common occurance. To write 

our equation as a dynamical system, we introduce v = ti and so obtain the system 

ti=v iJ = /(u). (2.2) 

We want to study the evolutio:r• of small values of u and v, so we choose an asymp­

totic initial condition: 

u(t = 0} = w 0 v(t=O)=w0
. {2.3) 
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We now have a hard problem with an initial condition that asymptotically 

approaches an intitial condition whose evolution we can solve fo~. We want to 

convert this to a family of problems that asymptotically approach one which we 

can solve. Let us introduce scaled variables: 

U=~ 
( 

V:= ~. 
( 

The initial condition in terms of U and V is constant: 

U(t = 0) = u0 V(t = 0) = v0
• 

(2.4) 

(2.5) 

The dynamical system in the new variables has become an asymptotic family: 

U=V V = I(£U) 
f • 

(2.6) 

The limiting system as f --+ 0 is 

U=V v = /'(0). u, (2.7) 

which is linear. H we express I as an asymptotic series (and remember that I is 

odd), then we see that our system is asymptotically equivalent to 

U=V v = f'(o). u + ~£2 f"'(o). U3 + .... 
6 

(2.8) 

H we redefine £, u, and v and assume that higher order terms vanish, then this 

system reduces to the Duffing equations for a nonlinear spring: 

u=v • 3 v = -u - ftl , 

with initial conditions that are independent of£, say for example 

u(t = 0) =a v(t = 0) = 0. 

(2.9) 

(2.10) 
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We shall use this system as an illustrative example as we proceed. Let us return 

now to the abstract setting which we have just motivated. The class of problems 

which require study of a small neighborhood of an equilibrium leads to linear zeroth 

order equations. Examples like gyromotion have nonlinear zeroth order equations 

which are nonetheless solvable due to symmetries. 

In general, we are given a dynamical system of the form 

f2 
:i: = Xo + £X1 + -X2 + ··· 

2! 

in terms of the vector fields xi with initial conditions described by 

x(£,t = 0) = y(£). 

We attempt to express the solution as an asymptotic series in £: 

f2 
x(t) = zo(t) + fZl (t) + 

2
! :r:2(t) + · · ·. 

(2.11) 

(2.12) 

(2.13) 

Choosing coordinates :r:a ( 1 $ a $ N) in a local patch of the state space manifold 

and plugging this assumed asymptotic form into the equation of motion gives 

• a . a f2 . a a f2 
x0 + £:r:1 + 

2
!:r:2 + ··· =X0 (xo +£:r:1 + 

2
!z2 + ···)+ 

f2 
+ £Xi(xo + t:Z1 + "1.:::2 + · · ·)+ 

1-. 

(2.14) 

f2 f2 
+ -X2a(:r:o + f:r:1 + -:r:2 + · · ·) + · · · 

2! 2! 

Asymptotic expansions are unique (see for example [de Bruijn, 1981]), so we can 
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equate coefficients of equal powers off to get equations for xo, x1, x2, ... : 

xg = X0(xo) 

... ;....axg( ) b X"( ) X1 = LJ axb Xo · X1 + 1 xo 
b=1 

- N <>2xa N <>xa 
•Q ~ u 0 ( ) b c ~ u 0 ( ) b 
x2 = LJ axbaxc Xo x1x1 + LJ axb Xo . x2 

b,c=l b=1 
(2.15) 

;.... ax~ b .. 
+ 2 LJ ax" (xo) · x1 + X 2 (xo) 

b=l 

If y(t) =flo+ ff11 + ~fl2 + · · · is an asymptotic expansion for the initial condition 

fl(t), then the initial conditions for these equations are 

xo(t = 0) =flo, x1(t = 0) = !11. (2.16) 

The Duffi.ng equations yield the following equations by this prescription: 

uo =uo 

u1 =u1 

u2 =u:~ 

with initial conditions given by 

vo = -uo 

. 3 
"I= -u1- u0 

v2 = -u2 - 6u~u1 

uo(t = 0) =a uo(t = 0) = 0 

ut(t = 0) =0 

u2(t = 0) =0 

vt(t=O)=O 

t12(t = 0) = 0 

(2.17) 

(2.18) 
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If the Duffi.ng model is itself a truncation of a system with a more general nonlin-

earity, then it may not be meaningful to carry out the perturbation analysis to too 

many orders. 

These equations immediately raise a number of questions. They are defined in 

terms of physically irrelevant coordinates; is the perturbation structure independent 

of these coordinates? If the original equations are Hamiltonian, are these equations? 

In Jth order perturbation theory, how are we to interpret this evolution of many 

variables xo, x 1, ••• , x J? One goal of this work is to answer these questions. 

2.2... First Order Perturbation Equations 

Let us turn to the geometric interpretation of these equations. It is easiest to 

understand the first order perturbation equations. 

For the Duffing example, the first order system is 

Uo =uo 

u1 =u1 

uo(t = 0) =a 

u1(t = 0) =0 

vo = -uo 

. 3 
tJt = -u1- u0 

uo(t = 0) = 0 

"1(t = 0) = 0. 

In general, the first order equations have the form 

:i:a = xg(xo) 

... ;.... axg ( ) b X"( ) X1 = £.J az:b Xo • Z1 + 1 Xo 
b=l 

zo(t = 0) = !lo z1(t = 0) = fl1· 

(2.19) 

(2.20) 

We would like to determine the geometric nature of the quantities xo and z1. To 

understand what we mean by this, let us recall the relationship between geometric 

quantities and coordinates. 
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2.2 .5. Functions, Covec:tors, and Cotangent Bundles 

A function on a manifold is an intrinsically defined thing; it assigns a real 

number to e8cb point of the manifold. A coordinate system on a region of an N 

dimensional manifold is a collection of N real valued-functions xi, ... , xN defined 

on that region, whose differentials are linearly independent at each point. In these 

coordinates, the gradient of a function is a collection of N numbers: the derivatives 

with respect to each of the x0
• Geometrically, however, it is wrong to think of these 

as just real numbers, because they change if we change our coordinate system. For 

example, if we choose coordinates whose values at each point of the region are twice 

those of xi, ... , xN then the components of the gradient of a function are halved. 

We introduce a geometric object whose relationship to the manifold at a given point 

is like that of the differential of a function and we call it a covector or one-form 

(see [Abraham, Marsden, and Ratiu, 1983] p.286). In this context, the gradient is 

usually refered to as the differential of the function. The collection of all covectors 

at a point is defined to be the cotangent space at that point and the collection 

of all cotangent spaces taken together form the cotangent bundle (see [Abraham, 

Marsden, and Ratiu, 1983] p. 285). 

2.2.8. Vectors and Tangent Bundles 

Similarly, the values of the components of a vector at a point are doubled 

when we double the values of the coordinates. All vectors at a point taken together 

form the tangent space at that point and all tangent spaces taken together form 

the tangent bundle TM of M (see [Abraham, Marsden, and Ratiu, 1983] p. 150). 
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Pictorially, we think of a vector as a little arrow whose end is at the point of 

interest as in figure (2.2a). A covector may be thought of as a pair of parallel planes 

representing local level sets of a function whose gradient is that covector ( [Misner, 

Thome, and Wheeler, 1973] and [Burke, 1980]) as in figure (2.2b). The distance 

between planes gets smaller as the gradient gets larger so that the amount of a 

vector starting at the first plane that is cut off by the second plane is independent 

of the scale (and so defines an invariant pairing between vectors and covectors). 

Covectors have been referred to as lasagna vectors because of this picture (Jim 

Napolitano, private communication). 

Figure 2.2: a) A picture of a vector, b) A picture of a covector. 

Vectors and covectors are different objects when we consider more than one 

coordinate system, even though they both have N components in any given system. 

If we have two curves in a manifold through a given point, in any coordinate system 
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we may determine if the curves go through the point at the same rate and in the same 

direction (i.e. if they are tangent to first order). It turns out that this determination 

is independent of which coordinates are used. In differential geometry, one· usually 

defines a tangent vector at a point to be an equivalence class of curves which are 

tangent to first order. The invariant pairing between vectors and covectors is then 

used to define covectors as elements of the dual space to the tangent space at a 

point. The dual space v• of a vector space V is the vector space of linear functions 

on V. Our interest here will be to find out whether the quantities xg, ... , x~ for 

1 :S a :$; N have any geometric structure that is independent of a given coordinate 

system. 

2.2. '1. · The State Space for First Order Perturbation Theory 

Intuitively, the first order quantity x1 represents a small deviation from the 

unperturbed quantity x0 • Because x0 can vary over the whole manifold M, we 

expect it to represent a point in the manifold. As f gets smaller, xo+£xl approaches 

the point x0 • The variable x1 measures the first order rate of approach to xo. Two 

different paths in the manifold approaching the point x0 as f approaches zero have 

the same x1 if and only if they are tangent at xo. This, however, is the defining 

criterion for a vector at the point x0 • We thus expect x1 to lie in the tangent space 

to M over the point x0 • The (x0 ,xt) dynamics then takes place in the tangent 

bundle T M. We will describe this dynamics on T M intrinsically in terms of vector 

fields derived from X(£) on M. 
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2.2.8. Flows and Derivatives 

The solution of a system of O.D.E. 's tells us the state at each time t of a system 

which began with each initial condition. Geometrically, this is a mapping of M to 

itself for each t. If the solution doesn't run off the manifold, then the uniqueness 

and smoothness of solutions with given initial conditions tells us that this map is 

a diffeomorphism (i.e. a smooth, 1-1, onto map with smooth inverse, [Abraham, 

Marsden, and Ratiu, 1983] p. 102). This one-parameter family of diffeomorphisms 

labelled by t is called the Bow of the dynamical vector field (see [Abraham, Marsden, 

and Ratiu, 1983] p. 185). As f varies, the corresponding flows of X(£) will vary. 

Perturbation theory describes that variation. Any time we have a mapping f from 

one manifold to another, we may define the derivative map T f, called the tangent of 

f (see [Abraham, Marsden, and Ratiu, 1983] p. 153). This is a map that takes the 

tangent bundle of the first manifold to the tangent bundle of the second. It describes 

how infinitesimal perturbations at a point are sent to infinitesimal perturbations at 

the image point. In coordinates, it acts on the tangent space at a point via the 

Jacobian matrix off at that point. 

2.2.9. Dynamics for First Order Perturbation Theory 

Let us denote the flow of the unperturbed vector field X 0 by xo(t). :z:o(t, Yo) 

is the point to which !lo has flowed in time t under Xo. A small perturbation in 

M from a given orbit will evolve under Xo according to the derivative of this flow: 

Tx0 (t). This derivative is itself a flow on the manifold TM. The vector field of 
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which it is the flow may be written 

~ dl Xo = -d Txo(t). 
t t=O 

(2.21) 

Xo is a vector field on TM, defined without recourse to coordinates, that represents 

the effect of the unperturbed flow on perturbed orbits. In coordinates, Xo has 

components given by 

xij = xg(xo) 

·a ~axg( ) , 
XI=~ axb XO •XI. 

b=I 

(2.22) 

These dynamical equations represent exactly that part of the perturbation equations 

(2.20) which depends on Xo. 

For the Duffing example, these equations give 

uo =vo ilo = -uo 
(2.23) 

UI =vi iii= -ui. 

The last two of these describe the evolution under the zero order equations of a 

little perturbation along ( ui, vi). We now see that ( u11 VI) gives the coordinates of 

a tangent vector based at ( uo, v0 ). The ( u I, VI) equations are of the same form as the 

( u0 , vo) equations. This is because the zero order system for the Duffing oscillator is 

linear and the derivative of a linear map is the identity when we identify the linear 

space with its tangent space. 

The part of the dynamic8 which depends on X I may also be defined intrinsically. 

For any x E M and v E T,.M, we define 

~ d I XI(x,v) = -d (v+t XI(x)). 
t t=O 

(2.24) 

2.2.9. Dynamics for First Order Perturbation Theory 

The X I dynamics for the Duffing system is 

uo =0 

ui =O 

ilo = 0 

. 3 
VI= -uo. 
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(2.25) 

This represents the additional effect of the perturbed equation without including 

the effect of the unperturbed system. 

The entire first order perturbation dynamics on T M is given by 

Xo+XI. (2.26) 

We have therefore succeeded in finding a geometric, coordinat~free interpretation 

for first order perturbation theory. 



2.3. Tbe Geometry of Jtb Order Perturbation Tbeory 95 

2.3. The Geometry of Jth Order Perturbation Theory 

We now would like to extend this picture to higher orders. The geometric 

object that arises is called a jet. To understand the setting, we discuss a number of 

relevant spaces. 

2.3.1. The Path Space 

How are we to think of the exact equation for the evolution of an £-dependent 

point z(t) under £-dependent evolution equations :i(E) = X(E, z) with £-dependent 

initial conditions y(t)? It is useful to think ofthe £-dependent point z(t:) as a curve 

in the space I X M, where I is the interval (say [0, 1]) in which E takes its values 

(as in figure (2.3)). We shall call such curves paths (as this is the standard mathe-

matical terminology). Moving along a path corresponds to varying the asymptotic 

parameter E. 

H we think of z(t) as a map from I toM, then the curve is the graph of this 

map. The dynamical vector field X (f) naturally lives on I x M and its I component 

is zero everywhere. The 8.ow of X( E) on I x M takes paths to paths by letting each 

point of a path move with the 8.ow as in figure (2.4). Our initial conditions are 

represented by paths (if they are independent of E then they are straight lines). The 

true dynamics takes paths to paths. Even if the intial conditions are £-independent, 

the£ dependent dynamics bends the path over as in figure (2.5). 

Thus we really should think of our dynamics as living on the infinite dimensional 

patb space 

P1 M = {space of all paths p: I--+ I x M of the form p: £ >--+ (t:, x(t:))}, (2.27) 

2.3.1. Tbe Patb Space 

I 
'-­......___ 
......___ 
~-

Figure 2.3: Curve in I x M. 
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M 

where, as before, I= [0, 1]. For the Duffing example, this is the space of curves in 

(u, v, t) space that project diffeomorphically onto E. Each curve represents u(t), v(t) 

forE in I. 

This space projects naturally onto 

PoM = {equivalence classes in P1M where p1 "'P2 iff Pl (0) = P2(0)}. (2.28) 

The projection sends a curve to its E = 0 endpoint which represents the point 

about which the perturbat;'Jn is taken. P0 M is naturally isomorphic to M and 

represents the domain of the unperturbed dynamics. The equivalence classes forget 

all perturbation information and only remember behavior at £ = 0 as shown in 

figure (2.6). 
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I X 1\1 .......__ 

Figure 2.~: A path moving under the influence of a vector field X(£). 

2.3.1.1. Spaces of Shorter Paths 

We are interested in spaces through which this projection of actual to unper-

turbed dynamics factors (i.e. spaces which are the image of a projection from the 

first space and the domain of a projection to the second space, such that the com-

position of these two projections gives the original projection from the first to the 

second space). Perturbation theory tries to study behavior infinitesimally close to 

f = 0 without actually getting there. For each 0 $ a $ 1 we may define 

PaM = {equivalence classes in P1M 

where Pl ~ P2 iff pi(£)= P2(f) 'V 0$ f $a}·. 

(2.29) 

These allow us to consider more and more restricted domains of£, hut there is always 
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I X 1\/i 
. .......__ 

I ~ ~ 
~~ 

~ 
'--

l\1 

Figure 2.5: An £-independent initial condition becoming £-dependent. 

a continuum of f's to traverse before reaching f = 0. For each 1 ;::: a1 ;::: a2 ;::: 0 we 

have the natural maps 

P1M--+ Pa,M--+ Pa2 M--+ PoM. (2.30) 

2.3.2. The Space of Germs of Paths 

We are interested in structure between "even the smallest PaM with a =f. 0" 

and P0 M. We may introduce germs of paths: 

GM = {equivalence classes in P1M where Pl ~ P2 iff 

3al2 > 0 such that pi(£)= P2(f) V 0 Sf S a12 }· 

(2.31) 
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Figure 2.8: The projection of a path to its f. = 0 endpoint. 
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For any a> 0 we have PaM-+ GM-+ P0 M. The germs capture behavior closer to 

f. = 0 than any given r., but still contain much more information than perturbation 

theory gives us (germs depend on features of functions in a little neighborhood that 

may not be captured in a Taylor series.) 
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2.3.3. The Space of Jets of Paths 

Finally we may introduce spaces of jets of paths at £ = 0 with integer 1 ~ J ~ 

oo: 

J M = {equivalence classes in P1M where Pl "'P2 iff 

V coo functions f on I x M we have 

ai I ai I 
8r.i •=O /(pl(r.)) = 8r.i •=0 f(P2(r.)) for 0 ~ i ~ J }· 

(2.32) 

Notice that ooM is the space of infinite formal power series by this definition. The 

space of J-jets gives the first J terms in a Taylor expansion of the curve around 

f. = 0 in any coordinate system. Clearly, 

GM-+ ooM-+ IM-+ JM-+ PoM for I> J. (2.33) 

Thus the jets focus on information closer to f. = 0 than even the germs. 

In the Duffing example, the J-jet of (u(r.), v(r.)) consists ofthe values ofthe first 

J derivatives with respect to f. of u and v. We called these uo, vo, u1. v1. ... , UJ, VJ. 

2.3.3.1. Coordinates on the Jet Space 

If za for 1 ~ a ~ N are coordinates on M R:l P0 M R:l OM, then we may 

introduce coordinates { z8, z~, ... , xj} for 0 ~ J ~ oo on J M to represent the 

equivalence class of the curve: 

a a f
2 

a f.J a 
z0 +r.z1 + 2!x2 +···+ J!x1 (2.34) 

in I x M (near£= 0 this won't leave the chart on which the za are defined). 
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The claim here is that J M represents geometrically the perturbation quantities 

z: .... XJ. It may seem strange to go through the infinite dimensional space P 1 M 

-:.o ge-: t.o it, but we shall see (especially when looking at the Hamiltonian structure) 

-::.ha: it organizes and simplifies the structures of interest. It is a completely intrinsic 

c.nd natural (or in modern parlance: functorial) operation to go from the original 

dynamical manifold M to the path space P1M to the jet space JM. We shall 

n0115· show that the dynamics on M al8o induces natural dynamics on P1M and 

then projects from there down to J M where it is the perturbation dynamics we 

are interested in. Later we will see that a Hamiltonian structure on M leads to 

Hamilwnian structures on P 1 M and J M. 

The dynamics x = X(E,x) takes elements of P1M to other elements of P 1 M 

c.nd in fact takes equivalence classes to equivalence classes for each of PaM, GM, 

x.\!, JM, and M. This is what allows us to obtain an induced dynamics on each 

of these spaces. To determine this dynamics explicitly, we must understand what a 

tangent vector on each space is. 

2.3.4. Tangent Vectors to Path Space 

Intuitively, a vector represents a little perturbation to a point. We define it 

precisely as an equivalence class of tangent curves, where the curve represents the 

dire:-tton of perturbation and the equivalence class ensures that only the first order 

motion is reflected in the tangent vector. A point in the path space P1M represents 

a path in I x M. A small perturbation ofthis point represents a nearby path. Each 

point of the path is perturbed a little bit and we are interested in the first order 
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perturbation. We therefore expect a tangent vector to a point in path space to 

be a vector field along the corresponding path as in figure (2.7). By a vector field 

along a path, we mean a choice of tangent vector to M at each point of the' path. 

In general, a vector field along a map f from a manifold M to a manifold N, is 

a smooth choice of image-space tangent vector in Tf(z)N for each point x in the 

source space M. 

I 
. ......__ 
......__ 
........._ 
~~ 

""-­
~ 

l\1 
Figure 2. 7: A small perturbation of a path in I x M is given by a vector field 

along that path. 

A curve p(-y) in P 1 M parameterized by 1 defines a curve p( f, 1) for each f 

through p(E,"f = 0) in I x M. The equivalence class of curves in P1M defining 

a vector thus reduces to an equivalence class of curves in M for each £. We may 

identify a tangent vector top in P1M with a field of vectors over pin I x M such 
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that each vector has no f. component. For p E P1M a vector V E Tp(P1M) is a 

map 

V:/-+IxTM (2.35) 

taking£>-+ (f, V(£)) where V(f) E Tp(•)M (i. e. a path in TM). 

For the Duffing example, a tangent vector based at the path (u(f),v(£)) has 

the form (c5u(£),c5v(£)) and represents the vector field 

c5u(£) - + c5v(£) -a I a I au (u(<),v(<)) ov (u(<),v(<)) 
(2.36) 

along the path (u(£),v(£)). 

2.3.5. Tangent Vectors to the Quotient Spaces 

The tangent spaces to the quotient spaces are defined by taking the derivatives 

of the natural projections. Because P0 M R:l M, we see that T PoM R:l T M. Because 

the first jet space is isomorphic to the tangent bundle: 1M R:l T M, we see that 

T1M R:l TT M. Thus the first order perturbation space 1M is naturally T M and 

the dynamical evolution is given by a vector field on T M as we saw in section 2.2.9. 

2.3.5.1. Coordinates on the Tangent Bundle to the Jet Space 

As with all tangent bundles, T J M has a natural coordinate chart, derived 

from the coordinates { z(j, ... , xj} , 1 $ a $ N on J M dr.l.ined earlier. We obtain 

coordinates { x0, ... , xj, vg, ... , vj} by writing the corresponding vector as 

N 0 a 0 
'""' Va- + ... + V J !l a . 
LJ 0 axg uxJ 
a=l 

(2.37) 
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We would like to know to which set of components { vg, .. . , vj}, the equivalence 

class of a vector V (f) on P1 M corresponds. For the Dulling example, a tangent 

vector to the space of J-jets looks like 

a a · a a 
c5uo-;-- + c5vo~ + ... + c5urr;-- + bvJ-;--· 

UUO uVo UUJ UVJ 
(2.38) 

2.3.5.2. Coordinate Relation Between Path and Jet Vectors 

To the path za ( £) representing a point in P1 M corresponds the point coordi-

natized by 

a-~~ za(£), x,.- 0£/o: <=0 
1 $ a $ N, 0 $ k $ J (2.39) 

in J M. To the curve of paths za ( £, 1) in P1 M corresponds the curve 

x:(l) = ::,. l.=o za(£,1), 1 $ a $ N, 0 $ k $ J (2.40) 

in J M. The vector tangent to this curve in T P1 M has coordinates 

va(£) = : I za(£,1)· 
I ...,=o 

(2.41) 

In T J M this corresponds to 

v: =:,I_ (::,.1 za(£,')')) 
"'1-0 •=0 

= :£",.1_ (:~1 z
0

(£,')')) 
<-0 , "'(=0 

(2.42) 

~, va(£). - k - o£ •=O 
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For the Duffing equation, the tangent vector represented by (Du(t},Dv(t)) projects 2.3. 7. Dynamics on Jet Space 

to the jet space vector: 

In coordinates, the corresponding vector field on J P is 
a a a . a 

Duo-a +Dvo-a + ... +DuJ-a +DvJ-a 
uo vo UJ tiJ 

(2.43) 

where 

a" I fJ Vk'(xo,. ·. ,XJ) = lJk X 0 (f, Xo + fX1 + · · • + J!XJ) 
f •=0 

Duo =Du(O) Dv0 = Dv(O) 

a 
Du1 =at 6u(t)l.=o 

a 
btll = at: Dv( f) 1<=0 

(2.44) a" I a"-1 I N a 
=at:" X

0
(t:,xo)+k a k-1 L;fbX0(t:,xo)x~+···, 

•=O f •=O b=l Xo 
{2.47) 

aJ 
bUJ = at:J6u(t:)l.=o 

aJ 
bt!J = at:J6v(t:)l.=o· which is exactly the perturbation dynamics up to order J obtained in equations 

(2.15)! 

2.3.6. Dynamics on Path Space For example, we calcula~e that 

Let us now consider the effect ofthe dynamics :i; = X(t:,x) on paths. This lifts Vo0 (Xl' 0 0 0 'XJ) = X 0 (0, zo) 

Vt(xo, 0 0 0 ,XJ) = :I X 0 (t:,:ro) + t aa bX0 (0,xo)x~ 
f •=O b=l Xo 

to a vector field on P 1 M given by 

X where X(p) : f 1-+ X(t:,p(t:)}. (2.45) V2°(Xo, ... , XJ) = aa
2
2 1 X 0 (f, :.to) 

f •=0 

+ 2 :f I t aa b xo(o, xo)x~ 
•=O b=l Xo 

(2.48) 
This is the path space dynamical vector field. Note that this vector field is of a 

N a2 N a 
+ E axbxo(o;xo)x~x~ + E axbX0 (0,xo)x~ 

b,c=l 0 b=l 0 

very special type and not every vector field on P1M can arise in this way. For the 

Duffing example, the path space vector field (6u(t:),6v(t:)}l,.,v at the point (u,v) is 

equal to 

6u(t:) = v(t:) 6v(t:) = -u(f)- w 3 (t:). (2.'i6) 

In the Duffing example, we see that the jet vector field 

a a a a 
Duo-a +Dvo-a + ... +DuJ-a +DvJ-a 

Uo tiJ UJ tiJ 
(2.49) 
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bas the components: 

buo =bu(O) ;, v(O) 

bvo =bv(O) = -u(O) 

6u1 = :f' If= Obu(f) + :u l.=o (6u(O))u1 + :v l.=o (6u(O))v1 

={) + 0 + 1 . til = tl} (0) 

6v1 = :f' l.=o bv(t) + :u l.=o (6v(O))u1 + :v l.=o (6v(O))v1 

=- u3 (0) + ( -1- 3w2 )I•=OU1 = -u3 (0)- u1 

107 

(2.50) 

We have thus found the natural geometric setting for Jth order perturbation 

theory in a certain jet bundle. The picture of the dynamics of paths in I X M is an 

extremely fruitful one. One can prove that the solution of the perturbation equa-

tions (2.15) really is the asymptotic expansion of the true solution just by noting 

that they are the equations of evolution of the jets of the paths evolving under the 

true dynamics. The coordinates in which the dynamics are expressed are irrelevant 

as regards the perturbation dynamics and therefore we can do perturbation theory 

on manifolds and in infinite dimensions as is required for many physical systems. 

Next we will review modem Hamiltonian mechanics and indicate why the pertur-

bation dynamics is Hamiltonian in a natural way if the unperturbed dynamics is. 
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2.4. Geometric: Hamlltonian Mec:hanic:s 

"The next morning, I hurried along to one of the libraries as soon as it was 

open and then I looked up Poisson brackets in Whittaker's 'Analytic Dynamics' 

and I found that they were just what I needed"-P. A. M. Dirac in [Dirac, 1977] p. 

122. 

The evolution of mechanical systems is traditionally described in terms of gen-

eralized coordinates qi and their conjugate momenta Pi· One introduces the Hamil-

tonian function 

H(ql, · · · ,qn,Pl! • · · ,pn) (2.51) 

and the Poisson bracket 

n (a f ag a f ag ) 
{/,g} = L aqi api- api aqi 

i=l 

(2.52) 

of two functions of qi and Pi· Any observable f evolves according to the evolution 

equation 

j = {!,H}. 

For the Duffing example, we may use the Poisson bracket 

the Hamiltonian 

af ag a1 ag 
{f,g} =au av- av au' 

v2 u2 u4 
H=-+-+t-. 

2 2 4 

Together these give rise to the correct equations: 

u= {u,H} = aH _ av - tJ 

(2.53) 

(2.54) 

(2.55) 

(2.56) 



')} Poisson Manifolds 

and 

v = { v, H} = _an _ 8u--U-(U
3

. 

2.4.1. Poisson Manifolds 
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(2.57) 

For a detailed description of the modem approach to mechanics see references 

(Abraham and Marsden, 1978], (Arnold, 1978], and (Marsden, 1981]. The mod~ 

ern perspective regards the particular coordinates Pi and q, as physically irrelevant. 

Just as general relativity isolates the physically relevant essence of local coordinates 

in a metric tensor, modem classical mechanics views the Poisson bracket structure 

(not necessarily expressed in any coordinate system) as the physical entity. Just 

as physics in spacetime is invariant under transformations that preserve the met-

ric, physics in phase space is invariant under the canonical transformations which 

preserve the Poisson bracket. In the modem viewpoint one proceeds axiomatically 

and does not require canonical coordinates. Dynamics occurs on a Poisson mani 

fold. This is a manifold of states with a Poisson bracket defined on it. From this 

viewpoint a Poisson bracket is a bilinear map from pairs of functions to functions 

which makes the space of functions into a Lie algebra and acts on products as a 

derivative does: 

I. Bilinearity: 

II. Anti-symmetry: 

m. Jacobi's identity: 

IV. Derivation property: 

{aft+ bh,g} = a{ft,g} + b{h,g} 

{/,g} = -{g,f} 

{/, {g,h}} + {g, {h, !}} + {h, {f,g}} = 0 

{f,gh} = {f,g}h+ {f,h}g. 

(2.58) 
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2.4.2. Hamiltonians and Hamiltonian Vector Fields 

The Hamiltonian is a fun.ction on the Poisson manifold. The evolution of local 

coordinates z' is obtained from a Hamiltonian H and the Poisson bracket {, } via 

z' = XH. z' = {z',H}. (2.59) 

XH is the Hamiltonian vector field associated with H and defines a dynamical 

system. The fourth property of a Poisson bracket implies the useful expression 

8/ . . 8g 
u,g} = E az•{z',z'} azr 

i,j 

(2.60) 

Thus the Poisson bracket is equivalent to an antisymmetric contravariant two-tensor 

J'i = {z1, zi}. (2.61) 

2.4.3. Symplec:tlc Manifolds 

H this tensor is nondegenerate, its inverse w = J-1 is a closed, nondegenerate 

two-form called a symplectic structure. In this case our Poisson manifold is known 

as a symplectic manifold (see (Abraham, Marsden, and Ratiu, 1983] p. 463). The 

terminology is due to Herman Weyl. The symplectic group is related to "line 

complexes" in projective geometry and so w was originally refered to as a complex 

structure. There is another object that naturally has this name in the study of the 

complex analysis of many variables, however. To eliminate this confusion, Weyl 

took the Latin roots com and plex and converted them to their Greek equivalents 

sym and plectic. 
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2.4.4. Symplec:tlc Leaves and Bones and Casimir Functions 

Because we do not require nondegeneracy, a Poisson manifold is a more general 

notion than a symplectic manifold. If J is degenerate, then there are directions in 

phase space in which no Hamiltonian vector field can point. The available directions 

lie tangent to submanifolds which fill out the Poisson manifold and on which J is 

nondegenerate. The highest dimensional of these form a foliation of their union and 

so are known as symplectic leaves. The only prior usage of the term symplectic in 

English is to describe a small bone in the head of a fish. Because Poisson is French 

for fish, the lower dimensional symplectic submanifolds are sometimes known as 

symplectic bones (these notions were introduced in [Weinstein, 1983a]). Together, 

the symplectic leaves and the symplectic bones fill out the Poisson manifold, and 

any Hamiltonian dynamics is restricted to lie on a single bone or leaf. Any function 

which is constant on each bone and leaf Poisson commutes with every other func-

tion. Any function which Poisson commutes with every function is automatically 

a constant of the motion, regardless of the Hamiltonian and is called a Casimir 

function. 

2.4.5. The Natural Symplectic Structure on Cotangent Spaces 

A natural symplectic manifold arises from each Lagrangian mechanical system 

on a confie;:.uation space C. The Lagrangian L lives on the tangent bundle TC 

(velocities being tangent to the curves of motion in configuration space are naturally 

tangent vectors). Hamiltonian mechanics takes place on the cotangent bundle T" C 

(momenta, being derivatives of L with respect to velocity, are naturally dual to 
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velocities and thus are covectors). At each point x of C, the set of velocity vectors 

v in TzC are identified with corresponding momenta pin T;C by a Legendre map 

defined by L (the classical concept of a Legendre map is described in modern terms 

in section 16.5.11): 

iJL 
p= av· (2.62) 

The Hamiltonian is a function on the cotangent bundle which on each cotangent 

fiber is equal to the Legendre transform (described in section 16.5.5) of the the 

Lagrangian restricted to the corresponding fiber of the tangent bundle. 

T"C has the natural symplectic structure 

w=-d8 (2.63) 

where 8 is an intrinsically defined one-form on T"C (see [Abraham, Marsden, and 

Ratiu, 1983] p. 465). 8 must pair with a tangent vector v in TT"C based at (x, cr) 

in T"C to give a real number. To define this we use the natural projection 

1r: T"C--+ C (2.64) 

which takes a covector. to its basepoint in C. The differential of 7r sends TT"C to 

TC and may be applied to v to get a vector tangent to C. cr is a one-form on C 

and may be applied to this vector. Let us define the pairing of 9 with v to be the 

pairing of cr with the image of v under T7r: 

8(v) = a(T1rv). (2.65) 

In coordinates q0 on C, this takes the form 

9 = p0 dq" (2.66) 
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and leads to the symplectic form 

W = dq0 1\ dpa. {2.67) 

This construction generalizes the usual structure in terms of canonical p's and q's to 

configuration spaces which are manifolds. Symmetry is responsible for the simplified 

systems about which we perturb and plays an intimate role in our geometric thoory. 

We therefore next introduce some key modem ideas and basic examples relating to 

Hamiltonian symmetry. 
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2.5. Hamiltonian Systems with Symmetry 

Perhaps the central advantageous feature of systems with a Hamiltonian struc­

ture is a generalization of Noether's theorem relating symmetries to conserved quan­

tities. Noether considered symmetries of the Lagrangian under transformations of 

configuration space. One may introduce generalized coordinates ( q1, ... , qn) where 

(q2 , ••• ,qn) are constant under the symmetry transformation and q1 varies with the 

transformation. For example we might take the configuration space to be ordinary 

Euclidean 3-space where the action of the symmetry is translation in the x direction, 

and utilize the coordinates 

q1 = x, q:z = y, qa = z. (2.68) 

That L is invariant mean8 that it does not depend on qt, i.e. q1 is an ignorable 

coordinate. The Euler-Lagrange equations 

!!__ (aL) _ aL = 0 
dt aq aq 

show that in this case the momentum 

aL 
Pl = a91 

conjugate to q1 is actually a constant of the motion. 

(2.69) 

(2.70) 
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2.5.1. Generalized Noether's Theorem 

By goillg to a Hamiltonian description ill terms of Poisson brackets we may 

extend Noether's theorem ill a fundamental way. We may consider a one-parameter 

symmetry. transformation of the whole phase space as opposed to just configuration 

space. H this transformation preserves the Hamiltonian and the Poisson bracket 

(i.e. is a canonical transformation) then it is associated with a conserved quantity. 

We will see that this extension of Noether's theorem is essential ill the case of 

gyromotion and ill other examples. · 

One-parameter families of canonical transformations of this type may be repre-

sented as the "time" a evolution generated by some function J, treated momentarily 

as a Hamiltonian. Parametrizillg our transformation by a and labelliDg poillts ill 

phase space by~. the solution ~(a) of 

dz 
~ = {~.J} ~(8 = 0) = .!o 

is the family of canonical transformations generated by J. 

If the transformations generated by J are sylli.metries of H then 

dH = 0 = E aH_ dzi 
da . az• da 

' "an { . = ~ azi z',J} 
' = {H,J} 

= -{J,H} 

=-j. 

So J is a conserved quantity. 

{2.71) 

(2.72) 
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2.5.2. Circle Actions 

We now consider the case ill which the solutions of 

dz . 
d~ = b:,J} (2.73) 

are all closed curves with the same period. We will call these dosed orbits loops. 

The symmetry transformation is then said to be a circle action on phase space. 
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Figure 2.8: The circle action on J, 8 phase space. 
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For example we might consider rotation by 8 ill J, 8 space. In this case phase 

space looks like a cylinder (as shown ill figure (2.8). The Poisson bracket is 

· at ag at ag 
{f,g} = a8 aJ- aJ a8· (2.74) 
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J generates the dynamics 

d9 
ds = {9,J} = 1 

dJ 
ds =O, 

(2. 75) 

which just rotates the cylinder. 

2.5.3. Reduction by a Circle Action 

In studying the dynamics of a Hamiltonian H symmetric under a circle ac-

tion generated by J, we may make two simplifications which together comprise 

the process of reduction. This procedure was defined in [Marsden and Weinstein, 

1974] in a more general setting that we will describe shortly. The process unifies 

many previously known techniques for simplifying specific examples of Hamiltonian 

systems. 

2.5.3.1. The Reduced Phase Space 

1. Because J is a constant of the motion, the surface J =constant in phase 

space is invariant under the dynamics and so we may restrict attention to it. 

2. The symmetry property of H implies that if we take a solution curve _!(t) 

of the equation !_ = {_!, H} and let it evolve for a "time" s under the dynamics 

k = {.!, J} then we obtain another solution curve of k = {.!, H}. In fact the 

dynamics of H takes an entire loop into other entire loops. 

The dynamics around loops is easy to solve for because 

B= an 
aJ· (2.76) 
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Notice that 9 is not uniquely defined but iJ is. We are interested in the problem of 

finding the dynamics from loop to loop. We want to project the original dynamics 

on phase space P down to a space PIS1 whose points represent whole loops in P. 

Let us call PI Sl, the space of loops and 1r : P -+ PI Sl, the projection mapping 

loops in P to points in PI S 1 . For example, when P = J, 9 space the projection 

mapping takes J,9 to J. This projection is shown in figure (2.9). Thus the second 

simplification is to consider dynamics on the space of loops PI 8 1
. 
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Figure 2.9: The projection of J, 9 space to the space of loops 

· Performing both of these operations- restricting to J =constant and consid-

ering the space of loops- leaves us with a space, 

R := PIS
1

IJ=conotant (2. 77) 
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of two dimensions less than P, called the reduced space. 

We have seen that the dynamics on P naturally determines dynamics on R. The 

key importance of R is that R's dynamics is itself Hamiltonian. For this statement 

to make sense we need to find a Hamiltonian and a Poisson bracket on R. These 

are the so-called reduced Hamiltonian and reduced Poisson bracket. 

2.5.3.2. The Reduced Ham.lltonlan 

The original Hamiltonian H on P is constant on loops by the symmetry con­

dition. We may take the value of the reduced Hamiltonian at a point of R to be 

the value of H on the corresponding loop in P. 

2.5.3.3. The Reduced Poisson Bracket 

To obtain the reduced Poisson bracket of two functions I and g on R, we 

consider any two functions i and g on P which are constant on loops and agree 

with I and g when restricted to J =constant and projected by 1r to R. The Poisson 

bracket on P of i and g will be constant on loops and its value on J =constant will 

be independent of how i and g were extended as functions on J (because they are 

constant on loops: {i,J} = 0 and {g,J} = 0 so {i,g} is independent of oiloJ 

and fJ§IfJJ). Thus the value of the reduced Poisson bracket on R of I and g is the 

value on the corresponding loop in P of the Poisson bracket of any two extP;:.sions 

i, g that are constant on loops. 
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2.5.3.-'. Coordinate Calculation of the Reduced Space 

In examples we often introduce a coordinate 9 describing the position on a 

loop. We may then treat PIS 1 as the set 9 = 0 (at least locally). In this case R is 

the subset 9 =constant, J =constant of P. The reduced Hamiltonian on R is just 

the value of H on this subset of P. To calculate the value of the Poisson bracket of 

two functions on P on this surface, we need only their first derivatives there. 

H the functions are constant on loops (i.e. independent of 9), then the derivative 

a I {)9 is zero. The dependence on J is irrelevant, so we may take the derivative a I f)J 

to be zero. Plugging these two expressions into the Poisson bracket on P gives us 

the expression for the reduced Poisson bracket on R. 
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2.6. Example: Centrifugal Foree 

We consider a particle on a tw~dimensional plane moving in a rotationally 

symmetric potential. The phase space is then r•!i2 with coordinates (x,y,p,,p11 ). 

The Poisson bracket is the canonical one: 

f,g}=at ~-~ag +at ~-~a9 _ 
{ ax ap., ap., ax ay apll apll ay 

The Hamiltonian is taken to be 

H = 2~ (p~ + P!) + V ( .j x2 + y2) . 

The symmetry on phase space is given by the evolution of the equations 

dx 
da = -y 

dp., 
---;{; = -pll 

dy =X 

da 

dpll = Pz 
da 

(2.78) 

(2.79) 

(2.80) 

We may think of a point in phase space as a point in the plane (x,y) with a vector 

attached (p.,,p11 ). The action of the symmetry is to rotate the plane about the 

origin, vector and all as shown in figure (2.10). 

2.6.1. Angular Momentum Generates Rotations 

The Hamiltonian depends only on the radial distance and the magnitude of 

the momentum vector and so clearly remains invariant under this rotation. The 

rotation is a canonical transformation with generator J satisfying 

df at at at at -={f,J}=x--y-+p.,--p­
ds ay ax ap11 II ap., 

(2.81) 

2.6.1. Angular Momentum Generates Rotations 
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Figure 2.10: The action of the circle symmetry on momentum vectors. 

for any f. Taking f = x,y,p.,,p11 gives 

aJ 
ap., = -y 

aJ =x 
ap" 

aJ aJ 
ax =pll ay = -p.,. 
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(2.82) 

Thus we see that the generator is J = xp11 - yp.,, i.e. the angular momentum. We 

may label a loop by the value of x,p.,, and p11 when y = 0 and x ~ 0. J on this 

subset is just xp 11 • These then form coordinates on the space of loops P / S 1
. Notice 

that the value of x on a loop when y = 0 defines the radial coordinate. For clarity, 

we will introduce the coordinate functions r and Pr on the reduced space for each 

J. A loop is labeled by r if x = r when y = 0 on that loop. A loop is labeled by Pr 

if Pz = Pr when !I = 0 on that loop. 
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2.6.2. The Reduced Space and Bracket 

To get the reduced space we set J to the constant value IJ· To get the reduced 

bracket, it is easiest to envision the two-dimensional reduced space with coordi-

nates ( r, Pr) as a submanifold of the four-dimensional total space with coordinates 

(x,pz,y,p 11 ) defined by: 
X= r Pz = Pr 

IJ y =0 pll = -. 
r 

(2.83) 

This submanifold intersects each loop transversely in exactly one point since a loop 

has y = 0 with x ?: 0 at only one point. It also lies entirely in the level surface 

· ·J = IJ since 

J = xpll - YPz = r (;) - 0 · Pr = IJ· (2.84) 

We want to know the reduced Poisson bracket of functions l(r,pr) and g(r,p.) of 

r and Pr· As in section 2.5.3.3, we define the bracket of two such functions by 

introducing j(x,p.,,y,p11 ) and g(x,pz,y,p11 ) on the four-dimensional space which 

are equal to f and g when restricted to the two-dimensional submanifold and which 

are constant on loops. We take the four-dimensional Poisson bracket of i and g. 

This bracket is also guaranteed to be constant on loops. The restriction of the 

bracket of j and g to the (r,p.) submanifold is defined to be the bracket of I and 

g. Since we only need the full bracket on the submanifold, we don't really need to 

know j and g everywhere; we need only their derivatives in each direction at points 

of the submanifold. We calculate these derivatives as follows. Derivatives along the 

submanifold are the same as for j and g: 

aj a1 
ax= ar (2.85) 
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and 

ai a1 
apz = ap. (2.86) 

with similar expressions for g. Derivatives of j and g along the loops (and so 

transverse to the submanifold) must be zero since j and g are constant on loops. 

This implies that on the manifold 

ail =O 
ae oubmanifold 

a; aj a; aj =x--y-+p --p-ay ax z ap11 II apz 
(2.87) 

aj a1 aj ~-' a1 =r- -0·- +p.-- --. ay ar apll r ap. 

Finally, we may extend j in the fourth direction in any way we like because the 

result is independent of this extension. For simplicity, let us choose 

This leads to 

aj =O. 
apll 

aj ~-' a1 
ay = r 2 ap •. 

Now we can calculate the reduced bracket: 

• • IJ 
{l,g}n(r,p.) ={!,g}(x = r,y = O,pz = p.,p11 =-) 

r 

a i ag a i ag a i ag a i a9 =-----+-----ax ap., apz ax ay apll apll ay 
=a 1 !.!_ _ ~ ag + ~ a 1 . 0 _ 0 . ~ !.!_ 

ar ap. ap. ar r2 ap. r2 ap. 
af ag af ag 

= ar ap. - ap. ar. 

The reduced bracket in this case is just the canonical bracket on r, Pr space. 

(2.88) 

(2.89) 

(2.90) 
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2.6.3. The Reduced Hamiltonian Gives Centrifugal Foree 

The reduced Hamiltonian is obtained by restricting the original Hamiltonian 

to the submanifold and is given by 

p~ ( IJ
2 

1 ) H = 2m + 2m r2 + V ( r) · (2.91) 

Note the effective potential112 /2mr2 due to reduction, that represents the centrifu-

gal force. 

As an aside, it is interesting to note that Newton derived the centrifugal force in 

a more "kinetic" way which is related to averaging in statistical gas models [Brush, 

1983]. He envisioned the motion of a particle along a circular path as the limit of 

motioW! on paths on inscribed polygons as the number of sides becomes infinite. 

Imagine a circular frictionless billiard table and a billiard ball which reflects from 

the wall in each traversal about the edge of the table. Equivalently a mass attached 

to a string whose other end is fixed (e.g., a tether ball) can undergo polygonal 

motion where the string is fully extended only at the vertices. The centrifugal force 

is just the average radial momentum transfer per unit of time. It turns out that this 

is independent of the number of bounces. Newton considered the average force for 

an inscribed square. Each impact transfers 2mv / ../2 units of momentum. The total 

radial momentum transfer is then 4../2mV. The distance travelled by the ball in one 

tra~·ersal is 4../2r. The time this takes is v/(4../2r). The average radial momentum 

transfer per unit of time is then 

) 
mv2 

4J2mv ( 4~r = -r- (2.92) 

2.6.3. Tbe Reduced Hamiltonian Gives Centrifugal Force 126 

which is the centrifugal force. (The same result is even easier to obtain with just 

two bounces. The momentum transfer is 4mv and the time is v/4r.) The first 

correct account of centrifugal force was actually given by Huygens, who is better 

known for his ideas on wave motion. 
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2.7. Higher Dimensional Symmetries 

"Tbe best and latest matbematical metbods to appear on tbe market bave been 

used wbenever possible. In doing tbis many an old and trusted favorite of tbe older 

generation bas been forsaken, as I deemed it best not to band dull and worn-out 

tools down to tbe next generation."- [Thirring, 1978] p. iv. 

Quite often physical systems are blessed with more than one dimension of 

symmetry. In keeping with the philosophy of not making unphysical choices, it is 

natural to consider the process of reduction in the presence of an arbitrary Lie group 

of symmetry. This program was carried out in [Marsden and Weinstein, 1974]. 

A Lie group is a group which is also a manifold, such that the group operations 

respect the smoothness structure. A good example to keep in mind is the group of 

rotations of three-dimensional Euclidean space. This group is denoted by 80(3). 

It may be thought of as the space of 3 by 3 matrices (this is the 3 in 80(3)) which 

are orthogonal (this is the 0 in 80(3)) and have unit determinant (this is the 

8, which stands for special). The group multiplication is matrix multiplication, 

and the manifold structure arises from thinking of 80(3) as a submanifold of the 

nine-dimensional Euclidean space of all 3 x 3 matrices. 

2.7.1. Hamiltonian Symmetry 

A Hamiltonian syster;.1 with symmetry consists of a Poisson manifold M, a 

Hamiltonian H, and a group G that acts on M so as to preserve both H and the 

Poisson bracket {, }. The tangent space of G at its identity may be identified with 

the Lie algebra g of the group and represents group elements infinitesimally close 
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to the identity. The action of an infinitesimal element of G on M perturbs each 

point of M by an infinitesimal amount. Thus each element v of the Lie algebra of G 

naturally determines a vector field on M. The action on M of the one-dimensional 

subgroup to which v is tangent, is given by the flow of this vector field. That the 

group action preserves the Poisson bracket, implies that this vector field is actually 

Hamiltonian. 

For example, M might be the canonical phase space of a system of particles in 

a central potential (such as planets around a sun). His then symmetric under the 

action of 80(3) which rotates the positions of the particles and the directions of 

their momenta. The Lie algebra so(3) represents infinitesimal rotations and gives 

rise to a vector field on M. Rotation by a finite angle is the result of flowing along 

this vedor field for a finite time. 

2. 7 .2. The Momentum Map 

. We may therefore associate to each Lie algebra element v, a Hamiltonian func­

tion which generates its corresponding vector field (at least locally). If G is n­

dimensional, and we pick a basis for g, then the group action gives usn correspond­

ing Hamiltonian functions on M. So as not to prefer one basis over another, we 

collect these n numbers at each point of M into a vector. This vector naturally 

pairs with an element of g (to give tJ..e value of the function which generates the 

action of that element) and so the collection of n Hamiltonians is a vector in the 

dual of the Lie algebra g• at each point of M. Thus with every Hamiltonian group 

action of G on M, there is a natural map called the momentum map from M to 
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g" which collects together the generators of the infinitesimal action of G on M (see 

[Abraham and Marsden, 1978] p. 276). 

2.7.2.1. Linear and Angular Momentum as Momentum Maps 

For a mechanical system in R3 which is translation invariant, the momentum 

map associates with each point in phase space the total linear momentum of the 

system in that state. If the Hamiltonian is rotationally symmetric, the momentum 

map gives the total angular momentum in each state (so the angular momentum 

isn't naturally a vector in R3 ; rather it takes its values in the dual of the Lie 

algebra of the rotation group so(3}"). When we talked about reduction in the one 

dimensional case above, the generator J of the action was the momentum map. 

2.7.3. Non-commutativity as the Obstruction to Reduction 

Does reduction work for higher dimensional symmetries? If the group is com­

mutative, we may apply the one-dimensional procedure repeatedly to eliminate two 

dimensions of phase space for each dimension of symmetry. If we are able to elimi­

nate all dimensions of phase space in this way, the system is called integrable (see 

[Abraham and Marsden, 1978] p. 393}. If the group orbits are bounded, then one 

can prove that the group is a torus in this case, assuming that the "periods" are 

constant (see [Arnold, 1978] p. 271). Locally we ma~ define angle variables on the 

toroidal group orbits and the corresponding action variables form the momentum 

map. Recall that there were two steps in the reduction of systems with one di­

mension of symmetry, each of which eliminated one dimension of the phase space 
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and that either could be performed first. One was to restrict to a level set of the 

generating function and the other was to drop down to the orbit space (space of 

loops). For non-commutative groups, we may again perform either of these two 

operations, but each gets in the way of subsequently performing the other. The 

main issue here is that while the Hamiltonian is invariant under the group action, 

the momentum map is not. Consider the example of a mechanical system in a 

spherically symmetric potential so that the rotation group acts on phase space as 

a symmetry and the momentum map is the total angular momentum. While the 

energy is left unchanged as we rotate the state, the angular momentum is rotated 

just like a vector in R 3 . This action of 80(3} on the dual of its Lie algebra is known 

as the coadjoint action. 

2. 7 .4.. The A«ijolnt and Coa«ijolnt Actions 

Let us digress a bit on the structure of Lie groups to make this point clearer. 

We will use the rotation group 80(3} as an example. As shown in the diagram in 

figure (2.11), every Lie group has three natural actions on itself. If his an element 

of G, then we may multiply on the left by h to get the action Lh· , we may multiply 

on the right by h- 1 (the inverse is chosen so that Rfh = R1 Rh} to get Rh, and 

conjugate by h (i.e. c >-+ hch - 1 } to get the action ADh · . 

Let us consider these three actions for 80(3} when h is a rotation by 1r /2 

about the z axis (say, clockwise looking down z}. Let the actions be applied to c, 

a rotation by 1r /2 about the x axis. Lh · c = he means first rotate by c and then 

by h. c sends x to x which h sends to -y, c sends ii to -z which h sends to -z, 
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and c sends z to y which h sends to .i. The net result is a rotation about the axis 

containing .i - y + z by an angle of 21r /3. 

R,. · c = ch - 1 means rotate by h - 1 and then by c. h - 1 sends .i to y which c 

sends to -z, h- 1 sends y to -.i which c sends to -.i, and h- 1 sends z to z which c 

sends to y. The net result is a rotation about the axis defined by .i - y - z by 271" /3. 

AD,.· c = h · c · h- 1 means first do h- 1 , then c, and then h. h-1 sends .ito y 

which c sends .to -z which h sends to -z, h-1 sends y to -.i which c sends to -.i 

which h sends to y, and h- 1 sends z to z which c sends to y which h sends to .i. 

The net result is a rotation by 1r /2 about the -fi axis. It is no accident that this is 

where h sends .i which is c's axis. 

Conjugation captures the noncommutativity of the group that is at issue here. 

AD,.· leaves the identity invariant (since h · e · h- 1 = e). We may therefore take 

the derivative of AD,.· at the identity to get a linear map from the Lie algebra to 

itself denoted Ad,.· . Ad is actually a representation of G on its Lie algebra and 

is sometimes called the fundamental representation. For rotations, Ad,. takes an 

infinitesimal rotation about an axis v to an infinitesimal rotation about the axis 

h 0 v. 

H we take the derivative of Ad,.· in the h variable, we get an action ad of the 

Lie algebra on itself. The action of an element u E g is none other than Lie bracket 

with u, i.e.: 

ad,.· v = [u, v]. (2.93) 

For rotations, this action is given by the cross product. An infinitesimal rotation 

about axis u followed by an infinitesimal rotation about axis v differs from first 
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rotating about v and then about u by an infinitesimal rotation about the axis u x v. 

We have seen that the dual of the Lie algebra g• plays an important role in 

Hamiltonian symmetries. Any time you have a linear transformation L acting on a 

vector space V, you can define its adjoint L • acting on V • by requiring that 

(L*a,v) = (a,Lv). (2.94) 

The adjoint of Adh · is called the coadjoint action of G on the dual of its Lie algebra 

g• and is written Adj.. The action of the rotation group on angular momenta that 

we discovered above is an example of this. The rotation h acts on the angular 

momentum a to give an angular momentum Adj. · a which is rotated by h. 

2.7.4.1. Equivariance of the Momentum Map 

One usually requires that a momentum mapping be equivariant as in this ex­

ample (see [Abraham and Marsden, 1978] p. 269). This means that the value of 

the momentum map varies as the group acts on the phase space according to the 

coadoint action: 

J(g · x) =A~· J(x). (2.95) 

The interpretation of this for the rotation group is as follows: x is a point in phase 

space. g is a rotation (i.e. an element of 80(3)). g ·xis the point in phase space we 

get to by applying the rotation g (for a mechanical system, g · x just has each of its 

position and momentum variables rotated by g). J(g · x) is the angular momentum 

of the rotated state. It is naturally an element of the 3-dimensional dual of the 

Lie algebra of 80(3). J(x) is the angular momentum of the original state. Ad~· 
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is the coadjoint action of the rotation g on the dual of the Lie algebra of S0(3). 

Here this action just rotates the angular momentum vector by g. That the action 

is equivariant says that the angular momentum of the system rotated by g is the 

rotation by g of the original angular momentum. 

2.7.5. Multidimensional Reduction using a Coadjoint Isotropy Subgroup 

Let us now try to mimic the reduction procedure in this noncommutative case. 

First we restrict attention to the subset of phase space 

J = p., (2.96) 

where p. is a constant element of g•. The dynamics restricts to this subset because 

J is a constant of the motion. The whole group G does not act on this subset 

however, because a general element of G will change the value of J. The subgroup 

of G which leaves p. invariant under the coadjoint action (known as p.'s isotropy 

subgroup G,.) will act on this subset, and we may drop the dynamics down to its 

orbit space. The resulting space, 

J-1 (p.)/G,., (2.97) 

has a natural symplectic structure, and the Hamiltonian restricted to it generates 

the projected dynamics. For the rotation group example, we restrict to states with 

a given total angular momentum (eliminating 3 dimensions) and then forget about 

the angle of rotation about the axis defined by that angular momentum (eliminating 

one more). The result is a phase space of four dimensions lower than we started 

with. 
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2.7.6. Multidimensional Reduction using Coadjoint Orbits 

We may obtain the same result in another way. Consider the orbit of a par­

ticular element p, of the dual of the Lie algebra under the coadjoint action. This 

coadjoint orbit 0,. has a natural symplectic structure which we will discuss mo-

mentarily (see (Abraham and Marsden, 1978] p. 302). For the rotation group the 

coadjoint orbits are spheres of constant total angular momentum (and the origin). 

This is because the rotation group acts on elements of the dual of the Lie algebra by 

rotating them, and the set of all vectors reachable by rotation from a given vector 

is a sphere. The orbit space of M modulo G has a natural Poisson structure (the 

bracket of G invariant functions is G invariant) which is not typically symplectic. 

The symplectic leaves of this structure project onto the coadjoint orbits under the 

momentum map. The inverse image of a whole coadjoint orbit under the momentum 

map is invariant under the group action on M. The orbit space 

J-1o,.;c (2.98) 

is the same reduced space we constructed above. For the rotation group this consists 

of restricting to states with a given total magnitude of angular momentum and then 

modding out by the whole rotation group. 

2.7.7. The Lie-Poisson Bracket and Group Configuration Spaces 

An important example of reduction applies to mechanical systems whose con­

figuration space is the syuimetry group itself. We will see that the free rigid body 

and the perfect Huid are examples of this type in the next two sections, a fact first 
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discussed in (Arnold, 1966]. The phase space M is then r•c and the G action is the 

canonic.allift to r·c of left or right multiplication. The G orbits have one point in 

each cotangent fiber (i.e. the group action associates with a given momentum in a 

given configuration exactly one momentum in each other configuration) and so we 

may identify the orbit -space with the cotangent space at the identity, i.e. the dual 

of the Lie algebra. H the group identity represents a reference configuration, then 

we may use the group action to identify momenta in an arbitrary configuration with 

momenta in the reference. H we apply the process of reduction to this setting, this 

shows that the orbit space of G acting on r•c may be identified with .the dual of 

the Lie algebra g•. H we forget about the configuration and identify momenta with 

momenta at the reference, then our phase space becomes the space of momenta at 

the reference. 

The momentum map for the group action is then the identity. The coadjoint 

orbits receive a natural symplectic structure, being the reduced spaces. These sym­

plectic structures are known as K.irillov-Kostant-Souriou (KKS) symplectic struc­

tures. H we just consider the orbit space r•c /G, then we obtain a natural Poisson 

bracket on g• already known to Sophus Lie ( (Weinstein, 1983b]) and so called the 

Lie Poisson bracket. Explicitly it is 

iJf fJg 
{/,g}(a) = (a,(6a' 6a])' (2.99) 

where a E g•, f and g are functions on g•, [,) is the Lie algebra bracket, and (,) 

is the natural pairing of g and g•. This bracket is behind many of the nontrivial 

Poisson structures recently discovered in various areas of physics. 
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2.7.8. Euler's Equations for the Free Rigid Body 

As an example, let us consider Euler's equations for the free rigid body (see 

[Abraham and Marsden, 1978] p. 311). To specify the configuration of a free rigid 

body, we give a reference configuration and every other configuration is uniquely 

specified by the element of the rotation group that acts on the reference to give 

that configuration. The configuration space is therefore identifiable with the group 

80(3) itself. As the body rotates in some manner, the representative point in 80(3) 

moves along a curve in 80(3). The angular velocity of the body (i.e. the velocity in 

this configuration space) in a given configuration represents the first order change 

in configuration as we let it evolve for a short time. Two evolution curves through a 

given configuration point have the same angular velocity iff they are tangent to first 

order. In section 2.2.6 we defined a tangent vector to be just such an equivalence 

class of curves. Geometrically, then, we may identify the angular velocity in a given 

configuration with a tangent vector to 80(3) based at the point representing that 

configuration. Therefore the state including the angular velocity is naturally a point 

in T80(3). 

The angular momentum is obtained by acting on the angular velocity by the 

moment of inertia tensor. Since the moment of inertia tensor pairs with two copies 

of the angular velocity to give the kinetic energy which is a scalar, we see that 

both of its indices are covariant (i.e. it has two slots for vectors). The angular 

momentum arises from filling only one of the slots and is therefore a covector (i.e. 

a one-form). For general Lagrangian systems the momentum is defined in terms of 

the Lagrangian as p = ~;. Since L is a scalar, this again shows that p is a one-
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form (which pairs with vectors to give the first-order change in L when the velocity 

is varied along the vector.) In section 16.5.11, this kind of map is defined as the 

Legendre map generated by L from the tangent space to the cotangent space. The 

moment of inertia tensor (and in general the bilinear kinetic energy form) plays the 

role of a metric on configuration space which converts velocity vectors to momentum 

one-forms. For example, in the simple free particle relation p = mv, we should view 

the mass as a tensor (we can see that it is not a scalar by considering multiple 

particles with different masses). Therefore the state including angular momentum 

is a point in T• 80(3). This is then the natural phase space for the rigid body. 

A priori, there is no way of comparing the angular velocity or momentum 

in one configuration with that in another. Using the group action, however, we 

may push all velocities to velocities at the identity (i.e. velocities on the reference 

configuration) which may be identified as elements of the Lie algebra. Both left 

and right multiplication can bring us to the identity since they each act on the 

group transitively. Consider a path at the identity (for example a rotation about 

the z axis) to which a given element of g is tangent. Left multiplication by hE G 

means move along the path and then rotate by h. Thus the path is associated with 

the body and we get the angular velocity in the body-fixed frame. Multiplying 

on the right means rotate first by h, then follow the path. The path applied is 

independent of the configuration of the body (described by h) and so its tangent 

represents angular velocity in the space-fixed frame. Similarly, left multiplication 

gives angular momentum in the body-fixed frame and right multiplication gives it 

in the space-fixed frame. At a configuration represented by h E G, the map· from 
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g to g that takes spatial angular velocity to body angular velocity is the adjoint 

action of h. Similarly, the map from g• to g• that takes spatial angular momentum 

to body angular momentum is the coadjoint action. 

The energy depends only on the angular momentum in the body (the orienta­

tion in space is irrelevant for a free rigid body) and so the Hamiltonian on T• S0(3) 

is invariant under the cotangent lift of left multiplication and we are indeed in the 

situation described above. H we drop down to the orbit space of this left multipli­

cation, we get a Poisson bracket and Hamiltonian on the three dimensional space 

of angular momenta in the body. The dynamics on this space is exactly Euler's 

equations. The Poisson bracket is explicitly given by 

{Js,JII} = J,. (2.100) 

plus cylic permutations. The total angular momentum J~ + J: + J~ is a Casimir 

function and 80 is automatically conserved. The coadjoint orbits (and 80 the sym­

plectic leaves and bones) are the spheres of constant total angular momentum and 

the origin as shown in figure (2.12). The area element on each sphere is the two-form 

representing the KKS symplectic strucuture. 

2. 7 .9. Euler's Equations for a Perfect Fluid 

In an exactly analogous way, we may consider the Hamiltonian structure of a 

perfect fluid. H we choose a reference configuration, then to get any other config­

uration we apply a unique diffeomorphism as in figure (2.13) (volume preserving if 

the fluid is incompressible). Thus the configuration space may be identified with 

2. 7.9. Euler's Equations for a Perfect Fluid 140 

Figure 2.12: The coadjoint orbits of the rotation group. 

the group of diffeormophisms of the region in which the fluid resides. The state of 

the fluid plus its velocity field is represented by a point in the tangent bundle of this 

group. Points of the phase space represent the state of the fluid and the momentum 

density and 80 lie in the cotangent bundle of the group. Again we may identify 

velocities and momenta with elements of the Lie algebra and its dual by left or 

right multiplication. Right multiplication gives the Eulerian velocity or momentum 

field in space. Left multiplication gives them for material points in the reference 
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configuration. Here, in contrast to the rigid body case, the energy depends only on 

the spatial momentum (which fluid particle is where is energetically irrelevant) and 

so the Hamiltonian is right invariant. Dropping to the orbit space gives us dynamics 

for the spatial momentum density, i.e. Euler's fluid equations, in Hamiltonian form. 

Reference Present State 

Figure 2.13: A configuration of the fluid specified by a diffeomorphism. 

2.1.10. Gases and Plasmas 

For gases and plasmas, the state of the sy:Jtem is represented by the parti­

cle distribution function on single-particle phase space. This distribution function 

evolves by the action of symplectomorphisms (i.e. canonical transformations) of 

this phase space (see [Weinstein, 1984b) for more discussion and references). The 
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group of symplectomorphisms has the Hamiltonian vector fields as its Lie algebra. 

We may identify this with the space of functions on the phase space where the Lie 

bracket is the Poisson bracket of functions: The dual of the Lie algebra is then den­

sities on phase space, which we may use to describe the kinetic state of plasmas and 

gases. The coadjoint action just pushes the density around by the symplectomor­

phism. One coadjoint orbit comes from considering a delta distribution on phase 

space. The symplectomorphisms push it all over phase space to give a coadjoint 

orbit that is identifiable with the original phase space. In fact the KKS symplectic 

structure is exactly the original symplectic structure. This shows that every sym­

plectic manifold is a coadjoint orbit (albeit in the dual of the Lie algebra of the 

infinite-dimensional group of canonical transformationS of that manifold). 

It is interesting to consider some of the other coadjoint orbits for this system. 

In chapter 9, eikonal waves are associated with certain distributions on (x, k) space 

whose support (i.e. the closure of the complement of the region where the region 

vanishes) is a Lagrangian submanifold (an N-dimensional manifold on which the 

symplectic structure vanishes, see section 7.1.4). The space of such distributions is 

a union of coadjoint orbits of the group of symplectomorphisms. 

Any local piece of a Lagrangian submanifold can be made to coincide with 

a local piece of any other Lagrangian submanifold by a canonical transformation 

[Weinstein, 1977). In fact, the symplectic structure of a small neighborhood of a 

small piece of Lagrangian submanifold is identifiable with the canonical symplectic 

structure of a small neighborhood of the zero-section of the cotangent bundle of the 

piece of Lagrangian submanifold. In other words, small regions of any Lagrangian 
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submanifold may be straightened out to a piece of !RN c !R2N. This means that 

there are no local invariants in a symplectic manifold other than dimension and no 

local structure associated with a Lagrangian submanifold other than the property of 

being Lagrangian. (As a simple example of something with no local constraints yet 

still obeying a global constraint, consider a water balloon. The surface of the balloon 

is arbitrary locally but globally must enclose a given volume.) This behavior is in 

great distinction to the case of Riemannian geometry where local pieces of space are 

invariantly characterized by various curvatures and even fiat submanifolds may sit 

in space in locally different ways. The less rigid nature of symplectic geometry helps 

to give it its characteristic feel and makes the study of phase space quite different 

from the study of spacetime. 

