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Recently, microcanonical simulations have been used as a powerful method 

for numerical calculations in lattice gauge theories. 1) Notably, it provides 

a new method for the distinction of first order phase transitions from second 

(or higher) order phase transitions. 2>· 3) These distinctions have been also 

made in Monte Carlo simulations, for example, by examining the continuity of 

the internal energy at a critical point. However, the discontinuity in first 

order phase transitions may be smoothed out by finite volume effects. Hence, 

it is favorable to have a method of making a distinction, which works well 

even in a finite volume. 

According to microcanonical simulations, we can find the internal 

energies of supercooled (or superheated) metastable states. 2>• 3) Namely, for 

a system with sufficiently small volume, its internal energy <S> (< > implies 

an average over a microcanonical ensemble4)) becomes a multi-valued function 

of temperature B-l beyond a critical point of a first order phase transition. 

One branch of the function corresponds to the energy of the supercooled (or 

superheated) state. This is because even beyond the critical point such 

metastable'states cannot decay into a stable state; surface energies between 

the two phases prevent the decay of the metastable states in the system with a 

sufficiently small volume. The multi-valuedness of <S> is revealed by 

examining the, so-called, S-shaped curve2>· 3) in the <S> vs. B plane. On the 

other hand, the multi-valuedness of <S> is not expected around a critical 

point of second order. The reason is that the internal energy is smooth at 

this critical point. 

In this letter we shall propose an improved method of discovering the 

s-shaped behavior, in that the S shape is enhanced more than in the previous 

method (Heller et a1. 2>). Furthermore, we can perform complete calculations 
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necessary for the distinction of the order of the phase transition much faster 

with our method than with the previous method. Our method is easy to 

understand intuitively. 

Before explaining our method, first let us briefly sketch the 

microcanonical simulation. We consider a pure U(l) lattice gauge theory with 

the action BS(U) in 4 dimensional space. (B-l is a coupling constant, which 

we shall call temperature.) The generalization of our method to other lattice 

models is straightforward. The Hamiltonian used in the microcanonical 

simulation is 

2 
Pa 
2 + S(U) ( l ) 

where Pa is a conjugate momentum with respect to a variable ea on a link a (a 
ie 

link variable Ua is defined as Ua = e a). In eq.(l), N is the total number 

of links. In the simulation, we have to solve the following Hamilton 1 s 

equations 

and (2) 

where ' is a fictitious time. A prominent feature of the microcanonical 

simulation is that the temperature p-1 is a measured quantity and not a given 

constant. The temperature can be measured, through the equipartition theorem, 

as 

N,. l 
1 

. 
1m -

2P - T-Ko T 

T( N 2) J ~ ~· d, 
0 -

( 3) 

(\ 

• 

•• 



..• 

.. 

3 

where Ni is the number of independent degrees of freedom. If we take values 

Pa = 0 for all a as an initial condition in solving Hamilton•s equations, Ni 

should be n4 x (4-1); n4 is the number of lattice sites. 

The expectation value <f(U)> can be obtained in the same way as in 

eq.(3), 

T 

<f ( U ) > = 1 i m t J f ( U ( -r )) d -r 
T~ 

0 

( 4) 

Now we shall explain our method, by which we can distinguish clearly the 

orders of the phase transitions. First, we thermalize the system above the 

critical point. Then, putting friction terms into Hamilton•s equations (see 

eq.(5)), we continuously decrease the energy of the system. Evidently the 

decrease of the energy leads to the decrease of the temperature. That is, the 

system is cooled by the friction. When the temperature comes down below the 

critical point of first order, the system can be supercooled. Further 

decreasing the energy leads to a transition from the supercooled metastable 

state to a stable state. This transition is accompanied by the release of a 

latent heat. Since the latent heat increases the temperature of the system, 

we can obtain the S-shaped curve in the <S> vs. ~ plane. 

To what extent it is supercooled depe~ds on the rate at which the energy 

is decreased (the ~oefficient of friction terms in eq.(S)). If the energy is 

decreased too slowly, the system will not be supercooled sufficiently, and 

thus the supercooled state releases only a small amount of its latent heat in 

the subsequent transition. The resultant <S> vs. ~ curve will not have a 

distinct S shape. On the other hand, the energy may not be decreased too 

rapidly. This is because the latent heat released in the subsequent 



transition will be absorbed in the friction energy without heating the system 

itself. Hence, we cannot also cl~arly identify the S-shaped behavior. 

Therefore, we must choose an appropriate rate with which the energy of the 

system is decreased. Such a choice may be easily accomplished. (We have 

performed the calculations with several different rates.) 