In section 10.1 we show that an arbitrary diffeomorphism of a manifold M 

may be extended to a symplectomorphism of T" M which acts on the zero section 

according to the original diffeomorphism. We may use this type of map to vary the 

value of a distribution with Lagrangian support while leaving the support manifold 

invariant. There are global constraints on the image of a Lagrangian submanifold 

under a canonical transformation as well. In !R2N one can associate with each 

Lagrangian torus, the actions of each of the non-contractible loops lying in it. These 

actions cannot change under a symplectomorphism. In non-trivial topologies, one 

must talk about the change in action of a loop under a deformation because there 

may be no disk with the loop as its boundary (the change in action is simply 

the symplectic area of the region swept out by the loop under deformation). If 

the deformations are exact symplectomorphisms (e. g. symplectomorphisrns of a 
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simply connected region), then the action cannot change. One may show that, other 

than this constraint on actions, each Lagrangian torus can be taken to every other 

nearby Lagrangian torus. 

There are some subtleties in generalizing from a· delta function at a point to 

delta functions defining a submanifold. In general, a distribution is a linear func­

tional satisfying certain continuity criteria that associates a real number with each 

smooth function (satisfying certain vanishing criteria, see for instance !Hormander, 

1983]). We think of a distribution as something we may integrate smooth functions 

against. A delta function at a point p E M in a manifold just assigns to each 

smooth function f its value /(p) at the point p. The analog of a delta function 

whose support is a Lagrangian submanifold would associate with each function on 

M its integral over the Lagrangian submanifold. This requires a measure on the 

Lagrangian submanifold. The space of Lagrangian supported delta-like distribu­

tions may be identified with the smooth Lagrangian embeddings of N dimensional 

manifolds with measures on them. Let us call these measured Lagrangian submani­

folds. The space of measured Lagrangian tori with given actions is thus a coadjoint 

orbit. Similarly, the space of measured loops with given action is a coadjoint orbit 

and therefore a symplectic manifold. 
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2.8. Geometric Hamiltonian Perturbation Theory 

Let us now relate this geometric Hamiltonian mechanics to the geometric per-

turbation theory we discussed earlier. We will see that the Jth order perturbed 

dynamics has a natural Hamiltonian structure if the exact dynamics does. More 

details on the ideas of this section are given in section 4.6. 

The first thing to note is that the path space dynamics is Hamiltonian. This 

is not surprising if we think of the path space as a kind of direct integral of the 

phase spaces at each f. The dynamics at different f's are completely independent 

(except for the fact that the paths are smooth). If we had the product of only 

two Hamiltonian systems (instead of a continuum of them) then we would get the 

correct dynamics from a symplectic structure which is the sum of the pullback to 

the product of the individual symplectiC structures and a Hamiltonian which is the 

sum of the pulled back Hamiltonians. Extending this construction to a continuum 

of multiplicands leads to the symplectic structure 

Wp(Vl, V:~) = Ll Wp(•)(Vl(f,p(!)), V:~(f,p(f))) df. (2.101) 

The analog of the sum of Hamiltonians is 

H(p) = Ll H(f,p(f)) df. (2.102) 

The dynamics these two generate is indeed the correct path space dynamics. In the 

case of a product of a finite number of Hamiltonian systems, we are actually allowed 

to take any linear combination of the symplectic structures (instead of a straight 

sum) as long as no coefficient vanishes and we take the same linear combination 
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of Hamiltonians. If a coefficient vanishes, that factor has no dynamics. For our 

perturbation dynamics then, we want to ignore the region in the interval that is 

away from f = 0. 

In fact if we insert the Jth derivative of a delta function into the integrals in 

(2.101) and (2.102) we get the correct perturbation dynamics on JM. If the Poisson 

bracket on M is { X0
, x11 } = Job then the bracket on J M is 

o b a~~k! m! 
{x,.,zm} = J ---:J!6k,J-m (2.103) 

and the Hamiltonian is 

- ~I ~ H(xo, ... ,xJ)= -dJ H(f,zo+fxl+···+J1xJ). 
f •=0 . 

(2.104) 

Together these give the correct perturbation dynamics. Notice that the Oth order 

variables are paired with Jth order variables, 1st order with J- 1st order, etc. 

From the above coordinate description it is not clear that this bracket is in 

fact intrinsic. We may show this by considering the iterated tangent bundle to M. 

The tangent bundle to a symplectic manifold has a natural symplectic structure. 

If w is the structure on M, then we may use it to identify TM and r• M. r• M 

has a natural symplectic structure, which we defined in section 4. The structure 

on T M is obtained by pulling r• M's back using the identification supplied by w. 

This or,eration may be iterated to give symplectic structures on the iterated tangent 

bundles: TTM, TTTM, TTTTM, etc. The Jth order jets naturally embed into 

the Jth iterated tangent bundle. If the symplectic structure on TJ M is pulled back 

to J M we obtain the jet Poisson bracket in equation (2.103). 

r~ 
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The symplectic structure on T M may be thought of as the first derivative of 

the original symplectic structure [Kijowski and Tulczyjew, 1979]. The jet bracket 

may be thought of as the Jth derivative. Choose J sheets spaced evenly iii I x M. 

The path dynamics projects down to the product of these sheets. We may map 

the product symplectic structure to J M with arbitrary coefficients in front of the 

individual summand symplectic structures. H these coefficients are chosen to give 

a nonsingular resultant symplectic structure as the sheet spacing goes to zero, we 

again obtain the jet symplectic structure and Hamiltonian. Such an argument (given 

in detail in section 4. 7) shows that the perturbation bracket and Hamiltonian are in 

essence Jth derivatives of the path structures. This approach is similar to studies 

of finite differences as approximants of ordinary derivatives. 

2.8.1. Linearized Dynamics at a Fixed Point from Jet Bracket 

We have seen that when the Poisson bracket is degenerate, non-degenerate 

symplectic leaves and bones are i.Djected into the Poisson manifold as submanifolds. 

If a closed two-form is degenerate, then we project out the degenerate directions 

to obtain a symplectic manifold. The fact that the two-form is closed implies 

that the annihilated directions satisfy the conditions of Frobenius's theorem and 

so lie tangent to smooth submanifolds which we may then project along (at least 

locally). We hav(: used an example ofthis construction above. If we insert the Jth 

derivative of a delta function into the path symplectic integral {2.101), we obtain 

a degenerate, closed two-form on the path space P1M. The projection eliminating 

the degenerate directions is exactly the projection from path space down to the jet 
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space J M. The resulting symplectic structure iS the jet perturbation structure. If 

we have a Hamiltonian system with an invariant submanifold, we may attempt to 

obtain the restricted dynamics in Hamiltonian form by pulling back the symplectic 

structure. The resulting two-form will be closed but may not be non-degenerate. 

If things are nice globally, we may apply the above projection. A special case of 

this demonstrates that the jet construction contains as a special case the linearized 

dynamics of a Hamiltonian system around a fixed point. We consider the 2-jet space 

2M. The submanifold of jets with base point equal to the fixed point is an invariant 

submanifold. Because the zero order base directions are paired with the second 

order directions in {2.103), restricting to a given basepoint makes the second order 

directions degenerate. Projecting these out leaves us with only the first order jets 

at the fixed point {i.e. the tangent space there). These are paired with themselves 

by the second order bracket according to the original symplectic structure at the 

fixed point. The second order Hamiltonian {2.104) gives the quadratic piece of the 

Taylor expansion in the x1 variables. Together these give the linearized flow in the 

tangent space of the fixed point as a Hamiltonian system. The situation in Poisson 

manifolds is more complex [Weinstein, 1983a]. If the· fixed point is in a symplectic 

leaf {as opposed to a bone), we take the Poisson bracket at the point, the quadratic 

part of the Hamiltonian in the leaf direction, and the linear part of the Hamiltonian 

across leaves. The bones are more difficult. 

We can also consider the same approach to the evolution of J-jets based at a 

zero order fixed point. The zero order variables are now paired with J-th order 

variables. When we restrict to a given zero order point, the J-th order directions 

"'Il 
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become degenerate for the J -jet symplectic structure. When we quotient out this 

degeneracy, we are left with only the first through J - 1st order variables. The 

symplectic structure is the J - 2 jet structure up to numerical coefficients and the 

Hamiltonian is the J-th derivative. 

We may also use this approach to obtain a symplectic structure for linearizing 

about a single non-fixed unperturbed orbit. We restrict the space of 2-jets to jets 

that originate on the orbit of interest. There is now a 2N -1 dimensional degenerate 

foliation which we may quotient by. The result is a symplectic space whose points 

indicate position along the unperturbed orbit, an element of the tangent space at 

that position, and a single quotiented 2-jet variable that pairs non-trivially with 

the orbit position variable. The Hamiltonian is again the second derivative of the 

original Hamiltonian: 

- ~, ~ n(xo,Xt,X2)= d2 n(t,xo+£xt+2x2) 
£ •=0 

~ I ( an £
2 a2 n £

2 an ) =-d2 n(t,xo)+t-a (t,xo)xt+-
2
-a 2 (t,xo)x~+-2 a-x2 £ .~ ~ ~ ~ 

a2n a an a2n· 2 an 
=-a 2 n(t,xo) +-a -a (t,xo)xl +-a 2 xl +-a X2. 

£ xo t: x0 xo 
(2.105) 

The dependence of this on x2 is only through the term 

an -a (O,xo) · x2. 
xo 

H is thus constant under variations of x2 in the annihilator subspace of dn. But 

these are exactly the directions sympl~ically orthogonal to the zero order orbit and 

so span the degenerate foliation. The linearized dynamics about an unperturbed 

orbit therefore has an invariant formulation. 

2.8.2. Symmetry and Perturbation Theory 150 

2.8.2. Symmetry and Perturbation Theory 

We have seen how important symmetry and its related concepts are in Hamil­

tonian mechanics. How do the symmetry operations intermix with the perturbation 

operations? A Hamiltonian G action on M lifts to both the path space PM (just 

push the whole path around by the group action) and the jet space J M (just push 

the jet around). The corresponding momentum maps are just the integral along a 

path of the M momentum map and the same integral with the Jth derivative of a 

delta function thrown in. Both are equivariant. 

When considering reduction we quickly see thai these groups are not of high 

enough dimension. A 4-dimensional phase space with a !-dimensional symmetry 

drops down to 2 dimensions. The first order perturbation space has 8 dimensions. 

In the presence of symmetry we expect to be able to drop this down to the first 

order perturbation space of the 2-dimensional reduced space. The above group 

action can only eliminate 2 dimensions instead of the needed 4 and so we expect a 

larger group to act. This is indeed the case. It makes sense to multiply two paths in 

a group by multiplying pointwise. Thus PG is an infinite dimensional "Lie" group 

and its "Lie" algebra is the path space of G's Lie algebra g. PG has a Hamiltonian 

action on the path space PM by multiplying the point p(t:) by the group element 

g(t:). The momentum map sends a path in M to a path in g• gotten by applying 

M's momentum map to each£. In an exactly &r~alogous way, we may define the 

group JG of J-jets of paths in G with Lie algebra being J-jets of paths in g. This 

acts in a Hamiltonian and equivariant way on the perturbation space J M. The 

momentum map is obtained by extending a jet to any consistent path, taking the 
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path momentum map to Pg" and dropping down to J g•. 

The process of reduction commutes with taking the path space or jet space. 

The jet or pat~ space of the reduced space is the reduced space of the jet or path 

space by the jet or path group. 

We have seen the central importance of the dual of the Lie algebra and the 

coadjoint orbits with their KKS symplectic structure for physics. We have seen 

that any symplectic manifold may be thought of as a coadjoint orbit in the dual of 

the Lie algebra of some group. It turns out that if M is a coadjoint orbit in the 

dual of G's Lie algebra then· the perturbation space J M with the jet symplectic 

structure are naturally a coadjoint orbit in the dual of the Lie algebra of the jet 

group JG and the jet bracket (2.103) is the natural KKS symplectic structure. This 

is shown in section 4.8.6. 

These relations are at the heart of a new framework for singular Lie transform 

perturbation theory about which we will report in chapter 5. Here we discuss only 

the first order method of averaging. 
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2.9. The Method of Averaging for Hamiltonian Systems 

Many of the interesting physical regularities we find in diverse systems are 

caused by the presence of processes that operate on widely separated time scales. 

The basic simplification that this separation entails is that the fast degrees of free­

dom act almost as if the slow variables are constant and the slow degrees of freedom 

are affected only by the average behavior of the fast variables. Bogoliubov in par­

ticular has used this separation of scales with great success in many examples. · 

For example he obtains the Boltzmann equation from the BBGKY hierarchy of 

evolution equations for correlation functions by holding the 1-particle distribution 

functions fixed while determining the fast evolution of the higher correlations, and 

then substituting the result in as the collision term driving the 1-particle evolu­

tion. One makes a similar separation in calculating fluid quantities like viscosity, 

thermal conductivity, diffusion or electrical conductivity from an underlying kineiic 

description. In studying complex situations with slow, heavy nuclei and fast, light 

electrons in molecular and solid state physics, one often holds the nuclei fixed, cal­

culates the electron ground state and energy as a function of the nuclei positions 

and then uses them to define an effective potential in which the nuclei move (this 

is the Born-Oppenheimer approach). 

We have seen that in the presence of an exact symmetry, the symmetry direc­

tions may be completely eliminated by the process of reduction. We will r.ow discuss 

how the averaging underlying the systems with separated scales can be viewed as 

reduction by an approximate symmetry. One often finds that the effect of "for­

getting" these degrees of freedom is to introduce an amended potential into the 
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Hamiltonian and a "magnetic" piece to the Poisson bracket of the reduced system. 

In the systems with approximate symmetry, these extra terms encapsulate the new 

physics revealed by the averaging procedure. Earlier we saw the centrifugal force 

coming out as an effective potential. We give a version of this reduction procedure 

which begins by including the "angle of the earth" as a. dynamical variable and 

reduces by the earth's rotation and the rotation of the system together in the next 

chapter. The resulting reduced space gives the centrifugal force as an amended 

potential in the reduced Hamiltonian and the Coriolis force as a new term in the 

Poisson bracket. 

2.9.1. Approximate Noether's Theorem 

When we introduce a perturbation which breaks a symmetry we no longer have 

exactly conserved quantities. It is easy to prove an "approximate Noether's th~ 

rem", however, which says that the momentum map for a slightly broken symmetry 

evolves slowly: 

XJ·H={H,J}=l implies j = {J,H} = -t. (2.106) 

2.9.2. Hamiltonian Averaging as Reduction by a Circle Action 

In the special case where the unperturbed dynamics is entirely composed of 

periodic orbits, the action of the orbit through each point is the momentum map of 

a circle symmetry of the unperturbed Hamiltonian. As we turn on a perturbation 

which breaks this symmetry, the motion will still be primarily around the loops, 
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but it will slowly drift from loop to loop. Because the symmetry is broken, different 

points on a loop will move toward different loops. As the perturbation is made 

smaller, though, phase points orbit many times near a given loop before drifting 

away. This suggests (correctly) that the perturbation a point feels will asymptoti-

cally be the same as the average around an unperturbed loop. Because this average 

is the same for all points on a loop, for small perturbations entire loops drift onto 
' 

other entire loops. We may therefore drop the dynamics down to the loop space. 

In fact one can prove that for a general (even dissipative) system where the unper-

turbed dynamics Xo is entirely composed of periodic orbits, the motion of a point 

under the ftow of X 0 + £X1 projected down to the loop space remains within l for a 

time 1/ l of the orbit of a corresponding point on the loop space under the ftow of the 

average of X 1 around each loop projected down [Arnold, 1983). In the Hamiltonian 

case we break the circle symmetry of H0 to get the perturbed system Ho + tH1. 

We average H 1 around the loops to get H1 . Ho + lH1 is again invariant under 

the circle action and so we may perform reduction. The reduced dynamics is the 

slow dynamics on the reduced space and the fact that we may restrict to a constant 

value of the momentum map shows that it is actually conserved to within order l 

for time 1/t. The momentum map for the circle group sends each point of phase 

space to the action of the loop it belongs to. The action of a loop is the integral of 

the symplectic form w over a disc whose boundary is the loop. Since w is invariant 

under a canonical transformation, so is the value of the action of a loop (this is 

Poincare's first integral invariant). H the dynamics was represented by a canonical 

transformation that took loops exactly to other loops, then the action would be an 
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exact constant of the motion. The true dynamics takes loops to only within £ of 

another loop after time 1/t. This says that the action of the loop a phase space 

point is on changes only by f. as we follow the phase point for time 1/t. The action 

is not invariant but is adiabatically invariant (i.e. the error is small for longer and 

longer times as f -. 0. Kruskal has shown that there is actually a quantity which 

is conserved to all orders in f. for time 1/f (Kruskal, 1962) (we give a geometric 

formulation of this result in chapter 5). Getting results valid for times longer than 

1/f. is extremely important physically, but so far no general theory exists. Chapter 

5 includes some discussion of the relevant issues here. 

2.9.2.1. Averaging and the Jet Picture 

Let us relate this procedure to the perturbation structures we developed in 

previous sections. We have an action of the circle group S 1 on M. This lifts to an 

action of PS1 on PM and JS 1 on JM.The unperturbed Hamiltonian is invariant 

under the S 1 action on M, but the path and perturbation Hamiltonians are not 

invariant under PS 1 and JS 1 • We would like to change the action of PS1 on PM 

so as to leave the path Hamiltonian invariant and so allow reduction. Since the 

resulting action should still be Hamiltonian, we look for an f.-dependent canonical 

transformation of I x M which is the identity at f.= 0 and which pushes the PS 1 

action into a symmetry. The method of Lie transforms (seeO (Cary, 1981) andO 

(Nayfeh, 1973) p. 200) attempts to do this at the perturbation level, letting the 

canonical transformation be the flow of an f.-dependent Hamiltonian, which is then 

obtained order by order. Here we need only consider the first order group action 
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of 1S1 ""TS1 on 1M"" TM. We know that the action will be perturbed so that 

the value of the reduced Hamiltonian is the average of the perturbed Hamiltonian 

around the untransformed circles. TM has twice the dimension of M. Reducing by 

TS 1 eliminates 4 dimensions. The resulting dynamical vector field has no unper­

turbed component. One may think of this as the reason for getting results good for 

time 1/f. (it is the effect of the unperturbed flow on the perturbation which causes 

this level of secularity). In this situation it makes intrinsic sense to project the 1st 

order vector field down to M, where it represents the slow dynamics. 

2.9.2.2. Extensions from Loops to Tori and Energy Surfaces 

A loop in a 2-dimensional phase space (like an orbit of a simple harmonic os­

cillator) may be thought of in 3 ways. It is !-dimensional, 1 dimension less than 2, 

and half of 2. Each has an important generalization to higher dimensional Hamil­

tonian systems. In the presence of a slowly varying Hamiltonian, we have already 

seen that the action of a !-dimensional loop is conserved. There is an analogous 

result for half dimensional Lagrangian tori. Kubo has shown that for a system 

ergodic on an energy surface (which has one dimension less than phase space), the 

volume enclosed is adiabatically invariant under slow variation of parameters (Kubo 

et al., 1965). Roughly: since the motion is ergodic, every orbit changes according 

to the average of the perturbation over the energy surface; thus the entire energy 

surface changes by the same energy and so is taken to another energy surface; but 

the volume enclosed by a surface is preserved under a canonical transformation by 
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Liouville's theorem. For a large number of degrees of freedom this leads to the does not explicitly contain tbe It; [the configuration variables whose velocity vari-

adiabatic invariance of the entropy in statistical mechanics. abies were Legendre transformed], tben we have tbe special case that Helmholtz 

{Crelle, Bd. 97, 1884) bas called a cyclic system and made a deep study of, and 

wbicb occurs somewhat earlier in Thomson and Tait as a "cycloidal system". 

2.9.3." Pseudo-Potentials and Adiabatic: Invariants In practice tbis case arises wben one is dealing witb rotating motions of rotating 

bodies (e.g., lly-wbeels), where tbe angle of rotation is the "cyclic" coordinate (so 
The funny potentials and Poisson brackets that result from reduction contain 

that only its coresponding momentum coordinate will come in). If the rotating 
the average effect of the fast on the slow degrees of freedom. Capturing this effect 

body is enclosed in an opaque box, then its 'hidden motion" reveals nothing more 
is the content of many physically useful theories. It is interesting to note that in 

than the usual behavior that tbe body as a whole shows as it moves in space (a 
the late nineteenth century, the idea that all potential energies were really kinetic 

top or gyroscope). In cases lilce tbis where outside inlluence on the motion of the 
energies of hidden or forgotten degrees of freedom was one the the main motivations 

lly-wbeel is excluded, ... , tbe momenta corresponding to the cyclic coordinates are 
for the development of kinetic theory. We may use averaging to see how this comes 

constant. 
about. 

From these facts follow some remarkable ideas on the nature of potential en-
Because of its direct relevance to the ideas presented here, let us give a long 

ergy. H we assume that the kinetic energy T decomposes into a part T(q) that 
quotation from Felix Klein's historical account of nineteenth century mathemat-

depends only on the velocities q and into a part T(1r) that depends only on the 
ical physics. He first introduces Routh's function R which was in between the 

cyclic momenta 1r (thus assuming that there are no terms in wbicb velocities q are 
Lagrangian and Hamiltonian in that only the first m of the n configuration space 

multiplied by momenta 1r ), then the Routh function is 
variables had their velocities Legendre transformed into momenta. He continues: 

R =T(q)- T(1r)- U 

"Thus the equations split into two groups, one of the Lagrangian kind and one (2.107) 
=T(q, q)- T(q, c)- U(q), 

of the Hamiltonian. For m = 0 the Routh function, and therewith the system of 
if we bear in mind the dependence of aU the quantities on the coordinates q and 

equations, is the same as in the Lagrangian case; while for m = n it is the same as 
replace the constant momenta 1r; by the quantities Ci The qm+l, . .. , qn are deter-

in tbe Hamiltonian. 
mined from the differential equations 

Tbis system of equations now acquires particular interest through certain gen-

eral fundamental concepts of mechanics that are connected witb it. Namely, if R 
oT(q) dpa o[T(q)- (U + T(c))] 

Pa = oqa ' dt = oqa 
(2.108) 
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Tbus one gets a system of formulas that exactly corresponds to a system witb n- m 

degrees of freedom and wbose potential energy bas been increased by T(c), tbe 

kinetic energy of bidden movements. Tbe quantities U and T( 'IT) are botb functions 

of q witb constant coefficients; tbey enter into tbe sum only together, not separately. 

Hence tbe question arises.,.wbere we in any case have no idea of tbe essence of tbe 

potential energy-of wbetber every quantity that appears in mechanics as "potential 

energy" is actually a kinetic energy caused by a bidden, cyclic, so-called "ignored" 

motion. Like a fata morgana, tbe possibility of a purely kinetic tbeory of matter 

appears in tbe distance. 

Tbis general idea was first presented in 1888 by J. J. Thomson in bis book 

Applications of Dynamics to Physics and Chemistry {lecture at Cambridge in 1886, 

then in tbe Philosophical 7i'ansactions 1886-87). But in special cases it bad already 

been pursued by William Thomson (=Lord Kelvin), for example in bis address to 

the British Association in Montreal in 1884, wbicb be prudently titled "Steps to a 

kinetic theory of matter" (Matb. and Pbys. Papers, Volume 3, p. 366). Tbis idea 

was finally worked out for closed systems in Heinrich Hertz's posthumous work of 

1904, Die Prinzipien der Mechanik {Tbe Principles of Mechanics]." 

2.9.3.1. Ping-pong balls and One-dimensional Gases 

H we slowly move a ping pong paddle up and down from a t.ible with a ping 

pong ball bouncing very rapidly between the paddle and the table, then we will 

feel a varying force due to the average momenta imparted due to the impacts of 

the ball. In phase space the ball describes a rectangle and so the action is given by 
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J = 4LmV where Lis the distance from the paddle to the table and Vis the speed 

of the ball. Because this is invariant under slow paddle movements, the ball velocity 

goes as 1/ L. The momentum transferred on each impact is 2mY and there are V /2L 

impacts per unit of time, so the average force felt goes like V 2 / L ~ 1/ L3 • Thus 

starting with no potential energy at all, we end up with a 1/ L3 effective potential 

for the paddle! 

It is well known that slow compression of an ideal gas keeps the quantity pV7 

constant, where the ratio of specific heats "Y depends on the properties of the gas 

(this follows from the adiabatic invariance of the entropy). Our single particle result 

is exactly this requirement for a one-dimensional gas with "Y = 3. Since particles 

do not interact in an ideal gas, it makes sense that each particle should reflect the 

behavior of the entire gas. (A similar result holds for radiation, where the adiabatic 

compression of a container containing black body radiation acts on each normal 

mode separately and yet the overall effect keeps the spectrum black body but at a 

different temperature.) 

2.9.3.2. Oscillatory Stabilt.ation 

For a harmonic oscillator, the energy is the product of the action and the 

frequency: H = wJ. If we have a weight, hanging on a string and undergoing 

small amplitude oscillations as we slowly pull the string, the change in pen~'.llum 

energy is the change in J w. J remains constant and w ~ .JilL so we feel a 1/ v'L 

potential. We get other potentials if we ask for the force we feel if we tune a guitar 

string as someone plays it or the acoustic pressure on the water if we fill up a 
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shower as someone sings in it. The effective force due to the fast degrees of freedom 

may sometimes stabilize an unstable fixed point of the slow system. Ordinarily an 

inverted pendulum is unstable and falls to the position with the weight hanging 

downward. If we shake the support of the pendulum periodically hard enough 

and fast enough, the inverted position is stabilized! An even more spectacular 

version of this effect occurs if you shake an inverted cup of fluid and stabilize the 

Rayleigh-Taylor instability which ordinarily causes the fluid to spill out (it is easiest 

to actually do the experiment with a high viscosity fluid like motor oil). The idea 

of RF stabilization is to stabilize unstable modes of a plasma (say in a tokamak) 

by bathing it in a high frequency radio wave. Some of the modern airplanes with 

wings in a forward facing delta are actually operated in an aerodynamically unstable 

regime that is stabilized by the fast dynamics of a computer controlled feedback 

loop. This allows for great maneuverability (since the plane would like to turn 

anyway!). 

2.9.3.3. Multiple Space and Time Scales 

Quite often it is very useful to split out the main dynamics of a system and 

linearize the rest, treating them as fast oscillations. Thus one takes a fluid, elas­

tic, or plasma medium and treats its evolution as slow overall development of the 

background medium with fast oscillations occuring on top of it. The effect of the 

oscillations is to change or renormalize the dynamics of the background. N.G. van 

Kampen has called into question the usual treatments of constrained mechanical 

systems [van Kampen, 1983]. One usually just writes down the Lagrangian for 

2.9.3.3. Multiple Space and Time Scales 162 

such a system in generalized coordinates which respect the constraints. Physically, 

though, one supposes that there is some large potential normal to the constraint 

surface. The system will execute rapid oscillation in the normal direction and slow 

evolution along it. If the width of the constraining potential well varies with the 

mechanical coordinates, then as we have seen the adiabatic invariance will give rise 

to a new pseudopotential which affects the mechani~al motion. In a plasma we treat 

the slowly varying background as a dielectric medium in which waves propagate ac­

cording to WKB theory. The waves affect the background (introducing a radiation 

pressure in the dynamics) via ponderomotive forces. If we have a charged particle 

in the presence of a wave with a slowly varying amplitude, the particle will oscillate 

back and forth with the wave. It feels more of a push in going down an amplitude 

gradient than in going up one, leading to an overall average force described by the 

ponderomotive potential. This kind of separation is the basis of plasma quasilinear 

theory. We have extended the geometric perturbation theory to some of these singu­

lar perturbation problems. Chapter 8 gives a Hamiltonian treatment of an eikonal 

theory for linear or nonlinear waves (which is related to the averaged Lagrangian 

treatment of Whitham [Whitham, 1974]). Here let us demonstrate the efficacy of a 

global geometric approach only with the simple example of Ex B drift. A charged 

particle restricted to a plane with a constant perpendicular magnetic field executes 

perfect circles. If there is, in addition, an electric field then the radius of the circles 

is greater in low potential regions and smaller in high potential regions. Thus the 

circular orbits do not close and the particle drifts perpendicularly to the electric 

field. A Hamiltonian treatment of more. complicated versions of this so-called guid-
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ing center motion has been previously given [Littlejohn, 1983]. This work required 

great cleverness in the choice of physically relevant coordinates. We would like to 

demonstrate, in this simple version, how a coordinate free approach would lead us 

to the correct answer, with no previous knowledge. 
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2.10. Example: E x B Drift 

In the simplest situation we have a charged particle in the x, y plane moving 

in the presence of a constant magnetic field B which points in the z direction and 

a small constant electric field tE which points in the x direction. We introduce the 

phase space P...., r• R 2 with coordinates (x, y,p.,,p11 ) (we use mechanical momenta 

p = mv here). The correct dynamics in the presence of a magnetic field may be 

described in a Hamiltonian formulation in two ways. The standard approach is to 

introduce the unphysical vector potential A and to work with canonical momenta 

p = mv - (e/c)A. Here we use the physical momenta and magnetic field, but a 

noncanonical Poisson bracket: 

eB 
{/,g} = f.,gp.- /p.g% + J.,gp.- /p.g., + ~(fp.gp.- /p.gp.)· 

We obtain the correct dynamics in this case with the Hamiltonian 

The dynamics is then 

1 
H = Ho + tHt = 

2
m (p~ + p~)- teEx. 

X
,_ Pz • _ P11 -- y--

m m 
. eB 

p., = -p11 +teE 
me 

eB 
. - --p.,. p.,- me 

(2.109) 

(2.110) 

(2.111) 

The unperturbed situation here is just a charged particle on a plane in a constant 

magnetic field. Every orbit in this situation is a closed loop. Thus the unperturbed 

system has a circle symmetry: 

. p., 
x=­

m 
. eB 

Pz = mcp11 

il = p., 
m 

eB . - --p:z; P.,- me 

(2.112) 
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The generator of this symmetry (i.e. the momentum map) is none other than the 

unperturbed Hamiltonian itself: 

1 2 2) Ho = -(pz + P11 • 
2m 

(2.113) 

This is because non-relativistic motion in a constant magnetic field has the re-

markable property that the period of all orbits is the same (we could introduce a 

normalization constant to make it 1 or 21r if desired). Let us obtain the reduced 

phase space and Poisson bracket for this symmetry action. First we look at the space 

of loops P / S 1 • Each circular particle orbit has exactly one point where p11 = 0 and 

Pz ~ 0. We niay label a loop by the values of x, y,pz at this point. Next we restrict 

to the set where the momentum map is a constant: Ho =a. The reduced space is 

R = P/S11Ho=a (2.114) 

and may be coordinatized by the values of x and y when Pz = v'2mo: and p 11 = 0. 

The reduced Poisson bracket {,}a of two functions f(x, y) and g(x, y) is obtained 

by extending them to P in such a way that 

aj I =O 
apz Pa=v'2ma, Pv=O 

(2.115) 

and 

{j,Ho} = O = v'2mo: aj _ eB J2mo: aj 
m ax me apll 

(2.116) 

Thus we replace ajapz by 0 and ajap11 by (c/eB)ajax to get 

c 
{f,g},. = eB(f"9"- fzg"). (2.117) 
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Thus we see that the original spatial coordinates x and y now play the role of 

canonically conjugate variables in the reduced space. The factor of 1/ B in the 

bracket appeared in Littlejohn's work [Littlejohn, 1983]. The full system is not 

invariant under our circle action. If we average the perturbation Hamiltonian H 1 

around the circles, we do obtain a circle symmetric system. The average ~f the 

potential teEx around a loop is just the value when p11 = 0. Thus the reduced 

averaged Hamiltonian is 

H .. (x,y) =a- teEx. (2.118) 

The reduced averaged dynamics is then 

:i: = {x,Ha}a = 0 

- c ) cE iJ = {y,Ha}a = eB(-teE = -tB. 
(2.119) 

This is indeed the E x B drift dynamics. 
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"Pbilosophy is written in this grand book, the universe, which stands continu­

ally open to our gaze. But the book cannot be understood unless one first learns to 

comprehend the language and read the letters in which it is composed. It is written 

in the language of mathematics, and its characters are triangles, circles, and other 

geometric ligures without which it is humanly impossible to understand a single 

word of it; without these, one wanders about in a dark labyrinth. "-Galileo in The 

Assayer 

3.1. Pseudo-forces and Reduction 

If you have a system that is coupled to some subdynamics and you forget about 

the subdynamics, the original system may evolve with new "pseudo-forces" acting. 

For simple mech;o.:o..ical systems with symmetry, these take the form of "magnetic" 

terms in the Poisson bracket (by analogy with a Hamiltonian description of parti­

cles in magnetic fields} and new "effective potentials" in the Hamiltonian. These 

forces may stabilize previously unstable dynamics, just as a free charged particle at 
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rest in the plane is stabilized by a perpendicular magnetic field (magnetic stabiliza­

tion). One finds these pseudo-forces also in situations where the observer's motion 

is included in the dynamics. In more complex examples these forces seem to lead 

to "convective" terms in Eulerian continua descriptions, drifts and pondermotive 

forces, "forces" that bend light rays in inhomogeneous media, pressure and other 

thermodynamic forces in statistical mechanics, "renormalized" masses for quasi­

particles, etc. Near the end of the last century, there was a school of thought that 

held all potential energies to be merely the kinetic energy of "hidden" degrees of 

freedom. This gave great impetus to the kinetic theory of matter as we discussed 

in section 2.9.3.1. 

3.1.1. Fictitious Forces 

Our goal in this chapter is to give a coordinate-free interpretation to the process 

of changing reference frames and to the concommitant new physical effects. We first 

consider the effect of a time dependent change of phase space. A single state in the 

new frame corresponds to a time-parametrized curve of states in the old frame 

(e.g., a given configuration of particles and their velocities fixed in a rotating frame 

corresponds to a whole circle of states in a fixed frame as time evolves). We therefore 

have a time-dependent identification between the original phase space and the new 

one. The time dependence of the identification diffeomorphism may be expressed 

as the ftow of a vector field Y (for example, a rotating reference frame is described 

by the vector field we discussed in section 2.6}. 
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Let FX1 be the flow of X for timet, and FY1 the flow of Y for timet, on M. 

F X, is viewed as the dynamics and FY1 as our "changing point of viewn, so the 

dynamical evolution we observe is FY1 oFX1 • This is the flow of the time-dependent 

vector field 

X =FY,. ·X +Y (3.1} 

by the chain rule (the lower star means push-forward by the map FY1 , and represents 

the image of X at each point under the differential of FY1). If X is Y-invariant, 

then 

X=X+Y. (3.2} 

If X is Hamiltonian Xn and Y is a symmetry generated by J, then the combined 

flow has Hamiltonian 

if =H+J. (3.3} 

J represents fictitious forces in the Hamiltonian due to our changing perspective. 

3.1.2. Rotating Coordinates 

In this section we will demonstrate these ideas on the example of a rotating 

coordinate system for a particle in the plane. A very important subtlety arises 

from the question of what the velocity and momenta are in a rotating frame. One 

perspective takes some given inertial fri"De and always talks about velocity v in 

that frame with corresponding momentum mv. The other perspective measures 

velocities with respect to the observer's coordinate system. If we do this and still 

define momentum as mass times velocity, then the Poisson structure will change in 
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general as we change coordinates. We take this approach here and will identify the 

new piece in the Poisson bracket as the Coriolis force. In older times the notion of 

a non-canonical Poisson bracket was not in widespread use. To keep the bracket 

definition invariant, one had to say that momentum did not change under change 

of reference frame (see for example p. 129 of the mechanics volume of [Landau and 

Lifshitz, 1960-1981]}. 

Let 

1 
H = -(p:z + p:z) + V(Jx:z + !P) 2m ., 11 · 

{3.4} 

be a rotationally symmetric Hamiltonian on T* !R2 and 

J = w(xp11 - yp.,) (3.5} 

generate rotations. Since H is invariant under the symmetry here, 

if= H+J. (3.6} 

This captures the observer's rotating reference, but does not include the fact that 

due to his motion the observer will measure a different set of values for the momenta. 

(In some sense, the transformation thus far has given us valid orbits of the observed 

system but has changed which orbit we are looking at}. We must change coordinates 

by 
x=x, 

y=y 
(3.7} 

p., =p,. -wmy 

P11 =p11 +wmx 
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to get the momenta as seen in the rotating frame. Here we define the momentum 

p to be m times the observed velocity. The observed x-component of the velocity 

will be the velocity tlz measured in the fixed frame minus the x-component of the 

velocity of the observation point in the rotating frame, which is wy. Similarly, 

the observed y-component of the velocity is v11 minus -wx. The dynamics is now 

described by 

-1 ~w2m H = 
2
m (p~ + p~) + V( v x2 + y2) __ 

2
_(z2 + y2) 

with the Poisson bracket 

(
af ag af ~) 

{!,g}={/,g}canonical+2wm a;;.,a;;ll- a;;llap., . 

The centrifugal term 

w2m(z2 + y2) 
- 2 

(3.8) 

(3.9) 

(3.10) 

makes an effective potential or pseud<>-force and the Coriolis term in the Poisson 

bracket is of the "magnetic" type which causes drifts. 

3.1.3. Reduction of Simple Mec:hanical Systems 

We have seen how changing coordinates can lead to pseud<>-potentials in the 

Hamiltonian and magnetic terms in the Poisson bracket. Asymptotic systems get 

pseud<>-forces by reduction by an approximate symmetry. Here Ne give the context 

in which pseud<>-forces and magnetic terms in the Poisson bracket may be seen 

to arise from the process of reduction. We specialize this to circle actions in the 

next section. In the following 3 sections we show how changing coordinates may be 
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viewed as reduction of a larger space which includes the observer's state. This unifies 

these two sources of pseud<>-forces. The argument is of necessity a bit abstract and 

so some readers may wish to skip the details. Let us start with the general setting. 

H the phase space is T"Q, where Q is Riemannian with metric K and the 

Hamiltonian is of the form 

H = K" +1r"V, (3.11) 

where we moved K to T*Q and 

V:Q-+~ (3.12) 

is a real valued function on Q which we lift to T*Q along the natural projection 

11": T"Q-+ Q, (3.13) 

then we have a simple mechanical system (see (Abraham and Marsden, 1978] p. 

341). A group action of G on Q by isometries that preserve V lifts to T*Q to 

preserve H. If we reduce at 1-' E g• with the momentum map 

J: T"Q-+ g"' (3.14) 

the reduced space is 

(T"Q),. = J- 1(1-')/G,. (3.15) 

where G,. is the isotropy subgroup of 1-' under the coadjoint action. We may :dentify 

this reduced space with the cotangent bundle T*(Q/G,.) with a new Poisson bracket 

(the old one plus "magnetic terms") and a new Hamiltonian (the old one with a new 

"effective potential"). Using the metric, we choose a one-form o:,. on Q to behave 
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on vectors tangent to the orbit of G,. in Q the way 11 behaves on the corresponding 

elements of the Lie algebra, and to annihilate vectors perpendicular to the orbit. o.,. 

induces&,. on QIG,. and by lifting, on T*(QIG,.). The new symplectic structure on 

T*(QIG,.) is the old one plus the magnetic pieced&,.. The new Hamiltonian is the 

old one (His G invariant and so is defined on T*(QIG,.)) plus a pseudo-potential 

K*(o.,.(q)) (for more details see [Marsden, 1981] p. 33). 

3.1.-'. Clrde Actions on Simple Mechanical Systems 

With the notation above, if G is a circle and the vector field generating its 

action on Q is e, then there are some simplifications. The momentum map 

J: T*Q ...... !R (3.16) 

may be takento be 

O.q ~ o.q(e). (3.17) 

The G-action on T*Q is then generated by XJ. o.,. is then simply 

p 
K(e, e) K(·, e), (3.18) 

so the effective potential is 

112 

K(e,er 
(3.19) 

In this case the reduced space is identifiable with r· ( Q I 8 1 ) with its modified struc-

tures. 
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3.1.5. Fictitious Forces as Reduction 

We now describe a setup which unifies some of these constructions. Assume 

we are given, as above, a Riemannian Q with metric K and symmetry generated 

by {which also leaves V: Q ...... !R invariant. e lifts to XJ, which is generated by 

J(q,p) = p(e(q)) (3.20) 

and leaves H = K* +Von T*Q invariant. Above we reduced by XJ to get a lower 

dimensional system. The approach to fictitious forces given in section 3.1.1 treated 

the rotating phase space as being of the same dimension as the fixed phase space. 

Here we increase the dimension by 2. Now we introduce a "rotating observer", 

described by a point 8 of a circle 8 1 and a rotation action PB in r· 8 1 . A circle acts 

on this s 1 generated by a I a8 and lifts to r· s 1 generated by PB. Call 

. a e=-+e a8 

on 8 1 x Q and lift it to X 1 on T*(S1 x Q) generated by 

j =pe+J. 

(3.21) 

(3.22) 

e rotates the configuration space without changing 8 (the state of the observer), 

ala8 rotates the observer without changing configuration space, {rotates the two 

together (twisting together the two circle actions), X J rotates particle phase space 

alone, Xp, rotates the observer alone, and X 1 rotates the particle phase space and 

the observer. 

We have the Hamiltonian 

• 1 2 
H = H + 2Pe .(3.23) 
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on T"(S 1 x Q) which generates the real dynamics on T"Q and rotates the observer 

with speed PI!· It Poisson commutes with PI!, J (thought of on T"(S 1 x Q)) and 

j_ We want to consider the orbit space of the Xi action, but to look at the level 

surfaces of PI! (as opposed to i) since we want to study a given speed of rotation 

and we don't want to mix up diHerent speeds in the same phase space. We may 

identify 

T"(S1 
X Q)l~=conotant/XJ (3.24) 

with T*Q by identifying (8,q,p9,p) to the (q,p) on the XJ orbit through it at the 

point 8 = 0. Since 

and 

a 
Xy = XH + Pe 08 

a 
XJ=XJ+ o8' 

the dynamics on T"(S1 x Q)/XJ identified in the above way is given by 

XH...:. peXJ. 

The Poisson bracket of two functions is seen to be 

{' } { } 
og of 

,g = /,g -XJ·!-+-XJ·g. 
T•(S 1 xQ)/XJ T"Q OP9 ope 

(3.25) 

(3.26) 

(3.27) 

(3.28) 

If we now restrict tope =constant, and identify with T"Q, we get a Hamiltonian 

system with the original Poisson bracket and Hamiltonian 

H-ptJJ, (3.29) 

showing -pej to be a fictitious force. 
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3.1.6. Fictitious Forces with Momentum Shift as Reduction 

Now we apply the ideas from section 3.1.4 to the setup in section 3.1.5. The 

orbit space of { on 5 1 x Q is identifiable with Q by sending an orbit to its q value 

at 8 = 0, call it (5 1 x Q)/{. We would like to compare the T"Q obtained in section 

3.1.5 by quotienting T"(S 1 X Q) by x1 and holding p8 fixed, with the T"Q obtained 

by taking the cotangent bundle 

T"[(S1 x Q)/{] (3.30) 

and so obtain its relation to the original T"Q dynamics. We use the fact that on 

the cotangent bundle 

T"[S1 x Q)/{] ~ T"Q (3.31) 

with metric K on Q, the momentum p should be related to the velocity via K: 

p = 2K(·,q). (3.32) 

Here q is the projection of the dynamics on T*Q down to Q. This gives us a map 

T"Q-+ T"Q, by (q,p) ....... (q,p) (3.33) 

where (q,p) is a representative of a point in 

T"(S
1 

X Q}/XJip,=conotant 

and (q,p) in 

T"[(S 1 
X Q)/{]. 
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Since the Hamiltonian is now H - peJ, we see that 

K is quadratic, so 

and so 

In the case Q = !R2 , 

is a rotation, and 

on TQ and 

on T• Q, we see that 

and 

If we identify 

q =~(H- PeH) ap 

= :P(K.(p,p) + V(q)- pep(e(q))) 

= :P K•(p,p)- Pe{(q). 

2K(·, :P K•(p,p)) = p 

- aH a =2K(·, ap) 

=p- pe2K(·, {). 

a a 
{ = z ay- Yax 

K = ;(dz2 +dy2
) 

• 1 ( 2 + 2) K =-p, P11 2m 

Pz =p, +pemy 

P11 = P11 - pemx. 

w = -pe 
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then this is exactly the setup in section 3.1.2. Thus the Coriolis force and centrifugal 

force obtained in 3.1.2 are identified with magnetic terms in the Poisson bracket 

and a modified potential in the Hamiltonian arising from reduction. 
(3.34) 

(3.35) 

(3.36) 

(3.37) 

(3.38) 

(3.39) 

(3.40) 

(3.41) 

(3.42). 



3.2. Geometry of the Method of Variation of Parameters 179 3.2. Geometry of the Method of Variation of Parameters 180 

3.2. Geometry of the Method of Variation of Parameters !\ow consider a perturbed vector field 

Let us now consider the powerful and commonly used perturbation technique 
Xo + £X1 (3.44) 

known as the method of variation of parameters. A good description of the technique 

may be found in [Nayfeh, 1973] on p. 59. This method defines the evolution of the on M. Let 1t represent the time t flow of the unperturbed dynamics Xo. If x(t) 

perturbation in terms of quantities at the unperturbed point. We expect to be is to be the "evolution of initial conditions" that variation of parameters produces, 

0(1) away from this point in time 1/£ (since the size of the perturbation is 0(€)) then J;(x(t)) is a solution to the full equation 

and so cannot get a correct description on this time scale. To extend the time of d 
dtlt(x(t)) = Xo(lt(x(t))) + fX1 (1t(x(t))). (3.45) 

validity, the orbit of the unperturbed system to which we compare the true flow 

must be allowed to vary. If we label unperturbed orbits by their initial conditions, By definition, the left hand side is 

then we may rewrite the perturbed orbit's drift from unperturbed orbit to orbit in 

terms of a drift of initial conditions. Often this slow drift may be further simplified 
= Xo(lt(x(t))) + Dlt · (:i:(t)). (3.46) 

(eg. via averaging) and results in a usable perturbation theory for time 1/L Let us 
Thus 

formulate this dynamics geometrically. 
x(t) = fD.1-t(x(t)) · X 1 (1tx(t)) = £.1-t.X,. (3.47) 

Any dynamical system 

x = X(x) (3.43) 
We may view this as a time dependent evolution equation or consider dynamics on 

Di!f(M) x M given by 

on M gives rise to a natural dynamics on the group Dil I(M) of diffeomorphisms 

of M. We view X as an element of the Lie Algebra dil I(M) and we get the right- X: (f,x) ~-->(Xo o l,fi;'Xl) (3.48) 

invariant dynamical vector field by right translation to each point of Dil I(M). 
with initial condition (identity, x0 +£xi). If J; is periodic then £.1-t.Xl is periodic 

In general, we get a right-invariant vector field on a group containing the vector 
and the method of averaging is to average it over a period. We discuss the method 

· v at the identit· , by considering the first order infinitesimal left translation by 
of averaging in greater dPi.ail in section 2.9. 

the !-parameter subgroup to which v is tangent. The resulting flow on Dil I(Af) 

has the following interpretation: The time-t evolution of I E Dil I(M) is the 

diffeomorphism obtained by first applying I and then letting X flow for time-t. 
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3.2.1. Hamiltonian Variation of Parameters 

If M, w is symplectic and 

XH0 + £XH, {3.49) 

is Hamiltonian, then we may work on the group Symp(M) of symplectomorphisms. 

Iff E Symp(M) and XHo is Hamiltonian, then so is XHo of. We may define a 

right invariant symplectic structure on Symp(M) by 

w,(xl 0 f,X2 0 f)= IM w(X1,X2)dx. (3.50) 

We would like to find a Hamiltonian on Symp(M) whose corresponding vector field 

at f E Symp(M) is XHo of. We first determine the one-form obtained by inserting 

this into w: 
wt(XHo o f,X of)= JM w(XH0 ,X)dx 

= JM dHo(X)dx 

= JM X(Ho)dx. 

(3.51) 

Thus we may take the Hamiltonian on Symp(M) to be the right invariant function 

Ho(f) = J Hof dx. (3.52) 

To check that this gives the correct dynamics, notice that the vector X o f acting 

on this is 
d ~ I d d£H(f +£X)= d£H(f + £X)dx 

=I X(Ho)dx 

(3.53) 

as desired. Now notice that 

£f.- 1 XH, = £Xt·H,· (3.54) 
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So with a symplectic structure on Symp(M) x M given by 

W X W, {3.55) 

and a Hamiltonian H : Symp(M) x M --+ ~ given by 

H: (f,x)....., JM Hoof dx + £HI(f(x)), (3.56) 

we get the variation of parameter dynamics. 

We may see from this that if XHo has all periodic orbits then .the averaged 

dynamics is Hamiltonian with Hamiltonian HI(f(x)) averaged over the evolution 

f. 
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Chapter4: 
Hamiltonian 
Structures in 
Perturbation Theory 

"Scbrodinger and I both bad a very strong appreciation of mathematical beauty 

and this dominated all our work. It was a sort of act of faith with us that any 

equations which describe fundamental laws of Nature must have great mathematical 

beauty in them. It was a very profitable religion to hold and can be considered the 

basis of much of our success. "-P. A. M. Dirac on p. 136 of [Dirac, 1977] 

4.1. Introduction 

In this chapter we describe the geometry of a Hamiltonian structure for non-

singular perturbation theory applied to Hamiltonian systems on symplectic man-

ifolds. This is limited in two respects: 1) Many systems of physical interest re-

quire more sophisticated singular perturbation methods as in [Nayfeh, 1973] and 

[Kevorkian and Cole, 1981] and 2) the Hamiltonian structures of many systems are 

given in terms of more general Poisson manifolds [Weinstein, 1983a]. Some exten-

sion of the present chapter to these cases is given in later chapters. The results 
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in this chapter are relevant to these investigations though. Most singular pertur-

bation methods have a nonsingular expansion underlying them. Poisson manifolds 

are stratified by symplectic manifolds and many of the symplectic constructions 

considered here are susceptible to generalization. 

If we are given dynamics in the form 

f2 
:i: = Xo + EX1 + -X2 + · · · 

2 
( 4.1) 

where each of the vector fields X; is Hamiltonian with respect to a common Poisson 

structure, we·may attempt to express the solution as an asymptotic series in f: 

f2 
x(t) = xo(t) + tx1(t) + 2x2(t) + · · · · (4.2) 

Plugging this form into the equation of motion and equating coefficients of powers 

of £ gives us equations for x0 , x 1 , .... The main result of this chapter is that the 

equations for xo, ... , x J form a Hamiltonian system for any J. 

These results were discussed in chapter 2 but are proved here in full detail. 

The background material and non-Hamiltonian perturbation structures introduced 

in chapter 2 will be needed in this chapter. The reader not familiar with geometric 

mechanics at the level of [Arnold, 1978] may find sections of this chapter rough 

going. Except for parts of chapter 5, the rest of the thesis is independent of the 

detailed derivations given here. 

We study the perturbation Hamiltonian structure in five different ways, each 

of which sheds a different light on it. In the second section we do the case of first 

order perturbation theory explicitly, where it is easier to understand the structure. 

The extension to arbitrary order necessitates the introduction in the third section 
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of certain path spaces and jet bundles. The five investigative approaches then 

follow. 1) In the fourth section we give the desired Hamiltonian structure in local 

canonical coordinates. 2) The fifth section shows that this structure is coordinate 

independent by imbedding the jet bundle in an iterated tangent bundle. 3) The 

sixth section obtains the structure from a natural one on the infinite dimensional 

path space. 4) The seventh section shows in what sense the structure is the Jth 

derivative of a product structure. 5) The eighth section shows that if the original 

symplectic manifold is a coadjoint orbit in the dual of a Lie algebra with the Kirillov­

Kostant-Souriou (KKS) Lie symplectic structure, then the jet bracket is a KKS Lie 

symplectic structure for a coadjoint orbit of a certain jet group. We close with a 

discussion of the process of reduction applied to perturbed systems with symmetry. 
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4.2. First Order Hamiltonian Perturbation Theory 

Let us recall the geometric structure of Hamiltonian mechanics. The phase 

space will be a 2N-dimensional symplectic manifold M (many of the constructions 

work in infinite dimensions and many of the interesting physical examples are infi-

nite dimensional [Marsden, 1981], but this entails technicalities which we will not 

consider here). This is a manifold with a distinguished closed non-degenerate 2-

form w which geometrizes the classical Lagrange bracket. The Hamiltonian is a 

distinguished function H on M which we take to be a function off as well. Usually 

we assume that c E I= [0, 1] and so we can view Has a function on I X M. For 

each value off we obtain a vector field X(c) on M by the Hamiltonian prescription. 

This says that at a point x0 EM, X(c, x0 ) is the unique (since w is non-degenerate) 

vector at xo which gives the one form dHizo,• when inserted in wlzo> i.e. 

ix(•)w = dH. (4.3) 

We will discuss the flow of X(f) as though it were complete, though this need not 

be the case (a vector field is complete if solution curves don't run off the manifold 

in finite time). Let us assume that H may be represented in an asymptotic series 

as f -+ 0 which is uniform in x, i.e. 

(2 
H(c,x) ~ Ho(x) + cH1(x) + 

2
! H2(x) + · · · (4.4) 

where the first derivatives of each H; are uniformly bounded in x. Because of the 

linearity in going from functions to their Hamiltonian vector fields, we also have the 

asymptotic expansion 

(2 

X(£, x) ~ Xo(x) + cXI(x) + 2!X2(x) + · · · (4.5) 
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as t ~ 0. In this expression, X; represents the Hamiltonian vector field correspond-

ing to H,. Hamilton's equations are 

x(t, t) = X(t, x(t, t)). {4.6) 

Let the initial conditions be given as x(t,t = 0) = y(t) and assume that y has an 

expansion y(t) ~Yo+ tY1 + (t2 /2!}y2 + · · ·. 

As we have seen in chapter 2, non-singular perturbation theory asks for the 

flow representing the solution as an asymptotic series in t: 

{2 
x(t, t) ~ xo(t) + txl{t) + 

21 
x2(t) + ... as €-+ 0. (4.7} 

In chapter 2 we substituted this representation into the equations of motion, equated 

coefficients of equal powers of €, and so obtained differential equations for xo, X1, ... 

with initial conditions given by x;(t = 0} = Yi· The solution of these equations gave 

us an asymptotic representation of the true solution, but in general it was non-

uniform in t. To deal with times (like ~) longer than some bounded value as t -+ 0, 

we must use f!10re sophisticated perturbation techniques such as Lie transforms or 

multiple time scales and so lose the generality of the problems we may treat. We 

discuss these singular or secular perturbation theories in chapter 5. 

The goal in this chapter is to determine the geometric nature of the quantities 

xo, x1, ... and to determine a Hamiltonian structure for their evolution equations. 

It is easy to relate these asymptotic expansions for the abstract vector fields and 

their Hamiltonians to a coordinate representation of them. If we introduce a local 

coordinate system x 1 , ... , x2 N on a chart of M, we may express 

2N a 
X(t, x} = L xa(€, x} axa 

a=l 

(4.8) 
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and 
21v a 

X;(x) = L X;'(x) axa 
a=l 

for 0 ~ i < oo. {4.9) 

We will use a convention where the upper index from the beginning of the Latin 

alphabet {e.g. a,b,c, ... ) gives the coordinate on M and the lower index from the 

middle of the Latin alphabet (e.g. ij,k, ... ) gives the order of perturbation. The 

components of X in this coordinate system have the asymptotic expansion 

Xa(t,x) ~ X0(x) + tXr(x) + · · · as € -+ 0 for 1 ~ a ~ 2N (4.10) 

as may easily be seen. The equations of motion are 

xa = xa(t,x} with xa(t = 0} = ya for 1 ~a~ 2N. (4.11} 

We saw in chapter 2 that the first order perturbation approximation to these 

equations is 
xi)= xg(xo) 

2N axa 
·a "'"" 0() b xa() xl = L.J axb xo . xl + 1 xo 

b=l 

( 4.12) 

with initial conditions x0 ( t = 0} = y0 and x~ ( t = 0) = y~. A solution xo (t), x 1 ( t} to 

these equations with the correct initial conditions will form a first order asymptotic 

solution xo(t) + txl(t) to the original equation at each fixed t (and so uniformly 

over bounded time intervals). 

We have seen how to formulate this procedure in terms of coordinate free 

objects. The true dynamics takes place on M and for each t the flow x(t) is a 

diffeomorphism of M to itself taking initial conditions to their time t evolution. 

X 0 and X 1 are vector fields on M. xo ( t) gives the flow of the unperturbed vector 
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field Xo. Because XJ represents a small perturbation to xo as f vanishes, it lives 

in the tangent space to M at xo. xo, x 1 represent an equivalence class of flows 

parameterized by f, where we identify flows which asymptote to the unperturbed 

flow with linear rate x 1 as f goes to zero. If we pick a time t and an initial condition 

then each flow defines a curve parameterized by f, which passes through x0 (t) when 

f = 0. The equivalence relation on flows leads to an equivalence relation on curves 

through xo(t) that is exactly the defining relation for a tangent vector based at x0 (t). 

In local coordinates on M, we see that x0, x~ for 1 ~ a, b ~ 2N are coordinates on 

the tangent bundle TM where xo coordinatizes the base and x 1 the fiber over xo. 

Equations (4.12) are to be thought of as locally defining a vector field on TM. 

We showed in chapter 2 that they are actually coordinate independent by defining 

vector fields Xo and XI on T M from Xo and XI on M. If Xo(t) is the flow of Xo on 

M, then its derivative Txo(t) defines a flow on TM. We defined the corresponding 

vector field on T M: 

~ dl Xo = -d Txo(t). 
t t=O 

(4.13) 

Xo defines the linearized flow of X 0 (see [Abraham and Marsden, 1978], page 252). 

In coordinates, Xo is given by 

.:i:ij = xg(xo) 

2N axa 
·a '"" 0 ( ) b xl = ~ Bxb xo . xl 

b=l 

for 1 ~a~ 2N. (4.14) 

Because the tangent space at a point is linear, it makes sense to add a vector 

v in T M to a tangent vector in TT M over v. Thus for ( x, v) E T M we may define 

- d I X1(x,v) = -d (v + tXI(x)). 
t t=O 

(4.15) 
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This gives a vertical vector field on the bundle T M which is constant on each ~ber. 

In coordinates X 1 is given by 
±g = 0 

{4.16) 

.:i:~ = X~(xo) 

Thus the invariantly defined vector field X0 +X 1 on T M gives the correct equations 

{4.12) in each local coordinate patch. 

Let us now assume that X 0 and X 1 are Hamiltonian and investigate the Hamil­

tonian nature of the perturbed system Xo + xl on TM. M carries the symplectic 

two-form w and we are given Hamiltonians H 0 and H 1 such that 

ix0 w = dHo 
( 4.17) 

ix,w = dH1 • 

T M carries a natural symplectic structure w gotten by using w to identify T M 

with T" M and by pulling back T* M's natural structure to T M ( [Abraham and 

Marsden, 1978], page 200, problem 3.3I). Because the unperturbed Hamiltonian is 

a map from M to the reals, 

Ho: M--+ !R, ( 4.18) 

we see that its differential, 

dH0 : TM--+ !R,· (4.19) 

may be thought of as a function on T M which is linear on the fibers. If we denote 

the natural projection of TM toM by 1r then since H 1 is a function on M, we see 

tl~at 7r* HI is a function on T M. We shall see that Xo and XI are Hamiltonian with 

respect to w with Hamiltonians given by dH o and 7r* H 1 . Thus 

ii = dHo + 1r• H1 . (4.20) 
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is the desired Hamiltonian on TM for the perturbed equations (4.12). 

We demonstrate these statements in local Darboux (canonical) coordinates 

q0
, p0 for 1 ~ a ~ N on M. The symplectic structure is 

N 

W = Ldqo 1\ dpa (4.21) 
o=l 

with corresponding Poisson bracket: 

{ qa' p~} = bafJ (4.22) 

and ·all other combinations of q's and p's vanishing. We represent x 0 by q0, p0 and 

x 1 by qf, pf. One can see that the natural Poisson bracket on TM corresponding 

to to is 

{qQ',pn =hafJ {qf,pg} = b0 fJ for 1 ~ a, /3 ~ N (4.23) 

where all other combinations vanish. In these coordinates 

N 

il(qo,po,qi,Pd = L (~H~ qf + ~H~Pr) + Hl(qo,Po). 
a=l qo Po 

( 4.24) 

The corresponding equations of evolution are 

- ail aHo 
cio = {qQ',H} = ap't = apg 

- ail. aHo 
Po= {p(j,H} =- aqf =- aqg 

- ail ~ ( ~ a fJ a ) aHo an1 
c1r = {qf,H} =a a= L...... q~-a ~ +P1i}ff apo + apg 

Po fJ=I qo Po o 

(4.25) 

- N ( ) ·o a - aH ~ a fJ a aH0 aH1 
P1 = {Pi , H} = - aq" = L ql -a ~ + P1 -a .a (- aq" ) - aqo · 

o ~=I qo Po o o 
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But X 0 gives the equations 

so we see that 

aXo. Xi= 

axo 

X 1 gives the equations 

aHo 
clo = apg 

( 

a i!..!J.JJ. 
aqo apo 

a i!..!J.JJ. aqo (- aqo ) 

an1 
•Q - - -~ qo - apg 

aHo 
Po=- aqg' 

a i!..!J.JJ. ) ) 
a ap(o-a~) (~: . 

apo apo 

an1 
Po=- apg 

and il has indeed given us the desired perturbation equations ( 4.12). 
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(4.26) 

(4.27) 

(4.28) 
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4.3. Path and Jet Spaces 

We would now like to extend the first order results of the last section to arbi-

trary order J. We will extend the Hamiltonian structure from the tangent bundle 

to the jet bundles introduced in Chapter 2. 

As in that chapter, we introduce the path space: 

PM= {space of all paths p: I-+ I x M of the form p: f......, (E,x(£))} {4.29) 

and from this we define the jet spaces with integer 1 ~ J ~ oo: 

J M = {equivalence classes in P1M where PI ~ P2 iff · 

'<I c= functions I on I X M we have : 

ai I ai I 
BEi •=O /(pi{ E)) = BEi •=O f(P2(!)) for 0 ~ i ~ J }· 

(4.30) 

If xa for 1 ~a~ 21V are coordinates on M ~ P0 M ~OM, then we introduce 

coordinates { x0, x}, ... , x~} for 0 ~ J ~ oo on J M to represent the equivalence· 

class of the curve 

a a £
2 

a fJ a 
x0 +£x 1 + 2!x2 + ... + J!x; (4.31) 

in I X M (near f = 0 this won't leave the chart on which the xa are defined). 

In chapter 2 we identified the tangent spaces to these and showed how f-

dependent dynamics on M induces dynamics on these. The induced dynamics on 

the jet space J M was exactly the perturbation dynamics up to Jth order. We will 

now assume that the dynamics on M is Hamiltonian and try to find Hamiltonian 

structures for the dynamics on PM and J M. 
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4.3.1. Path Space Symplectic Structure and Hamiltonian 

The Hamiltonian structure on M lifts to one on P1M. As before, w is a 

symplectic form on M and H ( f, x) is a Hamiltonian. There is a natural symplectic 
• 

form w on P1M. Intuitively, if we think of P1M as a continuous product of M's 

corresponding to each value of f, then w will just be the continuous sum of the 

corresponding symplectic structures. At a point p E P1 M and with vectors 'C\, V2 E 

TpP1M, we define 

wp{V,, V2) = fo' wP<•J(Vl(f,p(£)), v2(f,p{E))) df. ( 4.32) 

Similarly, we expect the Hamiltonian to be a continuous sum of the Hamiltonians 

for each f. We define H on P1M as 

H(p) = il H(E,p(£)) dE. (4.33) 

4.3.2. The Path Space Dynamics is Hamiltonian 

We will now show that the Hamiltonian vector field on P 1 M defined by H 

and w is exactly the lift XH of the Hamiltonian vector field XH on M. In finite 

dimensions, the differential of a function pairs with a vector by taking the sum over 

components of the product of each component of the vector with the derivative of 

the function in the corresponding direction. When we consider functions on a path 

space, this sum turns into an integral. The differential of H thus satisfies 

dH{Vp) = il V(E,p(E)) . H(E) df. ( 4.34) 
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V · is the directional derivative along V, with H ( <) viewed as a function on M and 

V(t,p(t)) viewed as a vector in TM. Let us see what ixH:;; is: 

wp(XH, V) = fol w(XH(<)(P(<)), V(t,p(t))) dt 

= 11 

V(t,p(<)) · H(t) dt 

= dH(Vp)· 

Thus XH is indeed Hamiltonian on P1M. 

(4.35) 

In chapter 2 we saw that the dynamics on P1 M naturally projects down to the 

desired perturbation dynamics on J M. We would like to project the Hamiltonian 

and symplectic structure as well to make J M's dynamics Hamiltonian. U nfor-

tunately, functions and forms may only be pulled back functorially and cannot 

be naturally pushed forward. We may write down the Poisson bracket on P1 M 

corresponding to w. Poisson brackets can sometimes be pushed forward along a 

projection by pulling back the bracketed functions. In this case, however, things 

become too singular and we would be left with "products" of delta functions. In 

the next section we will find a Hamiltonian structure on J M and in later sections 

we will relate it to the structure on P 1 M. 
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4.4. Coordinate Description of the J-jet Structure 

Let us reiterate the fundamental problem. We have defined a space of J-jets 

J M with coordinates {x0, ... , xj }, 1 ~a~ 2N. The correct perturbation dynamics 

is given by the vector field with components 

ak I ( <J ) yka(xo, ... ,XJ)= -a k xa t,xo+txi+···+-.XJ , 
{ <=0 J. ( 4.36) 

for 1 ~ a ~ 2N and 0 ~ k ~ J. 

We want to know whether this dynamics on a 2N(J + 1) dimensional space is 

Hamiltonian if X(<) is Hamiltonian on each 2N dimensional space t =constant. 

Darboux's theorem [Arnold, 1978] tells us that we may choose the coordinates 

{ x 1, ... , x2N} on M to be canonical. Thus the Poisson bracket of any two coordinate 

functions, 

{xa, xb} =Jab 1 ~ a,b ~ 2N, ( 4.37) 

is a constant independent of x. The dynamics then takes the form 

xa = {xa,H} =Jab a~bH. (4.38) 

The correct perturbation dynamics is then 

·a · ab a ( dk I H ( <J )) Xk = J axb dtk <=0 t,Xo +£Xi+. •. + J!XJ (4.39) 

for 1 ~1a ~ 2N and 0 ~ k ~ J 

from th•:: expression in 4.36 for the perturbation vector field. 
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4.4.1. The Jet Hamiltonian 

This dynamics is Hamiltonian with the Hamiltonian function on J M given by 

- dj I ( (J ) 
H(xo, ... ,xJ)= dEJ •=OH £,xo+£x 1 +···+ J!XJ (4.40) 

with respect to the Poisson bracket introduced in the next section. All of the various 

. derivatives in 4.39 are contained in this expression and the Poisson bracket picks 

out the right one for each perturbation variable. 

4.4.2. The Jet Poisson Bracket 

To discover the Poisson structure, we calculate 

ail 
ax% 

Thus 

d
1 

I a ( £

1 
) ---; ~-a H €,Xo + fXJ + · · · + 1 xJ -

df •=0 axk J. 

d
1 I ( fk an ( fJ ) ) 

dEJ <=0 k! axa f,Xo + fXJ + ... + J!XJ 

J! dJ-k I an ( fJ 

k!(J-k)! dEJ-k •=Oaxa E,xo+Ex!+···+ J!xJ)· 

x% = { Xk, if} J M 

gives the correct dynamics if the jet Poisson bracket is 

a b abk!m! 
{xk,xm} = J J!6k,J-m 

for 0 ~ k, m ~ J and 1 ~ a, b ~ 2N. 

( 4.41) 

( 4.42) 

( 4.43) 

:" otice that for J = 1 this gives { xg, xt} = Jab, which was the bracket that we 

found in section 4.2 for first order perturbation theory. 
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4.5. Relation to the Iterated Tangent Bundle 

\Ye now need to show that this construction, defined in terms of coordinates. 

is really intrinsic. if is clearly intrinsic, being the Jth derivative of H along any 

representative curve in P1M of the point in J M (all such curves give the same 

answer by definition). That the structure of the Poisson bracket is intrinsic is not 

so obvious, but may be seen as follows . 

4.5.1. Injecting Jets into the Iterated Tangent Bundle 

Recall that we are letting I stand for the interval [0,1]. If we take the Jth 

derivative of the map I -+ M, we get a map of the iterated tangent bundles: 

T 1 I ...... T 1 M. ( 4.44) 

(T1 M simply means T(T( ... (TM) ... )) where there are J T's. Each time we take 

the derivative of a map we get a map between the tangent bundles of the two 

manifolds.) We may think of this as a curve in T 1 M, since a curve in M lifts to 

its tangent vector at each point in T M, this curve lifts to one in TT M, etc. The 

point f = 0 of this curve in T 1 M is then the image of 8 1 /8£ 1
. As we look at all 

curves in M, we don't get all points in the 21 · 2N dimensional T 1 M, but rather 

only a 2N(J + I) dimensional submanifold identifiable with the jet space. This 

submanifold is made up of certair, diagonals in the iterated tangent bundle which 

arise because the derivative of the derivative along a path is the same as the second 

derivative along a path. We give the details in the next section. 
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4.5.1.1. Coordinate Description of the Injection 

If we look in coordinates, we see that this submanifold is given by certain 

diagonals in the iterated tangent bundle: 

(xa) = (xg) E M (4.45) 

( 
a dxa I ) · 

x 'd; •=O = (xg,x~) E TM ( 4.46) 

. ( a dxa I dxa I d2 xo I .) 
x 'd; •=O' d; •=O' df2 •=O = (xg,x~,x~,x~) E TTM (4.47) 

( 

0 dxa I dx
0 I d2xo I dxa I d2xa I d2xa I d3xa I ) 

x,d 'd 'd 2 'd 'd2 'd 2 'd 3 
f •=0 f •=0 f <=0 f •=0 f •=0 f •=0 f •=0 

=(~'~'~'~'~'~'~'~)ETTTM. ( 4.48) 

Each time we copy the last list and then copy it again adding one to each subscript. 

To count how many of each type of derivative we get, we may write this symbolically 

as 

(1+ :JJ (4.49) 

From the binomial expansion, we get 

J! 
(4.50) 

(J- k)!k! 

copies of xk in our list. 
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4.5.2. Symplectic Structure on the Iterated Tangent Bundle 

But now recall that T M has a natural symplectic structure pulled back via w 

from r· Af. We may use this to obtain a natural symplectic structure on TT Af and 

then TTT M, etc. We have just constructed a natural injection of J M ~ T 1 .\1, 

taking it to an appropriate diagonal. We may pullback the symplectic structure on 

T 1 M to get a natural one on JM. 

4.5.2.1. Coordinate Description of Symplectic Structure 

Let us introduce coordinates {yg} on M, {yg, yf} on T M, {yg, yf, yf0, yf d on 

TT M, etc. Here we are using 

Y:i,, ... ,dJ ( 4.51) 

on T 1 M where d; = 0, 1 and leading zeroes are supressed. Yt,d, ... ,d are the coordi-

nates in the fiber over the space described by Yd, ... ,d· Let the symplectic structure 

on M be w = Wab dyg A dy~. T* M pairs Yo with Yt and on T M the Yt factor is 

twisted by w. Thus the symplectic structure on T M is 

Wab dyg A dyt · ( 4.52) 

T* T M would pair Yo with Yto and y1 with y11 . On TT M y1o and Y11 are twisted 

by T M's symplectic structure. Thus the structure for TT M is 

wabdy0 A dyt1 - wabdy~ A dyt0 = wab(dyo A dr~1 + dy~0 A dyt). ( 4.53) 

If we think of the subscript as a binary number, then the prescription is to pair 

each y with the y whose digits have 1's and O's switched. Thus it pairs Ym with 
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Y2J -1-m such that the even binary number is the first in the wedge product. Thus 

the symplectic structure on TJM is given by 

2N 2m-} 
1 L L (-1)m2Wab dy':,. 1\dy~J-J-m· 

a,b m=O 

(4.54) 

How does the jet bundle map into TJ M in these coordinates? Each time there 

IS a 1 in the binary expansion of m, it indicates that y':,. coordinatizes another 

tangent to a tangent, i.e. another derivative in L Thus the injection of J M into 

TJ M is given by 

Y~ = X~um of binary digits of m · (4.55) 

4.5.3. Pulled Back Symplectic Structure on the Jet Space 

We may get a symplectic form on J M by pulling back the one on TJ M. This 

amounts to substituting the appropriate x for each y. Since 2J - 1-m ism with 

all 1 's and O's switched, the sum of the 1 's in 2J - 1 - m is J minus the number 

of 1's in m. Thus xk is paired with WabXJ-k· We see that there are J!j[k!(J- k)!] 

ways of choosing m with k 1's, and so dxk A dx~-k will get this coefficient. The 

pulled back symplectic form on J M is thus 

2N J Jl 1 
""" """ · a b ~ ~ k!(J _ k)! 2Wab dxk A dxJ-k· 

a,b=! k=O 

(4.56) 

The corresponding Poisson bracket is exactly the one we obtained in the previous 

section. We have therefore shown that this bracket really is coordinate independent. 
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4.6. Relation to the Path Space Bracket 

In this section we will show how J .\f's symplectic structure is related to P 1 llf"s. 

The result is something like the J-th derivative of the path structure. This inter-

pretation will be made explicit in the next secti~n. We saw in section 4.3 that 

P1 M was essentially a direct integral of the spaces M, as t goes from 0 to 1. The 

path space symplectic structure and Hamiltonian are integrals of the corresponding 

structures on M. 

4.6.1. Weighted Path Bracket and Hamiltonian 

Because the spaces do not interact for different values of f, we may obtain 

equally viable structures by putting a weighting factor ~(f) into the integrals. As-

suming that ~(f) doesn't vanish anywhere, we get the correct dynamics on P1M 

with 

Wi3pcVJ.V2) = fol ~(f) Wp(<)(VI(f,p{f)),V2(f,p(f))) df 

iii3(P) = fol ~(f) H(f,p(f)) dL 

( 4.57) 

(4.58) 

When we project to one of the smaller spaces, we essentially take ~ to vanish on 

some domain. P01 M comes from taking ~(f) = 1 for 0 ~ f ~ a and ~(f) = 0 for 

a < f ~ 1. Taking~ to be a delta function ~(f) = 6(f) gives the original structure 

on PoM ~M. 

In general, if we have a closed two-form on a manifold, it may not be symplectic 

due to degenerate directions (i.e. there exist tangent vectors such that the one-form 

that results from inserting them into the two-form vanishes). The set of degenerate 



4.6.1. \Veighted Path Bracket and Hamiltonian 203 

directions forms a subspace of the tangent space at each poinLof the manifold. l'iear 

points where the degenerate subspaces don't change in dimension, we may attempt 

to find a foliation by degeneraie submanifolds (i.e. a smooth collection of disjoint 

submanifolds called leaves of the same dimension as.and tangent to the degenerate 

subspaces, whose union is the whole manifold). Usually this is not possible even 

locally. Conditions under which it is possible locally are given by Frobenius' theorem 

(see [Spivak, 1979] p. 257). In the sit~ation we are· considering, the condition 

that the two-form be closed is sufficient. to guarantee that. the requirements of the 

Frobenius theorem are satisfied by the degenerate subspaces. We would like to 

consider the quotient of our manifold by the degenerate foliation. The quotient is a 

manifold whose points are the leaves of the foliation. It is always possible to form 

such a quotient locally and sometimes it is possible globally. The original degenerate 

two-form gives rise to a non-degenerate symplectic two-form on. the quotient. The 

value of this two-form on two tangent vectors on the quotient is defined to be equal 

to the value of the original two-form applied to· any two vectors on the original 

manifold that project to the two quotient vectors. The result of this is independent 

of the point we lift the vectors to because the original two-form is closed. It is 

independent of the vectors we choose at that point because the different choices 

differ by degenerate vectors on which the two-form vanishes. 

These very general considerations apply to the path symplectic structure w13 

defined in terms of {3. A degenerate vector on the path space at p is a vector 

field along p on which a/3 vanishes. Examining Wf3'S defining integral and using 

the fact that w is non-degenerate, we see that if {3 is a function (as opposed to a 
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distribution) then a degenerate V is non-zero only at those ( where 3 vanishes. If 

{3 - 1 for 0 ~ f ~ a and - 0 for a <: ( ~ 1, a degenerate vector is described 

by a V(c) which is non-zero only for c > a. The degenerate foliation has leaves 

that are s~me given p( f) for 0 ~ f ~ a and all possible extensions for a < f ~ 1. 

The quotient by the degenerate foliation is then exactly P0 M and the quotient 

symplectic structure is w13 viewed as acting on vector fields along paths defined for 

0 ~ c ~ a. The case of distributional {3's may be studied in a similar way. 

4.6.2. Jet Bracket Arises from Derivative of Delta Function Weighting 

We claim that taking {3 to be the Jth derivative of a delta function gives us 

the J-jet structure. Consider · 

{1 ( dJ ) w;p(l\,V2 ) = lo . (-l)J df;b(E) w(Vx(E,p(E)), V2(E,p(t:))) dt: (4.59) 

H;(p) = 11
((-l)J :f~t5(t:)) H(E,p(E)) d€. (4.60) 

This structure does respect the jet equivalence classes. We take symplectic coordi-

nates on M so that w = ~wab dxa 1\ dxb and use the coordinates { xg, , .. , xj} as 

defined before on the J-jet space. Recall that a vector 

2N J a 
EL:v: axk 
a=lk=O 

(4.61) 

corresponds to a vector X along a curve with the same jet according to 

dk I ( (J ) Vk'(xo, .. ' ,x;) = d£k ,::o xa . f,Xo + (XJ + ''. + J!XJ . (4.62) 
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We see that w; really depends only on the J-th jet of the path and the J-th jet of 

tlie vector field: 

_ _ 1 d
1 I ( £

1 
!
1 

) 
w;(XJ,X2)=2 d£1 •=0 WabXf(E,xo+ ... + J!x;)X~(!,xo+ ... + J!x;) 

J 

1 ""' J! ( dk I J = 2 L::: k!(J- k)!Wab d£k Xf(!,Xo + ... + :,x;)) 
k-o <=0 J. (4.63) 

( 
dJ-k I (J ) 
d£1-k •=O X~(£,xo + ... + J!x;) 

by the Leibniz rule for derivatives. 

But these derivatives give the components of the jets of X: 

J 
~ - - 1 ""' J! a b w;(Xl,X2) = 2 ~ Lll 1 L\1 Wab vl,k v2,J-k· 

k=O 

( 4.64) 

So w 1 is really the pullback along P1 M ----> J M of the form which we discovered 

before: 
2N J J! 1 L L k!(J ~ k)! 2Wab dxk 1\ dx~-k· 

a,b=l k=O 

( 4.65) 

4.6.3. Jet Hamiltonian from Derivative of Delta Function Weighting 

Similarly, 

~ . dJ I ( (J ) -
H;(p) = d£1 •=O H E,xo + £X 1 + · · · + J!x; = H(x0, ... ,x1 ) ( 4.66) 

is the pullback of ii along P 1 M ----> J M. 
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4.7. Jet Space as Derivative 

In this section we will make more explicit the sense in which the symplectic 

structure on J M is a derivative of:...·. Tulczyjew and Kijowski have shown how the 

natural structure on TM is a first derivative in [Kijowski and Tulczyjew, 1979]. 

4.7.1. The Sheet Quotient Spaces 

We will need the spaces defined by 

Po,6 M = {equivalence classes in P1 M where PI ~ P2 

iff PI(O) = P2(0) and Pl(c5) = P2(c5)} 

and in general by 

Po,6, ... ,J6M = {equivalence classes in P1Mwhere PI ~ P2 

iff PI(£)= P2(£) for£= 0,8, ... , Jo }· 

(4.67) 

( 4.68) 

We require the curves to agree on sheets £ = 0, c5, ... , J c5 spaced by c5. Let us call 

the coordinates on these sheets { z(i' zr' ... ' z~}. 

4. 7.2. Sheet Symplectic Structure and Hamiltonian 

We get the correct dynamics on these sheets if we take the symplectic structure 

and Hamiltonian to be 

J 1 
W6 = L 2 t3k Wab dzi: 1\ dz~ f3k # 0 (4.69) 

k=O 

J 

Ho (zo, .... z;) = L f3k H(ko, zk) (4.70) 
k=O 
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These are discrete versions of the infinite dimensional structures mentioned in the 

last section.· We want to map J A-f into this space and pull back Wo and flo. We 

choose the !3k as functions of fJ so that the limit fJ -... 0 is both non-singular and 

non-trivial. 

4.7.3. Map Between Sheet Space and Jet Space 

With coordinates {xg, ... , x~} on J M we can define the map 

J mcm a a_"' k -xm. zk- ~ m! 
m=O 

( 4. 71) 

J 

This identifies {xo, ... , XJ} with the points where the curve xo + €X1 + ... + Y,x1 

intersects the sheets introduced above. 

4.7.4. The Pulled Back Sheet Symplectic Structure and Hamiltonian 

The pulled back WlJ on J M is then 

1 J <:m+n 
"' km+n u j3 d a d b w0 =- ~ -

1
- 1 k Wab Xm 1\ In. 

2 m. n. 
k,m,n=O 

( 4.72) 

The pulled back Hamiltonian is 

- J ( (kc)
1 

) 
H0 (xo, ... ,xJ) = l:!3k H k6,xo + k6x1 + · · · + -yr-xJ . 

k=O 

(4.73) 
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4.7.5. Sheet Structures Asymptote to Jet Structures for Small Spacing 

Looking at the expression for H 0 , we see that there is no hope for x J dependence 

as fJ ~ 0 if !3k _... oo slower than fJ- 1 as fJ -... 0. We therefore assume that 

!3k = bkfJ-J where bk is independent of 6. fJ then only appears in the expression 

for w0 as fJm+n-J. Terms with m + n > J will vanish when fJ -> 0. For w6 to be 

defined as fJ -> 0, we must choose b0 so that the sum of terms with i = m + n < J 

must have a vanishing coefficient. Thus the bk must satisfy 

~ "' km+n~ =0 
~ ~ m!n! 
k=Om+n=i 

O~i~J-1. 

This may be rewritten 
J i . bk 
"'"' k'­=~~ m!(i-m)! 
k=Om=O 

and the binomial theorem gives L::n=0 [m!(i- m)!J- 1 = 2;/i!. Thus 

or 

J . . 
2' k' E-.-, bk =o 

k=O ~. 

J 

Ekibk = o 
k=O 

for 0 ~ i ~ J- 1 

for 0 ~ i ~ J - 1. 

(4.74) 

(4.75) 

(4.76) 

( 4. 77) 

This is J equations for J + 1 unknowns. We may take b0 = 1 and remember that 

an arbitrary multiplicative factor is allowed. We solve the equations by introducing 

a generating function 
J 

f(x) = Lbkxk. ( 4. 78) 
k=O 

The condition bo = 1 becomes /(0) = 1. Notice that 

( 
d )i J 

x dx f = L kibkxk. 
k=O 

(4.79) 
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So If we call S6 the operator which shifts a function of t by an amount fJ. so Sb f ( t) = 

(x ~Y 1jx=l = 
0 for 0 :S: i :S: J - 1. (4.80) l(t + 6), then we see that 

This easily implies that 

di I 
dxJ =0 x=l 

for 0 :S: i :S: J - 1. 

J I ( J ) 
I k J! k ( 

H6 (x0 , ... ,xJ)=L: 61 (-I) k!(J-k)!S6 _ H £,x0 +£xi+ .. ·+ J!XJ 
k=O <-0 

(4.81) 
{I-So)

1 
( £

1 
) = H £ x 0 + a 1 + · · · + -XJ . 

61 ' J! 
( 4.87) 

Using these equations we may Taylor expand I about x = I 
As 8 goes to zero, the operator (I- S0 )/8 becomes d/dc In the limit we have 

l(x) = 0+0+ ··· + C1 (x -I)1 + .... 
J! 

{4.82) 
- dJ I ( (J ) 

H(x0 , ... , XJ) = dtJ •=O H £, xo + £x 1 + · · · + J! XJ ( 4.88) 

Because I is a J-th order polynomial and 1(0) =I, we see that Ci = J!{-I) 1 and 
just as before. Our jet structure thus comes out of a limiting process almost 

so 

l(x) ={I- x) 1
. {4.83) 

uniquely. Similar kinds of arguments arise in the theory of finite differences used to 

approximate derivatives numerically. A good reference written from a theoretical 

From the binomial expansion 
perspective is [Stoer and Burlirsh, 1980]. 

J , J dJ I -- k • J __ - J -' 
bk- ( I) w, '-" and Lk - dx 1 (I x) - J .. 

k=O x=I 

( 4.84) 

_ The only terms left in w have m + n = J and give us 

J 
-""'IJ I a b 

Wo- L.., 2k m!(J _ m)!bk Wab dxm 1\ dxJ-m 
k,m=O 

1 J J! 
= 2 fo m!(J _ m)! Wab dx~ 1\ dx~-m {4.85) 

just as before. 

Now 

Ho(xo, ... ,xJ) 

J 1 k J! ( (k8)
1 

) =L 01 (-1) k!(J-k)!H k8,x0 +k8x 1 + ... +J!x1 . 

k=O 

(4.86) 
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4.8. Jets and Symmetry 

In this section we study Hamiltonian group actions in the perturbation context 

we have been considering. We need to understand the perturbation analogs of 

group actions and the process of reduction. We first show that a Hamiltonian group 

action of G on M lifts to the path space P 1 M and jet space J M. We calculate 

the momentum maps and show that they are equivariant. We then introduce the 

group PG of paths in G and the group JG of their J-jets. These too act on PM 

and J M and we find their momentum maps. Next we consider the case where M 

is a coadjoint orbit in g• and show that PM is a coadjoint orbit in Pg" and J M in 

J g•. We calculate the corresponding Lie symplectic structures and show that they 

give the path bracket and jet bracket that we discovered earlier. We then study the 

process of reduction and show that the reduced path space is the path space of the 

reduced space and the reduced jet space is the jet space of the reduced space. 

4.8.1. £-dependent Group Actions on M 

Our starting point is an €-dependent group action on the manifold: 

p: I X G X M ...... M. ( 4.89) 

Here I is the interval [0, 1], G is the group, and M is the manifold. If e is the 

identity of G then 

p(t,t.,m) == m (4.90} 

and 

p(t, gi, p(t, gz, m)) == p(t, 9I · gz, m). (4.91) 
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For a compact group G acting on a compact manifold M, we can eliminate the 

€-dependence of the group action by ant-dependent coordinate change in Af (this 

result is due to Palais). This is not true for non-compact Gas the example of the real 

line demonstrates. In this case group actions are the flows of vector fields. Even if 

we restrict attention to arbitrarily small neighborhoods of t == 0, only the so-called 

~structurally stable" vector fields can be made £-independent by an t-dependent 

coordinate change. 

4.8.1.1. Lift to G Action on the Path Space 

This action lifts to the space of paths PM by defining 

p: G x PM ...... PM by p(g,p)(t) := p(t,g,p(t)). ( 4.92) 

4.8.1.2. Lift toG Action on the Jet Space 

This respects the equivalence classes that define the J -jet space J M. We 

introduce coordinates x0 on M and xf, i == 0, 1, ... , J on J M as before. The 

components of p will be written p0
• The action of G on J M is then given by 

fii(g,(x
0
,x1, ... ,x1 ))= ~;~•=0 p0 (t,g,(t,xo+txi+···+ ~XJ)). (4.93) 
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4.8.1.3. Maps from the Lie Algebra to Vector Fields on M, PM, and JM 4.8.1.5. Momentum Map on PM 

The action of c·on I x M gives us a map from the Lie algebra g of G to vector This gives us a momentum map for G's action on PA1 with the symplectic 

field~ on I x M that leave c invariant. If v E g is tangent to a curve I__. G, so structure w given by 

v _ d I - dt t=O g(t), (4.94} j: PM__. g* by p r-; fo 1 

J(c,p(!)) de {4.100} 

then XL. on I x M is defined by 
It's easy to see that this gives the correct action and is equivariant because J is. 

Xv(c,m) = *I p(c,g(t),m). 
t t=o 

( 4.95} 

This induces a map from g to TPM defined by 4.8.1.6. Momentum Map on JM 

Xv(p)(c) = Xv(c,p(c)) (4.96} Using coordinates (x0, ... , x'j) on J M as before where the xa's are canonical, 

we see that we may define a momentum map from J M __. g* by 
and to T J M defined in coordinates by 

(Xv)i' = ~i l.=o X~(c, (c,xo + a1 + ·· · + ~XJ )) 

di I d I ( (J ) . =di dt pa(c,g(t), c,xo+cxJ+ .. ·+J1xl ). 
( <=0 t=O ' 

( 4.97) 

- dl I ( (1 ) J(xo, ... ,x1)= del <=
0

J(c, c,x0 +cx 1 + .. ·+ J!x 1 ). (4.101) 

4.8.1.4. The Momentum Map 
4.8.1.7. Equivariance of JM's·Momentum Map 

In the case where M, w is symplectic and our G action has an c-dependent 
The equivariance follows from that of), as follows. Equivariance of J says 

equivariant momentum map J(c,p(c,g,m)) =Ad;· J(c,m). (4.102) 

J: I X M __. g* (4.98} 

On JM we see 
then 

ix.w = (dJ, v) (4.99} - ~I ~ J(p(g, (xo, ... , XJ })) = del J(c, L 1 ,o;(g, (x 0 , ... , x1 )}} 
<=0 I t. 

on each f =constant. d
1 I 1 

(i di I ( {1 ) 
= dcl <=OJ(c,~if dci <=Op(c,g, E,xo+cxJ+···+ J!xl )). 

(4.103} 
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The d1 /dc 1 i,=o allows us to neglect terms inc of higher than the Jth order. But 4.8.2.1. The Path Lie Algebra: Pg 

to thi5 order any function f(c) is equal to its Jth order Taylor series 
Taking infinitesimal elements, we see that the Lie algebra is 

J .. . 
c' d' ~ i! dci l,=o f(c) ~/(c). (4.104) Pg :={all paths v: I-+ g, v: { >-+ v(c) }· (4.108) 

Thus 
The notation Pg would be ambiguous in that it could mean the path space of the 

dj I ( (J ) dlJ •=
0

J(c,p(c,g, c,xo+cxl+ .. ·+ J!XJ )) Lie algebra or the Lie algebra of the path group, except that these two spaces are 

dj I ( (J ) 
=del <=D Ad;·J(c, c,xo+cx1+···+ J!XJ ) 

(4.105) naturally isomorphic. The Lie bracket of two elements is defined pointwise 

= Ad; · J(xo, ... , XJ) 
[v1,v2](c) = [v1(c),v2(c)]. (4.109) 

as desired. 

4.8.2.2. The Dual or the Lie Algebra or the Path Group 

4.8.2. The Path Group: PG 
The dual of the Lie algebra is all (distributional) paths in g•: 

\\"hen we do reduction, we'll want a much larger group to work with. In essence, 
Pg• = { o: I-+ g•, ii:: c >-+ ii{c) }. ( 4.110) 

we want a symmetry that can act on different level sets of c independently. Thus The pairing is given by 

we define (v,ii:) = fo\u(c),ii:(c))dL (4.111) 

PG := {all paths g: I-+ G, g: c >-+ g(c) }. (4.106) 

4.8.2.3. The Action or the Path Group on the Path Space 
The product in this space is defined as 

PG acts on PM by 

Y1 · 92(c) = Yl(c) · 92(c). ( 4.107) 
R: PG x PM-+ PM R(g,p)(c) = p(c,g(c),p(c)). (4.112) 

The identity in PG is the constant path at the identity e( c) = e in G. G is the subgroup of PG with g(c) = g and this action of PG on PM extends the 

action of G. The momentum map for this action is PM -+ Pg• by p ...... J(·,p(·)) 

where · is the parameter l to be inserted in an element of g• to get I -+ g•. 
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4.8.3. The Jet Group:. JG 

Consider paths in G which begin at the identity and remain there to order t 1 , 

I.e. g(O) = e, ak I a(k 1,=0 g( €) = 0 for 1 ~ k ~ J. The product of two such paths 

is such a path as are inverses and the identity. Let us call this subgroup of PC, 

PG J _flat (since a function whose derivative at € = 0 vanishes is flat there and one 

whose higher derivatives vanish is very flat there, i.e. J-flat). With the action R 

on P Af, we see that this subgroup leaves invariant the J - jet equivalence classes, 

so we are naturally interested in 

PC1 := PCIPCJ-flat. ( 4.113) 

assuming that this is a group. It is easier to show PG J _flat is a normal subgroup 

of PC by considering Lie algebras (recall that a normal subgroup H C G satisfies 

gHg- 1 = H for every g E C and that this is a necessary and sufficient condition 

for the quotient G I H to be a group). 

The Lie algebra of PC J _flat is clearly 

PgJ-flat = {v E Pg I :;1 ii(f) = 0 for 0 ~ i ~ J}. 
( <=0 

(4.114) 

To check for normality, we want to show that 

[Pg,PgJ-flat] c PgJ-flat (4.115) 

(this is the Lie algebra analog of normality). But if 

u({) = tio + fUJ + · · · E Pg ( 4.116) 
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and 
(J+i 

ii(f) = (J + 1)! VJ+i + · · · E PgJ-flat (4.117) 

then 
(]+1 . 

[ti,v](() = 1 , , '"[tio,iiJ+d + ... E PgJ-flat (4.118) 

as desired. Ordinarily, there are problems in relating results about infinite-dimen-

sional Lie algebras to results about the corresponding infinite-dimensional groups 

(for example, the image of the exponential map of the diffeomorphism group does 

not contain any neighborhood of the identity). Path groups are especially well-

behaved, however, and the argument here is valid in this context (for more discussion 

see Appendix A of [Freed and Uhlenbeck, 1984]). Thus we may introduce the group 

of J-jets of paths inC: 

JC := PGIPGJ-flat· (4.119) 

4.8.3.1. The Lie Algebra of the.Jet Group: Jg 

Its Lie algebra is 

Jg := PgiP9J-flat· (4.120) 

As for Pg, the potentially ambiguous notation is not, by a simple theorem. We may 

put coordinates u0, u1, ... , u} on J g by associating ( uo, u 1 , ... , UJ), u; ·E g with the 

equivalence class of u0 + w 1 + · · · + (£ 1 IJ!)uJ. The bracket is then 

[(uo, UJ, ••• , UJ ), (vo, v 1 , ••• , VJ )] 

{J {J 

=[uo + fU 1 + · · · + -UJ Vo + fV1 + · · · + -VJ] 
J! ' J! 

J k ( k k' ) 
= L ~! L i!(k ~ i)'[u;,Vk-i] . 

k=O •=0 

(4.121) 
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So 

k k! 
[(u 0 ,u 1 , ... ,uJ),(vo,v1 , ... ,vJ)]k = L "l(k- .) 1[u;,Vk-;]. 

t. t . i=O 
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(4.122) 

This is an explicit formula for the Lie bracket of the jet Lie algebra. We shall need 

it in determining the Lie-Poisson bracket. 

4.8.3.2. Homomorphism from J g to Vector Fields on J M 

The group JG acts on J M and so we get a Lie algebra homomorphism from 

J g to vector fields on J M (these will generate symmetries that hold up to order 

,_J for the full dynamics but are exact symmetries on J M). Recall that Xv is the 

image of a map from v E g to vector fields on I x M. When v depends on f. as 

above, we see that 

(X(v0 ,v1, ... ,VJ))i = 

:i I.=O X(vo+<v 1 +···+(<1 fJ!)v 1 ) ( t, Xo + f.XJ + · · · + ~ XJ) 

== :i I Xvo (f, Xo + f.XJ + · · · + f.~ XJ) + 
•=0 J. 

+ :i I f.Xv, (f., Xo + fX1 + · · · + f.~ XJ) + 
{ •=0 J. (4.123) 

di I {J ( (J ) + · · · + ---cc -Xv f. Xo + f.XJ + · · · + -XJ 
dt' •=0 J! J ' J! 

i di I {k ( J ) 
== L dti k!Xv. t,xo + tx 1 + · .. + ~x1 

k=O <=0 J. 

== ~ i! 1 ~-k I ( (J ~ k!(i- k)! k! dti-k Xv• t, Xo + tX1 + · ·. + -x1). 
k=O <=0 J! 

So: 

- ~ i' -
(X(v0 ,v 1 , .• ,v1 ))i = ~ ,_ 11 _ •• ,_,,,_,(Xv~:)i-k· (4.124) 

k=O 
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This gives the action of a jet Lie algebra element on the jet space of M in terms of 

·the t-dependent action of the group on M. If we have an approximate symmetry 

in the sense that our t-dependent action preserves some structure to order J, then 

this J-jet action will be an exact symmetry. 

4.8.3.3. The Dual of the Jet Lie Algebra: J g• 

The dual of the Lie algebra, J g•, may be coordinatized by J elements of g• 

with the pairing 

J 

((oo,etJ, ... ,etJ),(vo, ... ,vJ)}=L(o;,v;} for o;Eg", v;Eg. 

i=O 

4.8.3.4. The Jet Momentum Maps 

(4.125) 

By the definition given in section 2.7.2 of momentum maps on M we have in 

general that 

In this case 

X~(t, m) == wab B~b (J(t, m), v}. 

{J 
V == Vo + f.VJ + · · · + -VJ J! 

is €-dependent, but nonetheless, 

,J 
(J(t,m),vo+ .. ·+ J!VJ} 

(4.126) 

( 4.127) 

(4.128) 

is an £-dependent Hamiltonian on M for the correct action. We know from section 

4.4.2 that with 

a b ab i!k! 
{x; ,xk} == w J!fli,J-k (4.129) 
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we will get the correct dynamics from the Jth derivative of the Hamiltonian. So 

d1 ' 1 
df1 

1

! (J(t,m),vo + · .. + :_v1) == 
<=0 J! 

1 d1 I . 
== ~ d£1 •=O ~(J(£,m),v;) (4.130) 

J . L J! dJ-t I 
== _ i!(J- i)!i! d£1-i (J(£,m),v;) 

t-0 <=0 

generates the (vo, ... , VJ) dynamics on J M. Thus the momentum map is 

- J! dJ-i I ( (1 ) 
J;(xo, ... ,xJ)= '!(J-')!'! dJ-i J £,xo+£xi+ .. ·+ J'x1. 

t. t .t. ( <=0 • 
( 4.131) 

This momentum map is again equivariant. This is important because this is the 

approximate constant of motion corresponding to an approximate symmetry. For 

example, we will see in chapter 5 that adiabatic invariants may be viewed in this 

way. If we can find an exact symmetry of the dynamics on J M, then this gives a 

constant of the motion up to order J in £ for the full system. 

4.8.4. When M is a Coadjoint Orbit with the KKS Symplectic Structure 

Thus we have discovered two groups, PG and JG, that contain G. Let us 

consider the special case in which M is a coadjoint orbit of G in g• with the canonical 

Kostant-Kirillov-Souriou symplectic structure. {This is really no limitation since we 

may take G to be the group of symplectomorphisms of M, g is then Hamiltonian 

functions, g• i..; distributions and we may identify M and its symplectic structure 

with the orbit of a 6-function and its KKS structure). 
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4.8.4.1. Coadjoint Action of PG 

Because multiplication in PG is £-wise, the adjoint action of PG on Pg is just 

(Adg · ii)(£) = Adg(c) · ii(£) (4.132) 

and the coadjoint action is similar. 

4.8.4.2. The KKS Symplectic Structure on Coadjoint Orbits in Pg• 

Consider any path 

ii: I-+ M c g•. (4.133) 

Since M is a coadjoint orbit of G, under the coadjoint action of PG on ii, at each £ 

we will sweep out a copy of M. Since the different £'s are nearly independent, it is 

easy to see that the coadjoint orbit of PG through ii is the path space PM of M. 

What is the Lie symplectic structure? Given an element ii of g, we determine 

a curve of tangent vectors to M, i.e. an element V of TpP M, by identifying a path 

p with an element ii of Pg•. We let 

ii(£) = p(£) (4.134) 

and take 

V(p) = id;a (4.135) 

or 

V(p(£)) =ad:(<) a(£). (4.136) 
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Similarly associate it E g with ii E TpP M. The Lie symplectic structure i~ then 

wp(U, 'C") =w(ad:a,a-d;O:) 

=(a, 1 it, v]) 

= fo
1 
(o(!), [u(!), v(!)])d( 

(4.137) 

= fol Wp(<)(U((), V(!))d! 

since Wp(<) on M was the Lie symplectic structure for G. Thus we obtain our 

previous path space symplectic structure via a coadjoint orbit of the group of paths 

in G. 

4.8.5. Natural Projections and Injections of G, PC, and JG 

We are interested in the groups G, PC, and JG. G is naturally a subgroup of 

PC given by constant paths: 

g(!) =g. (4.138) 

We also have a projection PC ---+ G which sends a path to its endpoint: 

g >--> g(O), (4.139) 

which is also a homomorphism. PC also projects to JG by JG's definition as 

PG/PGJ-/Iat· G's image in PC gets sent to a subgroup of JG containing those 

points with zero jets. JG also projects onto G but is not naturally a subgroup of 

PC. 

The picture summarizing these r .. tural maps is 

PG----->JG G. 

(4.140) 
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4.8.5.1. Projections and Injections of the Lie Algebras and Duals 

Taking derivatives of these maps also gives us maps between the corresponding 

Lie algebras 

Pg Jg g; 

(4.141) 

where ___, means a projection and +--- an injection. Elements of Pg are paths in g. 

They project to their J-jets in J g and their value at ( = 0 in g. Elements of g are 

sent to J-jets whose 0-jet is the element and whose higher order jets vanish. They 

are sent to constant paths of the given value in Pg. 

Taking duals gives 
Pg•-->Jg• g•, 

(4.142) 

where ___, means a .projection and +--- means an injection. Elements of Pg• are 

distributional paths in g•. They are sent to g• by letting them act on an element 

of g by integrating their value on that element over c 

fo\o(f),v)df.. (4.143) 

Elements of J g• are in the dual to the J-jets of paths in g. We may coordinatize it 

by J + 1 copies of g• and give the pairing 

( ( o0, ... , o 1), ( vo, ... , v 1)) = ( oo, v0) + · · · + ( o 1 , v 1). (4.144) 

(oo, ... , OJ) is sent to the element 

d I d) I oo8(£)- 01- 8(() + · · · + OJ(-1) 1
---; 8(!) 

~<=0 ~ '~ 
(4.145) 

of Pg" and to the element o 0 of g•. g• injects into Jg• to send oo to (oo,O .... ,0). 
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4.8.6. The Lie Poisson Bracket on g• where a is a path in g• and v a path in g, we see that the result only depends on 

The Lie-Poisson bracket on g• is 
the J-jet of a and the J-jet of v, i.e. it defines a pairing of the appropriate jet 

spaces. Now we would like to find the identification of J-jets of paths in g•, say 

{!,g}(a) = (a,[~~'::] J (4.146) J 
ao + £a 1 + · · · + ]oaJ, with our previous coordinatization which gives duals of the 

J 
components ( vo, v 1 , • .. , v J) of the jet of the path v0 + w 1 + · · · + ]o v J. We see that 

and M is a symplectic leaf for this bracket. 

( 
fJ fJ ) 

ao+£al + · · · + -OJ vo + w1 + · · · + -VJ J! , J! J 

4.8.6.1. The Lie Poisson Bracket on Jg• d I ( fJ fJ ; =- ao + £a1 + · · · + -,aJ,Vo + w1 + · · · + 1 vJ 
df <=0 J. J. 

The Lie-Poisson bracket on J g• may be defined with the help of our coordinates J d I d I ( fi fJ -i ) = L -d -d la;, J- .,VJ-i 
i=O f <=0 f <=0 t. t. 

(4.149) 

J J! 
= L "I(J- ")I (a;, VJ-i)· 

t. t . 
i=O 

as 

( [( 
hf hf) ( hg !.!!._))) {f,g}(ao, ... ,aJ)= (ao, ... ,aJ), hao' ... 'haJ , hao'····fJaJ 

J ( i i! [ h t fJg ] ) 
= ~ a;,{; k!(i- k)! fJak' fJai-k 

J 
Thus the J-jet of a 0 + m 1 + · · · + ]oaJ is associated with the element 

J i i! ( [ 6/ fJg ] ) 
= L L k!(i- k}! a;, fJak' ha;-k . 

i=O k=O · 

( 
J! J! J! ) 

J! O!OJ, (J- 1}! 1!0J-l, ... ' 0! J!ao . (4.150} 

(4.147) The J -jet space J M of M gets turned upside down when we put it into J g•. 

4.8.6.3. Coadjoint Orbits in J g• 

4.8.6.2. J g• as J-jets of Paths in g• 

With this identification of J -jets of g• with J g•, the coadjoint action of J G on 

We would like to identify some coadjoint orbit in J g• as M's J -jet space J M. 
J-jets of g• is just the obvious one: pick a representative path in G with the right 

For this we would like to identify J -jets of paths in g• with elements of J g•. What 
J-jet; let it act at each f according to the coadjoint action of G on g• and then take 

is a natural pairing of J-jets of paths in g with J-jets of paths in g•? If we change 
the J-jet of the resulting path. 

the measure on our pairing of paths to 
By definition this is the way the adjoint action of G on g works. We would like 

t dJ 
(a,v)J = Jo (a(£),v(£))(-If d£JfJ(£)d£, (4.148) (aduv,adu

0

0)J = (v,a) (4.151) 
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for all u E g. But since 

(adu(<)v(£),ad~(d:t(£)) = (v(£),0:(()) (4.152) 

for all £, it is clear by integrating over £ against ( -1) J ~ 6 ( () that it is true for the 

jets. 

4.8.6.4. J M is a Coadjoint Orbit in J g• as a Manifold 

Because the coadjoint orbit in Pg* of a path which lies solely in M is the space 

of all paths in M, the coadjoint orbit in J g• of a J -jet of a path in M is the space 

of all J -jets of paths in M, i.e. the J -jet space J M. 

4.8.6.5. The KKS Symplectic Structure is the Jet Symplectic Structure 

So J M is a coadjoint orbit. What is the Lie symplectic structure? Again every 

J -jet of a path in g determines a J -jet of a path of tangent vectors to M, i.e. an 

element of T J M, by 

(J 

V;(a:o +WI+···+ J!a:J) 

di I {J 
= -. ad* ,1 (a:o + £a:I + · · · + Jla:J). 

d£' <=O vo+w,+··+JTVJ . 

(4.153) 
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The Lie symplectic structure is then 

W( 00 , ... ,o 1 )((uo, ... ,uJ),(vo, ... ,l'J)) = 

= ( ( a:o, ... , O:J), [ ( uo, ... , UJ), ( vo, . .. , v J)]) J 

t I (J 
= Jo \ a:o +WI+ ... + J!a:J, 

Uo +WI+···+ -UJ Vo +WI+···+ -VJ (-1)J-fJ(£)d£ [ 
(J {J ] ) dJ 
J! ' J! d(J 

1I di I . (J (J 
= di wo(Uo + £UI + · · · + J'UJ, Vo +(VI+···+ J' VJ)d(, 

0 ( •=0 . . 
(4.154) 

but we have seen that this is exactly the J-jet bracket that we obtained before. 

Jerry Marsden has pointed out that some of these symplectic constructions 

immediately generalize to corresponding constructions on Poisson manifolds. For 

example, to get a symplectic structure on T M from w on M, we use w to identify 

T M with T* M and pull back the canonical structure. While a Poisson structure 

does not define an isomorphism, it does define a map from T* M to T M. We may 

push forward the canonical Poisson structure on T* M to obtain a non-canonical 

one on T M. Iterating this gives Poisson structures on each of the iterated tangent 

bundles. Presumably one can use these to define a Poisson structure on each of the 

jet spaces as well. It appears likely that the jet structure derived from a Lie-Poisson 

bracket on g• is the Lie-Poisson bracket on J g•. Richard Montgomery has recently 

shown that the second order perturbation jet structure may be extended in this way 

to arbitrary Poisson manifolds and it appears that the same methods will work to 

all orders. 



4.8. 7. J G ~ a Semi-Direct Product 229 

4.8.7. JG' as a Semi-Direct Product 

l\'otke that the set of elements of J g of the form 

(0, 0, ... , 0, U;, Ui+l, .. ·, Uj) (4.155} 

form a nilpotent ideal, say Jg;. We see that ig ~ JgjJg;. Thus Jgis a semi-direct 

product of ig and J g;. Note in particular that lG is TG and has the group structure 

of the semi-direct product of G with g wi~h the adjoint action. Alan Weinstein has 

pointed out that this provides an "explanation" of why most of the coadjoint orbits 

of the Euclidean group (which is the tangent group of the rotation group} ar.e the 

tangent bundle of the 2-sphere (most of the coadjoint orbits of the rotation group are 

2-spheres). Note, however, that the symplectic structure on these orbits agrees with 

the jet symplectic structu.re only on the orbits whose tangent vectors are tangent 

to the spheres. The other orbits have extra "magnetic terms" in their symplectic 

forms. If the conjecture at the end of the last section is correct, then the general 

coadjoint orbits of JG are the symplectic leaves of the jet lift of the Lie Poisson 

structure on g• to J g•. It is interesting that there is another natural jet type Lie 

algebra associated with an arbitrary Lie algebra g. Consider J-jets at the origin of 

real valued functions (as opposed to paths} defined on g•. The Lie Poisson bracket 

gives this jet space a natural Lie algebra structure. Its dimension is much larger 

than that of J g and the relation between the two Lie algebras is not clear. 
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4.8.8. Jet and Path Reduced Spaces are Reduced Jet and Path Spaces 

Let us now return to the general setting of an f dependent action of G on Af, <....'. 

If we have an (-dependent invariant function H ( (), it is easy to see that if the orbit 

spaces for all ( are diffeomorphic (for example if the G action is f independent or if G 

is compact and the variation is small enough) then PC leaves if on P.\1 invariant. 

Its orbit space is the space of paths in the orbit space of G on M. Similarly, the 

inverse image of a point in Pg• under the momentum map j is the space of paths 

that lie in the corresponding inverse image of J at each E. Thus the reduced space 

of PG acting on PM is the path space of the reduced spaces at each E. 

Similarly JG acts on J M leaving 

di I 
d(i •=D H(f,p(f)) (4.156) 

invariant. Again the reduced space for this action is the jet space of the reduced 

space for the action of G on M. 
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"All nature and the graceful sky are symbolized in the art of Geometria. "-

Kepler, Tertius Interveniens 

5.1. Introduction: Kruskal's Approach 

In 1962 Martin Kruskal published "Asymptotic Theory of Hamiltonian and 

other Systems with all Solutions Nearly Periodic" [Kruskal, 1962]. In this paper 

he generalized and unified previous results due to himself and others showing that 

many specific physical systems had adiabatic invariants to all orders in a small 

parameter expressing the separation of slow and fast time scales. This work is the 

theoretical foundation for many concepts in plasma physics and elsewhere. It is 

therefore of interest to re-examine the underlying structure of the theory in the 

light of recent developments in geometric mechanics and dynamical systems. We 

have presented in earlier chapters a geometric formulation for ordinary perturbation 

theory and showed that it leads to deeper insights into the Hamiltonian nature of 
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perturbed systems. Her!' we will present a new version of Kruskal's result which 

leads to a completely unambiguous prescription for the perturbation analysis. We 

then show how the new procedure is expressed in coordinate-free language using the 

geometric structure of ordinary perturbation theory. The procedure is intimately 

tied with the process of reduction in the Hamiltonian case and so is connected with 

recent developments in finding Hamiltonian structures in plasma and other physical 

contexts. 

Let us begin by setting up the problem in geometric language and then dis-

cussing Kruskal's method in this framework. We are interested in studying dynam-

ical systems whose dynamical vector field depends on a small parameter f in such a 

way that when f. = 0 all orbits are periodic and the period is a smooth non-vanishing 

function on state space. Kruskal called the closed unperturbed orbits loops. These 

loops naturally give the state space the structure of a circle bundle. Locally we 

may express this bundle as a product: S 1 x !Rn. It is easy to see that we may 

choose coordinates 0 and x 0
, a = 1, ... , n such that the unperturbed dynamical 

vector field is independent of 0 and has no x component. In these coordinates the 

dynamics is given by the vector field 

a f
2 

x = 1/!(x} ao + fX1 + 2 x2 + ... , (5.1} 

where 1/J(x} describes how the frequency varies with x. As we turn on the pertur-

bation by letting f be nonzero, the dynamical vector field no lor 6er points along 

loops and the orbits in state space drift from loop to loop along a helical path. If 

we are uninterested in the dynamics around the loops then the unperturbed sys-

tern projects to trivial dynamics on the base of the bundle, i.e. the x coordinate 
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doe• not evolve. If the perturbed vector field did not depend on B, then again by 

ignoring the fast B motion we could project the dynamics to the base space leaving 

only the interesting slow dynamics. Unfortunately, typical perturbations will not 

be independent of B and different points on a loop will evolve to different loops, 

precluding any well defined slow dynamics on the base. Kruskal attempts to find 

E-dependent coordinates 8 and :ra which reduce to B and x0 when E vanishes, such 

that the dynamical vector field expressed in these coordinates is independent of 8. 

In general this will not be possible for finite f, but Kruskal was able to show that 

such 8 and :ra exist as asymptotic series to all orders in L His technique involves 

an intricate "bootstrap" argument which links two expansions together and obtains 

terms in one from lower order terms in the other. 

The choice of coordinates is not unique because we can always apply an f 

dependent diffeomorphism to the base and rotate the fibers (i.e. choose coordinates 

y(x) and 8 + f(x)) without altering the desired properties. Kruskal called the f 

dependent loop obtained by holding x fixed and letting 8 run from 0 to 21r, a ring. 

The set of rings determines a fibration of phase space for each f and reduces to the 

original fibration when f = 0. The vector field 

R= !.._ 
a8 

(5.2) 

is tangent to the rings and was denoted the roto-rate by Kruskal. He showed that as 

an asymptotic series, R is uniquely defined to all orders in L In the paper he T'".akes 

the interesting comment: "It does not appear obvious whether an explicit recursion 

formula to determine R in terms off [the dynamical vector field] can be found. If 

so, the whole theory of this paper might be simplified and rendered less deep.'' In 
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this chapter we will exhibit such a formula and show its geometric significance. 
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5.2. The New Approach Expressed in Coordinates vector field X's independence of 0 is to say that the Lie bracket of X and R vanishes: 

[R,Xj =0. (5.3) 

Many perturbation methods, beginning with the Poincare-Lindstedt method 
The second requirement on R is that its integral curves all be closed. Thus 

and leading up to the method of Lie transforms, are like Kruskal's approach in 

that they work by looking for an (-dependent diffeomorphism of phase space which 
if y(t) = R then y(O) = y(211"). (5.4) 

takes the perturbed system into a simpler one (equivalently one thinks of finding If we assume an expansion for R and X as above then equation (5.3) taken order 

new coordinates in terms of which the dynamics looks simple). This has the ad van- by order in f gives us a hierarchy of equations for the terms in R: 

tage that closed loops are automatically taken to closed loops and if the system is [Ro,Xo] = 0 

Hamiltonian and the diffeomorphism is a canonical transformation, it preserves the [RI,Xo] = -[Ro,XI] 
(5.5) 

Hamiltonian structure. In the present setup we will see that it is easier to explicitly [R2,Xo] = -2[R1,X1]- [Ro,X2] 

·require the rings to be closed as a constraint that helps determine terms in the 

expansion. In Kruskal's technique a similar constraint is required to ensure that Notice that each right hand side is known from before as we determine successive 

the change of coordinates is periodic in 8. One advantage of the present approach terms in R. On the left hand side we always find the bracket of a term in R with 

over methods which change coordinates is the uniqueness of the desired expansion. X 0 = 1/J(x)ajae. The x components and the 8 components of this bracket have a 

This leads one to suspect (correctly as we will show in section 6.3) that the whole different structure and must be dealt with separately. 

procedure has an intrinsic coordinate-free interpretation. Because the coordinate We use yi, 1 :=:; i :S n + 1 to represent X 0
, 8, 1 :S a :S n together. Recall that 

change is not uniquely specified in the standard approach, there will always be an the coordinate expression for the Lie bracket of two vector fields A and B takes the 

arbitrary and unphysical choice to be made at some point. This becomes especially form 

[A,B]; = ~ (Ai~B;- Bi~A;). 
L.....t 8yJ 8yJ 
J=l 

(5.6) critical in infinite-dimensions where one wishes to apply these techniques to fields 

(we will see in chapter 13 that infinite-dimensional coordinate changes may involve X 0 is special in that it has only a 8 component, which depends only on x. Denoting 

many subtle phenomena). the x components of a vector by an x superscript and the 8 component by a 8 

We will now see that an asymptotic expansion for R can be uniquely determined superscript, we find 

on the basis of two constraints. The coordinate-free way of expressing the dynamical 
. )8Rf 

[R;,Xo]x = -1/J(x ae . (5.7) 
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Since 1!>(x) doesn't vanish by assumption, and assuming we have already obtained 

all lower order terms, we may integrate this equation and find the solution up to 

an arbitrary n-component function F(x): 

1 {9 R: =- lj!(x) Jo (known terms}dO + F(x) (5.8) 

The (} component of the Lie bracket is slightly more complicated: 

9 oRf ol/J 9 ~ ol/J a 
[R,;, Xo] = -'1/J(x) oO + oO R; + L.. oxa R;. 

a=l 

(5.9) 

The second term vanishes because lj! has no (} dependence. If we are able to deter-

mine Rf first then we may obtain Rf by integrating up to an arbitrary function 

G(x): 

1 {9 ( n olj! ) 
Rf = --(x) ln - L oxa R't +(known terms} d(} + G(x). 

lj! 0 a=l 

(5.10) 

To determine F(x) and G(x) we employ the periodicity condition order by order. 

We must find F(x) first without the help of Rf so that we may use Ri in its 

determination as above. The flow of y = R satisfies the integral equation 

y( t) = lot R(y( t') )dt'. (5.11) 

Let us expand y(t) as an asymptotic series in t: and substitute this into this equation: 

Yo(t)+t:yi(t)+ ... = lot {Ro(Yo(t'))+t:(~~ ·YI+RI(Yo)) +t:
2 

... }dt'. (5.12} 

We again get a hierarchy of equations by collecting terms order by order in c For 

reference, let us work out the integrand to order t 3. We first expand the term~ in 
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R's asymptotic expansion in Taylor series to the needed order: 

ollo (2 (3 

R(y) ~ Ro(yo) + oyo · ((YJ + zY2 + fiY3) 

1 02 Ro {2 (2 1 03 Ro 
+ ---(~'YI + -y2)(~'YI + -y2) + ---(tyJ)3 

2 oy5 2 2 6 oyg 

oR1 £
2 1 o2R1 

+ £(RI(yo) + oyo · (~'YI + zY2) + z oy
5 

(£yi)(£yi)) (5.13) 

£
2 oR 

+ --z(R2(Yo) + oy: · ~'Yd 
(3 

+ 6R3(Yo). 

Now let us collect terms to get the vector field to the various orders. To order £0 

we have simply 

Ro. 

To order t: 1 we have 

To order t:2 we have 

oRo.y1+R1. 
oyo 

1 oRo 1 o2 Ro · oR1 1 
-- · Y2 + --- · Y1 · Y1 + -y! + -R2. 
2 oyo 2 oy5 oyo 2 

Finally to order t:3 we have 

1 oRo 1 o2 Ro 1 o3 Ro 3 
-- ·y3 + --2- 'Yl'Y2 + --3- 'Y! 
6 oyo 2 oy0 6 oy0 

loR1 lo2 R1 2 loR2 1 
+ -- · Y2 + ---2 · Y1 + --y! + -R3. 

2 oy0 2 oy0 2 oy0 6 

(5.14) 

( 5.15) 

(5.16} 

(5.17) 

In the expression for y;(t), the term y;(t) appears only in the form y; · (oRo/oyo) 

and all other terms are of lower order and therefore known. But Ro = (o/88) is 

constant and so its derivative vanishes. Thus each y; is a well defined integrat,over 
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known quantities: 

Oo(t) = Oo(t = 0) + t x0 (t) = x0 (t = 0) 

Y1 =lot R1(xo,O)dO 

1, (aR1 1 1 a2 Ro ) 
Y2 = 2 - · Y1 + - Rz + - --2 · Y1 · Y1 d(} 

0 Byo 2 2 ay0 

We may now impose the constraint that the orbits be periodic: 

[2" 
yi(2r.)- YI(O) = 0 = lo R1 dO 

121r 12" BRI R2 dO = - - . YI dO 
0 0 ayo 

= _ fo2

" aa~1 • (foe R 1do') dO 
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(5.18) 

(5.19) 

The elementary asymptotic series for y is valid since we need it only for finite 

time (in fact, only time one). Each of these equations has an x component and 

a 0 component. The asymptotic series for R is uniquely determined as follows: i) 

Rg = 1 and RQ = 0, ii) assuming Rj known for j < i, we obtain Rf up to the 

function F(x) by means of equation (6.8), iii) we determine F(x) by means of the 

x component of equation (6.14), iv) using the R/s and Rf we determine Rf up to 

the function G(x·) by means of equation (6.10), v) and finally we determine G(x) 

by usinf! the 0 component of equation (6.14) giving us the entire R; and allowing 

us to continue the iteration to Ri+ I· 
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5.3. The Geometric Version of the New Approach 

Let us now formulate the new procedure completely invariantly. in terms of 

the geometric picture introduced in chapter 4. Given a vector field X(() on I x M 

with no aja£ component and X(O) having all periodic orbits, we would like to find 

R(£) on I x M with no aja£ component such that X(O) and R(O) are tangent, 

[X( f), R(£)] = 0, and all of R(E:)'s orbits are periodic of period 2r.. We cannot 

do this for finite £ (due to homoclinic behavior, for example, which is discussed in 

chapter 14), but R is determined uniquely to all orders in £. 

Let l/1 : M --+ !R be the period function of X(O) and assume that it does not 

vanish anywhere. Let R(O) = X(O)/l/1. We have the hierarchy of jets of paths at 

{ = 0: 

ooM--+ ... --+ J M--+ ... --+2M--+ 1M--+ M. (5.20) 

X(£) determines vector fields on each of these spaces. We are looking for R's on 

each space such that each projects to the one below. The bracket of two vector 

fields lifts to a vector field on J M which is the bracket on J M of the lifts to J M of 

the vector fields. Thus [X(£),R(£)] = 0 lifts to a condition on each JM. The flow 

of a vector field for time 1 is a diffeomorphism of I x M preserving L It therefore 

lifts to diffeomorphisms of each J M which project into one another. On J M the 

diffeomorphism is the time-1 flow of the lift of the vector field to J M. The condition 

y = R(y) implies 1!~1) = y(O) lifts to similar conditions on the lifts to each J M, 

We know from the coordinate calculations that to determine a given order of 

R, we first have to determine it modulo Ro and then use this to get the full R. Thus 

we introduce the drift tangent bundles DT J M which at each point of J M has fiber 
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TpJ M / Ro(p), where flo is the lift to J M of {J flo. We get the natural projections 

TJM -+ DTJM 
l 1 

T2M -+ DT2M 
1 1 

(5.21) 

TIM ---+ DTlM 
1 1 

TM ---+ DTM. 

The key relation is 

[RJ,xo] = [RJ,lf>Ro] = (Ri ·tf>)Ro + tf>[RJ,Ro]. (5.22) 

The first term is along Ro and so is killed by the D operation, the second may be 

solved for Ri by integrating along the flow of Ro the quantity 1/tf> times the right 

hand side. The integral relation on D space then gives the constant of integration. 

Next, since Ro ·If>= 0, we see that 

(RJ +fRo) ·If> = Ri ·If>. (5.23) 

So the first term depends only on DR1. So the Ro component of R1 may be found 

by integrating: ~ (-(DR] ·tf>)Ro + r.h.s.) and then the integral gives the constant. 

We will see several examples of this procedure in the next chapter. 
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5.4. Extensions and Limitations of Kruskal's Theory 

In this section let us describe some of the limitations and extensions of Kruskal 's 

and other secular perturbation theories. Most of the asymptotic theories of physics 

are based upon asymptotic rather than convergent expansions. An asymptotic 

expansion of a function of f is a formal power series in f such that the truncation 

after the Nth term approximates the function to order fN. Typically, as N gets 

larger, one must go to smaller f to get a good approximation and there may be no 

f for which all the terms in an asymptotic series are helpful (and in fact most such 

series are divergent). Most of the techniques one applies in perturbative analyses 

yield asymptotic series because the exact solution we are approximating does not 

have a convergent expansion. The notion of convergence rests on a complex analytic 

structure, while smooth non-analytic coordinate changes, which should be physically 

irreleYant, can destroy the convergence of an asymptotic expression. There are two 

limiting processes here, letting f go to zero and letting the number of terms go· 

to infinity. Asymptotic series have nice limits when they are done in that order; 

convergent series allow us to switch the order of the limiting processes. From a 

practical point of view, one never uses more than a finite number of terms of an 

expansion in any case and often there are asymptotic series which approximate an 

expression much more quickly than a corresponding convergent series. 



5.4.1. Secular Perturbation Theory 243 

5.4.1. Secular Perturbation Theory 

If the coefficients of an asymptotic series are in addition a function of other 

parameters I, then one may inquire into the uniformity of the asymptotic approx­

imation. \\"e say that a series is asymptotic uniformly in x if the coefficient of 

£m in the error term of a truncation may be chosen to be independent of I for 

each m. How small we have to make £ to get a given approximation should be 

specifiable independently of x. Most of the asymptotic expansions in physics are 

nonuniform, otherwise known as singular or secular. If the nonuniformity occurs 

near a finite point, we may often insert a boundary layer expansion defined on an £ 

dependent region about the singular x which is uniform over that region, and patch 

it to the singular expansion using the method of matched asymptotic expansions 

(see [!\ayfeh, 1973] p. ll1). Such a technique is used for example in matching a 

thin boundary layer where viscosity is important in an almost inviscid fluid to the 

inviscid solution in the interior. 

The most common occurrence of nonuniformity, however, takes place as x goes 

to infinity (again note that the order of the x limit and the £ limit may not be 

exchanged). A key example of this is where x represents the time in the solution of 

ordinary differential equations. We have seen that the most pedestrian perturbation 

technique is to simply expand the supposed solution of an O.D.E. in an asymptotic 

series, plug this into the equation, and solve for tl.e terms order by order. We 

saw that this technique gave asymptotic solutions over times independent of £ to 

all orders in c For even the simplest problems with recurrent behavior. however, 

these expansions are non-uniform in time and in fact are no longer asymptotic 
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expansions at all when written in terms of a "slow" time: T = fl. \\"e have not 

made any mistakes in our analysis of the equation as is sometimes suggested; rather 

this nonuniform behavior is a property of the exact solution. 

Consider for example the simple equation 

x = -(1 + £)2 x. (5.24) 

This is just a harmonic oscillator of frequency (1 + £) and so has solutions like 

x(t) = sin(1 + £)t. (5.25) 

If we expand this in an asymptotic expansion, we obtain 

x(t) ~ sin(t) + £t cos(t) + · · ·. (5.26) 

This is the asymptotic expansion of the true solution, and yet we see that for times 

of order 1/(, the second term does not go to zero as£ does. This is thus non-uniform 

in t and the non-uniformity is on a scale oft= 1/c For this example we may make a 

change of independent variable to 8 = (1 + £)t and we see that we get a completely 

uniform (and even convergent) expansion in terms of 8. The effect of this is to 

do our asylJlptotics along the lines 8 =constant in the ( £, t) plane instead of along 

t =constant. 
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5.4.1.1. Lie Transforms 

The general technique of all secular perturbation theories is to introduce a new 

asymptotic process as in this example. For example, the method of Lie transforms 

makes an f dependent canonical transformation of an underlying phase space, such 

that in terms of the new variables the standard perturbation method yields solutions 

that are asymptotic for longer than bounded times. This technique may be shown 

to work for nearly periodic dynamical systems for time 1/f (see for _example [Cary, 

1981] and [Nayfeh, 1973] p. 200). Even here it is not completely specified what Lie 

transform one should make (since there is always extra freedom in making changes 

of coordinates). There is no general theory describing other circumstances in which 

the method works and even when the method does work, there is no algorithmic 

procedure for carrying it out. 

5.4.1.2. Two-Timing 

The multiple time scale approach (two-timing) writes the solution in terms of 

two variables t and T (see [Nayfeh, 1973] p. 228). The expression in terms oft is 

obtained by replacing r by €t, but the limiting process is performed with both t 

and r held fixed. We choose the representation so that the dependence on t is non-

secular on times of order 1/ f by writing the secular parts in terms of r. The result is 

asymptotics good for times of order 1/L This procedure is not given algoritl;mically, 

it is not clear what systems this approach works for and it is not clear how to 

proceed order by order even on systems where it works (though in specific examples 

the technique is often quite useful). One may sometimes get expressions for longer 
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times by introducing more slow times: t, r - 1/f, r' = 1/f2 , ... , but again the 
;'t·~ 

theory seems to be restricted to special examples. It appears that when we expres~ 

quantities as functions of more than one variable that we introduce an essential 

non-uniqueness which may limit the precision with which one can specify what one 

is doing. 
.,·.,_"". 

5.4.2. 1/f Time of Validity for Kruskal's Technique 

We have seen that Kruskal's method, while restricted to perturbations of an 

exactly periodic system, is perfectly general within this context and uniform to all 

orders in f for times of order 1/L That the time of validity is 1/f is a significant 

point, clearly stated in Kruskal's original paper, but not often repeated when this 

paper is quoted. One often hears the phrase: "Kruskal showed that adiabatic 

invariants exist to all orders in L" This then leads one to confuse the accuracy of 

the approximation with the time of validity. 

Why is the theory good for even time 1/f (we have seen that the simplest 

examples make the basic perturbation technique fail on this scale)? The idea is to 

convert our system, by hook or by crook, to one of the form 

:i: =€X, f'. (5.27) 

where X is an asymptotic vector field. In this case we may make the change of 

variables to T = ft and obtain the equation in the usual form: 

dx =X. 
dr 

.~, (5.28) 
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We may apply standard perturbation theory to this to get an expression for the 

solution that is asymptotic for bounded r. But going back to t, this is valid for t 

of time 1lc In Kruskal's technique, we get rid of the fast oscillations by successive 

coordinate changes and so the resulting dynamics has only the slow drifts which are 

of order t and so susceptible to the above technique. There is no way to get longer 

times out of this technique in general. 

One sometimes hears the plausible argument: "Since the adiabatic invariant's 

time derivative is zero to all orders in t, it will be constant for exponentially long 

times." As an example to see that this reasoning is faulty, consider the expression 

j = e-1/<t (5.29) 

If we take derivatives of this with respect to t, while holding t fixed, we see that 

J's time derivative is indeed zero to all orders in t. Nonetheless, j is of order 1 on 

times of order 1lf. Since when j is of order 1, J can change in times of order 1, we 

see that for this example J can undergo an order 1 change in times of order 1 I L 

To see that there are physical examples that fit into Kruskal's (and so everbody 

else's) framework and yet do not have preserved adiabatic invariants on times of 

order 1lt2 we need only consider parametric resonance. As in [Arnold, 1983], the 

simple harmonic oscillator with slowly varying frequency: 

x = -w2 (1 + acos(tt))x, (5.30) 

may be shown to be unstable for arbitrarily small t since there are resonances 

of arbitrarily high order. (An example is the child who pumps up a swing by 
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resonantly varying its length, and so its natural frequency.) It is easy to see that in 

this circumstance, the action will change significantly in times of order 11£2 . 