Anyway, we can identify a first order phase transition by use of this 

method while, if the pha~e transition is of the second (or higher) order, we 

don 1 t get any S-shaped behavior. The reason is that in this case there are no 

supercooled (or superheated) states around the critical point. Therefore, the 

identification of the order of the phase transition can be made clearly. As 

we shall show below, by using our method, we can amplify an S-shaped curve 

compared with one obtained previously. 2
> 

In our actual procedure, the friction terms are put into Hamilton 1 S 

equations as follows, 

aHm 
C

l 

- ae + Pa 
a 

N 

with C
1 

_ c 01~ p; 
a=l 

(5) 

where c0 is a constant which determines the rate of decreasing the energy, 

(6} 

It is stressed that c0 should be chosen such that -Hm/(dHmldT)(=E/C0) is much 

larger than the relaxation time of the system. (E is a typical energy of the 

system.) This is because the continuous decrease of the energy should proceed 

while preserving the equilibrium of the system. 

• 
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We have examined our method by using U(l) lattice gauge theories with 

lattice size of 44. The action is 

( 7) 

where P indicates a plaquette and ~ is a parameter which has been taken as 

both ~ = 0 and ~ = 1 in our computations. In the case of ~ = 0 the system 

undergoes a second order phase transition at ~ ~ 1. On the other hand, in 

the case of~= 1, the system undergoes a first order phase transition at~ 

~ 0.6. 5) We have used the Leap-Frog method for solving Hamilton 1 s equations 

in which a discrete time step ~T has been taken as ~T = 1/100. 
-1 We have measured the temperature ~ by taking an average of kinetic 

energy over an appropriately finite time interval T. At the same time, using 

the identical time interval T, we also have measured the internal energy 

<S>. Hence, we have obtained <S> as a function of~. In Fig.l-a ~ 

Fig.l-c, we show the results of using various time intervals in case of ~ 0 

and c0 = 10. We can see thermal fluctuations, which imply that the time 

interval T = 100 is shorter than the relaxation time. These figures suggest 

that the relaxation time is about 1000 in units of 6T = 1/100. Since the 

energy of the system is about 1000 at ~ ~ 1, the rate of decreasing energies 

E/C0 ~ 100 is longer than the relaxation time. (Note that T should be chosen 

as E >> c0 x T x 6T, because averages over unreasonably large T smooth out 

effects of various ~.) 



It is worthwhile to state that in our method·the measurement of both <S> 

and B can be performed continuously with the fictitious time. Therefore, we 

have obtained many data points as shown in the figures. 

Next, we have measured <S> in both cases of k = 0 and k = l, using c0 = 

10 and T = 2000. The results are shown in Fig.2 and Fig.3 (curve A). We find 

a clear distinction between these curves. That is, the curve representing the 

first order phase transition (Fig.3) has a typical S shape, while the curve 

representing the second order phase transition (Fig.l) doesn't haVe such a 

shape. 

Let us compare our curve A with the curve B obtained with the previous 

method. 2) The S shape of the curve B is less clear than ours. This is due to 

the use of a slow rate of decrease of the energy in previous calculations. 

(The previous method is interpreted to.correspond to our _method with a rate of 

slowly decreasing energy.) Therefore, the system was supercooled less 

sufficiently than in our case, and it released only a small amount of the 

latent heat. It should be stressed that we have a peculiar interest in the 

existence of the supercooled state and not in the "equilibrium supercooled 

state," which may exist in the system with a sufficiently small volume as in 

our case. Hence, the discrepancy between our result and the previous one 2) 

around a critical pont does not imply a looseness of our method. Indeed, our 

curve A almost coincides with the curve B in the_whole region of B depicted in 

the figure except in the neighborhood of the critical point. 

The curve c in Fig.3 represents the behavior of the system when we have 

chosen a slower rate of energy decrease (C 0 = 5). As expected, the system is 

less supercooled so that the subsequent transition releases a smaller amount 

of the latent heat. Consequently, the S shape becomes smaller than the one of 

curve A, and it approaches that of curve B even more. 

r· 
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It should be noticed that in both curves (A and C), we are able to 

identify clearly the existence of the supercooled state in the model (A= 1). 

Furthermore, we stress that in the case of c0 = 10 (curve A), it has taken 

24000 time steps to perform the calculation of <S> in Fig.3. This number of 

time steps is, probably, of one order of magnitude less than time steps 

required in previous calculations. 3) 

To summarize, we have proposed an improved method for the distinction of 

orders of phase transitions. We have found that the method can enhance the 

s-shaped behavior of the first order phase transition. Furthermore, using the 

method, we can measure the internal energy, etc., in many points of B while 

reducing the time required to perform the calculation. 
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Figure Captions 

F i g . 1 -a ~ 1 -c : 

Fig.2 

Fig.3 

9 

<S>/NP of U(1) gauge theory with the Wilson action. NP is 

the number of the plaquette; NP = 6 x 44. c0 = 10 

(Fig.1-a ~ 1-c), T = 100 (Fig.l-a), T = 500 (Fig.l-b) and 

T = 1 000 ( Fig . 1 -c) . 

<S>/NP of U(1) gauge theory with the Wilson action. c0 

and T = 2000. 

10 

<S>/NP of U(1) gauge theory with the mixed action. Curve A 

(C0 = 10 and T = 2000), curve B quoted from ref.2 and curve 

c (C0 = 5 and T = 4000). 
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