5.4.3. Averaging with Multiple Frequencies 

If. instead of a single fast degree of freedom, we have several fast degrees of 

freedom, the motion is close to being on tori that fill up the phase space. It appears 

at first that one could just average over the tori and obtain as adiabatic invariants 

the actions corresponding to the fundamental loops of the tori. This is fine if the 

unperturbed dynamics covers each torus ergodically and so the average perturbation 

over a torus really reflects the time average. If any of the frequencies are rationally 

related. however, then the orbit covers only a piece of the torus and we have no 

reason to expect that the average over the whole torus should have anything to do 

with the average over the orbit. Indeed one finds that one may have "trapping" at 

these so-called resonances, where the adiabatic invariant changes drastically in time 

1lc Fortunately, for generic Hamiltonians, the measure of the trapped regions is 

small and goes to zero as ..jf.. [Arnold, 1983] introduces the notion of an almost 

adiabatic invariant which is a quantity that is constant to first order in t for times 

of order 1 It except for a set of phase space whose measure goes to zero with L 
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5.4.4. Averaging Over Ergodic Orbits 

\\"hen the unperturbed system is ergodic on its energy surfaces, [Kubo et a!.. 

1965). and later [Ott, 1979], showed that the volume contained inside an energy 

surface is preserved to order { for time 1/{. This is based on an averaging similar 

to the single frequency averaging case. This is of interest because as the dimension 

gets larger, the volume being preserved is equivalent to the entropy being preserved. 

This gives a mechanical justification for the adiabatic invariance of the entropy in 

thermodynamics. When we forget about the oscillatory directions, we have seen 

that the constancy of the adiabatic invariant in an oscillatory system forces it to 

give and take energy under a variation of its parameters in such a way that it 

simulates a potential, leading to the pseudoforces we have discussed earlier. The 

same circumstance in the thermodynamic case leads to thermodynamic forces. We 

shall see in the last chapter of this thesis that there is a symplectic structure and 

Lagrangian submanifold that describes these forces in a Hamiltonian way exactly 

analogous to the pseudo forces of the mechanical systems. 

5.4.5. Non-uniqueness of Symmetry for Finite Perturbation 

Even though Kruskal showed that in a nearly periodic system there is a unique 

circle action on the perturbed dynamics to all orders in {, for finite perturbation 
' 

there may be none or the circle action may not be unique. Here is give a simple 

example to demonstrate this non-uniqueness. Our system will be a cylinder with 

coordinates () and y. The unperturbed system will just rotate in B: 

a 
Xo = ae· (5.31) 
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A typical perturbation shifts the orbits on the cylinder so that almost all of them 

are helices. For example, we get orbits that look like the stripes on a barber pole 

for finite { with 

a+{~. x = ae ay (5.32) 

Since this vector field does not depend explicitly on B, the unperturbed vector field 

generates a circle action which is a symmetry of this one. There are an infinite 

number of others, however. 

Let R be a vector field on the cylinder, all of whose orbits are circles. By the 

relationship of the flow of a vector field to the Lie derivative along it, R will generate 

a circle symmetry of X if, and only if the Lie derivative of X by R vanishes. But 

for vector fields this is just the Lie bracket: [ R, X], which is antisymmetric- and so 

the Lie derivative of R along X must vanish as well. This says that if we know R 

at any place on an X orbit, for it to be a symmetry its value anywhere else on this 

orbit must be obtained by pushing it forward along the flow of X. The orbits of X 

are a circle of helices filling up phase space. If we choose any closed loop around 

the cylinder that intersects each helix exactly once (it is easy to see that there are 

an infinite number of ways of doing this), then we can make that loop one of the 

orbits of R. For R on the loop, just choose R tangent to the loop, and to get R 

everywhere else, we push this forward by X's flow. 
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Chapter6: arbitrary potential. The example we will use is 

i; = Vx 

Ponderomotive Force y = Vy 

. aV(x) 1 aW(x) 2 Vx = ---- ---y 
ax 2 ax 

(6.1) 

and Gyromotion v11 = -W(x)y 

with the initial conditions 

x(O) = xo y(O) =Yo 
"Tbe purpose of computing is insight, not numbers."-Richard W. Hamming (6.2) 

6.1. Ponderomotive-like Forces 

In this chapter we will apply the perturbation techniques of the last chapter 

to some example problems. The physical plasma phenomena that underlie our 

examples are the ponderomotive force and gyromotion. We wish to keep the physics 

of these asymptotic physical effects in the foreground and so we do not work with the 

most general situation in which these effects arise. Instead, we focus on the simplest 

situations which contain the relevant physical effects, and discuss the underlying 

asymptotic process in detail. This approach allows us to explicitly compare aspects 

of these problems which are obscure in more complex settings. The insights and 

intuiti·.>ns gained are of course applicable to more general settings. 

First we discuss a model problem that contains the essence of ponderomotive 

force. We consider a time-independent problem with two degrees of freedom. One 

degree of freedom behaves like a fast oscillator and the other evolves slowly in an 

Vx(O) = Vxo v11 (0) = V 11o. 

This system is Hamiltonian with the canonical Poisson bracket in x, y, Vx, v11 and 

the Hamiltonian 

12 12 1 2 
H(x,y,vx,v11 ) = 2vx + 2v11 + V(x) + 2W(x)y . (6.3) 

A physical model with this dynamics is a ball rolling in a trough. The trough 

is a surface whose height over the (x, y) plane is given by V (x) + W (x)y2 /2. ( Vx, v11 ) 

represent the x and y velocities respectively. Along each line x =constant, the 

potential has a minimum at y = 0 and grows quadratically with strength W(x) as 

jyj increases. If the rolling particle starts at y = 0 with v 11 = 0, then it remains 

on the line y = 0 for all time. In this case the system behaves like a one degree 

of freedom system with potential V(x) and W(x) plays no role. If there is any 

displacement from y = 0, then the particle continues to oscillate back and forth 

about the x-axis. The y2 in the potential acts like a restoring force toward y = 0 and 

the strength W(x) varies with x. Exactly this kind of model is behind mechanical 

systems with constraints. When we say we have a particle in the plane constrained 
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to the x-axis (like a bead on a wire), we really mean that there is a stiff restoring 

force transverse to the axis. It is sometimes implicitly assumed that if the restoring 

force is sufficiently strong, the motion of the particle is well approximated by the 

equations restricted to the constraint manifold (in this case the x-axis}. To make this 

statement precise one must introduce asymptotics in the strength of the restoring 

force. Vie will see in fact that if W(x) is not constant, then the transverse motions 

add a new pseudo-potential to the constrained motion. 

We are interested, then, in the case where the transverse y motion is very fast 

compared to the x motion. We want to explicitly introduce asymptotic scaling with 

a parameter£ into our equations of motion to make this analysis precise. Usually one 

is somewhat sloppy and simply proceeds intuitively. Sometimes this gives a useful 

answer but the chances of this go down as the complexity of the problem goes up. 

It is also important to explicitly state the intended scaling as this represents the 

physical effect one is trying to study. Let us give an intuitive argument and then 

see what must be done to make it precise. 

6.1.1. Intuitive Treatment 

Because the y motion is supposed to be fast compared to the x motion, the y 

motion initially behaves a~ if x is frozen at x 0 . The equations for the y motion are 

now those of a simple harmonic oscillator with frequency JW(xo): 

y = Vy v11 = -W(xo)y. (6.4} 
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For simplicity, we take the y initial condition to be zero: y(O) = 0. In this case the 

solution is 

t' 0 
y(t) = 'W~(xo) sin( Jw(x 0 )t). (6.5) 

The V:r evolution equation 

. oV(x) 1 oW(x) 2 
V:r = -a;- - 2 ----a;- y (6.6} 

depends on y. Because y traverses its periodic orbit many times before x or Vz evolve 

appreciably, y's effect on Vz 's evolution will be almost the same as its average over 

y's orbit. Because the average of sin2 (8} over 0 ~ 8 ~ 271' is 1/2, the average of 

- 8~£:r> y2 /2 will be 

1oW(x) v~o 
-2-----a;--- 2W(xo) 

(6.7) 

If we now let u be the value of v 11 when y = 0, we see that the same argument 

applies to any time (not just the initial time) to give the V:r equation: 

. oV(x) 1 oW(x) u 2 
v ----------
:r- ox 2 ox 2W(x)" 

(6.8) 

This tells us how Vz varies if we know u (i.e. y's maximum velocity). 

We may determine u from the constraint that the total energy must remam 

constant. At an arbitrary time, the average energy in the y motion is u2 /2, a result 

we obtain by holding x and Vz fixed and realizing that all of the oscillatory energy 

is kinetic when y = 0. The total energy (averaged over they motion) is then 

1 1 
H = 2 v~ + 2u 2 + V(x). (6.9) 

The time derivative of H must vanish, so 

. av 
H=vxilx+uu+v:r-

0 
=0. 

X 
(6.10} 
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We substitute in the expression for Vx to obtain 

ii = 0 

av 1 aw u2 . av 
== -Vx OX - zVxfu 2W + UU + Vx OX (6.11) 

1 · u2 

=uit--W-
2 2w· 

This has an integrating factor of 1/(2JW) by which we multiply to obtain: 
. 2 

0- uu w u 
- 2v'W- sw3/2 

d ( u2 ) 
= dt 4JW . 

(6.12) 

We have found a constant of the motion, a multiple of 2 of which we shall call J 

(since it is equal to the action of the transverse oscillations): 

J=C~)=C~)· 
This may be solved for u: 

u = .J2Jv'W 

and then substituted into the equation for vx: 

. oV(x) 1 oW(x) u 2 

Vx == ---------
OX 2 ax 2W(x) 

aV(x) 1 oW(x) J 
== ---a;- - 2 ---ax- JW 
= _ aV(x) _ ~(Jy'W(x)). 

OX OX . 

The x motion behaves just like a particle in the potential 

v2oVW1XJ 
V(x) + JJW(x) = V(x) + 11JW[X;;}. 

2 W(xo) 

(6.13) 

(6.14) 

(6.15) 

(6.16) 

The ordinary potential V(x) is augmented by ar. extra pseudo-potential JVW(X) 

which is non-zero when there is transverse motion and has an effect on the x motion 

when W varies with x. 
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6.1.2. Introducing the Asymptotic Scaling 

This argument is intuitively appealing but has not been systematic. It is dif-

ficult to see how to get more accurate evolution equations. We therefore wish to 

introduce an explicit f into our equations which captures the physical assumptions 

used in the intuitive discussion above as f --. 0 and which gives the correct equa-

tions for ( = 1. y and v 11 are supposed to be fast variables. If we view them as 

varying by order 1 on a time scale of f (so the fast motion gets faster and faster 

as f --. 0), then x and Vx should vary by order 1 on times scales of order 1. In 

modelling constrained motion, one typically makes the constraining force stronger 

asymptotically. We therefore replace W(x) with W(x)/f2 • If we keep the initial 

conditions y(O) = y0 and v11 (0) == v110 , then as f --. 0 the energy of the transverse 

motion becomes infinite .. Because the transverse energy is really of the same order 

as the energy of the constrained motion, we must scale the transverse displacement 

with f as y(O) = fYO· This leads to a system given by 

X= Vx 

y == Vy 

. aV(x) 1 aW(x) 2 
Vx = ---- ----y 

ax 2f2 ax 

(6.17) 

v11 ==-
1
2 
W(x)y 

( 

with the initial conditions 

x(O) = xo y(O) == fYo 
(6.18) 

Vx(O) = Vxo v 11 (0) = VyO· 

From the equations, it might appear that Vx can really evolve by order 1/ f on 

times of order f contrary to assumption. This doesn't happen, however, because 
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the maximal excursion in y scales as £ and so counteracts the 11£ 2 in the equation 

for Vz. This is because the initial y has this scaling and because the total energy is 

of order I. That the transverse potential energy Wy 2 12£2 is of order 1 means that 

y's maximal excursion is of order L This argument shows that the time derivative 

of v 11 is of order 1 I L This system is Hamiltonian with the canonical Poisson bracket 

in x, y, vx, v11 and the Hamiltonian is 

( 
12 12 1 2 

H x, y, Vx, v11 ) = 
2

vx + 
2

v11 + V(x) + 
2

f 2 W(x)y . (6.19) 

This scaling has the fast motion getting very fast as f -+ 0 as is physically reasonable. 

The interesting pseudo-potential has its effects in time 1 (which is presumably the 

time scale used by the observer). Unfortunately, this scaling is not a perturbation 

around any well understood system for f = 0. As f approaches zero, the equations 

of motion become singular. It is also not apparent how the operations we performed 

in our intuitive approach may be expressed systematically with this scaling (e.g., 

we held the x variables fixed while studying y-why could we do this?) 

One way to resolve these difficulties is to redo our study on a stretched time 

scale (i.e. imagine the clocks in your sensory apparatus getting faster as f -+ 0). We 

introduce t = tlf. If we interpret dot to mean derivative with respect to t (while 

keeping the interpretation of the velocities Vx and v11 as derivatives with respect to 

t), then the equations of motion become 

X= fVx 

iJ = fVy 

. oV(x) 1 oW(x) 2 
V:r = -{--- ---y 

ox 2£ ox 
. 1 
Vy = --W(x)y 

{ 

(6.20) 
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with the initial conditions 

x(O) = xo y(O) = £Yo 
(6.21) 

Vx(O) = Vzo v11 (0) = V11o-

To get rid of the apparently singular terms, we may introduce a rescaled y defined 

by Y = y I L The initial conditions are now f independent and the equations are 

non-singular: 
X= fVx 

y =Vy 

ilx = _/V(x) _ ~ oW(x)y2 

ax 2 ox 

(6.22) 

v11 = -W(x)Y 

with the initial conditions 

x(O) = xo Y(O) =Yo 
(6.23) 

Vx(O) = Vxo v11 (0) = v11o. 

These equations are perfectly set up for the non-Hamiltonian versions of the meth-

ods given in the last chapter. They limit as f -+ 0 on a system with only periodic 

orbits: 

i: = 0, Y = v11 , Vx = 0, v11 = -W(x)Y. (6.24) 

We will study these equations momentarily. Unfortunately, they are not Hamil-

tonian with respect to the canonical Poisson bracket. They are Hamiltonian with 

respect to the bracket 

{J,g} ={of !.J_ _ {~ ag +of !.J_ _ ~~ 
ox OVx OVx ox oY OVy OVy BY 

(6.25) 

with the Hamiltonian 

12 12 1 2 
H(x, Y, Vz, v11 ) = 2v:r + 

2
v11 + V(x) + 2W(x)Y . (6.26) 
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This bracket becomes degenerate {and functions of x and Vz become Casimirs) when 6.1.3. Using the Kruskal-like Perturbation Method 

{ = 0. 
Let us now obtain the adiabatically invariant action to first order in ( using 

One way to preserve the Hamiltonian nature with respect to the canonical the method outlined in chapter 5. The dynamical vector field is: 

bracket is to scale the potentials V(x) and W(x) to vary more and mo're slowly, the 
X= Xo + £X1 

strength of the restoring potential to grow and the contribution of Vx to the kinetic 

H( ) 1 2 1 2 1 ) 2 x,y,vx,v11 = 2wx + 2v 11 + V(Ex) + 2W(£x y . 

= (v _!__- W(x)Y __!___) 11 aY avy 

+ f (vx!!_ _ (aV(x) +! aW(x)y 2 ) __!___). 
ax ax 2 ax avx 

{6.30) 
energy to vanish as f --+ 0. This leads to the Hamiltonian 

{6.27) 
The solution curves of the unperturbed piece X 0 are all closed: 

The equations of motion are x(t) = xo v.,(t) = 0 

X= ftlx Y(t) = Acos( y'W(x)t) (6.31) 

il = tly v11 (t) = -AJW"Wsin( JW"Wt). 

. av f aw 2 V:r =-£-(Ex)- --(Ex)y 
ax 2 ax 

{6.28} 

6.1.3.1. The Coordinates x, Vx, A, (J 
v11 = -W(£x)y 

with the initial conditions 
Let us define the angle on these orbits as (J and introduce an amplitude A: 

x(O) = xo y(O) = Yo 
(6.29) 

Y = AcosfJ v11 = -AJW"WsinfJ. {6.32) 

Vz(O) = Vxo v 11 (0) = V 11o. 

Writing these relations in the other direction gives 
Again this has nice limiting behavior as f --+ 0. Physically, the picture is that we 

are stretching the x coordinate, so that the trough becomes flatter and flatter in Vy 
tanfJ=-y~ 

1 2 
Y2 + - vy. A

2 
= W(x) (6.33) 

the x direction. If we hold Vz fixed, then it takes a longer and longer time to make 

W vary substantially. 
Comparing these expressions with the earlier discussion we expect the zero order 

action to be given by 

(Av'wTx))2 = !A2 y'W(x). 
Jo= 2~ 2 (6.34) 



6.1.3.1. The Coordinates x. Vz, A.B 261 

We may take the time derivatives of these expressions to obtain the dynamical 

vector field in the new coordinates. 

· 2 · v vY v mv 
( 1 + tan 0)0 = - !I + !I + !I ~ • 

And so 

y ~ Y2~ 2YW(x)3/2 ax X 

=~+tan2BJW(x)-wx tanB aw. 
2W(x) iJx 

1 aw 
iJ = Jw(x)- W:rsinBcosB 2W(x) ax· 

Similarly for A: 

leading to 

v 2 aw. . . Vy . __ !I --x 
2AA = 2YY + 2W(x) VII- W(x)2 ax 

v 2 aw 
II~ = 2Yvll- 2viiY- fVxW(x)2 ax 

A2 aw fV:r . 2(J 
=- W(x) sm ax 

. WzA . 2 aw 
A=- 2W(x)sm Bax. 

Thus the dynamical vector field in these coordinates is 

X= JWW- +fvx- -( --+---A cos 8 ~ a a ( av ( x) 1 aw ( x) 2 2 ) a 
a0 dX dX 2 dX dVx 

. 1. aw a vxA . 2 aw a 
+ tvxsmBcosBW(x) ax iJB- c2W(x)sm Bax iJA. 

(6.35) 

(6.36) 

(6.37) 

(6.38) 

(6.39) 
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6.1.3.2. Result of the Method of Averaging 

The method of averaging says that the projection to x, Vz, A space of the in-

tegral curves of X agrees with the evolution on that space of the averaged vector 

field: 

X= ( (v !..._- (av + A
2 

iJW(x)) _!_- VxA aw ~) 
- X ax ax 4 ax avx 4W(x) ax ()A 

(6.40) 

to first order in f for a time 1/L From this we again (though this time it is rigorous) 

see that for the averaged dynamics 

. d 1 2 ~ 
Jo = dt(2A yW(x)) 

. A2 aw· 
=AAJWW+ ~-" x 4 W(x) ux 

v:rA2 aw v:rA2 aw 
-~~+ ~ 

4~ ax 4JW(x) iJx 

=0. 

(6.41) 

So J is exactly a constant of the motion for the averaged dynamics. This implies 

that Jo is conserved to within£ for time 1/£, i.e. it is an adiabatic invariant. If we 

consider a level set of J0 then the averaged vector field restricted to that level set 

has the form 

XJ = f (vx:x- :X (v(x) + JJW(x)) a~J (6.42) 

and so is Hamiltonian with an extra pseudo-potential J ~-
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6.1.3.3. Calculation of the Roto-rate Vector Field 

Let us now find the roto-rate symmetry vector field to first order in c We know 

that 

a 
Ro = ae 

from the general theory. We wish to impose the requirement that 

[R1,Xo] = -[Ro,Xl]· 

Let us solve this for R1 component by component. Since 

we find that 

We conclude that 

a 
Xo=~ae 

aR"' [R1,X0 ]"' = -~-~ ae 
= -[Ro,X1]"' 

a = -[a8,X1]"' 

- a X"' -- ae 1 

=0. 

Rf = lf(x,vx,A) 

(6.43) 

(6.44) 

(6.45) 

(6.46) 

(6.47) 

is a constant. The next step in the method is to impose the constraint that the 

orbits R close after time 2rr: 

[2" 
lo R1d8 = o. (6.48) 

We conclude that the constant vanishes and that 

Rf = 0. (6.49) 
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Similarly, we obtain the Vx component: 

[RJ,xoJV· = -~a:f 
a 

= -lae'xi]v· 

- -~xv• - ae 1 

(6.50) 

aw(x) = -~A2cos8sin8. 

So 
R~· = __ 1_ { 6 aW(x) 2 _ _ _ 
~ ]

0 
~A cos8sin8d8 + f~·(x,vx,A) 

1 aw(x) 2 _ 

4./W(-,) ~A cos28 + g•(x,v,,A). = 
(6.51) 

Again the integral condition forces the constant of integration to vanish and we 

obtain 

R~· = -~:x(~)A2cos28. 

We proceed to find Rt: 

Thus we see that 

R~ = 

[ ]
A ~aRt 

R~,X0 = -vW(x)ao 

[a A 
=- ae'xi] 

a A 
=-aexl 

VxA . aw 
= W(x)sm8cos8Bx. 

1 { 6 VxA aw __ 
2,/W(x) )

0 
W(x) azsin28d8 + f~(x, Vx, A) 

VxA aW -A 
---. r)3/2 axcos28 + '1 (x, V;r:, A). 

Imposing the integral condition gives 

R
A _ VxA aW 
1 - HITf_\?./'1 axCOS28. 

(6.52) 

(6.53) 

(6.54) 

(6.55) 
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Finally we obtain RT: 

Thus we find that 

[RI,Xo]11 = -vwr;;) 0~
11 

+ Rf :x ~ 
8R11 

= -vwr;;)-
f)() 

a (! = -[
80

,Xl] 

a (! 
=--Xl 

f)() 

1 1 aw 
= 2vxcos2()W(x} a;· 

R(i = -Vx aw [11 
- -

2W(x)312 ax )
0 

cos28d() + ff(x,vx,A} 

_ -Vx fJW . 
- 4W(x)312 a;;sm20 

where we have already imposed the integral condition. 

Thus to first order in f, the roto-rate vector field is 

R = Ro + ER1 

a 
-88 

1 a fliTI::\ 2 a 
- (--(yW(x}}A cos20-

2 ax OVx 

VxA aw a 
+ f 4W(x)3/2 a;;cos20 8A 

Vz OW . 0 
- f 4W(x)312 ox smZO ao· 
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(6.56) 

(6.57) 

(6.58) 
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6.1.3.4. The Hamiltonian Structure 

In the original coordinates, the non-trivial Poisson bracket relations are 

{x,vx}=l {Y,v11 } = 1. (6.59) 

Let us determine the Poisson bracket in terms of the variables x, Vz, A and 0. 

Since neither A or() depend on Vx, we have that 

{A,x} = {O,x} = 0. (6.60) 

We may find the other relations most simply by using the derivation property 

of the bracket: 
2A{A,vx} = {A2 ,vx} 

- { 2 1 2 
- Y +W(x)v11 ,vx} 

v~ 8W(x) 
= -W(x)2 ----a;-{x,vx} 

w~ 8W(x) 
= - W(x)2 ----az-

EA2 . 2 aw 
=- W(x}sm 8--a;;. 

Thus we obtain the relation 

Similarly 

fA . 2 aw 
{A,vx} = -2W(x)sm Oa;;. 

(1 +tan2 8){8,vx} = {tan8,vx} 

={-Y~,vx} 

f~sinO 1 oW 

2Acos0 W(x)312 Bx' 

(6.61) 

(6.62) 

(6.63) 



6.1.3.4. The Hamiltonian Structure 26i 

so 

{0, Vz} ==- 2n~(x) sinOcosO~~·. (6.64) 

Lastly 

2A{A.0}(1 +tan2 0) == {A2 ,tan0} 

y2 1 2 Vy 

== { + W(x) v11 ,- Y JW(x)} 

} 
1 2v11 } 1 v11 == -2Y {Y, Vy !lilT::\ + W( ) { Vy, y y2 !lilT::\ 

YyW(x) x yW(x) (6.65) 

2 2v~ 
== - v'W{x) - Y2W(x)312 

2 2 2 ----tan 0 
JW(x) vfw(X) ' 

so 

1 
{A, 0} = - Avfw{X) (6.66) 

In the new coordinates the Hamiltonian is 

1 1 1 
H = -v2 + -v2 + V(x) + -W(x)Y2 

2 "' 2 II 2 

= !v; + -
2

1 
A2W(x)sin20 + V(x) + !w(x)A2cos20 (6.67) 

2 2 
1 1 = ZA2W(x) + 2v; + '1-'(x). 

One easily checks that this Hamiltonian generates the dynamical vector field in 

these coordinates using the above Poisson bracket relations. 
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6.1.4. Obtaining the Action to First Order 

Let us now use the Poisson bracket relations to find the function Jo + {JJ + 

... which generates the roto-rate vector field Ro + £R1 + . . .. From the defining 

expression 

Ro + £RI + ... == {·,Jo + {J1 + ... }o + {·,Jo + d1 +··.}I (6.68) 

for the action we find a hierarchy of equations 

Ro == {·,Jo}o 

R1 = {·,Jdo + {·,Joh (6.69) 

A priori each J; is only determined up to Casimirs for {, }o until we get to the 

next stage. In this example, we may always take these Casimirs to vanish (is this a 

general phenomenon?). 

The zero-order vector field generated by J is 

aJo 1 a aJo 1 !..._ 
{·,Jo}o = -Bo Avfw{X) aA + aA AyfW(x) ao 

Comparing this with the desired 

we obtain the relations 

8Jo = 0 
ao 

a 
Ro = ae' 

aJo == AVW(x). a A 

' 

Up to possible Casimirs, we obtain the expected zero order action: 

1 
Jo == 2A2~. 

(6.70) 

(6.71) 

(6.72) 

(6.73) 
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The first-order vector field generated by J has two pieces. The first is 

~ A2 aW(x) 
{·,Jo}J = {·,A}AyR(x) + {·,x} ~ 

4yW(x) ax 

A . 2 mv ~ a A 2 aw a 
= --sm 8-AyW(x)-- --

2W(x) ax avx 4JW{X) ax avx 

A2 aw a 
--==-(sin28- cos28)-
4JW(X} ax avx 

A 2 aw a 
cos28-. 

4)W(x) ax avx 
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{6.74) 

The second term is {·,Jdo and has the same form as in the zero order calculation. 

Together the two terms give 

aJ1 1 a aJ1 1 a 
{-,Jdo + {-,Joh =-To A~ aA + aA Ay'W(x) a8 

A 2 aw a 
--==-COS28-. 
4y'W(x) ax avx 

{6.75) 

We must choose J 1 so that this vector field agrees with R. Comparing the a;avr 

terms, we see that they already agree (this just says that the undetermined Casimirs 

in the zero order step were actually zero). For the 8 and A terms to agree we must 

have: 

and 

These are satisfied by 

aJ1 1 1 
-ae AJW(x) 

8J1 1 

aA AJW{X} 

Vx aw 
4W(x)3/2 Txsin28. 

Jl =- VxA2 aw 
BW(x) Txsin28. 

We have thus shown that the Lnction 

1 2 ~ VxA
2 aw. 

Jo + t:J1 =-A yW(x)- £---,.:;--( ) -sm28. 
2 8rr X 8x 

varies only by order t: 2 over times of order 1/ L 

(6.76) 

(6. 77) 

(6.78) 

{6.79) 
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6.2. Some Comments on Perturbation Calculations 

Let us use the opportunity of this example to make explicit some nry impor-

tant points about physical perturbation theory which are implicitly contained in 

the rest of the thesis. Since the time of Galileo, the scientific method ha.<- thrived on 

theorists making all assumptions explicit and basing the acceptance or rejection of 

a theory on the testable validity of the assumptions and conclusions of a theory. For 

science to advance, it is important to be precise about the distinction between phys-

ical assumptions and rigorous mathematical deduction. In the asymptotic physical 

theories discussed in this thesis there are two distinct phases of analysis. The first is 

the "putting the t:'s in". This process requires physical intuition as to which aspects 

of a problem are physically important and should be emphasized in the scaling with 

L One must make the assumed scaling precise at the beginning of the problem if 

one is to have hope for a self-consistent theory. Too often workers eliminate terms 

haphazardly as a calculation is progressing and the resulting theory does not have 

its assumptions made explicit. Without this one cannot build anything else on top 

of the theory and the result is the fragmentation of a field. 

Once the t:'s have been inserted, the rest of a derivation should be rigorous 

mathematics. One must state precisely what problem is to be solved and in partie-

ular what time scale of validity is desired and obtained. Let us try to clearly state 

some facts about coordinates. When we are giv:~n a problem in terms of physical 

variables including t:, each physical state is associated with a well-defined point in 

the state space manifold with these coordinates. The dynamics is a precisely defined 

vector field on this manifold. When we start with a definite physical state, its time 
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evolution goes through other definite physical states, regardless of any coordinate coordinates can make the physical operation of reduction or averaging much ea..~icr 

system. By changing coordinates, one cannot changt> the evolution of the system. to carry out in practice, but one must not lose sight of the fact that it is mere 

We have seen in chapter 2 that perturbation theory is independent of coordinates convenience and has no fundamental signifigance.) 

as well. This means that if we change our coordinate system, do nonsingular per-
We have seen only two methods for eliminating secularity expressed indepen-

turbation theory in the new coordinates and change back to the original system, 
dently of the coordinate system: the method of averaging and Kruskal's method. 

we always get the same result as working with the original coordinates all along. 
Both of these rest in an absolutely essential way on the unperturbed system being 

If the asymptotic expansion of a solution is secular in time (i.e. the coefficients in 
made up of purely closed orbits. If we wish to use these methods, we must scale our 

the expansion blow up as t -+ oo, usually on a time scale of order 1/c), then this 
system to be periodic at t: = 0. Sometimes one sees the argument made that while 

is a physical fact which cannot be changed by going to another coordinate system. 
the unperturbed system isn't periodic, we are only interested in the case where 

(One can introduce fake coodinates which shrink with time making the system ap-
orbits almost come back to their starting point, validating averaging. If this is the 

parently non-secular, but rewriting this solution in the original coordinates shows 
case, it should be put into the scaling with c! The whole point of the scaling is 

that it really is secular. If the orbits are bounded, then Oseledec's theorem (see 
to make explicit what variation is small compared to what other variation; in a 

section 10.3) shows that one cannot do even this.) 
self-consistent theory all such assumptions are put in at the beginning. 

If one is happy with time scales of order 1 then one may use simple non-secular One other point in connection with these polemics is that one must be careful 

perturbation theory (as discussed in chapter 2) in any coordinate system one desires not to expend great effort producing a long time theory for a system of equations 

(in particular there is no advantage or need to do anything fancy like Lie transforms which are themselves only an approximation for a short time. One place where 

or Kruskal's method). If one wishes to do secular perturbation theory, then again this issue must be clarified is in plasma physics. One often begins with the Vlasov 

there is a physical operation involved which is independent of coordinates. One must equation, assumes wave amplitudes are small, and then works with the linearized 

eliminate the variable that gives rise to the secularity, say by using the method of Vlasov equation. This is just the first order of non-secular perturbation theory, 

averaging or by reduction by an approximate symmetry. This is a physical operation where the disturbance amplitude is scaled with t:, and so is valid only f0r bounded 

which changes the identification of physical states with points in state space. One times as c -+ 0 as we have seen. One then often proceeds with an analysis of the 

must lose the information that causes the secularity. Merely changing coordinates linearized system using secular perturbation theory (say in analysing ponderomotive 

does not lose any information and cannot eliminate secularity by itself. (Changing effects) which purportedly will give asymptotic answers uniformly on long time 
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scalf's. If the long time scale is longer than the bounded time scale for which the 

linear theory is correct, then as far as the actual physical behavior is concerned the 

result is not correct. This is not to say that such studies are wrong, only that there 

is a further assumption behind them (that the scaling of the process studied using 

secular theory is such that the secular time scale is bounded as far as the original 

linearization is concerned) which must be made explicit. Higher order non-secular 

theory gives the two-wave, three-wave, etc. interaction equations. Again these are 

often studied using fancy secular techniques. Again the scaling which makes this a 

worthwhile endeavor must be made explicit. This will also give restrictions on the 

domain of validity of the theory. 
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6.3. 2D Gyromotion via the New Kruskal-like Method 

In this section we will apply the perturbation technique developed in chapter 

5 to the problem of two-dimensional gyromotion. We will carry out all calculations 

in explicit detail, so as to provide a model for other calculations done with this 

method. This work was done in collaboration with Richard Montgomery.· The 

problem we wish to consider is the ~otion of a charged particle in the (x, y) plane, 

in the presence of a purely perpendicular magnetic field: 

The Lorentz force law: 

B(x,y)z. 

dv 
m- = q(v x B) 

dt 

(6.80) 

(6.81) 

implies that when we set q = m = c = 1, the exact non-relativistic equations of 

motion arise from the dynamical vector field: 

a a a a 
X= v"'-a + vy-a + Bvy-a - Bv"'-a . 

X y Vz Vy 
(6.82) 

To do a perturbation analysis, we must introduce the scaling factor f. There are 

a variety of ways of doing this, but we choose € so that the unperturbed orbits 

have their velocity vectors rotating at the gyro-frequency and the particle position 

remains stationary. This scaling is equivalent to making the charge to mass ratio 

infinite (though we rescale time so that the unperturbed system has well defined 

dynamics). This scaling is the standard one used in plasma physics. More dis-

cussion may be found in [Northrop, 1963] and in the papers [Littlejohn, 1979 

and [Littlejohn, 1981] which are also good references for the rest of this section. 
• I 



6.3. 2D Gyromotion via the Sew Kruskal-like Method 2i5 

This dynamical vector field has only an unperturbed part, Xo, and a first-order 

perturbation, X 1 : 

X= Xo + c\:"1 ~ B ( v11 O~x - Vx 0~J + f ( V:z: :x + Vy :J · (6.83) 

If B doesn't vanish, the unperturbed system Xo has all of its orbits periodic. 

In this case, we are in the appropriate situation for the application of the method of 

chapter 5. The goal of the perturbation analysis is to find the (roto-rate) symmetry 

vector field R, order by order in f: 

{2 
R=Ro+fR1+z:R2+ .... 

The technique used here requires no special knowledge and makes no arbitrary 

choices. It is therefore suitable for a computer implementation which could work 

symbolically order by order to as high an accuracy as desired. 

Recall that the condition for R to be a symmetry of X is that their Lie bracket 

vanish: 

[R,X] == 0. (6.84) 

We write this equation order by order. This example has only two terms in X, and 

6.3. 2D Gyromotion ~·ia the l\lew Kruskal-likc .\Jcthod 

so each equation contains two brackets: 

[Ro,Xo] = 0 

[R1,Xo] = -[Ro,Xd 

[R2,Xo] = -;-2[Rl,Xi] 

[R3,Xo] = -3[R2,X1] 

[Rj,Xo] = -j[Rj-1,Xi] 

2i6 

(6.85) 

We saw in chapter 5 that it is convenient to introduce the coordinate (} de-

scribing the phase on the unperturbed orbits. This makes it simpler to do the 

integrals, but is in no way required for any fundamental reason. We introduce polar 

coordinates in the. ( Vx, v 11 ) plane at each point: 

(} = tan-1 ( ~:x) v = Jvi + v~. 

The inverse relations are 

Vz = v cos(} vy = -v sine. 

Expressed in these coordinates, the unperturbed dynamical vector field is 

a 
Xo == B ae· 

The first order perturbation of the dynamics is 

a a 
XI == v cos(}-- v sin(}!}· 

OX uy 

(6.86) 

(6.8i) 

(6.88) 



6.3. 2D Gyromotion via the New Kruskal-like 1\.fethod 277 

The frequency of the unperturbed orbits is B. As discussed in chapter 5. the 

zero order symmetry Ro is parallel to these orbits, but normalized so that all orbits 

have period 27r: 

a 1 
Ro = 8(} = BXo. (6.89) 

The four components of the Lie bracket of H. with Xo are given by 

. oRx 
[RJ,Xo]x = -B 

0
; = -j[Rj-1,X1]x 

oR" 
[R1,Xo]" = -B a; = -j[R1-1,Xz] 11 

oRv 
[Rj,Xo]v = -B 

0
; = -j[Rj-l,XI]v 

(6.90) 

9 oRJ an x an " . 19 [R1,Xo] = -B ao + ox R1 + a:yR1 = -J[R1-l,x1 . 

These are the expressions that we use to explicitly perform the integral to determine 

each component of Rj: 

. {(} 
RJ = ~ lo [RJ-1,X1]xd0 + fj(x,y,v) 

J -.1(} 
Rj = B 

0 
[Rj-1,Xz]"d(} + !J(x,y,v) 

. {(} 
R'j = ~ Jo [Rj-1, X1tdB + /1v(x, y, v) {6.91) 

8 1 {
9 

( .[ ]9 aB x 
Ri = B Jo J R1-1,X1 + ox R1 

an - 9 + oyRJ}d0+J1 (x,y,v). 

The right hand sides of the Lie bracket equations are all of the form 

a . a 
[Rj-1,Xz] = [Rj-1,v cosO OX- v smO a} (6.92) 

Let us work out the four components of this in general, so as to make later work a 
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matter of simple substitution: 

[R1 _ 1 , Xt]x = R;'_ 1 cosO- R%_ 1 v sinO- v cosO :x (R;_ 1) + v sinO :y (Rj_ 1 ) 

[R1 _ 1 ,XI]"= -R'j_ 1 sinO- RJ_ 1 v cosO- v cosO :x (RJ_ 1) + v sinO :y (Rj_ 1 ) 

[Rj-1, Xt]v = -v cosO :x (R'j_ 1) + v sinO :y (R'j_ 1) 

lo a ( 6 ) . a 6 ) [R1_ 1 ,X1 =-vcos0
0

x R1_ 1 +vsm0
0

Y(R1_ 1 . 

6.3.1. The Four Components of R1 

From the general theory, we know that Ro is given by 

a 
Ro = ae· 

{6.93) 

(6.94) 

Let U5 now proceed to find the four components of R1 . The constants of integration: 

If, If, !1, Jf, will be determined by the condition that the orbits of R close to first 

order. We saw in chapter 5 that this implied that 

{21f 
Jo R1d(} = 0. {6.95) 

We will apply this condition to each component of R1 after evaluating it. The 

components of the Lie bracket [ Ro, X 1 ] are 

[R.o,X1]x = -v sinO 

[Ro, X1] 11 = -v cosO 

[Ro,Xz]v = 0 

[Ro, Xt] 8 = 0. 

{6.96) 
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Substituting these into the general expression gives 

-1~o(J - -R: =- v sinO dO+ ff(x,y,v) 
B o 
1 -

=nv cosO+ Jf(x, y, v). 

Since cosO has zero average over the interval [0, 21r], the integral condition 

1
21r 

0 
RfdO = 0 

implies that the constant of integration is 

it =0. 

The x component of R 1 is therefore 

Rf = ~v cosO. 

Similarly, 
1 1(} - -

Rf =- B 
0 

v cosO dO+ Jf(x,y,v) 

=- ~v sinO+ ff(x, y, v). 

The integral condition 

1
21r 

o Rrdo = o 

implies that the constant of integration is 

tr = 0. 

The y component of R 1 is therefore 

R Y 1 . n 
1 = -Bv s1nu. 
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{6.97) 

(6.98) 

(6.99) 

(6.100) 

(6.101) 

{6.102) 

{6.103) 

(6.104) 

6.3.1. The Four Components of R 1 

Similarly, 

Rr =..!_ 19 

o dO+ g(x,y,v) 
B o 

=g(x,y,v). 

The integral condition 

1
21r 

0 
R~dO = 0 

implies that the constant of integration is 

f~(x,y,v) = 0. 

The v component of R 1 is therefore 

R~ =0. 

The R~ equation uses these results: 

Rf =~foe (0 + BxRf + !J11 Rf)d0 + lf(x, y, v) 

1 19 
(. Bx - B -) - e =B 

0 
Bv cosO- ;v sinO dO+ / 1 (x,y,v) 

1 (Bx . By ) -e =B Bv smO + Bv cosO + / 1 (x, y, v). 

The integral condition 

1
2 .. 

0 
RfdO = 0 

implies that the constant of integration is 

-e 
/ 1 (x,y,v) = 0. 

The 0 component of R 1 is therefore 

e Bx . B 11 R 1 = BZ v smO + B 2 v cosO. 

:?80 

(6.105) 

(6.106) 

(6.107) 

(6.108) 

(6.109) 

{6.110) 

(6.111) 

(6.112) 
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These expressions may be simplified by introducing a variable representing the 

reciprocal of the magnetic field: 

We see that 

Bx 
Cx =- B2 

1 
C = -. -B 

By 
and Cy =- B2' 

We may then write the entire expression for R 1 as 

a . a a 
R 1 = Cv cosO ax - Cv sm£1 ay + ( -C:xv sinO- C11v cosO) ao· 

6.3.2. The Four Components of R 2 

(6.113) 

(6.114) 

We will now proceed to obtain R2 • The algebraic manipulations are more 

tedious than those for R 1 , but conceptually the calculation proceeds identically. 

We begin by calculating the four components of [R1 ,Xi]. In these expressions 

it is convenient to use the double angle trigonometric relations (purely for ease of 

notation): 

sin2£l- cos2 £l = - cos2£l (6.115) 

and 

sinO cosO= ~ sin2£l. {6.116) 

The x component is 

[R1 ,Xi]z =- (-C:xv sinO- C11 1• wsO)v sinO- v cosOC:xv cosO+ v sin0C11 v cosO 

=v2 C:x( sin2 £l- cos2 £l) + 2v2C 11 sinO cosO 

=- v2 Cx cos2£l + v2 C11 sin2£l. 
(6.117) 
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The y component is 

[R:.Xi]" =(Cxv sinO+ C11 v cosO)v cosO+ v cosO Cxv sinO- v sinOC11 v sinO 

=2Cxv2 sinO cosO+ C11 v
2

( cos2£l- sin2 £l) 

=Cxv2 sin2£l + C 11 v
2 cos2£l. 

(6.118) 

The v component is 

[R1,X1]v = 0. (6.119) 

The 0 component is 

[R1 , X 1]e =- v cosO( -Cxxv sinO- C11:xv cosO)+ v sinO( -C:x11v sinO- C1111 v cosO) 

2 2 
= v

2 
Cxx sin2£l + v2C:x 11 cos2£l- v

2 
C1111 sin2£l. 

(6.120) 

As we saw in chapter 5, the condition that the integral curves of R close to 

second order is 

f21f [2" aRi ( fe ~) 
Jo R2dO = - Jo ayo · Jo R 1d0 dO. (6.121) 

This will eventually determine the constants of integration. To prepare for that we 

will evaluate the right hand side using the value of R 1 obtained above. First find 

the components of the 

integral: 

foe R1d8 

foe RfdO = foe Cv cosO 10 = Cv sinO 

foe RfdO =foe -Cv sinO dO= Cv cosO 

foe R¥d0 = 0 

(6.122) 

(6.123) 

(~.124) 
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foB RfdO = fo
8
(-Cxv sinO- C11 v cosO)dO 

=Crv cosO- C 11 v sinO. 

\\"e now substitute in these results to obtain the general expression: 

1
2" 12" 8Rx,y,v,8 oRx,y,v,B 
. R;,y,v,B dO = - ( 1 Cv sinO+ 1 Cv cosO 

o o ax ay 
oRx,y,v,8 

+ 1__ (Cxv cosO- C 11 v sinO))dO. 

We now explicitly calculate the four components of this expression. 

The x component yields 

r2" r" Jo · R,2d0 =- Jo (Cxv cosO Cv sinO+ C 11 v cosO Cv cosO 

- Cv sinO(Cxv cosO- C 11 v sinO))dO 

{2" 
=- Jo (CC11 v

2 cos2 0 + CC11 v
2 sin20)d0 

= - 21rCC11 v
2 . 

The y component yields 

{2" {2" Jo R~dO =- Jo ( -Cxv sinO Cv sinO- C 11 v sinO Cv cosO 

- Cv cosO(Cxv cosO- C11 v sinO))dO 

{2-rr 

= Jo CCxv
2

( sin
2
0 + cos20)d0 

=27rCCxv2
. 

The v component yields 

{2-rr 

lo R~dO = o. 
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(6.126) 

(6.127) . 

(6.128) 

(6.129) 
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The 0 component yields 

{2" {2" 
Jo R~dO =- Jo [( -CxxV sinO- C 11xv cosO)Cv sinO+ 

( -Cx11 v sinO- C 1111 v cosO)Cv cosO 

+ ( -Cxv cosO+ C 11 v sinO)(Cxv cosO- C 11 v sinO)jdO 

{2-rr 
= - Jo [-CCxxv2 sin20- CC1111 v2 cos20 

(6.130) 

- CxCxv2 cos20- C 11C 11 v
2 sin20Jd0 

=7rv2 (CCxx + CCIIII + c~ + c;). 

We may finally solve for the four components of R2. The x component is 

R2 =~ i8
[R1,Xt]xdo + J2(x,y,v) 

=~ i8

(-v 2Cx cos20+v2C11 sin20)d0+f2(x,y,v) 

=- v 2CCx sin20- v2CC11 cos20 + j;. 

We next determine the constant of integration If. We have seen that 

Thus 

Finally we obtain 

{2" 
-21rCC11 v

2 = Jo R2d0 

{2-rr 

= lo i2d0 

=27r i2. 

~ 2 /2 = -CC11v. 

R2 = -v2CCx sin20- v2CC11 cos20 - CC11 v
2

• 

(6.131) 

(6.132) 

(6.133) 

(6.134) 
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The y component of R2 is 

R~ =! {
8

[R 1 ,XJ]11 dO+g(x,y,v) 
B lo 
21/J ~ =- (Cxv 2 sin20 + C11 v

2 cos20)d0 + g(x, y, v) 
B o 

= - v2CCx cos20 + v2CC11 sin20 + f~ (x, y, v ). 

The constant of integration comes from 

r" 21rCC:r.v
2 = Jo R~dO 

(" 
= lo gdo 

=27r/f. 

Thus 

If= CC:r.v 2
• 

Finally we obtain 

R~ = -v2CC:r: cos20 + v2CC11 sin20 + CC:r:v2
• 

The v component of R2 is 

R~ =~ l
8

[RI,X1 ]vd0+f~ 
=f~. 

The constant of integration comes from 

[2" 
lo R2d0 = 0. 

Thus 

!~ = 0. 
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{6.135) 

(6.136) 

(6.137) 

(6.138) 

{6.139) 

{6 140) 
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Finally we obtain 

R~ = 0. (6.141) 

The 0 component of R2 requires the above results and is given by 

R~ =~ 18

{2[RJ,XJ]8 + B:r:R2 + B11 R~)d0 + !~(x,y,v) 
1 [

8 
2 • 2 2 • =n Jo (v C:r.:r: sm20 + 2v C:r. 11 cos20- v C1111 sm20 

+ B:r:( -v2CC:r. sin20- v2 CC11 cos20 - CC11 v
2

) 

+ B 11(-v2CC:r: cos20 + v2CC11 sin20 + CC:r:v2 ))d0 + f~ 

1( 12 2 . 12 =n - 2v C:r.:r. cos20 + v C:r. 11 sm20 + 2v C1111 cos20 

+ ~v2 B:r.CC:r. cos20- ~v2 B:r:CC11 sin20- B:r.CC11v
20 

1 2 . 1 2 2 ) ~IJ ) -
2

v B 11CC:r: sm20- 2v B 11CC11 cos20 + B 11CC:r.v 0 + / 2 (x, y, v 

= - ~v2 CC:r.:r. cos20 + v2 CC:r. 11 sin20 + ~v2CC1111 cos20 

122 12 . 2 
- 2v C:r. cos20 + 2v C:r.C11 sm20 + CxC11v 0 

1 2 . . 1 2 2 2 ~(J ) + 2v C11 C:r: sm20 + 2v C11 cos20- C11Cxv 0 + / 2 (x, y, v 

v2 2 2 . ~e 
=- 2[(CC:r.:r.- CC1111 + C:r.- C11 ) cos20- (2CC:r: 11 + 2C:r.C11 ) sm20] + / 2 • 

(6.142) 

To determine the constant of integration, we use 

(" 
1rv2 (CC:r.:r. + CC1111 + c; + c;) = lo R~do 

{6.143) 

=27r/~. 

Thus 

e v2 2 2 
/2 = 2(CCx:r. + CC"" + Cx + C"). 
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Finally we obtain 

o V
2 

2 2 2 · R2 = - 2 (eexx- ee1111 +ex- e11 ) cos20 + v (eexy + exe11 ) sm20 

v2 . 
+ 2 (eexx + eey11 + e; + e;). 

(6.144) 

6.3.3. Summary of the Calculation 

We have thus succeeded in finding the roto-rate vector field up to second order: 

1'2 
R ~ Ro + lRl + 2R2 

a 
= ao+ 

a 
lev cosO ax 

-lev sinO~ ay 

+ l( -exv sinO- e11v cosO) :o 
~ a 
2' ( -v2eex sin20- v2ee11 cos20- ee11v

2
) ax 

~ a -( -v2eex cos20 + v2ee11 sin20 + eexv2 )-a 
2 y 

1'2 v2 2 2 2 . 2(-2(eexx- ee1111 +ex- e11 ) cos20 + v (CCx 11 + exC11 ) sm20 

v
2 

2 2 ) a + 2 (eexx+CC1111 +ex+C11 ) ao· 

(6.145) 

Let us summarize what we have done. We began with the exact equations of 

motion for a two-dimensional particle in a magnetic field. We introduced the scaling 

parameter l to emphasize the physically important dynamics in such a way that 

the limiting system for l = 0 has only periodic orbits. We then used the procedure 

presented in chapter 5 to find the roto-rate vector field order by order. This required 

no special coordinate system, though we did introduce 0 to make the integrals easier 
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to write. There may exist coordinate systems in which the calculation is simpler and 

if one is clever enough to find them certainly one should certainly use them. The 

virtue of our method is that it requires no cleverness and by slugging away doing 

mor~ integrals like the above we could continue order by order. This explicitness 

is very important when we want to delegate this labor to machines. We showed 

in chapter S (and Kruskal showed it before) that this roto-rate vector field is the 

unique vector field whose orbits are all closed loops of period 211' to all orders in 

£ and which commutes to all orders in £with the dynamical vector field X. If we 

wish to introduce guiding center coordinates X, Y, i,e, there is a lot of freedom in 

the choice. What is not free, if the dynamics is to be independent of B, is that X 

Y and i must be constant on the orbits of R. We have calculated these orbits in 

the course of the calculation. 

In a Hamiltonian context, the roto-rate vector field is generated by the adia-

batically conserved action, which we may then determine order by order (in any 

coordinates). We turn to this issue in the next section. 



6.4. The Hamiltonian Structure of Gyromotion 289 

6.4. The Hamilton iBn Structure of Guomotion 

In the previous section we studied gyromotion without using any Hamiltonian 

structures. Here we would like to introduce such structures and so make the con-

nection with adiabatic invariance. There are a variety of ways to Hamiltonianize 

. the equations of motion for a particle in a magnetic field. The standard approach 

introduces canonical momenta which depend on the (unphysical) vector potential A. 

In the paper !Littlejohn, 1979] an approach is developed based on a non-canonical 

Poisson bracket which itself depends on the magnetic field. The points in phase 

space represent the true particle position and velocity and the Hamiltonian is just 

the kinetic energy v2 /2. This approach allows a particularly nice formulation of 

the perturbative scaling used in the last section. The subtlety is that the Poisson 

bracket itself depends on f and becomes degenerate when e = 0. This makes for a 

much more interesting analysis and is one motivation for extending the Hamiltonian 

pe~urbation results of chapter 4 to singular Poisson systems. 

6,4..1. The Poisson Bracket 

Explicitly the bracket for the two dimensional system is 

{/,g} = {/,g}o + f{f,g}I 

_ B ( a I !!.J.... _ a I !!.J....) + 
- OVz av, av, OVz 

With the Hamiltonian 

(
af ag of ag of ag of ag) 

f ax OVz - OVz ax + oy OVJI - avJI oy • 

' 1 2 1 2 
H = 2v" + 2v• 

(6.146) 

(6.147) 
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this gives the scaled equations of motion used in the last section: 

{·,H} = {·,H}0 + £{-,H}I = Xo + fX1. (6.148} 

When f -+ 0, the bracket reduces to{, }o. This bracket is singular and any function 

of x and y alone is a Casimir. 

6.4..2. The Symplectic Structure 

It is interesting to look at the £-dependent symplectic structure w which corre-

sponds to our bracket. Since the bracket is non-singular when f isn't zero, we may 

invert it to give a well defined symplectic form. Since the bracket becomes singular 

as f approaches zero, the symplectic form must become infinite in this limit. It is 

easiest to introduce the matrix Jii representing the components of the contravariant 

tensor that defines the bracket: 

at .. ag 
{/, g} = 2:: azJ'' ozi" 

i,j 

In the coordinates x, Vz, y, Vs., the matrix J has the form 

-f 

(

0 

J = ~ 

f 

0 
0 

-B 

If we introduce a matrix representing w by 

0 0) 0 B 
0 . 

-f ~ 

w = L diwiidzi, 
ij 

(6.149) 

(6.150) 

(6.151) 
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then it will be the inverse of the matrix corresponding to J. We easily see (say by 

Gauss' method) that 

( i· 
( 0 

")( 0 

-1/£ B/£2 

-~·) ~ (~ 0 0 B 1/£ 0 0 
0 0 ~ -B:£2 0 0 

-B -( 0 1/£ 

This shows that the symplectic structure is 

1 
w = 2 (Bdx II dy + £dx II dv% + fdy II dv11 ). 

( 

0 0 

n 1 0 
0 1 
0 0 

(6.152) 

(6.153) 

This is indeed singular as f - 0, but if we rescale by multiplying by £2, we get a well 

defined form for all£. Now, however, when£- 0 the form becomes dx lldy which is 

degenerate. This vanishes when we insert any vector which is a linear combination of 

v% and v 11 • The correct dynamics is obtained by the usual Hamiltonian prescription 

for any f ::/: 0: 

ixw = -Bv11 !dx + Bv%!dy + v%dv%- !!.v%dy 
( ( ( 

B 1 + -v11dx + -v11 dy 
f f (6.154)_ 

= v%dv% ·+ v11dv11 

=dH. 
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6.4.3. Uniqueness of the Generator for a Vector Field 

The Poisson structure we have given becomes degenerate when £ = 0 .. We 

must therefore study its properties carefully. First, it is not at all obvious that the 

association of vector fields with Hamiltonians is unique with this bracket (since to 

zero order, say, there are Casimirs which may be added to any Hamiltonian without 

changing the dynamics). We will show that if we have two Hamiltonian vector fields 

with respect to this bracket, which are asymptotically equal to all orders in£, then 

their Hamiltonians are also asymptotically equal to all orders in f. Let us subtract 

the two vector fields in question to obtain a vector field which vanishes to all orders 

in f. We want to show that only a Hamiltonian which vanishes to all orders can 

produce such a vector field. 

The Poisson bracket has the form 

{,}={,}o+£{,}1. (6.155) 

The zero order piece {, }o is degenerate and the Casimirs are exactly the functions 

of x and y alone. The first order piece {, h is canonical and so non-degenerate. Let 

us assume that H generates the zero vector field to all orders in £. Expanding H 

in an asymptotic series 

1 2 
H "' Ho + £Ht + 2£ H2 + ... (6.156) 

and working out the generated vector field order by order gives us a hierarchy of 
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equations: 
{-, Ho}o = 0 

{-,HI}o = -{·,Hoh 

1 
{-, -H2}o = -{·,Hdt 

2 

1 
{-,kH,.}o = -{·,H~c-th 
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(6.157) 

The only thing the zero order bracket can produce is derivatives with respect to p., 

and p 11 • These derivatives must be equal to the right hand sides. If any of the H,. 

depended on anything but z and fl, then the right hand side of its equation would 

have a derivative which could not be matched on the left. So each H,. depends only 

on z and 11· But these are then Casimirs for the left hand sides which therefore 

vanish. But the right hand brackets are non-degenerate and so they only vanish 

when the corresponding H,. is constant. Adding a meaningless constant to the 

energy, we see that H must vanish order by order. 

6.4.4. Comparison With Robert Littlejohn's Results 

Let us now show that our results agree with the results obtained by Robert 

Littlejohn . The two references of interest here are (Littlejohn, 1979] and (Littlejohn, 

1981]. To avoid confusion, we v. ill use the notation of these papers and refer to 

formulas within them. To help other workers make explicit comparisons, we will 

describe manipulations in detail. Readers without these papers available may want 

to skip this section. 
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Let us begin with [Littlejohn, 1979]. In this paper Littlejohn introduces a 

very clever method based on Darboux's theorem to manipulate the two-dimensional 

guiding center problem into a form suitable for the application of Lie transforms 

(the Lie transform is clever too, because the bracket is £-dependent). His Poisson 

bracket is 1/£ times the one we have used and his variable (} is rotated by 1r /2 

from ours (ours is the clockwise angle of the velocity vector from the x axis, his is 

the clockwise angle of the gyro-radius vecto~ from the x axis in a uniform field). 

Using the Darboux algorithm introduced in the paper, he defines a set of variables 

(X, Y, 8, J), where(} is the original 6, J is a function whose Poisson bracket with(} 

is -1/t to all orders in t and X andY are coordinates that Poisson commute with 

both J and (} to all orders in £. These variables are the natural ones for a uniform 

magnetic field, but other than that have no dependence on the Hamiltonian. These 

functions are obtained as asymptotic series in£. Using his formulas 4.8, 4.21, 4.20, 

and 4.29 and letting C denote 1/B, we find that to first order in£ they are 

X = z - wCcos6 + ... 

Y = 'IJ + wCsin6 + ... 
v2 tv3 

J = 2 c- 6 (CcosC.,- CsinC11 ) + ... 

(6.158) 

He then performs the Lie transform to find new variables X, Y, J, 9 which have 

the same Poisson bracket relations and such that the Hamiltonian is independent of 

9 to all orders in £. This then implies that .'f is the adiabatic invariant to all orders 

in £. We are interested only in this adiabatic invariant (since it is the only quantity 

that is uniquely determined). By the Poisson bracket relations, the vector field 

which J generates must be simultaneously tangent to the level sets of X, Y, and J. 
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The closed orbits of this vector field are parameterized by 9 and the Hamiltonian is 

constant on them (implying that the Hamiltonian vector field commutes with the 

field generated by J). These conditions are exactly the ones imposed on our roto-

rate vector field R and it is the unique vector field which satisfies them. Thus the 

adiabatic invariant J must generate the roto-rate vector field. We will show that 

the adiabatic invariant introduced by Littlejohn does indeed generate the roto-rate 

vector field we calculated (at least to first order). 

The expression 5.27 in the paper gives J. To first order in£, it is 

- (2BJ)3/2 • 
J=J+£ -~· (a·VB). (6.159) 

Using the expressions for these quantities in terms of 9, x, y, and v, we find: 

- v2 w3 B B 
J=---(-cos92+ · 9 ") 2B 6 B3 sm na 

iV3 

+ 3B3 ( -cos9B..,- sin9B11 ) (6.160) 

v2 iv3 

= 
2

B + 
2

B3 (cos9B.., - sin9B11). 

Let us check that this agrees with the much more general results presented in 

[Littlejohn, 1981). Formula 82e of that paper gives the expression for the adiabatic 

invariant: 

- w 2 f w 2 w 3 

M = [2B + B:l [wG& + 4(Gs- 2G2) + 2F&)· (6.161} 

To compare with our much simplified situations we utilize his expressions 17g, 17i, 

17c, 16g, 9b, 8, and 11. These show that w = v, Go = 0, Gs = 0, G2 = 0, and 

F6 = a . v BIB. Substituting these in we obtain to first order in f that 

- v2 £v3 

M = 
2

B + 
2

B 3 (cos9B.,- sin9B11 ). (6.162) 
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This agrees with the first paper. 

Let us now determine the vector field which J (or M) generates. For this we 

need the Poisson bracket relations: 

x,v = -sin9 

1 x,9 = --cos9 
v 

B 9,v= -. 
iV 

y, v = -cos9 

y,9 = !sin9 
v 

(6.163) 

We then see the dynamical vector field generated by J to lowest two orders is 

- 1 a 
J=--+ 

i a9 
B 3v2 a v3 a 
-;(

2
B3 (cos9B..,- sin9B11 ) a

9
-

2
B3 (-sin9B..,- cos9B11 ) a) 

. v a v a 
- sm9--- cos9--+ 

B ax Bay 
. v2 a 1 a v2 a 1 a 
sm9--(-)- +cosD--(-)-

2 ax B av 2 ay B av 
v 2 1 a 1 a 1 . v2 a 1 a 

+ --cos9-(-)-- -sm9--(-)-
2 v ax B a9 v 2 a11 B a9 

1 a 
i a9 

v . a v a 
- -sm9- - -cos9-

B ax B ay 
v2 . v2 

(
2

B 2 sm9B.., + 
2

B 2 cos9B11 

v2 v2 a 
- 2B2 B..,sin9 - 2B2 Bycos9) av 

( 
3v 3v . 

2
B 2 cos9B..,-

2
B 2 sm9B11 

- 2~2 cos9B.., + 2~2 sin9B11 ) : 9 
1a v. a v a = --- -sm9-- -cos9-+ 
f a9 B ax B ay 
(;2 cos9B..,- ; 2 sin9B11 ) :

9
. 

(6.164) 
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If we make the conversion (due to the different definitions of 9): 

-sin(}~ cos(} 

- cos(} -+ -sin(} 
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(6.165) 

and multiply by f, we find that this agrees to order f with the roto-rate vector field 

R that we obtained in the last section. 

6 .•. 5. Prospects for a Fully Hamiltonian Theory 

We may essentially apply the argument of the last section in reverse to obtain 

the adiabatically invariant action from the roto-rate vector field. Because the gen­

erating function is unique, we can solve for it order by order using the expression 

for the Poisson bracket and the roto-rate vector field. It is interesting that because 

the zero order piece of the Poisson bracket is degenerate, we can determine a given 

order of J from the corresponding order of R only up to Casimirs. These become 

determined by the next order term in R (only a piece of this higher order term 

is actually needed, so the full calculation need not be carried out). When one in­

serts R into the symplectic form w, the c 2 term and the c 1 terms vanish, though 

this is by no means obvious a priori. Can this be shown in general? [Kruskal, 

1962] proves that if the dynamical vector field is Hamiltonian with respect to an f­

independent symplectic structure, then the corresponding roto-rate vector field R is 

as well, leading to an adiabatic invariant. We have seen that the same is true in this 

example, even though the Poisson bracket was f-dependent and became degenerate 

at f = 0. Is it always guaranteed that the symmetry vector field is Hamiltonian in 

such degenerate cases? 
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One would like to implement the perturbation analysis we have given directly in 

terms of the Hamiltonian structures involved instead of going through the essentially 

non-Hamiltonian analysis. Such a theory would look like the one developed in 

chapter 4, but requires some extensions. In particular, I expect that: 

1. We must do everything with Poisson brackets that have a singular structure 

and Casimir functions. 

2. We must deal with approximate group actions, i.e. we have an action on the 

J-jet space which does not arise from a true action. Thus, for example, our "circle 

action" is generated by a vector field given as an asymptotic series in f. The orbits 

of the fJ truncation .of this vectorfield are only closed to order fJ+l. We may still 

reduce asymptotically in this setting. 

3. The reduction map, which for f = 0 takes the form M ~ N, was previously 

defined from J M -+ J N. Here we would like to work with the J -jet of diffeomor­

phisms from M to N. Thus the reduction map is given as an asymptotic series, not 

the phase space and the reduced space. In the example at hand this will give us 

the guiding center coordinates as asymptotic series in the original coordinates. 
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PART II: Chapter7: 

WAVES Asymptotic Wave . 
Theory "Before Maxwell, people conceived of physical reality-insofar as it is supposed 

to represent events in nature-as material points, whose changes consist exclusively 

of motions, which are subject to total dilferential equations. After Maxwell they Let us now turn to the next large class of systems: waves. These systems are 

conceived of physical reality as represented by continuous fields, not mechanically 
particularly interesting from a foundational point of view, because the symplectic 

explicable, which are subject to partial dilferential equations. "-Albert Einstein 
structure of classical mechanics arises from a natural symplectic structure occuring 

(1931) (Hirsch, 1984] in asymptotic wave theory as applied to quantum mechanics. All of the elegant and 

physically important Hamiltonian notions of mechanics may be seen as examples of 

the new conceptual structures that can arise from asymptotics, as we have, discussed 

throughout this thesis. The concepts of momentum, position, energy, action, rays, 

and Lagrangian submanifold do not make sense for a given wave or wavepacket. As 

we separate the wavelength from the scale length, however, they take on asymptotic 

meaning and give us classical mechanics as we know it. 

'T.l. Wave Asymptotic& and Approximate Symmetry 

A crucial element of this simplification proceedure is the idea of approximate 

symmetry. Part of the asymptotic stretching we will perform on our system will 

make it approximately symmetric under translations. In any given region of space, 

an eikonal wave looks like a plane-wave. Consider the translation group acting 

.!':~ 
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on a plane--wave. Translations in a direction contained in the wave--front leave the 

wave invariant. Translations transverse to the wave--front bring the wave back to 

its initial state at integral multiples of some distance. The space of distinct plane-­

waves obtainable from the initial one by translation is identifiable with the quotient 

of the group of translations by the subgroup which leaves the wave invariant. This 

quotient is a circle, and we call the angle on the circle the phase of the translated 

wave relative to the reference wave. 

For an asymptotically eikonal wave, we have an approximate symmetry given 

by translation. On the large scale this is not a real translation because we must 

translate by different amounts at different points in space. Asymptotically, however, 

it becomes closer and closer to a true translation. On the small scale a translation 

that slowly varies cannot inake neighboring wave crests exactly line up. Asymptot­

ically, however, they will match up more and more closely. We may therefore think 

of an asymptotic circle action on our space of eikonal waves (using the philosophy of 

chapters 4 and 5, we may define an asymptotic symmetry to be an exact symmetry 

on a jet space). It is in this sense that we may assign a unique asymptotic phase 

to our eikonal wave. Our eikonal methods to eliminate the wavelength scale details 

and to obtain scale--length sized dynamics and concepts may be seen as asymptotic 

reduction by this circle action. 

The key technical tool which allows us to carry out this asymptotic simplifi­

cation is the method of stationary phase. On a large scale only average behavior 

is important. Functions that obey the eikonal separation have zero average. The 

systematic effects that mount up near places where the wavevector vanishes are ac-
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counted for by the method of stationary phase and so allow us to obtain large--scale 

behavior. These eikonal structures are intimately connected with the essentially 

mechanical material of the earlier chapters. We shall see in the last chapter that 

there is also an intimate connection with the statistical averaging that leads to ther­

modynamics. We will develop the needed wave structures to make this connection 

clear. This is the reason we discuss contact structures and Legendre submanifolds in 

places where symplectic structures and Lagrangian submanifolds alone could have 

sufficed for waves. 

7.1.1. Eikonal Waves 

A beautiful description of eikonal wave theory for the example of light waves 

in the geometric optics limit is given in [Bom and Wolf, 1970]. Let us begin by 

defining what we mean by an eikonal wave. Intuitively we mean a physical field 

in space which is locally like a plane--wave. The local plane--wave is described by 

a one--form, called the wavevector k, which is the differential of the wave phase. 

As discussed above, these notions are not precise for a real wave. To make them 

precise, we mtroduce an asymptotic class of waves parameterized by t:. Wh«;n t: is 

1 this should give the real wave. As t: goes to 0, the class should emphasize the 

tendency that we feel to be physically important for the behavior of the real wave. 

For the systems we have in mind, this tendency is the separation of wavelength and 

scale length. We therefore introduce t: in such a way as to separate them infinitely 

as it goes to zero. 
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There are two natural ways to do this (though any combination of them is also 

possible). We may let the wavelength go to zero while holding the scale length fixed 

or we may let the scale length go to infinity as we hold the wavelength fixed as 

in figure (7.1). I prefer the second taetic because the wavelength often determines 

the type of wave and its fundamental physical behavior ( eg. in plasmas, how close 

the wave is to the Debye length plays a fundamental role, similarly for electron 

wavelength compared to the atomic spacing of a crystal in solid state physics). The 

scale length is often something quite variable (i.e. determined by engineering rather 

than physics). We may change the size of a tokamak, silicon chip, or auditorium. 

When we feel eikonal methods provide a valid description, we are saying that we 

have made things large enough so that the waves propagate in an eikonal fashion. 

Of course we may let the wavelength go to zero without changing the wave's evolu­

tionary behavior by altering the physical constants in the equation. One common 

example of this is to say that letting 1i go to zero in the SchrOdinger equation is the 

way to take the classical limit (in reality we make the potential the particle moves 

in very slowly varying). We shall see, however, that regardless of h<>W we do the 

asymptotics, it is often useful to introduce coordinates on the slowly varying scale, 

and many of the asymptotic concepts will make sense only in these coordinates. 

From the geometric viewpoint we have been emphasizing, it is important to 

regard tJ.:_e wave fields as living on manifolds. There are several reasons that this 

generality is important. General relativity says that spacetime is really a curved 

manifold, and so studies of quantum mechanics or electromagnetic radiation on a 

cosmic scale must utilize a geometric formulation. We have seen in our discussion of 
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mechanics that even when the manifold structure of spacetime is not important, the 

natural spaces of interest are products (for more than one component), quotients 

(by symmetries and ignored variables), and submanifolds (for constrained systems 

and invariant subsystems) of regions of spacetime and these often have a non-trivial 

manifold structure. (One class of rich examples arises in the study of linkages. e.g., 

a system of 3 rigid links in three-dimensions joined in a line by universal joints and 

constrained to have the two ends fixed in space, has a state space that is naturally 

a 3-sphere and rotations about the line joining the ends define the Hopf fibration.) 

Corresponding operations on wave systems lead to the study of waves on non­

trivial manifolds (for example, the Yim spherical harmonics that arise in systems 

with rotational symmetry are the normal modes of a wave operator on a sphere). 

As we have been emphasizing, formulations of a theory that make explicit which 

structures are essential for which phenomena (e.g., what aspects of a coordinate 

system are used in an essential way in a derivation) give insight into the underlying 

physics. Lastly, coordinate-free expressions may be evaluated in any coordinates. 

This allows us to work in the system most convenient for the problem at hand. This 

is important for systems based on a complicated geometry (e.g., modem plasma 

fusion devices). 

How are we to incorporate the asymptotic scaling into the geometric structure 

of the manifold in an invariant way? The manifold structure represents slow-scale 

behavior. We therefore want to "blow up" the manifold asymptotically. For ex­

ample, most invariant P.D.E.'s use a Riemannian structure on the underlying state 

space (e.g., the Laplace-Beltrami operator, which is the invariant Laplacian). The 
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metri< should depend on f. in such a way that the distance between two points 

grows indefinitely as f. -+ 0. The curvature of the manifold then goes to zero with 

t. Asymptotic fast-scale (f.-independent) objects may be defined near a point of the 

slow manifold as if they were defined on a linear space (which invariantly is the 

tangent space at the point of interest). One way to see this without a metric is to 

use the Whitney embedding theorem to embed the manifold smoothly in !i2N +1 

with the point of interest sent to the origin. In !R2N+l we do the scaling by sending 

x E !l2N+l to xjf.. If we look in a fixed neighborhood of the origin as f. -+ 0, 

our manifold approaches a linear space identifiable with the tangent space. If we 

change the embedding by a map I that leaves the origin invariant, the asymptotic 

linear space is changed by the Jacobian of I at the point. This shows that the 

asymptotic linear approximation space transforms under coordinate changes just 

like the tangent space. One advantage of using the other type of scaling {where 

fast-scale objects are scaled smaller and smaller) is that the geometric structure is 

more immediately recognizable. Two points that are fixed on the fast-scale {for 

example two crests of an eikonal wave) asymptotically approach one another in the 

physical manifold as f. -+ 0. The equivalence class of all points that approach a 

given point with a given first order rate may be identified as a tangent vector. 

7.1.1.1. Sources with Time 8cales Generate Eikonal Waves 

Ei.konal waves appear in nearly every discipline of physics and are. one of the 

most useful analytic tools. Why do they arise in practice? One reason is simply 

that the systems we wish to study have a fast natural time scale and we vary this 
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Figure 7.1: Two ways of making a wave asymptotically eikonal. 

slowly. The waves that are gen~rated are thus eikonal. For example, a tuning 

fork has a natural period of oscillation and the dissipative processes that make the 

amplitude decay and the period change are much slower than this. The tuning fork's 

generated sound wave is then eikonal. Musical instruments are usually considered 

to be playing with a definite pitch. The amplitude and timbre (the harmonic mix 

which determines the characteristic sound of an instrument) vary slowly during 

the note and distinguish different instruments. Similar examples abound in plasma 

wave generation processes, solid state waves, atomic light emmission, etc. 
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7.1.1.2. Dispersive Media Create Eikonal Waves 

The other common reason for the prevalence of eikonal waves is the fact that 

in linear dispersive media, any bounded initial wavepacket will eventually turn into 

an eikonal wave, and the eikonality will get better and better with time. Imagine 

throwing a stone into a large lake. This will create a bounded disturbance with some 

spectrum of wavevectors. For surface gravity waves on water, the long wavelengths 

have a greater group velocity than the short ones. As our disturbance evolves, the 

long wavelengths will congregate at the outer edge of the spreading wave. After a 

long enough time, the different wavelengths present in the intial disturbance will 

have sorted themselves out radially. As time goes on, the fastest waves will go 

further than the slower ones and new wave crests will be formed in between. As we 

wait asymptotically long times, we get asymptotically long stretches of wavetrain 

close to each wavelength. 

7.1.1.3. Whitham's Generalisation to Nonlinearity 

Whitham has shown that many of the notions of linear eikonal theory carry 

over to nonlinear waves as well [Whitham, 1974]. The essential change is that, for 

nonlinear systems, the basic periodic solutions are not necessarily sinusoidal. When 

we make eikonal waves, they will not be slowly varying sine waves; instead, they 

will be locally like the nonlinear periodic wavetrains .... with parameters that slowly 

vary. The nonlinearity also leads to amplitude dependent dispersion relations, which 

lead to some interesting effects. We will develop parts of this theory to encompass 

Whitham's ideas in later sections, but let us here focus on linear waves for clarity. 
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7.1.1.4. Sinusoidal Waves 

In this case we shall be interested in slowly varying sinusoids. In a typical 

situation, we are given a wave of the form 

A(x)eill(:r:) (7.1) 

and are told that the amplitude A(x) and the wavevector k = d9(x) are slowly 

varying functions of x compared to the wavelength~= 1/lkl. Using the two schemes 

discussed above we may write down an asymptotic family as either 

• A(x)eill(:r:)/• (7.2) 

or 

A( £X )eill(•:r:)/•. (7.3) 

Both of these give the original wave when £ = 1 and the first shrinks the wavelength, 

while the second stretches the scale length. We will obtain expressions and concepts 

relevant to A(y) and k(y) which are slow scale variables (note the absence oft:), if 

we take y =£X. Eikonal waves of this form are described by k as a function of y, an 

overall phase (since k doesn't set the zero of phase), and the amplitude as a function 

of y. If we don't care about the phase (and on the large scale we shouldn't, since 

it changes· by order 1 on scales of order t:) then we can represent the asymptotic 

features of our wave as a distribution on y, k space, with support on the surface 

k = k(y). 
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7.1.2. The Local Fourier Transform 

This representation will result from taking a local Fourier transform. This is a 

notion one would often like to use in physical situations, but that is usually either ill 

defined or has very arbitrary components to it. When we introduce the asymptotics 

as above, however, it becomes precisely defined. The idea is to take an ordinary 

Fourier transform, but to restrict the domain of integration to the neighborhood 

of the point y we are interested in in such a way that the domain shrinks to zero 

on the large scale, but grows to infinity on the small-scale, asymptotically. We can 

implement this with a window function w.(y) that asymptotes to a delta function of 

y, but a constant function of x. A convenient choice is to use a family of Gaussians: 

w.(y) = e-11
2
/•. (7.4} 

Given an arbitrary asymptotic family, we would like to explicitly obtain its 

local Fourier transform. Let us define the local Fourier transform of an eikonal 

family ,P.(x) to be 

~.(y, k) = 2~ /_: e-u'-ih,p. ( x + ;) dx. (7.5) 

This definition is related to ideas presented in [Guillemin and Sternberg, 1977] on 

page 394 and in [Weinstein, 1978]. If we ignore the asymptotic aspect of this defi-

nition which makes the Gaussian convenient but arbitrary, this definition is related 

to the so-called lagolnitzer transform (see [lagolnitzer, 1975]). This expression has 

many of the nice properties we desire of a local Fourier transform asymptotically. 

As one can easily see from the manipulations below, the only properties of the win-

dow exp( -f.x2 ) that are actually needed are that it is 1 when x is zero, and that it 
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grows with a scale greater than 1 but less than 1/ f.. Here the width of the Gaussian 

is of order 1/ ..ji. as far as x is concerned. 

A specific nice property of this definition is given in the following lemma: 

Lemma 7.1. If an eikonal wave is of the form: 

,P.(y) = A(£y)eill(•lll/•' (7.6) 

then the modulus of its local Fourier transform is asymptotic to: 

i~(y, k)i ~ A(y)h(k- B'(y)). (7.7) 

Proof. We will show that ~(y, k) itself is asymptotic to Aei8f•6(k - 8') from 

which the lemma follows. Choose any smooth test function f(k). Then, letting 

j ( x) represent the ordinary Fourier transform of f ( k}, 

/_: ~.(y, k)f(k)dk = 

= _!_ 100 

e-u:• j(x)A(f.x + y)eill(u:+11l/•dx. 
211" -oo 

Now change variables to X= f.x: 

= _1_1oo e-X'I•j(X )A(X + y)eiB(X+IIl/•dX. 
27rf. -oo f. 

(7.8} 

(7.9} 

Since the last three factors are bounded in magnitude at each X as f. goes to zero, 

the first factor allows us to replace the integral by one over an arbitrarily small 

interval about rero, asymptotically. In fact, we get a contribution to the integral 

only when X is of order ..fi.. We may thus expand A and 8 in Taylor series and 

keep only the highest order asymptotic contribution, when X is of this order. We 

obtain 

= _l_A(y)e''CIIl/•1oo e-x•;. /(X )e'X·II'(IIl/•dx. 
27rf. -oo f. 

_(7.10} 
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Let us now go back to the coordinate x =X/£: 

= _1_A(y)eill(11)/• foo e-u:• j(x)eiz·ll'(llldx. 
27rf _

00 

(7.11) 

Now let f -+ 0 in the integral to obtain the desired result: 

i: ,j,,(y,k)f(k)dk ~ A(y)eill(ll)/•t(O'(y)). (7.12) 

Since f was arbitrary, t/J.(y, k) is weakly asymptotic to (i.e. agrees when integrated 

against test functions) 

A(y)eill(lll/•c5(k- 0' (y)). 

Q.E.D. 

7.1.3. Stationary Phase, Laplace's Method, and Steepest Descents 

The method of stationary pbase is the central tool in doing wave asymptotics. 

It and steepest descents will be the central theoretical tools of chapter 16. There 

are many different cases and situations where one might apply this method, but 

we will restrict ourselves to the simplest cases. The basic idea of the method is 

that the integral of a short wavelength wave against a slowly varying function will 

vanish asymptotically. In fact, such integrals vanish to all orders in the asymptotic 

parameter£, as is quite easy to show. Consider, for instance, the integral 

i: f(y)cos(y/£)dy, (7.13) 

or equivalently in terms of x = yj£, 

i: /(fx)cos(x)t:dx, (7.14) 
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where f(x) is assumed to be smooth and to die off at infinity. If we integrate by 

parts, we obtain 

f/(fx)sin(x)l~oo- f /_: /'(fx)sin(x)fdx. (7.15) 

The first term vanishes and the second is £ times an integral of the type we are 

considering. Repeating this procedure puts as many t:'s out in front as we desire, 

showing that the integral vanishes to all orders in£. 

H we have a slowly varying frequency in the cosine, such as cos(g(x)/f), and 

if dg never vanishes, we may change coordinates using g to get an integral with 

cos(x) and a slowly varying Jacobian of the transformation. This is the situation 

above, and we may again conclude that the integral vanishes to all orders. Thus if 

an integral of this type is to have a non-zero asymptotic value, it must arise from 

the regions where dg = 0. In fact, it is easy to see, by chopping our integral into 

one on an interval around dg = 0 and one on its complement, that the width of the 

non-uniform region for the above argument is of order Jf.. This shows that if g's 

second derivative is non-zero, the value of the integral will be of order Jf. and the 

only terms in the Taylor series of g that can contribute to leading order are those 

of the second order. The integral then becomes one over a Gaussian, which may be 

evaluated by elementary methods. That this gives the highest order asymptotics 

may also be seen by using the Morse lemma to make a slow change of coordinate 

to a quadratic (see [Guillemin and Sternberg, 1977] p. 16). 

The same idea may be used in integrals over an arbitrary number n of dimen-

sions, and assuming a single stationary point at y = 0 leads to the formula (see 
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[Guillemin and Sternberg, 1977] p. 6) 

J f(y)e'll(ll)l•ay ~ 

/(0}(27rt)n/
2 eig(O)/•+(i~r/4)Sign llww(O) + O(tl+n/2). 

Jidet g1111 (0)i 
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(7.16) 

Here we assume that the Hessian g1111 is non-degenerate and "Sign" denotes the 

signature which is the number of positive eigenvalues minus the number of negative 

ones. The term in the exponential with this factor gives rise to the "extra phase 

shifts in going through caustics" and is responsible for the notorious correction 

factors in the Bohr-Sommedeld expression for energy eigenvalues in the old quantum 

theory (eg. the extra hw/2 for the harmonic oscillator). 

H we have a real exponent instead of an imaginary one, then we may use 

Laplace's method·. Maxima of the exponent tend to completely dominate under 

exponentiation, asymptotically. In this situation, the Taylor expansion of the ex-

ponent near the maxima (and possibly the endpoints) completely determine the 

asymptotic expansion of the integral (though one typically has to consider terms 

of order 2j in the Taylor expansions to get terms of order J. in the expansion of 

the integral). To highest order, if tP has a maximum at the point a < c < b and 

tP" (c) < 0 then asymptotically 

fb f(t)eq,(t)/•at ~ J~ f(c)eq,(c)/•. 
la -·tP"(c) 

(7.17) 

We will use this result when we look at statistical mechanics in a way that is 

analogous to the use of stationary phase in wave mechanics. 

The method of steepest descents generalizes stationary phase and Laplace's 

method to saddle points occuring anywhere in the complex plane. The idea is to 
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deform the contour of integration in the neighborhood of the saddle point so that 

the phase of the integrand has constant imaginary part and a maximum in the real 

part. We can then use Laplace's method asymptotically. 

Lastly, the stationary phase situation with no stationary points or maxima, 

may often be converted to a situation where we can use the Riemann-Lebesgue 

lemma. This says that 

{' f(t)e"l•at --+ 0 as t --+ 0, (7.18) 

if 

l' if(t)i dt (7.19) 

exists. We don't have to assume any differentiablity for integration by parts in this 

situation. 

7.1.3.1. Heisenberg's Uncertainty Principle 

Heisenberg's uncertainty principle puts limitations on how tightly one can 1~ 

calize a function and its Fourier transform at the same time. In quantum mechanics 

this puts fundamental limitations on how accurately one may measure the position 

and the momentum of a particle at the same time. As we discuss in section 11.2, one 

.,an think of quantum state as corresponding to a region in phase space of volume 

hn (where h is Planck's constant). The usual proofs of the uncertainty pr~nciple 

rely on inequalities that are hard to remember. Let us demonstrate it here using 

functional derivatives. 
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We use the Dirac notation where (4>1¢) represents the £ 2 pairing of 4> and ¢. 

We work with a normalized function ¢ defined on the real line: 

(¢1¢) = 1. (7.20) 

By a transformation of the form 

,P(x)-+ e'ko"'¢(x- xo) (7.21) 

we can put the mean values of x and k to zero without affecting the dispersions. 

We therefore assume that 

(¢!xi¢} = 0 = (¢1kl¢). 

The diSpersions on which we want to put bounds then take the form 

(~xr.l = (¢lx21¢} (~k)2 = (¢1k21¢). 

One easily evaluates the functional derivatives 

6(¢1¢} (x) = ,p•(x) 
6¢ 

6(~x)2 (x) = x2,p•(x) 
6¢ . 

6(~k)2 (k) = k2,p•(k). 
6¢ 

Fourier transforming this last expression gives 

6(~k)2 tP 
--w(x) = - ctx2 ,p•(x). 

(7.22) 

(7.23) 

(7.24) 

(7.25) 

We want to show that the product of the dispersions reaches some minimum value on 

normalized functions. We do this by showing that the Gaussian has the minimum 
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uncertainty of any wave and then evaluating its uncertainty. We formulate the 

minimum uncertainty normalized wavepacket problem as a variational expression 

with Lagrange multiplier o. With the function F defined as 

F = (6.x)2(6.k) 2
- o(¢1¢), (7.26) 

a minimal uncertainty wavepacket will be a point where F has a vanishing functional 

derivative with respect to ¢. So 

6F ( tP ) 0 = 
6

¢ (x) = x2¢•(x)(~k)2 + (6.x}2 - dx:.l ,p•(x) - a¢•(x). (7.27) 

Since (~k)2 and (6.x2) are just real numbers, this yields the differential equation 

tP • ( Q (~k}2 2) • 
dx2¢ = (~x)2- (~x)2x ¢ · (7.28) 

We may easily solve this, and imposing the normalization condition determines o; 

imposing zero means for x and k and choosing a phase factor so that ¢ is real 

determines the constants of integration and gives a relation between ~x and ~k. 

We are left with the solution (which is easily checked by plugging into the equation): 

,P(x) = (211'(~x)2tl/4e-z'/4{~z)'. (7.29} 

To see that this extremal is really a minimum, we calculate the second functional 

derivative: 

6
2 
F ( tP ) ( tP ) 6,P2 (x, y) = x2,p•(x) - dy2 ,p•(y) + y2,p•(y) - dx2 ,p•(x) . (7.30) 

When we plug in the Gaussian, both terms are positive, showing that the Gaussian 

is indeed the minimlilll uncertainty packet. We need only find the uncertainties for 

this packet, which entails doing some Gaussian integrals. We see that 

£: x2 ,P2 (x)dx = (21r(.:lx}2)- 112 I: x2 e-z'/2{~z)' dx = (.:lx} 2 (7.31) 
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and 

(~k) 2 =I: k2 ~(k) 2dk 

Thus we find the relation 

=I: k2 C(~x)2) 1/2 e-2(~.,,·A:· dk 

1 
4(~x)2 · 

1 
~k~x > 2 

which is Heisenberg's uncertainty relation (with h set to 1). 
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(7.32) 

(7.33) 

Heisenberg's uncertainty principle tells us that the product of the absolute 

uncertatinty in x space and k space (i.e. the dispersion in x and k without regard 

for the size of x or k) is bounded from below. The minimum uncertainty wave 

packet centered at a given xo and k0 is given by a complex Gaussian: 

(2'11'(~x)2]-lf4exp{- (x- xo)2 +ik x} 
4(~x)2 o . (7.34} 

The dispersion in x is given by ~x and in k it is l/2~x. The relative dispersions 

are ll.x/x and ll.k/k. H we let either x or k get asymptotically large, we may make 

both of these relative dispersions p;·J to zero. In the stretched cordinates: (x, K) or 

(y, k) where EX= y and Ek = K, the local Fourier transform can be an asymptotic 

6-function in both directions. Any eikonal wave may be asymptotically decomposed 

into these 6 states. 
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For example, in quantum mechanics h is often used as the asymptotic param-

eter. The momentum operator p, defined as 

h a 
fJ= i ax (7.35) 

is exactly a stretched version of the wave vector k as h asymptotes to zero. We 

may therefore create wavepackets that have a definite x and p as h goes to zero. 

Heisenberg's uncertainty principle for x and p takes the form: 

1 
~X· ~p > -h -2' 

We see then that as h -+ 0 we may make both ~x and ~p vanish. 

(7.36} 

These asymptotic states are intimately related to the theory of coherent states 

and have been connected with the Lie Poisson structures associated with the Reisen-

berg group. Let us quickly sketch some of the results in (Yaffe, 1982], but refor-

mulate them in terms of momentum maps. The idea is to consider an asymptotic 

family of "quantum mechanics's" labeled by the parameter h. For each value of 

h we have a Hilbert space H,. of L2 wavefunctions on !R" and each operator (like 

p above} is defined for each h on H,.. We choose a special state IO),. in each H,. 

which will asymptotically represent the state with zero position and zero momen-

tum. This is chosen to be one of our special states with vanishing position and 

momentum dispersions as h -+ 0, such as 

(xiO),. = ('11'h)-li4e-<"'•/2"l. (7.37} 

Quantum mechanics has a natural Hamiltonian structure. We may consider 

1/h times the imaginary part of the Hermitian inner product (I) as a symplectic 
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structure on the Hilbert space {being a linear space, we may lift this structure to 

each tangent space). The Schrooinger evolution defined by the Hermitian Hamil­

tonian operator H is Hamiltonian with respect to this symplectic structure and a 

Hamiltonian function given by the expectation value of H: 

H(,P) = (,PIHI,P). (7.38) 

There is a natural 2n + 1 dimensional Lie group that is intimately connected 

with the asymptotics of quantum mechanics, called the Heisenberg group. We may 

consider group elements to lie in !Rn x !Jln• x !R with coordinates (q,p, a) {sometimes 

the a factor is taken to lie in a circle). The multiplication law is 

(q,p, a)· (q',p', a')= (q + q',p + p', a+ a'- (q,p')). {7.39) 

Here we use (,) to mean the pairing of !Rn with !Rno. This is just the translation 

group on !Jl:ln with the extra a factor twisted into the multiplication. The Heisen­

berg group naturally arises through an irreducible representation on the Hilbert 

spaces Hr. defined by the mapping to unitary operators: 

(q, p, a) f-+ eia/1\ei(p,!)/Tle-i(q,p)/Tl. (7.40) 

( q, 0, 0) translates wavefunctions by q in position space, (0, p, 0) translates the 

Fourier transform of wavefunctions by pin momentum Ryace, and (0, 0, a) changes 

the phase. 

The elements of the orbit of the special state 10 >r. under this group action 

are called coherent states and are labeled by the (q,p, a) which acts to produce 
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them. The irreducibility of the group action may be used to immediately prove 

many interesting relations such as the decomposition of the identity: 

i =cr. I lq,p,a}(q,p,ai, (7.41) 

where the integral is over an invariant measure on the Heisenberg group. This group 

action is Hamiltonian and we may ask for its momentum map. Each element u in 

the Lie algebra g of the Heisenberg group has an associated Hermitian operator ur. 

defined on H,. which generates the action of the one-parameter subgroup tangent 

to u. As for the Hamiltonian operator, the corresponding Hamiltonian function 

simply associates to each state 11/J) the expectation value (1/Jiur.I'I/J). The momentum 

map J then sends ,P to that element of the dual of the Lie algebra g• which satisfies 

(J(,P),u) = (1/Jiur.I'I/J) (7.42} 

for each u in g. We may easily see that this is equivariant since if /3 is an element 

the Heisenberg group, then 

(J(P'I/J),u) = (P'I/Jiu,.IP'I/J) 

= (1/JIP- 1 ur~PI'I/J) 

= (1/JIAd;: ui'I/J) 

= (J(,P),Adt~· u) 

=(A~. J(,P),u). 

. {7.43) 

The dual of the Lie algegra g• is 2n + 1 dimensional. The coadjoint orbits of 

the Heisenberg group in g• consist of 2n dimensional planes labeled by a parameter 

when that parameter is non-zero and an entire plane of individual points when the 



? 
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parameter vanishes. On each of these spaces the KKS symplectic structure is a 

multiple of the canonical structure on !Rn x !Rn•. Because the coherent states are an 

orbit of the Heisenberg group, their image under the momentum map J is exactly 

one coadjoint orbit. It turns out that coherent states that get sent to the same 

element in g• are not distinguishable by means of\operators that have a nice classical 

limit as 1l -+ 0 (the eliminated degree of freedom is the phase). Asymptotically, 

the 2n-dirnensional coadjoint orbit is the natural arena for dynamics. Associated 

with each operator with a nice classical limit is a function on this coadjoint orbit 

whose value on an element is the expectation value of the operator in any of the 

coherent states corresponding to that element (they all give the same value). This 

real-valued function on the coadjoint orbit is called the symbol of the operator. The 

symbol of the product of two such operators is simply the product of their symbols 

as 1l -+ 0. The symbol of the limit of i/1l times the commutator of two operators is 

the Lie-Poisson bracket of the symbols of the operators. It would be interesting to 

extend these definitions to the entire dual of the Lie algebra (say by giving a family 

of IO >'s, one for each coadjoint orbit). 

7.1.4. Eikonal Waves and Lagrangian Subm.anifolds 

"The correspondence is an illustration of what I might call the "symplectic 

creed": EVERYTHING IS A LAGRANGIAN SUBMANIFOLD."-Alan Wein~,tein 

on p. 5 of [Weinstein, 1981] 

We have seen that the result of our aysinptotic local Fourier transform on 

an eikonal wave family is a distribution on (y, k) space whose support is on the set 
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k =dO. We see that k is naturally a one-form based at the pointy, it being equal to 

the differential of the phase function there. Geometrically we are to think of (y, k) 

space as the cotangent bundle of y space. We have seen that this has a natural 

symplectic structure that in coordinates is minus the differential of the canonical 

one-form: ka dy0
• That the surface defined by our wave's singular support· is the 

graph of the differential of a function is locally equivalent to the symplectic property 

of being Lagrangian (if the submanifold projects diffeomorphically toy space). 

We may see this connection geometrically as follows. If we think of an arbitrary 

one-form n on y space as a mapping from y space to its cotangent bundle, then 

the pullback of the canonical one-form back to y space yields the form n. (In 

coordinates: n = n 1dy* and the canonical one form is k,dy*. The mapping defined 

by n takes the point with coordinates y* to the point with coordinates (y', n,). The 

canonical one-form on the image is n1dy* which pulls back to n as desired.) The 

canonical one-form restricted to the graph of the differential of a function has zero 

exterior derivative, since its pullback toy space does (since dod= 0 and exterior 

differentiation and pullback commute). · Thus the symplectic form restricts to zero 

on the graph. This graph is of the same dimension as the base and 80 is Lagrangian. 

If a submanifold is Lagrangian and projects diffeomorphically to the base, then by 

Poincare's lemma the canonical one-form is locally the differential of a function. 

But then 80 is the one-form whose graph the manifold is. 

Thus eikonal waves are asymptotically associated with Lagrangian submani­

folds that don't "bend over" in the cotangent space and so don't have a singular 

projection. When we allow an eikonal wave to evolve in time, the dynamics may 



7.1.4. Eikonal Waves and Lagrangian Submanifolds 323 

bend the corresponding Lagrangian submanifold over. At such times, the originally 

eikonal wave has ceased to be eikonal. The image of the points with a singular 

projection forms the caustic of the wave (so named because such places have a high 

intensity and so tend to get hot in optical fields). The straightforward asymptotics 

of traditional WKB theory breaks down at these points and, a priori, one might 

not expect the corresponding Lagrangian submanifold to have anything more to do 

with the wave. Maslov introduced the concept and name of Lagrangian submani­

folds in [Maslov, 1965] while generalizing earlier one-dimensional work of Keller in 

[Keller, 1958]. Maslov was able to show that there is a more general asymptotic 

class of asymptotic families than eikonal waves which is associated with arbitrary 

Lagrangian submanifolds. The asymptotic dynamics of an eikonal wave does not 

leave this larger class and in fact the bent over Lagrangian manifold continues to 

represent the wave. The basic idea is to treat our wave as being on a higher di­

mensional space where the correponding Lagrangian submanifold is not singular, 

but still projects onto the singular one over the space we are really interested in. 

Projection of one space onto another corresponds to integrating the wave over the 

fibers of the projection. Since the evolution equations are linear, one may introduce 

dynamics on the large space which projects to the correct dynamics on the space of 

interest. On the large space, everything is eikonal and so we get representatives of 

the caustic wave fields as integrals of eikonal waves on a higher dimensional space 

( [Guillemin and Sternberg, 1977] p. 428). 
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7.2. WKB Theory and Asymptotic Equations 

Let us quickly sketch the theory of eikonal waves for linear P.D.E.'s. This 

may be generalized to vector equations, asymptotic series in fractional powers of 

the amplitude, and higher order terms (see for example [Guillemin and Sternberg, 

1977] p. 50), but I want to focus on the bare essentials here. 

In the mathematical literature on this subject (such asO [Hormander, 1983]), 

one usually is looking for asymptotic solutions to an asymptotic partial differential 

equation on a manifold. One makes geometric sense of a partial differential oper­

ator as a certain class of mappings between spaces of sections of bundles over the 

manifold. One introduces a small parameter £ and introduces the usual asymp­

totic equivalence classes of ~:-dependent operators to define asymptotic operators. 

An asymptotic P.D.E. is given by requiring an asymptotic operator to vanish on an 

asymptotic function. One usually assumes that the higher derivative terms have c~ 

efficients with higher powers of~:, so that to make the terms balance, a solution must 

oscillate more and more as £ vanishes. The resulting class of solutions are of the form 

of an asymptotic amplitude times an ever more quickly oscillating exponential. One 

finds a Hamilton-Jacobi equationfor the phase. In addition, one obtains series of 

transport equations, defined along the characteristics of the Hamilton-Jacobi equa­

tion, for the terms in the amplitude's expansion. The Hamiltonian is the s~called 

principal symbol of the operator, which invariantly is a function on the cotangent 

bundle. Because the wavelength is getting ever smaller, the local asymptotic be­

havior of the waves is unaffected by the global structure of the manifold. 

We are interested in scaling our system the other way. We want to make the 
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coefficients of our equation slowly varying as f -+ 0. If we are on a manifold, 

then the manifold should "grow" asymptotically, to become more and more like 

!i" locally. This type of scaling is often the physically relevant one. Most of the 

manifolds used in physics are really only manifolds in some asymptotic sense. Even 

if spacetime really is a manifold (which is very unlikely on scale lengths of order of 

the Planck length), the state spaces for our systems come from large products of 

space with itself (representing the state of many particles) followed by projections 

and constraints. There is always some "width" in the constraint direction, and the 

manifold picture breaks down on this scale. Similarly, quantum mechanics imposes 

finest scales on which it is reasonable to look at the eikonal state of a wavepacket 

as being a point in a manifold. Instead of letting this physically determined small 

scale shrink, we often mean to say that the large scale structure of the state space 

is not strongly affecting local behavior. We may represent this asymptotically as in 

section 7 .1.1. 

We also want to say only that the arbitrary scale lengths in our problem get 

large, and not to change the physical relations of the equation. For example, assume 

we are studying internal waves in the ocean and want to consider slow salt gradient 

variations. We introduce asymptotks which makes the gradient variation more and 

more gradual asymptotically. H we were to shrink the wavelength instead, we would 

be changing the physics of internal waves. 

We are therefore interested in equations of the form 

1 a 
P(t:x, -=--a ) · ,P.(x) = 0, 

I X 
(7.44} 

where P(y, k) is a smooth function on the cotangent bundle of y space, and we 
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assume its growth in k is bounded by some power of k (so we have a finite order 

equation). Notice that we are treating y as an element of a vector space for the 

reasons discussed in section 7.1.1. 

As an example, we will consider the Klein Gordon equation in 3-dimensions: 

This could have slowly varying coefficients, but for simplicity we demonstrate only 

the effect of slowly varying initial conditions. The base space is 4-dimensional and 

is parametrized by (x, y, z, t). The equation may be written 

( ( 1 a )
2 

(
1 

a )
2 

(
1 

a )
2 

(
1 

a )
2 

) - i at + i ax + i ay + i az + 1 "'= 0· 
(7.45} 

So the function P on the cotangent bundle is given by 

P(t:x, t:y, t:z, d, k:r:, k11 , k,., kt) = -k~ + k~ + k~ + k~ + 1. (7.46} 

We look for solutions of the form 

t/J. = A( t:X )e08(•z)/•. (7.47) 

In taking a derivative of this, we get some terms that come from differentiating 

A(t:x), and these will have as many powers oft: as there were orders of differentiation. 

In contrast, derivatives of exp(i8(t:x)/t:) do not bring down any extra t:'s (though 

once a 8' ( t:X) has come down, any higher derivatives of it will get extra t:'s}. If P ·1/J 

is to vanish to all orders in t:, it must vanish term by term. The lowest order term 

has all derivatives hitting the exponential and looks like 

P(y,d8(y))'I/J. = 0, {7.48) 

where as before y = t:x and d8 is the exterior derivative of 8 on y space. 
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If our solution doesn't vanish, then 9 must satisfy the Hamilton-Jacobi equa-

tion: 

P(y, d9(y)) = 0. (7.49) 

The analysis of such equations leads to a rich theoretical structure. To see where 

this comes from, in the next section we consider arbitrary first order P.D.E.'s and 

then specialize to those of Hamilton-Jacobi type. 

For the Klein-Gordon example, the Hamilton-Jacobi equation is 

-(:~r + (::r + (::r + (::r + 1 = o. (7.50) 

7.2.1. The Structure of First Order P.D.E.'a 

Most of the symplectic structures in physics may trace their origin to a natural 

structure that arises with any (nonlinear) first order P.D.E. By a first order P.D.E. 

we mean that we are given an equation of the form 

F(x, u, u.,) = 0, (7.51) 

where x represents a point in then-dimensional manifold M on which the P.D.E. 

lives, u is the function on this manifold we are trying to solve for, u., represents all 

its first derivatives, and F is a smooth function of 2n + 1 variables. Geometrically 

the spac!' o>n which F lives is the first jet space of M ( [Arnold, 1983] p. 66). This is a 

manifold whose points are equivalence classes of functions defined on neighborhoods 

of points in M. Two functions have the same 1-jet at a point in M iff they have 

the same value and the same differential there. Let us use the coordinates p to 
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represent the differential directions of which there are n and u to represent the 

value direction. 

Given a function, the graph of it and its first differential determine an n­

dimensional surface in this first jet space. Just as we saw in section 7.1.4 that the 

property of being the graph of the differential of a function in the cotangent space 

was equivalent to being a Lagrangian submanifold, being the graph of a function 

and its differential is locally equivalent to being a Legendre manifold in this jet 

space. Just as there is a natural symplectic structure on the cotangent bundle, 

there is a natural contact structure on the first jet space ( [Arnold, 1978] p. 349). 

This may be defined as a smooth choice of a hyperplane in each tangent space of 

a (2n + 1)-dimensional manifold, that is locally annihilated by a one-form 9 (called 

a contact form), with the property that 9 1\ d9" is a volume form (here d9 is a 

tw~form and d9" means d8 1\ •.. 1\ d9 with n factors). If we think of the jet space 

as the cotangent bundle with an extra direction tacked on to represent the value 

of functions, then its natural contact form is a one-form that is the differential of 

the value coordinate minus the canonical one-form on the cotangent bundle. In the 

coordinates (xi, Pi, u), it is given by 

9 = du - Pi d:z:i. (7.52) 

A Legendre submanifold ( [Arnold, 1978] p. 365) is ann dimensionalsubman­

ifold on which the wntact form vanishes (the hyperplanes defined by the contact 

form just contact the surface). It is easy to see that this is exactly the condition 

that the p coordinates really represent the derivatives of a function whose jet graph 

is supposed to be the surface in question. 
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The 2n-dimensional distribution (smooth field of subspaces chosen from the 

tangent spaces at each point) defined by the vectors that 6 annihilates is maximally 

non-integrable. It would be integrable if the contact space could be filled with 

smooth 2n-dimensional submanifolds (which together define a foliation) that were 

tangent to the specified planes at each point. It requires very special circumstances 

that are spelled out in Frobenius' theorem (see [Spivak, 1979) p. 257) for (J to define 

such 2n-dimensional surfaces (in fact, 8 must be the differential of a function locally 

for these surfaces to exist). It turns out, however, that there always exists an n­

d.imensional foliation everywhere tangent to (J's annihilator. For the contact planes, 

this is in fact the largest dimensional foliation you can find (this is the meaning of 

maximally non-integrable). The two-form d8, acting on vectors in a characteristic 

plane, gives a measure of the nonintegrability there. H d8 doesn't vanish on two 

vectors, then it is not possible to deform the parallelogram they form to be tangent 

to the contact planes. That a contact structure is maximally nondegenerate says 

that d8 is nondegenerate on each contact plane (i.e. is a symplectic bilinear form 

on each plane). 

The P.D.E. in this picture simply states that the jet graph of the solution 

function u must lie in the 2n-dimensional set given by F = 0. That an n-dimensional 

surface is a jet graph of a function says that it is tangent to the contact planes at 

each of its points. H both of the!'e conditions are satisfied and the surface projects 

down to M diffeomorphically; then we have a local solution to the P.D.E .. 

Any such surface must include a certain direction in its tangent plane at each 

point, called the characteristic direction. This direction is defined as follows. The 
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2n-dimensional tangent plane to the surface F = 0 at each point intersects the 2n 

dimensional contact plane generically in a (2n - I)-dimensional subspace. When 

d(J is restricted to this subspace it bas a single degenerate direction (just as in 

Hamiltonian mechanics, l'Vhere the degenerate direction of the symplectic structure 

restricted to an energy level surface gives the direction of the dynamics). This di­

rection is the characteristic direction that must be included in any solution (since 

d8 is nondegenerate on the ( n - 1 )-dimensional quotient by the characteristic direc­

tion and must vanish on our n-dimensional surface, that surface must include the 

characteristic direction). 

It is now easy to see how to solve the Cauchy initial value problem for our 

P.D.E. The initial surface on which the value of u is given, is an (n -I)-dimensional 

submanifold of M. The initial data plus the constraint that it lie in F = 0, de­

termines an (n- I)-dimensional submanifold in the jet space which our sol~tion 

surface must include. As it must also include the characteristic directions, if these 

are not tangent to the intial manifold, we get a local solution by just flowing the 

intial manifold along the integral curves of the characteristic direction field (see 

[Guillemin and Sternberg, 1977) p. 34). 

7'.2.2. Hamilton-Jacobi Theory and Symplectic Manifolds 

In the special case of a first order P.D.f:'. which does not explicitly depend on the 

value of the function u, we obtain the Hamilton-Jacobi theory (see [Abraham and 

Marsden, 1978) p. 381). We saw above that it is exactly this kind of equation that 

arises from eikonal solutions of linear P.D.E.'s. The whole point to the separation 
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of scales is that the value of the fast phase itself is irrelevant and only its slow 

derivatives contribute to the average dynamics in the eikonal limit. It is for this 

reason that mechanics may be formulated in terms of symplectic manifolds instead 

of contact manifolds. 

In this case, the function H(x,p) whose zero set gives our P.D.E. may be called 

the Hamiltonian. Since H = 0 includes the entirety of the u fibers, and the contact 

form 8 is invariant under translation in the u direction, we may forget about the 

u direction completely in our theory. What is left is the cotangent bundle T" M 

with its canonical one-form and corresponding symplectic form. The characteristic 

directions project to a line field on the set H = 0 in T" M (since both H and 8 were 

symmetric along u, so were the characteristic directions). The Hamiltonian vector 

field determined from H and the symplectic structure in the usual way is along 

this direction. Under this projection, Legendre submanifolds transverse to the u 

fibers project down to Lagrangian submanifolds. As we have seen in section 7.1.4, 

this is the condition in T" M that an n-dimensional submanifold be the graph of 

the differential of a function. The Cauchy problem now becomes like Hamiltonian 

mechanics. Given an (n- I)-dimensional intitial surface in M with the intial data 

of u's value on it, we get an (n - I)-dimensional initial surface in T" M as the 

only submanifold in H = 0 consistent with the differential of the intial data. The 

solution surface is then made up of the integral cuncs of H's Hamiltonian vector 

field that pass through the initial manifold. 

We saw in section 8.2 that the Hamilton-Jacobi equation for eikonal solutions 
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of the Klein-Gordon equation is defined by the function 

H = -k2 + k2 + k2 + k2 + 1 t z 11 z (7.53) 

on (x, y, z, t, kz, k11 , k,., kt) space. The characteristics are the orbits of the Hamilto-

nian vector field defined by H. This vector field is given by 

. - oH = kx 
x- ok"' 

z = :~ = k. 

. aH =O 
k"' =-ax 
. aH =O 
k. = -az 

. - aH = kll 
11- akll 

. aH = -kt 
t = okt 

. aH =O 
kll =-a; 
. aH =O. 
kt=-at 

We only use these curves in the surface H = 0. 

(7.54} 

The physical P.D.E. 's we are often interested in considering (such as the Klein-

Gordon example} have a distinguished time direction. The phase space discussed 

above is really an "extended" phase space in that it includes the time direction. If 

the Hamiltonian {and so the original P.D.E.) is time independent, we may apply 

reduction along the time direction to get a symplectic manifold of dimension 2n- 2. 

Now our intial wave is given over the entire base manifold. This is the picture we 

have been using in the earlier sections of this chapter. The time evolution of the 

Lagrangian manifold is given by letting it Bow along the Hamiltonian trajectories 

of the reduced Hamiltonian. As in ordinary mechanics, these tr~jectories are now 

important on the whole phase space, not just on a subset like H = 0. As we have 

discussed earlier, the Hamiltonian dynamics can bend the Lagrangian submanifq!d 

over and make its projection singular. 
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Fur the Klein-Gordon example, we eliminate t and set the generator of t­

translation: kt, to a constant w. The characteristics are now defined on the full 

(x, y, z, kz, k11 , kz) space and are the orbits of the Hamiltonian vector field of 

w = J 1 + k~ + k~ + k~. (7.55) 

7.2.3. Cotangent Bundles, Contact Spaces, and Jet Spaces 

Contact spaces are associated with odd dimensions and symplectic spaces with 

even dimensions. We have seen that the symplectic cotangent space has a natural 

generalization to the first jet space, and that the canonical one-form generalizes 

to th~ contact form. We may also obtain a contact space of one dimension lower 

than the cotangent bundle by forgetting about the magnitude of a covector. A 

covector without its length is given by saying only which vectors it annihilates (and 

not what it does to other vectors). This is a hyperplane called a contact element 

in each tangent space of our original manifold (see [Arnold, 1978] p. 354). The 

space of tangent hyperplanes of a manifold, is itseH a contact manifold. The name 

"contact" makes the most sense here, since these planes represent elements of first 

order contact with surfaces in the manifold. The contact structure on this space is 

given quite analogously to the definition of the canonical one-form. The (2n- I)­

dimensional space of contact elements naturally projects to the base manifold by 

sending a contact element to the point it is based at. A tangent vector to tbf: space 

of contact elements is in the contact plane at that point if its projection lies in the 

contact element it is based at. We will use this in our study of thermodynamics in 

chapter 16. 
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7 .2.4. The Contact Bundle and the Conormal Bundle ., 

An important class of Lagrangian and Legendre submanifolds arises from sub­

manifolds N of the base manifold M. The contact bundle of N is just the set of all 

contact elements which are tangent to N. This is clearly a Legendre submanifold 

since any vector tangent to it projects to a vector tangent to N and so is in the 

contact plane at that point. The conormal bundle of N is the set of all covectors 

that annihilate the tangent space of N. This is a Lagrangian submanifold of the 

cotangent bundle T• M since a vector tangent to it must project to a vector tangent 

toN which is annihilated by the form it was based at and so by the canonical one 

form. Thus we see that the zero section of a cotangent bundle is Lagrangian in one 

limit ( N equals M) and the fibers of the cotangent bundle are as well, in the other 

limit (N equals a point). H N is a source of light, then the conormal bundle gives 

the rays that are emanating from N. Thus a point source radiates in all directions 

while a plane radiates only normal to itseH. The Huygens const~ction gives wave­

fronts as the envelope of the manifold formed by projecting those points that are a 

given distance along the rays. 
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7.3. Limitations of WKB Theory 

It is well known that ordinary WKB theory breaks down when diffraction oc­

curs (i.e. where the medium scale length is as small as the wavelength) and near 

turning points (where the wavelength goes to zero). Keller has developed a beautiful 

theory of geometric diffraction theory which uses geometric optics (i.e. WKB) away 

from the bad regions in the medium and glues in the extra rays due to diffraction 

emanating from these regions using matched asymptotics. The great simplification 

is that as the wavelength becomes smaller, any "edge" (or any other type of bad 

region) affects a ray over a smaller and smaller portion of it. Asymptotically, the 

effect of a discontinuity is identical to one of only a few "canonical problems" (eg. 

the edge of an infinite half plane, the tip of a cone, etc.). These are solved once 

and f?r all and it is their solution that is glued into the problem. Turning point 

problems were dealt with classically in a similar way in one dimension. Near the 

turning point the potential asymptotically becomes more and more like a linear 

potential as far as the asymptotic wave can tell. The exact solution for a linear 

potential (i.e. an Airy function) is glued in using matched asymptotics again. As 

we discussed in section 7.1.4, Maslov generalized WKB theory to situations with 

caustics in higher dimensions. Associated with each of the elementary catastrophes 

of Thorn (which classify the generic caustics) is a special function which is a higher 

dimensional analog of the Airy function. The wave field around a caustic may be 

obtained by glueing in these special functions at the caustics of the WKB solution. 

One important phenomenon that has not to my knowledge received a geometric 

treatment is tunneling. This is the propagation of real waves into regions that the 
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WKB rays cannot get to. The problem is that eikonal waves decay exponentially 

in classically forbidden regions (i.e. regions without rays) as the eikonal parameter 

vanishes. Straight WKB cannot detect this, but by asymptotically matching solu­

tions on opposite sides of the barrier, one can estimate the transmission coefficient. 

As in the case of perturbation theory for mechanical systems, there has been 

little discussion of the time of validity of the WKB asymptotic expansion (i.e. the 

time-scale on which it is uniform). We saw in the mechanical case that using special 

techniques such as Kruskal's method could give us expansions uniform over time 

1/t but that getting longer times was problematic. Based on the picture of WKB as 

reduction by an approximate symmetry in wave space, we expect exactly the same 

phenomena for waves. Long times have become important in recent years as much 

study has been devoted to quantum chaos (i.e. the behavior of eikonal waves when 

the corresponding rays are chaotic). Chaos is an infinite time concept. 

In fact it is easy to construct examples where all the requirements of WKB are 

satisfied everywhere and for all time and yet the WKB solution becomes invalid on 

times of order 1/t. Jeff Lerner has suggested to me the example of a translation 

invariant dispersive wave equation with initial condition A(tx)e"'"' where k does not 

depend on x and A(x) is a single hump. Because k is constant, all rays are parallel 

and WKB predicts no spreading of the wave packet with time. However, we might 

have alternatively represented our wave packet in terms of its Fourier transform. 

Because A varies, the Fourier spectrum will be a smooth hump containing a band of 

wavevectors centered at k. This shows that the dispersive character of the equation 

will indeed be noticed by the packet which then in fact will spread with time. Let 
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us estimate how long it takes for the packet to spread to twice its width. Because 

Fourier transforms live on the dual space, the peak in k-space has width of order 

t. The greatest difference in group velocity at different points of the wave packet 

can then be at most of order f. Thus our packet takes time 1/f. to spread 1 unit in 

x-space. But the packet has width 1/f.. To spread to twice its width, we must let 

the packet evolve for time 1/£2 • Given a real wave, there is always ambiguity in the 

choiee of splitting into amplitude and wave-vector parts. The differences between 

these alternative scalings lead to a significant difference in the corresponding WKB 

predictions on time scales of order 1/£2 • This may be seen by an argument exactly 

analogous to the one used in this example. 

ChapterS: 
A Hamiltonian 
Approach to Wave 
Modulation 

338 

"In mechanics the setting is the theory of slow modulations for vibrating sys­

tems... The classical theory is usually developed by Hamiltonian methods, which 

are not directly applicable to waves, but we may instead derive the simplest of the 

classical results by the methods developed here."- [Whitham, 1974] p. 506. 

8.1. Introduction 

H we are given a wave system with a Hamiltonian structure, we would like to 

find a Hamiltonian structure for the evolution of slow modulations of the amplitude 

and wave number. We want an algorithmic procedure, completely independent 

of any previous knowledge or special features of the system (for example, noth­

ing should depend on linearity). We work out the case of the linear Klein-Gordon 

equation with this constraint in mind. The same procedure should work for any sys­

tem: nonlinear, multi-field, integral equations, etc. We wish to extend the beautiful 

work of Whitham and later Lighthill which is based on Lagrangian averaging (see 
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the discussion and references in the excellent text [Whitham, 1974]) to Hamiltonian 

systems, which we have seen are more general. [Dubrovin and Novikov, 1983] gives 

a Hamiltonian treatment for a special class of systems (though their perspective is 

quite different from ours) and may be of interest to readers as well. 

Here we will work with the one-dimensional Klein-Gordon equation: 

'Ptt - 'Pzz + 'P = 0. (8.1) 

To represent this as a Hamiltonian system we introduce the conjugate field II with 

the equations of motion: 
'Pt =II 

lit = 'Pzz - !(). 

This is Hamiltonian with the Poisson bracket 

{Fa}= j(6F6G _ 6F6G)d 
' b<p 6II 6II b<p X 

and the Hamiltonian 

H =I h dx, 

where h is the Hamiltonian density 

h = ! (rr2 + 'P; + 'P2). 
2 

(8.2) 

(8.3) 

(8.4) 

(8.5) 
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8.2. Periodic Solutions 

There is a three dimensional submanifold of periodic solutions in this <p, II 

space. We may label points in this submanifold by the three coordinates (A, k, 9) 

via 
'PA,A:,s(x) = Asin(kx + 9) 

IIA,A:;s(x) = Jk2+!Acos(kx + 9). 

For convenience we define 

w = ..jk2 + 1. 

The dynamics restricted to this manifold is given by 

( ~AA:s(x)) =( wAcos(kx+9) ) 
IIAA:s(x) -w2 Asin(kx + 9) 

( 
w~[Asin(kx + 9)] ) 

= w~[wAcos(kx + 9)] 

=w!!._ ('PAks(x)). 
d9 IIAkB(x) 

Thus the dynamics on A, k, 9 space is 

w-m 
8.2.1. The Hamiltonian Restricted to Periodic Solutions 

(8.6) 

(8.7) 

(8.8) 

(8.9) 

Now restrict the Hamiltonian to the submanifold and integrate over a large 

volume V: 

Hv('PAk8,!1Ak8)"' 
4
!A2V(k2 + 1) + !A2Vk2 + !A2V = !A2w2V. 

4 4 2 
(8.10) 

Notice that this is asymptotically true as V -+ oo and neglects an order 1 contri-

bution at the ends. If we were only interested in the periodic case it would perhaps 
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be more elegant to introduce the average here and not to introduce the V at all. 

In fact, we are studying the periodic case only as a model for the eikonal case. We 

want to think of the eikonal waves as limiting on the submanifold of exactly periodic 

waves as the eikonal parameter vanishes. It is for this reason that we do not take 

the mean over the whole line and are therefore stuck with the 'inelegant V's. 

8.2.2. The Symplectic Structure Restricted to Periodic Solutions 

Poisson brackets can be pushed forward along projections but cannot in general 

be pulled back along injections like we have here. We therefore work with the 

symplectic structure, which can be pulled back: 

n([6~1.6ll1]. [6~2.6n2n = 1 dx (6~1(x)6ll2(x)- 6ll1(x)6~2(x)). (8.11) 

This two-form is the differential of a one-form a, which is easier to work with: 

n = -da, (8.12) 

a([6~,6ll]) =I ll(x)6~(x) dx. (8.13) 

To pull this back to (A,k,9) space, we push forward a vector (6A,6k,69) to 

(6~,6ll). We only need the 6~ component: 

6'PAk8(x) = 6A sin(kx + 9) + 6k Ax cos(kx + 9) + 69 A cos(kx + 9). (8.14) 

Thus 

o([6A,6k,69]):: a(6~Ake,6ITAk9) (8.15) 
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= [A w cos(kx + 9) [6A sin(kx + 9)+ 

+ x 6k A cos(kx + 9) + 69 A cos(kx + 9)]dx (8.16) 

v 
~ 2 A 2 w 69. 

So the two-form w on A, k, 9 space is 

- v dw n = -dD = -V A w dA AdD- - A 2 -dk AdD. 
2 dk 

(8.17) 

fl is closed but degenerate (as it must be in three dimensions), and it annihilates 

the vector 

a 2 a 
A k aA -2w ak· (8.18) 

8.2.2.1. A Degenerate Poisson Structure on the Periodic Solutions 

H we choose a function whose level sets are transversal to this vector field, we 

may make this function a Casimir for a Poisson structure agreeing with w on the 

level sets. If, furthermore, the function is a constant of the motion, then H restricted 

to the level sets must give the. correct dynamics. Here we take this function to be 

k, which we now hold constant. Then on A, 9 space, 

and 

But 

O=V AwdDI\dA 

v 2 2 Hv =-A w. 
2 

dH =A V w2 dA, 

(8.19) 

(8.20) 

(8.21) 



8.2.3. The Action of Perioilic Orbits 

so 

which is the correct dynamics. 

a 
Xn =wa9' 

8.2.3. The Action of Periodic Orbits 
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(8.22) 

\\'e would like to work in canonical coordinates. From the expression for fi, we 

see that 8 is conjugate to 

1 
J =-VA~ w. 

2 

In terms of J, 8 the structure is quite nice: 

This gives the dynamics 

or equivalently 

fi =dB" dJ 

H=Jw. 

a 
Xn =wa8 

j =0 O=w. 

(8.23) 

(8.24) 

(8.25) 

(8.26) 
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8.3. Modulations 

Modulations essentially "gauge" this theory. We introduce the space of pairs 

of functions: (A(x), 8(x)). For each value of f. we map this into (<p, II) space via 

'P<,A(o:),ll(o:)(x) = A(£x)sin(~8(£x)) 
1 

Il,,A(o:),ll(o:)(x):: w(f.x) A(£x) cos(;8(£x)), 

where we have defined for convenience 

k(x) = 9'(x) w(x) = y'k~(x) + 1. 

(8.27) 

(8.28) 

This time the dynamics leaves the submanifold invariant only asymptotically as 

f.-+ 0 (but does so to all orders).We would like to consider this asymptotic dynamics 

on (A, 8) space, which represents the modulational equations, as a Hamiltonian 

system. We do this by pulling back the Hamiltonian and the symplectic structure 

for each f. and then do asymptotics in f. -+ 0. 

8.3.1. Stationary Phase Integrals . 

The method of stationary phase tells us that, as long as 8' doesn't vanish, 

integrals of the form 

I f(£x) cos(~8(£x)) dx ~ 0 (8.29) 

vanish to all orders in f. as f. -+ 0. This easily implies that 

I /(£x) cos( !8(£x)) sin( !8(£x)) dx-+ n · 
f. f. 

(8.30) 

and 

I . 1 1 I /(£x) cos2 ( ;8(£x)) dx ~ 2 /(£x) dx (8.31) 
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to all orders in t: provided f is smooth and dies rapidly at infinity. 

8.3.2. The Modulational Poisson Brackets 

The modulational Poisson brackets are obtained as before by converting (A, 8) 

perturbations to (cp,IT) perturbations. If we call the map from (A,8) to (cp,IT), i., 

then 

. ( 6cp) '•· (oA, o8] = on 

= ( 6A(t:x) sin( ~8(t:x)} + 68(x) ~A(t:x) cos( ~8(t:x)}) . 
not needed 

(8.32) 

All sin's and cos's have the argument: (8(t:x)/t:). We will leave this argument out 

of our expressions for clarity. So 

i;o((6A,68]) = o(i,.(6A,68]) = l(w A cos)(6A sin+ 68~A cos}dx. (8.33} 

By stationary phase, assuming dD ::/: 0 anywhere, we have that to all orders in t:: 

i;o((6A,68]) =~I ~w A2 68 dx. (8.34) 

Motivated by the periodic case, we introduce 

1 
J(x) = 2 w(x) A(x) 2

• (8.35) 

This is the wave action density. Thus the one form is (1/t:2 ) J J 68 dx (the t: is 

squared since J. and 68 are evaluated at t:x) and the corresponding Poisson bracket 

is canonical: 

{FG} =t:2 ldx (6F6G _ 6F6G) 
' MJ 6J 6J 68 . 

(8.36) 
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8.3.3. The Modulational Hamiltonian 

The modulational Hamiltonian is similarly obtained by pulling back H: 

i* H =I dx(~w2 A2cos2 + ~A2k2cos2 + 2EAkA'cossin + E2 A'
2
sin

2 + ~A2sin2 ). 
(8.37) 

To all orders in E, this is 

=I dx( !w2 A2 + !A2 k2 + !t:2 A'2 + !A2
) =I dx( !w2 A2 + !f2 A'

2
) (8 38) 4 4 2 4 2 2 .. 

Or in terms of J: 

=I dx(Jw + ~t:2 A'
2

). (8.39) 
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8.(. Global Symmetry Implies Local Conservation Law 

Let us now show that the presence of a global symmetry implies the existence 

of a local conservation law. Given a pair of canonically conjugate fields ( J ( x), 9( x)), 

so 

I (6F 6G 6F 6G) 
{F,G} = 69 6J- 6J To dx (8.40) 

and a Hamiltonian H(J, 9) that is invariant under a global change of 9 by a constant 

9o everywhere: 

i.e. H(J,9 + 9o) = H(J,9), (8.41) 

we may apply a generalization of Noether's theorem known as reduction. This 

entails rewriting everything in terms of 

k(x) = V9(x), 

which contains all information in 9 except for a constant 90 • We see 

So 

16G(J, k) J(x) dx = .!!_G(J, k + {3V f) 
69 d{j 

16G I ( d 6G) = -·Vfdx=- -·- f(x).dx. 
6k dx 6k 

6G d 6G 
69=-dx'"'ik 

for G's independent of 90 • Thus the reduced Poisson bracket is 

{F G} = Jdx (6G .!!._. 6F _ hF .!!._. hG). 
' 6J dx 6k hJ dx hk 

(8.42) 

(8.43) 

(8.44) 

(8.45) 

(8.46} 
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The evolution of J is thus 

i(x) = {J,H} = _.!!._. (6H) 
dx 6k · 

(8.47) 

This is the desired conservation equation for J, with the flux of J given by 6H/6k. 

Similarly 

. d (6H) d 
k(x) = {k,H} =- dx {JJ =- dxw(x). (8.48) 

In our case, to first order in f we have 

H= I hdx h(x) = J(x) w(x), (8.49) 

which is independent of the value of 9 (it depends only on the gradient). We may 

thus apply the previous theorem to obtain 

. d ( aw) d J(x) = {J,H} =-dx J ak =- dx(U J) 

where we have introduced the group velocity: 

U= aw 
- ak· 

Thus the wave action J is conserved and the flux is U J. 

(8.50) 

(8.51) 

We have therefore successufully obtained the correct modulational equations 

using a purely Hamiltonian framework. Traditionally, obtaining modulational equa-

tions is a very complex task fraught with traps for the unwary. Whitham and 

Lighthill brought order to this task during the 1960's using Lagrangian methods. 

A fine account of this work occupies most of the second half of Whitham's book 

on waves: [Whitham, 1974]. The quote at the beginning of this chapter indicates 
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that Whitham did not think that this could be accomplished within a Hamilto-

nian framework. We see that it can indeed. This is of both theoretical interest 

(particularly because of the explicit connection with the process of reduction) and 

practical interest. As we discussed in chapter 2, many of the recent systems which 

have received a Hamiltonian formulation have done so only in the context of Pois-

son manifolds and therefore have no Lagrangian analog. Our theory should be 

applicable to waves in these systems as well. 
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8.6. The Nonlinear Klein-Gordon Equation 

This section describes work done in collaboration with Richard Montgomery. 

Recently, Richard Montgomery has proven that the method described in previous 

sections of this chapter for the linear Klein-Gordon equation really is quite general 

and applies to arbitrary systems (preprint, March 1985). Let us here sketch the 

extension to the nonlinear Klein-Gordon equation: 

tPtt = 4>:n:- V'(t/>). (8.52) 

The arguments are almost identical to the linear case. We first introduce a momen-

tum II conjugate to ¢: 
tPt =II 

(8.53) 
IIt = 4>:n:- V'(t/>). 

This system is Hamiltonian with the canonical bracket given in section 8.1 and 

Hamiltonian 

I 1 1 
H = (2II2 + 2 t/>~ + V(4>))dx. (8.54) 

We search for periodic functions of the form 

~(x, t) = F(kx + wt) (8.55) 

where F is a function of one variable. Let us denote kx + wt by 9. We want F to 

be 271"-periodic: 

F(9 + 21r) = F(9). (8.56) 

The corresponding momentum will have the form 

ft(x,t) = wF'(9) (8.57) 
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(where we use a prime to denote the (J derivative). Substituting this ansatz into the 

equations of motion gives us a simple O.D.E. for F: 

(w2
- k2

) ~:~ (9) + V'(F(9)) = 0. (8.58) 

Anytime one searches for travelling wave solutions (or similarity solutions) one 

obtains a simple O.D.E. even when the original system is a complex nonlinear 

P.D.E .. In this case the resulting O.D.E. is the equation of motion for a "particle" 

of "mass" (w2 - k2 ) moving in a potential well defined by V if we treat (J as "time". 

The corresponding "energy" of this particle is 

1 (aF)
2 

-(w2
- k2

) - + V(F) =A 
2 a£J 

(8.59) 

which we set to the constant value A (because it varies with wave amplitude). 

It is interesting to note that the actual energy of the wave is 

I 1-2 1 *2 -
H = c2n + 21P., + V(IP))dx 

I 1 (aF)
2 

1 (aF)
2 

. = (2w2 
a£J + 2k

2 
a£J + V(F(9)))dx 

(8.60) 

which is the integral over x of the "particle" energy. (This is connected with the 

use of the Klein-Gordon equation in particle physics). 

The energy equation gives 

(
aF)

2 = 2(A- V(F)) 
ao w2- k2 

(8.61) 

which may be integrated to give the solution 

(8.62) 
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The constant of integration is the initial phase of the wave. When V is a simple 

harmonic oscillator, corresponding to the linear system, this gives sin's and cos's 

as solutions. When V is a pendulum potential (as in the sine-Gordon equation) 

this is an elliptic integral and when V is quartic we get the solution to the Duffing 

oscillator. For the linear case we see that the constant A is half the amplitude 

squared (we continue to use A to facilitate the comparison with Whitham). 

The nonlinear dispersion relation is obtained by requiring that F be 21r periodic 

in (J; 

12 .. 

211" = 0 dD 

= -dF 1 dD 
period dF 

(8.63) 

= ! v' w2 - k21 dF . 
2 period J A- V (F) 

This gives one relation among A, k, and w. This is analogous to the fact that we 

could write w as a function of k in the linear case. Here, though, w depends on 

A as well, which leads to characteristically nonlinear effects (just as in a nonlinear 

oscillator where the frequency depends on the amplitude). The submanifold of 

periodic solutions is thus three-dimensional again and we may coordinatize it by A, 

k and 8 as in section 8.2. 

As in the linear case, we find the action for a periodic solution by integrating 

the canonical one-form 

I ll(x)o~P(x)dx (8.64) 

around a periodic orbit. o~P(x) acting on a unit tangent vector to the orbit will give 

1 a- aF 
:; at IP(x, t) = a£J (kx + wt) (8.65) 
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since c moves around its orbit in time 1/w. The total action is therefore 

I 

aF aF 
w ae (kx + wt) ae (kx + wt}dx. (8.66} 

As in the linear case, we must really integrate only over a volume V, divide by V, 

and let V _. oo, leaving us with a well defined action density. Since the integrand 

is periodic in x, we need only integrate over one period. The action density J(x) is 

then 
1 r"/" (aF )2 

J(x)= (27r/k}lo w ae(kx+wt) dx 

1 r" (aF )
2 

dx = (21r(k) }
0 

w ae (B) d8d8 
(8.67} 

1 (}.'It (aF )
2 

= 27r lo w ae (8) dB. 

Let us denote the average over a period of 8 by (): 

1 12" (·) =- ·dB. 
27r 0 

(8.68} 

The action density may then be written 

J(x) = w(F12
). (8.69) 

We may use the equation satisfied by F to write this as 

J(x) = !:!.._1 aF dF 
27r period ae 

= !:!....1 vf2(A- V(F)) 
21r . dF per~od J w2 - k2 

(8.70) 

= 21rJ; - k2 { . V2(A- V(F))dF. Jper~od 

When we look at the special case where V(F) = -cosF, this agrees with the 

expression given in [Forest and McLaughlin, 1982]. 
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Let us now jump right into the modulational equations. We again consider the 

space of functions (A(x), B(x)) and for each £, map this into (¢,II) space via 

1 
¢<,A(z),9(z) = FA(•z)(-8(£x)) 

£ 

Il<,A(z),9(z) = w(£x)F_:.._(•z) ( !8(£x)) 
£ 

(8. 71) 

where FA is the periodic F with constant set to A and w is the known function of 

k = Bz and A. We use F~ to denote the 8 derivative of FA and 8FA/8A the A 

derivative. Exactly as in section 8.3.2, the canonical one-form a is pulled back to 

(A, 8) space by 

i;a([cA,68]) = a(i •• [cA,cB]) 

I 
I ( aFA 1 I) 

= wFA 6A aA + 68;_FA dx. 
(8.72) 

Now we use stationary phase to replace integrals over periodic quantities like F and 

its derivatives by integrals over the corresponding quantities averaged over [0, 2n-]. 

We change to the slow scale X = £x: 

i;a([6A,68]) =£~I w(X)(.f1)(X}68(X}dX +;I w(X)(a;; F~)(X)cA(X)dX 

= f~ I J(X}cB(X}dX+; I w(X)(a;; F~)(X)cA(X)dX. 
(8.73) 

Similarly, we see that the Hamiltonian is 

I 1 1 
H = (211"2 + V(¢) + 2¢!}dx. 

1( 1 2 12 ( ) 1 2 128FA 2 8FA )2) = 2w FA +V F +28zFA aA Az+£ ( BA Az dx. 

(8.74} 

Now we use stationary phase again and change to X = £X to see that to leading 
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order 

H ~ ~ ~(~(w2 + k2)F:,f(X) + V(FA(X)))dX 

= ! I( !(w2 + k2) 2(A- V(FA)) - w2- k2 (A- V(FA)- A)dX 
£ 2 w2 - k2 w2 - k2 

=! l(k22(A- V(FA)) + A)dX 
£ w2- k2 

= ~ l(k
2
F:,f +A)dX 

"' ~I (k2 (F'1)(X) + A(X))dX 

1 I k2 
= ~ ( w(X) J (X) + A(X))dX. 

355 

(8.75) 

Again we see that H is asymptotically independent of 9. Since J generates 9 to 

leading order (as may be seen by looking at the asymptotic expression for the 

canonical one-form o), J(X) is asymptotically a locally conserved quantity as for 

the linear system. 
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Chapter9: 
A lie Poisson Bracket 
for Wave Action 
Density 
9.1. Expllelt Calculation of the Lie Poisson Bracket 

This seetion represents joint work of Allan Kaufman, Steve McDonald, and 

myself. J and 1/J are real valued functions of x E ~. We consider the canonical 

Poisson bracket on functionals of J and 1/J: 

{ A(J,,P), B(J,,P)} =I [~~(x") ~: (x")- ~~(x") ~~ (x")] ~x". (9.1) 

We shift attention to functionals of the distribution I on (x, k) space. We obtain 

the Poisson bracket of such functionals T 1 and T 2 by requiring that it reduce to 

the above canonical bracket on distributions of the form 

I(x,k) = J(x) 63 (k- Vt/;(x)). (9.2) 

This can really only give the value of the wave Poisson bracket evaluated at distri-

butions of this form. We may implicitly assume linearity in I, however, (and the 
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Lie Poisson bracket is linear) and thereby extend the definition to multiple eikonal 

waves and then by continuity to all waves. Calling (x, k) = y and (x', k') = y', the 

chain rule gives 

{ T 1 (/), T 2(/)} =I il'y cf'y' 
6~1 

(y) 
6~2 

(y') { /(y), /(y')} 

= I if' if' I ~ II 6T 1 ( ) 6T 2 ( I) 
Y Y xu" u" 

[
H(y) ( ") H(y

1
) ( ") _ 61(y) ( ") 61(y') ( ")] 

6J X 6¢ X 6¢ X {J[ X • 

We calculate the needed functional derivatives: 

So 

Similarly, 

f f>I(y) (x") · f(x") ~x" = lim l(y)[J + t}]- /(y)[J] 
6J •-o £ 

= f(x) 63(k- V¢(x)). 

61(y) (x") = 6(x- x")6(k- V¢(x)). 
6J 

' 16/(y) (x") · t/>(x")~x" =lim /(y)[¢ + £t/>]- /(y)[¢] 
6¢ •-0 f 

=lim !J(x)(63 (k- V¢(x)- £Vt/>(x))- 63 (k- V¢(x))) •-0 f 

a = -J(x)V t/>(x) · ak 63 (k- V¢(x)). 

So 

61
(y) (x") = _!__ · 6(x- x")J(x")~6(k- V¢(x")) 

6¢ ax~ ak · 

First substitute in !} and do the x1 integral: 

{ T1, T2} =I ~x~k~x1 ~k1 ~x" 6~1 (x,k) 6~2 
(x1,k1

) 

[6
3 (x- x")63 (k- V¢(x)) 61(x' k

1

) (x") 
6¢ 

- 6(x1 - x")6(k1 - V¢(x1)) H(x,k) (x")]. 6¢ . 

(9.3) 

(9.4) 

(9.5) 

(9.6) 

(9.7) 

(9.8) 
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Thus 

{ T T} = /d3xd3kd3x'd3k' 
6

T 1 (xk)
6

T 2 (x' k') !, 2 {JJ . {JJ ' 

[63(k- V¢(x)) H(;Jk') (x) · (9.9) 

- 63(k'- V'tt>(x')) HSx,,k) (x). 

Now substitute in !~: 

=I ~x~k~x1 ~k1 6
T 1 (x k)

6
T 2 (x1 k1

) 61 , 61 , 

[63 (k- V¢(x))!. · 63 (x1
- x)J(x) a~1 63 (k1 - V¢(x)) 

- 63 (k1
- V¢(x1))~ • 63 (x- x1)J(x1)~63 (k- V1¢(x1

)}]. 
~ ak 

(9.10) 

Now integrate by parts with respect to k1 in the first term and kin the second: 

=I ~x~k~x1 ~k1 [- 6~1 (x,k)(a~~ 6~2 (x1 ,k')) 
63 (k- V¢(x)) · !. 63 (x1 

- x)J(x)63 (k1 
- V¢(x)) 

( a 6T1( k))6T2( I I) + ak 61 x, 61 x 'k 

63 (k1
- V¢(x1

)). ~63(x- x1)J(x1)63 (k- V1¢(x1
)}]. 

(9.11) 

Now change the variables of integration: exchange k and k1 in the first term and x 

and x in the second: 

=I ~x~k~x1 ~k1 [- 6~1 (x,k1)(:k 6~2 (x1 ,k)) 
63 (k1

- V¢(x)) · !.63 (x1
- x)J(x)63 (k- V¢(x)} 

( a 6T 1 ( I )) 6T 2 ( I) + ak 61 x , k 61 x, k 
(9.12) 

63 (k1 
- V¢(x)) · !. 63(x1 

- x)J(x)63 (k- V¢(x))]. 
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Collect terms: 

= I d3
x d

3
k d

3
x' d3k' [-

6~1 
(x, k') ( :k 

6~2 
(x', k)) 

( a 6T 1 ( , )) 6T 2 ( ')] + ak M x, k M x, k . 

· 63 {k' - V,P(x)} ~ 63 (x'- x)J(x)63 (k- V,P(x)). 

Now recall J(x)63 (k- V,P(x)} = J(x,k) and integrate by parts in x: 

=I cPxcPkcPx' cPk' { [ (~ 6~1 
(x,k')) (:k 

6~2 
(x',k))­

- (~6T1( I k))(~6T2( k'))] ak 61 x ' &x 61 x, 

' 63 (k'- V¢(x)}63 (x- x')J(x,k)+ 

[ 
6T 1 ( ') ( a 6T 2 ( , )) ( a 6T 1 ( , )) 6T 2 ( k')] - 61 x, k ak il x 'k + ak 61 x 'k 61 x, 

a a } x VV¢ · ak1 63 (k'- &x ,P(x)}63 (x'- x)J(x,k) . 
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(9.13) 

(9.14) 

In the first term, the 63 {k- V,P(x)} in J(x,k) lets us replace 63 (k'- V,P(x)} by 

63 (k'- k). In the second term we integrate by parts ink' and then do the same ·> 

replacement. 

{ T1> T 2} =I cPxcPkcPx' cPk' { [ (~ 6~1 
(x,k')) (:k 

6~2 
(x',k)) 

(a 6T1 ( 1 )) (a 6T2 1 )] 3 1 3 1 ) - ak 61 x,k &x 61 (x,k) 6 (k -k)6 (x-x)J(x,k 

[( a 6T1 , ) ( a 6T2 , ) 
+ ak'M(x,k) akil(x,k) 

- ( :k 
6~1 

(x', k)) (a~' 6~2 
(x, k'))] : VV¢63 (k' - k)63 (x' - x)J(x, k)}. 

(9.15) 

We do the x and k' integrals using the delta functions. The second term vanishes 
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and the first becomes the Lie-Poisson bracket: 

{ } I 3 3 [(a 6T1 ) (a 6T2 ) T1(I),T2(J) = d xd k J(x,k) ax M(x,k) . ak M(x,k) 

(a 6T1 ) (a 6T2 )] - ak il(x,k) . &x il(x,k) (9.16) 

I rf' [6Tt 6T2] = !I J(y) M' M II. 
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9.2. The Geometrical Picture 

Alan Weinstein has given the following geometric interpretation of this result. 

On the one hand, as in section 2.7.10 we may consider the group of symplecto­

morphisms of a symplectic manifold M. An infinitesimal symplectomorphism is 

represented by a Hamiltonian vector field (at least locally). We may think of the 

Lie algebra of the group of symplectomorphi.Sms as being all Hamiltonian vector 

fields on M with the Lie bracket of vector fields being the Lie algebra bracket (per­

haps with a minus sign, depending on conventions). Equivalently (up to a constant}, 

we may view it as the space of functions (Hamiltonians) on M with the Lie algebra 

bracket being the Poisson bracket of two functions (defined using M's symplectic 

structure). The coadjoint action of a symplectomorphism on such a function is 

.simply given by pullback. The dual of the Lie algebra is then the space of distri­

butions on M. We therefore have the natural Lie-Poisson bracket (given above) on 

functionals of such distributions. 

The coadjoint action of a symplectomorphism on a distribution is given by 

pushing the distribution forward along the symplectomorphism. The coadjoint or­

bits, which have a natural KKS symplectic structure, consist of all distributions 

obtainable from a given one by canonical transformations. In particular, the orbit 

of a 6-function looks just like M and has the same symplectic structure (points 

of M correspond to the 6-function at that point). Lagrangian submanifolds (i.e. 

half-dimensional submanifolds on which the symplectic form vanishes} of M are 

taken to other Lagrangian submanifolds under canonical transformations (since the 

symplectic form is preserved}. Locally, any small enough piece of a Lagrangian sub-
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manifold can be taken to a corresponding piece of any other Lagrangian submanifold 

by a canonical transformation. So up to global issues, the space of measured La­

grangian submanifolds on M is itself a symplectic manifold (see section 2.7.10 for 

more details). 

Above, we sa~ that the phase function which determines the manifold and 

the amplitude which determines the distribution on that manifold, may be treated 

as canonically conjugate variables in a way that is consistent with the Lie-Poisson 

structure on all distributions. We would like to understand this fact geometrically. · 

We will show that the cotangent bundle of the space of Lagrangian submanifolds 

of M may be naturally identified with the space of distributions with Lagrangian 

support. The cotangent space at a given Lagrangian submanifold is identifiable with 

the the space of distributions defined on that Lagrangian submanifold. This is then 

identifiable with the corresponding space of 6-like distributions on M supported on 

that manifold (see section 2. 7.10). Thus the canonical conjugacy of the distribution 

and the manifold arises in a natural way. 

What is the tangent space to a Lagrangian submanifold of M in the space 

of Lagrangian submanifolds? A tangent vector will be a small deformation of the 

manifold which is itself Lagrangian. All such deformations come from Hamiltonian 

vector fields. The tangent space may thus be identified with the space of Hamil­

tonian vector fields on M modulo those which leave the Lagrangian submanifold 

invariant. A Hamiltonian vector field leaves a Lagrangian manifold invariant if and 

only if it is constant on it. 

We see this as follows. If a Hamiltonian vector field XH is tangent to our 
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Lagrangian manifold, then dH = w(XH, ·) must annihilate all tangent vectors to 

the manifold, since it is Lagrangian and so its tangent spaces are symplectically 

orthogonal to themselves. This says that H is constant on it (if it is connected). 

If H is constant on the Lagrangian submanifold, then it annihilates all tangent 

vectors. Thus XH is symplectically orthogonal to the whole tangent space. But on 

a Lagrangian submanifold, the only such vectors are themselves tangent to it. Thus 

XH preserves the Lagrangian manifold. 

We may therefore identify the tangent space to the space of Lagrangian sub­

manifolds at a given such manifold with the space of functions on M modulo those 

functions which vanish on the manifold (again ignoring constants). But this is ex­

actly the space of functions on the Lagrangian submanifold. Taking the dual we 

see that the cotangent space to the space of Lagrangian submanifolds at a given 

Lagrangian manifold is indeed isomorphic to the space of distributions on that 

manifold. 

This space of distributions is identifiable with the delta-like distributions on M 

supported on the manifold. The cotangent bundle of the space of Lagrangian sub­

manifolds obtainable by deforming a given one is thus isomorphic to the coadjoint 

orbit of the symplectomorphism group which contains any delta-like distribution 

supported by the given Lagrangian submanifold. The· KKS coadjoint orbit sym­

plectic structure is exactly the canonical structure obtained from looking at the 

orbit as ~ cotangent bundle. 
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PART Ill: 

DISSIPATION 

and 
STATISTICS 

"These two branches, mechanics and thermodynamics, can be joined only from 

a higher standpoint, that of the statistical mechanics of molecular systems."­

(Klein, 1928] p. 203 
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In this chapter we will demonstrate a number of relations between dissipative 

and non-dissipative systems. We will show, in particular, that any system can be 

embedded in a Hamiltonian system of twice the dimension and in a Poisson system 

of only one dimension more. These constructions are of interest because they help to 

delineate what operations lead one to artificial structures. Since they can arise from 

any system, the Hamiltonian structures of this section cannot be expected to give 

any new insights into the original system. They may be useful in understanding how 

dissipative dynamics may arise from an underlying Hamiltonian system, however, 

since this always involves some kind of projection. We will also give examples of 

some seemingly harmless "dangerous operations" which can completely destroy the 

physical content of a model. 

10.1. Imbedding in a Hamiltonian System 

Consider an arbitrary dynamical system given by a vector field X on a manifold 

Q. We will construct a Hamiltonian system of twice the dimension which has an 

invariant submanifold diffeomorphic to Q and on which the restricted dynamics 
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is exactly that given by X. The manifold will be the cotangent bundle of Q, i.e. 

T*Q. The dynamics will be the cotangent lift of X to T*Q. This is defined as 

follows: the flow of X is a one parameter family of diffeomorphisms of Q to itself. 

A one-form may be pushed forward along a diffeomorphism (just pull it back along 

the inverse of the diffeomorphism). Thus at every moment of time each point in 

T*Q is mapped to another such point. Taking these together gives us a natural 

one-parameter family of diffeomorphisms from T*Q to itself which covers the flow 

of X (this is a point transformation). This family is actually the flow of a vector 

field on T*Q which is Hamiltonian with respect to the natural symplectic structure 

on T*Q. The Hamiltonian is the function on T*Q given by 

H(q,p) =: (p,X(q)). (10.1) 

Notice that H is linear on each fiber of T*Q and that the zero section is in the 

zero set of H. It is easy to check that this gives the correct dynamics. With the 

symplectic structure 

w =dql\dp, (10.2) 

the dynamics is 
q; =X;(q) 

.; . ax; (q) (10.3) 
P =-P'-a-.-. 

q' 

The zero section is indeed invariant (sine~ if p starts out zero, it remains so) and 

the dynamics restricted to it is the original dynamics. Thus by restricting the class 

of initial conditions, we may have dynamics inside a Hamiltonian system looking 

like a dissipative system of any type. 
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i'"otice further that under the natural projection 

1r:T"Q-+Q by (q,p) ...... q, (10.4) 

the Hamiltonian dynamics projects down to the given dynamics. Thus if we observe 

only certain variables in a Hamiltonian system, it may look just like a dissipative 

system of any type. 

Linear Hamiltonian vector fields must have their eigenvalues ditributed in the 

complex pla,ne so as to be symmetric under reflection about both the real and 

imaginary axes. Thus if we start with a linear attracting fixed point, like 

Xi(q) = -qi, (10.5) 

which has all of its eigenvalues in the left half-plane, we must double the dimension 

to imbed it in a Hamiltonian system. Thus the above construction is the smallest 

Hamiltonian space we might construct in general. 
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10.2. Projection from a Hamiltonian System 

This argument for a lower bound on dimension does not apply to the case of 

projection, however. A fixed point of projected dynamics need not be a fixed point 

of the unprojected dynamics, so the eigenvalue argument doesn't hold. In fact, we 

may construct a Hamiltonian system that projects to our system by adding only a 

single dimension if the original space is odd dimensional, or two more dimensions if 

it is even dimensional. The construction sheds light on a dangerous operation one 

sometimes sees being performed in the physics literature. If one has unbounded 

motion, one may smoothly untwist the orbits and hide any features of the dynamics 

that one desires. 

Let us extend our given space Q by a single dimension to get Q x !i. Let us 

denote the time t flow of the given dynamics X on Q by 1c. It is quite natural to 

consider the extra dimension in Q x !l as time and to consider the original dynamics 

on Q augmented by a time which flows uniformly: 

X(q, t) = (X(q), 1). (10.6) 

Because this has no fixed points and no recurrent orbits, we may now perform the 

following seemingly harmless operation. We define a diffeomorphism from Q x !R to 

itself by 

(q, t) ...... (1-t(q), t). (10. 7) 

By the definition of flow, 

a at 1t(q) = X(q), (10.8) 
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so the image of our dynamical vector field X under this diffeomorphism is simply: 

(0, 1). (10.9) 

Thus we have completely trivialized the dynamics by a coordinate change that 

unraYeled the original orbits. In particular all dynamics can be made to look the 

same on extended state spaces. For our Hamiltonian construction, we may choose 

a symplectic structure and Hamiltonian that give the trivial dynamics of (10.9) 

and pull them back to the original extended state space by our diffeomorphism. 

There they give the extended dynamics as a Hamiltonian system and so project 

onto the original dynamics. The upshot is that one must beware of time-dependent 

coordinate changes because they can easily do many non-physical things, such as 

making any system look Hamiltonian. 
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10.3. Dangerous Operations with Unbounded Variables 

This same construction is sometimes used in disguise to show that all 'dynam­

ical systems (or any particular system an author is interested in) are integrable. 

Through a series of suitably complex coordinate changes, the author succeeds in 

adding an extra variable with unbounded dynamics (the next two sections~.present 

explicit examples). This is then used as above to trivialize the system, where 

constants of the motion are plentiful. The constants are pulled back and appear 

magically to have simplified the original system. 

Other dangerous things one can do are to make attractive systems look repul­

sive (as in figure (10.1)) and in fact get Liapunov exponents to be anything one 

wishes. (Oseledec's theorem shows that they are well defined for bounded systems, 

in the sense that all smooth metrics give them the same values as discussed on p. 

284 of [Guckenheimer and Holmes, 1983], but they have no intrinsic meaning for 

unbounded systems). 

10.3.1. Eg.: Surreptitiously Changing Damping to Driving 

Let us convert a damped harmonic oscillator to one with negative friction. We 

start with the system 
:i:=v 

(10.10) 
iJ =- x- kv. 

We make the change of coordinates 

x =e"'tx 
(10.11) 

v =e"'tv + ke"'tx. 
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We see that the new coordinates satisfy the equations 

as desired. 

!!_x =kektx + ekt:i; 
dt 

=kektx + ektv 

=v 

!!_ii =kektv + ekt;; + k2ektx + kekt:i; 
dt 

=kektv- ektx- kektv 

=- x + kii 
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( 10.12) 

In perturbation theory, if one makes time dependent coordinate changes, one 

must make certain that they remain close to the identity for large times (for example 

by requiring that they be periodic or quasiperiodic in time) or else one may sweep 

any undesirable dynamics under the rug. 

10.3.2. Eg.: Pitfalls in the Use of Lie Transforms 

Let us illustrate some of these dangers with a simple example using the method 

of Lie transforms. It is becoming fashionable to use Lie transforms in very complex 

situations, where it is hard to keep one's physical intuition about the problem (eg. in 

systems with many-particle dynamics or even infinite-dimensional wave systems). 

It is therefore worthwhile to point out some pitfalls for the unwary in a simple 

example. Such examples will hopefully help us to avoid misapplying Lie transforms 

in more complex circumstances. 
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Figure 10.1: Attraction changed to repulsion by a time dependent change of 

coordinates. 

In this method we assume given a Hamiltonian as an asymptotic series in t: 

whose zero order term has been brought to action-angle form and depends only on 

the actions. Let us examine the example: 

H = Ho + t:H1 = w1J1 + w2J2 + t:cos(61 - 62), (10.13) 

on the phase space 61, J 1 , 62, J 2 with the canonical bracket: [, ]. The method of Lie 

transforms seeks to find an £-dependent canonical transformation which becomes 

the identity as t: --+ 0 and which converts H to a new Hamiltonian K, which depends 

only on the actions. We represent the canonica1. transformation as the time-one flow 

generated by the £-dependent Hamiltonian: 

-W = t:W1 + t:2W2 + .... (10.14) 
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-W's Hamiltonian vector field, viewed as a differential operator on functions on 

phase space, is denoted by 

L=[W,·]. (10.15) 

The action of the flow on functions is then the operator: 

e!-. (10.16) 

The transformed Hamiltonian is then given by 

K = eL · H = Ho + l([W~> Ho] +HI}+ .... (10.17} 

We want to choose W order by order to eliminate the 9 dependence in K. At first 

order we would like to solve for W 1: 

[W~>Ho] = -H1. (10.18} 

This just says that the derivative of W1 along the unperturbed dynamics (generated 

by Ho) should be equal to -H1 • One sometimes sees the solutions written formally: 

W1=- { H1. 
J unperturbed orbits 

(10.19} 

This leads one to think that the transformation is always possible and that the 

qualitative behavior of K(jb j 2}'s dynamics, which has all orbits periodic or quasi-

periodic, is representative ofthe behavior of H's. In the example w~ are considering, 

this is indeed true if w1 and w2 are irrationally related. In this case, the Lie trans-

form remains close to the identity for all time (and gets closer as f -+ 0} and so the 

change of variables doesn't do much damage. 
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Consider the case w1 = w2 , however. For this system 

81 = W1 = 82, (10.20) 

and so 91 - 62 is constant in time. This means that 

j1 = £sin(91 - 62) (10.21} 

is constant as well, and so J 1 grows steadily in time. This is in great variance with 

the prediction of K which says that J1 remains constant in time. How is it that 

by a change of variables we converted a system with monotonically changing action 

to one with constant action? The seemingly harmless integral over unperturbed 

orbits created a canonical transformation which was unbounded in time. As we 

have discussed, such transformations allow one to convert any system to any other, 

regardless of the actual physics involved. As this example demonstrates, one must 

be especially careful when dealing with systems that have resonances (different 

unperturbed degrees of freedom with the same frequency or with rationally related 

frequencies}. Notice that in this example, the error over bounded time is only of 

size f and so we have done as well as naive perturbation theory. The whole point 

of Lie transforms, though, is to get behavior on a time-scale of order 1/£. On this 

scale the method has failed in the example above. 
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10.4. Imbedding in Poisson Systems 

Because Hamiltonian dynamics on Poisson manifolds is more general than on 

symplectic manifolds, we may imbed arbitrary dynamics into Poisson dynamics 

of only one dimension higher. As above, assume given an arbitrary manifold Q 

and dynamical vector field X. We construct the manifold !R x Q (this is really 

(T"!R x Q)/!R as discussed in section 1.5, question 66). Let h be a function on !R 

defined by 

h(:r) = z. 

Define the vertical vector field Y on !R x Q to be 

a 
Y= ah· 

(10.22) 

(10.23) 

We will use h pulled up to !R X Q. We may define a Poisson bracket on !R x Q as 

follows (this Poisson structure may be viewed as the bivector X/\ Y): 

{!,g}:: (X· f)(Y ·g)- (X· g)(Y ·f). (10.24) 

10.4. Imbedding in Poisson Systems 

This satisfies the Jacobi identity, as may be routinely checked: 

{!, {g, h}} + {g, {h,!} + {h, {f,g}} = 

X/ Y(Xg Yh-Xh Yg) -X(Xg Yh-Xh Yg)Yf 

+ Xg Y(Xh Y f- X/ Yh)- X(Xh Y f- Xf Yh)Yg 

+Xh Y(X/ Yg- Xg Yf)- X(Xf Yg- Xg Yf)Yh 

=XfYXgYh+XJXgYYh-X/YXhYg-X/XhYYg 

-XXg Yh Yf -Xg XYh Y/+XXh Yg Yf +Xh XYg Yf 

+XgYXhY/+XgXhYYJ-XgYX/Yh-XgXfYYh 

-XXhY/Yg-XhXY/Yg+XX/YhYg+XfXYhYg 

+XhYX/Yg+XhX/YYg-XhYXgYJ-XhXgYY/ 

-XX/ Yg Yh -X/ XYg Yh+XXg Yf Yh+Xg XYJ Yh 

=0 

since the Lie bracket of X and Y: 

since Y is constant. Because 

we see that for any f 

[X, Y) = XY- Y X= 0, 

a 
Y·h= -h= 1, 

ah 

{/,h}=X·/. 
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(10.25) 

(10.26) 

(10.27) 

(10.28) 

Thus with this Poisson bracket and h as Hamiltonian we obtain the original dynam-

ics given by X. Here, each of the level sets of h has the original dynamics and so 
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both each injected level set and the projection along !R give the original X dynamics 

on Q. The symplectic leaves are the products of !Rand the non-fixed-point orbits of 

X. Each fixed point of X yields an interval of point symplectic bones along !R. We 

have shown that by a:dding one extra dynamical variable, we can make any system 

into a Hamiltonian system on a Poisson manifold. 

Let us give an explicit example. The simplest dissipative dynamical system is 

given by 

x=-x, (10.29) 

where x is a point on· the real line. This type of system is used as a model for linear 

relaxation in non-equilibrium thermodynamics, where x = 0 is x's equilibrium value. 

Hwe introduce another variable y, then the (x,y) plane is a Poisson manifold with 

a Poisson bracket given by 

I _ (a' ag _ a1 ag) 
'g - X ay ax ax ay . 

H we consider the Hamiltonian 

H = y, 

then the Hamiltonian dynamics is 

i=J,H=-xaf ax· 
This gives the dynamical equations 

x=-x !i = 0. 

(10.30) 

(10.31) 

(10.32) 

(10.33) 

The original dissipative system: :i; = -x, is both imbedded as the dynamics on 

any of the submanifolds: y =constant, and the result of projecting along y (i.e. 

forgening the value of y). 

Chapter11: 
Projected Area and 
Canonical 
Transformations 

Tourist: Can you give me the directions to Omaha? 

Farmer, scratching his bead: You can't get there from bere.-Anon. 
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Much of this thesis has been about simplifying the description of physicalsys-

terns by projecting their dynamics down to various subspaces. A classical theorem 

of Liouville states that the dynamics of a Hamiltonian system preserves a certain 

canonical volume element in phase space. In modem parlance this theorem is" very 

easy to prove. The Hamiltonian Bow preserves a symplectic structure w on phase 

space (i.e. it is equal to its pullback along the Bow for any time). Since the op-

eration of pullback of differential forms commutes with the operation of wedging 

them together, the Hamiltonian Bow also preserves w II w, w II w II w, ... , and finally 

in N dimensions: wN. It is easy to see that this last is a volume element, and in 

fact is the generalization to manifolds of the one described by Liouville. This vol-

ume preservation property of Hamiltonian Bows has many significant consequences 

for physical systems. It is the key ingredient for the Poincare recurrence theo-
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rem [Arnold, 1978]and is responsible for the absence of attractors in Hamiltonian 

systems. It is also the basis for much of statistical mechanics. 

11.1. Application to Particle Accelerators 

When we project our dynamics to a smaller space, the volume preservation is 

in general lost, but some remnant remains to impose constraints on the projected 

dynamics. There are many physical situations where these constraints lead t!l very 

interesting consequences. Andy Sessler has described to me the relevance to the 

design of free-electron lasers of any theorems constraining the ability of a Hamilto­

nian system to change the volume of projection of a region. The time evolution of 

the particles moving through an FEL is often described by linearizing about some 

known orbit, leading to a time dependent linear canonical transformation on single 

particle phase space. If the particles in the beam are sufficiently noninteracting, the 

device applies this Hamiltonian transformation to all particles simultaneously. The 

phase space for a particle is a product of a 2-dimensional longitudinal phase space 

and a 2 or 4 dimensional transverse phase space. The source of the beam going mto 

the FEL typically produces a particle distribution with longitudinal and transverse 

distributions uncoupled, and a unif«;~rm spread over some range of momenta and 

some range of positions. Thus we can think of the incoming beam as a uniformly 

filled in parallelepiped lined up along the transverse and longitudinal phase spaces. 

We send these particles through the FEL and get a distorted and bent over paral­

lelepiped in phase space out from the other end. Quite often we are more interested 

in some of the phase space coordinates than the other ones. For instance, we may 
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want a beam with very small transverse spread in space and momentum, while not 

caring about the longitudinal spatial spread, to get a well defined beam axis. (Or 

sometimes the other way around if we want well defined buckets to increase the 

efficiency of energy transfer between a wave and the beam). While we know that 

the total volume in the parallelepiped must remain constant, we are interested in 

the possibility of trading some transverse phase space volume for longitudinal phase 

space volume. 

11.1.1. Courant's Theorem 

[Courant, 1966] has looked at this question and arrived at the following theo­

rem: "An ellipsoid in phase space whose principal axes are the canonical coordinate 

and momentum axes can be transformed by a linear canonical transformation into 

another such normally oriented ellipsoid only if the areas of the projections of the 

first ellipsoid on each of the (qi,Pi) planes are separately equal, one by one, to the 

corresponding projections of the second ellipsoid. The transformation is then the 

direct sum of N separate area-preserving, two-dimensional transformations." This 

. statement of his theorem assumes that all the projected areas are different. When 

two are the same, the symplectic transformation may couple them. It is also im­

portant to note that the "corresponding" projections that have the same area need 

not be along the same sets of axes. In particular, we may exchange two sets of axes. 

This raay be all that is needed for certain circumstances in the accelerator setting. 

If the phase space is ( q1, PI, q2, P2), then the Hamiltonian 

H = q1P2- q2p1, (11.1) 
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has a flow which just rotates the ( q1 , q2) and (p1, p2) planes (this is the angular mo­

mentum for a point particle in the plane and we know its action is just rotation). 

Thus after an appropriate amount of time we will have exchanged q1 with q2 and p 1 

with P2. Courant then states that the same theorem is true for the rectangular par­

allelepipeds tangent to and surrounding the ellipsoids. Unfortunately, this theorem 

is restricted to the case where the final set is lined up the same way as the initial 

set is, which is likely to be a rather rare occurence. We would like to generalize it 

to the projections under arbitrary transformations. 

(Note added in proof: In a very recent preprint, M. Gromov has shown that the 

unit ball in !R2N cannot be mapped into a cylinder over a disc in (x,px) space with 

radius less than one by any canonical transformation. This landmark work resolves 

many unsolved classical J>roblems in symplectic geometry using very sophisticated 

arguments combining minimal surface theory from Riemannian geometry, elliptic 

P.D.E. theory, complex analysis in many variables, and the Atiyah-Singer index 

theorem. It is available as a preprint dated January 1985: "Pseudo-holomorphic 

Curves in Symplectic Manifolds" from Institut des Hautes Etudes Scientifiques, 35, 

route de Chartres, 91440-Bures-sur-Yvette, France.) 
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11.2. Relation to the Uncertainty Principle 

Semi-classical mechanics allows us to construct certain asymptotic relations 

between eikonal w~ves, say evolving under the Schrodinger equation, and Hamilto­

nian dynamics on a corresponding classical phase space. Every wave function has a 

corresponding Wigner distribution on the classical phase space. We may use this to 

asymptotically assign to wave functions, those regions in phase space which contain 

most of the density of their Wigner function. It is a folk theorem in physics that 

inN dimensional systems, these regions are of volume hN (where his Plank's con-

stant). A classical theorem of Weyl shows that as the energy E approaches infinity, 

the number of eigenstates of a Hamiltonian corresponding to a bounded classical 

system, with energy less than E, asymptotically approaches the volume of the re-

gion in classical phase space with energy less than E, measured in units of h N. The 

exact relation between the classical regions and the quantum states is being clarified 

with the techniques of micro-local analysis [Fefferman, 1983]. Even though the vol-

ume of a wave-packet is always the same in phase space, we are usually interested 

in its extent in position space or in its Fourier transform's extent in momentum 

space. As the wave packet evolves, it typically stretches out in a "diagonal" direc-

tion in phase space, making both of these projections grow. This is the well known 

quantum spreading of wave packets (or any other waves with dispersion). There 

is a rigorous lower bound on how tightly we can compact a wave packet in both a 

spatial direction and the corresponding momentum direction, given by the uncer-

tainty principle. This says that the product of the q dispersion and the p dispersion 

must be greater than h for each coordinate. In particular, we may not arbitrarily 
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give up phase volume in one. set of coordinates at the behest of another set. Thus 

to the extent that the semiclassical connection is valid, we would expect there to 

be limitations on shrinking projected volumes under Hamiltonian flows. If we could 

find such a shrinking flow, we could apply the corresponding quantum Hamiltonian 

to a wave packet and make measurements that give more information than allowed 

by the uncertainty principle about position and momentum at an earlier time. 
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11.3. Weinstein's Approach 

The basic idea of Weinstein's approach [unpublished] is to reduce the ques­

tion of reducing projected area to a known theorem about Lagrangian tori. He 

finds a Lagrangian torus in the region of interest which projects to a circle. If the 

area enclosed by this circle shrinks under a canonical transformation, w may cause 

the image of the circle to be disjoint from the circle itself. This implies that the 

Lagrangian torus is also disjoint from its image. This is disallowed by a known the­

orem for sufficiently small canonical transformations. Therefore the projected area 

cannot shrink for small enough canonical transformations. Let us now go through 

this argument more p~ecisely. 

Consider the symplectic manifold S, formed as the product of two symplectic 

manifolds S 1 ,w1 and S2 ,w2 . Take S 1 to be two-dimensional and S2 to be arbitrary. 

For the product symplectic structure we use w = w 1 + w2 (here we are identifying 

w 1 and w2 with their pullbaeks along the natural projections). Consider connected, 

simply-connected regions R1 c S1 and R2 c S2 . Their product 

R = Rl X R2, (11.2} 

will be our initial region. Its projection down to S1 has area equal to the area of 

R1. Weinstein has shown that under arbitrary (i.e. nonlinear) canonical transfor­

mations, that are sufficiently close to the identity, th::: projection of the transformed 

R to S 1 has an area that is greater than or equal to the initial area. Furthermore, 

there appears to be a "rigidity" theorem which says that if the area is the same. 

then, in fact, our transformation is a product of a symplectic transformation on sl 
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and one on 52· Any coupling between the two sets of degrees of freedom must cause 

the projected area to increase. This is reminiscent of the increase of coarse-grained 

or pro_:ected entropy in statistical mechanics. 

The proof of the first part rests on some Lagrangian intersection theory. Let 

us sketch the basic idea here. The boundary of R 1 is topologically a circle. Since 

5 1 is 2 dimensional, we may apply a canonical transformation that takes any such 

region to any other one with the same area as was shown in [Banyaga, 1977]. The 

circle is a Lagrangian submanifold of 51 (i.e. w1 vanishes on it) as are all 1 dimen­

sional submanifolds. Choose a Lagrangian torus in R2 (say by taking a product of 

sufficiently small circles in each of the canonical planes formed by a canonical basis 

in some little region). The product of these two tori will be a Lagrangian torus in 

R with respect tow. This torus projects down to the circular boundary of R1 in 51. 

Assume we could apply a near identity canonical transformation to R such that its 

projection to 5 1 had a smaller area than R1 . By a canonical transformation of 51 

we can force this image to be strictly inside the boundary of R 1 (say by making it 

look like a smaller circle concentric to the boundary of R 1 in some coordinates). But 

this means we have a near-identity canonical distortion of a Lagrangian torus whose 

projection doesn't intersect the initial torus. If the projections don't intersect, then 

neither do the tori. But this is known to be impossible. 

In fact, recent technical advances have shown that even C 0 small canonical de­

formations of Lagrangian tori must intersect the initial torus [Conley and Zehnder, 

1983: and [Chaperon, 1983]. This result is one of a number of related results about 

the existence of periodic- orbits (and fixed points and intersection points) arising 
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from a combination of topological and symplectic properties. These idea.~ had their 

beginning in Poincare's conjecture that an area preserving map of an annulus to 

itself that twisted the bounding circles in opposite directions must have at least two 

fixed points [Poincare, 1912]. Poincare used his theorem to show the existence of 

infinitely many periodic orbits in the neighborhood of an elliptic periodic orbit in 

celestial mechanics. Poincare's theorem was proved in [Birkhoff, 1913] and partially 

generalized to certain compact symplectic manifolds in [Arnold, 1965]. Since then 

many fascinating developments have occurred as surveyed in [Weinstein, 1984a]. 

Let us sketch the proof for C 1 small deformations (as in [Arnold, 1978] p.420). 

A small neighborhood of any Lagrangian submanifold is symplectomorphic to a 

neighborhood of the cotangent bundle of that Lagrangian submanifold with the 

canonical cotangent symplectic structure [Weinstein, 1971]. In this representation, 

the initial Lagrangian torus is the zero section. A sufficiently close Lagrangian torus 

will project diffeomorphically onto this under the canonical cotangent projection. 

In fact it is actually the graph of the differential of a smooth function on the initial 

torus. Because it is Lagrangian it must be the graph of a closed form. (It is easy to 

check that the pullback of the canonical one-form on a cotangent bundle from the 

graph of a one-form a back to the zero section is exactly that one-form a. Being 

Lagrangian means that the differential of the canonical one-form vanishes on the 

manifold, and so its pullback's differential must also vanish, which just says that a 

is closed.) Because the canonical transformation extends to an open ball containing 

the torus, this form must actually be exact. 

Poincare's lemma tells us that locally every closed one-form is the differential 
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of a function. The only problem might be that when we go around the fundamental 

uncontractable loops of the torus, the function might not return to the initial value. 

If we think of the initial torus and its deformation in the original phase space, the 

canonical transformation is defined over a topological ball containing them. We 

may thus find 2-dimensional discs whose boundaries are the fundamental loops on 

the torus. The integral of the symplectic form over the initial disc is therefore equal 

to its integral over the deformed disc. If we make a closed cy Iinder (no boundary) 

from the two discs and the sheet swept out by a loop under the deformation, Stokes' 

theorem says that the integral of w over the cylinder is zero. Since the two disc 

contributions cancel, the integral of w over the cylinder swept out by the loop is itself 

zero. Stokes' theorem then tells us that the integral of a one form whose differential 

is w in the region the sheets sweep out, must have the same integral over the loop and 

its deformation. In general, canonical deformations with this property are known 

as exact deformations. The canonical one-form in our cotangent representation has 

w as its differential in this region. But since the intial torus is the zero section, 

the integral of p dq around any loop must be zero. We may then conclude that 

its integral around any loop of the deformed torus is also zero. There is therefore 

no obstruction to finding a function on the deformed torus whose differential is the 

canonical one-form. 

The points of intersection of the deformed torus with the initial torus are 

exactly the places where this differential vanishes (and so its graph hits the zero 

section). But these are the critical points of the function on the torus. But being 

compact, the torus forces any function to have a maximum and a mimimum (and 
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at least one possibly degenerate saddle by Lusternik- Shnirelman category theory) 

which forces intersection. Chaperon gives the criterion that any exact deformation 

of the torus on which the q? + P? all remain positive (and so there is some loop that 

isn't pulled through zero) must cause the image to intersect the initial torus. 
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11.4. Theorem for Linear Canonical Transformations 

We would like to generalize this result from near-identity transformations to 

arbitrary transformations. Unfortunately, it cannot be true in general as the follow­

ing example shows. Let us consider ~2 x ~2 and take our region to be a large area 

in 5 1 times a small area in 5 2 . There is a canonical transformation which exchanges 

5 1 and S2 and so makes the projection onto S1 smaller. This exchange is a "large 

transformation" and by the above, the projection must first increase and then de­

crease. We can get around this example in a number of ways. We may consider 

regions whose projected areas are the same or we may st~dy the sum of the areas 

or the minimal area under the different projections. Below we prove a theorem for 

arbitrary linear transformations on the increase of the sum of the projected areas. 

This generalizes Courant's theorem to arbitrary linear canonical transformations 

(but so far only in ~4 ) and is not restricted to be near-identity. One would like to 

extend it to higher dimensions, non-parallelepiped initial conditions, and nonlinear 

transformations. We develop the theory of projected parallelepipeds for arbitrary 

dimensions. The nonlinear situations are locally linear and we may chop our region 

into parallelepipeds to which the theorem applies. Unfortunately, the little paral­

lelepipeds obscure one another under projection and this must be understood for a 

nonlinear theory. 

Another tack to take is to not look at the projected area, but rather the pro­

jected measure (i.e. we want the volume in the region that sits over each little area 

in the two-dimensional space). Physically, it is often important to know not just 

that some particle's state projects to a given region, but also how many particles. 
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Perhaps the entropy (i.e. integral of ( -p log p) over the projected region) of this 

distribution function must increase .. In this situation as well the geometry of par­

allelepipeds appears relevant. One place to see the possible connection is through 

the central limit theorem. If we project a cube to a real line parallel to its longest 

diagonal, then the projected measure along the line is the multiple convolution of 

a rectangular pulse, with one pulse for each dimension of the cube. In the limit of 

large dimension, this approaches a Gaussian. The measure of lines on which the 

projection is close to a Gaussian asymptotes to one as the dimension grows. Futher­

more, the entropy of a Gaussian is a maximum for all distributions with the same 

dispersion. A cube projected to its diagonal is in some sense maximally sensing each 

of the degrees of freedom (perturbing a point along any of the orthogonal axes of the 

cube is reflected by a perturbation in the image of the projection; if the projection 

isn't diagonal, then some axes are short-changed because their projections are less 

important than others). Any rotation which lines the projection up more along an 

edge will decrease the entropy of the projected measure. 

If such a theorem guaranteeing the increase of entropy under coupling is true 

in infinite dimensions, then it might shed light on the increase of entropy under 

the evolution of Boltzmann's equation. Bogoliubov derived Boltzmann's equation 

as the first order term in an asymptotic expansion of the BBGKY hierarchy. The 

essential part of the argument obtains the evolution of the two particle distribution 

function as the Liouville equation for two interacting particles (the contribution of 

the three-particle and higher distributions is higher order in the ordering scheme). 

The evolution of the two particle distribution function is then Hamiltonian and 
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linear (albeit infinite dimensional). In Bogoliubov's argument, we are given a spa-

tially uniform one-particle distribution whose evolution we wish to find (its evolu-

tion equation depends on the ·two particle distribution). We take the two particle 

distribution which is simply an uncorrelated product of this one-particle one with 

itself a5 initial conditions for the 2-particle Liouville equation. Under evolution the 

two particles will collide, creating a correlation and the infinite time asymptotics of 

this (i.e. when the two particles become widely separated) is used as the 2-particle 

driving term in the 1-particle evolution, which becomes the Boltzmann collision 

term. Boltzmann shows that under this evolution, the entropy of the one-particle 

distribution must increase. 

11.4.1. The Geometry of Projected Parallelepipeds 

When we project a parallelepiped down to a lower dimensional space, the result 

is no longer a parallelepiped as in figure (11.1). We show here, though, that it may 

be decomposed into parallelepipeds in a uniform way, allowing us to get a formula for 

the volume of the projection. We demonstrate this decomposition using induction 

and a couple of simple initial lemmas. Let us be given n vectors V;, 1 :<:; i :<:; n in 

the k-dimensional linear space !Rk. We are interested in the region R consisting of 

points of the form 
n 

L a; V; for 0 :<:; a; :<:; 1. (11.3) 
i=l 

Let us call this region the [0, 1] span of the V;'s. 

Lemma 11.2. For any n and k, R is convex. 
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Figure 11.1: A three-dimensional parallelepiped projects to a hexagon in two 

dimensions. 

Proof. Consider any two points E7= 1 a;V; and E~1 b;V; in the region R. The 

line between them consists of all points of the form 

n ( n n ) t; a;V; + t t; b;V;- t; a;V; 

n 
(11.4) 

= ~)(1- t)a; + tb;]V; 
i=l 

where 0 :<:; t :<:; 1. But since t and 1 - t are non-negative and a; and b; are less than 

one, we see that 

(1- t)a; + tb; :<:; (1- t) · 1 + t · 1 = 1. ( 11.5) 

But this shows that all points on the line between the two given points satisfy the 

defining criterion for R and therefore belong to R. ~ence R is convex. Q.E.D. 
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Definition 11.1. Let us dellne a vertex of a subset of l"Rk to be any point of the 

set such that there does not exist any open interval of a straight line in l"Rk which 

contains the point and lies completely in the set. 

Lemma 11.3. All vertices of the set R have a unique representation as a sum 

2:.:7= 1 a; V; and all of the a; 's are either 1 or 0. 

Proof. Assume we can represent a vertex as 2:.:~= 1 a;V; where some ai is not 1 or 

0. There is then an open interval around ai which is contained in [0,1], and therefore 

the corresponding vectors form an interval of a straight line lying in R, violating our 

assumption of verticity. Now assume that there are two representations: 2:.:~= 1 a;V; 

and 2:.:~= 1 b;V; for the vertex, where all the a;'s and b;'s are neccessarily 0 or 1. The 

point may then also be represented as 

n n 

(1- t) L a;V; + t L b;V;, ( 11.6) 
i=1 i=1 

where 0 ~ t ~ 1 or equivalently as 

n 

L[(l- t)a; + tb;]V;. (11. 7) 
i=1 

But unless all the b; are equal to the corresponding a;, we can thereby get a coeffi-

cient which is not 1 or 0, violating the above. Thus vertices have unique represen-

tations. Q.E.D. 

Lemma 11.4. aJ Let us assume that the number of vectors n is greater than 

or equal to the dimension k of the ambient space. The region R may then be 

decomposed as a union of parallelepipeds formed by rigid translations of the [0, 1] 

spans of k-element subsets of the set of n vectors, such that they intersect only in 
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(k -1) and lower dimensional sets {which are of Lesbegue measure zero). There' are 

n!/k!(n- k)! such parallelepipeds. 

b) Let us assume that R is k-dimensional. The boundary of R may then be 

decomposed as a union of parallelepipeds formed by rigid translations of the [0, 1] 

spans of (k- I)-element subsets of the set of n vectors, where each such span is 

included twice and the intersections of the translates are of dimension k - 2 and 

lower. 

Proof. We prove these two parts together using a double induction in k and n. The 

essence of the proof is shown in figure (11.2). We have shown the effect of adding an· 

extra Yector to the projection of a 3-dimensional parallelepiped's projection onto 2-

dimensions (to give the projection of a hyper-cube). It adds an extra parallelogram 

to half of the boundary edges formed from the extra vector and 1 each of the original 

3 vectors. We may generalize this same construction to arbitrary dimensions as 

follows. 

Both a) and b) have assumptions that prevent n from being less than k. To 

start the induction, assume n = k, where k is arbitrary. a) is now trivial since there 

are exactly k vectors and R is indeed equal to their [0, 1] span. In case b), R is 

actually a parallelepiped and its faces are obtained by taking the [0, 1] span of each 

set of k - 1 vectors and basing it at zero and at the end of the remaining vector, 

which agrees with the statement in the lemma. We also need the case k = 1 for 

arbitrary n (see figure (11.3)). This case is also easy, since we may just line up the 

n vectors starting at zero, each representing its own [0, 1] spai\ and the boundary 

is just two endpoints which we may take as the union of the ends of the vectors. 
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Figure 11.2: The essence of the lemma. Adding a fourth vector adds three para!- Figure 11.3: The n, k plane. The circles are the base induction cases. The open 

lelograrns formed from that vector and each of the original three vectors. triangle is an example case. The closed triangles are the cases we must use in its 

proof by induction in addition to the circles. 

Let us now assume the theorem true for all n 's when k is Jess than ko and 

for n's less than or equal to n 0 when k equals k0 and prove it for ko, no+ 1. By of intersection). By induction, S decomposes into translates of the [0, 1] spans of 

induction this will prove the lemma as stated for all allowed k's and n's. the k-element subsets of the first n 0 vectors. We need only show that the region 

Let us begin with part a). We may assume that no + 1 is strictly greater in R not contained in S is the union of translates of [0, 1] spans of the (no + 1 }st 

than k (since we already did the equal case}. Thus R is the [0, 1] span of no+ 1 vector with all k- 1 element subsets of the first no vectors (up to sets of smaller 

vectors. Consider the [0, 1] span of the first n of these and call it S. R is obtained dimension} to prove part a). But we may now apply part b) to S by the inductive 

from S by adding [0, 1] multiples of the ( n 0 + 1 }st vector to each point in S. In hypothesis. Consider each set of k - 1 vectors from the first no in turn. By part 

fact, we get all the extra points in R that aren't in S by adding such multiples to b} the boundary of S has two regions that are translates of their span, which are 

only boundary points of S (since to get a new point the vector must intersect the parallel (since they are rigid translates of each other). By the convexity of S (from 

boundary and we can get the same point by adding a smaller multiple to that ppint the lemma above), S lies entirely in and on one side of the hyperplane in ~k which 
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contains such a piece of the boundary. If the two regions are distinct. 5 must lie 

on opposite sides of their repective hyperplanes. The vector Vno+I either lies in 

such a hyperplane or points to one side of it when its basepoint is contained in it. 

If it lies in the hyperplane or if the k - 1 vectors span a space of lower than k - 1 

dimensions, then the parallelipiped it forms with the k- 1 vectors is degenerate and 

so of lower dimension than k and irrelevant for our union. Otherwise, take the piece 

of S's boundary such that Sis on the opposite side of the hyperplane as the vector. 

This parallelepiped and the vector [0, 1] span a k-parallelepiped which is in R but 

whose intersection with Sis of lower dimension (since they can only intersect in the 

hyperplane because they are on opposite sides of it). Because S's boundary is filled 

out by such k- !-parallelepipeds, and R is obtained by adding [0, 1] multiples of 

the {no+ 1)st vector to the boundary, R is the union of these k-parallelepipeds as 

desired. It remains only to show that they intersect each other in sets of dimension 

lower than k. Since these parallelepipeds are obtained by sweeping the (k- 1)-

parallelepipeds in half the boundary of S along the last vector, if two of them 

intersect in a region of dimension k, the corresponding (k- I)-parallelepipeds must 

intersect in a region of dimension k - 1, but this is not allowed by the statement of 

b). 

Let us now prove b) under the same inductive assumption as above and using 

' the result of a) {this is uk since the proof of a) only used b) on lower inductive 

cases). Since we have added k-parallelepipeds to S to get R, half of the original 

k- 1 parallelepipeds in S's boundary have remained and the other half have just 

been rigidly translated by the last vector. Thus we have two parallel copies of each 
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of the (k- 1)-parallelepipids generated by the first n 0 vectors, in the boundary of 

R as desired. Extra boundary sufaces arose when we translated one parallelepiped 

by the last vector but not its neighbor. Consider the projection from !Rk to !Rk-I 

along the last vector. Both Sand R have the same image and the extra part of R's 

boundary is exactly formed by translating by the last vector that part of S which 

projects to the boundary of the image. We may apply part b) to the projection of 

"' S to see that this boundary may be decomposed into pairs of translates of all [0, 1] 

spans of the projection of k - 2 vectors {since the induction hypothesis applies to 

this lower dimensional space). The subset of S that projects onto this boundary is 

then decomposed into unions of [0, 1] spans of k- 2 vectors up to things which point 

along the last vector and are therefore degenerate with it. So indeed the extra part 

of the boundary of R is de~omposable into translates of parallelepipeds formed from 

the last vector and all k- 2 element sets of vectors from the first n0 . Together with 

the original decomposition of S's boundary these give us the desired decomposition 

of part b). Q.E.D. 

11.4.2. The Case of Linear Canonical Transformations 

The way we wish to use this lemma is as follows. We get subsets that are [0, 1] 

spans of vectors .as the projected image of a parallelepiped in a lower dimensional 

space. The volume of this projection is the sum of the volumes of all parallelepipeds 

formable by these vectors, by the lemma. For 2N -dimensional symplectic vector 

spaces, the volume of a 2N -dimensional parallelepiped is given by inserting the 

generating vectors into the Nth wedge product of the symplectic form with itse!L 
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giving a natural volume element. Let us now use this to prove the theorem of 

interest. 

Let sl ~ lR2 have the coordinates (qJ,pJ) and the symplectic form: WJ -

dq 1\ dp. Let S2, w2 be defined similarly. Consider the symplectic manifold 

s = s1 x s2 (11.8) 

with the symplectic structure 

W = WJ + W2. (11.9) 

Here the w; are thought of as pulled back to S. We are interested in how the area 

of the projection of a set down to S1 changes under canonical transformations. We 

may prove the following theorem for product parallelepipeds under linear symplectic 

transformations. This is a physically relevant setting for many physical situations 

and is the local picture for the general case. 

Theorem 11.5. Let us be given two vectors UJ and VJ in sl whose [0, 1] span is a 

parallelogram of area A1 and similarly for u2 and v2 in 52 with area A2. Consider 

the parallelepiped P in S which is the product of these two parallelograms. Under 

an arbitrary linear canonical transformation L of S, the sum of the projected areas 

of L · P in S1 and S2 is always greater than or equal to A1 + A2. Furthermore 

equality only holds if a certain restrictive condition listed below holds. 

Proof. We have seen above that the projected area of L · P in S1 is equal to the 

sum of the areas of the parallelograms spanned by the projections of ( L · u 1, L · u2), 

(L·u 1.L·vJ), (L·u 1,L·v2), (L·u2,L·vJ), (L·u2,L·v2), and (L·v1,L·v2). The 

area is just the absolute value of the result of inserting the projected vectors into 
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WJ. But this is the same as inserting the vectors into the pullback of v.-• 1 along the 

projection, which we are denoting again by w1 . Thus the sum of the projected areas 

in sl and s2 is given by 

iwJ(L · UJ,L · u2)l + lw1(L · UJ,L · vi)I + lwl(L · UJ,L · v2)l+ 

lw1 (L · u2, L · vJ)l + lw1 (L · u2, L · v2)l + Jwl(L · VJ, L · v2)l+ 
(11.10) 

lw2(L · UJ, L · u2)l + lw2(L · UJ, L ·vi) I+ lw2(L · UJ, L · v2)l+ 

lw2(L · u2,L · vJ)l + lw2(L · u2,L · v2)l + iw2(L · VJ,L · v2)J. 

Applying this formula in the original situation, where L is the identity, and using 

the fact that w1 annihilates u2·and v2, we see that 

A1 + A2 = lwJ(UJ,vJ)l + Jw2(u2,v2)l. (11.11) 

Because L is symplectic on S, w is preserved by it. This means that for any two 

vectors WJ and w2 in S, we have 

w(L · WJ,L · w2) = w(w1,w2) 

= WJ(L · WJ,L · w2) +w2(L · WJ,L · w2) (11.12) 

= WJ(WJ,w2) + w2(w1,w2). 

Let's assume that u1,v1 and u2,v2 are in the right order so that w1 and w2 give 

positive answers when acting on them. Then we see that 

A1 + A2 = wl(u1, vi)+ w2(u1, vi)+ WJ (u2, v2) + w2(u2, v2) 

=wl (L · UJ, L · vJ) + w2(L · UJ, L · vJ) + wJ(L · u2, L · v2) + w2(L · u2, L · v2) 

:SlwJ(L · UJ, L ·vi) I+ lw2(L · u1, L ·vi) I+ Jwl(L · u2, L · v2)l + lw2(L · u2, L · v2)J. 
(11.13) 

But in the expression above for the new sum of projected areas, this last expression 

appears with some positive or zero terms added to it. Thus the sum of the new 
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area~ is greater than or equal to the original sum. We can get a .necessary condition 

for the sum to be equal, since all the extra terms in absolute value must separately 

vanish. So ;,.~I(L · u1,L · u2), w1(L · u1,L · v2), w1(L · u2,L · vJ), w1(L · v1,L · v2), 

w2(L · UJ, L · u2), w2(L · UJ, L · v2), w2(L · u2, L ·vi), and w2(L · VJ, L · v2) must all 

vanish. Q.E.D. 

Courant's paper contains an apparent counterexample to this kind of theorem 

for nonlinear dynamics. A technique used in certain accelerators is to insert a knife­

edged septum into a recirculating beam to strip off a thin outer band and cause 

the inner region to continue to recirculate. In this way one can make the spatial 

width of the beam smaller, without increasing its momentum spread. The knife 

edge is really a very steep potential. Even though the number of particles that 

hit it is small, they are given a very large momentum kick (this sounds like some 

of the classical arguments for the uncertainty principle). Thus the actual region 

in phase space is probably very spread out. The physically important quantity in 

this example, however, is the particle distribution function. If designed properly, 

one could presumably make the measure of the wild particles small. This kind of 

example indicates that one must be very careful in any distribution function version 

of these theorems. 

Another construction that such a theorem will have to beat is as follows. It is 

well known that there exists a canonical transformation that moves :IllY N distinct 

points of phase space to any other N distinct points. If we force most of the 

measure to be near these points, then we can line them up to project to any kind of 

distribution we desire. How do we get the measure to be near points in a product 
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distribution? Consider the phase space to be !R6
. All canonical transformations 

will take place on only the !R4 formed by the first 4 coordinates. The last two 

coordinates are needed only to make the measure large near the specified points in 

the·fir!;t four dimensions. We choose points in the first and second !R2 so that the 

points in the product 9?4 don't all lie over a single point in the first !R2 (for example 

we can choose 9 points arranged in three rows of three). We choose a volume in 

9?6 which is very extended in the last two dimensions near these points. This may 

be co~tructed as a product of a region in the first 2 dimensions times a region 

in the last 4. We now. use a canonical transformation in the first 4 coordinates 

which makes the points line up along a single fiber of the projection to the first 

two coordinates, letting the last two dimensions just go along for the ride. The 

projected distribution can then be made to vary in any way we wish. 

An even simpler example can be constructed in 9?4 which we assume to be 

coordinatized by (x,pz,y,p11 ). Let our initial set be the unit ball in !R4 • We chop . 

the ball into 3 pieces: the part B 1 with -1 ~ x ~ -£, the part B2 with -£ ~ 

x ~ f and the part B3 with f ~ x ~ 1. By making f small enough, we can 

make the measure of B 2 arbitrarily small. By a simple canonical translation and 

rotation defined on a region including B 3 but in the complement of B1, we can 

make B3 "sit above" B 1 so that they project to the same region in the (x,pz) plane. 

This is easily extended to a canonical transformation on all of 9?4 which leaves B1 

fixed (say by extending the time dependent Hamiltonian vector field defining the 

transformation using a partition of unity). By Gromov's theorem, we know that 

B 2 must be stretched in some wild way so that its projected area is large (or at 
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least its image surrounds a large area). But we have constructed B 2 so that its 

measure in lR4 is small. By repeating this construction, we can make an arbitrarily 

large percentage of the measure of the ball project to arbitrarily small regions by a 

canonical transformation. 

Chapter12: 

Reversibility vs. 
Irreversibility 

404 

The seeming paradox of reversible underlying dynamics leading to irreversible 

macroscopic behavior has been wrestled with since the time of Boltzmann. For 

the case of gas dynamics, Boltzmann derived his famous equation on the basis of 

the questionable statistical assumption of "Stosszahlansatz". From the Boltzmann 

equation one may derive the "H theorem" which says that the time derivative of 

the entropy is greater than or equal to zero. The "Stosszahlansatz" or "molecular 

chaos assumption" says that the probability distributions for colliding molecules 

should Qe uncorrelated. As has been pointed out many times (see for example: pp. 

4~88 of [Chapman and Cowling, 1958] and pp. 28-32 of the Statistical Physics 

volume in [Landau and Lifshitz, 1960-1981]), because the underlying dynamics is 

reversible, for every state with its entropy increasing, there is a corresponding state 

with its entropy decreasing. In fact, one may show from this argument that the 

stosszahlansatz can hold only when the time derivative of entropy is zero. There 

is no intrinsically special direction in time: If one starts with a random state with 

low entropy, the entropy increases if one follows the evolution of the state either 

backwards or forwards in time. There are many more states with high entropy than 
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low, and so a system is likely to be in a high entropy state regardless of the time. 

There is a simple dynamical system which exhibits some of the seemingly para­

doxical features of these complex statistical systems. Consider the differential equa­

tions 

:i: = -xy 
( 12.1) 

y = x2- y2. 

A sketch of the dynamics in the x-y plane is shown in figure (12.1). 

·~~ 
'\ \ \ 

Figure 12.1: The phase portrait of the equations in the x-y plane. The origin acts 

like an attractor both forward and backward in time. 

12. Re~·ersibility vs. Irreversibility 406 

Consider the evolution of the radius: J x2 + y2 . For every point (x,y) where the 

radius is getting smaller, there is a corresponding point (x,-y) where it i~ getting 

larger. That is, if you look on a circle of radius r, the length of arc where the 

vectorfield points outward is the same as where it points inward. Nonetheless almost 

every initial condition (excluding the y axis, which you have zero probability of 

hitting) leads to the eventual decrease of the radius asymptotically to zero. Notice 

that this decrease takes place not only forward in time but backwards. The origin 

is almost an attractor for both the true and the time-reversed dynamics. 
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"We now have an example of a so-called irreversible thermodynamic process, 

such as does not occur in mechanics: in all natural processes the entropy in­

creases. . .. Irreversible processes can in no way be simulated by purely mechanical 

processes."- [Klein, 1928] p.203. 

In this section we will examine some interesting facets of the dynamics of 

infinite dimensional Hamiltonian systems. One of the key simplifying aspects of 

dissipative dynamics is the presence of attractors whose behavior dominates the 

time asymptotics of all nearby initial conditions. In finite dimensions, Liouville's 

theorem regarding the volume preservation of Hamiltonian dynamics leads to the 

Poincare reccurence theorem. This says that under the time-one map of a bounded 

Hamiltonian system every neighborhood of every initial condition has points that 

return to that neighborhood and furthermore almost every point comes back in­

finitely often arbitrarily close to its starting point. The proof rests on the pigeon 

hole principle which says that with N pigeon holes and N + 1 pigeons, there must 
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be at least one pigeon hole with more than one pigeon. In a finite volume region. 

there is only room enough for a finite number of images of a non-zero volume region 

under a volume preserving mapping. Eventually two images must intersect and by 

mapping the intersection region back to the starting region, we find points that 

recur. This precludes the presence of attractors in finite dimensional Hamiltonian 

systems (no small region can be special since almost all points go back to where 

they came from). We will see that infinite dimensional Hamiltonian systems can 

have attractors of a certain kind. 

13.1. Poincare Recurrence and Attractors 

The fact of recurrence is behind Zermelo's objection to Boltzmann's H theo­

rem proving the increase of entropy for the Boltzmann equation. The fact of the 

matter is that the recurence time is quite long. For merely 10 harmonic oscilla­

tors with frequencies about 1 cycle per second and irrationally related, the room 

in the corresponding 10-torus is so vast that the typical time to return to within 

one percent of their initial conditions is 1020 seconds which is longer than the age 

of the universe. Boltzmann's retort to Zermelo was purportedly: "You should Jive 

so long~, [Kac, 1959]p. 62 (in response to Loschmidt who objected to getting an 

irreversible equation from reversible underlying dynamics he replied: ~Go ahead, 

reverse them!"). These long times also indicate that true ergodicity is not respon­

sible for the experimental validity of statistical mechanics (if we consider a state of 

a cubic meter of air to be the number of molecules in each cubic millimeter and if 
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the dynamics is ergodic, the gas visits every state only once in about 10100 times 

the age of the universe). 

13.1.1. The Lack of Recurrence in Infinite Dimensions 

Reccurrence is a characteristically finite dimensional phenonmenon. As the 

dimension gets higher the recurrence time-scale grows exponentially. If we are in­

terested in finite (but perhaps long) times, it is often physically valid to introduce 

asymptotics even if it leads to infinite dimensional models. Sometimes the analysis 

of infinite dimensional systems is easier because the structure "at infinity" orga­

nizes the dynamics. The wave equation is easier to deal with than the underlying 

molecular dynamics. When we make such models we must be careful not to be­

lieve them when they depend crucially on asymptotic aspects beyond the value of 

the limiting parameter at which the modelled system really is. {For an analysis of 

some very interesting phenomena that occur near molecular wavelengths in a sys­

tem asymptotically approximated by the wave equation, see [Maslov, 1976] p. 58). 

The time to recur grows with the dimension and infinite dimensional systems need 

not recur. There is no genercil Liouville theorem in infinite dimensions and orbits 

need not recur (they can "head off to infinity" along higher and higher dimensions 

still staying close to the origin). While we have argued that when the system is in 

too high a dimension the model becomes unphysical, the behavior on the way there 

• . ..-"Jl reflect the real behavior and properties of the infinite dimensional system may 

be properties of the real system for long times. 
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13.2. Asymptotic and Liapunov Stability 

For finite dimensional dynamical systems there are two standard notions of sta­

bility of an invariant subset. The weaker of the two is Liapunov stability which says 

that given any neighborhood of the set we can find a (possibly) smaller neighbor­

hood all of whose points have future time orbits lying inside the given neighborhood. 

This says that if we perturb a point slightly from our set, it hangs around forever. 

An example is the equilibrium of a simple harmonic oscillator. The stronger notion 

is that of asymptotic stability. This says that there is some neighborhood V of our 

set whose forward time images all lie in V and such that each orbit asymptotes into 

our set. Asymptotically stable sets are called attractors and the points which limit 

on them form the basin of attraction. If an attracting set is a fractal (with respect 

to your favorite definition of dimension), then it is a strange attractor. 

13.2.1. Almost Attractors 

Recent work of Grebogi, Ott and Yorke has shown that strange attractors can 

exist without chaotic dynamics [Grebogi, Ott, and Yorke, 1984]. For this they 

needed a definition of attractor which we shall also use. We call a set an "almost 

attractor" if for small enough neighborhoods, almost every point eventually asymp­

totes to our set. We have seen in the example of a vector field on the plane along 

dipole field lin~s that it is possible for a point to be an almost attractor both for­

ward and backward in time. By Poincare reccurrence, this is not possible for finite 

dimensional Hamiltonian systems. 
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13.3. Reversible Attractors and Infinite Dimensional Hamiltonians 

Infinite dimensional Hamiltonian systems, on the other hand, can have almost 

attractor!! and if the system is time reversible (as most physical systems are) then 

it is of the time reversible type. This type of structure is responsible for most of the 

dissipative models in physics that I know of. The resolution of Loschmidt 's paradox 

here lies in the fact that the infinite dimensional model is valid only asymptotically 

and becomes a bad representative of the underlying finite dimensional system after a 

long but finite time. Until that time it represents the system well and its dissipation 

represents real tendencies of the underlying system (when they ultimately break 

down due to recurrence, we call it a fluctuation). 

13.3.1. Reversible Almost Attractor in the Wave Equation 

A simple example to think about merely consists of the wave equation on a 

one-dimensional string. It is well known that this system is Hamiltonian. Let us 

define the state space of the system, to be those displacement and velocity fields 

which die off exponentially at infinity. This class is preserved by the time evolution 

for finite time (which just translates a wave). Let us assume we are more interested 

in what the wave is doing under our noses near the origin than what it is doing far 

away. We will thus put a norm on our space which says that the size of a wave is 

the integral of the sum r;f the absolute values of the displacement and velocity fields 

over the line weighted by a Gaussian centered at the origin: 

/_: (1/(x)j + jv(x)j)e-x" dx. ( 13.1) 
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Since the dynamics is just translation, eventually every wave in our class gets 

"pushed into the wings" far enough so that its norm decays monotonically to zero. 

Note that this happens both forward and backward in time. Thus the quiescent 

string is a reversible almost attractor for this system. In higher dimensions, com­

pactly supported waves decay even in the uniform norm (i.e. the size of a function 

is the maximum of its absolute value over all space). 

This example has many of the characteristics of the dipole vector field in an 

infinite dimensional Hamiltonian context. While everything eventually comes into 

the origin, for any given time there are always states which haven't come close yet. 

13.3.2. The Liouville Equation and Koopmanism 

A natural situation in which this sort of system arises occurs when we consider 

the Liouville equation of a dynamical system, which is known to be Hamiltonian {al­

beit with respect to a Lie Poisson bracket). This looks at the evolution on the space 

of probability distributions on a manifold given by pushing a distribution forward 

along a measure preserving map. Koopman suggested studying dynamical proper­

ties of the underlying system by the spectral properties of the Liouville operator( see 

[Cornfeld, Fomin, and Sinai, 1982] p. 323). John Cary and John David Crawford 

have looked at the Liouville evolution of probability distributions on Arnold's cat 

map. What one finds is that the r.,ap's effect on distributions is merely to shift 

Fourier components along hyperbolas in Fourier space except for the zero wavevec­

tor component which is invariant. If the original distribution is smooth, then its 

Fourier series dies off exponentially. If we put a norm on the distributions which 
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weighs the low Fourier components more heavily (say our data is run through a 

low pass filter, i.e. we perform some kind of averaging or binning), then as our 

distribution's spectrum goes trotting off to infinity, its norm goes to zero leaving 

only the constant part and we again have a reversible attractor up to a constant. 

They show that this leads to the exponential decay of the autocorrelation of smooth 

functions. 

13.3.3. Landau Damping 

Similar phenomena are responsible for Landau damping (which damps both 

forward and packward in time) of waves in plasmas. We start with a distribution 

of particles (as in figure (13.1)) in the bottom half of the "eye" of the pendulum 

dynamical vector field (as in starting with particles in a strip in velocities slower Figure 13.1: The evolution of the distribution function near the wave velocity. 

than the wave, and evenly spread out in phase relative to the wave). As time goes 
as a hierarchy of equations for !-particle, 2-particle, ... etc. distribution functions. 

on the dynamics inside the eye is like a shearing harmonic oscillator, which soon 
If we truncate at any stage, we obtain the Liouville equation on the phase space of 

.smears the inital distribution uniformly through the eye. The effect of this is that 
that many particles. The contribution of the higher order correlations phase mixes 

the average energy of the particles has gone up (and so the energy of the wave must 
away as above leaving only the Boltzmann collision term to first order. 

go down causing damping). This same shearing will occur backwards in time. 

13.3.5. Dissipation from Resonance 

13.3.4. The Boltzmann Equation and the BBGKY Hierarchy 
The same scenerio applies to the random phase approximation for interacting 

The same kind of phase mixing is responsible for the dissipative aspects of waves. The essential idea here may be seen by considering resonances. One of the 

the Boltzmann equation as derived from the Hamiltonian and reversible BBGKY most interesting examples is the simple resonantly driven harmonic oscillator. The 
. .,. 

hierarchy (see volume 10, Physical Kinetics of [Landau and Lifshitz, 196(}-1981]). solution to this problem is given in most elementary mechanics texts but I have 

We rewrite the Liouville equation for the distribution function of all the particles never seen any discussion of its rather paradoxical properties. Let us consider a 
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particle in one-dimension moving in a unit-frequency harmonic oscillator potential 

which is driven sinusoidally at the same frequency: 

x = -x +cost. ( 13.2) 

For this kind of linear differential equation with an inhomogeneous term, the usual 

method of solution is to find a particular solution to the inhomogeneous problem 

and then to add to this an arbitrary solution of the homogeneous one. In this case 

this procedure leads to the general solution: 

x(t) =A sint + B cost+ ~t sint. 

This solution is really quite remarkable. Regardless of the initial conditions (which 

are specified by A and B), the t sint term eventually dominates and the amplitude 

of oscillations grows indefinitely with time. But the equation is invariant under 

t -> -t! This means that the same behavior occurs as t approaches -oo. 

It is interesting to try to visualize· the orbits in the three dimensional { x, v, t) 

space. On the one hand we know that each orbit winds to larger and larger x and 

v values as t goes toward both positive and negative infinity. This means that an 

individual orbit winds on what looks like a one-sheeted hyperboloid of revolution 

along centered on the t axis (or a cone if ever both the position and velocity vanish 

on its trajectory). On the other hand, the entire system is invariant under the 

translation t -> t + 27r. To get some feel for the way this orbits can fit together in 

this way, consider all orbits that intersect the t axis. These form an invariant 2-

dimensional submanifold which includes the taxis. Imagine taking the t, v plane and 

twisting it about the t axis so that it makes one twist every 27r in t. The dynamics 
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on the unwound plane is made of parallel straight lines that intersect the I axis at 

some angle. They leave the t axis linearly for both positive and negative time and 

yet the whole field is translation invariant in time. When we wind this plane up, 

the orbits lie on cones. The other orbits do a similar thing on hyperboloids. 

Let us think of the harmonic oscillator as being a piece of a larger system and 

the driving as arising from the rest of the system. Time asymptotically the oscillator 

only sucks energy from the rest of the system and this is true both forward and 

backward in time. Let us calculate the time variation of the average energy in the 

oscillator for long times: 

1 . 1 
E = -x2 + -x2 

2 2 
1 1 1 = 2 ( 2sint + 2t cost+ A cost - B cost) 2 

+~(A sint + B cost+ ~t sint) 2
. 

{13.3) 

For times large compared to A and B (we can make this comparison because we 

have made everything dimensionless), only terms with an unadorned t in them are 

important: 

E = ~(t2cos2 t + t 2sin2 t) 

t2 

8 

( 13.4) 

Thus the oscillator energy grows without bound as t goes to either positive or 

negative infinity. 

In real closed Hamiltonian systems, the energy that the oscillator is sucki!•6 

out of the rest of the system will eventually cause the damping to change. In 

nonlinear systems the frequency of driving will be pushed away from resonance. In 

linear systems the amplitude of driving will go down until eventually the oscillator 
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drive~ the rest of the system leading to oscillation on long time scales. The slowly 

changing amplitude of driving can also be viewed as having energy in frequencies 

slightly away from resonance. As long as we are in a situation where the effect of 

the oscillator on the rest of the system is small, however, the solutions will be close 

to the resonant one. In such cases we get time-reversible dissipative behavior for 

long times. 

This is exactly the sense in which non-equilibrium thermodynamics is dissipa­

tive. If we are far from equilibrium then there are many more ways to be perturbed 

closer to equilibrium than away from it. Statistically the motion appears to go in 

one direction (eg. entropy increases). The same increase occurs backward in time, 

however, since the same statistics applies. If we are in a state with low entropy, 

then it is most likely that a few moments ago we had higher entropy and that a few 

moments hence we will also have higher entropy. As we get closer to equilibrium, 

the imbalance in the number of perturbations toward and away from it diminshes. 

Exactly at the highest entropy state the only way you can go is down. In equilib-

rium the dissipative properties dissappear and instead we have fluctuations. Since 

exactly the same mechanisms cause dissipation far from equilibrium and fluctua­

tions in equilibrium, the corresponding rates are related. This is the content of the 

fluctuation~dissipation theorem. (As an example, a Brownian particle satisfying the 

Langevin equation: 

dv(t) = -vv(t) + liF(t) 
dt 

(13.5) 

in a heat bath at temperature T which causes the particle's motion to be damped 

at rate v and driven with random force F(t), the fluctuation-dissipation theorem 
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says that 

v = M 1= dt(liF(O)liF(t)). 
2T -infty 
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(13.6) 

The mechanism of time-reversible dissipation due to resonance underlies many 

important physical processes. In many of these situations, the driver changes fre-

quency so as to slowly pass through resonance. An example might be an eikonal 

light wave passing through a medium whose electrons are bound like harmonic os­

cillators. The light wave loses energy to the resonantly excited oscillators (note that 

here it might be that the wave is of constant frequency but the oscillator frequency · 

changes slowly as we progress through the medium; the physics of this situation 

is identical). For frequencies of driving which are not exactly resonant, the oscil­

laior begins by removing energy, but eventually gives it back (on a time scale of 

the reciprocal of the frequency deviation from resonance) leading to an oscillatory 

overall behavior which does not change the average energy of the driver. If we 

watch the system for timeT, then all frequencies within order 1/T ofthe resonant 

frequency will behave as if they are resonant. As we slow the frequency variation of 

our eikonal wave asymptotically and watch the effect for longer time we have two 

effects: 1) we are in resonance for a longer time causing a larger dissipation and 2) 

since we are watching longer, less of the nearby frequencies contribute any dissipa-

tion. As time goes to infinity there is net dissipation which arises from arbitrarily 

small neighborhoods of the resonant frequency. 

Let us see this explicitly in an example. We consider the driven oscillator: 

x = -x + F(Et)cos(w(Et)t), ( 13. 7) 
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where we assume that the resonance occurs at t = 0 (and nowhere else): 

w(O) = 1 

and that we pass through resonance with non-zero speed: 

dwl = w' > 0. 
dt •=0 
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( 13.8) 

{13.9) 

Let us denote :i: by v. We wish to solve this asymptotically as f----> 0. We begin (as in 

the methods discussed in chapter 3) by going to a "rotating" system of coordinates 

in phase space: 

X = x cost - v sint V = v cost + x sint. 

The dynamics of these coordinates is 

and 

X = :i: cost - x sint - v sint - v cost 

= -F cos(wt)sint 

= -: (sin((w + 1)t) + sin((w- l)t)) 

V = v cost - v sint + :i: sint + x cost 

= F cos(wt) cost 

F = 2(cos((w + 1)t) + cos((w- l)t)). 

(13.10) 

(13.11) 

(13.12) 

We may integrate these equations using the method of stationary phase, which was 

discussed in section 7.1.3. Introducing the rescaled timer= Et and using stationary 

phase. we see that to leading order the change in X in passing through the resonance 
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. IT/< -F 
LlX = C + -(sin((w + l)t) + sin((w- 1)t))dt 
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( 13.13) 

(13.14) 

Thus asymptotically there is a net dissipation which grows as the reciprocal of the 

square root of the eikonal parameter. Notice that for any real system the initial 

conditions will determine whether the oscillator takes or gives up energy for a time 

independent of f. The asymptotics we have introduced always beats this time for 

some value of f. Thus the asymptotic system can have dissipation without constraint 

on the initial conditions whereas any real system may not have this behavior. I think 

this is a good example for seeing why an asymptotic approximation to a system (say 

Boltzmann's equation) may have properties like irreversibility and lack of reccurence 
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which are not possessed by any real system. These are new asymptotic concepts 

which validly apply to the system whenever the asymptotics is valid. 

13.3.6. Resonant Coupling of Eikonal Waves 

For this kind of experiment we must really use eikonal driving since we are 

interested in the response as we turn on the oscillations. Traditionally in plasma 

physics one uses a linear analysis in a uniform system and so finds the normal modes 

for the evolution operator. These will be unphysical infinite plane waves and lead 

to subtleties like a singular spectrum (as in van Kampen modes) which obscures 

the physics of the analysis. It is interesting to rethink these analyses in terms of 

eikonal waves. For example, the response function of a harmonic oscillator at its 

natural frequency is infinite. If we excite it with a slowly varying frequency, we may 

use stationary phase to study the passage through resonance and we see that there 

is no infinity. Only in the asymptotic limit does the response lead to a pole on the 

natural frequency. In traditional analyses ofthe three wave interaction (which arises 

by retaining third order terms in the nonlinear coupling of waves) one studies the 

response of an infinite plane wave to the presence of two other infinite plane waves. 

In reality, given two eikonal waves in three dimensions, the resonance condition can 

only be satisfied on a 2-dimensional spatial surface which moves through space. The 

generated wave will include these geometrical aspects. 
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13.4. The String with a Spring 

Let us now give an interesting example which shows how the effect of an infinite 

dimensional system on a finite dimensional piece may sometimes be modeled by 

dissipation. The idea is that, asymptotically in time, the infinite number of modes 

will only suck energy out of the system, leading to the appearance of dissipation. 

The simple system we have in mind is a half infinite string whose end is attached 

to a mass on a spring (or any other shaking system). If we consider only string 

displacements which are damped at infinity, then asymptotically the string behaves 

as if it were quiescent (any energy going away from the end doesn't affect us, and 

all the energy going toward it reflects and is eventually leaving it). 

Let the string's displacement w and its velocity v be functions of the position x 

along the string. Let the tension in the string be T (i.e. the force along the string) 

and the mass density be p. The transverse force that the string applies at its end is 

given by the transverse component of the tension, and for small displacements this 

is just the tension times the slope: 

aw 
T-. 

ax 
(13.15) 

The wave equation arises from Newton's equation for a little piece of string, 

where the transverse force is the difference of the force due to the string on the 

left and tr_, string on the right. Asymptotically this is proportional to the second 

derivative of the displacement, leading to the usual wave equation: 

a2 w a2 w 
p Bt2 = T ax2. (13.16) 
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This is known to be Hamiltonian. The solutions away from the end are sums of a 

function translating rigidly to the left and to the right with velocity 

c=~. (13.17) 

For a quiescent string, if we shake the end according to 

w(O, t) = y(t), (13.18) 

then we get only a wave travelling away and the string displacement for all time is 

w(x, t) = y(t- x/c). (13.19) 

What then is the force the string applies to our shaking apparatus? From the 

above it is 

awl d T. T -
0 

= T-d y(t- x/c)lr=O = --y(t). 
X r=O X C 

(13.20) 

If the shaker was a harmonic oscillator 

my= -ky, (13.21) 

then we could forget about the string if we changed the equation to 

my = -ky - cpy. ( 13.22) 

This is just a damped oscillator. Thus an infinite dimensional piece of a Hamil-

tonian system is replaced by an effective dissipation in the evolution of a finite di-

mensional piece. Notire that the exact form of the system to which the string is 

coupled is completely irrelevant. It is this fact which makes such replacement phys-

ically relevant (if it behaved dissipatively only in extremely special circumstances 

we would have no reason to think of it as a replaceable piece during simplification). 
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Chapter14: 

Reinsertion in 
Area-Preserving 
Horseshoes 

"It is said that Newton communicated to Leibniz an anagram somewhat like 

this: aaaaabbbeeeeii, etc. Leibniz naturally understood nothing at all of this; but we 

who have the key know that this anagram meant, translated into modern language: 

I know how to integrate all di.fferential equations; and this suggests to us that either 

Newton was very lucky or else he held a peculiar illusion. "-Poincare ( 1908) [Hirsch, 

1984] 

Over the last ten years, the idea of intrinsic stochasticity in the determinis-

tic dynamics of low dimensional dynamical systems has joined the mainstream of 

physical thought. Every month physics journals carry many reports of chaos (as 

the phenomenon has come to be known) in new physical situations. Applications 

to plasma physics are given in [Smith and Kaufman, 1975], [Smith and Kaufman, 

1978], and [Kaufman, 1979]. The chaos has always been there, but until recently 

the mathematical tools for noticing it were not well known in the physics commu-

nity. Every example of chaos that I know of has within it a construction dubbed 
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by Smale the horseshoe in [Smale, 1967]. The essential phenomena may be seen in 

a taffy puller {and indeed Otto Rossler designed his attractor based on it). The 

key feature of a taffy puller is its continual stretching of the taffy. To keep it in 

a finite volume, the taffy must also be bent over. These two features lead to dy­

namics where the taffy is thoroughly mixed together. {This may be seen somewhat 

grotesquely by considering the fate of a fly which lands on the sweet smelling taffy. 

In on the order of ten cycles, there will be a piece of the fly in each piece of the 

taffy.) 

14.1. The 2x mod 1 Map 

The basic mathematical model of this stretching and mixing is the map from 

the circle to itself given by 

x ,_. 2x mod 1. {14.1) 

This dynamics has periodic orbits of every period, dense orbits, and orbits which 

hop from the interval: [0, 1/2] to the interval: [1/2, 1] according to any desired 

{possibly random) sequence of L's and R's {p. 106 of [Cornfeld, Fornin, and Sinai, 

1982]). This is easy to see. by the method of symbolic dynamics. Call the left 

interval 0 and the right one 1. The interval in which a point lies is given by the 

first digit in the binary expansion of the numher corresponding to that point. Since 

2x mod 1 just shifts the binary point and lops off the integer part, we see that the 

sequence of hops is given by the sequence of digits in the binary expansion, but this 

is arbitrary. This map cannot appear in real dynamics since it is 2 to 1 {but variants 
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of it appear in projected dynamics all the time, for example, Lorenz's equations as 

in [Guckenheimer and Holmes, 1983] p. 276). 
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14.2. The Baker's Transformation 

The trouble, of course, is that we are continually losing information about 

our intitial condition, so knowing where we are isn't enough to tell us where we 

came from. We can remedy this by adding another variable which keeps track of 

the lost information. The symbolic dynamics model is the space of doubly infinite 

sequences of 1 's and O's with the map being a shift. This clearly has the same 

stochastic properties, but is invertible. A dynamical realization may be found in 

the so called baker's transformation, named because of the similarity of the map to 

the experiences a baker puts dough through (particularly filo dough). The baker 

first rolls the dough out so that it is thinner and longer, he then cuts the elongated 

dough into two pieces, places one atop the other and repeats the process. The 

corresponding map is from the unit square to itself: 

x >-->2x mod 1 

y>--> 
1 ~ if O~x<2 

2 1 
Y + 1 'f _ < X < 1. 

- 1 2-2 

(14.2) 

If we take y's binary expansion backward and adjoin it to x's binary expansion, 

then this map is exactly the shift on the doubly infinite sequence of the combined 

digits ( [Cornfeld, Fomin, and Sinai, 1982] p. 9). Unfortunately, this still cannot 

appear .as a return map because it is not continuous (due to the baker's knife). 
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14.3. The Horseshoe 

If instead of pushing the two pieces of dough all the way together, we leave 

a gap, then we may· imbed this in a smooth map which has all the interesting 

stochastic properties ( [Guckenheimer and Holmes, 1983] p. 230). The horseshoe 

is such a map as shown in figure (14.1). Because of the gap (which under the map 

gets sent to a skinnier gap, etc.) the invariant set associated with the symbol shift 

is a Cantor set. 

...... ~ ...... 
' 

Figure 14.1: Smale's horseshoe map. 

That such a map might appear in any natural systems is at first perhaps 

surprising, but in fact it is quite common as we now show. Consider a dynamical 

system whose state space is three dimensional (for example, the three dimensional 
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energy surface of a two degree of freedom Hamiltonian system). We may study 

the neighborhood of a periodic orbit by means of the two dimensional return map 

induced by the dynamics on a two dimensional surface transverse to the orbit. The 

orbit is a fixed point of the map and we consider the case where its linearization is 

hyperbolic with one eigenvalue inside the unit circle of the complex plane, and one 

outside. The stable manifold theorem states that there exists a smoothly imbedded 

two dimensional manifold in our state space consisting of all points which asymptote 

to our orbit as time goes to positive infinity. It must approach the orbit tangent to 

the linear attracting direction and the orbit. The corresponding unstable manifold 

theorem says a similar thing about the points that asymptote to our orbit under the 

time reversed dynamics. We will now see that the Poincare return map must contain 

a horseshoe if the stable and unstable manifolds intersect transversally. The first 

· image of a point of intersection must also asymptote to the orbit both forward and 

backward in time, implying that the stable and unstable manifolds must intersect 

again, as in figure (14.2) (repeating this argument shows that they must intersect 

an infinite number of times). As in the figure, if we choose an appropriate rectangle, 

some iterate of it gives us a horseshoe imbedded in our dynamics. 

14.4. Example of Horseshoes in Gyromotion 

unst.tl~ 

( . ..... ., ....... _,._ 
h\1 p.rbo lie fnc.ct point 

hors~st.o. 

\ 
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stlb1•
1
-.d') 

-~·/ 

~linic 
point 

Figure 14.2: A transversal intersection of the stable and unstable manifolds im-

plies the presence of a horseshoe for some iterate of the map. 

14.4. Example of Horseshoes in Gyromotion 

Let us give a plasma example which has horseshoes in the dynamics. Consider 

the two-dimensional x, y motion of a charged particle in a linear magnetic field 

Bz = ay, (14.3) 

near the region where it vanishes. Define the vector potential by taking A 11 = 0, so 

that 

Bz = aA11 _ aAz = _ aAz = ay, 
ax ay ay 

( 14.4) 

leading us to take 

a 2 
Az = -2y (14.5) 
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As usual, let us set e = m = c = 1. The Hamiltonian is then 

1 0: 2 )2 2) 
H = 2((Pr + 2y + P"" {14.6} 

and since it is x-translation symmetric, Px is conserved. The equations of motion 

are 

and 

. an o: 2 
x =-a = Px + 2Y , 

Px 

. an 
y=- =py, 

ap" 

Px =-~~ = 0, 

. an ( o: 2 
Py =-By=:- Px + 2y )o:y. 

Let us denote Px 's constant value by 

Px = P~· 

{14.7} 

(14.8} 

( 14.9) 

(14.10) 

(14.11) 

We know that by reducing by the x translation symmetry we may get equations 

involving only y . . They evolution is given by 

.. . 0 0:
2 

3 
Y = Py = -aPxY - 2y (14.12) 

This is Duffing's equation, which has been well-studied. It represents the 

Hamiltonian dynamics of a particle moving in a potential given by 

a a 2 

V(y) = 2p~y2 + gY4· {14.13) 

Let us assume that a is positive. If 

p~ = :i:- ~y2 {14.14) 
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is positive, then this potential has a single minimum. If p~ is negative, then the 

potential well has two minima as shown in figure {14.3a). The phase portrait for 

this case is shown in figure ( 14.3b). Far from the origin, all orbits are periodic and 

encircle the origin. As we move in, we see that there are two stable elliptic fixed 

points and an unstable hyperbolic fixed point. The hyperbolic fixed point has two 

homoclinic separatrices which are susceptible to horseshoes under periodic driving. 

In fact, using the method of Melnikov, Holmes and Marsden have shown that the 

driven Duffing equation has transversal homoclinic points and therefore horseshoes 

( [Guckenheimer and Holmes, 1983] p. 184). If we force our particle in this magnetic 

field with a low amplitude wave in the y direction, it too will have horseshoes. 

What do the orbits look like? For the unforced system, the particle can move 

in a straight line along the x axis with any velocity, as in figure (14.3c). Since the 

Duffing oscillator is bounded in y, every orbit has a maximal excursion in y, where 

iJ = 0. Let us then study the orbits with initial condition 

Y =Yo iJ=O (14.15) 

for various values of p~ and any x. When p~ is positive, they motion is represented 

by a Duffing oscillator with a single minimum in its potential. The x velocity 

:i: = p~ + iy2 {14.16) 

never goes negative and so the particle moves inexorably in the positive x direction 

as in figure (14.3d). When p~ = 0, :i: vanishes at y = 0, but is positive elsewhere. 

This leads to particle motion which crosses the field reversal perpendicularly as in 

figure (14.3e). Asp~ becomes negative, the orbits actually move in the negative x 
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direction whenever 

IYI < J -~p~ (14.17} 

as in figure (14.3£). The Duffing equation now has two minima but we are in the 

oscillatory region that encircles them. As p~ gets more negative, the loops overlap 

one another as in figure (14.3g and h) until successive loops actually coincide to 

give a "figure eight" orbit as shown in figure (14.3i). Asp~ gets still more negative, 

the net motion is in the negative x direction, while still in the positive direction at 

the tops and the bottoms of the loops. The particle path is made of alternating 

curliques about the field reversal line as shown in figure (14.3j and k). When 

0 Q 4 
P:r: = -4yo, {14.18) 

we are on a separatrix of the Duffing equation and the particle makes but a single 

loop, asymptoting to y = 0 both forward and backward in time as shown in figure 

(14.31). There is another orbit corresponding to the other separatrix which has y 

negative as in figure (14.3m). For 

0 Q 2 
P:r: < -4yo, {14.19) 

we are inside the separatrix and the particle executes ordinary gyration as in figure 

{14.3n). When 

0 Q 2 
P:r: = -2yo, (14.20) 

we are at a stable fixed point of the Duffing equation, ;i; = 0, and particle motion 

has stopped. For p~ more negative, the particle gyrates in the region y > Yo· 
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Under oscillatory perturbation, there are orbits near the separatrix that go 
~-·. 

around one and then the other separatrix according to any (possibly random) se-

quence of O's and 1 's. The resulting particle orbit has corresponding upward and 

downward curliques, as shown in figure {14.3p). 

a) 

Duffing Pot•nt;.l 

v<v> 
b) ~· 

-~-rv;;v-~) 

~
g) h) 4NI"O orb;ts t~t cross B's z.,.o 18?; go .QQQQJ~ • .sL Q. JL ~> .. ,c) ..... 000'00' -o1f1> 

· two s2;'~ ordinvv gvro orbits 

~ m) ~-atnnl 
_o , o , o , , o o_ o) 

0 0 0 0 
p) Chaotio gvro orbit 

Figure 14.3: The Duffing potential, phase portrait, corresponding particle orbits, 

and a chaotic orbit. 
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14.6. Area Preserving Horseshoes and Reinsertion 

The issue that we would like to address here concerns the structure of the 

stable and unstable manifolds in the area preserving (as arising from a HaDliltonian 

system) as opposed to the dissipative case. As we extend the stable and unstable 

manifolds in the dissipative case, we obtain the intricate pattern shown in figure 

(14.4). We will see that the area preserving case must be more complicated. 

Figure 14.4: The structure of the stable and unstable manifolds in the dissipative 

case. 

If we try this same construction in the area preserving case (figure (14.5)), 

we run into problems. As in that figure, the region A bounded by the stable and 

unstable manifolds is taken to the region A' of the same area. This is taken to 

A" and so on. In real systems, this structure is often bounded between two curves 
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Figure 14.5: The seemingly paradoxical tongues which must intersect. 

corresponding to Kolmogorov-Arnold-Moser tori ( [Abraham and Marsden, 1978] 

p. 582) and so is constrained to a finite area. But because the tounges all have 

the same area and there are an infinite number of them, they must intersect one 

another (and in fact an infinite number of them must intersect). Because the whole 

picture is taken to itself under the map, each tongue must intersect an infinite 

number of others, including both an infinite number of images and preimages (if 

tongue T intersects Mi · T, then it must intersect M-i ·Taswell as one can see by 

applying M-i to both sets). Upon first examining the figure. it is a mystery how 

these tongues can possibly intersect. Neither the stable or the unstable manifolds 

can cross themselves (since they are injectively immersed copies of the real line). 

One therefore concludes that if tongue AN is going to intersect A, it cannot come 
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in through the top segment of A (which is a piece of the unstable manifold) but 

must come in through the bottom (which is a piece of the stable manifold and so 

is allowed to intersect the top of AN's tongue). The question is: how does AN 

get down to the bottom border of A? The unstable manifold makes essentially a 

complete loop (it includes the origin as it leaves vertically, and it limits on the origin 

on the right), leaving no room for AN to sneak through. We quickly come to the 

conclusion that if AN is going to get inside A, then one of the lower tongues BM 

must as well and AN gets in via B M. 

Figure 14.6: The Re-iasertion of tongues forced by area preservation. 

This implies the much more complex structure shown in figure (14.6) than I 

have seen described in the literature. The number of tongues between a tongue 
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and the first lower tongue to insert into it is an invariant of the map. Furthermore 

as we constrain the area within which this structure lies, relative to the area of 

a tongue, the point at which reinsertion must take place gets nearer and nearer 

(since a tongue must intersect more of its colleagues), until no structure is possible 

when the area of a tongue is larger than the total allotted area. Thus we see that 

Hamiltonian systems are forced- to have a very intricate tongue structure. Recent 

work of [Holmes and Whitley, 1984] has studied the change in bifurcation sequences 

in "shoemaking" in going from the dissipative to the non-dissipative case. They find 

a continuum of different bifurcation sequences. It would be interesting to see how 

the intersection structure of the horseshoe tongues evolves in this sequence. 



Chapter15: 
Renormalization 
Group 

439 

Recently a number of previously intractable problems in several very different 

areas of physics have been successfully tackled using renormalization group tech­

niques. Running through these treatments is a beautiful set of ideas which are fairly 

easy to understand, even though the actual calculations can become quite complex. 

The goal of this section is to present the essential concept in simple physical sit­

uations, where it is easy to see what is going on. We sketch the physical idea of 

renormalization in the original context of the statistical mechanics of spin lattices 

and then use it to prove the central limit theorem. 

15.1. Scaling and Universality 

It is a quite common physical occurrence that certain forms appear over and 

over in many different contexts. In ~~atistical physics we see the Gaussian distri­

bution e-x• and the Boltzman distribution e-E/kT appearing again and again. In 

electromagnetism we have the monopole and dipole potential functions, for exam­

ple. In radiation theory there are the plane wave, dipole radiation, and the Airy 
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function near caustics. In quantum mechanics we continually see the free parti­

cle, the harmonic oscillator, and the rigid rotator. In dynamics there exist certain 

canonical forms for change (eg. the Hopf bifurcation, the saddle-node bifurcation, 

period-doubling cascades, and the breakdown of KAM tori) which appear in many 

contexts. 

In many cases the effect of a physical system on the rest of the world is only 

felt on a large scale in space-time which averages over the detailed structure. It is a 

common tool in physics to study a particular instance of a system by thinking of it 

as a member of a family of related systems. Sometimes by looking at the family, as 

opposed to the individual, we see new regularities. This is the basis for perturbation 

theory which studies the case of interest by finding an easily soluble case nearby 

and studying how the differences change the behavior. 

Often, one may formalize these heuristic notions by introducing a "space", 

which is often infinite dimensional, whose points represent physical systems. For 

the statistical systems, we "step back" from the system (i.e. look at it from a 

greater distance), and treat all behavior as if it were occuring on a smaller scale. 

For example, we might consider photographs of the ocean's surface taken at different 

heights. The rescaling is called renormalization. In the situations of interest, the 

renormalized system is again a member of our space, but corresponds to different 

values of the parameters. The ocean with a tid<>l wave may, from a distance, behave 

just like a ripple in the tide pools on the shore. The ripple may need to be in water 

with a different surface tension or viscosity, however. (Such ideas are actually used 

for special effects in movies. Since one usually has control of the scale of space and 
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time but not of viscosity, the small-scale waves in ocean scenes and the small-scale 

eddies in explosions often do not look right.) The renormalization map that rescales 

a system sometimes has a fixed point .whose properties can be used to study nearby 

systems. For example, as we get further and further from the surface of the ocean, 

it looks calmer and calmer. 

We shall not discuss the examples of renormalization in dynamical systems here. 

They work in-much the same way, but the renormalization usually corresponds to 

looking at the system through a finer and finer microscope. For example, if we 

zoom in on a hyperbolic fixed point of a vector field, the flow becomes more and 

more like its linearization about the fixed point. A linear system is taken to itself 

under rescaling and so is a fixed point of the renormalization map. 
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15.2. Magnetic Spin Lattices 

As an, example, let us look at the Ising spin model for which Kadanoff intr~ 

duced many of these scaling ideas (see, for example, the review article [Wilson and 

Kogut, 1974] and the references given there). We imagine an infinite checkerboard 

with a spin at the center of each square which may have a magnetic moment point­

ing either up or down. We imagine that nearby squares feel each other's magnetic 

fields and that it is energetically favorable for them to have their spins pointing in 

the same direction. 

The whole system is in contact with a heat bath with temperature T. This 

tends to cause the spins to jostle between up and down. The higher the temperature, 

the more violent the jostling. The spin-spin interaction tends to prohibit the relative 

jostling of neighbors. If the temperature is very high, then the average kinetic energy 

of the degrees of freedom of the heat bath will be much greater than the alignment 

potential energy of a spin due to its interaction with its neighbors. In this case the 

spins will wiggle between up and down relatively independently of the state of their 

neighbors. 

If the temperature is very low, then the average thermal energy will be much 

less than the interaction potential energy and the spins will only rarely be able to 

overcome it and flip relative to their neighbors. 

When T = oo the interaction is completely negligible and the stat;stics of a spin 

are independent of its neigbors. The probabilities for up and down are the same 

and there is no correlation between the probability distributions for different spins. 

When T = 0 the thermal energy is completely negligible compared to the interaction 
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potential energy. The spins all point in the same direction, say up. The probability 

distribution for an individual spin has spin up with probability one and down with 

probability zero. Again the distributions for the individual spins are uncorrelated. 

Even if a spin happened to be pointing down (an infinitely improbable event), the 

probability distributions for the other spins would remain unchanged. 

I" ow we know the statistics of the spins in two states: T = 0 and T = oo. What 

do states near these two look like? If we are at a high but finite temperature, then 

spins are still kicked between up to d()wn, the probability of each being ~. Now, 

however, the statistics of one spin depend slightly on the state of its neighbors. 

There is some tendency for neighboring spins to flip together and one will see little 

patches of spins pointing the same direction. If we know a spin is up, then its nearest 

neighbors are slightly more likely to point up than down. Next nearest neighbors 

are affected even less, and one can show that the correlation decays exponentially 

as we move away from the upward pointing spin. The patches of coherent spins are 

finite in extent and get smaller as the temperature gets higher. 

\\·hen the temperature is low but not zero, spins are still much more likely 

to point up than down. Now, however, if a spin is flipped to down this slightly 

affects the neighboring spins. Nearest neighbors have a slightly higher probability 

for flipping than usual. Again the effect dies off exponentially. The state looks like 

a sea of upward pointing spins with little islands of spins which point down. As thrc 

temperature is decreased, the islands get smaller. 

We now introduce the idea of renormalization. If our eyes are blurry, when 

we step away from the infinite checkerboard we will only notice the average spin 
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over a region. If we are near T = oo, then as we step back, neighboring spins 

become a single spin to us and we are ever more unable to resolve the last vestiges 

of correlation among neighbors. The further we go the more the system "s statistics 

look like those of T = oo. We may codify this idea, by introducing a (typically 

infinite dimensional) space whose points represent the statistical state of our spins 

(i.e. the space of probability distributions on the space of spins). The operation 

of "stepping back" or rescaling takes one distribution and gives us another one. 

We may therefore think of this as a mapping on this big space and we denote it 

by R which stands. for "renormalization group operator". The infinite temperature 

state (i.e. the probability distribution is just an uncorrelated product of half up 

and half down distributions for each spin) is a fixed point of this mapping. We 

have just indicated that all nearby states get even closerto this fixed point under 

the renormalization map, and so it is a stable fixed point. 

Similarly, the state representing zero temperature (again an uncorrelated prod­

uct of distributions for each spin, each of which is probability one for being up 

(actually the real one is a sum of two uncorrelated states on all spins; one for up 

and one for down)) is a fixed point. If we are near zero, then as we step back, the 

"cloud" of spins that an errant spin takes with it on the rare occasion of a flip gets 

smaller and smaller until in the limit there is no such cloud. So zero temperature 

is also a stable fixed point. 

There is clearly a path from zero to infinite temperature labeled by the temper­

ature itself. At some point on this path we must leave zero's basin of attraction and 

enter infinity's (it is not hard to show that there are no other stable fixed points). 
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We expect there to be a codimension-one surface that forms the boundary between 

these two basins. There is and it is the stable manifold of a third fixed point with a 

1-dimensional unstable direction. While the correlation length of neighboring spins 

w~ zero for the other two fixed points, it is infinite for this one (it must be either 

zero or infinity, since these are the only two numbers that are equal to themselves 

when multiplied by a rescaling factor). The corresponding temperature is called the 

critical temperature and the point on a path where it intersects the separatrix is 

called a critical point. Because there are fiuctuations on all scales there, it is often 

associated with such phenomena as critical opalescence (where a normally clear sub-

stance becomes milky white due to fiuctuations which can scatter all wavelengths 

of light). If we consider the place at which our path pierces this codimension 1 

stable manifold. under applications of R, we see that the path asymptotes to the 

!-dimensional unstable manifold (see figure (15.1)). Thus this represents a universal 

path from zero to infinite temperature, and the way it crosses the separatrix will 

represent that of any path seen from far enough away. In particular, the unstable 

eigen-,-alue will tell how fast things scale as we cross the critical surface and may be 

used to calculate the universal critical exponents corresponding to this fixed point. 

15.3. Tbe Central Limit Theorem 
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Figure 15.1: The space of spin probability distributions with two stable fixed 

points corresponding to zero and infinite temperature and a co-dimension one un-

stable fixed point corresponding to the critical point. 

15.3. The Central Limit Theorem 

One very old example of universality is the prevalence of Gaussian probability 

distributions in the statistical description of physical phenomena. The mathemati-

cal theorem describing the approach of the distribution of a sum of random variables 

to Gaussianity is the central limit theorem. Khinchin based his development of sta-

tistical mechanics on this theorem ( [Khinchin, 1949]). It is of interest to look at 

this theorem from a renormalization group perspective. 

A typical physical example, like Brownian motion, involves some distribution 

of random forces on a small time scale whose average effect on a long time scale 
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is of interest (see, for example, [Wax, 1954]). One may consider the problem to 

be that of finding the force distribution as a function of time scale starting with 

the given one on the smallest scale and hopefully asymptoting to a universal one 

on long time scales. In our renormalization group approa.ch we define a mapping 

R from the space of distributions D to itself, which integrates out the next smaller 

time scale and renormalizes the variables so as to return the problem to one of the 

<_>riginal form. We will show how a simple version of the central limit theorem fits 

into this context. 

D will be the space of distributions p(x) which are normalized: 

/

00

00 

p(x) dx = 1, ( 15.1) 

have zero mean: £: x p(x) dx = 0, ( 15.2) 

and a constant nonzero finite dispersion: 

£: x 2 p(x) dx = u 2
• (15.3) 

The distribution of x = x 1 +x2 where x1 and x2 are individually and independently 

described by p is the convolution 

!p< 1>(x) = £: p(x- y) p(y) dy, (15.4) 

since x = (x- y) + (y) for -oo < y < oo describes all ways ,.; decomposing x into 

a sum. It's easy to see that the dispersion squared of p(ll is twice that of p. Thus 

u 2 =- x2 p( 1l(x) dx = x2p(ll(J2x)J2 dx. 1/00 !00 
2 -oo -oo 

(15.5) 
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To keep the normalization and the dispersion constant we define the renormalization 

operator as 

Rp(x) = v'2 /_: p(J2 x- y) p(y) dy. (15.6) 

We would like to study R by looking for fixed points and studying their stability. 

By two changes of coordinates on D we will actually turn R into a linear operator. 

We first label a distribution by its Fourier transform: 

p(k) = /_: eikxp(x) dx. ( 15. 7) 

The moment conditions on p turn into 

P(O) = 1 
d 
dkp(O) = 0 

d2 
dk2 p(O) = -u2

. (15.8) 

We see that p has a quadratic maximum of value 1 at k = 0. Because convo-

lution turns into multiplication under Fourier transform, in these coordinates the 

renormalization operator R becomes 

Rp(k) = (P{~)r (15.9) 

It is already easy to see why Gaussians will arise. Squaring emphasizes large values 

compared to small ones. After repeated squaring, only the quadratic ma.ximum of 

p will play any role and so P( k) 's behavior will be the same as that of 1- 'f k2
• But 

as N-+ oo, 
(

1 _ u2 (-k )2)
2

N ~ 
2 J2N -+ e > 

(15.10) 

This is very similar to the case of period doubling in one dimensional maps where 

the Feigenbaum scaling is determined by the quadratic maximum. 
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To make R linear we now choose as our coordinates 

1(k) = log(p(k)). (15.11) 

1 satisfies the conditions 

1(0) = 0, 
dl 
dk (0) = 0, 

d21 
dk2 (0) = -0'2 (15.12) 

and R takes the form 

R1(k) = 21 ( ~) (15.13) 

which is indeed linear. The "eigenfunctions" of rescaling are powers of k and so we 

expand 1(k) in a Taylor series: 

0'
2 

2 3 4 
1(k) = -2k + a3k + a4 k + ... {15.14) 

R takes {a3,a4, ... ) into {a3f./2,a4/v"i, ... ). Thus (a3 = O,a4 = 0, ... ) is the 

unique attracting fixed point. This fixed point in the other coordinates is 

and 

• ( 0'2 
I k) = --k2 2 , 

p•(k) = e -~:•• , .. 
_1_e->;> . p•(x) = ../hu 

(15.15) 

Thus every dist,ribution asymptotically approaches a Gaussian with the same dis-

persion under this mapping. 
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15.4. A Poor Man's Feigenbaum Number 

One of the great discoveries of the last decade was the universality of certain 

aspects of period-doubling cascades. Many physical systems undergo a series of bi-

furcations or sudden changes in their behavior with the increase of some parameter. 

Typical parameters, like the Reynold's number, represent the strength of driving 

or energy input to the system. An example to think about is the behavior of the 

stream of water from a faucet as the water pressure is increased. Initially the flow 

is steady but at some point oscillations set in and eventually the stream dynamics 

becomes chaotic. Another example is a flag waving in the wind. As the wind gets 

stronger, the flag begins fluttering and then waving chaotically. A last example is 

river meanders. A high viscosity river (made of honey, say) goes straight down a 

hill. As the viscosity is lowered, the river's path meanders from side to side. As 

discovered by unfortunate farmers who built their farms on the rich soil between 

meanders of rivers, the meanders slowly move downstream. The state of a mean-

dering river is therefore periodic in time (at any point on the hill the river position 

moves periodically from side to side). I don't know if any further bifurcations have 

been observed in this example. 

For small enough values of the parameter, each of these systems is in a stable 

equilibrium state with no time variation. As the parameter increases, a Hopfbifur-

cation occurs at a particular value and the system undergoes oscillations described 

by a stable limit cycle. As the parameter is further increased in many systems, 

the period of the oscillation doubles at some point. On every other cycle, the sys-

tern doesn't quite come back to the starting point causing the period to be twice 



15.4. A Poor Man's Feigenbaum X umber 451 15.4. A Poor Man's Feigenbaum Number 452 

what it was originally. It is interesting that many systems continue to have these of the mapping at a stable fixed point goes through -1. This has the effect of 

period-doubling bifurcations as the parameter increases. This phenomenon is called making the fixed point unstable and creating a periodic orbit of period-two nearby. 

a period-doubling cascade. Successive doublings occur for closer and closer parame- All of the interesting behavior occurs along the eigendirection of the eigenvalue 

ter values. There is a special parameter value, called the critical value, at which an which goes through -1. It is for this reason that period-doubling of systems with 

infinite number of doublings have occured and beyond which the dynamics is very many-dimensional state spaces may be effectively studied by considering only one-

complicated and often chaotic. Feigenbaum discovered that the period doubling dimensional maps. 

parameter values approach this limiting point geometrically, and that the rate of The key features of the period doubling cascade arise in any one-dimensional 

approach is a universal number, called Feigenbaum's number: 4.669 ... map v..'ith a quadratic maximum. We may consider 

[Crawford and Omohundro, 1984] gives a geometric picture of period-doubling l,.(x) = 1- p.x2 (15.16) 

in the state space of the system and discusses the phenomenon of knotted period- on the interval x E [-1, 1]. Asp. varies, the width of the hump changes and period-

doubled orbits. Here we would like to sketch Feigenbaum's renormalization argu- doubling ensues. Let us use the term bump map to denote even maps of the interval 

ment (for more information, see [Guckenheimer and Holmes, 1983], p. 346 and the [0, 1] to itself, which have a single quadratic maximum at x = 0 with value 1. 

references given there). Feigenbaum obtained his number to high accuracy using a The renormalization picture of period-doubling is based on the observation that 

Cray supercomputer. We will show how to obtain it to within 25 percent on the for any hump map I, its first iterate I o I again looks like a hump map when we 

back of an envelope. consider only a smaller range of x's and invert and magnify the value. Furthermore, 

Period-doubling is usually studied by looking at the Poincare return map for when I is undergoing the nth stage of period-doubling, I o I is undergoing only the 

a periodic orbit. This is the mapping obtained by considering the effect of the n - 1st stage. We are therefore motivated to introduce a renormalization operator 

dynamics on points near the periodic orbit that lie on a codimension-one sheet R on the space of hump maps that takes a map to a rescaled first iterate: 

which cuts the orbit transversally. Each point on the sheet flows along until it hits X 
T[l](x) = o:l(/(- )). 

0: 
(15.17) 

the sheet again. We wish to study the mapping of the sheet to itself that this defines. 
The rescaling parameter o: is chosen so that given a hump map, T produces another 

A periodic orbit with a period near that of the one under study is represented by a 
one. Since f(O) = 1, we see that 1(/(0)) = /(1). For this to be one, we must define 

fixed point of the mapping. Orbits of higher period are fixed points of some iterate 

of the mapping. Period doubling occurs when an eigenvalue of the linearization 
1 

0: = 1(1)' 
(15.18) 
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Since period-doubling requires only one eigenvalue to be pushed through -1, the set 

of hump maps undergoing any order of period doubling is codimension-one (i.e. one 

dimension less than the full space of hump maps). We noted that the renormal-

ization_ operator T takes the sheet of order n period doubling to the sheet of order 

n - 1. T has a fixed point r in the space of maps. Since the renormalization halves 

the period of periodic orbits, a fixed point either has no periodic orbits or orbits of 

every power of two period. It turns out that f" has these periodic orbits and is at 

the accumulation point for period-doubling (where it has just doubled an infinite 

number of times). r has a !-dimensional unstable manifold and a codimension-

1 stable manifold. All maps that approach r under repeated application of the 

renormalization operator must also have just period-doubled an infinite number of 

times. Thus r 's stable manifold is the codimension-one sheet of maps at criti-

cality. y-l takes sheets of period-doubling to sheets of higher and higher order 

period-doubling, which must eventually limit on f" 's stable manifold. The rate at 

which the approach to this manifold occurs is given by the unstable eigenvalue of 

the linearization ofT at r, which is therefore Feigenbaum's number. 

To actually calculate this number, one may employ various numerical tricks 

which amount to projecting the entire hump space onto some finite dimensional 

approx,imating space and carrying out the analysis there. We may actually carry this 

out by hand for an extremely crude one-dimensional approximation. We consider 
l 

the family 

J,.(x) = 1- JlX2 (15.19) 

for different values of Jl as the approximating one-dimensional space. We project 
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arbitrary hump maps to this space by truncating their Taylor series about 0 at the 

quadratic term. The action of the projected T on this space is then 

X 
T[f,.](x) =cr/,.(1,.(- )) 

Q 

=cr( 1 - Jl(l - Jl( ~ )2)2) 
Q 

' 2 x2 3 x4 
=cr - OJl + 2crJl - - OJl -cr2 cr4 

( 15.20) 

2u2 "3 
=(cr- OJl) + ----x2

- !:.._z4. 
cr cr3 

To get this to have 1 as the constant term we must choose the renormalization 

factor as above: 

1 -1 
cr=-=--. 

/(1) jl-1 

Using this and truncating away the cubic terms gives 

T[J,.](x) = 1 + 2112(1- Jl)x2
• 

Our space can be coordinatized by Jl and T then has the form 

T(Jl) = (Jl- 1)2Jl2 = -2112 + 2Jl3. (15.21) 

The fixed point is labelled by Jl 0 which satisfies 

T(Jl•) = Jl• = 211•3 - 211•2
• (15.22) 

We find the solution to the resulting quadratic equation to be: 

• l+v'I+2 l+J3 
Jl = =--2 2 

(15.23) 

The eigenvalue is then obtained by taking the derivative of T at this fixed point: 

dTl djl ,.. = (6Jl
2 

- 4Jl)l,.· = 4 + v'3 ~ 5.7. ( 15.24) 
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This isn't too bad considering the crudity of the approximation. We could have 

kept quartic or higher terms to eventually get any desired accuracy (unfortunately 

these require finding roots of quartic and higher order polynomials, which is h'ard 

without a computer). 

456 

Chapter16: 

Symplectic 
Thermodynamics from 
Maximum Entropy 

"The formulation is mathematically equivalent to the more usual foundations. 

There are, therefore, no fundamentally new results. However, there is a pleasure in 

recognizing old things froin a new point of view. Also, there are problems for which 

the new point of view offers a distinct advantage."-R. P. Feynman introducing 

path integrals in [Feynman, 1948]. 

We have seen that the underlying geometry of classical mechanics is symplectic 

geometry and that many physically important structures result from this. We have 

also seen that these geometric structures arise in a natural way as the mathematics 

of the asymptotic limit of an underlying wave theory. When one looks at classi­

cal thermodynamics, one sees many tantalizing indications of symplectic geometry. 

The Legendre transform plays an essential role, thermodynamically conjugate vari­

ables remind us of canonically conjugate variables, differential one-forms and their 

integrals around loops (suggesting important two-forms) abound in the theory of 

Carnot cycles, etc. Thermodynamics also arises as the mathematical structure of 
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the asymptotic limit of an underlying statistical mechanical theory. We will show 

that indeed the structure of thermodynamics is intimately based on symplectic 

geometry and that this structure arises naturally from the underlying statistical 

mechanics in a way that is suprisingly analogous to the wave case. Let us begin by 

describing some earlier inquiries into the geometry of thermodynamics and possible 

relations with wave asymptotics. 

16.1. Previous Approaches to Geometric Thermodynamics 

In his book [Tisza, 1966] of collected papers, Tisza describes his lifelong attempt 

to develop a unified theory of thermodynamics. His sixth paper on p. 235 in this 

volume is entitled: "The Geometrical Interpretation of the Formalism of MTE" 

(Macroscopic Thermodynamics of Equilibrium). In this chapter he points out that 

there is no natural metric on thermodynamic state space but that there is a natural 

volume element. He claims that there is more structure than just a volume and so 

introduces an affine structure and attempts to find symmetry groups of the theory. 

He claims to be unable to find out anything about the group he finds. He gives the 

affine geometric interpretation of Legendre transforms due to Pluecker, in terms of 

representing a curve in the plane by either its points or by the tangent lines to it 

(i.e. its image in the the dual projec.tive space as we have discussed). He finally 

attempts to relate a so called "stiffness moduli" to the curvature, but makes the 

comment that curvature in a theory with no underlying metric is puzzling (there is 

curvature in affine geometry, however). 
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[Gilmore, 1981] p. 229 attempts to introduce a metric structure into thermody­

namics using the Hessian of a certain generating function as the metric. He makes 

some interesting connections, but the fundamental basis of his metric appears ob­

scure to me. He ends with a section on page 247 entitled: "Additional Questions". 

There he mentions the classical limit of quantum mechanics and the reconstruction 

of quantum mechanics in terms of path integrals. He asks if there is a similar way to 

reconstruct statistical mechanics from thermodynamics. He then gives Hamilton's 

equations of motion, writes some thermodynamic equations with a similar form 

and asks: "Is there an intrinsic geometric structure in !Rn X !in associated with this 

variational formulation of thermodynamics? Is this geometry associated with the 

symplectic or orthogonal group Sp(2n) or S0(2n) or some related real form?" but 

does not go any further in their elucidation. 

In [Poston and Stewart, 1978] p. 237 they discuss thermodynamics and phase 

transitions in terms of catastrophe theory (apparently with the consultation of 

Gilmore, as indicated in the preface). They do not discuss the underlying geometry 

of thermodynamics, but noting the similarity of their analysis of certain phase 

transitions to caustics in asymptotic optics, comment: "It is interesting to speculate 

on the possibility of a unified asymptotic analysis, treating phase transitions as 

caustics in the 'matter wave' everything is made of." 

In a series of papers beginning with [Sourbu, 1970b], Souriau has addressed 

certain aspects of statistical mechanics and thermodynamics from a geometric point 

of view. He focusses on relativistic and cosmological issues and does not appear to 

consider the questions addressed here. 
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Quantum statistical mechanics often leads to similarities between essentially equations of Euler (which arise from moments of the statistical BBGKY hierarchy). 

wave ideas and essentially statistical ideas. One introduces a density matrix p (the One might argue that eikonal waves represent photon gases for which a fluid theory 

Wigner function is the corresponding probability distribution on phase space and so is appropriate. 

was introduced with statistics in mind!). The time evolution of the density matrix The book: [Kijowski and Tulczyjew, 1979] describes a symplectic structure 

is given by 
w = dV 1\ dp + dT 1\ dS (16.4) 

P = i[p,H], (16.1) 

on the the four-dimensional state space of thermodynamics, where (V, p, T, S) are 

where H is the Hamiltonian operator [Feynman, 1972]. The canonical density 
volume, pressure, temperature, and entropy. The authors show that in the case of 

matrix at given temperature T = k/ (3 is 
an ideal gas, the equations of state, 

p((3) = e-rm /Tr(e-f3H). ( 16.2) 
pV = RT, 

(16.5) 
pV"'~ = keSfcv , 

If we introduce an unnormalized p, then it satisfies the equation define a Lagrangian submanifold with respect to this symplectic structure. If we 

fJp 
fJ(3 = [p, H]. (16.3) 

view this symplectic manifold as a cotangent bundle with base coordinatized by 

(V, S) or (V, T) or (p, T) or (S,p), this Lagrangian submanifold is the graph of the 

This looks like the evolution equation where i times the inverse temperature (3 differential of the internal energy, the Helmholtz free energy, the Gibbs free energy, 

plays the role of the time. This formal similarity is behind all the uses that I have and the enthalpy, respectively. Unfortunately, the authors do not give any reason 

seen of path integrals in statistical mechanics as in [Feynman and Hibbs, 1965], for this structure. 

20 [Feynman, 1972], and 0 [Schulman, 1981]. This is great for calculating partition · We will show here that the principle of maximum entropy as applied to statis-

functions, but it is hard to see any deep physical significance for their relation. tical mechanics leads naturally to this symplectic structure. We can see quite easily 

We will present an alternative approach based on the maximum entropy formalism why the equation of state manifold should be Lagrangian. If we describe a loop 

where it is very easy to see the physical significance. of states on this manifold (i.e. a Carnot cycle), then the integral over the surface 

The last connection between waves and statistics that I have seen mentioned bounded by this loop of dV 1\ dp gives the work done and the integral of dT 1\ dS 

by other authors is that the eikonal first amplitude transport equations may be gives the heat gained. The first law of thermodynamics (energy conservation) says 

written in a form that looks like the mass and momentum density fluid transport that these must be equal and opposite, so the symplectic structure which is their 
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sum must vanish on our manifold, which is thus Lagrangian. It is interesting that 

each term in the symplectic structure has its own physical interpretation. 
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16.2. Seven Approaches to the Maximum Entropy Formalism 

The maximum entropy formalism is a very powerful statistical tool, introduced 

in the papers reprinted in [Jaynes, 1983], which gives a prescription for finding the 

"least biased" probability distribution consistent with any known data. If we have 

a discrete number of possibilities and no data to distinguish them, then symmetry 

forces us to choose the distribution which makes them equiprobable. If we have 

some information about the distribution, say its mean value, then we would like a 

prescription to choose among all possible distributions with that mean value. 

Assuming there is such a prescription that always gives the same answer in 

the same situation and is uniform across number of possibilities, it has been shown 

to be unique (p. 16 of [Jaynes, 1983]). In fact one must choose that distribution 

consistent with any known data which maximizes the entropy defined as the sum 

over states of 

-p log p, (16.6) 

where p is the probability of a state. It is easy to see that if nothing is known, 

this gives the equiprobable distribution. The basic requirement in the general case 

is that if we partition the elementary events into subsets and call membership 

in these subsets the elementary events of a new distribution, then applying one's 

prescription should give the same distribution in each situation. This is in some 

respects a renormalization group idea. 
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16.2.1. Axiomatic Subjective Approach is the unique H satisfying the requirements. To be unbiased, we should choose 

The work which introduced information theory: [Shannon, 1948], gives an 
that distribution which has the least information about our experiment that is still 

consistent with the known data. We should therefore choose that consistent dis-
a.xiomatic characterization of the information entropy which applies equally well to 

the ca-"t' at hand. Given k possible outcomes of an experiment, with the probabilities 
tribution that maximizes this entropy. This approach chooses the distribution on 

PI, ... , Pk, one would like a measure of the uncertainty in the value measured in 
the basis of not assuming information that we do not have and may therefore be 

each trial. Shannon requires of such a measure H(ph ... , Pk), that it satisfy three 
considered "subjective". This allows it to be applied in many circumstances where 

axioms. 1) H should be continuous as a function of the p;'s. 2)If all the p;'s are 
the "objective" view of probability as frequency in large number of trials doesn't 

equal, then H should be a monotone increasing function of k (more equally likely 
have any meaning. For example, we may ask for the best prediction of something 

outcomes means more uncertainty). 3) If a choice is broken into two choices, then 
on the basis of one observation. 

H should be a weighted sum of the individual choices. Shannon gives the example 

! ! ! - ! ! !s ~ ! H(2, 3' 6)- H(2, 2) + 2 (3, 3). (16.7) 
16.2.2. Counting Sequences of Trials 

Here we have three possible outcomes, say A, B, and C, with probabilities of 1/2, To see another place where the formula for the entropy comes from, we consider 

1/3, and 1/6 respectively. We may alternatively view this as two events: A and D, as elementary events, sequences of N trials of the basic experiment and let N go to 

with probabilities 1/2 and 1/2. D represents the occurance of either B or C. The infinity. The law of large numbers says that it is extremely likely for the number 

total uncertainty is the uncertainty in the A vs. D choice, plus the uncertainty in of trials with a given value in a sequence divided by N to be the probabilty of 

choosing B vs. C weighted by a factor of 1/2 (since this choice only arises half the that value. Let us therefore consider all sequences with ni = PI · N entries with 

time). the first value, n2 = p2 · N entries with the the second value, and so on up to the 

By approximating the probabilities by rational numbers and breaking the ele- number of possible measured values k. The least biased choice of PI.P2, ... ,pk. is 

mentary events up into a number (the least common multiple of the denominators) that which is consistent with the known data and which maximizes the number of 

of equally likely events, we may reduce the problem to equiprobable distributions. allowed measurement sequences. How many such sequences are there for given p; 's? 

But for them, the third property forces H to be a logarithmic function of the num- \Ve may lay our required measurements down in N! ways, but permutations of the 

her. For arbitrary distributions, we find that -p log p (or some multiple of it) n; with the same value don't change the measurement sequence. Thus the number 
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of sequences is 

N! 
I I I. n1. n2 .... nk. 

(16.8) 

Maximizing this is equivalent to maximizing its logarithm. Because the p; 's are 

fixed as N gets large, all the n;'s get large as well (if they are not zero). We may 

therefore asymptotically use the crudest Stirling approximation: 

log n! ~ n log n - n, 

for N and each of the n; 's as N goes to infinity. We thus want to maximize 

(N log N- N)- (n1 log n1 - nl)- · · ·- (nk log nk- nk) = 

= (n1 + · · · + nk) log N- n1 log n1 - · · ·- nk log nk 

n1 nk = -n1log( N)- · · ·- nklog( N ), 

since 

n1 +···+nk = N. 

Equivalently we want to maximize 

k 

L -p; log p;, 
i=l 

which is the maximum entropy prescription. 

(16.9) 

(16.10) 

(16.11) 

(16.12) 
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16.2.3. Via Steepest Descents in Two Ways 

The usual proof of Stirling's formula used above, uses steepest descents on the 

integral formula for the gamma function. 

Because it is perhaps the simplest example of a combinatorial quantity giving 

rise to nice analytical asymptotics, it is worth examining the classical application 

of steepest descents to the integral formulation of the gamma function to obtain 

Stirling's expression for x! as x gets large. It is interesting that the form of the 

integral is quite similar to those appearing in statistical mechanics. 

The gamma function of x + 1 is the Laplace transform with respect to t of t'r 

evaluated at 1 (and so the x-fold convolution of the Laplace transform oft). For 

large x, the expression 

x! =f(x + 1) 

= fooo t:re- 1dt 

= fooo e:r log 1-tdt. 

is of a form ripe for Laplace's method. The exponent is 

x log t- t, 

with derivative with respect to t given by 

and so has its maximum at 

~ -1, 
t 

t = x. 

(16.13) 

(16.14) 

( 16.15) 

(16.16) 



16.2.3. Via Steepest Descents in Two Ways 467 

We expand to second order about this maximum and extend the integration to 

infinity to get 

= exlog x-x foe e-iz(t-x) 2 dt. 
-oo 

This yields the Stirling approximation 

x! ~ ~ xxe-x. 

{16.17} 

( 16.18} 

\\'e will show here two ways in which to view maximum entropy as coming from 

a steepest descents argument directly. These will allow us to make connections with 

eikonal wave theory and path integrals which use stationary phase. 

In the first picture, we realize that our system is coupled to the rest of the 

worid. The probability distribution of our system is determined by the state of the 

rest of the world and all possible such states must be considered in our choice of 

probability distribution. Thus we think of our desired probability distribution as 

being an "integral" over all possible distributions consistent with the known data. 

The distributions must be weighted by the number of external conditions that can 

produce them. This is the number of ways of rearranging states and is given by the 

integral over all states of the weight 

exp(L -p log p). {16.19} 

For the syst' ,ns we are interested in, the thermodynamic limit makes the exponent 

grow asymptotically (since changing the scale from x to X= {X makes dx = ~dX; 

equivalently, the number of states grows exponentially with the number of particles) 

and so "steepest descents" tells us that only the maximum entropy distribution con-
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tributes. {The integral over all distributions must of course be interpreted asymp-

totically in terms of approximating sums, though [Simon, 1979) discusses rigorous 

applications of steepest descents on infinite-dimensional spaces). 

This is in the spirit of Gibbsian ensembles, but applied to the distributions 

themselves {i.e. an ensemble of probability distributions). One might imagine 

many copies of our system and each one has its phase space populated with a 

swarm of particles whose density is governed by some distribution. How many 

particle swarms correspond to a given distribution? We get multiple systems by 

exchanging particles but must divide by the number of exchanges between particles 

of the same probability. Think of chopping phase space into bins. Each probability 

distribution places a certain number of particles in each bin. The number of distinct 

ways of obtaining a given distribution is obtained by counting all permutations of 

the particles and dividing by the number of exchanges which leave the same particles 

in the bins {and so don't count as a distinct way of obtaining a distribution). Again 

the exponential of the entropy gives the number of possibilities in the limit as the 

number of particles becomes infinite and the binning becomes infinitesimal. 

The second approach is an empirical one. We say that probability distributions 

are experimentally determined by measurement sequences and if we know only 

the distribution, its multiplicity should be the number of distinct measurement 

sequences that give ri~..: to it. We may make the connection with path integrals 

in the following way. Consider the space of our observables M crossed with an 

interval in ~. We can think of parametrized families of measurements as being 

paths in this space. With appropriate binning (as discussed in the introduction). 
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each path determines a probability distribution by integrating along the interval. 

Some paths are consistent with the known data, and we must consider them equally 

likely, others are not and they have zero probability. The expected distribution is 

then an integral over those distributions corresponding to the possible paths. We 

may convert this to an integral over possible distributions, if we include a weighting 

factor equal to the "measure" of paths corresponding to each distribution. But we 

have seen above that this is just exp(L -p log p). Again we use "steepest descents" 

to conclude that the maximum entropy distribution is most likely. 

It is perhaps artificial to think of measurements as parameterized by a real 

parameter (though time might serve this role). We might just as well consider se-

quences of measurements which asymptotically determine distributions. It is really 

the distributions that play the role of paths in Feynman's theory in any case. In 

fact, when one does quantum field theory via path integrals, the integral is over 

fields and so is quite similar to our integral over distributions. 

Let us explicitly write down the formula for the "average" distribution which 

is analogous to the Feynman path integral. We want to sum over all allowed p(Z}'s 

weighted by the factor 

e-SI(p)f• (16.20} 

{the £ arises from the scaling discussed earlier in this section). We want to nor-

malize the resulting distribution as well. If we let D(p) represent the "measure" on 

distribution space, and let C be the subset of distributions obeying any imposed 
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constraints, then 

fcp(Z)e- J p(Z)logp(Z)dZ/<D(p) 

Paverage(Z) = r _ f p(Z)Iogp(Z)dZ/<D(p) 
Jc e 

(16.21} 

Integrating over Z, we see that this expression is correctly normalized (since each 

p in C is). Applying steepest descents as £ -+ 0, we pull out hte p with the 

maximum entropy from the integral in the numerator and the remaining integrals 

cancel leaving 

Paverage(Z} ~ Pmax entropy(Z}. (16.22} 

We can get the expected value of any functional of p by inserting it in place of p 

in the integrand of the numerator. In each case we may use steepest descents to 

pull it out of the integrand by evaluating it on the maximum entropy distribution. 

For example, by integrating over the constant energy surfaces each distribution p 

on phase space determines a distribution of energies (i.e. the density of states}. By 

this argument, the average distribution over energies is exactly the one determined 

by the maximum entropy phase space distribution. 

16.2.4. Via Probability in Three Ways 

In the very interesting reference: [Tikochinsky, Tishby, and Levine, 1984], the 

authors provide three "objective" justifications for the maximum entropy proce-

dure to complement Jaynes' more "subjectiv''' philosophy. Their first technique 

is to consider the known data to be a sequence of experimental samples and from 

consistency conditions and the reproducibility of the experiment, they deduce the 

maximum entropy criterion. This argument is very much like the sequence space 
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one we gave above, except that there is no need for long sequences in these authors' 

work. 

Their second approach concerns the notion of most stable inference. The idea is 

that since the data inferred from real samples is likely to be slightly off, one should 

choose that consistent distribution that is least sensitive to errors in the data. This 

too leads to the maximum entropy distribution. Intuitively, this distribution is the 

most spread out that it can be, consistent with the data, and so changes the least 

as the data varies. 

Their last approach uses the notion of sufficient statistics. In later sections we 

shall need to use Bayes' theorem, which allows one to calculate the probability dis­

tribution of a parameter that parameterizes a family of distribution functions, given 

the actual distribution. A sufficient statistic is a function of some number of sample 

points which contains all the information that the samples do as far as determining 

the value of the parameter. If the sample averages of the observed parameters serve 

as sufficient statistics for the mean value of those parameters, then the probability 

distribution of those parameters must in fact be the maximum entropy one. Thus 

if the sample average is all that can usefully be used in determining expectation 

values, we must have the maximum entropy distribution. 
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16.3. The Thermodynamic Limit 

Our asymptotics will consist of taking the thermodynamic limit. We want the 

observables to be certain mechanical quantities, like the volume V, the total energy 

U, the numbers of various particles N;, the magnetic moment J.l, etc. These will 

all be taken at constant N, the total number of particles, because this will play 

the role of an asymptotic parameter. If we have n particle species only n - 1 of 

the quantities N; are really independent variables on our space (so pick the first 

n- 1 say). We will thus assume that N is precisely known when applying maximum 

entropy. Let us symbolize the rest of the observables by the variable x, which is a 

vector in the observable vector space 0. We will assume that experimentally only 

the mean values of the x after many measurement trials are known. We introduce 

the asymptotic parameter f and let the total particle number scale as: N = 1/L 

As N gets large, the boundary effects shrink and so the x really become extensive, 

and so proportional toN. We therefore introduce the "slow" rescaled (intensive) 

quantities: y = fX. The behavior of the system expressed in terms of y as ( -+ 0 

will give us the thermodynamic limit. 

In our discussions we will often want to distinguish the mechanical variables 

y and their thermodynamically conjugate variables. Since the mechanical variables 

are additive when we couple systems, we will sometimes refer to them as "the exten­

sive variables" (even though they are intensive with respect to the sc ... ling of () and 

their thermodynamic conjugates {like temperature and pressure) as "the intensive 

variables" since these equalize in coupled sytems. This nomenclature is introduced 

merely to keep from repeating the awkward phrase "and their thermodynamically 
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conjugate variables~. This shows that as £ --+ 0, the density of states scales as an exponential with a 1/t 

in the exponent. 

16.3.1. The Density of States 

The density of states available to the system with given x's will be denoted 
16.3.2. The Partition Function 

by O(x). So O(x)dx is a density on 0 whose integral over a region represents the The partition function Z(X) corresponding to the density of states O(x ), where 

number of microstates represented by that region. If the x's are large, then the X E o· is in the dual space (i.e. the space of linear functions) to X E 0, is given 

number of states of a system is equal to the product of the number of states in each by the multiple Laplace transform: 

of two subsystems into which it decomposes (since interaction becomes irrelevant 

O(y) = O(y- €)0(e), (16.23) 

Z(X) =loco ... loco e-(z,X>n(x)~x 
=! roo ... roo e(logO(y)-(y,X))/•~y. 

£ lo lo 

(16.29) asymptotically). Thus 

as t: --+ 0. We may find the asymptotic dependence of 0 on t: by taking the logarithm: 
Let us now use steepest descents to get the f --+ 0 asymptotic behavior. The 

exponent is a maximum at that value of y where 

logO(y) = logO(y- €) + logO(€), (16.24) 

(16.30) 

and taking e = y /2 to get 

Let us call this point Yo(X). Then asymptotically we have 
logO(y) = 2log0(y/2}, (16.25) 

and by extending this to first binary fractions: 
Z(X) = 1 ...,t2ir e(log0(y0 (X))-(y0 (X),X))/<. 

t: J-o2log0/oy2
111o(X) 

(16.31) 

logO(y) = 2nlogO(Tny)) (16.26) 
So we see that the partition function, like the density of states, also scales as an 

exponential with a l/t: in the exponent asymptotically. Notice that Yo(X) defines a 

and then by continuity, to all reals: Legendre transformation from y space to X space generated by the function logO(y) 

1 
logO(y) = -log0(£y)), 

{ 

(',o.27) and that the exponents of n and z are the Legendre transforms of each other. 

and we obtain finally 

O(y) = e(logO(x))/<. ( 16.28) 

a 
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16.4. Maximum Entropy Applied to Statistical Mechanics 

Let us now apply the maximum entropy formalism in this framework. Let us 

denote the underlying phase space of our system by f (this will be of the order of 

1023 dimensional). We have the space P of probability distributions on f and a 

map o : r --+ 0 which represents the value of the observables of interest in a given 

microscopic state (0 is a linear space of observables discussed above). We may 

integrate the 0 valued function o with respect to each probability distribution to 

get a map 

mP--+0, (16.32) 

giving the mean values of the observables for each probability distribution. We also 

have the information entropy 

s: p--+ !R, (16.33) . 

which is a positive real valued function on P obtained by integrating -p log p over 

f for each measure p E P. Our goal is to define a map 

E: 0--+ P, (16.34) 

representing the most likely distribution with the given mean values of o. The image 

of y E 0 lies in m - 1 (y) c P. We define it to be the maximum of S restricted to 

this set. We may then pull back S along E to get the entropy as a fucntion on 0. 

The constrained extremization required is most easily carried out using La-

grange multipliers X which lie in the dual space o·. S is a maximum on m - 1 (y) 

at p E P if and only if there exists a Lagrange multiplier X E o• such that 

S-Xom (16.35) 
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is a maximum on P at p. We may work on the linear space of unnormalized 

distributions if we introduce a Lagrange multiplier >. to ensure the maximum is 

normalized. Thus we obtain the requirement 

:p (- ip(z) log p(z)dz- (X,m(p))- >. ip(z)dz) = 0. (16.36) 

Inserting the definition of m and carrying out the functional derivative gives 

= :p (- i p(z) log p(z)dz- (X, i o(z)p(z)dz)- >. i p(z)dz) 

= :p (- i p(z) log p(z)dz- i p(z)(X, o(z))dz- >. [ p(z)dz) 

= f>f>p i p(z) (-log p(z)- (X, o(z))dz- >.) dz 

=-log p(z)- (X,o(z))dz- 1- >.. 

Let us call 

e-1-A = 1 --z· 

( 16.37) 

(16.38) 

We must choose >.(X) and therefore Z(X) to ensure that pis a properly normalized 

probability distribution. Solving for p(z), we find 

-~1 e-(X,o(z)). 
p(z) = Z(X) 

The normalization condition shows us that 

Z(X) = i e-(X,o(z))dz 

is the partition function. 

(16.39) 

(16.40) 

Given y E 0, we solve for X E o• by requiring that the corresponding distri-

bution give y as its mean value of o. Looking at the expression for Z, we see that 

this is equivalent to requiring that 

y = -d(log Z)lx· (16.41) 

~ 
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Here we are identifying 0 ~ o· •. This map L : 0 ....... o· is the Legendre transform 

generated by log Z. We may pull back the entropy on P by E to give a function 

on 0. We see that this is 

So E(y) == log(Z o L(y)) +(X, y). (16.42) 

And so the surface 

X(y) == L(y) == dS(y) (16.43) 

is a Lagrangian submanifold in 0 X o·. 

Jaynes has given a nice demonstration of the second law of thermodynamics 

using maximum entropy (Jaynes, 1983). We need only assume that the measured en­

tropy for a given set of thermodynamic parameters is the entropy of the maximum 

entropy distribution with mean values given by the measurements (we have just 

seen that this is equivalent to the Gibbs distribution giving the correct value-the 

basic assumption in traditional statistical mechanics). We will show that if we start 

with a canonical distribution corresponding to one set of thermodynamic parame­

ters and push it forward by any canonical transformation of the underlying phase 

space, then the values of the thermodynamic parameters obtained fr~m the pushed 

forward distribution correspond to an entropy which is larger than that of the first 

set. We first recall that the information entropy of the pushed forward distribution 

is the same as the entropy corresponding to the initial parameters. This is because 

the integral J -p logp doesn't change under volume preserving diffeomorphisms 

and canonical transformations preserve volume. Next, the entropy corresponding 

to the new parameters is the information entropy of the maximal entropy distri­

bution with them as mean values (i.e. the Gibbs canonical distribution). Since 
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this entropy is maximal and the pushed forward distribution is another distribution 

with the new parameters as mean values, the new entropy is greater than or equal 

to the information entropy of the pushed forward distribution. But this shows that 

the new entropy is greater than or equal to the old entropy. Since information 

entropy measures our ignorance, this interpretation of the second law simply says 

that if we begin with a known (canonical) distribution, follow it in detail under a 

canonical transformation, and then forget everything but the mean values of some 

thermodynamic parameters, we are bound to lose information (or at least not gain 

it). 
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16.5. Some Symplectic and Contact Geometry 

"As each skylark must display its comb, so every branch of mathematics must 

finally display symplectisation."-p. 74 of [Arnold, 1984] 

In this section we will collect together some of the definitions and results of 

symplectic and contact geometry and give some motivation for their use in the 

contexts we have in mind. We have seen that in wave theory we get asymptotic 

interals over 

eiS/< (16.44) 

where S is the action and that in statistical mechanics we get asymptotic integrals 

over 

eSf< (16.45). 

where S is the entropy. By using stationary phase or steepest descents, we asymp-

totically reduce these expressions to ones involving only regions with specified dif-

ferential dS. When we are studying families of values parameterized by y (eg. the 

point in space we are observing our wave or the thermodynamic observables), we 

often obtain S as a function of y and are interested in points where dS has a value 

equal to a Lagrange multiplier in the dual space of y. The level sets of S also often 

have physical interest (eg. the wavefront or the isentropic states). Thus we are 

motivated to study the geometric structures associated with the differentials and 

level sets of functions. 

16.5.1. Hypersurfaces Determined by a Function 

M 

2-din-..nsion•l 
~TW~ifold M 

1-~t ofS 
(point in 5-dim _,1M) 

@ 
~Vfl nts ofS 

= IM,j~rsurf•cu in M 

t~ttM,j~rpl-

Conbct EJ.m.nt 
(1n 3-d1m cont.ct spKt) 

Figure 16.1: Spaces associated with a function on a manifold. 

16.5.1. Hypersurfaces Determined by a Function 
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Every function S on a manifold M of dimension m, determh1es two natural 

kinds of hypersurface (a hypersurface is a codimension-1 submanifold (i.e. of one 

dimension less than the ambient space it lies in)). For example, consider the function 

S(x, y) = x2 + y 2 defined on the 2-dimensional plane coordinatized by x and y. Its 

level sets form a family of hypersurfaces of M parametrized by S (with occasional 

non-submanifolds that are of measure zero generically, by Sard's theorem). For 

S = x2 + y 2 , the level sets are the circles x2 + y 2 =constant. On the other hand, 

S's graph is a hypersurface in M x !R. For S = x2 + y2 , the graph is a paraboloid 

of revolution in (x, y, S) space. The differential dS of S is a one-form on M (which 
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geometrically represents the gradient of S). For S = x2 + y2 , we see that d8 = 

2x dx + 2y dy. This gives the first order behavior of S near each point of M. The 

first order behavior of a hypersurface at a point in a manifold is represented by a 

hyperplane in the tangent space of the manifold at that point (i.e. a codimension 

one subspace of the tangent space). We may thus form the set of all hyperplanes in 

TM that are tangent to level sets of Sand the set of all hyperplanes in T(M x !R) 

that are tangent to the graph of S. The tangent hyperplanes to the level sets are 

exactly those vectors which dS annihilates. Thus this set of hyperplanes contains 

all the information that dS does except its length. For S = x 2 + y2 , the vectors 

which are scalar multiples of 

a a y--x­ax ay (16.46} 

are annihilated by dS. At each point, this vector spans the tangent space to S's 

level set. The tangent hyperplanes to the graph of S give all the information of 

dS, but in addition, the place they are based at tells us the value of S (which isn't 

known from just dS}. The tangent hyperplane to the graph of S = x2 + y 2 at the 

point (x, y, S}, assumed to be away from x = 0, y = 0, is spanned by the vectors: 

and 

a a y--x-ax ay 

1 a 1 a a 
2x ax + 2y ay + 2 as. 

(16.47} 

(16.48) 
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16.5.1.1. The Underlying Manifold M 

We thus get several natural additional spaces of interest when we begin to 

consider functions on a manifold. Let the coordinates q represent points in M. The 

space of all q's is M and is of dimension m. 

16.5.1.2. The Graph of a Function 

The space whose points give both q and the value of a function S at q is M x !R. 

This is ( m + 1 }-dimensional and is where the graph of S lives. 

i6.5.1.3. The Cotangent Bundle 

The space whose points represent q and the differential p = dS of a function at 

q, is the cotangent bundle T" M. This is 2m dimensional and as we have seen earlier 

has the canonical one-form p dq and a natural symplectic structure dq 1\ dp defined 

on it. We defined an m dimensional submanifold of T" M to be Lagrangian if the 

symplectic form vanishes on it. We have seen in section 7.1.4 that the graph of dS 

is a Lagrangian submanifold. For waves this represents the local wavevector as a 

function of position in an eikonal wave (in spacetime the manifold represents the 

solution to the intial value problem). It is important to represent this in the space 

of both y's and k's, because even though this surface is smooth, its projection may · 

not be, and our wave can develop multiple branches and caustics. For thermody-

namics it gives the intensive variables as a function of the extensive ones (recall the 

nomenclature convention from 16.3.1). We may think of it as the equation of state. 
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It is important to think of this as a surface in the higher dimensional space, because 

its projection onto the intensive variables becomes singular at phase transitions. 

16.5.1.4. The First Jet Bundle 

The space whose points represent q, the differential p = dS of functions, and 

the value S of functions, is the first jet bundle J 1 M. This is (2m+ I)-dimensional 

and we saw earlier that this has a natural contact structure on it, defined as the 

set of tangent hyperplanes annihilated by the one-form: dS- p dq. Any function S 

defines an m dimensional submanifold of J 1 M by q >--+ (q, dS, S). An m dimensional 

submanifold of a contact manifold is called a Legendre submanifold if it is tangent 

to the contact planes at each point. The submanifold of J 1 M determined by a 

function S is Legendre. For waves this means including the value of the phase 

with the position and wavevector. When we forget about it (by reduction), we get 

the Lagrangian submanifold above. For thermodynamics, this gives the relation 

between the entropy and the intensive and extensive mechanical varibles. 

16.5.1.5. The Space of Contact Elements 

The set of hyperplanes in a linear space of dimension m forms a smooth man­

ifold of dimension m- 1 (eg. the set of lines through the origin in a plane may be 

thought of as a circle). A hyperplane of the tangent space of a manifold at some 

point is called a contact element at that point. The set of all contact elements of M 

forms a manifold of dimension 2m - 1 whose points represent a point q of M and 

a tangent hyperplane there. We have seen that this manifold of contact elements is 
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itself a contact manifold. A tangent vector to the space of contact elements, which 

we may think of as representing an infinitesimal motion of the contact element it is 

based at, is in the contact structure if the velocity of the basepoint of the contact 

element lies in the contact element. The set of contact elements which are tangent 

to a level set of S forms a submanifold of the space of contact elements of M that 

is of dimension m and is in fact a Legendre submanifold. We may think of this as 

parameterizing the wavefronts, including the direction. When a wavefront begins 

to cross itself (as at a caustic), it is important to keep the direction of the wavefront 

as well as the position. The Legendre submanifold is always smooth, even though 

the wavefront may develop cusps and self intersections. 

Similarly, the set of contact elements of M x !R is a contact manifold of di­

mension 2m + 1. The set of contact elements that are tangent to the graph of S 

forms an m dimensional Legendre submanifold. This set will be important to our 

understanding of the Legendre transform. 

16.5.2. The Conormal Bundle 

If we are given a codimension n submanifold N of M (that is thus of dimension 

m- n), we may think of it as the simultaneous level set of n linearly independent 

functions (locally). This motivates us to consider the set of all covectors in T• M 

based on N, which annihilate the tangent space to N. This is called the conormal 

bundle of N in M. (If M had a metric, then this would be all vectors that are 

perpendicular to N). This is a Lagrangian submanifold of T• M. In the limiting 

case where N is a point of M, the conormal bundle is just the set of covectors based 
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at that point. If N is the whole of M, then it is the zero section ofT* M. If M were 

Riemannian,_ then there is a natural projection of the (co)normal bundle of N into 

M given by sending (q,p) in the normal bundle to the point a distance IPI along the 

geodesic in M starting at q in the direction p. This gives the set of rays in M that 

are traversed by light emitted by N, where the metric represents the (anisotropic) 

index of refraction. The singularities of the projection from the normal bundle to 

M represent the caustics. They are the points which lie at the center of curvature 

of some direction on the surface ( [Arnold, 1983] p. 83). 

16.5.3. The Wavefront Set 

This map is also related to the wave front set of a distribution d on M in­

troduced by Hormander ( [Hormander, 1983] p. 252). We associate with d a 

Lagrangian submanifold of T* M by saying that a covector p is in d's wavefront set 

if the pushforward of d to !R1 along any smooth function whose differential is p is 

still siJ:igular (i.e. there exists a smooth function on !R1 whose integral with respect 

to the pushforward of d doesn't approach zero as the region of integration vanishes). 

Thus a point 6-function at q on M has a wavefront set that includes all covectors 

at q while a 6-function supported on a submanifold N has a wavefront set that in­

cludes only the conormal bundle of N. This is of interest because the singularities 

of the solution of a hyperbolic P.D.E. with singular intial conditions must lie on 

the projection to M given above of the wavefront set. Thus for the wave equation 

on a Riemmanian manifold, a 6-function intial condition will lead to singularities 

on a growing sphere (with respect to the metric) which we recongize as slices of 
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the light cone. A singular hypersurface moves like a wavefront and propagates only 

in the direction of the rays. We can understand this close relation between high 

frequency asymptotics and the evolution of singular distributions by recognizing 

that the singular aspects are due to the infinitely high frequencies, and a singular 

distribution can be represented as an integral over the asymptotic parameter of a 

family of eikonal waves. This can be related to Huygens principle. The fact that 

singularities move on rays is behind a beautiful discussion on p. xi of [Guillemin 

and Sternberg, 1977] explaining why the frequency of a bowed violin is the same 

as that of a strummed one (a priori, the frequencies of driven oscillations should 

have nothing to do with free oscillations). The explanation is that when the string 

snaps away from the bow, a singular kink is generated which goes down the string 

and back to kick the string off the bow again, generating a frequency equal to that 

of the normal mode corresponding to that periodic ray. The reference gives figures 

showing the string motion. 

16.5.4. The Space of Tangent Contact Elements 

\\"e may also consider the set of all contact elements of M which are tangent to 

N (i.e. which contain N's tangent space). This set is a Legendre submanifold of the 

space of contact elements of M. This represents the local pieces of the wavefront 

that will be emitted from N. Even if N is lower dimensional, like a point, the 

emitted wavefront will ben dimensional (like a sphere about the point). 
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16.5.5. Legendre Transforms and Linear State Spaces 

As we have discussed in section 7 .1.1, the scaling we perform to do our asymp-

toties stretches the underlying manifold Min both the wave case (where we went to 

a slow space) and in the statistical mechanical case (where we went to rescaled me-

chanica! variables). Asymptotically, any non-trivial manifold structure disappears 

and we are left with !Rm. In this case the cotangent bundle becomes !Rm X !Rm•. 

When the base space is linear, there are more geometrical operations which we may 

perform.· The new freedom is to project not only "vertically" to !Rm, but also "hor-

izontally" to !Rm•. Essentially we have decided how to identify all the cotangent 

spaces at different points of M. We may do this by choosing coordinates on M, 

which gives such an identification but depends on coordinate choice. As f -+ 0, 

however, all smooth coordinate systems lead to the same asymptotic identification. 

This asymptotic identification of cotangent spaces is non-uniform in q, but all our 

operations, like local Fourier transform, always include a window which scales so as 

to eliminate the non-uniform parts. 

16.5.5.1. The Legendre Map 

Given any function S on !Rm, its differential takes its values in !Rm•. Thus dS 

is a map from !Rm to its dual space, which we may call the Legendre map. In the 

case of waves, this maps y space into k space. For thermodynamics, it takes a set of 

extensive variables into. their thermodynamically conjugate intensive variables. We 

have seen that these are the stationary points for the Fourier and Laplace transforms 

respectively. 
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16.5.5.2. The Legendre Transform 

When S is strictly convex (its Hessian (second derivative matrix) is positive 

definite) then this map is one to one. If S is bounded below by some quadratic 

form, then it is a diffeomorphism. In this case it makes sense to ask for the function 

T(p) on !Rm• whose corresponding Legendre map is the inverse of the one generated 

by S ( q). One sees that in this case: 

T(p) = (p,q(p))- S(q(p)), (16.49) 

where q(p) is the inverse of the first Legendre map, generates the inverse. 

Let us show this explicitly in the coordinates qi where 1 ~ i ~ N. Let us use 

Ls to denote the Legendre map Ls(q) = dS(q) = p defined by S. In coordinates 

this reads 

Pi = (Ls(q))i = as aqi. (16.50) 

By the condition imposed on S, this map is invertible. We denote the inverse by 

L s 1 and the function T we defined is then given by 

T(p) = (L5 1 (p))iPi- S(L5 1 (p)). (16.51) 

We want to show that the Legendre map Lr defined by the function T is actually 

the inverse of Ls. This Legendre map is expressed in coordinates as 

i = aT _ (~ L"51(p})l). (LT(P)) 8p, a(LS' (p))' - 88 (L$' (p)) . 8p' ( ( 16.52] 
= (L5l(p))i + PJ "'- aqJ 
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We have used the Leibniz rule to do the derivative of the first term in T and the 

chain rule to do the second term. Now recognize that 

as {Cl{p)) =Pi 
oqi s 

to see that the last two terms cancel. We are finally left with 

Lr = L5 1 

as desired. 

In general we may define: 

T(p) = sup
9
{(p,q)- S(q)) 

{16.53) 

{16.54) 

{16.55) 

to be the Legendre transform of S ( [Arnold, 1983] p. 19). The previous definition 

agrees with this one in the situations to which it applies. If S is {strictly) convex 

then so is T. We shall see that this is important for thermodynamics, since -S 

must be a convex function of the extensive variables. 

16.5.5.3. The Legendre Transform and a Function's Graph 

If we are given a number T and a vector p E !Rm•, then the equation: 

T=(p,q)-S {16.56) 

defines a hyperplane in (q, S) space (i.e. !Rm x !R). The equation above says that 

the graph of S in !Rm x !R hits this hyperplane at the point where it has the slope 

p. The value of T is minus the S intercept of this hyperplane {i.e. the point where 

16.5.5.4. Legendre Transforms and Projective Duality 490 

it hits the axis q = 0) as is shown in figure {16.2a). We parameterize the space of 

non-vertical (i.e. they don't contain lines parallel to the q = 0 axis) hyperplanes 

in (q, S) space by (p, T) as above. These are called Pliicker coordinates (see for 

example p. 88 of [Jenner, 1963]). The map that sends points of the graph of S in 

(q, S) space to the hyperplane tangent to the graph there, goes top= oSjoq which 

is image of q under the Legendre map and T which is the value of the Legendre 

transform of S at p. 

16.5.5.4. Legendre Transforms and Projective Duality 

The map which sends points of a hypersurface to the hyperplane tangent to 

the surface there has been the object of mathematical study for a long time. It is 

behind the notion of projective duality where, for example, all theorems of geometry 

in the {projective) plane may have the words "point" and "line" exchanged (eg. two 

points determine a line, two lines determine a point). To make this work out, one 

must tack on "directions at infinity" to Rm so that parallel lines really intersect 

at infinity. This leads to projective geometry, where the m dimensional projective 

space RPm is defined as the space of lines through the origin of !Rm+I. A line 

'through the origin of !Rm+I• defines a linear form on !Rm+I up to magnitude, which 

may be identified with thr hyperplane through the origin of !Rm+I on which it 

vanishes. This in turn is made up of lines through the origin, and may be thought 

of as an arbitrary hyperplane in pm. Therefore we call the space of hyperplanes in 

pm its projectively dual space pm•. 
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Figure 16.2: Various aspects of Legendre transforms and projective duality; ex-

planations are given in the text. 
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To each hypersurface in pm, we may associate the projectively dual hypersur-

face in pm• defined as all hyperplanes that are tangent to the first hypersurface. 

The original hypersurface is the envelope of the planes defined by its dual (e.g., the 

tangent lines to a curve as shown in figure ( 16.2b) themselves form a curve in the 

space of lines). This relationship is involutive in the sense that the dual of the dual 

brings you back to the original. The graph of the Legendre transform of a function 

is the dual ofthe graph of the function in this sense (p. 20 of [Arnold, 1983]). 

Flat places in the surface, where it includes straight line segments and so there 

1s an interval of different points with the same slope, correspond to corners in 

the dual surface, which has an interval of different slopes at the same point. For 

example, in figure (16.2c} the graph of S is made of 3 straight segments joined at 

two corners. The graph ofT, its Legendre transform, is made of 2 straight segments 

(corresponding to the corners in the graph of S} and 3 corners (corresponding to 

the segments of S). The entire graph of S for q ~ 1 has slope 0 and S intercept 

-1 and therefore corresponds to the single point p = 0 and T = 1. As we follow 

S's graph around the corner at q = 1, S = -1, the slope goes from 0 to 1 and the 

intercept from -1 to ~2. This single point therefore corresponds to the whole line 

segment over 0 ~ p ~ 1 in the graph of T. The line segment corresponding to 

1 ~ q ~ 2 in S's graph again has a single slope and intercept and corresponds to 

the point p = 1, T = 2. The corner at q = 2, S = 0 gives rise to the line segment 

over 1 ~ p ~ 2. Finally the entire line over 2 ~ q corresponds to the single point 

p = 2, T = 4. This entire analysis may be applied in reverse to 'go from T(p) to S(q) 

showing that Legendre transforms are involutive. For example, the line segment in 
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T's graph over 1 ~ p ~ 2 has slope 2 and intercept 0 and so corresponds to the 

single point q = 2, S = 0 in the graph of S. This is important in thermodynamics 

where fiat places in the graph of the entropy as a function of the extensive variables 

correspond to phase transitions. 

Double tangents (i.e. when a hyperplane is tangent at two points of the surface) 

correspond to points of self intersection of the dual surface (an example is shown in 

figure (16.2d)). In thermodynamics, we take the convex hull of the region below the 

graph of entropy, and so places with double tangents get turned into fiat regions as 

shown in figure (16.2e). The dual surface replaces the intersection of two surfaces 

by their coming together at a corner and stopping. 

Surfaces defined by algebraic equations have duals defined by algebraic equa­

tions. In the 2-dimensional plane, a' curve with an inflection point (i.e. fiat to 

the second order) has as its dual a cusp (whose edges are tangent to the second 

order) as shown in figure (16.2f). A conic section in the plane gets taken to a conic 

section. As shown in figure (16.2g), ellipses go to hyperbolas and parabolas go to 

parabolas. The duals of polyhedra in 3 dimensions have vertices corresponding to 

the original faces and faces corresponding to the original vertices (eg. a cube and 

an octahedron, an icosahedron and a dodecahedron, and a tetrahedron and itself 

are dual as shown in figure (16.2h)). The graphs of q0 fa and pb /bare dual when 

1/ a + 1/ b = 1 and so they are Legendre transforms of each other. A norm f ( q) on a 

linear space may be defined by the unit sphere it defines. There is a natural norm 

on the dual space given by g(p) = max/(z)$II(p,x)l. Its unit sphere is the dual of 

the original one (this exemplifies the relationship between hypersufaces defined by 
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level sets and by graphs of functions). 

16.5.5.5. Legendre Transforms and Uncertainty Relations 

Since q and p are dual variables, acting on one by an invertible linear transfor­

mation A is equivalent to acting on the other by the inverse A - 1 of that transfor­

mation. This means that the Legendre transform of a function S(A · q) is equal to 

T(A - 1 · p) if T(p) is the Legendre transform of S(q). This is the asymptotic formu­

lation of uncertainty principles for the Fourier and Laplace transforms. If S(q) is a 

quadratic form, then its Legendre transform is also a quadratic form. In fact these 

are the unique functions for which the value of the Legendre transform is equal to 

that of the function at the corresponding point. The widths of the forms (and so the 

volume of the unit spheres they define) are inverses of each other. Since the expo­

nential of a quadratic form is a Gaussian, this says that in thermodynamics, when 

the probability distribution of an extensive variable is Gaussian (as is commonly 

the case in fluctuation theory), then the asymptotic distribution over the conjugate 

intensive variable is also Gaussian with the inverse dispersion. The more precisely 

you know the temperature, the less precisely you know the energy and vice versa. 
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16.5.5.6. Legendre Transforms and Jets of Functions 

Let us give a. final picture of a Legendre transformation (p, 366 of [Arnold, 

1978jf. Let us call a map from one contact manifold to another of the same dimen­

sion that takes contact planes to contact planes, a contact transformation. If we 

consider the first jet spate of M, then the map 

(q,p, S) ...... (p,q, (p,q) :- S) . (16.57) 

is a contact transformation which takes the graph of dS and S into the graph of its 

Legendre transform. 
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16.6. The Origin of the Lagrangian Submanifolds in Physics 

In this section we will state the theorem from symplectic geometry which may 

be viewed as being responsible for the Lagrangian submanifolds in both wave theory 

and thermodynamics. In both these cases we have reduced the quantities of interest 

to integrals of asymptotic exponentials over large spaces which we then reduce to 

a variational principle for the exponent by stationary phase or steepest descents . 

In the wave case, we obtain the wave at a given point as an integral over all paths 

of an exponential with the action S of a path in the exponent (see50 [Schulman, 

1981]), leading to the principle of least action (or actually stationary action). In the 

statistical case we obtain the probability of a given set of measurable quantities as an 

integral over all distributions of an exponential with the entropy S of a distribution 

in the exponent, leading to the principle of most entropy (maximum entropy). 

16.6.1. Constrained Integration and Extremization 

In both cases we have an integral over some space, typically defined by some 

constraints (the end of the path is at the observation point, or the distributions 

have given mean values for the quantities of interest). If we project this space to a 

smaller one, we may first integrate over the fibers of the projection, and then over 

the smaller space. This leads to a variational principle where we first extremize S 

over the fibers, giving a function S on the smaller space whose extrema represent 

the contributions we are interested in. 

We discuss the physical examples in the next few sections. To see what is going 

on geometrically, consider the projection from ~2 to~ taking (x, y) ....... x. If we want 
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the extremal value of We may now find the critical points on this space to find the actual paths taken. 

This finite dimensional integral and variational principle make good mathemat-

S(x,y) = 15 + (x- 1)2 + (y- 2) 2
, ( 16.58) 

ical sense. We actually define the "integral over all paths" in terms of finer and 

we may first extremize S(x,y) at each x, holding x fixed and letting y vary. The 
finer approximations by such piecewise paths as the asymptotic parameter vanishes. 

stationary points under this constrained variation satisfy 
Physically, the rays don't mean anything on a scale smaller than a wavelength, and 

as we do our scaling, the pieces of path we sum over should get smaller and smaller 
a 
ByS(x,y) = 0 = 2(y- 2). (16.59) while including more and more wavelengths. 

As we let the number of constraint surfaces on which we specify the point of 
The surface y = 2 is made up of the constrained critical points. S restricted to this 

intersection with a path increase to infinity, we more and more precisely constrain 
surface is 

the ray. One can imagine this limiting to the case where giving a point in the surface 

Sc(x) = 15 + (x- 1)2 , (16.60) 
product space uniquely specifies a path. This is the sense in which the path space 

which we may think of as living on the projected space. We now extremize over x can be thought of as an infinite product of interposed surfaces (that foliate space). 

yielding 

d 
dx Sc(x) = 0 = 2(x- 1). (16.61) 16.6.3. The Wavevector as a Kind of Force 

Thus Xc = 1 and the critical value of S is Sc(1) = 15. 
We see in this example that the true paths will be those which come into and 

leave a surface with the same slope, hinting that the dual space of a surface is 

important. For an extremal ray, when we perturb the point on the surface, the 

16.6.2. Paths Constrained on Surfaces change of S on the incoming part exactly cancels the change of S on the outgoing 

For example as in figure (16.3), we may first sum over paths which go through 
part to first order. Thus the derivative of the action of a part of the ray with respect 

given points on the surfaces: P1 , ... Pi in space before reaching the point of ob-
to changes in its endpoint acts as a kind of "force". For a valid ray the "forces" 

servation. We extremize over paths subject to these constraints and so obtain the 
on the incom;...tg ray and outgoing ray must balance. We will see the analogy with 

action as a function on 
thermodynamic forces momentarily. 

pl X ... X Pi. (16.62) 
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light paths constr ain~d to 
go through giv~n points on surfact 

Figure 16.3: Some paths that go through a ~ven point on the surface P. 

16.6.4. Distributions Constrained on Subsystems 

In the statistical case, we may imagine different pieces of our thermodynamic 

system to be forced to have given values for their extensive quantities. For example 

as in figure (16.4), we might have a box with a movable partition which allows 

the transfer of volume between its two halves and is thermally conducting and so 

also allows the transfer of energy. We may first do our integral over distributions 

'"ith a given energy and volume in the left portion. We maximize the entropy 

subject to this constraint and so obtain an entropy on the finite dimensional space 

of values of the left side's energy and volume. We extremize this entropy on a finite 

dimensional space to find the actual equilibrium values of the constrained quantities. 

16.6.5. Thermodynamic Forces 500 

This finite dimensional integral and variational principle makes good mathematical 

sense. We actually define the "integral over all distributions" in terms of finer and 

finer partitions of our system as the asymptotic parameter. vanishes. Physically, 

the distributions don't mean anything for too few particles, and so as we do our 

scaling the distributionswe sum over should be constrained to give definite values 

to smaller and smaller parts of the system while including more and more degrees 

of freedom. This kind of averaging was discussed in the introduction. 

As we let the regions of pha.Se space over which the probability distribution 

averages are specified become smaller and smaller, we more and more precisely 

constrain a distribution. One can imagine this limiting to the case where giving a 

point in the region average product space uniquely specifies a probability distribu­

tion. This is the sense in which the space of distributions can be thought of as an 

infinite product of spaces of averages at points of phase space. 

16.6.5. Thermodynamic Forces 

·We see in this example that the true energy and volume of the left system will 

be those such that the variation of the left portion's entropy is equal and opposite 

to the variation of the right portion's entropy to first order, hinting that the dual 

space of the constrained observables is important. The derivative of the entropy of 

the left half with respect to the constraint acts like a "force" and the left and right 

forces must be balanced in equilibrium. 
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Figure 16.4: A distribution is constrained to give the left region a definite energy 

and volume. 

16.6.6. Lagrange Multipliers and Legendre Maps 

This same idea is captured in the notion of Lagrange multiplier, which acts 

like a system with given "force" instead of given value for any constrained quantity. 

To maximize a function over a space with an imposed constraint, we may instead 

maximize over a new system on the whole space with an additional linear piece 

with given "force" that allows us to a postiori make the critical point satisfy the 

constraint. 

For example, if we want to maximize 

S(x, y) = 2 .c._. x 2
- y2 (16.63) 

with the constraint that y = 1, we might consider the constrained variational prob-
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!em of maximizing 

Sc(x) = 2- x 2
- 1 = 1- x2 (16.64) 

over the constraint surface. This yields x = 0 and S = 1. Alternatively, we may 

maximize 

SL(x,y) = 2- x2
- y2

- o(y- 1) (16.65) 

over all x and y yielding x = 0 and y = -et/2. The proper force et to push 

the maximum to y = 1 is et = -2. This again yields x = 0 and S = 1. The 

reason for doing this is that it is often easier to do the unconstrained variations 

(even with the free parameter et) than to impose the constraint explicitly. We 

have seen that the relation between the states and the conjugate forces is just the 

Legendre map generated by S. There is a corresponding function on the dual 

variables which is the Legendre transform of S. If we think back to our asymptotic 

integrals, imposing as given as;ay in the wave case makes the integral into a 

Fourier transform with specified wavevector. In the statistical case we get a Laplace 

transform with specified intensive variables. 

16.6.6.1. Constant Force Asymptotic Systems 

These systems with given "forces" may often be thought of as asymptotic limits 

of real systems. Thus for example, a very extended weak spring acts like a constant 

force (a very strong inextended ;,pring acts like a constant position (wall)), a large 

system in thermal equilibrium acts like a heat bath with constant temperature and 

infinite heat capacity, (a small system acts like a thermal insulator, it has zero heat 

capacity and anything coupled to it has almost constant energy), a large battery 
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with a large series resistor acts like a constant current source, a large constant 

current source with a small parallel resistor acts like a constant voltage source, etc. 

16.6. 7. Lagrangian Submanifolds and Constrained Extremization 

Let us now give a theorem of symplectic geometry that describes this kind 

of situation geometrically. This is given in [Weinstein, 1977] on page 25 and in 

[Guillemin and Sternberg, 1977] on page 149. Above we have seen that we often 

want to project a space onto a smaller one while considering the critical points of 

a function S. The following theorem ( 16. 7) tells us that if we have a projection of 

M onto N, then those points in T* N which pullback to points of the graph of dS 

in T* M actually form a Lagrangian submanifold ofT* N. These points sit over the 

critical points of S restricted to each fiber of the projection (i.e. inverse image of a 

point inN). 

16.6. 7 .1. Parametrizing Lagrangian. Submanifolds 

This theorem is particularly interesting when there is more than one critical 

point of S on the fiber over x E N. This means that the corresponding Lagrangian 

submanifold in T* N has more than one sl-.~et sitting over x. Thus we may obtain 

"folded" over Lagrangian submanifolds from perfectly nice ones (i.e. the graph 

of dS in T* M). Weinstein shows that this may always be done locally and gives 

conditions for the global version. This is the key to Maslov's approach to wave 
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asymptotics. In doing an eikonal study of a linear wave equation, we may represent 

a wave as a so-called oscillatory integral: 

v\(y) =I A(y,a)eiB(y,a)/•da. (16.66) 

If we view our equation as defined on (y, a) space by ignoring a, solutions on the 

(y, a) space project to solutions on y space (by linearity). We have just seen that 

even when the Lagrangian submanifold in the cotangent bundle of y space becomes 

folded over and the asymptotics becomes invalid (i.e. nonuniform at the fold), 

there is a nice wave on (y, a) space that projects to it. We may do our asymptotics 

there and project the answer via stationary phase to see that even the folded over 

Lagrangian submanifold is a representative of the wave. 

16.6.7.2. Theorem on Pushing Forward Lagrangian Submanifolds 

Let us give the statement of the theorem from [ Guillemin and Sternberg, 1977]: 

Theorem 16.6. Let f : M -+ N be a smooth map with df of constant rank and 

let A be a Lagrangian submanifold ofT* M. If A intersects df* T* N transversally, 

then df.A is a Lagrangian submanifold ofT* N. 



16.6. 7.3. Application of the Theorem to Waves 505 

16.6.7.3. Application of the Theorem to Waves 

This restricts to the case above when A is the graph of the function 5. In the 

case of waves, we take M to be the space of all paths, N to be the 3-dimensional 

space in which we observe our waves, the projection to be that which sends a path 

to its endpoint, and the action 5 of a path to be the function to extremize. The 

the theorem says that the differentials of the actions of those paths with extremal 

action for each endpoint form a Lagrangian submanifold in the cotangent space of 

obervation space N. The fibers of the cotangent bundle are the derivative of action 

with respect to the observation point and represent the wavevectors at a given point. 

This cotangent bundle is the wave phase space and the Lagrangian submanifold is 

the graph of the wavevector at each point for an eikonal wave with wave phase 5. 

16.6.7.4. Application of the Theorem to Thermodynamics 

In the case of statistical mechanics, we take M to be the space of probability 

distributions, N to be the space of extensive observables that we are studying, the 

projection to be that which sends a distribution to the mean value of the observables 

in that distribution, and the entropy 5 of a distribution to be the function to 

maximize. The theorem then says that the differentials of the entropies of those 

distributions with maximal entropy for each mean value of the 0bservables form 

a Lagrangian submanifold in the cotangent space of the extensive variables. The 

fibers of th~ cotangent bundle are the derivative of entropy with respect to the 

extensive variable and represent the conjugate intensive variables. This cotangent 
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bundle is the thermodynamic phase space and the Lagrangian submanifold is the 

graph of the equation of state for an equilibrium system with entropy 5. 
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16.7. Theorem on the Pushforward of Legendre Submanifolds 

Let us now extend this theorem to Legendre submanifolds of contact manifolds, 

because this is a context in which we may understand more of the structure of 

thermodynamics. Assuming the same transversality condition as in the last theorem 

(which is generically true), we find that for a projection M --+ N and a function 

S on M, the points in the first jet bundle J 1 N of N which pull back to points in 

J 1M in the graph of S and dS where the derivative of S along the fibers of the 

projection is zero, together form a Legendre submanifold of J 1 N. Let us locally use 

coordinates (q,a, S,p,a) on M where a parameterizes the fibers of the projection 

and q are coordinates on N, o and p are the corresponding differentials, and S 

represents the value of a function. We assume that the coordinates (q,S,p) agree 

with those of J 1 N on the set of pulled back vectors. 

The canonical contact structure on J 1 Misgiven by the vectors annihilated by 

the form 

dS - p dq - ada. (16.67) 

A contact form on J 1 N is given by 

dS- p dq. (16.68) 

We have seen earlier that the one-jets of S in J 1 M form a Legendre submanifold 

with respect to this contact structure. We are interested in its intersection with the 

set o = 0 (i.e. those points where S's derivative vanishes. along the fibers of the 

projection). From the expression for the contact form, we see that at these points 

dS- p dq vanishes on S's one-jets and so the projected submanifold is contact on N. 
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We may use the theorem above to see that the projection has the same dimension 

as N (adding the S direction to both T• M and T" N doesn't do anything to the 

dimension). Thus we may conclude that the projection is a Legendre submanifold 

of J 1.'\". 

16.7.1. The Contact Structure for Thermodynamics 

Let us apply this result to the thermodynamic situation. Here the manifold 

N is made of the asymptotically scaled extensive thermodynamic variables we are 

considering. We have been using y for coordinates on this and they represent such 

quantities as the energy U, the volume V, the numbers of the various species of 

particles or molecules (not including the total as discussed above) N1 ... N;, the 

magnetic moment p., the electric dipole moment n etc. On the first jet space J 1 N, 

the function variable is the entropy S, and the derivative directions are coordinatized 

by the thermodynamically conjugate variables X to they. The conjugate variable 

to E is the inverse temperature: {3, to V is the pressure over the temperature: 

pfT, to N; is minus the i'th chemical potential over the temperature: -p.;/T, to 

the magnetic moment is minus the magnetic field strength over the temperature: 

- H /T, to the electric dipole moment is minus the electric field over the temperature: 

-EfT, etc. 
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16.7.1.1. The Contact Form for Jets of Entropy 

The contact form is then 

dS - ..!_ ( dU + p dV - L lli dN; - H . dM - E . dP + ... ) . 
T . (16.69) 

We have seen that our asymptotic theory guarantees that this form vanishes on the 

equation of state sudace in J 1 N since it is a Legendre submanifold. We recognize 

this as the first law of thermodynamics. 

16.7.1.2. The U, V, (1/T), (pfT) Symplectic Manifold 

For simplicity, from now on we shall consider only (S, U, V, (1/T), (p/T)) space. 

The other coordinates behave in exactly the same way if they are desired in a theory. 

We have seen that we may project our contact space along the S direction to obtain 

the symplectic manifold coordinatized by (U, V, (1/T), (p/T)). The contact form 

given above goes into the canonical one form on this space (since it is constant on 

the fibers): 

1 
T(dU + p dV). (16. 70) 

The corresponding symplectic structure is: 

dU !\ d(~) + dV !\ d(~). (16.71) 

By our general theory, the equation of state sudace is a Lagrangian submanifold 

with respect to this symplectic structure. 
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16.7.1.3. The (S, V,p, T) Symplectic Manifold 

\Ve have seen earlier that a contact form gives the same contact structure when 

it is multiplied by any nowhere vanishing function. Let us use that freedom to get 

an equivalent contact form on our contact space by multiplying by -T: 

dU - T dS + p dV. (16. 72) 

This too vanishes on our Legendre submanifold. Now the form is constant along the 

U direction and so we may project it to (S, V,p, -T) space, where it becomes the 

canonical one-form. The corresponding symplectic structure is exactly the one given 

by [Kijowski and Tulczyjew, 1979] that we listed in section 12.1. We may obtain 

this same symplectic structure as the canonical cotangent structure by viewing any 

of the pairs: (V, S), (V, T), (p, T), or (S,p) as the base and the other two variables as 

the cotangent fibers. Our Lagrangian submanifold is then represented as the graph 

of four different functions. As we have seen in great detail these are the Legendre 

transforms of one another, and are known as the internal energy, the Helmholz free 

energy, the Gibbs free energy, and the enthalpy. 

16.7.2. Legendre Transforms and Thermodynamic Potentials 

The reason for introducing these extra generating functions for our surface 

is that it is they that are extrernized under different combinations of constraints. 

We saw that for given extensive variables the system maximizes its entropy. For 

adiabatic variation of a system, the entropy is an adiabatic constant of the motion 

(we have seen that this is exactly the same situation as the adiabatic in variance of 
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the action of almost periodic orbits and leads there to the pseudoforces of reduction 

in mechanics which are the analog of the thermodynamics forces we are discussing 

here and the wave action density conservation for waves). The fact that entropy is 

maximized when energy and volume are fixed is equivalent to the fact that energy is 

minimized when entropy and volume are held fixed. An analagous situation is that 

the shapes in three dimensions which minimize their surface area for given volume, 

are the same a.s those which maximize their volume for given surface area. Thus by 

the same argument we used to show entropy was a concave function of the extensive 

variables, we see that the energy is a convex function of the other extensive variables 

and the entropy. As an example of a Legendre transform in both S and V, we see 

that the Gibbs free energy U- TS + PV is minimized for given temperature and 

pressure. 
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16.8. Phase Transitions and the Geometry of the Equation of State 

In [Gibbs, 1873], the function S(U, V) {or equivalently U(S, V)) was called 

the fundamental equation because it contains all the thermodynamic information 

about a substance. He was the first to recognize ( [Israel, 1979] p. xii) that this 

function contains more information than the usual "equation of state" which is a 

relation of the form 

f(p, V, T) = 0. (16.73) 

For example, in the case of an ideal gas one needs the relation 

pV"'~ =constant, (16.74) 

in addition to the equation of state 

pV = NkT (16.75) 

to specify the behavior of the gas. 

I will, nonetheless, call the expression of S as a function of the mechanical 

variables the equation of state, because it really describes the allowed relations 

between the intensive and extensive variables for a substance. For this example, 

the surface descibing the possible states is a two dimensional surface in (U, V, T,p) 

space (or equivalently in (S, V, T,p) space). The usual equation of state only says 

that t~·,is surface lies in a three dimensional one given by f = 0 and requires another 

constraint to obtain complete information. 
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16.8.1. Caustics and Phase Transitions 

We have seen that in the eikonal wave situation, places where the Lagrangian 

submanifold corresponding to an eikonal wave does not project nicely onto y space 

correspond to caustics of the wave field. These structures correspond to higher order 

derivatives vanishing at critical parameters in our stationary phase. In the statis­

tical mechanical context, the situation is simpler because only maxima contribute 

to the state as opposed to arbitrary critical points. In Rene Thorn's catastrophe 

theory such a condition is called the Maxwell condition. The places where the 

thermodynamic Lagrangian submanifold does not project nicely onto the intensive 

variables correspond to first order phase transitions. 

16.8.2. Convexity and First Order Phase Transitions 

For definiteness, let us use the extensive variables U and V to descibe the ideas 

of this section, though any set y would do as well. [Gibbs, 1873b] considers the 

form of the entropy as a function of U and V. He showed that S is a concave 

function of these variables. This means that for any t E [0, 1], and (Ua, Va), (Ub, Vb) 

in the domain of interest, we have the inequality 

S((1- t)Ua +tUb, (1- t)Va + tVb) ~ (1- t}S(Ua, Va) + tS(Ub, Vb)· (16.76} 

If we think of the ;-;raph of S as a two dimensional surface in (U, V, S) space, this 

just means that the graph of S does not fall below a line segment joining any two 

points on it. Equivalently, the region below this graph is convex (and so one says 

- S is a convex function). 
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Gibbs' argument runs as follows. Assume we had a point (Uc, Vc, Sc) on 

the graph of S which lay below a line segment joining the two allowable states: 

(Ua, Va. Sa) and (Ub, Vb, Sb)- As the system wants to maximize its entropy as much 

as possible, instead of going into a homogeneous phase with Uc, Vc, it will split into 

two phases, one of Ua, Va and one with Ub, Vb in such a way to have the total be 

Uc, Vc, and yet get greater entropy than Sc. In fact the system will try to do this 

in the way that gives the maximum total entropy. The combination of phases with 

the highest entropy will lie on the convex hull of the region below S. (The convex 

hull of a region is the smallest convex region containing it. It contains at least all 

points of all line segments whose ends lie in the original region.} Thus the actual 

entropy function will be concave. "Flat parts" of its graph (where a tangent plane 

contains more than a point) correspond to states which are linear combinations of 

the states corresponding to the extreme points which are at the boundary of the 

flat regions (and represent pure phases of the substance}. 

Notice that if the graph of the entropy contains a straight line segment, then 

the corresponding derivative along that direction is constant. Thus all points in 

a flat region have the same values for the intensive variables corresponding to the 

flat directions. If we choose an underlying smooth entropy function arbitrarily, it 

is non-generic for it to contain any straight line segments (though one would have 

to verify that this is true of entropies that arise from physically possible statistical 

mechanical situations}. Therefore all the phase transition type behavior comes from 

taking the convex hull, and we may classify the possibilities. 

If we have only one extensive quantity, say V (as in an isothermal Van der 
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Waals gas), then there is only one type of structure we can get, which is depicted in 

·figure (16.5). We concavify the entropy by adding a line segment which is tangent 

at the points where it touches the original graph of S. The endpoints of this line 

segement correspond to the liquid and gas phases (for instance). Physically we think 

of a puddle of fluid in the bottom of a volume that we are expanding at constant 

temperature. As we increase the volume the fluid evaporates at constant pressure 

(the vapor pressure) until it is all gas. Thus, as we move along the segment from 

one to the other, the proportion changes from all of one to all of the other. The 

pressure is the slope, so the whole change takes place at constant pressure. 

s 
convE>x 

v 

Figure 16.5: Isothermal entropy as a function of volume for the Van der Waals 

gas at the gas-liquid phase transition. 

\\'hen we consider 2 extensive variables, say U and V, we find several more 
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possibilities. If we have three "mountain" peaks as in figure (16.6a), then the con­

vex hull contains a triangular fiat region. The corners of this triangle represent 

pure phases (like solid, liquid, and gas) and the interior points represent linear 

combinations of these pure states. Since there is a 2-dimensional fiat spot, there 

are two intensive variables that are constant, which are here the pressure and the 

temperature. This is then a triple point of the substance. The edges of the triangle 

bound two dimensional ruled surfaces which contain only 1-dimensional line seg­

ments (since it is not generic for the original terrain to contain line segments). (A 

ruled surface may be thought of as a curve in the space of lines.) These represent 

first order phase transitions between two phases as discussed above. The width of 

the lines can get shorter as we move along the surface and go to zero as the square 

root of the parameter labeling the line segments. This disappearance is called a 

critical point. The more usual picture of these phenomena is given in the intensive 

space ofT and pas in (16.6b). We perform the Legendre transform to get to these 

variables and as we have seen, points in the graph will correspond to tangent planes 

of the original graph. If the original is convex, then so is its Legendre transform, 

but if the original has fiat spots, then the transform can have discontinuous first 

derivatives (i.e. corners). Since the first derivatives are discontinuous in this pic­

ture, it is called a first order phase transition. The ruled surfaces correspond to 

edges with a sharp corner, the flat triple point corresponds to three cornered edges 

coming together as in a tetrahedron vertex, and the critical point is where an edge 

smooths out. 
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Figure 16.6: a) The entropy as a function of U and V. A fiat triangle represents 

the coexistence of the three phases represented by the corners of the triangle. The 

ruled surfaces eminating from the edges represent phase transitions of two states. 

The parabolic end of the ruled surface represents a critical point. b) The entropy 

on T and p space giving the more usual picture as the Legendre transform of a). 

16.8.3. A Generalization of Maxwell's Equal Area Rule 

If we are given a manifold M, then we have seen in section 7 .2.1 that J 1M, the 

space of 1-jets of functions on M, has a natural contact structure. We saw in section 

2.4.5 that T* M, the cotangent bundle, has a natural symplectic structure w which 

is minus the differential of the canonical one-form 9. There is a natural projection 

from J 1 M toT* M, which sends the one-jet of a function at x EM to its differential 

there. Legendre submanifolds in J 1 M project to Lagrangian submanifolds in T* M. 
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Any loop in J 1 M which lies in a Legendre submanifold therefore projects to a loop 

in T* M with zero action (i.e. the integral of 9 around the loop vanishes). We may 

generalize this in: 

Lemma 16.7. Any piecewise smooth loop in J 1 M whose tangent vector at each 

point lies in the contact plane at that point projects to a loop with zero action in 

T*M. 

Proof. In local coordinates on J 1M, the contact planes are given by the tangent 

vectors annihilated by the one-form du - p dx (where x are coordinates on M, 

u is the value of the function whose jet the point in J 1 M represents: and p its 

derivative). The integral of this one-form around our loop therefore vanishes (since 

the loop is tangent to the contact planes). The canonical one form on T* M pulls 

back top dx on J 1 M. The integral of the canonical one-form is thus equal to the 

integral of du on each local piece. But u is a well defined function globally on the 

loop. Therefore the integral of du and therefore of 8 = pdx around the loop is zero. 

Q.E.D. 

Let us now use this lemma to generalize Maxwell's "equal area" rule for first 

order phase transitions. Let us be given some smooth function S of the variables 

y, which are linear coordinates on the linear state space M. This represents the 

"entropy" as a function of the extensive thermodynamic variables, but without 

regard for the thermodynamic stabil;_ty of the state it represents. We have seen that 

the entropy of the real state of the system, as a function of y will be the smallest 

concave function Sc that is everywhere greater than or equal to S. Equivalently, 

the graph of Sc is the boundary of the convex hull of the region below the graph . 
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of S. Consider any piecewise smooth loop in M x !R, whose points are either of state in the (p, V) plane. For the Van der Waals gas, where 

in the graph of S or the graph of Sc. If we are at a point contained in both 

graphs, then the differentials dS and dSc are also equal. (If they weren't equal 

a 
(V - b}(P + V 2 ) = RT ( 16. 77} 

then their tangent hyperplanes would intersect transversally there and Sc wouldn't these isothermal curves look like figure ( 16. 7). Maxwell showed that the area be-

be everywhere greater than or equal to S.) We may therefore lift our loop to both tween the two curves lying above the phase transition line is equal to the area 

J 1M and T" M by sending each point to the jet or differential of the function whose between them below it. Our construction generalizes this to arbitrary loops in the 

graph it lies in. Now the tangent vector to the original curve at each point is also thermodynamic phase space, which need not be isothermal. 

~angent to the graph of the function whose jet we use to lift. Thus the tangent 

vector to our curve in J 1 M at each point lies in the corresponding contact plane. 

By the lemma above, the loop in r• M has zero action. p 

Furthermore, if Sc is strictly greater than S, then its graph must contain a 

straight line segment (otherwise we could lower it and still keep it concave}. The 

derivative along this line segment is therefore constant. The Lagrangian submani-

fold dSc in r• M will therefore have a singular projection onto the thermodynami-

cally conjugate (cotangent fiber} variables along this direction. These many states 

with the same value for the conjugate variables represent different combinations of v 
amounts of the various phases that can coexist with that value. The graph of dS is 

a Lagrangian submanifold which agrees with dSc except in this singular region. If 
Figure 16.7: The Maxwell equal area construction for the Vander Waals equation 

we describe a loop consisting of the singular line in the graph of dSc from one end 
of state. 

to the other and then back to the beginning of t.he line inside the graph of dS, we 

have just seen that the symplectic area enclosed by the loop is zero. 

But this generalizes the usual Maxwell equal area rule. This rule concerns the 

situation where we hold the temperature fixed and consider the isothermal equation 
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16.9. Relations Between Symplectic Thermodynamics and Mechanics 

It is time now to bring together the fascinating structures that we have seen 

arise asymptotically out of waves and out of statistical mechanics. We have seen 

many tantalizing clues that these theories have much in parallel and would like to 

make these structures explicit. That there should be a connection between these 

theories and some of the parallels were first suggested to me by Robert Littlejohn. 

16.9.1. A) Eikonal Waves and Stationary Phase 

In wave theory we deal with waves in the eikonal limit where we study the 

properties of waves represented by many wavelengths. We introduce asymptotics 

which stretch the .scale length and work with quantities defined in terms of the 

slow spacey= fx. The method of stationary phase lets us asymptotically express 

quantities that a priori depend on the whole wave in terms of values only near a 

stationary phase point. 

16.9.1. B) Thermodynamic Limit and Steepest Descents 

In statistical mechanics we deal with statistics in the thermodynamic limit 

where we study the properties of the statistics of mechanical systems represented 

by many degrees of freedom. We introduce asymptotics to stretch the scale of the 

extensive observables and work with quantities defined in terms of thP rescaled 

values: y = fX. The method of steepest descents lets us asymptotically express 

quantities that depend a priori on the entire probability distribution, in terms of 

v~ues only at a maximum. 
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16.9.2. A) Waves and the Feynman Path Integral 

We may \"iew wave mechanics in terms of the Feynman path integral. The 

value of the wave at a given point in the observation space (typically a point in 

three space, but more general things may occur) is expressed as an integral, over all 

paths to the point of interest, of the exponential of i times the action. The action S 

on a given path is the integral of the Lagrangian along that path. Asymptotically, 

the exponent scales as 1/t. We apply stationary phase to see that only those paths 

with extremal actions can contribute asymptotically. 

16.9.2. B) Probability and the Maximum Entropy Formalism 

We may view statistical mechanics in terms of an integral over all observation 

paths (or equivalently all weighted probability distributions). The value of the 

probability density at a given point in the observation space (sometimes the three 

dimensional space of energy U, volume V, and number N, but often more general) 

is expressed as an integral (the average) of the exponential of the entropy over all 

probability distributions consistent with the observation point of interest . The 

entropy S of a given distribution is the integral of -p log p over that distribution. 

Asymptotically the exponent scales as 1/f. We apply steepest descents to see that 

only that distribution with maximum entropy can contribute asymptotically. 
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16.9.3. A) Wave Path Integrals over a Subspace 

Often in wave mechanics we don't do the entire path integral at once. An 

example of a commmon problem is that of finding a light wave at a point in space 

given its value on some initial surface (or volume, surface, line or point, or many of 

them may be emitting waves relevant to the region of interest; in the limit we may 

have a continuum of source types). We may do this by integrating over all paths, 

but we often like to first integrate over all paths between our point and a given 

point of the surface, and then integrate the resulting values over the surface. Only 

the extremal path between the two points will contribute and we may introduce an 

action defined on the surface, relative to the observation point, which is just the 

action of the extremal path to that point. The remaining part of the integral to 

obtain the desired wave value is a finite dimensional integral over the initial surface. 

16.9.3. B) Probability Distribution Averages over a Subspace 

Often in statistical mechanics we don't do the entire probability integral at 

once. An example of a common problem is that of finding the probability distri­

bution on the space of two thermodynamic systems in contact with one another 

(they may exchange any or all of the extensive quantities and there may be many 

such coupled systems; in the limit we may have a continuum of systems). We may 

do this by integrating over all distributions consistent with the constraint, but we 

often like to first integrate over all consistent distributions on the product space 

for which the first space's thermodynamic quantities have given values and then 

integrate the resulting distributions over these values. For each set of values on the 

( 
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first space, only the maximal entropy consistent distributions on the full space will 

contribute and we may introduce an entropy defined on the space of thermodynamic 

observables on the first space, relative to the constraint conditions, which is just 

the maximal entropy over all consistent distributions with the given values for the 

first space. The remaining part of the integral is an integral over the observables of 

the first system. 

16.9.4. A) Lagrange Multipliers and Canonical Conjugacy 

For the wave system we may also decide not to impose the constraint that the 

end of the integrated paths has to end at the point we are interested in. To make the 

stationary points of this unconstrained problem obey the constraints, we introduce. 

Lagrange multipliers k that are in the dual space to the relaxed constraints. In 

the wave case, this asymptotically becomes the dual space of the tangent space at 

the point of observation (i.e. the cotangent space). We say that the variables y 

and k are canonically conjugate. Instead of the exponential just being of iS/£, it 

is of i(S- (k, y) )/L Here S is a function of. both the initial and final endpoint of 

the paths, and the integral is over both. We use stationary phase and force the 

result to apply to the point of interest by choosing k so that the differential of the 

exponential vanishes at the desired point. This gives: k = dS, where this S is a 

function only of the observation point (the initial point integral already having been 

done). Thus we see that k is really the wavevector and the eikonal wave is naturally 

associated with the Lagrangian submanifold defined by dS in the cotangent bundle 

of y space. 
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16.9.4. B) Lagrange Multipliers and Thermodynamic Conjugacy 

. for the statistical system we may also decide not to impose the constraint 

that the total mean values of the thermodynamic quantities are the ones we are 

interested in. To make the maximum entropy states of this unconstrained problem 

obey the constraints, we introduce Lagrange multipliers X that are in the dual 

space to the relaxed constraints. In the statistics case, this asymptotically becomes 

-the dual space of the tangent space of the space of extensive quantities at the point 

of observation (i.e. the cotangent space). We say that the variables y and X are 

thermodynamically conjugate. Instead of the exponential just being of S/£, it is 

of (S - (X, y) ). Here S is a function of both the thermodynamic quantities of the 

first system and of the total system, and the integral is over both. We use steepest 

descents and force the result to have the total mean values of interest by choosing X 

so that the differential of the exponential vanishes at the desired point. This gives: 

X = dS, where this S is only a function of the total mean values (the integral 

over the values of the first system already having been done). Thus we see that X 

is really the set of conjugate thermodynamic variables and the overall equation of 

state is naturally asociated with the Lagrangian submanifold defined by dS in the 

cotangent bundle of y spice. 

I 
16.9.5. A) Fourier Transforms and Legendre Transforms 

In the wave case, the effect of utilizing the Lagrange multipliers k was to intrcr 

duce an extra integration over ei(k,y)/•. We recognize this as the Fourier transform. 

In general, a wave and its Fourier transform are very different and there is no way 
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to define our wave as a function of both k and x. We have seen that asymptot-

ically we may introduce the local Fourier transform as a function of k and y by 

introducing a window function that approaches a 6-function on the slow scale and 

approaches a constant on the fast wave scale. We find that appropriately scaled 

Gaussians represent asymptotic states with a definite y and a definite k. There 

is an absolute uncertainty principle which prevents us from finding such states in 

x and k. An eikonal wave has a local Fourier transform that is supported on the 

Lagrangian submanifold k = dS(y). The Fourier transform of an eikonal wave is 

another eikonal wave whose phase function is the Legendre transform of the original 

phase function. 

16.9.5. B) Laplace Transforms and Legendre Transforms 

In the statistics case, the effect of utilizing the Lagrange multipliers X was 

to introduce an extra integration over e<X.y)/•. We recognize this as the Laplace 

transform. In general, a distribution and its Laplace transform are very different and 

there is no way to define a probability distribution on both X andy. We have seen 

that asymptotically we may introduce the local Laplace transform as a function of 

X and y by introducing a window function that is an intermediate scale exponential. 

We find that appropriately scaled Gaussians represent asymptotic distributions with 

a definite X and a definite y. There is an absolute uncertainty principle that says 

that asymptotically the dispersion tensor in X and the dispersion tensor in x are 

inverses. A thermodynamic equation of state has a local Laplace transform that is 

supported on the Lagrangian submanifold X= dS(y). The Laplace transform.of a 
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thermodynamic probability distribution is another one, whose entropy function is 

the Legendre transform of the original entropy. The partition function is the Laplace 

transform of the density of states, and asymptotically they are both exponentials 

of quantities over t. 
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